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An Overview of Data Analytics:
Spreadsheet Modeling, Visualization, and
Supervised and Unsupervised Learning∗

Carolyn C. Matheus
Computing Technology Department

Marist College
Poughkeepsie, NY 12601
Carolyn.Matheus@Marist.edu

Abstract

Data science and analytics have emerged as thriving fields. As busi-
nesses and individuals produce massive volumes of data as a byprod-
uct of online activity, a growing need exists for professionals trained
to capitalize on the potential of big data by understanding how to use
analytic techniques to generate valuable information from large collec-
tions of data. At the same time, online education is one of the fastest
growing segments of higher education. The number of students work-
ing online toward Master’s degree increases each year. The Association
to Advance Collegiate Schools of Business (AACSB) and the joint task
force of the Association for Computing Machinery (ACM) and Associ-
ation for Information Systems (AIS) have called for data analytics in
graduate curriculum. To meet these demands, this paper provides an
overview of a skills-based online graduate course in which students learn
statistical techniques for approaching big data. The hands-on curriculum
focuses on spreadsheet modeling, data visualization, rudiments of data
management and data analysis, and an introduction to data mining and
predictive modeling, combined with state-of-the-art software, real world
data sets, and the skills necessary to use the tools. This paper provides
an overview of the course goals and curriculum, data sets and software
tools used for visualization and analytics, and the online platform used
as the content management system for course delivery.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Data science and data analytics have emerged as thriving fields. As businesses,
governments, and individuals produce massive volumes of data as a byproduct
of online activity, there is a growing demand for professionals trained to capital-
ize on the potential of big data by understanding how to use analytic techniques
to generate value from large collections of data [4]. Important characteristics of
such people include creativity, curiosity, analytical abilities, statistical exper-
tise, and communication skills combined with knowledge of how to drill down
data to tell a meaningful story to stakeholders [6, 7]. At the same time, online
education is one of the fastest growing segments of higher education. An es-
timated 3.5 million students were working toward their degree online in 2016;
this number is expected to increase to 5 million by 2020. Business continues
to be the most popular major for undergraduates and graduates, accounting
for approximately 25% of enrollment in online degree programs [5].

The Association to Advance Collegiate Schools of Business (AACSB) in-
cluded data analytics in Business Standard 9 for curriculum content and Ac-
counting Standard A7 for Information Technology Skills and Knowledge for
Accounting Graduates [9]. Likewise, the joint task force of the Association for
Computing Machinery (ACM) and Association for Information Systems (AIS)
included data management and analytics as necessary components of graduate
degrees in Information Systems, including integrating and preparing data for
analytical use, applying analytics methods, and analyzing data using advanced
contemporary methods [8]. This paper provides an overview of the develop-
ment and delivery of this online graduate course titled Analytics. This course
introduces a range of data driven disciplines and technologies to help students
understand how analytics can be used to make better, faster business decisions.
Students in this course are exposed to spreadsheet modeling, data visualiza-
tion, data management and analysis, and an introduction to data mining and
predictive modeling. The course incorporates real world data sets and sce-
narios from different domains, and state of the art software coupled with the
skills necessary to use the tools. This paper provides an overview of the course
goals and curriculum, data sets and software tools used for visualization and
analytics, and the online platform used for content management and delivery.

2 Course Goals and Management

This course aims to change the way students think about data and its role in
business, gaining an understanding of how organizations use analytics to solve
problems and support decision making. Students become familiar with the con-
cepts of relational data manipulation and querying, dimensional analysis, and
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database access. They learn to interpret and use quantitative and decision sup-
port techniques through the use of spreadsheet models, data visualization tech-
niques, and become familiar with data mining and predictive models through
the use of specialized software. Content is delivered online using the iLearn
content management system, which was adapted from the open-source Sakai
platform for learning management systems [2]. Through the iLearn interface,
students can access all course materials by utilizing a series of functional tools,
including: a video introduction by the instructor, a calendar of assignments
and due dates including an assignment submission site, an email system, an
online gradebook, a tool for interactive discussion forums, a tests and quizzes
tool, and a synchronous chat room. Additional functionality includes a tool for
podcasts; a polling tool for posting questions, anonymous voting, and gathering
results; a web-content tool for linking to internal resources or external websites;
a news tool for RSS feeds; and an optional tool that provides early alert and
detection of academically at-risk students. The learning modules landing page
guides students through the course content, which is largely based on an orga-
nized series of video tutorials, supporting lecture slides, and assigned readings.
Each module is delivered as its own dynamic web page. The mandatory content
is delivered asynchronously to allow students the flexibility to view content and
complete assignments on their own schedule. Tools for synchronous commu-
nication, including live chats and video communication, are available through
the course interface. This course adheres to institutional and Quality Matters
guidelines for online courses. Quality Matters includes metrics for ensuring
courses meet rigorous requirements and guidelines to ensure the highest level
of online instruction, including guidelines for developing learning objectives,
assessing and measuring goals, course technology, delivery of instructions ma-
terials, interaction with and support for learners, and accessibility and usability
[1].

3 Course Curriculum and Data Sets

The curriculum is delivered via an online platform as three distinctive learn-
ing modules. Module 1 teaches spreadsheet modeling using Microsoft Excel,
Module 2 teaches data visualization using Tableau, and Module 3 teaches su-
pervised and unsupervised learning utilizing Weka. Each Module includes a
series of video tutorials, lecture slides and videos, assignments, discussion ques-
tions, and interactive discussion forums with classmates and the professor. The
software platforms (i.e., Excel, Tableau, and Weka) were collaboratively cho-
sen by faculty and administration from Information Systems and Business, as
well as feedback from industry professionals, based on currently trending needs
for skillsets of graduates entering and exceling in the workforce. Two different

17



data sets were used across the three learning modules: a large open breast
cancer data set and a weather data set. The breast cancer data set includes
data points of attributes related to breast cancer such as age, menopause, tu-
mor size, details about nodules, and breast density. The weather data set
includes a variety of weather data points including temperature in Fahrenheit,
dew point, humidity, visibility, precipitation, and wind speed. The following
sections provide a detailed overview of how the data sets were incorporated
into the three learning modules.

3.1 Spreadsheet modeling
Using the large weather data set, students learn how to perform advanced
mathematical calculations including: sort, filter, and format data; create, in-
sert, and edit charts to graphically display results; conditional formatting and
advanced IF functions; create array and related formulas; create macros; and
generate pivot tables. Students are guided through a series of video tutorials
and lectures delivered through the course site that teach and demonstrate the
lessons. They then apply techniques for manipulating the data by answering
a series of assigned questions. Assignments include learning how to freeze lock
rows and columns, password protect files, create formulas, and calculate aver-
ages for columns which must be displayed in a designated cell, such as =AV-
ERAGE(C2:C6721). In one question, students are asked to add a new column
for Celsius temperature and generate a formula to convert temperatures in
Fahrenheit to Celsius; for example, =(C2-32)*5/9. In addition, students are
asked to generate a formula to calculate the difference in hours between April
4 at 16:00:00 and May 25 and 8:00:00. Students learn to visualize their results
by generating charts and graphs to display the data and learn to edit the axes
(see Figure 1).

Advanced spreadsheet tasks include conditional formatting, nested count-
ifs, and pivot tables. Conditional formatting instructions include: Use condi-
tional formatting for the column of DPf (Dew Point, Fahrenheit). If the value
is above 67°, denote with a green dot. If the value is between 33°and 67°, de-
note with a yellow dot. If the value is below 33°, denote with a red dot. Figure
2 presents a visual example that demonstrates select rows.

Students learn to create nested IF statements to denote data ranges by
adding a new column to the spreadsheet and creating an IF statement that
accounts for the following challenge: If the TmpF (Temperature in Fahrenheit)
is between 45°and 70°, then the value is comfortable; if the temperature is over
70°, then the value is too warm; if the temperature is lower than 45°, then the
value is too cold. The formula summarizes the data in a chart that provides a
live count of the ranges denoted. Figure 3 presents a visual example.

Students also learn to use pivot tables for extracting information from the
data. Pivot tables allow the ability to quickly extract this type of information
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and present it in an easy to understand chart. Students are tasked with gen-
erating a pivot table to show the average TmpF and DPf by year (see Figure
4).

3.2 Visualization
Tableau is a software suite for data visualization [3]. Students receive free aca-
demic license for the course. In Tableau, students learn how to import data into
Tableau, edit metadata, blend and drill down data, create data subsets, sort
and group data, and set parameters for filtering and formatting data. Students
also learn how to evaluate and interpret their observations and draw conclusions
to summarize the meaning of data patters through interactive dashboards and
story features. Students can optionally join the course’s asynchronous open
discussion forum or synchronous live chat room to discuss questions with peers
and the professor. Using the weather data set, students address a series of
assignment challenges. Sample questions include:

• Use a filter to remove the data in 2008 and describe whether there is a
visual change in the shape of the data points for only the 2009 data, and
explain why.

• Create a set which contain all of the dates in January. Drag the set to
the column between Date and Time. Describe the result and explain why
the result looks like this.

• The Time column incorrectly contains a date of 1899/12/30. Find a
solution to fix this problem. Drag the Time dimension to a column and
TmpF to a row. Change the TmpF calculation to Average. Write a short
report that describes when it is coldest in a day and when it is warmest
in a day.

• Create a Night Time group from midnight to 6:00 am. Create a short
report explaining whether the Night Time group has the lowest temper-
ature.

At each step students are required to show their work as they critically eval-
uate their output. Students can show their work by uploading their progress to
Tableau server or produce a series of screenshots to embed in their assignments
to show their process. Figure 5 depicts an example of the Tableau interface
with data dimensions and measures as well as a bar chart demonstrating trends
in average TmpF and DpF data by quarter. Figure 6 presents the data using
a different visual style.

The final challenge is to pull together findings and presents a cohesive story
with the data. Students can push their charts and graphs from previous as-
signments into a dashboard and edit the layout to make a presentation with
the data. Students are expected to evaluate the data, provide a critical eval-
uation of the data trends, and present their findings in a way that is visually
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appealing through charts, graphs, and a narrative that tells a story with the
data. Students are informed, This assignment is intended to bring it all to-
gether, to tell a story with the data. The narrative of the story is yours. Make
sure you provide a rationale and explanation of why you choose to present the
data you are presenting in a particular way. Figures 7 and 8 show examples of
dashboard stories created to visually showcase trends in the data and different
techniques for charts and graphs.

Students also participate in discussion forums where they virtually interact
with their peers. These graded forums are designed to help the students as they
progress through the content of the course. An example forum question for the
Tableau learning module is: Please see the attached trend line and discuss
with your classmates what this trend line means. The column is AVG(DPf)
and row is AVG(Tmp F). Please pay attention to R-square and P value, and
interpret the result. Figure 9 demonstrates the trend line referenced in the
discussion question. Responses must include a clear explanation of the trend
line, with examples, explanations, and interpretations of R-square and P values.
For example, the graph shows evidence of a strong positive linear relationship
between TmpF and DpF. That is, as temperature increases, dewpoint also
increases. There are numerous factors to look at when drawing this conclusion,
including p-value, R-squared, and additional factors of regression equations.
The output for the trend line model shows p < 0.05, indicating a high level of
certainty that the data are related and results are statistically significant. In
addition, an R-squared value of .89 indicates the trend line has a positive slope
with high statistical significance, suggesting a good fit of the trend line for this
relationship.

3.3 Supervised and unsupervised learning
Weka is an open source program with machine learning algorithms for data
mining [10]. Weka includes tools for data pre-processing, regression, associa-
tion rules, and visualization, as well as classification and clustering algorithms.
Using an open breast cancer data set, students learn how to normalize data,
run cross-validation and training/testing decisions trees, and visualize the re-
sults. Using the weather data set, students learn how to run and interpret
data mining clustering algorithms. Figure 10 provides an example of the Weka
interface for supervised learning using an open breast cancer data set. The fol-
lowing sections provide an overview and specific examples of questions, tasks,
and assignments students complete for supervised and unsupervised learning
tasks using Weka.
Supervised learning with decision trees. Students complete tasks related
to decision trees, which can be used for calculating probabilities and evaluating
conditions for predicting the likelihood of an outcome. Students use Weka to
evaluate a large open breast cancer data set. After viewing a series of video
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tutorials, student run the data set with J48 decision trees using the cross
validation in Weka and interpret the difference in results compared to using
J48 by 66% as training and 34% as testing. They are then asked to answer
questions and provide documentation of their findings, including:
What is the difference between running cross validation and testing/training?
A model answer should incorporate aspects of the following explanation: Cross
validation, which is better suited for smaller data sets (e.g., less than 1000 data
points), holds out 10% of the data and uses 90% for training. Each data point
is tested one time and used for training 9 times. The results of these 10 runs
are then averaged, and then Weka runs the entire data set as a test against
this average. Put another way, 10-fold cross-validation processes the data by
dividing it into 10 folds. During each iteration, one-fold is held out during the
ten trials and the results are then averaged. The eleventh iteration is the final
step of the process whereby all of the data is used to obtain the actual classifier.
Another technique for building a classifier from a data set is training/testing.
The data can be split, where the larger percentage of data is used to train (e.g.,
66% used for training), while the rest of the data (e.g., 34%) is used to test and
refine the final classifier. This technique is better suited for larger data sets.
Provide a side by side comparison of instanced, attributes, number of leaves,
size of tree, and correct and incorrect classifications. Figure 11 presents an
example of this information, which is generated as output in Weka.
Provide a screenshot that visualizes your cross validation tree. Figure 12
presents an example of a visualized tree for this data.
Unsupervised learning with clustering algorithms. Students complete
tasks related to clustering algorithms, including Simple K-means, Farthest
First (FF), Hierarchical Clustering (HC), and Expectation Maximization (EM).
After completing required readings, watching a series of video tutorials, and
viewing a narrated tutorial with the professor working with the data set, stu-
dents complete related tasks and answer directed questions. For this assign-
ment, students use a revised weather data set that includes the aforementioned
weather data points as well as data related to public transportation stations
(e.g., daily weather conditions, type of transportation station, attributes re-
lated to the station such as whether it is an indoor or outdoor station, number
of passengers using the stations, usage on weekday versus weekend, distance
between stations, etc.). The goal is to use clustering algorithms to examine
the data and determine how weather conditions might predict the use of public
transportation stations. For example, students run the weather data using the
simple K-Means algorithm and answer questions such as:
How many clusters are formed from this data set, and how many instances
are there of each cluster? A model answer should reference the output, which
shows two clusters depicted as Cluster 0 and Cluster 1 (see Figure 13)
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Briefly describe what the clusters mean and what they represent. A model
answer should include information about how the clusters were formulated.
For example, The K-Means algorithm calculates the centroids of the number
of clusters, and the individual distances measured from the centroids. The
algorithm assigns data points to one of the groups based on the distance be-
tween stations, number of passengers, time, and weather until a constant within
the clusters becomes clear. In the current example, two clusters are formed
(Cluster 0 represents busy stations, and Cluster 1 represents slower stations).
Students are also asked to evaluate the meaning and importance of standard
deviations (SD). For example: Why is the SD in busy stations larger than less
busy stations? Model answers should reference how a SD is calculated and what
it means regarding the current data set. For example, a higher SD indicates
the data points (i.e., number of passengers per station) are spread out over a
wider range of values. Busier station, represented as Cluster 0, have higher
utilization rates (e.g., number of passengers). Therefore, the SD is higher than
Cluster 1 because of the higher influx of passengers in busy stations compared
to less busy stations.
Discussion forums. In addition to completing assigned questions, students
participate in discussion forums where they read and view additional content
and answer questions posed to them, as well as virtually interacting with their
peers in the class. The forums are designed in a way to help students along as
they progress through the content of the course. Below are example discussion
forum questions students are challenged with:

• Besides Weka, there are a lot of data analysis and machine learning tools
on the market, for example, SPSS, SAS, KNIME, R, SPARK, HADOOP,
and SAP. In this discussion share with your classmates which tool(s) you
have used in your work or personal projects. If you have not used any
data analysis tools, please talk about the type data you have in your
work and which tool(s) may be useful for your future work.

• Please read the definition of association rule learning. Discuss whether
association rule is supervised or unsupervised learning. Also, think about
the data you used in your own work and whether there is any project or
research question you could use association rule for mining the answer.

• Using the resources provided (e.g., additional readings, slides, and sup-
plemental video lecture), as well as additional research you may choose
to conduct independently, please discuss the similarities and differences
between the following four algorithms: K-Means, Farthest First (FF),
Hierarchical Clustering (HC), and Expectation Maximization (EM). A
model answer must describe how the algorithms compute clusters and
what types of research and variables they are best suited for.

22



4 Discussion and Conclusion
Results of evaluations regarding student perceptions of the course’s effective-
ness have been positive across five semesters. On a scale of 1 - 5 (1 = strongly
agree, 5 = strongly disagree) students were asked to rate their perceptions of
the course, instructor, and additional demographic information. Specifically,
they were asked to rate their perception of the extent to which the instruc-
tor: meets the stated course objectives; releases content in a timely fashion;
effectively answers questions; is available to help students; uses instructional
materials to enhance learning; effectively presents course materials; provides
clear instructions (readings, discussions assignments) for navigating the course
site; overall is an effective teacher. Students were also asked about the number
of college credits they have taken to date; whether the course is being taken
as part of the major, a minor, or an elective; self-reported level of effort; self-
reported perception of work load; level of interest in the course content before
and after course completion; and perception of the effectiveness and complete-
ness of the syllabus. The overall course mean, aggregated across all items and
semesters, is 1.74.
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