
“bigaRef” — 2007/7/17 — 19:02 — page 49 — #49

Chapter 3

Working with GUI APIs

This chapter introduces us to the principles of working with GUI APIs. This
chapter will:

• identify GUI element as the fundamental entity in GUI API programming;

• describe the process of building GUI application: the front-end layout de-
sign and the back-end programming support;

• differentiate front-end GUI elements from the back-end control variables;

• demonstrate the above principles based on GUI API; and

• demonstrate how to extend, organize, and customize GUI API for the needs
of our application.

After this chapter we should:

• understand the approach to learning a modern GUI API; and

• be able to design/discuss implementation of GUI applications independent
from API technologies;

In addition, with respect to hands-on and programming, we should:

• understand source code of simple GUI applications independent from the
implementation API technologies; and

• be able to implement simple GUI applications based on MFC;

49

“bigaRef” — 2007/7/17 — 19:02 — page 50 — #50

50 CHAPTER 3. WORKING WITH GUI APIS

In this chapter, we want to understand theprinciples of working with modern
GUI APIs. We emphasizeprinciples because we are going to rely heavily on the
MFC API to illustrate the ideas presented. However, it is important to remember
that our focus is not learning the skills of using any particular API. Instead, we
are interested in understanding the basic capabilities of modern GUI APIs such
that we can examine and implement the requirements of event-driven interactive
programs. For example, we should be able to apply the lessons learned from this
chapter to other GUI APIs (e.g. theJava Swing Library, or theMicrosoft Forms
Library). After this chapter (and with some practice), we want to be able to pick
up the reference manual of any modern GUI API and commence developing a
simple interactive application.

The ultimate goal of this chapter isthe understanding of GUI API’s support
for user interactivity and not to implement the Ball Shooting Program. A proper
implementation of the Ball Shooting Program can only commence after we learn
the software architecture for organizing our solution structure, which will be cov-
ered in Chapter 6.

3.1 Our Application and Existing Libraries
Graphical UI. Notice that the
“graphical” in GUI refers to a
user interface that is “graphi-
cally” oriented. For example
a user interface with visually
pleasing “graphical” buttons,
or slider bars. This should not
be confused with the “com-
puter graphics” we are learn-
ing in this book.

When developing interactive computer graphics programs we work with exist-
ing tools, or software libraries, to develop our applications. In this book we are
learning how to developuser interactive graphics applications, and thus we work
with graphical user interface (GUI) libraries andgraphics libraries. These li-
braries provide well definedapplication programming interfaces (API) with well
documented functions and utility classes. The applications we develop use/sub-
class from the utility classes and call appropriate functions through the APIs. In
this way, our application interacts with the users through a GUI API, and draws
graphics through a Graphics API.

Examples of popular GUI API include: Graphics Utility Toolkit (GLUT),
Fast and Light Toolkit (FLTK), Microsoft Foundation Classes (MFC). Examples
of popular Graphics APIs include: OpenGL API, Microsoft Direct-X Direct3D
(D3D), and Java 3D. In this book, we will work with FLTK and MFC to interact
with the user; OpenGL and D3D to draw graphics. We show examples in more
than one APIs to demonstrate that:

• GUI API: although the utility classes and function names may be signifi-
cantly different, theprinciples of working with GUI APIs are very similar.

• Graphics API: although configuration procedures are different, and the func-
tions have very different names, these APIs are designed based on exactly
the same fundamental graphicsconcepts.

When reading this book, it is important to remember that the programming and
APIs are there to help us learn theconcepts andknowledge. In general, the skills
in working with an API should be readily transferable new APIs.

“bigaRef” — 2007/7/17 — 19:02 — page 51 — #51

3.2. GUI ELEMENTS 51

In the rest of this chapter we will analyze how our computer graphics pro-
grams draw squares (or circles). It is important to keep in mind that at this point
we arenot learning the APIs, we are interested in understanding the process of
drawing squares.

3.2 GUI Elements

As we have seen in Chapter 2, after the initialization, event-driven programs are
simply a collection of routines that are driven by asynchronous external events.
For this reason, facilitating the generation of appropriate events is key to im-
plementing event-driven programs. In our case, since our programs are built to
interact with users, our users are the main source of asynchronous events. The
modern GUI APIs are designed to facilitate users in triggering appropriate events
for our applications.

Modern GUI APIs define an elaborated set ofGUI elements and associate
extensive event structures with these GUI elements to support interactivity with
the users and programmability of event service routines. For example, a GUI
API would define abutton GUI element and associate events like,mouse over (no
click), clicked, double clicked, etc. with the button GUI element. The GUI API
would then allow application programmers to register and service these events.

Recall that GUI elements arevirtual input/output devices, typically repre-
sented as graphical icons. Other examples of common GUI elements include,
slider bars, checkboxes, radio buttons, combo boxes, text boxes etc. Awindow,
or an area with fancy boarders, is also an example of GUI element. A window
GUI element is special because it serves as a container for other GUI elements.
In general, a GUI-based application has at least one GUI element: the main ap-
plication window. From the user’s perspective, GUI elements should be:

• visually pleasing: for example, representing a button with a three dimen-
sional looking icon; and

• semantically meaningful: for example the button should be properly la-
beled, and users understand one would move the mouse pointer over the
icon and click the left mouse button toactivate (depress) the button.

On the opposite end, from the programmer’s perspective, a GUI element should
have:

• an unique identifier: the application must be able to uniquely identify each
GUI element to differentiate the actual triggering source of individual events;

• default behaviors: GUI elements should define default behaviors for mun-
dane situations. For example, a depressed GUI button shouldlook different
from a un-activated button. As application programmer, we expect GUI
elements behave appropriately to these types oftypical situations.

“bigaRef” — 2007/7/17 — 19:02 — page 52 — #52

52 CHAPTER 3. WORKING WITH GUI APIS

• customizable behaviors: as application developers, we want to have the
option of customizing the behaviors of GUI elements. For example, our
application may demand a depressed button to have a special color.

• state information: certain types of interactions with the users require the
corresponding GUI element types to retainstate information. For example,
a slider bar should record the knob position, a check-box should record if
it is currently checked (true) or un-checked (false). When servicing events
generated by these types of GUI elements, our application mustpoll the
corresponding state information.

• abstract representation: customizable behaviors and polling of state infor-Control Variables. Variables
in our program code that are
associated with and represent
GUI elements.

mation imply that our program must havevariables referencing the corre-
sponding GUI elements. These types of variables are referred to ascontrol
variables, where through a control variable, our program code cancon-
trol a GUI element. To properly reflect the different functionality, control
variables for different GUI element types should be of different data types.
For example, there should be aCButton class for buttons andCSliderBar

class for representing slider bar GUI elements.

• event service registration mechanisms: as we have seen many times, this
is probably the single most important functionality we expect from GUI
elements.

It is interesting to note that sometimes it is desirable to have GUI elements con-
trolled by the application. For example, in the ball shooting program, as the hero
ball free falls under gravitational force, the slider bar GUI elements are controlled
by the application to correctly reflect the hero ball velocity.

3.3 Building A GUI Application

We can perceive a GUI application as being a collection of GUI elements, where
through these GUI elements a user can trigger events to cause changes to an ap-
plication state in accomplishing desired tasks. Event-driven programming model
taught us theback-end of a GUI application: how to react to events and cause
changes to an application state. GUI API provides the mechanism for building
the front-end of a GUI application: how to put together the collection of GUI
elements to support the generation of appropriate events.

3.3.1 Front-End: Layout of GUI Elements

The first step in building a GUI application is todesign the layout of the user
interface system. This is referred to as thefront-end because the results are the
front of our application where the user can see and have to interact with. In this
step, the application developer must determine the locations and appearances of

“bigaRef” — 2007/7/17 — 19:02 — page 53 — #53

3.3. BUILDING A GUI APPLICATION 53

every GUI elements. Modern GUI APIs typically support this process with aGUI
builder program. A GUI builder is an interactive graphical editor that allows its
user interactively place and manipulate the appearances of all GUI elements. This
layout process typically involves a developer placing icons representing GUI ele-
ments into a rectangular area representing the application window. The developer
would then adjust each GUI elements appearances (e.g., color, size, etc.). The
results of GUI element layout is usually stored in some data files. The devel-
oper would include these data files with the rest of the development source code.
When compiled and linked appropriately, the resulting program would display the
designed GUI layout.

The goal of this first step is to arrange and manipulate the GUI elements to
present an aesthetic pleasing, logically meaningful, and intuitively easy to use
user interface. These are the topics ofUser Interface Design, an entire field in
Computer Science discipline. In this book we will only describe the basic process
involved in building a GUI. Our GUI front-ends aresufficient but they maynot be
the best, or even good.

3.3.2 Back-End: Establish Semantic Correspondence

As we have already seen, the semantic meanings of GUI elements are defined by
the corresponding event service routines. For example, a mouse click over a but-
ton has no real meaning. It is the event service routine which quits the application
that defines the semanticmeaning of the button. We refer to this as theback-end
because the results of this step are programming codes that operatebehind the
visible user interface. Typically, GUI builder programs provide mechanisms for
supporting the registration of event service routines. For example, a GUI builder
would display a list of defined events for a particular GUI element. The developer
would have the option ofregistering for an event by entering a service function
name.

Similar types of support are also available for defining control variables. The
developer would indicate to the GUI builder (e.g., by clicking on an appropriate
property sheet) that a control variable should be defined for a particular GUI el-
ement. Based on the GUI element type (e.g., a button), the GUI builder would
typically pre-determine the data type (e.g., CButton) for the control variable and
prompt the developer for the variable name.

Notice that in both cases, the developer would entered program code frag-
ments (names of service functions and control variables) into the GUI builder
program. As mentioned, at the conclusion of GUI builder program, information
are saved into some data files. It is important for the GUI builder to integrate these
code fragments with the rest of the event-driven program source codes. There are
two different mechanisms for supporting this integration:

1. External Linkage. Some GUI builders require the developer to enter the
entire event service routine program code directly into the GUI builder pro-

“bigaRef” — 2007/7/17 — 19:02 — page 54 — #54

54 CHAPTER 3. WORKING WITH GUI APIS

gram. The GUI builders would then generate extra program modules in
the form of source code files that contains the event service routines. The
developer would include these source code files as part of the development
project.

2. Internal Direct Code Modification. Some GUI builders modify and in-
sert function prototypes and/or control variable declaration/initialization di-
rectly into the source files in the development project. The developer would
then edit the same source file to enter event service routine program code.

The advantage of the external linkage mechanism is that the GUI builder has min-
imal knowledge of the application source code. This provides a simple and flex-
ible development environment where the developer is free to organize the source
code structure, variable names, etc., in any appropriate way. However, the exter-
nally generated programming module implies a loosely integrated environment.
For example, to modify the behavior of a GUI element, the application developer
must invoke the GUI builder, modify code fragments, and re-generate the external
program module.

The internal direct code modification mechanism in contrast, provides a better
integrated environment where the GUI builder modifies the application program
source code directly. However, to support proper “direct code modification,” the
GUI builder must have intimate knowledge of, and often places severe constraints
on, the application source code system (e.g., source code organization, file names,
variable names, etc.).

Control Variables

There are two situations where the back-end event driven program must define a
control variable to represent a front-end GUI element.

• Polling/Setting of GUI element state information. A control variable should
be defined for GUI elements with state information that must be polled/set
during run time. For example, a checkbox’s state information is altered
every time a user clicks it. When servicing a checkbox’s click event, the
service routine must poll the GUI element (through the control variable)
for its state. Notice that in this case, the data type of the checkbox con-
trol variable should be ofbool. To support polling and setting operations,
the data type of the corresponding control variable should reflect the state
information andnot the GUI element type. For example, slider bar’s state
information is theposition of the knob, or afloat. Thus, control variables
for polling and setting a slider barGUI element should be a variable with
float data type andnot CSliderBar.

• Customization of GUI element behavior. A control should be defined for
GUI elements when an application demands customized behaviors. For

“bigaRef” — 2007/7/17 — 19:02 — page 55 — #55

3.4. EXAMPLES: FLTK AND MFC 55

example, an application may demand state of a checkbox be associated
with the color of the checkbox: green for checked and red for un-checked.
In this case, during event servicing, we must first poll the GUI element
state and then modify the color attributes of the checkbox. This means, the
application needs to have access to theCCheckBox data type.

3.4 Examples: FLTK and MFC

3.4.1 FLTK - Fluid and External Service Linkage

Figure 3.1 shows a screen shot of working withFluid, FLTK’s GUI builder. In
the lower-right corner of Figure 3.1, we seethat (A) Fluid allows an application
developer to interactively place graphical representations of GUI elements (3D-
looking icons); (B) is an area representing the application window. In addition
(C), the application developer can interactively select each GUI element to de-
fine its physical appearances (color, shape, size, etc.). In the lower-left corner of
Figure 3.1, we see that (D) the application developer has the option to type in
program fragments to define control variable for and to service events generated
by the corresponding GUI element. In this case, we can see that the developer
must type in the program fragment for handling the X velocity slider bar events.
This program fragment will be separated from the rest of the program source code
system and will be associated with Fluid (the GUI builder). At the conclusion of
the GUI layout design, the user can instruct Fluid to generate source code files
to be included with the rest of the application development environment. In this
way, some source code files are controlled and generated by the GUI builder and
the application developer must invoke the GUI builder in order to update/main-
tain the control variables and the event service routines. FLTK implements the
external service linkage.

(B): Area representing

the application window

Fluid (FLTK

GUI Builder)

(D): Application

developer types in this

code to service the X

velocity slider bar event.

Applicati

on

developer

Application

developer

would type in

(C): Application Developer

can create GUI elements and

define their appearances.

GUI elementsGUI

l t

(A): Interactively

placed GUI elements(D): Control variable

Figure 3.1: Fluid: FLTK’s GUI Builder.

“bigaRef” — 2007/7/17 — 19:02 — page 56 — #56

56 CHAPTER 3. WORKING WITH GUI APIS

3.4.2 MFC - Resource Editor and Direct Code Modification

Figure 3.2 shows a screen shot of the MFC resource editor, MFC’s GUI builder.
Similar to Fluid (Figure 3.1), in the middle of Figure 3.2, (A) we see that the
resource editor also supports interactive designing of the GUI element layout in
(B), an area representing the application window. Although the GUI builder in-
terfaces operate differently, we observe that in (C), the MFC resource editor also
supports the definition/modification of the physical appearance of GUI elements.
However, unlike Fluid, the MFC resource editor is tightly integrated with the rest
of the development environment. In this case, a developer can register event ser-
vices by inheriting or overriding appropriate service routines. The MFC resource
editor automatically inserts code fragments into the application source code sys-
tem. To support this functionality, the application source code organization is
governed/shared with the GUI builder; the application developer is not entirely
free to rename files/classes and/or to re-organize implementation source code file
system structure. MFC implements internal direct code modification for event
service linkage.

3.5 Implementation Notes

Before we begin examining examples of implementations in detailed, it is impor-
tant that we take note of a few important characteristics/pitfalls of programming
with GUI APIs.

(B): Area representing

the application window

(D): Event service

source code is integrated

with the rest of the

source code system.

GUI elementsGUI

l t

(A): Interactively

placed GUI elements

(C):

Applicatio

n

(C): Application Developer

can create GUI elements and

define their appearances.

Figure 3.2: The MFC resource editor.

“bigaRef” — 2007/7/17 — 19:02 — page 57 — #57

3.5. IMPLEMENTATION NOTES 57

1

Application

State

2 3

LMB Up

LMB Drag
LMB Up

LMB Drag
LMB Down

Define
HeroBall

Center

Define

HeroBall

Velocity &

Size

Done

Defining

HeroBall

Service

Routines
LMBUpRoutine()LMBDragRoutine()LMBDownRoutine()

Figure 3.3: State diagram for defining the HeroBall.

Application State: the application state of an event-driven program must per-
sist over the entire life time of the program. In terms of implementation, this
means that the application state should be defined based on variables that are dy-
namically allocated during run time and that reside on the heap memory. These
are in contrast to local variables that reside on the stack memory and which do
not persist over different function invocations.

Implicit Events: the mapping of user actions to events in the GUI system of-
ten results inimplicit and/or undefined events. In our ball shooting solution, the
actions to define a HeroBall involve left mouse button down and drag. When
mapping these actions to events in our implementation (in Listing 2.2 and List-
ing 2.6), we realize that we should also pay attention to the implicit mouse button
up event. Another example is the HeroBall selection action: right mouse button
down. In this case, right mouse button drag and up events are not serviced by our
application, and thus, they are undefined (to our application).

Consecutive User Actions: when one user action (e.g.,“drag out the Her-
oBall”) is mapped to a group of consecutive events (e.g., mouse button down,
then drag, then up) a finite state diagram can usually be derived to help design
the solution. Figure 3.3 depicts the finite state diagram for defining the HeroBall.
The left mouse button down event puts the program into State 1 where, in our
solution from Listing 2.6,LMBDownRoutine() implements this state and defines
the center of the HeroBall, etc. In this case the transition between states is trig-
gered by the mouse events, and we see that it is physically impossible to move
from State 2 back to State 1. However, we do need to handle the case where the
user action causes a transition from State 1 to State 3 directly (mouse button down

“bigaRef” — 2007/7/17 — 19:02 — page 58 — #58

58 CHAPTER 3. WORKING WITH GUI APIS

and release without any dragging actions). This state diagram helps us analyze
possible combinations of state transitions and perform appropriate initializations.

Input/Output Functionality of GUI Elements: an input GUI element (e.g.,
the quit button) is an artifact (e.g., an icon) for the users to generate events to
cause changes the application state, while an output GUI element (e.g., the status
bar) is an avenue for the application to present application state information to
the user as feedback. For both types of elements, information only flows in one
direction—either from the user to the application (input) or from the application
to the user (output). When working with GUI elements that serve both input and
output purposes, special care is required. For example, after the user selects or
defines a HeroBall, the slider bars reflects the velocity of the free falling Her-
oBall (output), while at any time, the user can manipulate the slider bar to alter
the HeroBall velocity (input). In this case, the GUI element’s displayed state and
the application’s internal state are connected. The application must ensure that
these two states are consistent. Notice that in the solution shown in Listing 2.2,
this state consistency is not maintained. When a user clicks the RMB (B2 in List-
ing 2.2) to select a HeroBall, the slider bar values are updated properly; however,
as the HeroBall free falls under gravity, the slider bar values are not updated. The
solution presented in Listing 2.6 fixes this problem by using theServiceTimer()
function.

Redraw/Paint Events: in Section 2.4.3, it is stated that

“ ... Redraw/Paint is the single most important event that an applica-
tion must service... ”

Recall that the Redraw/Paint event is areminder from the window manager that
the content of our application window may be out-of-date. It is in our appli-
cation’s interests to update the window content as soon as possible, preferably
before the user notices any inconsistency. As we have seen in the Ball Shooting
Program solution presented in Section 2.6, to maintain smooth animation of sim-
ulated results, applications with real-time simulation must redraw the application
state at a rate of more than 20 times in a second. With such high redraw rate,
the application’s window content can never be out-of-date for more than a few
milliseconds. For this reason, applicationswith default high-redraw rates do not
need to service the Redraw/Paint event. Since most of the applications presented
in this book involve real-time simulations with more than 20 redraws in a second,
Redraw/Paint events are typicallynot serviced.

OnIdle Event: many GUI API defines anOnIdle event to be triggered when
nothing is happening, or when the application isidling. Some application with
real-time simulation chooses to service this event to compute simulation updates.

“bigaRef” — 2007/7/17 — 19:02 — page 59 — #59

3.6. TUTORIALS AND CODE BASE 59

In this way, the application can taking advantage of idled CPU cycles for simula-
tion computations. The main disadvantage of this approach is that as developer,
we cannot predict the events:

1. if the application is completely idle, this event will be triggered continu-
ously, as a result the simulation process will be updated more frequently
than necessary;

2. if the application gets busy, (e.g., bursts of user activities, etc.) and are
short on idle times, there are chances that the simulation may lag behind
real-time resulting in inconsistent display.

In practice, modern machines are fast enough that idle cycles arealmost always
available. Many commercial applications are developed with updates during the
OnIdle events. For dependable and predictable update rates, we have chosen to
compute simulations during the application programmedOnTimer events.

3.6 Tutorials and Code Base

Modern GUI APIs are highly sophisticated often with steep initial learning curves.
When learning to work with GUI API we should constantly remind ourselves that
ultimately, we are interested in building interactive graphics programs. Our goal
is not to become an expert in GUI programming. Rather, we are interested in un-
derstanding the principles of working with GUI API such that we can commence
on building graphics applications. In this section, we use MFC to experience the
different aspects of event programming studied. It is important to understand the
underlying concepts behind the APIs, and then becomfortable at using one of the
APIs. The important lesson we should learn from the short history of our disci-
pline is that APIs change and evolve rapidly; we must always be ready to to learn
new ones.

The tutorials from this section serves two purposes, demonstrate: how to work
with GUI API; and how to work with MFC. In the beginning of each tutorial,
explicit goal andapproach statements identify the key ideas that will be demon-
strated in the tutorial. These are “API independent” statements, where to work
with any GUI API, one must understand how to accomplish these tasks. Typically
the procedures involved in programming with different GUI API may be different,
but the end results would contains similar elements: e.g. control variables with
appropriate data types, event service routines via object oriented override and/or
via callback function registration, etc.

In the following tutorials we describe results of working with MFC and re-
late these results to our learning from earlier sections. For a detailedstep-by-
step how-to’s for the MFC Resource editor, please refer toTHE CD - William
Frankhouser’s guide. To demonstrate the concepts presented are indeed lan-
guage and GUI API independent, the following tutorials are also implemented in

“bigaRef” — 2007/7/17 — 19:02 — page 60 — #60

60 CHAPTER 3. WORKING WITH GUI APIS

C# and WinForm API. The corresponding detailedstep-by-step guide can also be
found on theTHE CD - Ethan Verrall’s guide. On-line resources are excellent
avenues for learning basic skills in working with these software systems. Jason
Pursell has developed an excellentstep-by-step guide on working with the MFC
editor that are tailored for the MFC-based tutorials in this book1.

Here is a brief summary of the tutorials in this section:

Tutorial Demonstrates Reusable Codebase
3.1 Demystify source code files -
3.2 GUI elements and control variables-
3.3 More with control variables -
3.4 Application defined events -
3.5 Input/Output GUI elements -
3.6 Extending GUI API with classes SliderCtrlWithEcho

3.7 Custom GUI library MFC Library

3.8 Grouping of GUI elements ReplaceDialogControl()

Tutorial 3.1: Demystifying the files.
Tutorial 3.1.
Project Name

MFC SimpleDialog
• Goal: to demonstrate that while on first look, programming with GUI API

can appear to be overwhelming, with systemic approach of analyzing the
purpose of the files in the environment, we can gain significant understand-
ing of the system.

• Approach: familiarize and demystify the typically intimidating GUI devel-
opment source code structure; create the simplest possible application with
a GUI API and analysis every file; identify the purpose of files and draw
attention to how these files are related/un-related to GUI development.

Figure 3.4: Tutorial 3.1.

Figure 3.4 is a screen shot of running Tutorial 3.1. This entire tutorial is au-
tomatically generated by the MFC wizard of the Microsoft Visual-C++ (VC++)
Integrated Development Environment (IDE). This program does not do anything
at all. When user clicks on the “OK” or the “Cancel” button, the application
simply quits. This application does not do anything else.

Here is the source code structure:

1This guide can be found off Jason’s home page at: http://home.myuw.net/jpursell/ or
http://faculty.washington.edu/ksung/biga/chaptertutorials/VC Guide/CreatingDialogAppWithMFC7.pdf.

“bigaRef” — 2007/7/17 — 19:02 — page 61 — #61

3.6. TUTORIALS AND CODE BASE 61

Purpose Files Folder
TutorialApp(.cpp,.h)

Source code TutorialDlg(.cpp,.h)
stdafx(.cpp,.h), Resource.h MFC SimpleDialog

Documentation Readme.txt (main project folder)
GUI builder *.rc
IDE project *.vcproj, *.sln
IDE scratch *.aps, *.ncb
Icon *.ico, *.rc2 \res
Debugging *.exe, *.obj (compiled results) \Debug
Release *.exe, *.obj (compiled results) \Release

We will examine the files according to the abovepurpose of all these files.

• Source code: these are the files that contain the source code to the applica-
tion. Notice that there are seven (7) source files for this simple project! We
will examine the details of these source files after examining the rest of the
supporting files in this development project.

• Documentation: TheReadMe.txt file is a text file meant for programmer
to fill-in comments.

• GUI builder: The∗.rc file is the data file of the MFC GUI builder (i.e. the
resource editor): Source File.

MFC SimpleDialog.rc file
in the Resource Files folder
of the MFC SimpleDialog
project.

Source Listing. For the
convenience of description, in
general the presented source
code has been significantly
edited from the original
source file. Readers should
understand the book, and
expect to see the code
fragments in different orders
when examining the source
code files.

/ / M i c r o s o f t V i s u a l C++ g e n e r a t e d r e s o u r c e s c r i p t .
...

i n c l u d e ” Resource . h ”
...

IDD MFC SIMPLEDIALOG DIALOG is the identifier for the main applicaiton window.
The following describe the dimension and appearance of this GUI element.

IDD MFC SIMPLEDIALOG DIALOG DIALOGEX 0 , 0 , 320 , 200
STYLE DS SHELLFONT | WS POPUP | WS VISIBLE | WS CAPTION | DSMODALFRAME
EXSTYLE WSEX APPWINDOW
CAPTION ” MFC SimpleDialog”
...

The following lines descrbe the locations and dimenstions of OK and Cancel buttons.
BEGIN

DEFPUSHBUTTON ”OK” , IDOK,2 6 3 ,7 ,5 0 ,1 6
PUSHBUTTON ” Cancel ” ,IDCANCEL,2 6 3 ,2 5 ,5 0 ,1 6

...

Listing 3.1: Snippet fromMFC SimpleDialog.rc (Tutorial 3.1).

Listing 3.1 shows that this is a simpletext file, where it is possible to
open/edit this file with any simple text editor (e.g. notepad). We see that
among other data, this file includes information that describes the location
and appearance of all the GUI elements on the application window.

• IDE project: the.vcproj/.sln files are used by the VC++ IDE for defining
the source code project (e.g., what are the source file, how to compile the
project, etc.). These are also text files, interested readers can open/edit these
files with any text editors to examine the details.

“bigaRef” — 2007/7/17 — 19:02 — page 62 — #62

62 CHAPTER 3. WORKING WITH GUI APIS

• IDE scratch: the .aps/.ncb are temporary files kept/generated by the IDE
while supporting our development process. These files can be deleted in
between editing/development sessions.

• Debug: The IDE uses this folder to record all the compile results, including
all the.obj files and the eventual.exe file (executable program). The content
of this folder are meant to support interactive debugging in the IDE. All the
.obj and the executable files contain intermediate symbols for interactive
debugging. As a result, files from this folder are much larger than they
need be.

• Release: The IDE uses this folder to record all the compiled results. In
contrast to theDebug folder, the files in this folder are for supporting final
release of the program (after development is done). The executable files
from this folder is optimized for size and speed.

Here are the details of the7 source files:

• Resource.h: this file defines the symbolic names (orGUIID) of GUIGUI ID. The GUI ID is
an unique identifier associated
with each GUI element. GUI
ID is used mainly by the MFC
resource editor.

elements used in the resource editor:

Source File. Resource.h file
in the Header Files folder
of the MFC SimpleDialog
project.

/ / M i c r o s o f t V i s u a l C++ g e n e r a t e d i n c l u d e f i l e .
/ / Used by MFC SimpleDialog . RC
/ /
...

d e f i n e IDD MFC SIMPLEDIALOG DIALOG 102
...

Listing 3.2: Snippet fromResource.h file (Tutorial 3.1).

For example, as shown in Listing 3.2,IDD MFC SIMPLEDIALOG DIALOG

is the symbolic name of the GUI element that represents the main applica-
tion window. In this case, we see that this symbol is being defined to be a
unique integer. Notice that in Listing 3.1, theMFC SimpleDialog.rc file
includes theResource.h file to define theIDD MFC SIMPLEDIALOG DIALOG

symbol.Working with pre-compile
header. After changing
and/or creating a header file in
a project, it is a good idea first
to re-compilestdafx.cpp to
ensure up-to-date pre-compile
header information.

• StdAfx.h/.cpp: These two files containpre-compile header information.
They help speed up the compilation process. These two files are important
and exists in all of our projects. Fortunately the handling ofpre-compile
header is fairly transparent and we will not change these files.

• TutorialApp.h/.cpp: These two files define and implement theCTutorialApp

class:Source File.
TutorialApp.h/cpp file in the
Source andHeader Files fold-
ers of theMFC SimpleDialog
project.

c l a s s CTuto r i a lApp : p u b l i c CWinApp {
. . .
v i r t u a l BOOL I n i t I n s t a n c e () ;

};
. . .

theApp: this is the abstraction of our application.
CTuto r i a lApp theApp ; / / The one and o n l y C Tu t o r i a l Ap p o b j e c t

. . .
BOOL CTuto r i a lApp : : I n i t I n s t a n c e (){

“bigaRef” — 2007/7/17 — 19:02 — page 63 — #63

3.6. TUTORIALS AND CODE BASE 63

. . . / / Code f o r i n t i a l i z a t i o n
/ / C rea t e and show our d i a l o g
C Tu t o r i a l D l g d lg ; / / T h i s i s t h e our main application window
m pMainWnd = &d lg ;
. . .
/ / d i s p l a y t h e main a p p l i c a t i o n window , when t h e a p p l i c a t i o n window
/ / q u i t s , t h e a p p l i c a t i o n s h o u l d t e r m i n a t e .
. . .

}

Listing 3.3: TheCTutorialApp class (Tutorial 3.1).

Listing 3.3 shows thatCTutorialApp subclasses from the API systemCWinApp.
This class represents our application. The global variable,theApp, repre-
sents the instance of our running program. Notice that our main application
window is aCTutorialDlg object and is instantiated and invoked in the
InitInstance() function. When our application window exits, the control
will return to InitInstance() and the application terminates.

• TutorialDlg.h/.cpp: These two files define and implement theCTutorialDlg

class. As shown in Listing 3.4,CTutorialDlg subclasses from the MFC
CDialog class. Recall that our main application window is a GUI element,
and that we can define control variables for GUI elements. Now, refer to
Listing 3.3, thedlg object instantiated in in theInitInstance() function is
the control variable for our main application window, and the data type for
our main application window isCTutorialDlg. Listing 3.3 showsdlg is
referenced bym pMainWnd, an instance variable oftheApp.

Source File.
TutorialDlg.h/cpp file in the
Source andHeader Files fold-
ers of theMFC SimpleDialog
project.

c l a s s CTutorialDlg : p u b l i c CDialog {
...

C Tu t o r i a l D l g (CWnd∗ p P ar en t = NULL) ; / / s t a n d a r d c o n s t r u c t o r
v i r t u a l BOOL O n I n i t D i a l o g () ; / / The SystemInitialization() f u n c t i o n
afx msg v o i d OnPain t () ; / / To S u p p o r t Redraw/Paint e v e n t
DECLARE MESSAGEMAP () / / I d e n t i f y t h e e v e n t s t o o v e r r i d e from su p er c l a s s
v i r t u a l v o i d DoDataExchange (CDataExchange∗ pDX) ; / / GUI e l e m e n t i n p u t / o u t p u t s u p p o r t
...

};

TutorialDlg.cpp: implementation file
C Tu t o r i a l D l g : : C Tu t o r i a l D l g (...){...} / / C o n s t r u c t o r

A: BOOL C Tu t o r i a l D l g : :OnInitDialog () { ... }
...

B: BEGIN MESSAGE MAP (CTu to r i a lD lg , CDialog)
ON WM PAINT() ...

C: v o i d C Tu t o r i a l D l g : :OnPaint () { ... }
...

D: v o i d C Tu t o r i a l D l g : : DoDataExchange (CDataExchange∗ pDX) { ... }
...

Listing 3.4: TheCTutorialDlg class (Tutorial 3.1).

When we examine the structure of theTutorialDlg.cpp file (refer to Listing 3.4),
we observe:

• Object Oriented Mechanism: TheCTutorialDlg subclasses from the MFC
CDialog class, this means, our main application window will inheritvast
predefined functionality from theCDialog class (e.g., mouse events, timer
events, etc). Notice the virtual functions that are override (e.g.OnInitDialog()),
these are examples of modifying predefined GUI element behaviors.

“bigaRef” — 2007/7/17 — 19:02 — page 64 — #64

64 CHAPTER 3. WORKING WITH GUI APIS

• SystemInitialization (A): TheOnInitDialog() is our opportunity to perform
initialization for the application window, much like the functionality of the
SystemInitialization() function discussed in Section 2.2. Since we are
overriding avirtual function, it is important to follow the protocol. In this
case, we must the super-class methodCDialog :: OnInitDialog(), and we
must a returnTRUE upon successful operations.

• Redraw/Paint Event (B and C): The BEGIN MESSAGE MAP macro
(A) helps register events for services. Here we see the registration ofON WM PAINT ,
the Redraw/Paint event. In this case,CTutorialDlg must override the
OnPaint() function to service the event. Since the application window
is empty, this function does not do anything.

• GUI Element and Control Variable data exchange (D): As we will see in
later tutorials, this function helps maintain the consistency of state informa-
tion between the front-end GUI elements and their corresponding control
variables in the back-end.

Source file naming convention: Notice that of the above file names,Resource.h,
StdAfx.h, .cpp are names governed by MFC. We will nameall of the tutorials in
this bookTutorialApp.h/.cpp for the application andTutorialDlg.h/.cpp for the
main application window. For the rest of the tutorials in this chapter, we will only
need to work with theCTutorialDlg class (our main application window).

Tutorial 3.2: GUI elements and control variables
Tutorial 3.2.
Project Name

MFC EchoButtonEvent
• Goal: practice and experience event-driven programming design and im-

plementation;Approach: design a solution to a very simple problem, ex-
amine how the solution is implemented.

• Goal: experience and understand front-end GUI elements vs. back-end
control variables;Approach: work with output-only GUI element, where
at run time, our application must change the state of the GUI element.

Figure 3.5: Tutorial 3.2.

Figure 3.5 is a screen shot of running of Tutorial 3.2. This is a slightly more
interesting application where we count the number of times the “Click to Add”
button has been clicked. If we have to design a solution for this tutorial, our
experience from Section 2.2 and Listing 2.4 would lead us to an application state
with a simple integer counter, and a button event service routine the increments
the counter:

System Initialization:
/ / D e f i n e A p p l i c a t i o n S t a t e : co u n t t h e number o f b u t t o n c l i c k s

i n t m OkCount = 0 ; / / i n i t i a l i z e t o 0
/ / R e g i s t e r Even t S e r v i c e R o u t i n e s

R e g i s t e r f o r : ButtonClick Even t

Events Services:
ButtonClick / / s e r v i c e r o u t i n e f o r b u t t o n c l i c k

m OKCount++; / / i f b u t t o n i s c l i c k e d , i n c r e m e n t t h e co u n t

“bigaRef” — 2007/7/17 — 19:02 — page 65 — #65

3.6. TUTORIALS AND CODE BASE 65

GUI Element: Application Window

GUI ID: IDD_ECHOBUTTONEVENT_DIALOG

Control Variable: m_pMainWnd (CTutorialApp)

GUI Element: Click to Add Button

GUI ID: IDC_BTN_ADD

Control Variable: none

GUI Element: Output Echo Area

GUI ID: IDC_ECHO_AREA

Control Variable: m_EchoArea

GUI Element: Button Click Label

GUI ID: IDC_STATIC

Control Variable: none

GUI Element: Quit Button

GUI ID: IDCANCEL

Control Variable: none

Figure 3.6: GUI Elements of Tutorial 3.2.

EchoToScreen (mOKCount) / / echo t h i s new co u n t t o t h e a p p l i c a t i o n window

Listing 3.5: Abstract Event-Driven Programming Solution (Tutorial 3.2).

To implement the solution of Listing 3.5, we must first design the layout of the
GUI application and then register the event services with the appropriate GUI
element.

Front-end GUI Layout Design

Figure 3.6 shows that in our Tutorial 3.2 implementation, the front-end user inter-
face has five GUI elements:

• The “application window”: We assignIDD ECHOBUTTONEV ENT DIALOG

to be the GUI ID for the application window GUI element. As in Tu- theApp. Recall from Tuto-
rial 3.1, that theApp is an
instance ofCTutorialApp, it
represents our application. In
TutorialApp.cpp, we set the
m pMainWnd instance vari-
able to reference to the con-
trol variable representing our
application main window.

torial 3.1, theCTutorialDlg class represents this GUI element, and that
theApp.m pMainWnd is the control variable that references to our main
application window.

• The “Click to Add” button: We assignedID BTN ADD to be the GUI ID

GUI ID. GUI IDs are defined
in theResource.h file.

of this button. This is aninput-only GUI element because our application
never changes its state. Our application is only interested in receivingclick
events generated by this button. Since our application does not have any
need to refer to this element, we do not need to define a control variable for
this element.

“bigaRef” — 2007/7/17 — 19:02 — page 66 — #66

66 CHAPTER 3. WORKING WITH GUI APIS

• The “Output Echo Area”: We assignedIDC ECHO AREA to be the GUI
ID this element. This is the echo area where the application state infor-
mation (number of clicks) will be displayed. At run time, our application
needs to change the content of this GUI element. In our implementation,
we definem EchoText to be the control variable of this GUI element.

• The “Button Clicks” label: This is astatic GUI element because it provides
neither input nor outpu functionality. It is a simple label.

• The “Quit” button: This is the same button from Tutorial 3.1. Our appli-
cation has no reference to this GUI element. This GUI element supports
the default MFC service, where it reacts to a click event by quitting the
application.

Back-end Implementation
Source File.
TutorialDlg.h/cpp file in
the Source and Header
Files folders of the
MFC EchoButtonEvent
project.

c l a s s C Tu t o r i a l D l g : p u b l i c CDialog {
... / / removed c o n t e n t s i m i l a r t o t h a t f rom Listing 3.4 (Tutorial 3.1).

A1: i n t m OkCount ; / / co u n t o f ” C l i c k t o Add” b u t t o n i s c l i c k e d

B1: afx msg v o i d OnBnCl ickedBtnAdd () ; / / ” C l i c k t o Add” s e r v i c e r o u t i n e

C1: C S t r i n g m EchoText ; / / For c o n t r o l i n g t h e o u t p u t GUI e l e m e n t
};

... / / removed c o n t e n t s i m i l a r t o t h a t f rom Listing 3.4 (Tutorial 3.1).
BOOL C Tu t o r i a l D l g : :OnInitDialog () {

A2: m OkCl ick = 0 ; / / i n i t i a l i z e a p p l i c a t i o n s t a t e .
...

BEGIN MESSAGEMAP(CTuto r ia lD lg , CDialog)

B2: ON BN CLICKED(ID BTN ADD , OnBnCl ickedBtnAdd)
...

v o i d C Tu t o r i a l D l g : :DoDataExchange (CDataExchange∗ pDX) {

C2: DDX Text (pDX, IDC ECHO AREA , m EchoText) ;
...

B3: This is the “Click to Add” button serviceroutine that we have registered with the MFC.
v o i d C Tu t o r i a l D l g : :OnBnClickedBtnAdd () {

A3: m OkCount ++; / / u p d a t e a p p l i c a t i o n s t a t e

C3: m EchoText . Format (”%d” , m OkCount) ; / / c o n v e r t t o t e x t f o r o u t p u t

C4: UpdateData (FALSE) ; / / f l u s h co u n t t o window
...

Listing 3.6:CTutorialDlg class (Tutorial 3.2).

The development environment structure for Tutorial 3.2 is identical to that of Tu-
torial 3.1 with the same folder structure and same seven source code files. In
addition, following the naming convention of the source code files, we notice
TutorialApp.h/.cpp defining the application, andTutorialDlg.h/.cpp defining
the main application window. When we compare theTutorialDlg.h/.cpp with
those from Tutorial 3.1, we notice slight differences. These differences are the
implementation of the functionality in Tutorial 3.2. Listing 3.6 highlights these
differences. From Listing 3.6 we notice:

• Application State (A): as defined by the solution from Listing 3.5, at label
A1 the application state is defined as an integer. At labelA2, the applicationOnInitDialog(). Recall that

theOnInitDialog() should im-
plement theSystemInitializa-
tion() functionality.

“bigaRef” — 2007/7/17 — 19:02 — page 67 — #67

3.6. TUTORIALS AND CODE BASE 67

state is initialized in theOnInitDialog() function. The application state is
updated during the button event service routine (A3).

• Support for the button GUI element (B): the even service routine is de-
clared at labelB1 in theTutorialDlg.h file. At label B2, we register the ID BTN ADD. Refer to Fig-

ure 3.6 this is the GUI ID for
the “Click to Add” button.

ON BN CLICKED (on button click) event and associate the GUI ele-
mentID BTN ADD with theOnBnClickedBtnAdd() routine. This pro-
cess registers the routine as acallback function for the click event on the
button. The event service routine is implemented at labelB3, where we up-
date the application state and display the updated information to the output
echo area.

• Output GUI element (C): at labelC1 we define the variablem EchoText,
and at labelC2, this variable isbound to the GUI elementIDC ECHO AREA.
Notice that before the binding statement at labelC2, m EchoText is sim- IDC ECHO AREA. Refer to

Figure 3.6 this is the GUI ID
for the “output echo” area.

ply just another instance variable. However after the statement atC2,
m EchoText becomes the control variable of theIDC ECHO AREA. Af-
ter the application state is updated in the button event service routine, at
labelC3, them EchoText is set with the updated application state. At this
point, the value of them EchoText control variable isdifferent from the
state information presented in theIDC ECHO AREA. The statement at
C4 flushes the content ofm EchoText to the GUI element to ensure con-
sistency.

Tutorial 3.3: More with control variables
Tutorial 3.3.
Project Name

MFC SliderControls
• Goal: understand that control variables can be complex data types; and

demonstrate working with control variables of input GUI elements.

• Approach: work with slider bars, a fairly complex GUI element.

Figure 3.7: Tutorial 3.3.

Figure 3.7 is a screen shot of running Tutorial 3.3. This application is basically
Tutorial 3.2 with two extra slider bar sets. From the GUI layout, we see that each
slider bar set actually consists of three GUI elements: the label, the slider bar, and
the echo area:

GUI Element GUI ID Control Variable
Slider Bars IDC V SLIDER BAR m V SliderBar

IDC H SLIDER BAR m HSliderBar

Slider Bar Labels Vertical Bar −
Horizontal Bar −

Slider Bar Echo Areas IDC V SLIDER ECHO m V SliderEcho

IDC H SLIDER ECHO m HSliderEcho

We have worked withlabel andoutput echo area in Tutorial 3.2. In this tutorial,
we will concentrate on working with the slider bar, and servicing of slider bar

“bigaRef” — 2007/7/17 — 19:02 — page 68 — #68

68 CHAPTER 3. WORKING WITH GUI APIS

events. When we examining the development environment, we see the familiar
source code structure. Once again, we will concentrate onTutorialDlg.h/.cpp.
Listing 3.7 highlights the new programming code fragments that are associated
with the slider bars:Source File.

TutorialDlg.h/cpp file in the
Source and Header
Files folders of the
MFC SliderControls project.

c l a s s C Tu t o r i a l D l g : p u b l i c CDialog {
... / / removed c o n t e n t s i m i l a r t o t h a t f rom Listing 3.6 (Tutorial 3.2).

A1: C S t r i n g m HSl iderEcho , mVSl iderEcho ;

B1: C S l i d e r C t r l m VSl iderBar , m HSl iderBar ;

C1: afx msg v o i d OnHScrol l (UINT nSBCode , UINT nPos , C S c r o l l B a r∗ p S c r o l l B a r) ;
afx msg v o i d OnVScrol l (UINT nSBCode , UINT nPos , C S c r o l l B a r∗ p S c r o l l B a r) ;

};

... / / removed c o n t e n t s i m i l a r t o t h a t f rom Listing 3.6 (Tutorial 3.2).
v o i d C Tu t o r i a l D l g : : DoDataExchange (CDataExchange∗ pDX) {

A2: DDX Text (pDX, IDC H SLIDER ECHO , m HSl iderEcho) ;
DDX Text (pDX, IDC V SLIDER ECHO , m VSl iderEcho) ;

B2: DDX Control (pDX, IDC V SLIDER BAR , m VSl iderBar) ;
DDX Control (pDX, IDC H SLIDER BAR , m HSl iderBar) ;

...

BEGIN MESSAGEMAP(CTuto r ia lD lg , CDialog)

C2: ON WM HSCROLL()
ON WM VSCROLL()

...

BOOL C Tu t o r i a l D l g : :OnInitDialog () {

A3: m VSl iderEcho . Format (”%d” , 0) ; m HSl iderEcho . Format (”%d” , 0) ;

B3: m VSl iderBar . SetRange (0 , 100 , TRUE) ; mVSl iderBar . SetPos (0) ;
...

B4: UpdateData (f a l s e) ;
...

C3: This is the Horizontalscroll bar serviceroutine we override from MFC.
v o i d C Tu t o r i a l D l g : : OnHScrol l (UINT nSBCode , UINT nPos , C S c r o l l B a r∗ p S c r o l l B a r) {

/ / ch eck t o make s u r e we know which s l i d e r bar i s g e n e r a t i n g t h e e v e n t s
i f (p S c r o l l B a r == (C S cr o l l B a r∗) &m HSl iderBar) {

C4: i n t v a l u e = m HSl iderBar . GetPos () ;

C5: m HSl iderEcho . Format (”%d” , v a l u e) ;

C6: UpdateData (f a l s e) ;
...

C7: This is the Vertical scroll bar serviceroutine we override from MFC.
v o i d C Tu t o r i a l D l g : : OnVScrol l (UINT nSBCode , UINT nPos , C S c r o l l B a r∗ p S c r o l l B a r) {

/ / c o n t e n t co mp l emen t s t h a t o f OnHScroll

Listing 3.7:CTutorialDlg class (Tutorial 3.3).

• Slider bar echo control variables (A): we see declaration of the variables
at labelA1. Note thatm HSliderEcho is simply another variable until the
DDX Text macro call at labelA2. After this macro call,m HSliderEcho

becomes the control variable forIDC H SLIDER ECHO GUI element.
These control variables are initialized at labelA3.

• Slider bar control variables (B): we see the declaration of the variables
at labelB1. These will be the control variables for the slider bars. No-
tice theCSliderCtrl data type. MFC pre-defines data types to support
every types of GUI elements (e.g.CButton for button GUI elements,
CComboBox for combo-box GUI elements, etc.). At labelB2, these vari-
ables are bound to the corresponding slider bar GUI elements. At label
B3, during the initializationOnInitDialog() function call, we initialize the

“bigaRef” — 2007/7/17 — 19:02 — page 69 — #69

3.6. TUTORIALS AND CODE BASE 69

max, min, and initial position of the slider bar knobs. After the initializa-
tion function calls, the values of the control variable (e.g.m V SliderBar)
becomes out-of-sync with the state of the corresponding GUI element (e.g.
IDC V SLIDER BAR). Thefalse parameter to theUpdateData() func-
tion call at labelB4, flushes the control variables’ value onto their corre-
sponding GUI elements.

• Slider bar service routines (C): at labelC1 we declareOnScroll() for ser-
vicing all horizontal andvertical scroll bars. Notice that before the service
registration at labelC2, these two are just simple functions. At labelC2, H and V. To avoid repeating

every sentence with an “H”
for horizontal and an “V” for
vertical, we omit the “H/V”
characters and use one identi-
fier to refer to both. For exam-
ple, OnScroll() is referring to
OnHScroll() andOnVScroll.

we register forON WM SCROLL (on window scroll) event. Notice that
in caseno callback functions are passed in. The horizontal and vertical
scroll event services are pre-defined by the MFCCDialog, and in this case,
we override theOnScroll() functions to customize the services. The defini-
tion of event service routines can be found at labelsC3 andC7. Notice that
if our application has more than one horizontal scroll bars,all horizontal
scroll events will be serviced by the the sameOnHScroll() function. This
means, as illustrated by theif statement inC3, when servicing horizontal
scroll events we must identify which of the scroll bars triggered the event.
At labelC4 we call theGetPos() function on the control variable to obtain
the up-to-date knob value, this new value is updated in the echo control
variable at (C5 and flushed to the corresponding GUI element at labelC6.

Tutorial 3.4: application defined events
Tutorial 3.4.
Project Name

MFC MouseAndTimer
• Goal: experience with events triggered by the application.Approach:

Work with GUI timer event.

• Goal: experience working with servicing events from the mouse.Ap-
proach: Service all events from the mouse and echo all relevant infor-
mation to the application window.

Source File.
TutorialDlg.h/cpp file in the
Source and Header
Files folders of the
MFC MouseAndTimer
project.

c l a s s C Tu t o r i a l D l g : p u b l i c CDialog {
... / / removed c o n t e n t s i m i l a r t o t h a t f rom Listing 3.7 (Tutorial 3.3).

A1: i n t m Seconds ;

B1: C S t r i n g m MouseEcho , mTimerEcho ;

C1: afx msg v o i d OnTimer (UINT nIDEvent) ;

D1: afx msg v o i d OnLButtonDown (UINT nFlags , CPo in t p o i n t) ;
afx msg v o i d OnMouseMove (UINT nFlags , CPo in t p o i n t) ;
afx msg v o i d OnRButtonDown (UINT nFlags , CPo in t p o i n t) ;

};

... / / removed c o n t e n t s i m i l a r t o t h a t f rom Listing 3.7 (Tutorial 3.3).
BOOL C Tu t o r i a l D l g : :OnInitDialog () {

A2: m Seconds = 0 ;

C2: SetTimer (0 , 1000 , NULL) ;
...

v o i d C Tu t o r i a l D l g : : DoDataExchange (CDataExchange∗ pDX) {

B2: DDX Text (pDX, IDCMOUSEECHO, mMouseEcho) ;
DDX Text (pDX, IDC TIMERECHO, m TimerEcho) ;

“bigaRef” — 2007/7/17 — 19:02 — page 70 — #70

70 CHAPTER 3. WORKING WITH GUI APIS

...

BEGIN MESSAGEMAP(CTuto r ia lD lg , CDialog)

C3: ON WM TIMER ()

D2: ONWM LBUTTONDOWN ()
ONWM MOUSEMOVE()
ONWM RBUTTONDOWN ()

...

C4: This is the timer service routine.
v o i d C Tu t o r i a l D l g : : OnTimer (UINT nIDEvent){

m Seconds ++; / / u p d a t e t i m e p a ssed and echo t o u s e r
m TimerEcho . Format (”%d : Seconds have p as s ed ” , mSeconds) ;
UpdateData (f a l s e) ;

...

D3: These are the left/right mouse button down service roune
v o i d C Tu t o r i a l D l g : : OnLButtonDown (UINT nFlags , CPo in t p o i n t)
v o i d C Tu t o r i a l D l g : : OnRButtonDown (UINT nFlags , CPo in t p o i n t)

i f (n F l ag s & MKCONTROL) / / ch eck i f t h e c o n t r o l / a l t / s h i f t key i s p r e s s e d
...

m MouseEcho . Format (”% s L e f t mouse down a t%d ,%d” , p r e f i x , p o i n t . x , p o i n t . y) ;
UpdateData (f a l s e) ;
...

D4: This is the mouse move service routine
v o i d C Tu t o r i a l D l g : : OnMouseMove (UINT nFlags , CPo in t p o i n t)

Listing 3.8:CTutorialDlg class (Tutorial 3.4).

Figure 3.8 is a screen shot of running Tutorial 3.4. The source code of this appli-
cation is based on that from Tutorial 3.3. When compared to the main application
window from Tutorial 3.3, we can see two extra sets of outputs:

Figure 3.8: Tutorial 3.4.
• Mouse Echo: when the mouse pointer is inside the application window, this

echo prints out the position of the mouse and the status (e.g., clicked) of the
mouse buttons.

• Timer Echo: we will enabled the timer alarm to trigger an event for our
application every second. This echo will print out the number of seconds
that has passed since we start running this application.

As in all previous tutorials, all changes in programming code are localized to the
TutorialDlg.h/.cpp files. Listing 3.8 highlights the changes from the previous
tutorial:

• Application state (A): since the applicaiton counts the number of elapsed
seconds, we must defined (A1), and initialize (A2) a counter that we can
count inseconds. This counter will be updated in timer service routine in
C4.

• Mouse and timer echo (B): these are simple output echo set ups. As we have
seen in previous tutorials, we must declare the variables (B1), associate the
variables with the GUI IDs (B2). The content of these echo regions are
updated during corresponding service routines, i.e., mouse and timer.

• Application timer events (C): labelC1 shows the declaration of theOnTimer()

service function. During the initialization inOnInitDialog(), at labelC2,
the alarm is set to go off every1000 milliseconds (or1 second). At label

“bigaRef” — 2007/7/17 — 19:02 — page 71 — #71

3.6. TUTORIALS AND CODE BASE 71

C3, we call theON WM TIMER (on window timer) macro to registra-
tion for the timer event. We do not see any callback function during the
registration. Once again, theOnTimer() function is defined by the MFC
CDialog class and we will override it to customize to our application. The
timer service routine is defined at labelC4. This function is invoked once
every second. We service the timer event by incrementing them Seconds

and echoing the new value to the defined echo area.

• Mouse events (D): just like timer in this tutorial, slider bars from previous
tutorial, theCDialog class has default support for mouse events. We know Hardware Coordinate. The

coordinate system where the
top-left is the origin with y-
axis incrementing downwards
and x-axis increase right-
wards.

we must override the functions (D1); register for the events (D2), and im-
plement the functions (D3, D4). Notice the mouse positions are passed in
theCPoint structure. If you run the tutorial, and move the mouse around in
the application window, notice that the mouse positions are defined relative
to thetop-left corner (origin is located at the top-left corner).

Tutorial 3.5: Input/Output GUI Elements.
Tutorial 3.5.
Project Name

MFC UpdateGUI

Figure 3.9: Tutorial 3.5.

• Goal: experience working with GUI elements that serves both input (from
user to application) and output (from application to user) functions for the
application.

• Approach: continue with the previous tutorial, where this tutorial will al-
low both the application and the user to control the slider bars.

Source File.
TutorialDlg.h/cpp file in the
Source and Header
Files folders of the
MFC UpdateGUI project.

c l a s s C Tu t o r i a l D l g : p u b l i c CDialog {
... / / removed c o n t e n t s i m i l a r t o t h a t f rom Listing 3.8 (Tutorial 3.4).

A1: BOOL m Ti mer C t r l S l i d e r s ;
afx msg v o i d O n B n C l i ck ed T i mer Con t ro lS l i d e rs () ;

};

... / / removed c o n t e n t s i m i l a r t o t h a t f rom Listing 3.8 (Tutorial 3.4).
v o i d C Tu t o r i a l D l g : : DoDataExchange (CDataExchange∗ pDX) {

A2: DDX Check (pDX, IDCTIMER CONTROL SLIDERS , m T i mer C t r l S l i d e r s) ;
...

BEGIN MESSAGEMAP(CTuto r ia lD lg , CDialog)

A3: ON BN CLICKED(IDC TIMER CONTROL SLIDERS , O n B n C l i ck ed T i merC on t ro lS l i de r s)
...

BOOL C Tu t o r i a l D l g : :OnInitDialog () {

A4: m Ti mer C t r l S l i d e r s = TRUE;
UpdateData (f a l s e) ;

...

Timer service rouine: update slider bar and check-box when appropriate.
v o i d C Tu t o r i a l D l g : : OnTimer (UINT nIDEvent){

B1: If the check-box is checked:
i f (m T i mer C t r l S l i d e r s)

B2: i n t h v a l u e = m HSl iderBar . GetPos () ;
i f (h v a l u e> 0)

m HSl iderBar . SetPos (hvalue−1);
m HSl iderEcho . Format (”$%$d” , hvalue−1);

/ / Do t h e same f o r t h e v e r t i c a l s l i d e r bar . . .
i n t v v a l u e = m VSl iderBar . GetPos () ;
...

B3: i f ((h v a l u e ==0) && (v v a l u e==0))
m T i mer C t r l S l i d e r s = f a l s e ;
UpdateData (FALSE) ;

...

“bigaRef” — 2007/7/17 — 19:02 — page 72 — #72

72 CHAPTER 3. WORKING WITH GUI APIS

Check-box service rouine: copy state from GUI element to control variable
v o i d C Tu t o r i a l D l g : : O n B n C l i ck ed T imer Co nt r o lS l i de r s (){

A5: UpdateData (t rue) ;
}

Listing 3.9:CTutorialDlg class (Tutorial 3.5).

Figure 3.9 is a screen shot of running Tutorial 3.5. Once again, this tutorial is
very similar to that of Tutorial 3.4. From the front-end user interface, the only
difference is theTimer Control (TC) check-box located in the center of the appli-
cation window. In this case, if the TC ischecked, the application will decrement
both of the slider bar’s values, one unit per second. When both slider bars has
zero values, the application willuncheck TC. At any point, the user can check/un-
check the TC and change the slider bar values by adjusting the knobs on the slider
bars. In this way, both of the slider bars, and the TC can be controlled by both the
application and the user.

Listing 3.9 highlights the changes in theTutorialDlg.h/.cpp files (from that
of Tutorial 3.4).

• The Timer Control (TC) check-box (A): the variable and the event service
function are declared at labelA1; the variablem TimerCtrlSliders be-
comes the control variable ofIDC TIMER CONTROL SLIDERS (the
check box GUI element) at labelA2; the check box event is registered at
labelA3; the TC value is initialized toTRUE at labelA4; and the service
function is defined at labelA5. At label A3, we see another example of
event registration with callback function.

It is interesting that the check box service routine atA5 only has a single
statement:UpdateData(TRUE). When userclick on the TC check box,UpdateData(FALSE). Recall

from previous tutorials that
UpdateData() with a FALSE
parameter flushes control
variable values to the GUI
element.

the front end GUI will automatically flip the state of the check box GUI
element. However, this information is not reflected in the control variable
mT imerCtrlSldiers. UpdateData() with the TRUE parameter sets the
control variable according to the state of the GUI element.

• The application controls GUI in the timer service routine (B): on the per-
second timer event, the timer service routine first check to ensure the slid-
ers under the application control with theif statement at labelB1. If the
condition is favorable, at labelB2, the slider bar positions are polled and
decremented accordingly. When both of the slider bars have zero values, at
labelB3, the control variable for the TC check box is updated and flushed
to the front-end GUI element (withUpdateData(FALSE)).

As we continue to program with GUI API, we would begin to encounter repeated
patterns of working with multiple GUI element types. For example, we will find
ourselves constantly working with slider bars that require the numeric echoing
functionality. The next few tutorials demonstrates how we can customize and/or
organize our interface with the GUI API to better support programming in a mod-
erately complex development environment.

“bigaRef” — 2007/7/17 — 19:02 — page 73 — #73

3.6. TUTORIALS AND CODE BASE 73

Tutorial 3.6: The SliderCtrlWithEcho class
Tutorial 3.6.
Project Name

MFC SliderCtrlWithEcho
• Goal: demonstrate that when appropriate we should apply knowledge from

previous programming classes and define/customize new GUI element classes.
In most cases, this will ease the programming effort, increase readability/-
maintainability of our system.

• Approach: customize GUI behavior by creating new GUI element types.
We will customize slider bar functionality to define a new slider bar type
that supports numeric echo area.

Figure 3.10: Tutorial 3.6.

Figure 3.10 is a screen shot or running Tutorial 3.6. Notice that the application
behaves identical to that of Tutorial 3.5. In this case the only difference between
these two applications is the support for the two slider bars. When we compare the
source code of the two tutorials we see one extra class in Tutorial reftut:gut7: the
SliderCtrlWithEcho.cpp/.h files. This new class extends the MFCCSliderCtrl

class in two ways:

1. Slider bar range:CSliderCtrl only supports integer values.CSliderCtrlWithEcho

presents a floating point range with105 unique positions.

2. Numeric echo area: it is convenient, and often important, for the user to
know the exact numeric value of the bar knob position.SliderCtrlWithEcho

supports the echoing of the bar knob numeric values.
Source File.
SliderCtrlWithEcho.h file in
the Controls folder of the
MFC SliderCtrlWithEcho
project.

Source code folders. For
readability, folders and sub-
folders (when appropriate) are
created in theVisual Studio
Solution Explorer to organize
source files according to their
corresponding functionality.

c l a s s C S l i d e r C t r l W i th Echo : p u b l i c C S l i d e r C t r l {

A: public interface functions
v o i d I n i t i a l i z e (f l o a t min , f l o a t max , f l o a t i n i t) ; / / i n i t i a l i z a t i o n
bo o l S e t S l i d e r V a l u e (f l o a t u s e r V a l u e) ; / / s e t t h e s l i d e r bar f o r o u t p u t
f l o a t G et S l i d e r V a l u e () ; / / g e t u s e r i n p u t v a l u e from t h e s l i d e r bar

B: Internal representation and impelementation
i n t UserToMFCPos (f l o a t u s e r V a l u e) ; / / t r a n s l a t i o n from u s e r (f l o a t) t o MFC v a l u e s (i n t e g e r)
f l o a t MFCToUserPos (i n t mfcValue) ; / / t r a n s l a t i o n from MFC (i n t e g e r) t o u s e r (f l o a t) v a l u e s
v o i d U p d a t eS l i d e r Echo () ; / / u p d a t e c u r r e n t s l i d e r v a l u e t o n u mer i c echo a rea
C S t a t i c m MessageWnd ; / / c o n t r o l v a r a i b l e f o r t h e echo a rea

C: Override MFC event service routines
afx msg v o i d H S cr o l l (UINT nSBCode , UINT nPos) ; / / h o r i z o n a t l s c r o l l s e r v i c e r o u t i n e
afx msg v o i d V S cr o l l (UINT nSBCode , UINT nPos) ; / / v e r t i c a l s c r o l l s e r v i c e r o u t i n e

};

Listing 3.10: TheCSliderCtrlWithEcho class (Tutorial 3.6).

Listing 3.10 shows the definition of theCSliderCtrlWithEcho class. We can
see a simple public interface where the user can initialize, set, and get slider bar
values. We also see familiar declarations of service routines and control variables.
Initialize() is the only MFC specific function where we must create and insert
an echo GUI element for the numeric display. The rest of the class are fairly
straightforward. Please do explore the implementations.

Tutorial 3.7: The MFC Library
Tutorial 3.7.
Project Name:

MFC UseLibrary1
Library Support:

MFC Library1

• Goal: demonstrate the advantage of collecting functional specific files into
a separate software library.

“bigaRef” — 2007/7/17 — 19:02 — page 74 — #74

74 CHAPTER 3. WORKING WITH GUI APIS

• Approach: gather all GUI API specific functions and create a customize
GUI library for our application.

The source code of Tutorial 3.7 is identical to that of Tutorial 3.6. The only dif-
ference here is in theorganization of the source codes. When we examine the
source code for Tutorial 3.7, we see that we have collected all MFC specific utili-
ties and created theMFC Library1 software library. As the number of files grows
in our development environment, creation of library to group functional specific
files will become very important in maintaining a manageable source code struc-
ture. In all of our implementation, we would call functions fromMFC Library1

whenever possible. In this way, we havecustomized the GUI API, where instead
of calling the underlying MFC functions, we call our library functions where the
support is customized to specifically support our requirements.
In general, as thedeveloper of a software library we must provide:

• Manual andSample Code: this is to support ease of use by developers using
our library. Themanual should describe the functionality and document
all classes/functions in the the library. The sample code should illustrate
examples ofhow to use the provided facilities in the library. In our case, the
tutorials in this textbook serves as the sample code, while the explanation
accompanied each tutorial serves as the manual for our libraries.

• Header files: this is to supportcompilation of the programming code that
are based on our libraries. For example, if a programmer wants to declare a
CSliderBarWithEcho object, she must include theSliderBarWithEcho.h

file; otherwise, at compile time, the compiler will not understand what is a
CSliderBarWithEcho. In all of our libraries, we dedicate alibrary header
file that includesall of the classes/functions defined in the library. For ex-
ample, forUWB MFC Lib1 the file: uwbgl MFC Lib1.h includes all the
definition for all the classes and functions defined in this library. A devel-
oper only needs to include this file to take advantage of facilities provided
by this library.

The advantage ofone dedicated library header file is in its simplicity: de-
velopers only needs to know about this single file. The main disadvantage
comes in the form of compilation time; includingall definitions in a library
means the compile must process much more information. We chose this
approach mainly for the simplicity. In our all of our tutorial projects, the
library header files are included in theStdAfx.h file. Since all source files
must include this pre-compile headerfile, all source files have access to all
functionality provided by our libraries.

• The library this is to supportlinking of the programming code that are based
on our library. In modern development environmentssoftware librariesLibrary File. Library files

typically ends with.lib or .dll
extensions in the Microsoft
Windows environment. Other
examples of library exten-
sions include,.a, and .dso in
the Unix environment.

typically comes in the form of afile. This file contains all the machine code

“bigaRef” — 2007/7/17 — 19:02 — page 75 — #75

3.6. TUTORIALS AND CODE BASE 75

for all the functions/classes defined in the library. At link time, a devel-
oper’s compiled code will belinked with the contents of this library file. For
example, if a programmer has properly included theSliderBarWithEcho.h

file and declared an object for this class. At link time, the linker will locate
and extract the machine code that implements theSliderBarWithEcho

functionality.

In modern development environment there are two types of software li-
braries:statically linked anddynamically linked. Statically linked libraries
are processed atlink time, where the machine code is included in the exe-
cutable program. Dynamically linked libraries supports the loading of the
library atrun time. We have chosen to work withstatically linked libraries
for it simplicity.

The result of compiling our library project is a.lib file. For example, for the
MFC Library1 project, the result of compilation is theMFC Library1.lib

library file. A developer that uses ourMFC Library1 library must include Compile results. Microsoft
Visual Studio IDE store the
compile results from C++
projects into theDebug or
theRelease folder.

this library file in the final linking of her program.

The library we have created,MFC Library1, contains theSliderCtrlWithEcho

class and a utility function (ReplaceDialogControl()). Let’s examine this func-
tion in more details.

Tutorial 3.8: Grouping of GUI Element
Tutorial 3.8.
Project Name:

MFC GroupControls
Library Support:

MFC Library1

• Goal: demonstrate that sometimes it is advantages to work with a container
GUI element and the corresponding programming code to organize user
interface.

• Approach: define a “container” object to contain related GUI elements,
define a corresponding data type andcontrol variable to manage the new
“container” object.

Figure 3.11: Tutorial 3.8.

Figure 3.11 is a screen-shot of running Tutorial 3.8. The check box and the slider
bar at the lower-left corner is meant for controlling the radius of a circle. Since
we have not learn how to draw a circle, this application does not do anything. In
this case, we are interested in the organization of the circle radius control GUI
elements and the corresponding programming code.

Front-end GUI layout design

So far in all of the tutorials, the GUI elements are defined to be contained inside
the default application window. Figure 3.12 shows the structure of the GUI ele-
ments in Tutorial 3.8. Notice that the GUI elements for controlling the circle ra-
dius are defined inside a separate container window (GUI ID:IDD CONTROLS CHILDDLG).
As illustrated in Figure 3.12, a place holder (GUI ID:IDC PLACEHOLDER)
is defined on the main application window forplacing thecontainer window.

“bigaRef” — 2007/7/17 — 19:02 — page 76 — #76

76 CHAPTER 3. WORKING WITH GUI APIS

GUI Element: Application Window

GUI ID: IDD_GROUPCONTROLS_DIALOG

Control Variable: m_pMainWnd (TutorialApp)

Contrl Variable Data Type: CTutorialDlg

GUI Element: Slider Contrl With Echo

GUI ID: IDC_RADIUS_SLIDER_BAR

Control Variable: m_CircleRadiusBar (CircleRadiusControls.h)

Contrl Variable Data Type: CSliderCtrlWithEcho

GUI Element: Place Holder

GUI ID: IDC_PLACEHOLDER

Control Variable: none

Contrl Variable Data Type: N/A

GUI Element: Circle Radius Control

GUI ID: IDD_CONTROLS_CHILDDLG

Control Variable: m_circle_controls (TutorialDlg.h)

Contrl Variable Data Type: CCircleRadiusControls

Place into
IDC_PLACEHOLDER

to present to users

Figure 3.12: GUI Elements in the Tutorial 3.8.

Back-end Implementation

On the back-end, we must define a new data type to support the newcontainer
window. Notice that our main application window is also an example ofcontainer
window, where the main application window is a GUI element and it is defined
to contain other GUI elements. We have been defining theCTutorialDlg class
as the data type to support our main application window. When we examine the
implementations (e.g., Listing 3.9 of Tutorial 3.5), we observe thatCTutorialDlg

is a subclass of the MFCCDialog class to take advantage of the vast pre-defined
behaviors. Based on this experience, we can define a new data type for the new
container window:Source File.

CircleRadiusControls.h/cpp
file in the Controls folder
of the MFC GroupControls
project.

c l a s s C C i r c l eR ad i u s C o n t r o l s :p u b l i c CDialog {

A1: v i r t u a l BOOL O n I n i t D i a l o g () ;

B1: C S l i d e r C t r l W i thEch o mC i r c l eR ad i u sB ar ; / / c o n t r o l v a r i a b l e f o r t h e s l i d e r bar
BOOL m b S l i d e r C o n t r o l ; / / c o n t r o l v a r i a b l e f o r t h e ch eck box

C1: afx msg v o i d OnBnCl i ckedCont ro lRad iusCheck () ;/ / s e r v i c e r o u t i n e f o r t h e ch eck box
...

};

... / / f o r t h e ea se o f rea d i n g , come code a re removed (e . g . c o n s t r u c t o r , e t c .)
v o i d C C i r c l eR ad i u s C o n t r o l s : : DoDataExchange (CDataExchange∗ pDX) {

B2: DDX Control (pDX, IDC RADIUS SLIDER BAR , m C i r c l eR ad i us Bar) ;
DDX Check (pDX, IDCCONTROLRADIUS CHECK, m b S l i d e r C o n t r o l) ;

...

BEGIN MESSAGEMAP(C C i r c l eR ad i u s C o n t r o l s , CDialog)

C2: ON BN CLICKED(IDC CONTROLRADIUS CHECK, OnBnCl i ckedCont ro lRad iusCheck)
...

A2: BOOL C C i r c l eR ad i u s C o n t r o l s : : O n I n i t D i a l o g (){

B3: m C i r c l eR ad i u sB ar . I n i t i a l i z e (0 . 0 f , 100 .0 f , 10 .0 f) ;
...

“bigaRef” — 2007/7/17 — 19:02 — page 77 — #77

3.6. TUTORIALS AND CODE BASE 77

C3: v o i d C C i r c l eR ad i u s C o n t r o l s : : OnBnCl i ckedCont ro lRad iusCheck ()
...

Listing 3.11: TheCCircleRadiusControls class (Tutorial 3.8).

Listing 3.11 shows that similar to theCTutorialDlg class, the newCCircleRadiusControls

class is also a subclass of the MFCCDialog class. This means all of our previous
experiences can be applied. We observe:

• Window initialization (A): all container objects must initialize their con-
tents. As we have learned previously, theOnInitDialog() function will be
invoked during the initialization of the window. In Listing 3.11, we observe
the declaration (A1) and implementation (A2) of this function.

• Control variables (B): we need to have references to the slider bar and the
check box during run time. As we have seen many times, the variables are
defined at labelB1; bound to the GUI elements at labelB2; and initialized
at labelB3. In this tutorial we are using the slider bar data type defined in
Tutorial 3.6 (B1), notice that even without any services, the numeric echo
area reflects the knob positions correctly.

• Event services (C): the service of the check box event is established in
familiar procedure: declaration of service routine at labelC1; registration
of event at labelC2; and implementation at labelC3.

With theCCircleRadiusControls data type definition, we can now define control
variables for thecontainer window in our main window: Source File.

TutorialDlg.h file in the
HeaderF iles folder of the
MFC GroupControls project.

c l a s s C Tu t o r i a l D l g : p u b l i c CDialog {
...

C C i r c l eR ad i u s C o n t r o l s mc i r c l e c o n t r o l s ;
...

};

Listing 3.12:CTutorialDlg class (Tutorial 3.8).

We have seen the definition of the two data types for the two container windows:
CCircleRadiusControls and CTutorialDlg. In addition, Listing 3.12 shows
us thatCTutorialDlg has them circle controls control variable referencing a
CCircleRadiusControls window. However, we have also seen that during the
front-end GUI layout design, we didnot place anyCCircleRadiusControls GUI
element into the main application window area. This means, at this point, after
our main application window started, theback-end implementation will have a
control variable to aCCircleRadiusControls window, however, on thefront-end
GUI there will beno GUI element showing the window.

At run-time, we mustplace them circle controls at the region defined by the
placeholder GUI element (refer to Figure 3.12, GUI ID:IDC PLACEHOLDER).
TheReplaceDialogControl() function defined in ourMFC Library1 is designed
to accomplish this task: Source File.

UtilityFunctions.cpp file in
the SourceF iles folder of
theMFC Library1 project.

“bigaRef” — 2007/7/17 — 19:02 — page 78 — #78

78 CHAPTER 3. WORKING WITH GUI APIS

bo o l R ep l aceD i a l o g C o n t r o l (CDialog& dlg , UINT p la c e h o l d e r i d , CDialog& n ew co n t r o l g r o u p , UINT c o n t r o l g r o u p i d)
/ / dlg i s t h e main a p p l i c a t i o n window
/ / placeholder id i s ID o f t h e p l a c e h o l d e r
/ / new control group i s c o n t r o l v a r i a b l e o f t h e new c o n t a i n e r GUI e l e m e n t
/ / control group id i s ID o f t h e new c o n t a i n e r GUI e l e m e n t

Places the control group id GUI element in the area defined by placeholderid.

Listing 3.13: TheReplaceDialogControl() function (Tutorial 3.8).

At run time, whenCTutorialDlg initializes itself in theOnInitDialog() function:
Source File.
TutorialDlg.cpp file in the
SourceF iles folder of the
MFC GroupControls project.

BOOL C Tu t o r i a l D l g : : O n I n i t D i a l o g () {
...

R ep l aceD i a l o g C o n t r o l (∗ t h i s , IDC PLACEHOLDER , m c i r c l e c o n t r o l s , IDDCONTROLS CHILDDLG) ;
/ / this −− i s t h e main a p p l i c a t i o n window
/ / IDC PLACEHOLDER −− d e f i n e s t h e r e g i o n f o r t h e c i r c l e c o n t r o l
/ / m circle controls −− c o n t r o l v a r i a b l e f o r t h e c i r c l e c o n t r o l
/ / IDD CONTROLS CHILDDLG −− GUI ID o f t h e c i r c l e r a d i u s c o n t r o l window

...

Listing 3.14:CTutorialDlg :: OnInitDialog() (Tutorial 3.8).

In this way, the circle control window isreplaced into the region that was occupied
by the placeholder GUI element. As we can see, defining separate GUI container
window involves significant effort, however, some advantages include:

1. Semantic mapping: by grouping functional related GUI elements into the
a container window and defining a new class representing the container
window, we have created a newuser interaction object that supports higher-
level of abstraction and interaction. For example, in this tutorial we have
created anobject that is suitable for adjusting the radius of a circle. From
this point on, we can work with the circle radius control object and not be
concerned with slider bars and check boxes.

2. Code organization: instead of having a laundry list of every GUI element
defined in the main application window, the main application window now
contains a list of high-level interaction objects. This directly helps the or-
ganization of our source code system.

3. Reuse: we can instantiate multiple copies of the newly defined interaction
object. For example, if I have an application with2 circles and would like
to have2 separate radius controls for each of the circle. In this case, we
can instantiate twoCircleRadiusControls objects to accomplish the task.
In addition, it is straightforward for to resue theCircleRadiusControls in
another application.

