
The Journal of Computing
Sciences in Colleges

Papers of the 22nd Annual CCSC
Northwestern Conference

October 2-3, 2020
North Idaho College
Coeur d’Alene, ID

Baochuan Lu, Editor Sharon Tuttle, Regional Editor
Southwest Baptist University Humboldt State University

Volume 36, Number 1 October 2020

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners & Foreword 7

Welcome to the 2020 CCSC Northwestern Conference 8

Regional Committees — 2020 CCSC Northwestern Region 9

Reviewers — 2020 CCSC Northwestern Conference 10

Inclusion in Computer Science Education — Keynote 11
Rebecca Long, Future Ada

Hands-On Teaching of RSA Public-Key Cryptosystems
With Snap! 12

Alain Kägi, Jens Mache, Lewis & Clark College

Using Sentiment Analysis to Highlight the Discrepancy Between
High and Low Resource Language Translations 21

Caitlin Garcia, Kaylee-Anna Jayaweera, Quinn Vinlove, Kris Gado,
Jens Mache, Lewis & Clark College, Richard Weiss, The Evergreen State
College

Predicting Student Success in Cybersecurity Exercises
With a Support Vector Classifier 26

Quinn Vinlove, Jens Mache, Lewis & Clark College, Richard Weiss,
The Evergreen State College

Refactoring a Full Stack Web Application to Remove Barriers for
Student Developers and to Add Customization for Instructors 35

Jack Cook, Richard Weiss, The Evergreen State College, Jens Mache,
Lewis & Clark College

Introduction to Parallel Programming Using MPI and OpenMP
on the Raspberry PI — Conference Tutorial 45

Xuguang Chen, Saint Martin’s University

3

Supporting and Teaching Students at Liberal Arts Colleges in
Online Courses — Panel Discussion 47

Haiyan Cheng, Willamette University, Shereen Kjoha, acific University,
Anna Ritz, Reed College, Tammy VanDeGrift, University of Portland

4

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing
Sciences in Colleges (along with the
years of expiration of their terms), as
well as members serving CCSC:
Jeff Lehman, President (2020),
(260)359-4209,
jlehman@huntington.edu,
Mathematics and Computer Science
Department, Huntington University,
2303 College Avenue, Huntington, IN
46750.
Karina Assiter, Vice President
(2020), (802)387-7112,
karinaassiter@landmark.edu.
Baochuan Lu, Publications Chair
(2021), (417)328-1676,
blu@sbuniv.edu, Southwest Baptist
University - Department of Computer
and Information Sciences, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill
Rd., Kansas City MO 64110.
Judy Mullins, Central Plains
Representative (2020), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, School of
Computing and Engineering, 5110
Rockhill Road, 546 Flarsheim Hall,
University of Missouri - Kansas City,
Kansas City, MO 64110.

John Wright, Eastern
Representative (2020), (814)641-3592,
wrightj@juniata.edu, Juniata College,
1700 Moore Street, Brumbaugh
Academic Center, Huntingdon, PA
16652.
David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Lawrence D’Antonio,
Northeastern Representative (2022),
(201)684-7714, ldant@ramapo.edu,
Computer Science Department,
Ramapo College of New Jersey,
Mahwah, NJ 07430.
Cathy Bareiss, Midwest
Representative (2020),
cbareiss@olivet.edu, Olivet Nazarene
University, Bourbonnais, IL 60914.
Brent Wilson, Northwestern
Representative (2021), (503)554-2722,
bwilson@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Technology Department, College of
Computer & Information Sciences,
Regis University, Denver, CO 80221.
Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308-2099.

5

Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer
Science, Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2020), (530)898-4864,
bcdixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These
members are serving in positions as
indicated:
Brian Snider, Membership
Secretary, (503)554-2778,
bsnider@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Will Mitchell, Associate Treasurer,
(317)392-3038, willmitchell@acm.org,
1455 S. Greenview Ct, Shelbyville, IN
46176-9248.
John Meinke, Associate Editor,

meinkej@acm.org, UMUC Europe
Ret, German Post: Werderstr 8,
D-68723 Oftersheim, Germany, ph
011-49-6202-5777916.
Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,
MSC 2615, Pacific University, Forest
Grove, OR 97116.
Elizabeth Adams, National
Partners Chair, adamses@jmu.edu,
James Madison University, 11520
Lockhart Place, Silver Spring, MD
20902.
Megan Thomas, Membership
System Administrator,
(209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus,
One University Circle, Turlock, CA
95382.
Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

6

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft

Google for Education
GitHub

NSF – National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology

Teradata
Mercury Learning and Information

Mercy College

7

Welcome to the 2020 CCSC Northwestern Conference

The 2020 Northwest Steering Committee is very pleased to welcome ev-
eryone to the Twenty Second Annual CCSC Northwestern Conference hosted
virtually by North Idaho College.

Many individuals and groups have helped to coordinate and support this
year’s conference and we want to thank them for all of their time and effort,
especially given these times of extreme health and safety initiatives. We es-
pecially thank the authors who submitted papers, workshops, and tutorials.
This year we have accepted four papers, two tutorials, one panel discussion,
student lightning talks, and student posters. All papers, panels, and tutorials
went through a double-blind review process. We had colleagues across the re-
gion serve as professional reviewers and we recognize their generous efforts in
providing time and guidance in the selection of our conference program. We
are extremely grateful to have Rebecca Long as our keynote speaker for this
year! Rebecca is the President and Founder of the Spokane-based non-profit,
Future Ada. Rebecca will begin our conference with her keynote address on
Inclusion in Computer Science Education.

A final thank you goes out to you the attendees whose participation is
essential not only to the continuance of conferences such as this, but also for
the continued communication and collegiality you provide between all of us
involved in the advancement and promotion of our discipline. We hope you
enjoy the first virtual CCSC-NW conference.

Nadra Guizani
Washington State University

Conference Chair

Razvan Alexandru Mezei
Saint Martin’s University

Papers Chair

8

2020 CCSC Northwestern Conference Steering
Committee

Nadra Guizani, Conference Chair Washington State University
Gabriel de la Cruz, Site Chair . North Idaho College
Bob Lewis, Program Chair Washintgon State Universtity, Tri-Cities
Razvan Mezei, Papers Chair .Saint Martin’s University
Adamou Fode Made, Panels Tutorials ChairHumboldt State University
Gina Sprint, Speakers Chair .Gonzaga University
Ben Tribelhorn, Partners Chair .University of Portland
Xuguang Chen, Student Posters ChairSaint Martin’s University

Regional Board — 2020 CCSC Northwestern Region

Shereen Khoja, Regional RepresentativePacific University
Dan Ford, Treasurer . Linfield College
Sharon Tuttle, Editor .Humboldt State University
Shereen Khoja, Past Conf. Chair .Pacific University
Nadra Guizani, Next Conf. Chair Washington State University
Clint Jeffery, Registrar . University of Idaho
David Hansen, Webmaster . George Fox University

9

Reviewers — 2020 CCSC Northwestern Conference

Chen, Xuguang .Saint Martin’s University, Lacey, WA
Davis, Janet .Whitman College, Walla Walla, WA
Guizani, NadraWashington State University, Pullman, WA
Lewis, Robert R. Washington State University, Richland, WA
Mezei, Razvan A. Saint Martin’s University, Lacey, WA
Sprint, Gina .Gonzaga University, Spokane, WA
Tribelhorn, Ben . University of Portland, Portland, OR
Williams, Chadd . Pacific University, Forest Grove, OR

10

Inclusion in Computer Science Education∗

Keynote

Rebecca Long
President and Founder

Future Ada
(Spokane-based non-profit)

Inclusion is an important component of any culture during normal times
and in any environment. During a crisis, it’s even more critical to the success
of communities and organizations. Higher education in STEAM fields, such
as Computer Science, is no exception. As we transition forward into this un-
charted pandemic world of remote work and schooling, being extra mindful
to create inclusive environments in classrooms, advisory meetings and office
hours are needed for maximizing the success of STEAM students. I’ll show
how inclusive techniques can be used to not just support students but also
fellow faculty through these trying times.

Rebecca Long is the President and Founder of the Spokane-based non-
profit, Future Ada, which supports and advocates for diversity and inclusion
in STEAM (science, technology, engineering, art, and mathematics) and by
day she is the Quality Assurance Manager at Engie Impact. She has 15 years’
experience in software engineering and is a double alum in computer science
from Eastern Washington University.

∗Copyright is held by the author/owner.

11

Hands-On Teaching of RSA Public-Key
Cryptosystems With Snap!∗

Alain Kägi and Jens Mache
Mathematical Sciences Department

Lewis & Clark College
Portland, OR 97219

{alaink,jmache}@lclark.edu

Abstract

We describe and evaluate a hands-on activity to teach important as-
pects of the RSA public-key cryptographic system. We first outline the
activity aiming to give students a real and practical understanding of
RSA, including a look at the implementation of specific steps in the pro-
tocol. Then we discuss our experience using this activity in two separate
courses (spring and fall 2019) including a summary of student feedback
based on a survey given at the end of one of the classes.

1 Introduction

This paper describes our experience designing and using an active-learning
approach to teaching RSA [8]. RSA is a public-key cryptographic system that
plays a key role today in many internet transactions, including those effected
through the secure hypertext transfer protocol or HTTPS [6]. We used the
visual, drag-and-drop programming environment called Snap! [9]. Snap! is a
programming system well suited for beginners and experts alike. Snap! is easy
to use but also supports advanced concepts such as first-class lists, functions,
and continuations.

We developed this hands-on activity in the context of our department’s
introductory computer science course for non-CS majors whose aim is to give
students a taste of “algorithmic thinking, the nature of electronic computers,

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

12

and the place of information technology in society.” But we think that this
approach can also be successfully applied to more advanced courses.

We used this activity in two different instances of the course (spring and
fall 2019). We report our experience teaching this material and present the
result of a student survey conducted during the second course (fall 2019).

2 Background

In this section we present some details about the RSA public-key cryptographic
system and Snap! We do so both to give the reader enough information to
understand the activity but also to give a feel for the amount of material a
teacher would have to cover in class should they decide to adopt this activity
in a future syllabus.

2.1 RSA

RSA, named after its inventors Ron Rivest, Adi Shamir, and Len Adelman,
is one of the first public-key encryption methods and is widely used today to
exchange information on the internet securely [8]. It relies on the current lack
of an efficient algorithm to factor the product of two large prime numbers [10].

Let us say that Alice wants to send Bob a message confidentially. Bob, as
a new user, will first need to generate a key pair following these steps:1

1. Generate two very large, random prime numbers p and q
2. Compute n = p× q
3. Compute λ(n) = lcm(p− 1, q − 1)
4. Choose integer e < λ(n) such that gcd(λ(n), e) = 1 (i.e., λ(n) and e are

coprime)
5. Compute d where d× e = 1 (mod λ(n))

At the completion of these steps, Bob forgets p, q, and λ(n); the tuple
(e, n) becomes his public key which he makes available to everyone (e.g., by
publishing it to a key server); and he keeps his private key, d, secret!

At this stage, Alice can send message m to Bob by first encrypting it with
his public key (e, n):

Ciphertext: c = me (mod n)

Bob can decrypt the message using his private key d:

1This description gives enough information to understand the high-level principles of
the RSA public-key cryptographic system. However, a truly robust implementation of this
scheme depends critically on subtle details omitted here.

13

Plaintext: m = cd (mod n)

Here is a concrete example using (unrealistically small) prime numbers p =
11 and q = 17. From this pair of numbers Bob derives his public key (n =
p × q = 187, e = 7) and his private key d = 23. If Alice wants to send 65,
the ASCII code of uppercase letter ‘A’, to Bob confidentially, she computes
c = 657 (mod 187) = 142. To decode the message, Bob computes m = 14223

(mod 187) = 65.

Figure 1: Snap! hello, world! Program.

Figure 2: Snap! Greatest Common Denominator Function.

2.2 Snap!

Snap! is a visual, drag-and-drop programming language where the user builds
a program by gluing together blocks of various kinds [9]. Snap! allows for
perhaps a gentler introduction to computer programming. Color schemes help
students identify related components. Dedicated geometric contours help stu-
dents determine legal ways to compose components.

For illustration’s purposes, Figure 1 and Figure 2 show Snap!’s version
of Kernighan and Richie’s “hello, world” program [5] and the implementation

14

of Euclid’s algorithm to find the greatest common denominator (GCD) of two
numbers. The latter can be used to compute the least common multiple (LCM)
of two numbers, a function required in Step 3 of the RSA key generation
described earlier.

Figure 3: A Sample Public and Private Key Pair.

Figure 4: An Encrypted Message.

3 The Activity

3.1 First Iteration

In the first iteration of this activity (spring 2019), we gave each student a
distinct “toy” public/private key pair (see Figure 3). The students published
their assigned public key (simulating a public key server). Then we asked each
student to work in groups of four and to use those students’ public keys to
encrypt three different messages consisting of a single number between 0 and
32, possibly a birthday (the day of the month). In this iteration, students used
the Python interpreter (in a terminal window) to perform the encryptions,
for instance evaluating the expression 31**13 % 33 to find that the cipher of
message “31” is “25.” Once completed, the students exchanged their encrypted
messages (see Figure 4), simulating the open internet. We challenged them
to attempt to crack any message. They also decrypted the messages “sent” to

15

them, again using the Python interpreter, for instance evaluating the expression
25**17 % 33 to decrypt message “25” back to plaintext “31.” Finally, we asked
them to verify the decrypted messages with their original senders.

3.2 Second Iteration

In the second iteration of this activity (fall 2019), we followed a very similar
protocol with the following changes. Instead of providing the students with
precomputed public/private key pairs, we distributed a Snap! program that
generated those keys on demand. With the key generator came two companion
programs to encode and decode messages. A single Snap! project hosted all
three programs. The expectation was that students would run the key gener-
ation step first, so that the decoder could use the generated keys to perform
its job (the student still had to input the encrypted message). The encoder
required the user to enter the public key of the desired recipient, in addition
to the plaintext. Finally, at the end of lecture, we asked the students for feed-
back in the form of a survey whose results are presented and discussed in the
following Section.

4 Evaluation

4.1 First Iteration

Many students seemed to enjoy participating in the action, writing down secrets
(numbers), handling messages (paper), and computing with keys (using the
Python interpreter). Groups of four and everybody sending to everybody else
within their group meant 12 total messages per group. To reduce chaos, it may
help to be explicit about everybody sending three (potentially different) secrets,
everybody decrypting three messages as intended recipient, and everybody
optionally trying to break the confidentiality of the remaining six messages
that were passed around.

4.2 Second Iteration

By the time this exercise was assigned, the students had already studied or
completed several Snap! programs (e.g., to compute the greatest common
denominator of two numbers, which comes handy when generating the keys;
to draw recursive geometric figures; to approximate π using a Monte Carlo
simulation; and to study the Monty Hall problem, again, using randomized
samples). The availability and relative simplicity of the public/private key
generation code gave us an additional opportunity to study a program, perhaps
even a step closer to what one might encounter in the “real world.”

16

Numbers in Snap! appears to be stored in the double precision IEEE
floating-point format (at least on 64-bit platforms) [3]. This choice limits
the range of whole numbers that can be represented exactly (approximately
[−253, 253]). Unfortunately quantities and computation in cryptography can
rapidly overwhelm any fixed-size representation. Thus our activities involved
unrealistically small keys and messages.

Figure 5: A Subset of the Survey Results. The questions in their entirety
appear in Appendix 7. Note that no students gave the answer Very Low or
Strongly Disagree to any of these questions.

4.2.1 Survey Results

23 students enrolled in the fall 2019 course and 10 students attended this
particular class (this class was held at the beginning of Thanksgiving week
with many students returning home early). Before the end of class, we asked
them to fill the survey described in Appendix 7.

Figure 5 summarizes the students’ answers to Questions 1, 2, and 4 through
9. With regard to Question 3, all students spent at most 60 minutes doing this
exercise, with three of them choosing to spend 40 minutes or less. And with
regard to Question 10, the majority of students felt that at least a little more
guidance through the exercise would have been welcome, with the exception of

17

a single student who would have wanted more independence.
The majority of the students in this course were upperclassmen majoring

in a non-STEM field. Therefore it may not be completely surprising that these
students expressed only a mild interest in this subject matter. Perhaps sadly,
the activity hardly changed their level of interest in the subject matter. They
did find the exercise challenging, with a student who “felt lost when going
through Snap!” and another confused about “what exactly n, e & d did in all
the operations.”

Most students reported that the activity was worthwhile and reinforced
their understanding of public-key cryptographic operations. In the open-ended
section of the survey, some students expressed that the activity was perhaps a
little rushed and could have benefited from a little more introductory explana-
tions. A student said that “[m]aybe a little more explaining about how to set
up the decryption” would have enhanced their learning.

5 Related Work

Jeffrey Humpries and Martin Carlisle developed a cryptographic system tuto-
rial [4] embedded in an Adobe Flash plugin [1]. Their application has more
robust error checking. Unfortunately, Flash is a deprecated technology, no
longer supported by every web browser [2]. Also, the details of their crypto-
graphic programming are hidden in the Flash plugin and therefore these details
cannot be inspected, explained, or modified. Our Snap!-based solution allows
the instructor to reveal the details of its implementation and gives the students
an opportunity to tinker with its programming.

6 Concluding Remarks

We have described a hands-on activity to teach RSA public-key cryptography.
We have reported on our experience using this activity in two introductory
courses (offered in spring and fall of 2019) and shown the results of a survey
given to the students of the second course. Students appear to have appreciated
and learned some tangible lessons with regard to the importance and details
of cryptography.

Specifically, this activity helps students solidify their RSA knowledge with
a practical exercise and answer questions such as: When do I use the private
key? When do I use the public key? And whose public key?

While we have designed this lesson around the Snap! programming environ-
ment, there might be other systems equally well suited to introduce students
to cryptography (e.g., Scratch [7]).

18

The Snap! programming environment supports only numbers with limited
precision. A possible extension of this work would be to write a small Snap!
library to support basic operations on numbers with arbitrary precision. Such
numbers could be implemented with Snap! lists, for instance.

7 Acknowledgments

We would like to thank Kaylee-Anna Jayaweera, Richard Weiss, and the anony-
mous referees for providing useful feedbacks on earlier versions of this manu-
script. This work was partially supported by National Science Foundation
grant 1723714.

References

[1] SWF file format specification. http://www.adobe.com/devnet/swf/.

[2] Flash & the future of interactive content, July 2017. https://theblog.
adobe.com/adobe-flash-update/.

[3] IEEE standard for floating-point arithmetic. Technical Report IEEE 754-
2019, IEEE Standards Association, July 2019.

[4] Jeffrey W. Humphries and Martin C. Carlisle. Introduction to cryp-
tography, 2002. http://williamstallings.com/Crypt-Tut/Crypto%
20Tutorial%20-%20JERIC.html.

[5] Brian W. Kernighan and Dennis M. Richie. The C Programming Lan-
guage. Prentice Hall, Englewood Cliffs, New Jersey, USA, second edition,
1988.

[6] Eric Rescorla. HTTP over TLS. Technical Report IETF RFC 2818, The
Internet Engineering Task Force, May 2000. https://tools.ietf.org/
html/rfc2818.

[7] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk,
Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, and Yasmin Kafai. Scratch: Programming for all.
Communications of the ACM, 52(11):60–67, November 2009.

[8] Ron L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the
ACM, 21(2):120–126, February 1978.

19

[9] Bernat Romagosa i Carrasquer. The Snap! programming system. In
Arthur Tatnall, editor, Encyclopedia of Education and Information Tech-
nologies. Springer International Publishing, Cham, Switzerland, Septem-
ber 2019.

[10] Samuel S. Wagstaff, Jr. The Joy of Factoring. American Mathematical
Society, Providence, Rhode Island, USA, 2013.

Appendix: Survey Questions

The questions in our student survey appear below. Questions 1 through 10 were
multiple choice questions with five alternatives each (Questions 1 and 2: Very
low, Low, Average, High, and Very high; Question 3: ≤ 20 mins, ≤ 40 mins,
≤ 60 mins, ≤ 100 mins, and > 100 mins; Questions 4 through 9: Strongly
disagree, Disagree, Neutral, Agree, and Strongly agree; Question 10: Much
more guidance, A little more guidance, Neutral, A lot more independence,
Much more independence). Questions 11 through 15 were open-ended.

1. What was your level of interest in this lab?
2. What was the level of difficulty of this lab?
3. Approximately, how many minutes did you spend on this lab?
4. The time I spent on the lab was worthwhile.
5. The lab contributed to my overall understanding of the course material.
6. Prior preparation (readings, Prezi lectures) were sufficient for me to un-

derstand the lab successfully.
7. Did this lab reinforce what you learned during the Snap! programming

module we covered earlier in this course?
8. Did this lab reinforce what you learned during the Encryption module

we covered earlier in this course?
9. As a result of the lab, I am more interested in this topic.
10. Next, would you recommend more guidance (demo, telling) or more in-

dependence?
11. What was the most important thing you learned from this lab?
12. Which aspects of the lab were most valuable to your learning?
13. What was the most time consuming or tedious part of the lab?
14. What problems did you encounter in completing the lab?
15. What changes would you make to the lab to enhance your learning?

20

Using Sentiment Analysis to Highlight
the Discrepancy Between High and Low

Resource Language Translations∗

Caitlin Garcia1, Kaylee-Anna Jayaweera1, Quinn Vinlove1

Kris Gado1, Jens Mache1, Richard Weiss2
1Lewis & Clark College

{garciac, kjayaweera, quinnvinlove, krisgado, jmache}@lclark.edu
2The Evergreen State College

weissr@evergreen.edu

Abstract

Given the enormous cost of cybercrimes each year, many cyberse-
curity researchers are working to create an automated threat detection
system, especially one that can accurately crawl non-English forums and
markets. While text classification techniques involving sentiment anal-
ysis are fairly successful in English settings, these efforts are ultimately
depreciated in non-English platforms. Translation efforts fail to acknowl-
edge the semantic qualities of different languages, especially languages
with relatively few bodies of text corpora. To fix these shortcomings and
improve current threat detection techniques, it is important to first un-
derstand by what degree current methods are failing. In this preliminary
study, we highlight the discrepancies of translation quality across three
different languages with varying degrees of resourcefulness.

1 Introduction

Non-English Dark Net Markets (DNMs) have been on the rise since 2013 [3].
These markets that span across different geopolitical regions offer products
ranging from drugs and digital goods to ransomware and keyloggers [4]. Given

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

21

the economic blow from cybercrimes each year resulting in net losses of bil-
lions of dollars [2], many cybersecurity specialists have dedicated their time to
searching these markets and hacker forums to gain insight into these products
and even impending attacks. It is clear that these attacks could be mitigated
if we could only detect these threats beforehand. Nonetheless, the unrelenting
addition of new products as well as the tens of millions of posts in these forums
make it virtually impossible to manually cover all bases.

In the past researchers have employed sentiment analysis to crawl these sites
and generate warnings if keywords suggest an impending attack[2][5]. For non-
English sites, they are typically first translated into English by services such
as Google Translate and then undergo sentiment analysis. While this method
works fairly well for English DNMs and forums, its ability to detect threats
falls dramatically when it is not English. In particular, the process fails most
when confronted with a low resource language [3]. These languages have few
text corpora available compared to languages such as English, in which there
is plenty of test data for machine translators to apply supervised learning
algorithms and thus improve accuracy. Despite positive changes to Google
Translate such as the introduction of neural network machine translation in
2016 [6], the service still struggles. When confronted with a language such
as Hindi, Russian or even French, it is common that machine translation will
overlook the structure and various nuances of the language. Words can have
multiple meanings, innocuous idioms such as “killing time” may raise false
positives, and what about major misspellings and grammatical errors that are
all too common in informal settings?

In order to improve threat detection we must be aware of our blind spots.
Cybercrimes are non-discriminatory in their origin and thus it is simply irre-
sponsible to overlook mediocre translations of low resource languages. This
paper serves to highlight the discrepancy between high and low resource lan-
guages using AWS Comprehend and Google Translate.

2 Sentiment Analysis with AWS Comprehend

AWS Comprehend is a Natural Language Processing (NLP) service that uses
machine learning to perform sentiment analysis on text data [1]. After text
is inputted, the tool outputs a confidence level between 0 and 1 across its
perceived positive, negative, and neutral sentiments in the text. A confidence
level of 0.99 positive, for example, would suggest that Comprehend is 99%
confident that the text is positive. If there are both positive and negative
elements in the text, the service provides a “Mixed” score. An overall neutral
sentiment suggests a heavy use of objective words like dates, names, or places.
This tool can detect a variety of languages and thus felt appropriate for this
experiment.

22

3 Approach and Results

Given the relative scarcity of labelled data for low resource languages, our data
consisted of randomly selected editorials from the Opinions section from three
native news sources of each language. Because many news articles are primarily
objective in their sentiment we decided that the Opinions section from news-
papers with varied political leanings would be appropriate. These articles were
analyzed by AWS Comprehend and the corresponding sentiment levels were
recorded to be used as test data. We then translated the same articles into
English using Google Translate. In a perfect translation, the sentiment levels
would virtually match that of the original, or be very close. Noting the varying
confidence levels between the original version and the translated version, as
well as if sentiments completely flipped (i.e. went from majority positive to
majority negative) indicate Google Translate’s aptitude (or ineptitude) with
that particular language.

We chose to evaluate Spanish, French and Hindi for this experiment. While
these are all fairly high resource languages when compared to the over 7,000
spoken languages, they all vary in their resourcefulness relative to one another.
Spanish is used as the high resource language, French the medium resource
language and Hindi as the low resource language in this scenario. There are
ten data points per language. Figure 1 visualizes the confidence levels of the
overriding sentiment between the translated and original text. Red mark-
ers indicate “flipped” sentiment once translated, meaning that the dominant
connotations were highly skewed (i.e. a confidently positive text is suddenly
confidently negative once translated, or vice versa). Green markers indicate
that the sentiment has not changed after the translation. The solid line across
the figure represents the ideal correlation, in which the difference in confidence
between the two versions is negligible. This ideal scenario would suggest a vir-
tually perfect translation as the sentiments would be the exact same. Clearly,
the data does not follow this trend.

One can see that there is a significant discrepancy between our specific high
and low resource languages in regards to accuracy rates. While overall senti-
ment flipped in only about 10% of Spanish text data, that rate jumped to 50%
of entries in Hindi data, with French being in the middle at 30%. Confidence
levels amongst all three languages faltered slightly across the lower resource
languages, but overall these changes were not statistically significant. While
this is still a preliminary study, the trends showing a wide gap of translation
accuracy across different languages is alarming.

23

Figure 1

4 Discussion and Conclusion

Despite the fact that our data is not reflective of the typical type of data used
for threat detection, we are confident that testing sentiment on news editorials
is a reliable metric that could be easily extrapolated to these settings. The data
used in this experiment, compared to datasets scraped from hacker forums and
DNMs is relatively “safe” for Google Translate and AWS Comprehend. In other
words, the Opinions section from a reputable news source is generally edited
and familiar in its semantics. Trouble ensues once hacker specific language,
misspellings and slang enter the arena. This begs the question, if Google
Translate struggles with formal, edited text from a low resource language, how
can we expect it to perform well once confronted with subsets of regional dialect
and no spell check in sight? Even the addition of a threat dictionary and the
addition of popular terms would only make this system marginally better given
the countless permutations of ways to get a point across and the covert nature
of impending attacks.

It is important that we continue to study our blind spots when it comes
to machine translation and sentiment analysis. Further studies can use web
scrapers to test sentiment in more informal settings such as social media sites

24

or hacker forums. Additionally, the inclusion of more languages would provide
information as to possible ulterior aggravating factors that make one language
more difficult to translate, such as its structure. Only once we know where
machine translators falter, and by what degree, can we address these issues,
and ultimately improve automated threat detection.

5 Acknowledgements

We would like to thank Alain Kägi for his guidance and expertise. This work
was partially supported by National Science Foundation grant 1723714.

References

[1] What is AWS Comprehend? https://docs.aws.amazon.com/
comprehend/latest/dg/what-is.html.

[2] Nolan Arnold, Mohammadreza Ebrahimi, Ning Zhang, Ben Lazarine, Mark
Patton, Hsinchun Chen, and Sagar Samtani. Dark-net ecosystem cyber-
threat intelligence (CTI) tool. In 2019 IEEE International Conference on
Intelligence and Security Informatics (ISI), pages 92–97. IEEE, 2019.

[3] Mohammadreza Ebrahimi, Mihai Surdeanu, Sagar Samtani, and Hsinchun
Chen. Detecting cyber threats in non-english dark net markets: A cross-
lingual transfer learning approach. In 2018 IEEE International Conference
on Intelligence and Security Informatics (ISI), pages 85–90. IEEE, 2018.

[4] Sagar Samtani, Ryan Chinn, Hsinchun Chen, and Jay F. Nunamaker Jr. Ex-
ploring emerging hacker assets and key hackers for proactive cyber threat in-
telligence. Journal of Management Information Systems, 34(4):1023–1053,
2017.

[5] Anna Sapienza, Alessandro Bessi, Saranya Damodaran, Paulo Shakarian,
Kristina Lerman, and Emilio Ferrara. Early warnings of cyber threats in
online discussions. In 2017 IEEE International Conference on Data Mining
Workshops (ICDMW), pages 667–674. IEEE, 2017.

[6] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

25

Predicting Student Success in
Cybersecurity Exercises With a Support

Vector Classifier∗

Quinn Vinlove1, Jens Mache1, Richard Weiss2
1Lewis & Clark College

{quinnvinlove, jmache}@lclark.edu
2The Evergreen State College

weissr@evergreen.edu

Abstract

In this paper we explore if we can detect whether students are strug-
gling to complete simple hands-on cybersecurity exercises based on their
command line history. These exercises are becoming more popular, es-
pecially with the increase in remote instruction. However, students may
struggle for many reasons, including lack of some skills, confusion by
what is being asked, or confusion about how the testbed works.

Using a small collection of annotated log files from a sample exercise
on DeterLab, we were able to generate three features and construct a
support vector classifier to predict with 80% accuracy if students would
complete the remaining parts of the exercise. Our work could be applied
to early detection of students who likely will have difficulty completing
the exercise, and offer them hints to boost engagement and learning.

1 Introduction

Capture the flag (CTF) exercises have been used in cybersecurity for fun and
for training and education for many years. In our own experience, students
often become frustrated when they do not make progress. This has also been
reported by others [2]. Even with instructor office hours and TA support,

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

26

many students have trouble and struggle with completing hands-on exercises.
It can be especially problematic with cybersecurity because it draws on many
aspects of computer science, and some of the concepts are difficult. Hands-on
exercises can be both more engaging than written homework and can also be
more frustrating. Yet, hands-on exercises are very useful for teaching critical
thinking and how to apply theory to practice. Our goal is to provide tools
to help students be more engaged by automatically detecting when they are
struggling, and to potentially offer a hint when that happens.

We used the ‘Introduction to DETER and Unix’, or ‘Intro’ exercise [6]
on DeterLab [4], completed by 25 students in a small cybersecurity class, and
developed features based on the resulting annotated bash history files produced
by ACSLE [3], an automated reporting and log file collection program for
testbeds. While the first class we tested our methods on was small, the data
collection and annotation system would scale to larger classes and potentially
give even more precise results with more data.

One of the important features of the ACSLE framework is the detection of
milestones. For each of the exercises we tested, we relied on a well-defined set
of milestones that measure student completion of different tasks in the exercise.
They are defined in terms of the student’s input, the command output, and
the context in which it was used, e.g. the host or directory. The state of
the student’s accomplishments at any given time is measured as the set of
milestones that have been completed.

We evaluated the classifier using primarily the number of milestones com-
pleted, but also the log files themselves with both student input and command
line output. We did not have ground truth information on each student as to
whether they struggled or not. By constructing three features from this data:
the number of related commands between each new milestone achieved, number
of repeated commands, and distance from a few ‘known good’ commands, and
using these features as inputs into a multi-dimensional support vector classifier,
we were able to predict exercise completion with 80% accuracy. Our work will
provide a good basis for a new model to suggest hints automatically.

2 Related Work

Our work provides a useful addition to the field of cybersecurity education
research. Švábenskỳ et al. [9] argued in their meta-analysis of all security
education papers that while there are many papers on education methods,
there are few new methods beyond surveying students directly. We hope that
this paper motivates the use of machine learning models to make evaluation
succinct and useful for both students and instructors.

For teaching introductory programming, Piech et al. [7] described a learner’s

27

path through an exercise as a Markov chain, and also sought to build effective
generalizations of the types of ways that new programmers completed a simple
assignment in Java. Their work featured more data, more robust statistical
analysis, and validation from midterm and final grades, which was difficult for
us because our research was mainly conducted after the school year. Rafferty
et al. [8] used a more complex hidden Markov model (HMM) for their cognitive
science paper, which has a broad focus on how to apply HMMs to model stu-
dent learning in a variety of contexts. In both cases, a HMM may prove to be
a compelling model, and while we looked into it, we were unable to generalize
our exercises as a model with a finite number of hidden states.

3 Methodology

To construct inputs for our classifier, we first created three features, computed
them for every student, and checked our work by evaluating each log file by
hand. These features are described below.

The first metric was the average number of commands between new mile-
stones reached. This could possibly describe how much effort was spent for each
learning objective met. Initial analysis showed that students who completed
more milestones either entered relatively few commands for each milestone
that they reached, or took their time and entered more, possibly indicating
that they didn’t know the answer at first, but worked hard to complete the
exercise.

The second metric was the longest string of repeats of any single command.
To count commands that were close, but not identical, we would compute the
edit distance (or Levenshtein distance) from each new command to the last.
With long periods of time where the edit distance was low (≤ 3 characters),
we could determine that a similar command with few variations was tried a
lot, with little variation. We anticipated that users who achieved more mile-
stones, and subsequently understood the exercise better, would have repeated
commands less, but the opposite was true: users who did better generally had
a wider variation in the length of their longest repeat sequence than users who
didn’t do as well, showing that frustration may not entirely be indicated by
students trying the same thing over and over again.

The last metric we used was the smallest edit distance between a list of
‘known good’ commands and bash history. This operated on the initial assump-
tion that while the REGEX search method of seeing if a command matches a
milestone may be good, it is binary, and sometimes a continuous metric can
produce better results. In some cases, like find, a command can be missing an
option and not work, but still be close enough to indicate that a student knows
what they’re doing. We computed this minimum edit distance for each com-

28

Figure 1: Confusion matrix for the evaluation dataset after training our SVC.
Note here that 0.0 represents a ‘will not complete’ prediction and 1.0 represents
a ‘will complete’ prediction. Each point in the matrix represents a measured
state and its outcome.

mand, and summed them. We found that most high-achieving students had a
sum that was small, indicating that what they did was pretty close to a known
good solution, while students who got few milestones had bash commands with
a large edit distance between these predefined commands.

The exercise log data from two classes at USC and one at LC were loaded
into a Jupyter notebook with Pandas, processed with the help of numpy, then
normalized with a min-max scalar, shuffled, and split 80-20 between the testing
set and validation set. For desired tags, we assigned a true to each student if
they got 6 or 7 milestones (all of them) and a false if they didn’t. Then, we
placed this data into a scikit-learn support vector classifier [5].

4 Results

After training a support vector classifier with the training set, we evaluated
our work with the validation set and found that the classifier was able to
accurately predict true or false values for 80% of the data. The confusion

29

matrix is shown in Figure 1. Note that the classifier is pessimistic, which is
good, since we want to minimize false negatives. There were no false negatives
with the sample data. There were some false positives, i.e. it predicted that 4
out of 20 students would not finish but they did.

5 Discussion

Drawing conclusions based on this data set was limited by not having a direct
measure of which students actually struggled; nevertheless, we were able to
infer this in many cases by reading the bash history logs and counting the
milestones achieved. For a machine learning project, we had relatively little
data: the ‘biggest’ exercise was the ‘intro’ exercise, with only around 75 samples
between all schools involved in the study. Inferring any pattern from this data
wasn’t exactly straightforward.

One of the simplest trends we observed was that more persistent students
would score higher on the exercises. Encouraging persistence may increase ex-
ercise completion rate. In the future, we plan to interview students afterwards
to see what they struggled with and correlate that with their command line
history. It’s important to note that because our model does not account for
overall clock time to completion, persistence simply means trying many new
things repeatedly. If a student started the exercise and walked away from the
keyboard, our model wouldn’t consider that to be persistent.

Some preliminary work explored how well this model applies when students
are just beginning the exercise, not just at the end of it. A variation of this
model trained only on the snippets of bash history between new milestones
achieved still maintains 80% accuracy (Fig. 3), and points toward increasing
completion rates as students persist longer (Fig. 2). To construct this dataset
and generate more data, we sliced the data for each student several times
progressively, so that a single student who, for example, achieved three new
milestones, had three data points, each representing what their bash history
data would look like if they stopped working at that point.

ACSLE can be used with EDURange [1, 10, 11], and we plan to integrate an
improved version of ASCLE that uses string-edit distance, so that instructors
can receive feedback about students in real time. We hypothesize that the
string-edit distance can distinguish trial and error guessing from knowledge-
based exploration.

30

Figure 2: This figure shows the percentage of students who achieved one or
more new milestones, then went on to complete the exercise. As students
progress and continue to reach new milestones, more stop working. As fewer
continue, the ones who do end up with a higher likelihood of completing. The
blue dots represent the actual value, and the black dots represent the predicted
value.

31

Figure 3: Classifier accuracy for the scale on the x axis described by Fig. 2.
Our classifier is able to accurately predict exercise completion with 80 percent
accuracy or better for the first five occurrences of new milestones. Accuracy
goes down near the end because we had few students who made it that far,
but the model is not needed at this point because students who did ended up
completing the exercise anyway.

32

6 Conclusion and Future Work

Given a small set of log files with limited information, the system was able to
construct a model that estimates whether a student will complete the exercise.
This was run using information taken at different times during the exercise,
and could potentially indicate when a student was struggling and should be
offered a hint. Our work will be useful in extending EDURange, and might be
useful in application to other areas where generalized models of student success
could be built with very little data.

Since the ACSLE system shows the failed attempts at a milestone, it makes
it easier for exercise authors to identify common misconceptions and then pro-
duce hints for each of them. One way to use this would be to alert the instruc-
tor when a student is struggling, and the instructor could choose one of the
pre-recorded hints based on a digest of the student’s failed attempts.

In the future, instructors will be able to write a single file that describes
commands that students could use in a solution. The string-edit distance be-
tween what they typed and those commands would be used to assess progress.
Potentially, ‘snippets’ of them could be used as a hint to assist stuck students
after our system detects that they may not finish. After implementing this
system, we also plan on evaluating its effect on exercise scores.

Acknowledgments

We would like to thank Jelena Mirkovic from USC. This work was partially
supported by National Science Foundation grants 1723714 and 1723705.

Research Artifacts

Datasets, along with the accompanying Jupyter Notebook, can be found on
GitHub at https://github.com/edurange/predicting-student-success.

References

[1] Stefan Boesen, Richard Weiss, James Sullivan, Michael E Locasto, Jens
Mache, and Erik Nilsen. EDURange: meeting the pedagogical challenges
of student participation in cybertraining environments. In 7th Workshop
on Cyber Security Experimentation and Test (CSET), 2014.

[2] Kevin Chung and Julian Cohen. Learning obstacles in the capture the flag
model. In 2014 {USENIX} Summit on Gaming, Games, and Gamification
in Security Education (3GSE 14), 2014.

33

[3] Jelena Mirkovic, Aashray Aggarwal, David Weinman, Paul Lepe, Jens
Mache, and Richard Weiss. Using terminal histories to monitor student
progress on hands-on exercises. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, pages 866–872, 2020.

[4] Jelena Mirkovic and Terry Benzel. Teaching cybersecurity with DeterLab.
IEEE Security & Privacy, 10(1):73–76, 2012.

[5] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in
python. the Journal of machine Learning research, 12:2825–2830, 2011.

[6] Peter A. H. Peterson and Peter Reiher. Introduction to DETER and Unix,
(accessed August 27, 2020). https://www.isi.deterlab.net/file.php?
file=/share/shared/LinuxandDeterLabintro.

[7] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo
Blikstein. Modeling how students learn to program. In Proceedings of the
43rd ACM technical symposium on Computer Science Education, pages
153–160, 2012.

[8] Anna N Rafferty, Michelle M LaMar, and Thomas L Griffiths. Inferring
learners’ knowledge from their actions. Cognitive Science, 39(3):584–618,
2015.

[9] Valdemar Švábenskỳ, Jan Vykopal, and Pavel Čeleda. What are cyberse-
curity education papers about? a systematic literature review of sigcse and
iticse conferences. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education, pages 2–8, 2020.

[10] Richard Weiss, Michael E. Locasto, and Jens Mache. A reflective approach
to assessing student performance in cybersecurity exercises. In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education,
SIGCSE ’16, page 597–602, New York, NY, USA, 2016. Association for
Computing Machinery.

[11] Richard Weiss, Franklyn Turbak, Jens Mache, and Michael E. Locasto.
Cybersecurity education and assessment in EDURange. IEEE Security &
Privacy, 15(03):90–95, May 2017.

34

Refactoring a Full Stack Web Application
to Remove Barriers for Student Developers
and to Add Customization for Instructors∗

Jack Cook1, Richard Weiss1, Jens Mache2

1The Evergreen State College
{coojac09, weissr}@evergreen.edu

2Lewis & Clark College
jmache@lclark.edu

Abstract

This paper describes our experience refactoring EDURange, a full-
stack Web application, in order to make it easier for students to do
undergraduate research and contribute. As a result, more students were
able to contribute to this open source project. In addition, as instructors
we wanted to have a simple interface to customize existing exercises and
parameterize them so that students could repeat an exercise without it
being identical. The main differences were: changing from Ruby on Rails
to Python Flask, changing from Virtual Machines to Docker containers,
and eliminating dependence on AWS through Terraform. These changes
reduced the number of lines of code from 28K to 12K.

1 Introduction

Refactoring [2] a large program is hard and time-consuming. So, why would we
do it? In our case, we wanted to make some significant changes to EDURange:

• Make it easy for undergraduates to contribute code,
• Make it easy for instructors to create and add their own exercises,
• Make it more efficient, and
• Make it more portable by removing dependence on AWS.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

35

We made it easier for undergraduates to contribute code by switching to a
language they were more familiar with, switching to a simpler Web framework,
and reducing the size of the codebase. The original framework was Ruby on
Rails and we switched to Python Flask. Ruby is not taught in our curriculum,
but Python is. We made it easier for instructors to create exercises by adding a
level of automation, switching from Chef to Terraform, and creating a version
of the application that runs on a local server as opposed to a Cloud. Using
Terraform also increased the portability. Terraform is a more flexible tool and
supports several environments. We made it more efficient by switching from
using virtual machines (VMs) to Docker containers.

1.1 Background

EDURange [1, 5, 6, 4] is an NSF-funded project that is both a collection of
interactive, collaborative cybersecurity exercises and a framework for creat-
ing these exercises. It is designed to provide students with an active learning
environment focusing on analysis skills rather than the latest tools.1 EDU-
Range also allows the instructor to observe student interactions, which can
help instructors identify student problems. This environment has typically
been provided in the form of one or more Amazon Web Services (AWS) virtual
machines, which are launched on-demand with the proper configurations for
different exercises. For example, there is an exercise Total Recon where stu-
dents find hosts with specific ports open or services running. In our original
version, each host was a separate VM.

The original version of EDURange was developed using Ruby on Rails
for the front-end web application in connection with a Postgres database for
managing accounts, groups, and exercises. Additionally, the back-end of EDU-
Range is supported by a Redis server for issuing and scheduling commands,
such as starting and stopping VMs, or sending emails to users who request a
password reset.

One of the design goals for the original version was that it should be easy
to use in a demo. We were able to use either pre-made accounts or we could
have users sign up at the beginning of a workshop. The one problem that we
had was that if users arrived late, then we couldn’t add them to the scenario.
We have given over 20 demos at conferences and while in the beginning there
were some delays of up to 20 minutes, we never had to cancel a demo. It was
very successful, but sometimes it became expensive to use in the classroom.

EDURange was initially designed to allow instructors to create and cus-
tomize their own scenarios. The main feature that enabled this was that sce-
nario creation was scripted. There were template scripts with parameters that

1https://edurange.org/about.html

36

would control the complexity of the exercise. That turned out to be difficult to
create and maintain using the combination of Chef, YAML and Ruby on Rails.
Terraform is allowing us to reintroduce these customization features because
of its simplicity and flexibility.

Terraform works with multiple platforms, e.g. AWS, Docker, OpenStack,
VSphere, and it is more modular than other virtual infrastructure provision-
ing frameworks. To get started with Terraform, we create a basic template
for a configuration file that includes basic container image and network struc-
ture details. From this template, each individual exercise can then add its
own required packages, scripts, and the accounts needed for students to play
it. This allows complete configuration files to be easily written in a modu-
lar fashion with scripts, as opposed to manually writing the configuration for
every individual container required for an exercise. There are two layers of
automation: the configuration file automates creating the containers, and the
template automates creating the configuration file. The templates we need to
use are also very concise, Terraform can launch a single Docker container with
a configuration file as short as 20 lines.

2 EDURange Structure

There are three main parts to the structure for EDURange: 1) the web frame-
work, 2) the control framework for provisioning the virtual environment and
collecting data while the exercises are running, and 3) the database for storing
information about scenarios and users.

2.1 Web Framework

In this refactor, we chose to use Python as our language for web development
instead of Ruby on Rails. The primary motivation for this choice was that
although Ruby on Rails may be a more popular enterprise platform, Python
is offered as part of our curriculum, so Python is much more likely to be
accessible by future developers. In fact, we have had summer research students
who worked on designing scenarios but never managed to learn Ruby on Rails.
Additionally, we wanted a more lightweight framework than Rails, allowing
developers to more easily stay organized and make small, modular changes to
the application.

To kickstart the development of the new Flask application, the cookiecutter-
flask2 tool was used to setup the directory structure of the project, as well as
provide basic initial configuration for several Flask extensions. WebPack is

2https://github.com/cookiecutter-flask/cookiecutter-flask

37

integrated to compress Javascript and CSS files, which significantly improves
the performance of the website.

At a high level, the refactor web application is a REST API that processes
user requests in three stages. First the application determines what page is
being requested and by what method, also known as the route. Then, browser
session variables are checked against the database to validate whether or not
a user is allowed to access that particular route. Lastly, if the check passes,
the data from any form submitted by the request is saved, and the page is
served. This design choice was motivated by the desire to create more explicit
separation between different utilities of the web application, and requiring the
ability to make modular and incremental changes. For example, if a developer
wanted to add a new page to the website, it would be a three step process:

1. Define the route to your page, edurange.org/new.html for example.
2. Create that HTML file, which only requires two lines to inherit the site-

wide navigation and style options.
3. Create any forms or tables as needed for the functions of the new page.

This workflow and separation of different utilities greatly simplifies adding
new features and pages to the website. Comparatively, adding a new page on
the Ruby on Rails EDURange platform would require the definition of the new
route from the Rails command line, followed by the creation and modification
of several Ruby and HAML files, as well as individual modals for all forms,
tables, and popup dialog boxes.

In summary, Flask is in a preferable framework because it is more lightweight
and more easily extensible. One of the most important extensions to our ap-
plication that Flask allows us to preserve is the Redis service, which is integral
to exercise management.

2.2 Control Framework: Scenario Management

One of the advantages of containers is that it would bring down cost if running
on AWS, and it would make it feasible to run scenarios on a local server.
Amazon also imposes limits on the number of virtual clouds and machines can
be in use in a given region, which can limit the number of exercises that can
be running simultaneously. Some scenarios require 10 virtual environments.
Lastly, we also wanted instructors to be able to run EDURange on a local
network not connected to the Internet. [3]

38

Using containers means:

1. Only one machine would be required; the same machine that hosts the
EDURange application would host the containers that encapsulate dif-
ferent scenario environments.

2. While this host machine would need significantly improved performance
over the current host machine, the EDURange application could be more
easily distributed and hosted anywhere, without dependence on AWS.

Because Terraform is capable of configuring virtual subnets to connect con-
tainers, there is no need to create virtual clouds and new IP addresses through
AWS, instead scenarios are hosted on an open port of the host server. This
does mean that everything is running on one machine, which would require
significant boosts to computational power and network bandwidth. However,
containers are lightweight enough that the capacity for running scenarios could
be nearly limitless, while the costs would remain static for only the price of
one machine. Alternatively, instructors could put EDURange on one of their
institution’s servers, and access it locally without concerning themselves with
AWS fees.

2.3 Database Schema Improvements

Another major improvement was refactoring the Postgresql Database, to re-
move obsolete tables and simplify the relationships between them. Here is a
comparison of the tables contained in the legacy system, versus the refactor:

Legacy Database
Answers Bash-histories Clouds Groups

Instance-groups Instance-roles Instances Players
Questions Recipes Role-recipes Roles
Scenarios Student-group-users Student-groups Subnets
Users

Refactor Database
Answers Bash-histories Group-users Groups
Questions Scenario-users Scenarios Users

Some tables that stored internal metadata in the legacy system have been
omitted for brevity, but overall we’ve managed to reduce the number of tables
required for the minimal operation of the platform from 24 to 8. Primarily,
all of the tables related to Roles and Recipes were only required for Chef,
and the monitoring of individual instances and subnets has been transferred
to Terraform rather than relying on the database. We’ve also simplified the

39

way groups and scenarios are managed, since having tables for "Users, Play-
ers, Student-Groups, Student-Group-Users and Instance-Groups" is needlessly
confusing for new developers. It is extremely difficult to determine the impor-
tance or roles of those tables in the legacy database, even when looking deeper
than just the table names.

2.3.1 Scheduling: Redis with Celery

As previously mentioned, Redis has been the primary service used for enabling
EDURange to run console commands. This includes the two core Terraform
commands "terraform apply" and "terraform destroy", which respectively al-
locate and free resources. For the purposes of security and organization, these
commands are handled by a scheduling worker that runs within the Redis bro-
ker. In the Rails version of EDURange this scheduler is Sidekiq, and for the
Python refactor the scheduler is a service called Celery. These services perform
the same utility, and that is to make sure that requested tasks (such as starting
a scenario, or collecting logs) are monitored, executed, and don’t cause con-
flicts. For example, it should prohibit the modification of a running scenario
or the collection of logs from a scenario that’s been deleted.

What makes Celery perfect for this piece of the project is the ease with
which developers can specify new tasks. Essentially, each task is just a single
python function that is defined in central "tasks.py" file. These tasks can range
from being extremely complex scripts that write out Terraform configuration
files for scenarios (a work in progress), or very simple like downloading logs
from a running container.

One simple task that we are able to re-use for many different utilities in
EDURange is our send_async_email task, which is only 7 lines long. Celery
simply packages email_data from a web form into a Flask Mail Message
object, and sends it off. Because of how generally this function is designed,
we can use it for things like password resetting, scenario duration warnings,
or any other utility that requires an email to be sent. These Celery tasks can
be written to support any arbitrary utilities, and the number of concurrent
running tasks can be scaled easily by running parallel workers, though that
shouldn’t ever be necessary.

2.4 Deployment

At this point it may seem that all of these services would take a great deal
of effort to install and configure to work properly, but a major priority of this
project has been to make the EDURange platform more easily accessible, and
even possible for instructors to easily run it on their own machines. In service of
this goal, we’ve implemented two options for running the EDURange platform.

40

The first is a wrapper using Node Package Manager which, after a one-
time installation of Node, can gather and update all the requirements of the
application, and run all the required services with a working out-of-the-box
configuration. This is how the EDURange server will run once all scenarios are
available in the refactor.

The second option is to run the platform through a pre-defined Docker-
compose file. The advantage of this option is that it requires no additional
installation of tools on the host server, once Docker is installed. Instead of
running the required services directly on the system, it will download a pre-
configured container for each micro-service. We have yet to do performance
testing on this approach, but it may be more costly due to running extra pos-
sibly nested containers. That wouldn’t matter for instructors that may only
be running one or two scenarios at a time, but it would be much more costly
in terms of performance if the central server were running this way.

3 Results

3.1 Website

The front-end web application has been fully implemented, excluding some
specific functionality related to scenarios such as the code responsible for mon-
itoring and logging student activity. Because some of these features are missing,
it’s not completely fair to compare the amount of code from the two web ap-
plications. However, the massive difference between them is still indicative of
the scale of the reorganization, yet this was accomplished in 6 months as a
two-quarter project course for three students.

The legacy application actually has more Python than the refactor, despite
being written primarily in Ruby. This is due to frequent redundancy in code,
whereby some very large Python files for logging student activity need to be
stored redundantly across all scenarios. The reduction in code was one part of
the reorganization. Simply cleaning up and removing redundant code would
not have simplified the structure and could have taken a comparable amount
of time.

41

Legacy Web App
Language Number of Lines

Bash 1204
C 359

CoffeeScript 49
CSS 418
HCL 3973

JavaScript 1917
Markdown 2133

Pan 1238
Perl 3680

Python 3770
Ruby 7635

Ruby HTML 840
YAML 1254

Total 28,290

Refactor Web App
Language Number of Lines
Assembly 394
Bash 745
C 1977

CSS 152
Dockerfile 46
HTML 2062

Javascript 391
JSON 1668
Python 3323
Shell 47
YAML 932

Total 11,737

3.2 Scenarios

At this point, six of the eight original EDURange scenarios have been converted
to work in the refactor, and the system is fully functional. Scenarios are being
dynamically created from Terraform templates, and the management system
ensures that network addresses do not overlap, and that all containers are
accessible.

The first release demonstrated some performance and efficiency improve-
ments. Most notably, the minimum amount of time required to boot up a
scenario has gone from two minutes, to less than ten seconds. This is because
Terraform can simply start up containers from pre-downloaded images, rather
than having to communicate with AWS and waiting for virtual machines to
start. The refactor also improves the performance of the scenarios themselves,
because containers can evenly divide up the hardware resources of the host
machine rather than being restricted by preset AWS instance sizes.

4 Conclusions and Future Work

At this point, the refactor has been a success in terms of making the platform
easier to approach for new developers, as well as more easily expandable. This
can be demonstrated through the vastly simplified database schema, the re-
duction of the amount of code used to initialize the web application, and the
better organized workflow for adding new pages and features to the platform.
The best evidence for the success of the refactor, however, comes from the
active participation and rapid progress made by the new development team.

42

Previously, after attempting to train 10 new developers to work on the Rails
platform over the Summer of 2019, only 1 developer was able to become confi-
dent with Ruby on Rails development. By comparison, the 3 students trained
during this refactor were all able to feel equipped to begin contributing within
a few weeks of learning how to use Flask.

The next task in this refactor will be expanding the scenario management
functionality. The platform should facilitate instructors creating their own
fully customized scenarios with relative ease, by automating the generation
of Terraform configurations from templates through the instructor interface.
Since Terraform configurations are modular, we can easily implement a form on
the web application where instructors can input information about the changes
they’d like to make to a scenario. Student researchers can contribute early on
in their learning process by writing bash scripts that accomplish small tasks,
such as installing packages or changing ssh port numbers. As our library of
small bash scripts grows, instructors will more easily be able to customize and
create new scenarios.

The scenario scoring system must be re-implemented. In order to assess
student understanding we don’t just rely on their completing the tasks, instead
we have questions that they answer in the student interface. In general, the
correct answers are supplied by the database. This was never fully implemented
in the original system, where ad hoc methods were used. However, using
the database allows the creation of queries to filter and project tables to give
instructors customized views of the scoring results.

Another feature that will be integral to research work related to the plat-
form is student activity logging. This activity includes everything a student
types and sees, and everywhere a student goes within a scenario. On the Rails
EDURange platform this is implemented through custom TTYLog scripts and
a data pipeline using an AWS S3 bucket from the scenarios to the central
server [4] Log management will hopefully be simplified since the scenario con-
tainers will be more easily accessible than VM’s, but the logging software is
fragile since it must handle anything the student can type.

Research Artifacts

If you would like to find out more about EDURange, and maybe even use it
yourself, see our GitHub repository for more details and setup instructions:
https://github.com/edurange/edurange-flask

Acknowledgements

This work was partially supported by National Science Foundation grants
1723705 and 1723714.

43

References

[1] Stefan Boesen, Richard Weiss, James Sullivan, Michael E Locasto, Jens
Mache, and Erik Nilsen. EDURange: meeting the pedagogical challenges
of student participation in cybertraining environments. In 7th Workshop
on Cyber Security Experimentation and Test (CSET), 2014.

[2] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

[3] Cynthia E. Irvine, Michael F. Thompson, Michael McCarrin, and Jean
Khosalim. Live lesson: Labtainers: A docker-based framework for cyberse-
curity labs. In 2017 USENIX Workshop on Advances in Security Education
(ASE 17), Vancouver, BC, aug 2017. USENIX Association.

[4] Jelena Mirkovic, Aashray Aggarwal, David Weinman, Paul Lepe, Jens
Mache, and Richard Weiss. Using terminal histories to monitor student
progress on hands-on exercises. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, pages 866–872, 2020.

[5] Richard Weiss, Michael E. Locasto, and Jens Mache. A reflective approach
to assessing student performance in cybersecurity exercises. In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education,
SIGCSE ’16, page 597–602, New York, NY, USA, 2016. Association for
Computing Machinery.

[6] Richard Weiss, Franklyn Turbak, Jens Mache, and Michael E. Locasto.
Cybersecurity education and assessment in EDURange. IEEE Security &
Privacy, 15(03):90–95, May 2017.

44

Introduction to Parallel Programming
Using MPI and OpenMP on the

Raspberry PI∗

Conference Tutorial

Xuguang Chen
Computer Science Department

Saint Martin’s University
Lacey, WA 98503
xchen@stmartin.edu

Parallel computing can be explained as using multiple processing units
to simultaneously solving a single problem. The potential application areas
are many, such as climate modeling, computational astrophysics, financial risk
management, medical imaging, agriculture estimates, and computational fluid
dynamics.

Parallel programming models are various, and two widely known models are
message-passing models and shared-memory models. Each task in a message-
passing programming model has its private memories, and different tasks can
communicate each other through message exchange. On the other hand, all
tasks in the shared-memory programming model will share a common address
space where they can asynchronously read and write.

Message Passing Interface (MPI) is a specification that primarily addresses
the message-passing models. It is designed by a group of researchers from
academia and industry. MPI specifies the syntax and semantics of a core of
library routines for message-passing programs written in C, C++, Java, or
Fortran. Open Multi-Processing (OpenMP) is jointly defined by a group of
computer hardware and software vendors. It is an application programming
interface supporting multi-platform and shared memory multiprocessing pro-
gramming in C, C++, Java, or Fortran.

The Raspberry PI is a series of small single-board computers that were
developed in the United Kingdom by the Raspberry PI Foundation, the purpose
of which is to promote teaching of basic computer science. It can be applied

∗Copyright is held by the author/owner.

45

to many areas including parallel programming. Raspberry PI is inexpensive,
but it can provide each student with his or her own parallel processors and full
advantage of the multicore capabilities.

This tutorial will cover the basic techniques and skills needed by parallel
programming using MPI and OpenMP on the Raspberry PI. It has three parts.
In part I how to acquire and install the software needed for MPI and OpenMP
programming on the Raspberry PI will be introduced, especially such software
as MPICHI, MPJ Express, omp4j, and Pyjama. Part II will focus on how to
compile and run MPI and OpenMP programs. It begins with the examples of
MPI programs written in C, followed by Java MPI examples. After that, how to
run and compile OpenMP programs in C and Java is described. Finally, some
basic MPI routines and OpenMP directives needed for parallel programming
is explained in part III.

The intended audience of this tutorial is anyone who is a beginner to parallel
programming and/or is interested in MPI and OpenMP programming. The
expected learning outcomes include the followings. Firstly, after attending the
tutorial, the audience should know what MPI and OpenMP are and how to
implement them in C and Java. Then, the audience should know the software
used for MPI and OpenMP, how to get a copy and install. Other than that, how
to run MPI and OpenMP programs in C or Java on the Raspberry PI will be
learned. In the end, the audience should know some basic OpenMP directives
and MPI routines needed for parallel programming. The recommended devices
for an audience include a laptop and if available a raspberry PI. During the
tutorial, a limited number of the raspberry PIs will also be available for the
audience to try. At the end of the tutorial, the e-version of the lecture notes,
code in C and Java as examples, and other materials for self-study can be
provided, if needed.

46

Supporting and Teaching Students at
Liberal Arts Colleges in Online Courses∗

Panel Discussion

Haiyan Cheng1, Shereen Kjoha2, Anna Ritz3, Tammy VanDeGrift4
1Computer Science Department

Willamette University, Salem, OR 97301
hcheng@willamette.edu

2Mathematics and Computer Science Department
Pacific University, Forest Grove, OR 97116

shereen@pacificu.edu
3Biology Department

Reed College, Portland, OR 97202
aritz@reed.edu

4Computer Science, Shiley School of Engineering
University of Portland, Portland, OR 97203

vandegri@up.edu

1 Summary

Faculty members from four different institutions will share practices to support
and teach students in online courses based on experiences from spring 2020.
Each panelist will provide an overview of pedagogy, resources, tools, and tech-
nology they used during in-class and remote instruction. Each panelist will
share experiences about how their pedagogy transitioned to an online setting
and how they continued to support students’ welfare and learning. Panelists
will share what went well, what did not go as well, and what lessons and strate-
gies they plan to bring to the face-to-face classroom (see Figure 1). After the
panelists present, attendees will be invited to share tips and resources for the
benefit of the CCSC community.

∗Copyright is held by the author/owner.

47

Figure 1: Courses, Tools, Coursework, Supports, and Challenges of online
courses

48

