“bigaRef” — 2007/7/17 — 19:02 — page 49 — #49

Chapter 3

Wor king with GUI APIs

This chapter introduces us to the principles of working with GUI APIs. This
chapter will:

identify GUI element as the fundamigl entity in GUI APl programming;

describe the process of building GUI application: the front-end layout de-
sign and the back-end programming support;

differentiate front-end GUI elements from the back-end control variables;
demonstrate the above principles based on GUI API; and

demonstrate how to extend, organize, and customize GUI API for the needs
of our application.

After this chapter we should:

understand the approach to learning a modern GUI API; and

be able to design/discuss implemeiaa of GUI applications independent
from API technologies;

In addition, with respect to hands-on and programming, we should:

understand source code of simple GUI applications independent from the
implementation API technologies; and

be able to implement simple GUI applications based on MFC;

49

“bigaRef” — 2007/7/17 — 19:02 — page 50 — #50

50 CHAPTER 3. WORKING WITH GUI APIS

In this chapter, we want to understand ftrénciples of working with modern
GUI APIs. We emphasizprinciples because we are going to rely heavily on the
MFC API to illustrate the ideas presented. However, it is important to remember
that our focus is not learning the skills of using any particular API. Instead, we
are interested in understanding the basic capabilities of modern GUI APIs such
that we can examine and implement the requirements of event-driven interactive
programs. For example, we should be able to apply the lessons learned from this
chapter to other GUI APIs (e.g. tllava Swing Library, or theMicrosoft Forms
Library). After this chapter (and with some practice), we want to be able to pick
up the reference manual of any modern GUI APl and commence developing a
simple interactive application.

The ultimate goal of this chapter tke understanding of GUI API's support
for user interactivity and not to implement the Ball Shooting Program. A proper
implementation of the Ball Shooting Program can only commence after we learn
the software architecture for organizing our solution structure, which will be cov-
ered in Chapter 6.

3.1 Our Application and Existing Libraries

Graphical Ul. Notice that the) .))))
“graphical” in GUI refers to a When developing interactive computer graphics programs we work with exist-

user interface that isgtaphi- ing tools, or software libraries, to develop our applications. In this book we are
;aﬂzerolr:]‘igfﬁce f’v(’i;heif‘srﬂ;'@ learning how to developser interactive graphics applications, and thus we work
pleasing traphical” buttons, With_graphic_al user inter_face (G_UI)_ libraries ant_jgrqphics libraries. These li-

or slider bars. This should not ~ braries provide well defineapplication programming interfaces (API) with well

be confused with the com- documented functions and utility classes. The applications we develop use/sub-

puter graphics’ we are learn-

ing in this book. class from the utility classes and cafigopriate functions through the APIs. In

this way, our application interacts with the users through a GUI API, and draws
graphics through a Graphics API.

Examples of popular GUI API includeGraphics Utility Toolkit (GLUT),
Fast and Light Toolkit (FLTK), Microsoft Foundation Classes (MFC). Examples
of popular Graphics APIs include: OpenGL API, Microsoft Direct-X Direct3D
(D3D), and Java 3D. In this book, we will work with FLTK and MFC to interact
with the user; OpenGL and D3D to draw graphics. We show examples in more
than one APIs to demonstrate that:

e GUI API: although the utility classes and function names may be signifi-
cantly different, theprinciples of working with GUI APIs are very similar.

e Graphics API: although configuration medures are different, and the func-
tions have very different names, these APIs are designed based on exactly
the same fundamental graphiscepts.

When reading this book, it is important to remember that the programming and
APIs are there to help us learn tbencepts andknowledge. In general, the skills
in working with an API should be readily transferable new APIs.

“bigaRef” — 2007/7/17 — 19:02 — page 51 — #51

3.2. GUIELEMENTS 51

In the rest of this chapter we will analyze how our computer graphics pro-
grams draw squares (or circles). It is important to keep in mind that at this point
we arenot learning the APIs, we are interested in understanding the process of
drawing squares.

3.2 GUI Elements

As we have seen in Chapter 2, after the initialization, event-driven programs are
simply a collection of routines that are driven by asynchronous external events.
For this reason, facilitating the generation of appropriate events is key to im-
plementing event-driven programs. In our case, since our programs are built to
interact with users, our users are the main source of asynchronous events. The
modern GUI APlIs are designed to facilitate users in triggering appropriate events
for our applications.

Modern GUI APIs define an elaborated set@fl elements and associate
extensive event structures with these GUI elements to support interactivity with
the users and programmability of event service routines. For example, a GUI
API would define dutton GUI element and associate events lik®use over (no
click), clicked, double clicked, etc. with the button GUI element. The GUI API
would then allow application programmers to register and service these events.

Recall that GUI elements andrtual input/output devices, typically repre-
sented as graphical icons. Other exd@s of common GUI elements include,
slider bars, checkboxes, radio buttons, combo boxes, text boxes etmdaw,
or an area with fancy boarders, is also an example of GUI element. A window
GUI element is special because it servesaacontainer for other GUI elements.

In general, a GUI-based applicatioasat least one GUI element: the main ap-
plication window. From the user’s perspective, GUI elements should be:

e visually pleasing: for example, representing a button with a three dimen-
sional looking icon; and

e semantically meaningful: for example the button should be properly la-
beled, and users understand one would move the mouse pointer over the
icon and click the left mouse button &ativate (depress) the button.

On the opposite end, from the programmer’s perspective, a GUI element should
have:

e an unique identifier: the application must be able to uniquely identify each
GUI elementto differentiate the actual triggering source of individual events;

o default behaviors: GUI elements should define default behaviors for mun-
dane situations. For example, a depressed GUI button skanidifferent
from aun-activated button. As application programmer, we expect GUI
elements behave appropriately to these typegpméal situations.

“bigaRef” — 2007/7/17 — 19:02 — page 52 — #52

Control Variables. Variables
in our program code that are
associated with and represent
GUI elements.

52 CHAPTER 3. WORKING WITH GUI APIS

e customizable behaviors. as application developers, we want to have the
option of customizing the behaviors of GUI elements. For example, our
application may demand a depressed button to have a special color.

e state information: certain types of interactions with the users require the
corresponding GUI element types to retstiate information. For example,
a slider bar should record the knob position, a check-box should record if
it is currently checked (true) or un-checked (false). When servicing events
generated by these types of GUI elements, our application palisthe
corresponding state information.

e abstract representation: customizable behaviors and polling of state infor-
mation imply that our program must havariables referencing the corre-
sponding GUI elements. These types of variables are referrecctmtisl
variables, where through a control variable, our program code cam
trol a GUI element. To properly reflect the different functionality, control
variables for different GUI element types should be of different data types.
For example, there should be“®Button class for buttons andSlider Bar
class for representing slider bar GUI elements.

e event service registration mechanisms. as we have seen many times, this
is probably the single most important functionality we expect from GUI
elements.

It is interesting to note that sometimes it is desirable to have GUI elements con-
trolled by the application. For example, in the ball shooting program, as the hero
ball free falls under gravitational force, the slider bar GUI elements are controlled
by the application to correctly reflect the hero ball velocity.

3.3 Building A GUI Application

We can perceive a GUI application as being a collection of GUI elements, where
through these GUI elements a user can trigger events to cause changes to an ap-
plication state in accomplishing desired tasks. Event-driven programming model
taught us théback-end of a GUI application: how to react to events and cause
changes to an application state. GUI API provides the mechanism for building
the front-end of a GUI application: how to put together the collection of GUI
elements to support the generation of appropriate events.

3.3.1 Front-End: Layout of GUI Elements

The first step in building a GUI application is tiesign the layout of the user
interface system. This is referred to as fhant-end because the results are the
front of our application where the user can see and have to interact with. In this
step, the application developer must determine the locations and appearances of

“bigaRef” — 2007/7/17 — 19:02 — page 53 — #53

3.3. BUILDING A GUI APPLICATION 53

every GUI elements. Modern GUI APIs typically support this process withla
builder program. A GUI builder is an interactive graphical editor that allows its
user interactively place and manipulate appearances of all GUI elements. This
layout process typically involves a developer placing icons representing GUI ele-
ments into a rectangular area representing the application window. The developer
would then adjust each GUI elements ag@aces (e.g., color, size, etc.). The
results of GUI element layout is usually stored in some data files. The devel-
oper would include these data files with the rest of the development source code.
When compiled and linked appropriately, the resulting program would display the
designed GUI layout.

The goal of this first step is to arrange and manipulate the GUI elements to
present an aesthetic pleasing, logically meaningful, and intuitively easy to use
user interface. These are the topicdJsfr Interface Design, an entire field in
Computer Science discipline. In this book we will only describe the basic process
involved in building a GUI. Our GUI front-ends asafficient but they maynot be
the best, or even good.

3.3.2 Back-End: Establish Semantic Correspondence

As we have already seen, the semanti@aniegs of GUI elements are defined by
the corresponding event service routines. For example, a mouse click over a but-
ton has no real meaning. It is the event service routine which quits the application
that defines the semanticeaning of the button. We refer to this as tiaek-end
because the results of this step are programming codes that opehnate the
visible user interface. Typically, GUI lider programs provide mechanisms for
supporting the registration of event service routines. For example, a GUI builder
would display a list of defined events for a particular GUI element. The developer
would have the option ofegistering for an event by entering a service function
name.

Similar types of support are also available for defining control variables. The
developer would indicate to the GUI builder (e.g., by clicking on an appropriate
property sheet) that a control variable should be defined for a particular GUI el-
ement. Based on the GUI element type (e.g., a button), the GUI builder would
typically pre-determine the data type (e.g., CButton) for the control variable and
prompt the developer for the variable name.

Notice that in both cases, the developer would entered program code frag-
ments (names of service functions and control variables) into the GUI builder
program. As mentioned, at the conclusion of GUI builder program, information
are saved into some data files. Itis important for the GUI builder to integrate these
code fragments with the rest of the event-driven program source codes. There are
two different mechanisms for supporting this integration:

1. External Linkage. Some GUI builders require the developer to enter the
entire event service routine program code directly into the GUI builder pro-

“bigaRef” — 2007/7/17 — 19:02 — page 54 — #54

54 CHAPTER 3. WORKING WITH GUI APIS

gram. The GUI builders would then generate extra program modules in
the form of source code files that contains the event service routines. The
developer would include these source code files as part of the development
project.

2. Internal Direct Code Modification. Some GUI builders modify and in-
sert function prototypes and/or control variable declaration/initialization di-
rectly into the source files in the development project. The developer would
then edit the same source file to enter event service routine program code.

The advantage of the external linkage mechanism is that the GUI builder has min-
imal knowledge of the application source code. This provides a simple and flex-
ible development environment where the developer is free to organize the source
code structure, variable names, etc., in any appropriate way. However, the exter-
nally generated programming module implies a loosely integrated environment.
For example, to modify the behavior of a GUI element, the application developer
must invoke the GUI builder, modify code fragments, and re-generate the external
program module.

The internal direct code modification nfemism in contrast, provides a better
integrated environment where the GUI builder modifies the application program
source code directly. However, to support proper “direct code modification,” the
GUI builder must have intimate knowledge of, and often places severe constraints
on, the application source code system (e.g., source code organization, file names,
variable names, etc.).

Control Variables

There are two situations where the back-end event driven program must define a
control variable to represent a front-end GUI element.

e Polling/Setting of GUI element stateformation. A contrdvariable should
be defined for GUI elements with state information that must be polled/set
during run time. For example, a checkbox’s state information is altered
every time a user clicks it. When servicing a checkbox’s click event, the
service routine must poll the GUI element (through the control variable)
for its state. Notice that in this case, the data type of the checkbox con-
trol variable should be ofool. To support polling and setting operations,
the data type of the corresponding control variable should reflect the state
information andhot the GUI element type. For example, slider bar’s state
information is theposition of he knob, or afloat. Thus, control variables
for polling and setting a slider b&UI element should be a variable with
float data type andiot CSiderBar.

e Customization of GUI element behavior. A control should be defined for
GUI elements when an application demands customized behaviors. For

“bigaRef” — 2007/7/17 — 19:02 — page 55 — #55

3.4. EXAMPLES: FLTK AND MFC 55

example, an application may demand state of a checkbox be associated
with the color of the checkbox: green for checked and red for un-checked.
In this case, during event servicing, we must first poll the GUI element
state and then modify the color attributes of the checkbox. This means, the
application needs to have access todl#heck Box data type.

34 Examples: FLTK and MFC

34.1 FLTK - Fluid and External Service Linkage

Figure 3.1 shows a screen shot of working withuiid, FLTK’s GUI builder. In

the lower-right corner of Figure 3.1, we steat (A) Fluid allows an application
developer to interactively place graphical representations of GUI elements (3D-
looking icons); (B) is an area represemtithe application window. In addition

(C), the application developer can irdetively select each GUI element to de-
fine its physical appearances (color, shape, size, etc.). In the lower-left corner of
Figure 3.1, we see that (D) the application developer has the option to type in
program fragments to define control variable for and to service events generated
by the corresponding GUI element. In this case, we can see that the developer
must type in the program fragment for handling the X velocity slider bar events.
This program fragment will be separated from the rest of the program source code
system and will be associated with Fluid (the GUI builder). At the conclusion of
the GUI layout design, the user can instruct Fluid to generate source code files
to be included with the rest of the application development environment. In this
way, some source code files are controlled and generated by the GUI builder and
the application developer must invoke the GUI builder in order to update/main-
tain the control variables and the event service routines. FLTK implements the
external service linkage.

Fluid (FLTK

GUI Builder) (C): Application Developer

can create GUI elements and

define their appearances. (B): Area representing

the application window

(A): Interactively
(D): Control variable placed GUI elements
(D): Application
developer types in this
code to service the X
velocity slider bar event.

Figure 3.1: Fluid: FLTK’s GUI Builder.

“bigaRef” — 2007/7/17 — 19:02 — page 56 — #56

56 CHAPTER 3. WORKING WITH GUI APIS

3.4.2 MFC - Resource Editor and Direct Code M odification

Figure 3.2 shows a screen shot of the MFC resource editor, MFC’s GUI builder.
Similar to Fluid (Figure 3.1), in the middle of Figure 3.2, (A) we see that the
resource editor also supports interactive designing of the GUI element layout in
(B), an area representing the application window. Although the GUI builder in-
terfaces operate differently, we observe that in (C), the MFC resource editor also
supports the definition/modification di¢ physical appearance of GUI elements.
However, unlike Fluid, the MFC resource editor is tightly integrated with the rest
of the development environment. In this case, a developer can register event ser-
vices by inheriting or overriding appropriate service routines. The MFC resource
editor automatically inserts code fragments into the application source code sys-
tem. To support this functionality, the dpyation source code organization is
governed/shared with the GUI builder; the application developer is not entirely
free to rename files/classes and/or to re-organize implementation source code file
system structure. MFC implements internal direct code modification for event
service linkage.

3.5 Implementation Notes

Before we begin examining examples of implementations in detailed, it is impor-
tant that we take note of a few important characteristics/pitfalls of programming
with GUI APls.

(O): Application Developer
can create GUI elements and
define their appearances.

(B): Area representing
the application window

(A): Interactively
placed GUI elements

of [y = ey, LS fre (D): Event service

F — am source code is integrated
e with the rest of the
source code system.

Figure 3.2: The MFC resource editor.

“bigaRef” — 2007/7/17 — 19:02 — page 57 — #57

3.5. IMPLEMENTATION NOTES 57
LMB Down
3

Service X . .

Routines LMBDownRoutine() LMBDragRoutine() LMBUpRoutine()
L. Define Define Done
Application HeroBall HeroBall Defining
State Center Velocity & : HeroBall
Size

Figure 3.3: State diagram for defining the HeroBall.

Application State: the application state of an event-driven program must per-
sist over the entire life time of the program. In terms of implementation, this
means that the application state should be defined based on variables that are dy-
namically allocated during run time and that reside on the heap memory. These
are in contrast to local variables that reside on the stack memory and which do
not persist over different function invocations.

Implicit Events: the mapping of user actions to events in the GUI system of-
ten results inmplicit and/or undefined events. In our ball shooting solution, the
actions to define a HeroBall involve left mouse button down and drag. When
mapping these actions to events in our implementation (in Listing 2.2 and List-
ing 2.6), we realize that we should also pay attention to the implicit mouse button
up event. Another example is the HeroBall selection action: right mouse button
down. In this case, right mouse button drag and up events are not serviced by our
application, and thus, they are undefined (to our application).

Consecutive User Actions. when one user action (e.d.drag out the Her-

oBall”) is mapped to a group of consecutive events (e.g., mouse button down,
then drag, then up) a finite state diagram can usually be derived to help design
the solution. Figure 3.3 depicts the finite state diagram for defining the HeroBall.
The left mouse button down event puts the program into State 1 where, in our
solution from Listing 2.6/ -MBDownRoutine() implements this state and defines

the center of the HeroBall, etc. In this case the transition between states is trig-
gered by the mouse events, and we see that it is physically impossible to move
from State 2 back to State 1. However, we do need to handle the case where the
user action causes a transition from State 1 to State 3 directly (mouse button down

“bigaRef” — 2007/7/17 — 19:02 — page 58 — #58

58 CHAPTER 3. WORKING WITH GUI APIS

and release without any dragging actions). This state diagram helps us analyze
possible combinations of state transitions and perform appropriate initializations.

Input/Output Functionality of GUI Elements: an input GUI element (e.g.,

the quit button) is an artifact (e.g., an icon) for the users to generate events to
cause changes the application state, while an output GUI element (e.g., the status
bar) is an avenue for the application to present application state information to
the user as feedback. For both types of elements, information only flows in one
direction—either from the user to the application (input) or from the application

to the user (output). When working with GUI elements that serve both input and
output purposes, special care is required. For example, after the user selects or
defines a HeroBall, the slider bars reflects the velocity of the free falling Her-
oBall (output), while at any time, the user can manipulate the slider bar to alter
the HeroBall velocity (input). In this case, the GUI element’s displayed state and
the application’s internal state are connected. The application must ensure that
these two states are consistent. Notice that in the solution shown in Listing 2.2,
this state consistency is not maintained. When a user clicks the RMB (B2 in List-
ing 2.2) to select a HeroBall, the slider bar values are updated properly; however,
as the HeroBall free falls under gravity, the slider bar values are not updated. The
solution presented in Listing 2.6 fixes this problem by usingStreiceTimer ()
function.

Redraw/Paint Events: in Section 2.4.3, it is stated that

“... Redraw/Paint is the single most important event that an applica-
tion must service.. ”

Recall that the Redraw/Paint event iseaninder from the widow manager that

the content of our application window may be out-of-date. It is in our appli-
cation’s interests to update the window content as soon as possible, preferably
before the user notices any inconsistency. As we have seen in the Ball Shooting
Program solution presented in Section 2.6, to maintain smooth animation of sim-
ulated results, applications with real-time simulation must redraw the application
state at a rate of more than 20 times in a second. With such high redraw rate,
the application’s window content can never be out-of-date for more than a few
milliseconds. For this reason, applicatiomgh default high-redraw rates do not
need to service the Redraw/Paint event. Since most of the applications presented
in this book involve real-time simulations with more than 20 redraws in a second,
Redraw/Paint events are typicaltpt serviced.

Onldle Event: many GUI API defines a®nldle event to be triggered when
nothing is happening, or when the applicationidding. Some application with
real-time simulation chooses to service this event to compute simulation updates.

“bigaRef” — 2007/7/17 — 19:02 — page 59 — #59

3.6. TUTORIALS AND CODE BASE 59

In this way, the application can taking advantage of idled CPU cycles for simula-
tion computations. The main disadvantage of this approach is that as developer,
we cannot predict the events:

1. if the application is completely idle, this event will be triggered continu-
ously, as a result the simulation process will be updated more frequently
than necessary;

2. if the application gets busy, (e.g., bursts of user activities, etc.) and are
short on idle times, there are chances that the simulation may lag behind
real-time resulting in inconsistent display.

In practice, modern machines are fast enough that idle cycledraost always
available. Many commercial applications are developed with updates during the
Onldle events. For dependable and predictable update rates, we have chosen to
compute simulations during the application programi@adimer events.

3.6 Tutorialsand Code Base

Modern GUI APIs are highlyaphisticated often with steep initial learning curves.
When learning to work with GUI API we should constantly remind ourselves that
ultimately, we are interested in building interactive graphics programs. Our goal
is not to become an expert in GUI programming. Rather, we are interested in un-
derstanding the principles of working with GUI API such that we can commence
on building graphics applications. In this section, we use MFC to experience the
different aspects of event programming studied. It is important to understand the
underlying concepts behind the APIs, and theldrefortable at using one of the
APIs. The important lesson we should learn from the short history of our disci-
pline is that APIs change and evolve rapidly; we must always be ready to to learn
new ones.

The tutorials from this section serves two purposes, demonstrate: how to work
with GUI API; and how to work with MFC. In the beginning of each tutorial,
explicit goal andapproach statements identify the adeas that will be demon-
strated in the tutorial. These are “API independent” statements, where to work
with any GUI API, one must understand how to accomplish these tasks. Typically
the procedures involved in programming with different GUI APl may be different,
but the end results would contains similar elements: e.g. control variables with
appropriate data types, event service routines via object oriented override and/or
via callback function registration, etc.

In the following tutorials we describe results of working with MFC and re-
late these results to our learning from earlier sections. For a destédpdy-
step how-to’s for the MFC Resource editor, please refelbE CD - William
Frankhouser’s guide. To demonstrate the concepts presented are indeed lan-
guage and GUI API independent, the following tutorials are also implemented in

“bigaRef” — 2007/7/17 — 19:02 — page 60 — #60

Tutorial 3.1.
Project Name
MFC_SmpleDialog

Figure 3.4: Tutorial 3.1.

60 CHAPTER 3. WORKING WITH GUI APIS

C# and WinForm API. The corresponding detaibgh-by-step guide can also be
found on theTHE CD - Ethan Verrall’s guide. On-line resources are excellent
avenues for learning basic skills in working with these software systems. Jason
Pursell has developed an excellstgp-by-step guide on working with the MFC
editor that are tailored for the MFC-based tutorials in this Book

Here is a brief summary of the tutorials in this section:

Tutorial | Demonstrates Reusable Codebase
3.1 Demystify source code files -
3.2 GUI elements and control variables-
3.3 More with control variables -
3.4 Application defined events -
3.5 Input/Output GUI elements -
3.6 Extending GUI APl with classes | SliderCtriWithEcho
3.7 Custom GUI library MFC _Library
3.8 Grouping of GUI elements ReplaceDialogControl()

Tutorial 3.1: Demystifying thefiles.

e Goal: to demonstrate that while on first look, programming with GUI API
can appear to be overwhelming, with systemic approach of analyzing the
purpose of the files in the environment, we can gain significant understand-
ing of the system.

e Approach: familiarize and demystify the typically intimidating GUI devel-
opment source code structure; create the simplest possible application with
a GUI API and analysis every file; identify the purpose of files and draw
attention to how these files are related/un-related to GUI development.

Figure 3.4 is a screen shot of running Tutorial 3.1. This entire tutorial is au-
tomatically generated by the MFC wizard of the Microsoft Visual-C++ (VC++)
Integrated Development Environment (IDE). This program does not do anything
at all. When user clicks on the “OK” or the “Cancel” button, the application
simply quits. This application does not do anything else.

Here is the source code structure:

1This guide can be found off Jason’s home page at: http://home.myuw.net/jpursell/ or
http://faculty.washington.edu/ksung/biga/chaptieorials/VC.Guide/CreatingDialogAppWithMFC7.pdf.

“bigaRef” — 2007/7/17 — 19:02 — page 61 — #61

3.6. TUTORIALS AND CODE BASE 61
Purpose Files Folder
TutorialApp(.cpp,.h)
Source code | TutorialDIg(.cpp,.h)
stdafx(.cpp,.h), Resource.h | MFC_SimpleDialog
Documentation| Readme.txt (main project folder)
GUI builder *.rc
IDE project *.veproj, *.sln
IDE scratch *.aps, *.ncb
Icon *.ico, *.rc2 \res
Debugging *.exe, *.0bj (compiled results) \Debug
Release *.exe, *.obj (compiled results) \Release

We will examine the files according to the abgue pose of all these files.

e Sourcecode: these are the files that contain the source code to the applica-
tion. Notice that there are seveR Gource files for this simple project! We
will examine the details of these source files after examining the rest of the
supporting files in this development project.

e Documentation: The ReadMe.txt file is atext file meant for programmer
to fill-in comments.

e GUI builder: Thex.rcfile is the data file of the MFC GUI builder (i.e. the

resource editor): Source File.
MFC_SmpleDialog.rc file
/1 Microsoft Visual C++ generated resource script. in the Resource Files folder
#include "Resource . h” of the MFC_SmpleDialog
- — - — - project.
IDD_MFC_SIMPLEDIALOG.DIALOG istheidentifier for the main applicaiton window. o
The following describe the dimension and appearance of this GUI element. Source Listing. For the
IDD_MFC_SIMPLEDIALOG.DIALOG DIALOGEX 0, 0, 320, 200 convenience of description’ in
STYLE DS.SHELLFONT | WS.POPUP | WS.VISIBLE | WS.CAPTION | DSMODALFRAME
EXSTYLE WSEXAPPWINDOW general the presented source
CAPTION "MFC.SimpleDialog code has been significantly

edited from the original

The following lines descrbe the locations and dimenstions of OK and Cancel buttons. .
source file. Readers should

BEGIN

DEFPUSHBUTTON ~ "OK” ,IDOK,263,7,50,16 understand the book, and
PUSHBUTTON "Cancel” ,IDCANCEL,263,25,50,16 eXpeC'[to see the COde

fragments in different orders
Listing 3.1: Snippet from\ FC_SimpleDialog.rc (Tutorial 3.1). when examining the source

code files.

Listing 3.1 shows that this is a simptext file, where it is possible to
open/edit this file with any simple text editor (e.g. notepad). We see that
among other data, this file includes information that describes the location
and appearance of all the GUI elents on the application window.

e |DE project: the.veproj/.sin files are used by the VC++ IDE for defining
the source code project (e.g., what are the source file, how to compile the
project, etc.). These are also text filegerested readers can open/editthese
files with any text editors to examine the details.

“bigaRef” — 2007/7/17 — 19:02 — page 62 — #62

GUI ID. The GUI ID is
an unique identifier associated
with each GUI element. GUI
ID is used mainly by the MFC
resource editor.

Source File. Resourceh file

in the Header Files folder
of the MFC_SmpleDialog
project.

Working with pre-compile
header. After changing
and/or creating a header file in
a project, it is a good idea first
to re-compilestda fx.cpp to
ensure up-to-date pre-compile
header information.

Source File.

Tutorial App.h/cpp file in the
Source andHeader Files fold-
ers of theMFC_SmpleDialog
project.

62

CHAPTER 3. WORKING WITH GUI APIS

IDE scratch: the.aps/.ncbh are temporary files kefgenerated by the IDE
while supporting our development process. These files can be deleted in
between editing/development sessions.

Debug: The IDE uses this folder to record all the compile results, including
all the.obj files and the eventualze file (executable program). The content
of this folder are meant to support interactive debugging in the IDE. All the
.obj and the executable files contain intermediate symbols for interactive
debugging. As a result, files from this folder are much larger than they
need be.

Release: The IDE uses this folder to record all the compiled results. In
contrast to theDebug folder, the files in this folder are for supporting final
release of the program (after development is done). The executable files
from this folder is optimized for size and speed.

Here are the details of tHesource files:

Resource.h: this file defines the symbolic names (GU11D) of GUI
elements used in the resource editor:

/I Microsoft Visual C++ generated include file.
/1 Used by MFC_SimpleDialog.RC
11

#define IDD.MFC_SIMPLEDIALOG_DIALOG 102

Listing 3.2: Snippet fronResource.h file (Tutorial 3.1).

For example, as shownin Listing 32)D_MFC_SIMPLEDIALOG_DIALOG

is the symbolic name of the GUI element that represents the main applica-
tion window. In this case, we see that this symbol is being defined to be a
unique integer. Notice that in Listing 3.1, th&éFC_SimpleDialog.rc file
includes th&Resource.h file to definethd DD_MFC_SIMPLEDIALOG_DIALOG
symbol.

StdAfxz.h/.cpp: These two files contaipre-compile header information.

They help speed up the compilation process. These two files are important
and exists in all of our projects. Fortunately the handling@fFcompile
header is fairly transparent and we will not change these files.

Tutorial App.h/.cpp: These two files define and implement th€utorial App
class:

class CTutorialApp : public CWinApp {

virtual BOOL Initinstance ();

| theApp: thisisthe abstraction of our application.
CTutorialApp theApp; // The one and only CTutorialApp object

BOOL CTutorialApp:: Initinstance (){

“bigaRef” — 2007/7/17 — 19:02 — page 63 — #63

3.6. TUTORIALS AND CODE BASE 63

... Il Code for intialization

/1 Create and show our dialog

CTutorialDlg dlg; // This is the our mainapplication window
m_pMainWnd = &dlg;

/1 display the main application window, when the application window
/1 quits, the application should terminate.

Listing 3.3: TheCTutorial App class (Tutorial 3.1).

Listing 3.3 shows that'T'utorial App subclasses from the AP syste&my in App.
This class represents our application. The global variableipp, repre-
sents the instance of our running program. Notice that our main application
window is aCTutorial Dlg object and is instantiated and invoked in the
InitInstance() function. When our application window exits, the control
will return to InitInstance() and the application terminates.

e Tutorial Dig.h/.cpp: These two files define and implement th&utorial Dig

class. As shown in Listing 3.4, Tutorial Dig subclasses from the MFC
CDialog class. Recall that our main application window is a GUI element,
and that we can define control variablfor GUI elements. Now, refer to
Listing 3.3, thedlg object instantiated in in thénitInstance() function is

the control variable for our main application window, and the data type for
our main application window i€ Tutorial Dlg. Listing 3.3 showsilg is

referenced byn_pMainWnd, an instance variable @fe App.
Source File.

class CTutorialDlg : public CDialog {

1

CTutorialDlg(CWnd pParent = NULL); // standard constructor

TutorialDlg.h/cpp file in the
Source andHeader Files fold-
ers of theMFC_SmpleDialog

virtual BOOL OnlInitDialog(); /1" The Systemlnitialization() function
afx-msg void OnPaint(); /1" To Support Redraw/Paint event project_
DECLARE-MESSAGEMAP () /1 1dentify the events to override from super class

virtual void DoDataExchange(CDataExchang@DX); // GUI element input/output support

| TutorialDlg.cpp: implementation file

BOOL CTutorialDIg::OninitDialog() { ... }

| BEGIN.MESSAGE.MAP(CTutorialDlg , CDialog)

ONWM_PAINT ()

| void CTutorialDIg::OnPaint() { ... }

‘ void CTutorialDlg:: DoDataExchange(CDataExchangeDX) { ... }

CTutorialDIlg:: CTutorialDIlg(...){...} // Constructor ‘

Listing 3.4: TheCTutorial Dlg class (Tutorial 3.1).

When we examine the structure of thetorial Dig.cpp file (refer to Listing 3.4),
we observe:

e Object Oriented Mechanism: The CTutorial Dig subclasses from the MFC
CDialog class, this means, our main application window will inheast
predefined functionality from th€ Dialog class (e.g., mouse events, timer
events, etc). Notice the virtual functions that are override @wgnit Dialog()),
these are examples of modifyinggglefined GUI element behaviors.

“bigaRef” — 2007/7/17 — 19:02 — page 64 — #64

64 CHAPTER 3. WORKING WITH GUI APIS

e Systeminitialization (A): TheOnInitDialog() iS our opportunity to perform
initialization for the application window, much like the functionality of the
SystemInitialization() function discussed in Section 2.2. Since we are
overriding avirtual function, it is important to follow the protocol. In this
case, we must the super-class metligtialog :: OnInitDialog(), and we
must a returry’ RU E upon successful operations.

e Redraw/Paint Event (B andC): The BEGIN_-MESSAGE_M AP macro
(A) helpsregister events for services. Here we see the registratioN 6§ M _PAINT,
the Redraw/Paint event. In this cas&Tutorial Dlg must override the
OnPaint() function to service the event. Since the application window
is empty, this function does not do anything.

e GUI Element and Control Variable data exchangel)): As we will see in
later tutorials, this function helps maintain the consistency of state informa-
tion between the front-end GUI elements and their corresponding control
variables in the back-end.

Source file naming convention: Notice that of the above file nameResource.h,
StdAfx.h,.cpp are names governed by MFC. We will naaieof the tutorials in
this bookTutorial App.h/.cpp for the application andutorial Dlg.h/.cpp for the
main application window. For the rest of the tutorials in this chapter, we will only
need to work with th&Tutorial Dlg class (our main application window).

Tutorial 3.2: GUI elements and control variables

Tutorial 3.2.

Project Name e Goal: practice and experience event-driven programming design and im-
MFC_EchoButtonEvent

plementationApproach: design a solution to a very simple problem, ex-
amine how the solution is implemented.

e Goal: experience and understand front-end GUI elements vs. back-end
control variablesApproach: work with output-only GUI element, where
at run time, our application must change the state of the GUI element.

Figure 3.5 is a screen shot of running of Tutorial 3.2. This is a slightly more

interesting application where we count the number of times €lecK to Add”

button has been clicked. If we have to design a solution for this tutorial, our

Figure 3.5: Tutorial 3.2. experience from Section 2.2 and Listing 2.4 would lead us to an application state
with a simple integer counter, and a button event service routine the increments
the counter:

‘ | System Initialization: | ‘

/1 Define Application State: count the number of button clicks
int m_OkCount = 0; // initialize to 0

!l Register Event Service Routines
Register for: ButtonClick Event

ButtonClick /1 service routine for button click

| Events Services: |
m_OKCount++; /1 if button is clicked , increment the count

“bigaRef” — 2007/7/17 — 19:02 — page 65 — #65

3.6. TUTORIALS AND CODE BASE 65

GUI Element: Application Window
GUI ID: IDD_ECHOBUTTONEVENT DIALOG
/ Control Variable: m_pMainWnd (CTutorial App)

GUI ID: ibc BTN_ADD
ﬁ’ Control Variable: none
- GUI Element: Output Echo Area
/\ GUI ID: IDC_ECHO AREA
Control Variable: m_EchoArea
Button Clicks: -
GUI Element: Button Click Label
GUI ID: ipC_STATIC
Control Variable: none
/‘\ GUI Element: Quit Button
GUI ID: IDCANCEL

Quit

Control Variable: none

Figure 3.6: GUI Elements of Tutorial 3.2.

EchoToScreen (0OKCount) // echo this new count to the application window ‘

Listing 3.5: Abstract Event-Driven Programming Solution (Tutorial 3.2).

To implement the solution of Listing 3.5, we must first design the layout of the
GUI application and then register the event services with the appropriate GUI
element.

Front-end GUI Layout Design

Figure 3.6 shows that in our Tutorial 3.2 implementation, the front-end user inter-
face has five GUI elements:

e The “applicationwindow”: We assignn DD_ECHOBUTTONEV ENT_DIALOG
to be the GUI ID for the application window GUI element. As in Tu- theApp. Recall from Tuto-
torial 3.1, theCTutorial Dig class represents this GUI element, and that rfial 3.1, that theApp is an

the App.m_pMainWnd is the control variable that references to our main "stance ofCTutorialApp, it
represents our application. In

application window. Tutorial App.cpp, we set the
m.pMainWnd instance vari-

e The “Click to Add” button: We assignedD_BTN_ADD to be the GUI ID able to reference to the con-
of this button. This is amnput-only GUI element because our application gg;l‘i’(‘;";&br:er;aeﬁ’fsvsiﬁggcvg our
never changes its state. Our application is only interested in recaiNgkg)
events generated by this button. Sirmur application does not have any GY! ID. GUI IDs are defined
need to refer to this element, we do not need to define a control variable for' the Resourceh fle.
this element.

“bigaRef” — 2007/7/17 — 19:02 — page 66 — #66

SourceFile.
TutorialDlg.h/cpp ~ file in
the Source and Header
Files folders of the
MFC_EchoButtonEvent
project.

OnlnitDialog(). Recall that
theOnlnitDialog() should im-
plement theSystemlnitializa-
tion() functionality.

66

CHAPTER 3. WORKING WITH GUI APIS

e The “Output Echo Area”: We assigned DC_ECHO_ARFE A to be the GUI
ID this element. This is the echo area where the application state infor-
mation (number of clicks) will be displayed. At run time, our application
needs to change the content of this GUI element. In our implementation,
we definem_EchoText to be the control variable of this GUI element.

e The “Button Clicks’ label: This is astatic GUI element because it provides
neither input nor outpu functionality. It is a simple label.

e The “Quit” button: This is the same button from Tutorial 3.1. Our appli-
cation has no reference to this GUI element. This GUI element supports
the default MFC service, where it reacts to a click event by quitting the
application.

Back-end I mplementation

Al

Bl

class CTutorialDIg : public CDialog {
.. /] removed content similar to that from Listing3.4 (Tutorial 3.1)

int m_OkCount; /1 count of "Click to Add” button is clicked
afx_msg void OnBnClickedBtnAdd(); // " Click to Add" service routine

CString mEchoText; /1 For controling the output GUI element

... I/ removed content similar to that from Listing3.4 (Tutorial 3.1)
BOOL CTutorialDlg::OnlnitDialog() {

|
|
‘}; CL

A2

B2:

| C2

m_OkClick = 0; /1 initialize application state.

BEGIN.MESSAGEMAP (CTutorialDIg , CDialog)

void CTutorialDlg::DoDataExchange(CDataExchange pDX) {

DDX.Text(pDX, IDCECHQAREA, m.EchoText);

B3: Thisisthe" Clickto Add” button serviceroutine that we have registered with the MFC.

| A3
| C3:

C4:

void CTutorialDlg::OnBnClickedBtnAdd () {

m_OkCount ++; /1 update application state
m_EchoText.Format(%d"”, m.OkCount); // convert to text for output

ON_BN_CLICKED(ID_.BTN.ADD, OnBnClickedBtnAdd) ‘
UpdateData(FALSE); /1 flush count to window '

Listing 3.6: CTutorial Dig class (Tutorial 3.2).

The development environment structure for Tutorial 3.2 is identical to that of Tu-
torial 3.1 with the same folder structure and same seven source code files. In
addition, following the naming convention of the source code files, we notice
Tutorial App.h/.cpp defining the application, an@utorialDlg.h/.cpp defining

the main application window. When we compare heorial Dlg.h/.cpp With

those from Tutorial 3.1, we notice slight differences. These differences are the
implementation of the functionality in Tutorial 3.2. Listing 3.6 highlights these
differences. From Listing 3.6 we notice:

e Application State A): as defined by the solution from Listing 3.5, at label
Althe application state is defined as an integer. At l&t#&the application

“bigaRef” — 2007/7/17 — 19:02 — page 67 — #67

3.6. TUTORIALS AND CODE BASE 67

state is initialized in th&nInitDialog() function. The application state is
updated during the button event service routid)(

e Support for the button GUI elemenB): the even service routine is de-
clared at labeB1 in the Tutorial Dig.h file. At label B2, we register the ID_BTN_ADD. Refer to Fig-
ON_BN_CLICKED (on button click) event and associate the GUI ele- ure 3.6 this is the GUI ID for
mentID_BTN_ADD with the OnBnClicked BtnAdd() routine. This pro- e ‘Clickto Add”button.
cess registers the routine agallback function for the click event on the
button. The event service routine is implemented at |B3eivhere we up-
date the application state and display the updated information to the output
echo area.

e Output GUI elementQ): at labelC1 we define the variablei._EchoText,
and at labeC2, this variable idound to the GUI elemeniDC_ECHO_AREA.
Notice that before the binding statement at |a®&] m_EchoText is Sim- IDC_ECHO_AREA. Refer to
ply just another instance variable. However after the stateme@2at Figure 3.6 this is the GUI ID
. for the “output echo” area.
m_EchoText becomes the control variable of thB®C_ECHO_ARE A. Af-
ter the application state is updated in the button event service routine, at
labelC3, them_EchoText is set with the updated application state. At this
point, the value of then_EchoText control variable igifferent from the
state information presented in thi®@C_ECHO_AREA. The statement at
C4 flushes the content ofi_EchoText to the GUI element to ensure con-
sistency.

Tutorial 3.3: Morewith control variables

Tutorial 3.3.

e Goal: understand that control variables can be complex data types; androject Name
MFC_SiderControls

demonstrate working with control variables of input GUI elements.

e Approach: work with slider bars, a fairly complex GUI element.

Figure 3.7 is a screen shot of running Tutorial 3.3. This application is basicall ==
Tutorial 3.2 with two extra slider bar sets. From the GUI layout, we see that eac

slider bar set actually consists of three GUI elements: the label, the slider bar, and
the echo area:

GUI Element GUI ID Control Variable
Slider Bars IDCV_SLIDER.BAR | m.VSlider Bar Figure 3.7 Tutorial 3.3.
IDC_H_SLIDER_BAR m_H Slider Bar

Slider Bar Labels \ertical Bar —

Horizontal Bar —

Slider Bar Echo Areas IDC_.V_SLIDER_ECHO | m_V Slider Echo
IDC_H_SLIDER_ECHO | m_HSlider Echo

We have worked withiabel andoutput echo area in Tutorial 3.2. In this tutorial,
we will concentrate on working with the slider bar, and servicing of slider bar

“bigaRef” — 2007/7/17 — 19:02 — page 68 — #68

68 CHAPTER 3. WORKING WITH GUI APIS

events. When we examining the development environment, we see the familiar
source code structure. Once again, we will concentrat&@aarial Dig.h/.cpp.
Listing 3.7 highlights the new programming code fragments that are associated
SourceFile. with the slider bars:
TutorialDlg.h/cpp file in the
Source and Header

Files folders of the
MFC_Sider Controls project.

class CTutorialDlg : public CDialog {
. /] removed content similar to that from Listing3.6 (Tutorial 3.2)

Al: | Cstring mHSliderEcho, mvSliderEcho ;

B1: | CSliderctrl mvsliderBar, mHSliderBar;

C1: afx_msg void OnHScroll (UINT nSBCode, UINT nPos, CScrollBarpScrollBar);
afx.msg void OnVScroll (UINT nSBCode, UINT nPos, CScrollBarpScrollBar);

. /I removed content similar to that from Listing3.6 (Tutorial 3.2)
void CTutorialDlg:: DoDataExchange(CDataExchangpDX) {

| A2: DDX.Text(pDX, IDC.H.SLIDER.-ECHO, m.HSliderEcho);

DDX.Text(pDX, IDC.V.SLIDER.ECHO, m.VSliderEcho);

DDX_-Control(pDX, IDC.V.SLIDER.BAR, m.VSliderBar);
DDX-Control(pDX, IDC.H.SLIDER-BAR, m.HSliderBar);

BEGIN.MESSAGEMAP (CTutorialDlg , CDialog) ‘
C2: | ON\WM_HSCROLL()
ON.WM.VSCROLL()

BOOL CTutorialDlg::OnlnitDialog() {

A3: m_VSliderEcho . Format (%d", 0); m_HSliderEcho .Format(%d”, 0);

| B3: m.VSliderBar. SetRange (0, 100, TRUE); _mMSliderBar. SetPos (0);

B4: UpdateDatafalse);

| C3: Thisis the Horizontalscroll bar serviceroutine we override from MFC.

void CTutorialDlg:: OnHScroll (UINT nSBCode, UINT nPos, CScrollBarpScrollBar) {
/1 check to make sure we know which slider bar is generating the events
if (pScrollBar == (CScrollBarx) &m_HSliderBar) {

C4. int value = mHSliderBar. GetPos ();

| C5: m_HSliderEcho . Format (%d", value);
| C6: UpdateDatafalse);

| C7: Thisisthe Vertical scroll bar serviceroutine we override from MFC. |

void CTutorialDlg:: OnVScroll (UINT nSBCode, UINT nPos, CScrollBarpScrollBar) {
/1 content complements that of OnHScroll

Listing 3.7: CTutorial Dlg class (Tutorial 3.3).

e Slider bar echo control variabled). we see declaration of the variables
at labelAl. Note thatn_H Slider Echo is simply another variable until the
DDX _Text macro call at labeh2. After this macro callm_H Slider Echo
becomes the control variable fobC_H_SLIDER_ECHO GUI element.
These control variables are initialized at laBé.

e Slider bar control variablesB): we see the declaration of the variables
at labelB1. These will be the control variables for the slider bars. No-
tice the CSliderCtrl data type. MFC pre-defines data types to support
every types of GUI elements (e.gCButton for button GUI elements,
CComboBox for combo-box GUI elements, etc.). At lalg®, these vari-
ables are bound to the corresponding slider bar GUI elements. At label
B3, during the initializatiorOnInit Dialog() function call, we initialize the

“bigaRef” — 2007/7/17 — 19:02 — page 69 — #69

3.6. TUTORIALS AND CODE BASE 69

max, min, and initial position of the slider bar knobs. After the initializa-
tion function calls, the values of the control variable (exgV Slider Bar)
becomes out-of-sync with the state of the corresponding GUI element (e.g.
IDCV_SLIDER_BAR). The false parameter to th&pdateData() func-

tion call at labelB4, flushes the control variables’ value onto their corre-
sponding GUI elements.

e Slider bar service routine€: at labelC1 we declareOnScroli() for ser-
vicing all horizontal andvertical scroll bars. Notice that before the service
registration at labeC2, these two are just simple functions. At lali&2, H and V. To avoid repeating
we register folON_W M_SCROLL (on window scroll) event. Notice that ~ every sentence with anH"
in caseno callback functions are passed in. The horizontal and vertical " orizontal and anv” for
. . . . vertical, we omit the “H/V
scroll event services are pre-defined by the MFQialog, and in this case, characters and use one identi-
we override thenScroll() functions to customize the services. The defini- fier to refer to both. For exam-
tion of event service routines can be found at la@8sandC7. Notice that ~ Ple, OnScrall() is referring to
if our application has more than one horizontal scroll batishorizontal Ol andonvscrall
scroll events will be serviced by the the sameH Scroll() function. This
means, as illustrated by thg¢ statement irC3, when servicing horizontal
scroll events we must identify which of the scroll bars triggered the event.
At label C4 we call theGet Pos() function on the control variable to obtain
the up-to-date knob value, this new value is updated in the echo control
variable at C5 and flushed to the corresponding GUI element at |&lel

Tutorial 3.4: application defined events

Tutorial 3.4.
e Goal: experience with events triggered by the applicatidkpproach: Project Name
Work with GUI timer event. MFC_MouseAndTimer
e Goal: experience working with servicing events from the mouge-
proach: Service all events from the mouse and echo all relevant infor-
mation to the application window.
Source File.

TutorialDlg.h/cpp file in the
Source and Header
Files folders of the
MFC_MouseAndTimer

project.

class CTutorialDlg : public CDialog {
.. /] removed content similar to that from Listing3.7 (Tutorial 3.3)

Al: int m_Seconds;

Cl1: afx.msg void OnTimer(UINT nIDEvent);

| B1: CString mMouseEcho, mTimerEcho ;

D1: afx.msg void OnLButtonDown (UINT nFlags, CPoint point);
afx_.msg void OnMouseMove (UINT nFlags, CPoint point);
afx_.msg void OnRButtonDown (UINT nFlags, CPoint point);

... Il removed content similar to that from Listing3.7 (Tutorial 3.3)
BOOL CTutorialDIg::OnlnitDialog() {

| A2: | m-Seconds = 0; |

C2: SetTimer (0, 1000, NULL);

void CTutorialDlg:: DoDataExchange(CDataExchargpDX) {

B2: DDX _Text(pDX, IDCMOUSEECHO, mMouseEcho);
DDX.Text(pDX, IDC.TIMERECHO, m.TimerEcho);

“bigaRef” — 2007/7/17 — 19:02 — page 70 — #70

70 CHAPTER 3. WORKING WITH GUI APIS

| BEGIN.MESSAGEMAP (CTutorialDlg , CDialog) |
| C3: | ONWM.TIMER () |

D2: | ONMMLBUTTONDOWN ()
ONWMMOUSEMOVE ()
ONWM.RBUTTONDOWN ()

| C4: Thisisthetimer service routine.

void CTutorialDlg::OnTimer(UINT nIDEvent){
m_Seconds++; // update time passed and echo to user
m_TimerEcho . Format (%d: Seconds have passed”,_Seconds);
UpdateDatafalse);

| D3: These are the left/right mouse button down service roune |
void CTutorialDlg::OnLButtonDown (UINT nFlags, CPoint point)
void CTutorialDIg::OnRButtonDown (UINT nFlags, CPoint point)

if (nFlags & MK.CONTROL) Il check if the control/alt/shift key is pressed

m-MouseEcho . Format (% sLeft mouse down at%d,%d", prefix, point.x, point.y);
UpdateDatafalse);

D4: Thisis the mouse move serviceroutine |
o | o o void CTutorialDlg::OnMouseMove (UINT nFlags, CPoint point)

Listing 3.8: CTutorial Dlg class (Tutorial 3.4).

Figure 3.8 is a screen shot of running Tutorial 3.4. The source code of this appli-
cation is based on that from Tutorial 3.3. When compared to the main application
window from Tutorial 3.3, we can see two extra sets of outputs:

e Mouse Echo: when the mouse pointer is inside the application window, this
echo prints out the position of the mouse and the status (e.qg., clicked) of the
mouse buttons.

Figure 3.8: Tutorial 3.4.

e Timer Echo: we will enabled the timer alarm to trigger an event for our
application every second. This echo will print out the number of seconds
that has passed since we start running this application.

As in all previous tutorials, all changes in programming code are localized to the
Tutorial Dlg.h/.cpp files. Listing 3.8 highlights the changes from the previous
tutorial:

e Application state A): since the applicaiton counts the number of elapsed
seconds, we must definedX), and initialize A2) a counter that we can
count inseconds. This counter will be updated in timer service routine in
C4.

e Mouse and timer echd®: these are simple output echo set ups. As we have
seen in previous tutorials, we must declare the varialidé} @ssociate the
variables with the GUI IDsK2). The content of these echo regions are
updated during corresponding service routines, i.e., mouse and timer.

o Application timer events(): labelC1 shows the declaration of thenTimer()
service function. During the initialization i@nInit Dialog(), at labelC2,
the alarm is set to go off every000 milliseconds (orl second). At label

“bigaRef” — 2007/7/17 — 19:02 — page 71 — #71

3.6. TUTORIALS AND CODE BASE 71

C3, we call theON_.WM_TIMER (on window timer) macro to registra-
tion for the timer event. We do not see any callback function during the
registration. Once again, t@nTimer() function is defined by the MFC
CDialog class and we will override it to customize to our application. The
timer service routine is defined at lali@4. This function is invoked once
every second. We service the timer event by incrementingutt#conds

and echoing the new value to the defined echo area.

e Mouse eventsll): just like timer in this tutorial, slider bars from previous
tutorial, theC Dialog class has default support for mouse events. We know Hardware Coordinate. The
we must override the function®(); register for the eventDR), and im- coordinate system where the
plement the functions)3, D4). Notice the mouse positions are passed in '%P/éft is the origin with -
) . . axis incrementing downwards
theC'Point structure. If you run the tutorial, and move the mouse around in ang z-axis increase right-
the application window, notice that the mouse positions are defined relativavards.

to thetop-left corner (origin is located at the top-left corner).

Tutorial 3.5: Input/Output GUI Elements.

Tutorial 3.5.

e Goal: experience working with GUI elements that serves both infsair(Project Name
MFC_UpdateGUI

user to application) and outputfrom application to user) functions for the
application.

e Approach: continue with the previous tutorial, where this tutorial will al-
low both the application and the user to control the slider bars. s

class CTutorialDIg : public CDialog {
. /] removed content similar to that from Listing3.8 (Tutorial 3.4)

BOOL m_TimerCtriSliders ; =

afx_msg void OnBnClickedTimerControlSliders();
I
. ») Figure 3.9: Tutorial 3.5.
. Il removed content similar to that from Listing3.8 (Tutorial 3.4)
void CTutorialDlg:: DoDataExchange(CDataExchargpDX) { Source File.
DDX_Check (pDX, IDCTIMER.CONTROLSLIDERS, m.TimerCtriSliders); TutorialDlg.h/cpp file in the
BEGIN.MESSAGEMAP (CTutorialDlg , CDialog) Source and Header
ON_BN_CLICKED(IDC_TIMER_CONTROL SLIDERS , OnBnClickedTimerControlSliders) Files folders of the
BOOL CTutorialDIg::OnlnitDialog() { MFC_UpdateGUI project.
Ad: m_TimerCtriSliders = TRUE;
UpdateDatafalse);

| Timer servicerouine: update slider bar and check-box when appropriate.
void CTutorialDlg::OnTimer(UINT nIDEvent){
| B1: If the check-box is checked:
if (m_TimerCtrlSliders)
int hvalue = mHSliderBar. GetPos ();

if (hvalue> 0)
m_HSliderBar. SetPos (hvalue 1);
m_HSliderEcho . Format ("$%%$d", hvalue 1);

/1 Do the same for the vertical slider bar ...
int vvalue = mVSliderBar.GetPos ();

if ((hvalue==0) & (vvalue==0))

m_TimerCtriSliders =false;
UpdateData(FALSE);

“bigaRef” — 2007/7/17 — 19:02 — page 72 — #72

UpdateData(FAL SE). Recall
from previous tutorials that
UpdateData() with a FALSE
parameter flushes control
variable values to the GUI
element.

72 CHAPTER 3. WORKING WITH GUI APIS

| Check-box servicerouine: copy state from GUI element to control variable |
void CTutorialDlg:: OnBnClickedTimerControlSliders(Y
| } UpdateDatafrue); l

Listing 3.9: CTutorial Dlg class (Tutorial 3.5).

Figure 3.9 is a screen shot of running Tutorial 3.5. Once again, this tutorial is
very similar to that of Tutorial 3.4. Fra the front-end user interface, the only
difference is thélimer Control (TC) check-box located in the center of the appli-
cation window. In this case, if the TC ¢hecked, the application will decrement
both of the slider bar’s values, one unit per second. When both slider bars has
zero values, the application wilhcheck TC. At any point, the user can check/un-
check the TC and change the slider bar values by adjusting the knobs on the slider
bars. In this way, both of the slider bars, and the TC can be controlled by both the
application and the user.

Listing 3.9 highlights the changes in thitorial Dig.h/.cpp files (from that
of Tutorial 3.4).

e The Timer Control (TC) check-boX\): the variable and the event service
function are declared at lab@ll; the variablem_TimerCtriSliders be-
comes the control variable 6OC_ TIMER.CONTROL_SLIDERS (the
check box GUI element) at lab&l2; the check box event is registered at
label A3; the TC value is initialized t’RUE at labelA4; and the service
function is defined at labeA5. At label A3, we see another example of
event registration with callback function.

It is interesting that the check box service routiné&tonly has a single
statementUpdateData(TRUE). When usexlick on the TC check box,
the front end GUI will automatically flip the state of the check box GUI
element. However, this information is not reflected in the control variable
mrimerCtrlSldiers. UpdateData() With the TRUE parameter sets the
control variable according to the state of the GUI element.

e The application controls GUI in the timer service routi:(on the per-
second timer event, the timer service routine first check to ensure the slid-
ers under the application control with the statement at labé31. If the
condition is favorable, at lab&2, the slider bar positions are polled and
decremented accordingly. When both of the slider bars have zero values, at
label B3, the control variable for the TC check box is updated and flushed
to the front-end GUI element (wittipdate Data(F ALSE)).

As we continue to program with GUI API, we would begin to encounter repeated
patterns of working with multiple GUI element types. For example, we will find
ourselves constantly working with slider bars that require the numeric echoing
functionality. The next few tutorials demonstrates how we can customize and/or
organize our interface with the GUI API to better support programming in a mod-
erately complex development environment.

“bigaRef” — 2007/7/17 — 19:02 — page 73 — #73

3.6. TUTORIALS AND CODE BASE 73

Tutorial 3.6: The Slider CtrIWithEcho class

Tutorial 3.6.

e Goal: demonstrate that when appropriate we should apply knowledge fronfroject Name
C_Slider CtrIWthEcho

previous programming classes and define/customize new GUI element classes.
In most cases, this will ease the programming effort, increase readability/
maintainability of our system.

e Approach: customize GUI behavior by creating new GUI element types. €t
We will customize slider bar functionality to define a new slider bar type
that supports numeric echoarea. |

Figure 3.10 is a screen shot or running Tutorial 3.6. Notice that the application
behaves identical to that of Tutorial 3.5. In this case the only difference between

these two applications is the support for the two slider bars. When we compare thiégure 3.10: Tutorial 3.6.
source code of the two tutorials we see one extra class in Tutorial reftut:gut7: the

Slider CtriWithEcho.cpp/.h files. This new class extends the MEG liderCtrl

class in two ways:

1. Slider bar rangeZ SiiderCtrl only supports integer valueS.Slider CtriWithEcho
presents a floating point range with> unique positions.

2. Numeric echo area: it is convenient, and often important, for the user to
know the exact numeric value of the bar knob positi®hder CtriWithEcho

supports the echoing of the bar knob numeric values.
SourceFile.

Sider CtrlWithEcho.h file in

| class CSliderCtrlWithEcho : public CSliderCtrl { '

| A: public interface functions | the C'ontrols folder of the
Void Initialize (float min, float max, float init); // initialization MFC_Slider CtrIWthEcho
bool SetSliderValue float userValue); /1 set the slider bar for output project
float GetSliderValue (); /] get user input value from the slider bar :

| B: Internal representation and impelementation | Source code folders. For
int UserToMFCPos(loat userValue); /I translation from user (float) to MFC values (integer) readability, folders and sub-
float MFCToUserPos{nt mfcValue); /1 translation from MFC (integer) to user (float) values 5
void UpdateSliderEcho(); /1 update current slider value to numeric echo area folders (When appropnate) are
CStatic mMessageWnd; // control varaible for the echo area Created n the\ﬂsua] SUdIO

| C: Override MFC event service routines | Solution Explorer to organize
afx.msg void HScroll(UINT nSBCode, UINT nPos); /1 horizonatl scroll service routine 9 H H
afx.msg void VScroll(UINT nSBCode, UINT nPos); /I vertical scroll service routine source flles_ aCCOI’dII'.]g to_thelr

}i corresponding functionality.

Listing 3.10: TheC Slider CtriWithEcho class (Tutorial 3.6).

Listing 3.10 shows the definition of th&SliderCtriWithEcho class. We can

see a simple public interface where the user can initialize, set, and get slider bar
values. We also see familiar declarations of service routines and control variables.
Initialize() is the only MFC specific function where we must create and insert
an echo GUI element for the numeric dsyp The rest of the class are fairly
straightforward. Please do explore the implementations.

Tutorial 3.7: The MFC Library
Tutorial 3.7.

e Goal: demonstrate the advantage of collecting functional specific files intoProject Name:

a separate software library. L_bM FC_SUseLib:aryl
ibrary Support:

MFC_Libraryl

“bigaRef” — 2007/7/17 — 19:02 — page 74 — #74

Library File. Library files
typically ends with.lib or .dll
extensions in the Microsoft
Windows environment. Other
examples of library exten-
sions include,.a, and.dso in
the Unix environment.

74 CHAPTER 3. WORKING WITH GUI APIS

e Approach: gather all GUI API specific functions and create a customize
GUI library for our application.

The source code of Tutorial 3.7 is identical to that of Tutorial 3.6. The only dif-
ference here is in therganization of the source codes. When we examine the
source code for Tutorial 3.7, we see that we have collected all MFC specific utili-
ties and created the FC _Library1 software library. As the number of files grows

in our development environment, creation of library to group functional specific
files will become very important in maintaining a manageable source code struc-
ture. In all of our implementation, we would call functions framFC _Library1
whenever possible. In this way, we haxetomized the GUI API, where instead

of calling the underlying ME functions, we call our library functions where the
support is customized to specifically support our requirements.

In general, as thdeveloper of a software library we must provide:

e Manual andSample Code: this is to support ease of use by developers using
our library. Themanual should describe the functionality and document
all classes/functions in the the library. The sample code should illustrate
examples ohowto usethe provided facilities in the library. In our case, the
tutorials in this textbook serves as the sample code, while the explanation
accompanied each tutorial serves as the manual for our libraries.

e Header files: this is to supportompilation of the programming code that
are based on our libraries. For example, if a programmer wants to declare a
CSlider BarWithEcho object, she mustinclude ti#&ider BarWith Echo.h
file; otherwise, at compile time, the compiler will not understand what is a
CSlider BarWithEcho. In all of our libraries, we dedicateleébrary header
file that includesall of the classes/functions defined in the library. For ex-
ample, fortUW B_M FC _Lib1 the file: uwbgl_M FC _Lib1.h includes all the
definition for all the classes and functions defined in this library. A devel-
oper only needs to include this file to take advantage of facilities provided
by this library.

The advantage adne dedicated library header file is in its simplicity: de-
velopers only needs to know about this single file. The main disadvantage
comes in the form of compilation time; includiadj definitions in a library
means the compile must process much more information. We chose this
approach mainly for the simplicity. In our all of our tutorial projects, the
library header files are included in tiSed A fz.h file. Since all source files
must include this pre-compile head#e, all source files have access to all
functionality provided by our libraries.

e Thelibrarythis is to suppottinking of the programming code that are based
on our library. In modern development environmesufiware libraries
typically comes in the form of &le. This file contains all the machine code

“bigaRef” — 2007/7/17 — 19:02 — page 75 — #75

3.6. TUTORIALS AND CODE BASE 75

for all the functions/classes defined in the library. At link time, a devel-
oper’s compiled code will benked with the contents of this library file. For
example, if a programmer has properly included$héer BarWith Echo.h

file and declared an object for this class. At link time, the linker will locate
and extract the machineode that implements th8lider BarWithEcho
functionality.

In modern development environment there are two types of software li-

braries:statically linked anddynamically linked. Statically linked libraries

are processed &ink time, where the machine code is included in the exe-

cutable program. Dynamically linked libraries supports the loading of the

library atruntime. We have chosen to work witktatically linked libraries

for it simplicity.

The result of compiling our library project is.@b file. For example, for the

MFC _Libraryl project, the result of compilation is the FC_Library1.lib

library file. A developer that uses o FC_Libraryl library must include Compile results. Microsoft

this library file in the final linking of her program. Visual Studio IDE store the
compile results from C++

The library we have createtlf FC_Library1, contains theSlider CtrIWithEcho phmi;dls into ftTgDebug or
class and a utility functionReplace DialogControl()). Let's examine this func- e rerease folder.
tion in more details.

Tutorial 3.8: Grouping of GUI Element

Tutorial 3.8.
e Goal: demonstrate that sometimes it is advantages to work with a containeProject Name:

GUI element and the corresponding programming code to organize user MFC-GroupControls
Library Support:

MFC_Libraryl

interface.

e Approach: define a ‘tontainer” object to contain related GUI elements,
define a corresponding data type amomtrol variable to manage the new
“container” object.

Figure 3.11 is a screen-shot of running Tutorial 3.8. The check box and the slider

bar at the lower-left corner is meant for controlling the radius of a circle. Since|

we have not learn how to draw a circle, this application does not do anything. | : =1
this case, we are interested in the organization of the circle radius control GUI

elements and the corresponding programming code.

Figure 3.11: Tutorial 3.8.
Front-end GUI layout design

So far in all of the tutorials, the GUI elements are defined to be contained inside

the default application window. Figure 3.12 shows the structure of the GUI ele-

ments in Tutorial 3.8. Notice that the GUI elements for controlling the circle ra-

dius are defined inside a separate container window (GUIID?_ CONTROLS_CHILDDLG).
As illustrated in Figure 3.12, a place holder (GUI IDDC_PLACEHOLDER)

is defined on the main application window faacing the container window.

“bigaRef” — 2007/7/17 — 19:02 — page 76 — #76

Source File.
CircleRadiusControls.h/cpp
file in the Controls folder
of the MFC_GroupControls
project.

76 CHAPTER 3. WORKING WITH GUI APIS

GUI Element: Application Window

GUI ID: IDD_GROUPCONTROLS _DIALOG
Control Variable: m pMainWnd (TutorialApp)
Contrl Variable Data Type: CTutorialDlg

GUI Element: Place Holder
/\ GUI ID: IDC_PLACEHOLDER
. Control Variable: none
1 f Contrl Variable Data Type: N/A

Placholder for control group.
Quit

Place into GUI Element: Circle Radius Control
IDC7PLACEHOLDER GUI ID: IDD_CONTROLS_CHILDDLG

to present to users /\ Control Variable: m_circle controls (TutorialDlg.h)
Contrl Variable Data Type: CCircleRadiusControls

e GUI Element: Slider Contrl With Echo

N /_\ GUI ID: IDC_RADIUS_SLIDER _BAR
Control Variable: m_CircleRadiusBar (CircleRadiusControls.h)
Contrl Variable Data Type: CSliderCtrlWithEcho

Figure 3.12: GUI Elements in the Tutorial 3.8.

Back-end I mplementation

On the back-end, we must define a new data type to support theoreainer
window. Notice that our main application window is also an examplepofainer

window, where the main application window is a GUI element and it is defined

to contain other GUI elements. We have been definingtii@torial Dig class

as the data type to support our main application window. When we examine the

implementations (e.g., Listing 3.9 of Tutorial 3.5), we observedaitorial Dlg

is a subclass of the MFC Dialog class to take advantage of the vast pre-defined
behaviors. Based on this experience, we can define a new data type for the new

container window:

| class CCircleRadiusControls :public CDialog { '
| Al: | virtual BOOL OnInitDialog(); |

B1: CsliderCtrlwithEcho mCircleRadiusBar; /I control variable for the slider bar
BOOL m_bSliderControl; /1 control variable for the check box

afx_msg void OnBnClickedControlRadiusCheck()// service routine for the check box

/1 for the ease of reading, come code are removed (e.g. constructor , etc.)
void CCircleRadiusControls:: DoDataExchange(CDataExchangbX) {

DDX_Control(pDX, IDCRADIUS.SLIDER-BAR, m_CircleRadiusBar);
DDX_Check (pDX, IDCCONTROLRADIUSCHECK, m_bSliderControl);

BEGIN.MESSAGEMAP(CCircleRadiusControls, CDialog)
| ON.BN.CLICKED (IDC.CONTROLRADIUS.CHECK, OnBnClickedControlRadiusCheck)

BOOL CCircleRadiusControls:: OnlnitDialog (X

m.CircleRadiusBar. Initialize (0.0f, 100.0f, 10.0f);

“bigaRef” — 2007/7/17 — 19:02 — page 77 — #77

3.6. TUTORIALS AND CODE BASE 77

| void CCircleRadiusControls:: OnBnClickedControlRadiusCheck() '

Listing 3.11: TheC'Circle RadiusControls class (Tutorial 3.8).

Listing 3.11 shows that similar to th&T utorial Dig class, the new'Circle RadiusControls
class is also a subclass of the ME@:ialog class. This means all of our previous
experiences can be applied. We observe:

e Window initialization @): all container objects must initialize their con-
tents. As we have learned previously, thelnit Dialog() function will be
invoked during the initialization of the window. In Listing 3.11, we observe
the declaration4 1) and implementationA?2) of this function.

e Control variablesB): we need to have references to the slider bar and the
check box during run time. As we have seen many times, the variables are
defined at labeB1; bound to the GUI elements at lali&2; and initialized
at labelB3. In this tutorial we are using the slider bar data type defined in
Tutorial 3.6 B1), notice that even without any services, the numeric echo
area reflects the knob positions correctly.

e Event services(): the service of the check box event is established in

familiar procedure: declaration of service routine at lab&j registration
of event at labeC2; and implementation at lab€&l3.

With the CCircle RadiusControls data type definition, we can now define control

variables for theontainer window in our main window: Source File.
TutorialDlg.h file in the
class CTutorialDlg : public CDialog { HeaderFiles folder of the
CCircleRadiusControls mcircle.controls; MFC_GroupControlsproject.
=

Listing 3.12:CTutorial Dlg class (Tutorial 3.8).

We have seen the definition of the two data types for the two container windows:
CClircleRadiusControls and CTutorial Dlg. In addition, Listing 3.12 shows
us thatCTutorial Dlg has them_circle_controls control variable referencing a
CCircleRadiusControls window. However, we have also seen that during the
front-end GUI layout design, we didiot place anyCCircleRadiusControls GUI
element into the main application window area. This means, at this point, after
our main application window started, thack-end implementation will have a
control variable to &' Circle RadiusControls window, however, on th&ont-end
GUI there will beno GUI element showing the window.

At run-time, we musplace the m_circle_controls at the region defined by the
placeholder GUI element (refer to Figure 3.12, GUI IIC_PLACEHOLDER).
The Replace DialogControl() function defined in ouM FC_Libraryl is designed

to accomplish this task: SourceFile.
UtilityFunctions.cpp file in
the SourceF'iles folder of
the MFC_Libraryl project.

“bigaRef” — 2007/7/17 — 19:02 — page 78 — #78

SourceFile.

TutorialDlg.cpp file in the
SourceF'iles folder of the
MFC_GroupControls project.

78 CHAPTER 3. WORKING WITH GUI APIS

bool ReplaceDialogControl(CDialog& dlg, UINT pceholderid , CDialog& new.control.group , UINT controLgroup.i
/1 dlg is the main application window
/1 placeholder_id is ID of the place holder
/1 new_control_group is control variable of the new container GUI element
/1 control_group.id is ID of the new container GUI element

|_Places the controLgroupid GUI element in the area defined by placeholdetid.

i)

Listing 3.13: TheReplace DialogControl() function (Tutorial 3.8).

Atrun time, wherCTutorial Dlg initializes itself in theOnInit Dialog() function:

BOOL CTutorialDIg:: OnlInitDialog() {

ReplaceDialogControkthis, IDCLPLACEHOLDER, m.circle_controls , IDDCONTROLSCHILDDLG);
/1 this— is the main application window
/1 IDC_.PLACEHOLDER — defines the region for the circle control
/1" mcircle.controls — control variable for the circle control
/! IDD-CONTROLS.CHILDDLG — GUI ID of the circle radius control window

Listing 3.14:CTutorial Dlg :: OnInitDialog() (Tutorial 3.8).

In this way, the circle control window igplaced into the region that was occupied

by the placeholder GUI element. As we can see, defining separate GUI container

window involves significant effort, however, some advantages include:

1. Semantic mapping: by grouping functional related GUI elements into the

a container window and defining a new class representing the container
window, we have created a neser interaction object that supports higher-
level of abstraction and interaction. For example, in this tutorial we have
created arobject that is suitable for adjusting the radius of a circle. From
this point on, we can work with the circle radius control object and not be
concerned with slider bars and check boxes.

. Code organization: instead of having a laundry list of every GUI element

defined in the main application window, the main application window now
contains a list of high-level interaction objects. This directly helps the or-
ganization of our source code system.

. Reuse: we can instantiate multiple copies of the newly defined interaction

object. For example, if | have an application witftircles and would like

to have2 separate radius controls for each of the circle. In this case, we
can instantiate twa@'ircle RadiusControls objects to accomplish the task.

In addition, it is straightforward for to resue th&rcle RadiusControls in
another application.

