Breaking Browsers: A Survey

Jeffrey Putnam
Kaleb Albee
Eastern Washington University

Genetic Programming

* Encode programs as “genes”

* Evaluate 1n objective function to get a numeric
score

* Usually want to minimize objective function

* Use “crossover’” and “mutation” to produce new
genes

* Repeat until satistied

* Usually programs encoded 1n Lisp-1sh syntax

=~ (sin (cos (+ X Y)))

Stack Based GP

* Genes encoded as strings

* Evaluated 1n a stack based virtual machine
- Forth, Postscript...
~ X Yy + COSs sIn

* Data held 1n stack
- stack data 1s doubles, strings

* Data held in global state

- 1n this case, HTML structure
* elements, attributes, values...

Genes

* Gene string composed of tokens

* Tokens represent :
- Strings
° “fOO”

- Numbers (floating point)
* (1.345)

- Functions
* <element>

* Tokens are atomic

Crossover, Mutation...

* Crossover done by selecting substrings of two
genes and pasting together

* Mutation done by copying a gene and deleting,
adding and mutating tokens

* Also operators for chopping off beginning and end
of genes

* Genes can be generated with non-uniform
probabilities for tokens

Evolution

* Start with population

* Evaluate all members of population

* Save best (“elitism™)

* Generate unique new genes by selecting genes
favoring those that scored well and doing mutation
and crossover

* Save a few good genes as a “genepool” to help
maintain diversity in future

Project Goals

* Can GP be used to generate debugging data
- flexible
- naturally gives “regression testing”
— but either too easy or too hard

* Originally to just crash browsers

* Used time as a measure
- because 1t worked

* Then one page took 3+ hours to display
* Timing became interesting on 1ts own

HTML data

* Always a “current element”

* New elements created with an “element” function
- added as sub-elements to the current element
— made current element

* Elements may be closed
- <foo> </foo>

* or left unclosed
- <foo> <bar> </foo>

* elements generated from list of valid HTML
elements and from randomly generated strings

HTML Data...

* Attributes defined with an attribute function

* Names, values generated with random strings
- usually syntactically valid (names may include non-
valid characters)
- but no guarantee

* Attribute values always given as strings
- attribute=""value”
- even when attribute name 1s sensible, value usually 1s
not

* Mechanism to limit the length of the generated
HTML

Evaluation

* Program runs a tiny “web server”
* Gets request and sends page generated by gene

* Records time sent and time next request received
- elapsed time 1s used to compute score

* If browser fails, wrapper restarts requesting page

“crash” so evaluator can use fixed time for crash
- crash recovery time (which may require human
intervention) 1s fixed
- can be set to reward crashing or not

* Very short times scored the same

Mechanics

* Headers say content 1s HTML

* Request immediate reload
- effectively happens after page loads and displays

* Headers also specity length of page (so browsers
don't wait for end of malformed HTML)

* Elapsed time measured in milliseconds

* Any other requests generated get zero length
responses (1mages, embedded objects....)

* Socket 1s closed after content sent

Problems

* Inconsistent browsers
- some just hang instead of crashing or fetching next

page
- sometimes without using any CPU
- sometimes pegging CPU at max utilization

- 1nvolves user intervention
* Some browsers don't like being run from scripts
* Getting the headers right to consistently force
reloads was involved
* Run “server’” and browser on same machine or
machines on same local network

Results

* Few browsers are trustworthy

* Most crash for some 1input — sometimes non-valid,
often valid

* For most there 1s input that can be limited 1n
length but that will cause the browser to take a
long, long (long!) time to respond

* Crashing may be results of random search over
input space (HTML)

* Clear that long response times are caused by GP
engine learning what makes browser slow

Example Log File

* browser = internet-explorer

* normalizing = false

* crash time = 10000

* population = 1000

* generations = 10

* refresh = Refresh:
0;URL="http://146.187.130.103:5555/normal.html

* truncation = 20000

Example Log File ...

eval
eval
eval=

1043 time=5513 str
1044 time=1012 strl
1045 time=1305 str]

en=17133 score=0.01 crash

en=7392 score=0.1
en=11077

score=0.07692307692307693
eval=1046 time=286 strlen=9213 score=0.5

IE

* Maximum time in plotted run
- 4655902 milliseconds
- 1.3 hours

* crashed at evaluations 5311,7192,8237,8280

* Another run crashed 54 times out of 5000
evaluations

* Crashes occurred 1n 4 of 6 runs done for this test

* page load times relatively fast until long loading
pages dominate

IIIIIIII|
g
N

IIIIIIII|

e
i

=

Firefox

* Crashed in 4 of 9 runs

* In one run crashed eventually in 1 out of every
four page loads

* Slower page loads

* One page load took 203 minutes to complete

* In one development run (not logged carefully), a
single page load took 19 hours

Safari

* [Load times started slower than IE
- but remained faster

* Maximum page load time was under four seconds
* Reliable, robust, reasonably fast

10 E

0 10000 20000 30000

Conclusions

* Genetic Programming has potential to be a
debugging/probing tool

* Browsers are nowhere near as robust as they
should be 1n the face of unknown web sites

* Its astonishingly easy to make most browsers run
very, very slowly

Potential

* Generate XML according to some schema
- easy to generate correct syntax
- much harder to generate correct semantics
* Deserialize XML to objects in some programming
language
- use as part of a test regime

- ensuring meaningful semantics as most OO code
assumes good semantics on created objects

