
The Journal of Computing
Sciences in Colleges

Papers of the 23nd Annual CCSC

Northwestern Conference

October 8-9, 2021

Saint Martin’s University

Lacey, WA

Baochuan Lu, Editor Sharon Tuttle, Regional Editor

Southwest Baptist University Humboldt State University

Volume 37, Number 1 October 2021

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 7

CCSC National Partners 9

Welcome to the 2021 CCSC Northwestern Conference 10

Regional Committees — 2021 CCSC Northwestern Region 11

Reviewers — 2021 CCSC Northwestern Conference 12

Doing the (Almost) Impossible 13
Laurie White, Google Cloud

Expanding Career Pathways: The Joy of Teaching Computer
Science at Predominately Undergraduate Liberal Arts
Institutions — Panel Discussion 14

Haiyan Cheng, Willamette University, Janet Davis, Whitman College,
Shereen Khoja, Pacific University, Tammy VanDeGrift, University of
Portland

Teaching Test-driven Development of Algorithms behind Data
Science Library APIs 18

Gina Sprint, Gonzaga University

Researching Expensive Software Bugs: A Writing Assignment
and Activity for Computing Students 28

Tammy VanDeGrift, University of Portland

Enhancing Cybersecurity Education and Workforce Through
Colorado-Washington Security Scholar Program 38

Yan Bai, Ken Lew, University of Washington Tacoma, Sang-Yoon Chang,
Simeon Wuthier, University of Colorado Colorado Springs

Is Programming Relevant to CS1 Students’ Interests? 45
Kevin Buffardi, Subhed Chavan, California State University

Cybersecurity Virtual Labs Open-Source Teaching Initiative:
Creating an Entrepreneurial Mindset – Curiosity, Connections &
Creating Value (3Cs) 54

Radana Dvorak, City University of Seattle, John L. Whiteman, Intel

3

Visual Sensor Networks: Analysis of Environmental Impacts via
Computational Thinking 71

Tisha Brown-Gaines, Belmont University

A Conceptual Framework for an Introductory Machine Learning
Course 78

Anthony D. Bowman, Leon Jololian, University of Alabama at Birm-
ingham

Developing a Machine Learning Course for Anomaly Detection 84
Shyam P. Prabhakar, Leon Jololian, University of Alabama at Birming-
ham

Wrapper Algorithm for Choosing Machine Learning Functions
and Methods in SSAS 92

Kelsey Buckles, NASA & Saint Martin’s University, Eduardo Bezerra,
Eduardo Ogasawara, CEFET/RJ, Mario Guimaraes, Saint Martin’s
University

Computing-As-Literacy: Cross-Disciplinary Computing for All 101
Arianna Meinking, Kanalu Monaco, Zachary Dodds, Harvey Mudd
College

Curricular and community resources: Supporting Scripting for
All 109

Lilly Lee, Hallie Seay, Zachary Dodds, Harvey Mudd College

Security In Intelligent Home 117
Mario Garcia, Yeshihareg Hailu, Southeast Missouri State University

An Introduction to MPI for Python — Conference Tutorial 128
Xuguang Chen, St. Martin’s University

Using Cocalc to Teach Python — Conference Tutorial 130
Harold Nelson, St. Martin’s University

Teaching Numerical Methods to Computer Science Majors using
SageMath Interacts — Conference Tutorial 131

Razvan A. Mezei, St. Martin’s University

Teaching Computer Science in 3D Virtual Worlds
— Conference Tutorial 132

Cynthia Calongne, St. Martin’s University

4

A Comparison of ETL (Extract, Transform, and Load) Tools:
Python vs. Microsoft SQL Server Integration Services (SSIS)
— Conference Tutorial 134

Guangyan Li, Mary Donahoo, Mario Guimaraes, St. Martin’s
University

5

6

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Karina Assiter, President (2022),
(802)387-7112,
karinaassiter@landmark.edu.
Chris Healy, Vice President (2022),
chris.healy@furman.edu, Computer
Science Department, 3300 Poinsett
Highway Greenville, SC 29613.
Baochuan Lu, Publications Chair
(2021), (417)328-1676, blu@sbuniv.edu,
Southwest Baptist University -
Department of Computer and
Information Sciences, 1600 University
Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill Rd.,
Kansas City MO 64110.
Cathy Bareiss, Membership Secretary
(2022),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical
Engineering Sciences, 1001 Bethel
Circle, Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2023), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, UMKC, Retired.
Michael Flinn, Eastern Representative
(2023), mflinn@frostburg.edu,
Department of Computer Science
Information Technologies, Frostburg

State University, 101 Braddock Road,
Frostburg, MD 21532.
David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Grace Mirsky, Midwest
Representative(2023), gmirsky@ben.edu,
Mathematical and Computational
Sciences, 5700 College Rd. Lisle, IL
60532.
Lawrence D’Antonio, Northeastern
Representative (2022), (201)684-7714,
ldant@ramapo.edu, Computer Science
Department, Ramapo College of New
Jersey, Mahwah, NJ 07430.
Shereen Khoja, Northwestern
Representative(2021),
shereen@pacificu.edu, Computer
Science, 2043 College Way, Forest
Grove, OR 97116.
Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308.
Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer Science,
Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2023), (530)898-4864,

7

bcdixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor, (816)
584-6884, bin.peng@park.edu, Park
University - Department of Computer
Science and Information Systems, 8700
NW River Park Drive, Parkville, MO
64152.
Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,

MSC 2615, Pacific University, Forest
Grove, OR 97116.
Elizabeth Adams, National Partners
Chair, adamses@jmu.edu, James
Madison University, 11520 Lockhart
Place, Silver Spring, MD 20902.
Megan Thomas, Membership System
Administrator, (209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus, One
University Circle, Turlock, CA 95382.
Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

8

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft

Google for Education

GitHub

NSF – National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology

Teradata
Mercury Learning and Information

Mercy College

9

Welcome to the 2021 CCSC Northwestern Conference

The 2021 Northwest Steering Committee is very pleased to welcome every-
one to the Twenty First Annual CCSC Northwestern Conference hosted this
year by Saint Martin’s University.

Many individuals and groups have helped to coordinate and support this
year’s conference and we want to thank them for all of their time and effort. We
especially thank the authors who submitted papers, workshops, and tutorials.
This year we have accepted twelve papers, six tutorials, and student posters.
The steering committee accepted twelve papers out of sixteen papers submitted
(75%). All papers, panels, and tutorials went through the regular peer review
process. We had colleagues across the region serve as professional reviewers
and we recognize their generous efforts in providing time and guidance in the
selection of our conference program. We are extremely grateful to have Laurie
White, Cloud Developer Relations Engineer at Google, begin our conference
with her keynote address on "New Applications that Are now Possible on the
Cloud".

A final thank you goes out to you the attendees whose participation is
essential not only to the continuance of conferences such as this, but also for
the continued communication and collegiality you provide between all of us
involved in the advancement and promotion of our discipline. We hope you
enjoy the conference.

Mario Guimaraes
Saint Martin’s University

Conference Chair

10

2021 CCSC Northwestern Conference Steering
Committee

Mario Guimaraes, Conference Chair Saint Martin’s University
Xuguang Chen, Site Chair .Saint Martin’s University
Bob Lewis, Program Chair Washintgon State Universtity, Tri-Cities
Razvan Mezei, Papers Chair .Saint Martin’s University
Gina Sprint, Panels Tutorials .Gonzaga University
Ben Tribelhorn, Partners Chair .University of Portland
Richard Weiss, Student Posters Chair The Evergreen State College

Regional Board — 2021 CCSC Northwestern Region

Shereen Khoja, Regional RepresentativePacific University
Dan Ford, Treasurer . Linfield College
Sharon Tuttle, Editor .Humboldt State University
Shereen Khoja, Past Conf. Chair .Pacific University
Nadra Guizani, Next Conf. Chair Washington State University
Clint Jeffery, Registrar . University of Idaho

11

Reviewers — 2021 CCSC Northwestern Conference

Ashish Aggarwal .Univ. of Florida, Gainesville, FL
Anthony Bowman Univ. of Alabama at Birmingham, Birmingham, AL
Xuguang Chen . Saint Martin’s Univ., Lacey, WA
Gabriel V. de la Cruz Jr. North Idaho College, Coeur d’Alene, ID
Janet Davis . Whitman College, Walla Walla, WA
Zachary Dodds . Harvey Mudd College, Claremont, CA
Mario Guimaraes . Saint Martin’s Univ., Lacey, WA
Amanpreet Kapoor . Univ. of Florida, Gainesville, FL
Robert R. Lewis .Washington State Univ., Richland, WA
Guangyan Li .Saint Martin’s Univ., Lacey, WA
Shyam P. Prabhakar, Researcher and Ph.D. Student . . .Univ. Of Alabama at
Birmingham, Birmingham, AL
Richard Weiss The Evergreen State College, Olympia, WA
Howard Whitston, Retired Instructor . . Univ. of South Alabama, Mobile, AL

12

Doing the (Almost) Impossible∗

Keynote

Laurie White
CS Professor Emeritus, Mercer University
Developer Relations Engineer, Google Cloud

and former CCSC:SE Program Chair

The resources provided by computing are making tasks that once seemed
impossible almost routine. And cloud computing makes these resources avail-
able to a far larger audience than ever before. This talk will present some of the
(almost) impossible things that have been made possible and look at how they
were accomplished. Ideally, you’ll be dreaming of some (almost) impossible
things you may be able to do by the end of the talk.

∗Copyright is held by the author/owner.

13

Expanding Career Pathways: The Joy of
Teaching Computer Science at

Predominately Undergraduate Liberal
Arts Institutions∗

Panel Discussion

Haiyan Cheng1, Janet Davis2, Shereen Khoja3, Tammy VanDeGrift4
1Computer Science Department

Willamette University, Salem, OR 97301
hcheng@willamette.edu

2Computer Science Department
Whitman College, Walla Walla, WA 99362

davisj@whitman.edu
3Mathematics and Computer Science Department

Pacific University, Forest Grove, OR 97116
shereen@pacificu.edu

4Computer Science, Shiley School of Engineering
University of Portland, Portland, OR 97203

vandegri@up.edu

∗Copyright is held by the author/owner.

14

1 Panel Abstract

Four CS faculty members from different primarily undergraduate institutions
(PUIs) will share the joys and challenges of such careers. The media has
broadcasted the need for educating more students in computer science, espe-
cially PUIs with liberal arts [2, 3, 4]. In order to educate the growing CS
student enrollment at PUIs [1], we need to expand and support the pipeline
of potential faculty members to teach at PUIs. The primary audience for this
panel includes graduate students pursuing a computing PhD and those with
PhDs who are considering a career change. If the panel is virtual or offered
remotely, it can be advertised to graduate students across the USA. The goals
of this panel include: 1) provide an overview of joys and opportunities of PUI
careers, 2) provide an overview of the challenges of this type of career, 3) invite
other attendees to contribute from their experiences, and 4) answer attendees’
questions, and 5) create a community of current and future PUI faculty among
attendees and the panelists. In the sections that follow, we describe the joys
and challenges of faculty careers at institutions that focus on undergraduate
education.

1.1 The Joys

The PUI faculty member has three job responsibilities: teaching, research, and
service. At a PUI, teaching is the primary responsibility with teaching loads
of two to three classes or labs per semester. The panelists find joys in all three
areas and, in many cases, the three areas intersect.

Working with undergraduates: First and foremost, the panelists enjoy work-
ing directly with undergraduate students in smaller settings. We enjoy teaching
small classes, mentoring undergraduate research students, advising students to
make the most of their goals in college and preparing them for their futures,
observing the same student make transformations across several courses, and
getting to know students as individuals. We get to engage with students in
the classroom and outside the classroom. For example, the panelists advise
student clubs, travel with students for study abroad, and attend conferences
with undergraduate students.

Staying current: As faculty at smaller institutions, we get to teach a wide
variety of classes that keeps us current about trends in computing and trends
in computing education. In some cases, we get to teach first-year seminars
and senior capstones that provide professional growth, collaboration, and more
inter-disciplinary lenses. We often work within small departments (three to
eight CS faculty members) and are the stewards of the CS curriculum, so
updates to courses and the program can be made regularly and respond to the
needs of the profession.

15

Personal growth and autonomy: Since the CS program is small, we have
more autonomy in designing and delivering courses. We also engage with fac-
ulty outside of CS on a regular basis, through inter-disciplinary co-teaching
and research opportunities. We enjoy getting to learn about many fields and
think creatively about how CS can integrate with other disciplines. At smaller
schools, there are fewer artificial walls between disciplines and there is strong
community of faculty across campus. Research cycles are often short with un-
dergraduates during a summer or semester. Faculty can use their summers
for research, consulting, development, and restoration. Having the cadence of
semesters means the cycle of work has firm deadlines.

1.2 The Challenges

As with any career, there are both opportunities and challenges. The panelists
will offer some of the challenges of a PUI teaching career.

Small staff: Because departments are small, faculty must teach in areas
outside of their training. While this can accelerate personal growth, too many
new courses can be challenging. Recruiting, hiring, and retaining CS faculty
at PUIs can be challenging due to small applicant pools. Administrative as-
sistance is often shared across multiple departments. Senior faculty may have
heavy service loads. When there is growth in student enrollments or when fac-
ulty have personal and sabbatical leaves, adjuncts or visiting professors must
be hired.

Bending too much: Because PUIs are dedicated to serving undergraduates,
faculty can get drawn into helping too much. Students may see faculty as
on-call 24/7 for questions. Faculty can also get pulled into decisions around
scheduling course times to work for all students, for example including student-
athletes. We may bend too much, in some cases, to assist students - for exam-
ple, offering independent studies or frequent meetings with advisees. Because
we prioritize teaching, we must schedule personal obligations to work with the
academic calendar.

Institution-type career choice: Movement between PUIs is possible; for ex-
ample, one of the panelists has successfully moved from one PUI to another.
Moving from a PUI to a research institution may be more challenging due
to reduced scholarship production and grant awards at a PUI. PUIs have few
faculty who must cover the entire curriculum, so it is unlikely to have a depart-
mental colleague in the same research area, and it is often necessary to find
research collaborators outside the institution.

Compared to research universities, PUIs provide a different path, and not
a lesser path, to a faculty career.

16

References

[1] Computing Research Association. Generation cs: Computer science un-
dergraduate enrollments surge since 2006, 2017. https://cra.org/data/
Generation-CS/.

[2] B. Fung. Tech companies are hiring more liberal-arts majors
than you think. https://www.washingtonpost.com/news/the-
switch/wp/2015/08/26/tech-companies-are-hiring-more-liberal-
arts-majors-than-you-think/.

[3] I. Kowarski. What can you do with a computer science de-
gree? https://www.usnews.com/education/best-graduate-
schools/articles/2019-05-02/what-can-you-do-with-a-computer-
science-degree.

[4] A. Loten. America’s got talent, just not enough in IT. https:
//www.wsj.com/articles/americas-got-talent-just-not-enough-
in-it-11571168626.

17

Teaching Test-driven Development of
Algorithms behind Data Science Library APIs∗

Gina Sprint1

1Department of Computer Science
Gonzaga University
Spokane, WA 99258
sprint@gonzaga.edu

Abstract

Members of a growing community of data science and machine learn-
ing experts are advocating for the increased use of explainable and inter-
pretable algorithms. To help students understand these algorithms, this
paper presents a programming-intensive course, CPSC 322 Data Science
Algorithms, that utilizes a modern data science technology stack to intro-
duce students to fundamental and explainable data science algorithms.
In this course, students utilize test-driven development (TDD) to im-
plement data science algorithms “from scratch,” while adhering to the
same application programming interface (API) as the industry-standard
library. With this approach to teaching data science, students learn pop-
ular library APIs by building their own mini version of the libraries. They
also learn the “what” and the “why” behind the libraries instead of mostly
using them as black boxes. Along the way, students in CPSC 322 also
gain experience with software engineering tools in an industry-standard
data science tech stack, including Docker, Git/Github, automated test-
ing, and machine learning model deployment with Flask and Heroku.
Over the duration of the course, students’ experience with these tools,
API programming, and TDD increase significantly.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

18

1 Introduction

In our increasingly data-driven world, there is a growing need for data scien-
tists with skills spanning several layers of a modern data science technology
stack, including reproducibility infrastructure (e.g., Docker, virtual machines),
command line, development support (e.g., Git, package managers), compu-
tational narrative and workflow (e.g., Jupyter, R Markdown), programming
(e.g., Python, R), and data modeling and visualization libraries (e.g., pandas,
tidyverse) [9]. Consequently, instructors in higher education and practitioner-
instructors from industry are offering data science courses/bootcamps to train
data scientists in these technologies. Since data science algorithms are becom-
ing more complex, such as the implementation of deep neural networks, when
teaching popular libraries, these curriculums typically focus on the libraries’
application programming interface (API). This can be problematic because
data scientists should also understand the algorithms they are using. Using
algorithms properly depends on computer science (e.g., implementing, testing,
debugging, deploying, and maintaining algorithms), mathematics (e.g., prop-
erly applying and interpreting statistical results), and business knowledge (e.g.,
accurately and effectively communicating insights and actions [4]).

To elaborate, the complexity of data science and machine learning algo-
rithms often results in effectively treating the algorithms as black boxes (BBs).
With a BB, the details of how its inputs are transformed into outputs are
not known to the scientist, either due to its complexity or proprietary nature
[11]. Since these complex models are increasingly being deployed for decision
making in domains like healthcare and criminal justice, it is important that
the models are explainable. Christopher Molnar, author of Interpretable Ma-
chine Learning, states that for some problems a correct output alone does not
fully solve the problem, the algorithm should also explain how it came to the
output [10]. This essentially complements the output’s “what” with its “why.”
The interpretable machine learning community is growing and so is the public’s
desire for more transparency in data-driven decision making. In response, data
science educators should aim to teach the details of fundamental algorithms to
ensure students can explain the algorithms and outputs. To help address this
need, this paper presents CPSC 322 Data Science Algorithms, a course that
trains students in both the “what” and the “why” behind common libraries.

2 Related work

In 2019, Cynthia Rudin published a perspective article titled, “Stop explaining
black box machine learning models for high stakes decisions and use inter-
pretable models instead” [11]. In this article, she argues that the machine

19

learning community should use “inherently interpretable” models instead of
trying to explain BB models. For the latter, several techniques have been pro-
posed and utilized to inspect BB machine learning models, such as interactive
visual analytics systems [8]. For the former, educators and authors have ex-
plored how to teach the details of data science algorithms and libraries. For
example, in Data Science from Scratch: First Principles with Python, author
Joel Grus guides readers through implementing data science algorithms. He
states the best way to learn data science is by “building tools and implementing
algorithms by hand in order to better understand them” [5].

More specifically in higher education, educators in computer science, math-
ematics, and business have advocated for including more details and inter-
pretability when teaching data science. Beginning with business education,
Delibasic and colleagues conducted an experiment with 118 senior students in
a business intelligence course [3]. The students were divided into two groups,
one learning BB decision trees and the other using white box (WB) decision
trees. Despite the increased complexity, WB students perceived the decision
tree algorithms were easy to use, though it took them longer to improve ac-
curacy. The authors recommend educators explain more algorithm structure
and benefits by complementing a BB introduction with more WB tools. In
mathematics education, Hardin and Horton advocated for the importance of
discrete and continuous mathematics in data science education, stating “stu-
dents who skip out on math completely run the peril of black box thinking”
[6]. Since mathematics and statistics form the underpinnings of many data sci-
ence algorithms and approaches, fast-tracking past these fundamentals means
not understanding the uncertainties and limitations of an algorithm. Lastly,
in computer science education, educators are calling for more formal software
engineering in the training of data scientists. In 2017, Cruz described how
code correctness, reliability, modifiability, testability, reusability, maintainabil-
ity, and efficiency are important, yet lacking, in data science curriculums [2].
The author concludes that data science curriculums should at least include the
areas of software architecture and design, process and management, and quality
and testing. Similarly arguing the need for high quality software engineering
in data science, author Matthew Kirk states that “writing successful machine
learning code comes down to being disciplined enough to follow the principles
of design. . . , and writing tests to support your code-based hypotheses” [7].

3 Methods

CPSC 322 Data Science Algorithms is an undergraduate, programming-intensive
course with the primary goal of having students implement fundamental algo-
rithms “from scratch” with minimal dependence on libraries. The pre-requisite

20

for the course is at least one semester of programming in Python or at least two
semesters of programming in C++. The course was designed with a modern
data science technology stack, including Docker, Git, pip, Jupyter, Python,
and exposure to data science libraries. Topics of the course include an intro-
duction to the field of data science, Git and Github for version control, Python
basics (including object-oriented programming, packages, and unit testing), ex-
ploratory data analysis techniques (including cleaning/preparation, summary
statistics, visualization, regression, and Latex/Markdown for Jupyter Note-
books), supervised machine learning, ensemble learning, unsupervised machine
learning, APIs, and model deployment. The delivery of this content consists
primarily of lab-style lectures where traces of the algorithms are performed live
on an iPad, followed by a derivation of algorithm starter code.

Over the course of the semester, students are incrementally taught repro-
ducibility infrastructure with Docker and test-driven development (TDD) using
PyTest. For Docker, students are shown how to use a Docker container cre-
ated from a specific Anaconda3 Python distribution image (e.g., the continu-
umio/anaconda3:2020.11 image). Using a Docker container environment offers
students flexibility because they can use command line and/or IDE-based de-
velopment (e.g., VS Code with the Remote Containers extension). Beyond
infrastructure, reproducibility is also emphasized throughout the course, such
as via discussions about seeding random number generators and as part of
TDD. For TDD, students are first given unit tests written by the instructor
and are shown how to run, debug, and pass the unit tests in class. Then, stu-
dents learn how assert statements work and why they form the building blocks
of unit tests. Next, students are given test cases and are challenged with
writing their own unit tests. This in-class trajectory is paralleled in the home-
work assignments, called programming assignments (PAs). Table 1 provides
an overview of algorithms implemented in the PAs. PAs involve a significant
amount of programming, testing, and debugging of data science algorithms.
For the first two PAs, instructor-written unit tests are provided for students.
For the remaining PAs, students write their own unit tests based on test cases
provided in class via iPad traces or in the textbook. The textbook for the
course is Principles of Data Mining, which aims “to help general readers de-
velop the necessary understanding of what is inside the ‘black box’ so they can
use commercial data mining packages discriminatingly” [1].

Like Docker and TDD, additional software engineering methods are inte-
grated throughout the course, including creating custom packages and imple-
menting an automated testing workflow. For the workflow, students use Github
Classroom to track changes in their code and to submit their PAs. On push to
their PA repository, a Github Action is triggered that runs pushed code against
unit tests for functional correctness. Additionally, the course includes how to

21

use APIs client-side to collect data and how to create the server-side of an API.
To do this, students are shown how to design, implement, and deploy their own
API endpoint for making machine learning predictions. This involves deploying
a Flask app as a custom Docker container running on a Heroku dyno. Flask is
a lightweight micro-web framework and Heroku is a platform-as-a-service that
offers free web app hosting with the Github Student Developer Pack.

Table 1: Summary of the main algorithms implemented “from scratch.”
Algorithm When

implemented?
Unit
tested?

CSV file parsing In-class; PA1 No
Common summary stats In-class; PA1-2 Some
Handling missing values In-class; PA1-2 Some
Common table operations (group-by, find dupli-
cates, drop rows, shuffle, inner/outer join, etc.)

In-class; PA2 Some

Discretization and histogram creation In-class; PA3 Yes
Simple linear regression In-class; PA3 Yes
Hold out method In-class; PA4 Yes
k fold and stratified k fold cross validation PA4 Yes
Confusion matrix construction and evaluation PA4 Yes
k nearest neighbors classification PA4 Yes
ZeroR and random classification PA5 Yes
Naive Bayes classification PA5 Yes
TDIDT decision tree classification PA6 Yes
Random forest w/bagging classification Project Yes
Apriori association rule mining PA7 Yes
k means clustering PA8 (bonus) Yes

Over the course of the semester, the PAs require students to build a mini
version of the Python sci-kit learn machine learning library via a Python pack-
age called mysklearn. The mysklearn package answers the “what” behind
the libraries. It consists of several reusable classes, including a simple version
of the pandas library’s DataFrame class, several classifiers that follow sci-kit
learn’s fit() and predict() API for estimators, and several utility functions
that implement common data science algorithms. Many of these utility func-
tions follow the API of their industry-standard library counterpart, such as
numpy, scipy, and pandas, and are unit tested against these libraries as well.
An overview of the mysklearn algorithms implemented in class and as part
of PAs is provided in Table 1. For example, PA6 has students implement
decision tree classifier training using the top-down induction of decision tree

22

(TDIDT) algorithm and entropy. Given some starter code, students implement
a unit test for TDIDT and the algorithm. Starter code for PA6 demonstrating
mysklearn’s API is included in the Appendix. Once students pass the unit
tests for a PA, they use their mysklearn package with real-world datasets,
evaluating their algorithms and explaining their results in Jupyter Notebooks.
The algorithm interpretation in the Notebooks helps answer the “why” behind
the algorithm outputs. The course ends with a large project where pairs of
students use TDD to implement a random forest classifier, evaluate classifiers
on a dataset of their choosing, and deploy the “best” classifier to Heroku.

4 Results and Discussion

To evaluate the effectiveness of the course, students enrolled in the Spring
2021 course offerings (two sections, N = 30 in each section) were surveyed at
the start (pre-course) and end of the semester (post-course). The pre-course
survey asked students Likert questions about their prior experience with six
tools/techniques in the course’s technology stack. Post-course, students were
asked the same six questions about their current experience. Due to the ordinal
nature of the questions, the N = 49 paired student Likert responses are an-
alyzed using non-parametric approaches. The six pre/post course experience
questions are summarized using the median and interquartile range (IQR),
which are visualized via a bar chart in Figure 1. These values are numerically
shown in Table 2, which also includes results from quantifying the differences
between paired pre/post course responses. These include Rosenthal’s r for the
effect size and a one-tailed Wilcoxon signed rank test p-value. As can be seen
from Figure 1 and Table 2, students perceived the course improved their ex-
perience with Python, Git/Github, Docker, and unit testing. Students did not
feel that the course significantly improved their command line skills, which is
understandable since students often prefer using VS Code instead of command
line. In addition to the six pre/post questions, eight post-course summary
Likert questions were asked of the students. The Likert scale breakdown for
each of these questions is shown in Figure 2. These results suggest students
benefited from the “from scratch” and test-driven development of data science
algorithms, though a large portion of the students would rather have directly
used the libraries instead. All students agreed (or were neutral) that the course
was valuable for their education.

The survey also asked the students to rank PA2-7 and the project based
on which one they believed they learned the most from (PA1 was omitted
due to its purpose as a small “warm-up” assignment). The students rated
the assignments in the following order, from highest to lowest: PA6, PA5,
PA4, Project, PA7, PA2, PA3 (see Table 1 for more information about the

23

Figure 1: Median and interquartile ranges for student responses (N = 49).

Table 2: Summary of student pre-course and post-course paired Likert re-
sponses (N = 49). * = p < 0.01, ** = p < 0.0017 (Bonferroni-corrected)

Likert question Pre-
course

Post-
course

Effect
size r

Wilcoxon
test p

Working with
Python.

Median = 3
IQR = 2

Median = 4
IQR = 1

0.55 0.0000**

Using the command
line.

Median = 4
IQR = 1

Median = 4
IQR = 1

0.20 0.0139

Using Git/Github. Median = 4
IQR = 1

Median = 5
IQR = 1

0.26 0.0022*

Using Docker. Median = 1
IQR = 0

Median = 3
IQR = 1

0.60 0.0000**

Running your code
against unit tests.

Median = 3
IQR = 1

Median = 5
IQR = 1

0.50 0.0000**

Defining your own
unit tests.

Median = 2
IQR = 2

Median = 4
IQR = 1

0.56 0.0000**

PAs). Students likely perceived they learned the most from PA6 because the
TDIDT algorithm implemented in PA6 uses recursion, which is a topic students
often do not have much practice with. Lastly, students were asked for any
comments regarding the test-driven development, data science from scratch,
or APIs/model deployment aspects of the course. One student commented,

24

“I think letting us build an algorithm by scratch was amazing and it helped
me learn what is really going on behind the scenes in these python libraries.”
Another student commented, “It was nice going over unit tests and APIs in
this class. I’ve had interviews where these topics have been covered, so it was
nice to have it fresh in my mind + a little bit of practice.”

Figure 2: Student responses to post-course Likert questions (N = 49).

5 Summary and Future Work

This paper presents a course, CPSC 322 Data Science Algorithms, that helps
prepare students for a career in data science by teaching popular Python li-
brary APIs and algorithm implementation details. The course has students
use test-driven development to implement fundamental algorithms in their own
mysklearn package with minimal use of non-standard libraries, while adhering
to industry-standard library APIs. Students gain experience understanding
data science algorithm execution and explaining output, while also sharpening
their software engineering and data science tech stack skills. Future work aims
to expand the algorithms students implement in the mysklearn package and
to incorporate methods from the interpretable machine learning community.

Acknowledgement

The author wishes to thank Shawn Bowers for initial course design.

25

References

[1] Max Bramer. Principles of Data Mining. Springer, New York, NY, 3rd
ed. 2016 edition edition, November 2016.

[2] Lito Perez Cruz. When Data Science Becomes Software Engineering:.
In Proceedings of the 9th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management, pages
226–232, Funchal, Madeira, Portugal, 2017. SCITEPRESS - Science and
Technology Publications.

[3] Boris Delibašić, Milan Vukićević, Miloš Jovanović, and Milija Suknović.
White-Box or Black-Box Decision Tree Algorithms: Which to Use in Ed-
ucation? IEEE Transactions on Education, 56(3):287–291, August 2013.

[4] Brent Dykes. Effective Data Storytelling: How to Drive Change with Data,
Narrative and Visuals. John Wiley & Sons, December 2019.

[5] Joel Grus. Data Science from Scratch: First Principles with Python.
O’Reilly Media, Sebastopol, CA, 1st edition edition, April 2015.

[6] Johanna S. Hardin and Nicholas J. Horton. Ensuring That Mathematics
is Relevant in a World of Data Science. Notices of the American Mathe-
matical Society, 64(09):986–990, October 2017.

[7] Matthew Kirk. Thoughtful Machine Learning with Python. O’Reilly Me-
dia, Inc., 2017.

[8] Josua Krause, Adam Perer, and Kenney Ng. Interacting with Predictions:
Visual Inspection of Black-box Machine Learning Models. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems,
CHI ’16, pages 5686–5697, New York, NY, USA, May 2016. Association
for Computing Machinery.

[9] Sean Kross and Philip J. Guo. Practitioners Teaching Data Science in
Industry and Academia: Expectations, Workflows, and Challenges. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, pages 1–14, Glasgow Scotland Uk, May 2019. ACM.

[10] Christoph Molnar. Interpretable Machine Learning. Leanpub, February
2018.

[11] Cynthia Rudin. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature Ma-
chine Intelligence, 1(5):206–215, May 2019. Number: 5 Publisher: Nature
Publishing Group.

26

Appendix

The following code excerpt is an example of PA6 starter code for the implemen-
tation a decision tree classifier in a student’s mysklearn package. Docstring
comments have been removed for brevity.

mysklearn/ my c l a s s i f i e r s . py
import mysklearn . myut i l s as myut i l s

class MyDec i s i onTreeC la s s i f i e r :
def __init__(s e l f) :

pass # TODO: f i x t h i s

def f i t (s e l f , X_train , y_train) :
pass # TODO: f i x t h i s

def p r ed i c t (s e l f , X_test) :
return [] # TODO: f i x t h i s

def pr in t_dec i s i on_ru l e s (s e l f ,
attr ibute_names=None , class_name=" c l a s s ") :
pass # TODO: f i x t h i s

def v i s u a l i z e_ t r e e (s e l f , dot_fname , pdf_fname ,
attribute_names=None) :
pass # TODO: (BONUS) f i x t h i s

The following code excerpt is an example of PA6 unit test starter code for
test-driven development of the above mysklearn/MyDecisionTreeClassifier
class’ fit() and predict() methods. Docstring comments have been removed
for brevity.

te s t_myc l a s s i f i e r s . py
from mysklearn . m y c l a s s i f i e r s import MyDec i s i onTreeC la s s i f i e r

def t e s t_d e c i s i o n_ t r e e_c l a s s i f i e r_ f i t () :
a s s e r t Fa l se == True # TODO: f i x t h i s

def t e s t_de c i s i o n_t r e e_c l a s s i f i e r_p r ed i c t () :
a s s e r t Fa l se == True # TODO: f i x t h i s

27

Researching Expensive Software Bugs: A
Writing Assignment and Activity for

Computing Students∗

Tammy VanDeGrift
Computer Science

University of Portland
Portland, OR 97203

vandegri@up.edu

Abstract

This paper describes a writing and reflection activity about expensive
software bugs. The assignment was designed with goals of building per-
sonal curiosity, resiliency, and responsibility, while creating connections
to real world computing systems. In the reflection activity, students re-
ported changes in their perspectives. Some of the reported updated per-
spectives were high-level – responsibility of software engineers in terms
of safety, the impact of bugs on people and society – and some other
lessons were more practical software development practices – take time
to test and debug code, write good comments, ask others to review work,
and expect the worst from users.

1 Introduction and Related Work

The Computing Curriculum 2020 report provides a framework for computing
degrees and competencies [3]. Competencies combine knowledge, skills, and
disposition to contextualize tasks. Computing dispositions encompass atti-
tudes, habits, and social-emotional awareness and are as follows: proactive,
self-directed, passionate, purpose-driven, professional, responsible, adaptable,
collaborative, responsive, and meticulous. CS faculty must then create learn-
ing environments that build not only skills, but promote growth in computing

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

28

dispositions. In many undergraduate institutions, the educational mission of
“head, hands, and heart” align with this framework. Knowledge is the “head”,
skills are the “hands”, and disposition is the “heart”. This paper reports on a
writing assignment and in-class activity related to the professional and respon-
sible dispositions.

Writing assignments provide opportunities for engaging curiosity, improving
communication skills, and synthesizing knowledge. Research papers are com-
mon assessment tools in many disciplines, including computer science [1, 11].
Zobel describes effective CS research strategies and academic writing style for
graduate students [14]. Writing-to-learn and concept mapping help students
understand relationships [13]. Weikle describes a white paper and annotated
bibliography assignments for algorithms [12]. There are several examples of
writing assignments in computer science education for software documenta-
tion, lab reports, and research papers [1, 2, 4, 5, 7, 11]. This paper adds to the
literature about writing assignments in computer science education. In partic-
ular, the paper describes a writing assignment about software bugs that could
be used in many computing courses. The paper is organized into the following
sections: a description of the assignment and gallery walk, data collected from
students, results from the data, and conclusions.

2 Context for Expensive Software Bugs Gallery Walk

The writing assignment was designed for a Data Structures course at the Uni-
versity of Portland, a private, Catholic primarily undergraduate institution.
The Data Structures course serves as the prerequisite course to all upper-
division CS courses; additionally, it is a required course for CS majors, Elec-
trical Engineering majors, and CS minors.

The university is part of the Kern Entrepreneurial Engineering Network
(KEEN) whose mission is to instill undergraduates with mindsets of curiosity,
creating connections, and creating value through opportunities [6]. Faculty
design, assess, and share course activities at Engineering Unleashed [10]. In
addition to curiosity and connections, this writing assignment addresses the
CC2020 dispositions of being professional and being responsible. The activity
includes an individual research/writing assignment and an in-class reflection;
more details are below.

2.1 Part 1: Research paper (work completed individually outside
class)

Students researched and wrote about an expensive bug using the prompt below:
How expensive are bugs? Not the kind that are alive, but the kind that

are introduced through software. For this assignment, research a software bug.

29

Write a 500 – 600 word summary about the software bug (these will be shared
with the class after the assignment is due). As you do your research, you may
wish to think about these questions, but note that your paper should not just
be an outline of answers:

1. What type of software contained the bug?
2. What company/organization produced the buggy software?
3. What programming language(s) and operating systems were used?
4. How was the bug found (public, internal testers, developers. . .)?
5. How expensive was the bug? You could define expense as dollars, em-

ployee time, effect on users, effect on larger system, management time
6. What factors contributed to the buggy software?

Specific formatting instructions, electronic submission instructions, and a
grading rubric were provided; paper submissions were graded by the instructor.

2.2 Part 2: Gallery walk (in class – 25 minutes)

Once submitted, the instructor grouped papers into common themes. In the
spring 2019 offering, the papers grouped into these themes: aircraft, video
games, Y2K, space and missiles, Mariner 1, medicine, and other. Each theme
had 2 to 6 papers. Prior to the gallery walk class session, the instructor created
table tents with these themes.

A gallery walk is a pedagogical activity that gets students to physically move
to different stations [9]. Usually, small groups of students rotate together to
reflect and respond to materials at each station, similar to walking through an
art gallery [9]. Because papers are difficult to read in groups (due to print size
on paper limitations), the gallery walk for this activity was done individually.
Each station was a represented by a single group-work table in the classroom.

Two days after the paper deadline, 25 minutes of a class session was used
for the gallery walk. Students brought a printed copy of their paper to class
(alternatively, the instructor could print copies of all papers) and placed their
paper on the appropriate table station. Post-it notes and pens were available
at each table, and students asked to make a comment or ask a question about
the paper using the post-it notes. Students were encouraged to read a paper
from five different tables (⇠5 min per station) and read more if time allowed.
After 25 minutes, students collected their own papers and read the comments
and questions on the post-it notes. Note that this gallery walk was “quiet”
since students read and reflected on their own; instructors may wish to do the
gallery walk with student teams and make multiple copies of the same paper for
ease of reading. Students did not earn formal homework credit for the gallery
walk and reflection; instead, these counted toward the attendance portion of
the grade.

30

2.3 Part 3: Reflection (in class – 5 minutes)

After reading through the post-it notes, students completed and submitted a
short reflection with these questions:

After reading about software bugs that your classmates researched, please
reflect and answer the following questions.

1. Describe at least two software bugs that you learned about today:
2. Doing my own research on expensive bugs and/or learning about bugs

has changed my perspective of being an engineer or computer scientist
in the following way(s):

3. Things that surprised me from reading other bug reports (if anything):

3 Research Study

Participants: Students completed all parts of the activity in Spring 2019. The
expensive bug research paper was assigned in Spring 2020, and the gallery
walk was scheduled for two weeks after students departed campus due to the
covid-19 pandemic. Courses moved online in mid-March 2020 and became
more asynchronous; therefore, the gallery walk was cancelled in Spring 2020.
In hindsight, the gallery walk and reflection could have been moved online
through shared documents, but the instructor chose to minimize “extra” activ-
ities for the remainder of the semester. Therefore, much of this paper reports
on the results from Spring 2019 (non-pandemic semester). The participants
included 26 students in Spring 2019 and 29 students in Spring 2020. The ma-
jor composition in Spring 2019 was: 14 electrical engineering, 10 computer
science, 1 business, 1 math. The major composition in Spring 2020 was: 10
electrical engineering, 10 computer science, 4 math, 2 mechanical engineering,
2 undeclared, and 1 business.

Data and Methods: In addition to the assigned work (research papers, post-
it notes, and reflections), students completed an optional end-of-semester IRB-
approved paper survey about course outcomes related to KEEN goals. This
survey was conducted about a month after the gallery walk and questions
addressed the entire course (not just the expensive bug activity). The end-of-
semester surveys were administered and collected by a faculty member in the
School of Education, and the completed surveys were provided to the instruc-
tor after final grade submission. The survey included quantitative questions
(1=not at all, 2=very little, 3=to a small extent, 4=to a moderate extent, and
5=to a great extent) and open-text questions, as follows:

1. To what extent has your ability to identify links between course knowl-
edge and real world systems increased during this class? (rate 1 to 5)

31

2. Describe a specific example of how your ability to identify links between
course knowledge and real world systems increased in this class. (space
for free text)

3. To what extent has your ability to understand ramifications of design
decisions increased during this class? (rate 1 to 5)

4. Describe a specific example of how your ability to understand ramifica-
tions of design decisions increased in this class. (space for free text)

5. To what extent has your ability to recognize and explore gaps in knowl-
edge increased during this class? (rate 1 to 5)

6. Describe a specific example of how your ability to recognize and explore
gaps in knowledge increased in this class. (space for free text)

Table 1 shows the data collected from the activity submissions and from
the end-of-semester survey in Spring 2019. A few students did not complete
some parts of the activity, which is noted in Table 1. In Spring 2020, 26 of
29 completed the research paper and no students completed the other parts of
the activity due to the pandemic, as explained earlier. The main data analysis
method was content analysis of text [8].

Table 1: Number of activity items and survey submissions from Spring 2019

4 Results

The topics of the 51 research paper submissions formed 12 clusters. The most
popular topics for software bugs were rockets and spacecraft. The list below
shows the topics, ordered by most to least frequent:

• Rockets/Space, [16], (e.g. Ariane 5, Mariner I, Mars climate orbiter)
• Worms, [5], (e.g. Morris, Stuxnet)
• Medicine, [5], (e.g. radiation – Panama, Therac-25, pacemaker)
• Military, [5], (e.g. Patriot missile, USS Yorktown, Dahran missile)
• FDIV Intel floating point bug, [4]
• Video games, [4], (e.g. Steam script, WoW Zulgurub, Corrupted Blood,

Melee)

32

• Infrastructure, [3], (e.g. Soviet gas pipeline, airline baggage system,
AT&T cell)

• Y2K, [3]
• Aircraft, [3], (e.g. F-35 fighter jet, Korean Air 801, Boeing 787 Dream-

liners)
• Stock exchange, [1]
• Apple imessage, [1]
• Webservers, [1]

Twenty-three students attended the gallery walk class session (one student
did not write a paper). The post-it notes of the 22 papers were collected after
the gallery walk. Of the 22, there was an average of 2.32 post-it notes per paper.
The distribution was 1 with 7, 1 with 6, 1 with 5, 4 with 4, 2 with 3, 5 with 2,
1 with 1, and 7 with 0. Post-its fell into these themes: “this is scary”, questions
about specific bugs, questions about the aftermath, and positive comments
about the quality of the paper. Students chose which topics/stations they
wanted to visit; most papers were read by at least one other student. In future
semesters, the instructor may wish to have students choose papers with no
post-it notes when moving to the second or third station, so that all papers
get some feedback.

Analysis of the students’ reflections show that they took time to read and
comprehend the papers; all 23 reflections had specific information about two
different bugs in the answers to the first question. Responses to questions
2 (changed perspective) and 3 (surprising) were coded into themes [8]. The
themes and frequencies are listed in Table 2; several themes were common
across both questions in terms of impact and how small bugs often are. In a
few cases, a single student response was coded into multiple, distinct themes,
so the total number of themes per question exceeds 23. For example, “It makes
me realize that even the best mess up. All you can do is be sure to take the
extra time to check your work.” was coded into two distinct themes: Even
reputable organizations make mistakes (and) Take time to check work and test
it. As a second example, the response “Quality assurance and testing is so
important because it can not only affect the functionality, it can also damage
the businesses, families/community, and may even cause a generation-wide
hysteria.” was coded into two themes: Take time to check work and test it
(and) Impact, damage and cost of bugs.

The end-of-semester survey was completed by 23 of 26 students. Recall that
the survey included questions about learning outcomes for the entire course.
The course content included the C programming language (⇠4 weeks) and data
structures (linked lists, stacks, queues, trees, graphs, hash tables, sorting, big-
O analysis) (⇠10 weeks). The expensive bug writing assignment and gallery
walk comprised one of many deliverables in the course. Students submitted

33

Table 2: Themes about students’ changed perspectives and what was surprising
(N=23)

34

weekly in-class labs to practice programming data structures, seven homework
assignments (larger programs than labs), three midterm exams, and one final
exam. With multiple assessments in the course, it was somewhat surprising
that the research paper was stated by 14 different students as evidence for one of
the three open-ended questions: identify links between course knowledge and
real world systems (6 students), understand ramification of design decisions
(8 students, 1 repeated for real world systems), and ability to recognize and
explore gaps in knowledge (1 student). The research paper and gallery walk
were a memorable learning activity. Here are some example end-of-semester
survey responses about the expensive bug research paper:

• We did a lot of debugging stuff along with a small research paper, that
exposed us to a lot of real world scenarios about bugs

• We had to research a programming bug that effected (sic) some machine.
Learning about the bug actually gave me insight into what parts of a
digital system are used for what and how software updates are utilized.

• We always discuss real-world applications of concepts such as stacks,
queues, and trees. We wrote a paper identifying and researching a real-
world, costly software bug which was very interesting. Out of all my
classes, data structures is the most applicable to real world situations.

• The bug project allowed us to see the impacts of design decisions (pri-
marily negative, but some positive)

• learning about the cost of computer bugs gave me perspective of the
ramifications of bad designs

• We did a research summary on famous bugs that were either financially
costs (sic) and/or fatal.

5 Discussion, Limitations, and Conclusions

Students remembered the expensive bug paper at the end of the semester, so
it had lasting impact. The assignment was developed to help students see
that most software is complex and debugging is an essential process. Students
learn Java in the introductory programming courses and learn C very quickly
in the Data Structures course. This assignment was a good fit since these
students were familiar with two programming languages and could better un-
derstand bugs related to memory, overflow, and limited storage space. Being
resilient through making mistakes and understanding the ethical responsibility
of software engineers are part of the larger computer science curriculum; this
assignment helps students to see that even the “best” engineers make mistakes
and the importance of integrity and ethical conduct.

The instructor was interested to see how students define “expensive” for
software bugs. Students defined expensive as lost revenue, as lost reputation,

35

as lost lives, and lost or damaged equipment. Hopefully, this helps them think
more broadly about real-world systems, design decisions, financial decisions,
and human safety.

This assignment may be used in any computer science course, since the
learning objectives are not tied to specific course topics. It was heartening to
see that the lessons students learned when researching expensive bugs included
practical advice for themselves: allocating time for testing, importance of good
commenting and communication, and having multiple people reviewing the
same code.

The main limitation of this study is the participant pool – a small number
of students from a single institution. The writing assignment was used in
two semesters, but the data about the gallery walk, reflection, and end-of-
semester survey were collected from just one cohort. Even so, the preliminary
results indicate that students remembered the research paper, learned lessons
from doing research and reading other students’ work, and had some higher-
level conclusions about their professional responsibility regarding safety and for
checking their work. One student’s reflection stated, “Was surprised how many
bugs were found, and all the good details provided. This is cool homework!!
Interesting. So surprised by how expensive a bug is - a simple error can cost that
much.” A student saying a homework assignment is “cool” is a big endorsement
for learning.

The assignment details can be accessed at Engineering Unleashed
(https://engineeringunleashed.com/card/1004) [10]. As more faculty across
multiple institutions use this assignment, they are encouraged to study similar
learning outcomes. The writing assignment can be expanded to focus on expen-
sive engineering failures for more general engineering courses. Students showed
curiosity when doing research and reading other students’ papers. Students
made connections by reflecting on how their perspectives changed. Hopefully,
students’ grew in the computing dispositions of responsibility and profession-
alism.

Acknowledgements

Thanks to Drs. Heather Dillon, Tim Doughty, Joseph Hoffbeck, and Nicole
Ralston for help with preparing the survey, assistance with IRB, reviewing
the assignment, and leading faculty development workshops. This work was
supported by a Kern Entrepreneurial Engineering Network (KEEN) faculty
grant and a Shiley faculty grant at the University of Portland.

36

References

[1] Robert F Dugan Jr and Virginia G Polanski. Writing for computer science: A
taxonomy of writing tasks and general advice. Journal of Computing Sciences
in Colleges, 21(6):191–203, 2006.

[2] Harriet J Fell, Viera K Proulx, and John Casey. Writing across the computer
science curriculum. ACM SIGCSE Bulletin, 28(1):204–209, 1996.

[3] Association for Computing Machinery and IEEE Computer Society.
Computing curricula 2020 (cc2020): Paradigms for global comput-
ing education. https://www.acm.org/binaries/content/assets/education/
curricula-recommendations/cc2020.pdf.

[4] Mark E Hoffman. An updated taxonomy of writing in computer science educa-
tion. The Journal of Computing Sciences in Colleges, page 175, 2011.

[5] David G Kay. Computer scientists can teach writing: an upper division course for
computer science majors. In Proceedings of the twenty-ninth SIGCSE technical
symposium on Computer science education, pages 117–120, 1998.

[6] The Kern Entrepreneurial Engineering Network. The entrepreneurial mindset.
https://engineeringunleashed.com/mindset.

[7] Dean Sanders. Writing activities can improve learning in computer science
courses. Computer Science Education, 2(2):171–181, 1991.

[8] Steve Stemler. An overview of content analysis. Practical assessment, research,
and evaluation, 7(1):17, 2000.

[9] The Teacher Toolkit. Gallery walk. https://www.theteachertoolkit.com/
index.php/tool/gallery-walk.

[10] Engineering Unleashed. Welcome to engineering unleashed. https://
engineeringunleashed.com.

[11] Tammy VanDeGrift. Coupling pair programming and writing: learning about
students’ perceptions and processes. In Proceedings of the 35th SIGCSE technical
symposium on Computer science education, pages 2–6, 2004.

[12] Dee Weikle. Two concrete examples of upper-level writing assignments in an
algorithms course. Journal of Computing Sciences in Colleges, 28(3):14–20, 2013.

[13] Ye Xiong and Yi-Fang Brook Wu. Write-and-learn: promoting meaningful learn-
ing through concept map-based formative feedback on writing assignments. In
Proceedings of the Seventh International Learning Analytics & Knowledge Con-
ference, pages 552–553, 2017.

[14] Justin Zobel. Writing for computer science, volume 8. Springer, 2004.

37

Enhancing Cybersecurity Education and
Workforce Through

Colorado-Washington Security Scholar
Program∗

Yan Bai1, Sang-Yoon Chang2, Ken Lew12, and Simeon Wuthier2

1School of Engineering and Technology
University of Washington Tacoma

Tacoma, WA 98402
2Computer Science Department

University of Colorado Colorado Springs
Colorado Springs, CO 80918

Abstract

Colorado-Washington Security Scholars Program (CWSSP) is a schol-
arship program for training and educating cybersecurity engineering stu-
dents. Hosted in two universities for the students in the cybersecurity de-
gree programs, the cross-campus program emphasizes virtual teamwork
and collaborations in learning cybersecurity and executing the cyberse-
curity projects. This paper explains how the CWSSP program uniquely
enhances the cybersecurity education and workforce development partic-
ularly focusing on the mechanisms to incorporate collaborations for the
student scholars’ training and the outcomes of the collaborations. We
share our experience and insights from delivering the scholarship program
in this paper.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

38

1 Introduction

The CyberCorps (R): Scholarship for Service (SFS) program has a history
dated back to 1998 where a directive was signed stating that the Executive
Branch would need to assess the vulnerabilities of cybersecurity within the
nation’s critical infrastructure and to produce detailed plans in defending and
protecting against future cyber threats. Hence in the year of 2000, SFS was
created with the purpose in mind to further enhance the existing relation-
ship between higher education institutions with different federal agencies to
strengthen the Information Assurance (IA) disciplines as well as other federal
initiatives within IA. Since then, SFS represents the opportunity for scholar-
ship recipients to participate in Federal, State, Local or Tribal Government as
a cybersecurity professional [1].

Started in August 1, 2019, with the same spirit of collaboration to strengthen
the nation’s cybersecurity professionals through SFS, the University of Col-
orado at Colorado Springs (UCCS) and University of Washington Tacoma
(UW Tacoma) proposed a collaborative program called Colorado-Washington
Security Scholars Program (CWSSP). The collaboration between the two uni-
versities stemmed from a grant awarded by the National Science Foundation
under the CyberCorps (R): Scholarship for Service (SFS) program to establish
the CWSSP program. Throughout this paper, we would explore the events
and activities that took place between two campuses as well as some key data
and outcome from CWSSP collaboration [6, 5].

2 Collaboration in research projects

With SFS fund support, UCCS and UW Tacoma have collaborated in cyberse-
curity research through a virtual team course, CWSSP conferences, and online
collaborative platforms.

Virtual Teams Course - CWSSP emphasizes teamwork building on the
cross-campus program being hosted across two geographically distant univer-
sities in Colorado and Washington states. To promote and facilitate virtual
teamwork, CWSSP includes a Virtual Teams Course which teaches the par-
ticipating student scholars the knowledge and techniques to improve on their
virtual teams and collaboration skills and practice. The Virtual Teams Course
is a hybrid course where the course kicks off from an in-person setting and is
followed by the virtual/remote classes for the rest. A professor in communica-
tions delivers this unique course and designed it based on the state-of-the-art
research in communications in social science, including the application of the
transactive memory systems theory for a course assignment [9].

CWSSP Conferences (Student Presentations) - CWSSP Conference

39

is held once a year in one of the university campuses. The main purpose of
this conference is to give scholars a platform to present and share their research
with fellow scholars as well as other experts within the two campuses to further
research collaborations between the two universities.

Below are a few examples of our collaboration projects:
Interdisciplinary Research - We initiated a large interdisciplinary re-

search project among two institutions, UCCS and UW Tacoma in blockchain
and supply chain. Our team consists of 15 members with various academic
backgrounds including computer science, information systems, mathematics,
business, and economics. Part of preliminary results from our SFS student
members were presented at the 24th University of Washington Annual Under-
graduate Research Symposium.

Blockchain Network Simulator to Enable and Facilitate Research

– CWSSP program research resulted in a proof-of-work (PoW) blockchain net-
work simulator [8] which has built-in random number generators (including
that based on hash computations as used in real-world PoW blockchains). It
can control the networking and consensus parameters for simulating different
blockchain setups and environments, generate and log simulator-experimental
data. The simulator reflects a UCCS scholars’ understandings and experience
working on an active Bitcoin node using the Bitcoin Core source code. When
another UW Tacoma student scholar visited UCCS, the UCCS scholar provided
a demo for the simulator to facilitate the simulator use for research. The sim-
ulator has been further discussed in virtual remote meetings to other scholars
interested in blockchain research. We are actively distributing the simulator
via open-source in Github so that it enables and facilitates others conducting
research in blockchain networking security; the UCCS student leading the sim-
ulator development is in active communications with others interested in using
the simulator for their own research, including a student working on his Thesis
Dissertation outside of the US.

Blockchain Research Projects - Thanks to the CWSSP workshops,
conferences, and offline meetings, there have been numerous opportunities to
exchange research ideas and collaborate on research projects. As a result,
CWSSP scholars and faculty have been productive with their research out-
comes [9, 8, 4, 7, 2], by collaborating on and developing the necessary building
blocks to assist in research directions. Highlighting such research outcomes in-
clude the aforementioned proof-of-work blockchain network simulator [8] and
the following:

• Machine-learning-based anomaly detection on Bitcoin network-

ing : A CWSSP scholar implemented an active Bitcoin node on the Main-
net and built a networking sensor to collect the networking data. Based
on such data, we built a machine-learning-based anomaly detection [4]

40

against the networking threats including those from the state-of-the-art
research such as Eclipse attack [3] and denial-of-service (DoS).

• The discovery of denial-of-service vulnerabilities within the Bit-

coin Core consensus protocol : We discovered that the ban-score
mechanism used in Bitcoin Core can provide vulnerabilities for DoS on
blockchain via defamation, resulting in a node banning another legit-
imate node connection [2]. Such vulnerability has been disclosed and
communicated to the Bitcoin Core developer team.

3 Constructing the Master’s-to-PhD pipeline to generate
the cybersecurity leaders with PhD degrees to secure
the national cyberspace.

In addition to research collaborations, CWSSP also provides cybersecurity
workforce training by educating cybersecurity leaders with PhD degrees. UW
Tacoma and UCCS established an articulation agreement in 2017 to facilitate
admission and degree completion of students earning Master of Cybersecu-
rity & Leadership (MCL) degree at UW Tacoma to the PhD in Engineering-
Concentration in Security degree program at UCCS. Per the agreement, all
students that graduate from UW Tacoma MCL degree program with a 3.3 GPA
or higher will be admitted directly into the PhD in Engineering-Concentration
in Security degree program at UCCS, so long as they otherwise meet the UCCS
requirements for admission. Additionally, 21 semester credit hours will trans-
fer to with approval of UCCS Computer Science Department PhD in Security
committee. This agreement has proven beneficial to both institutions. Seven
MCL alumnus are pursuing PhD in Security at UCCS.

Apart from the seven MCL graduates that are pursuing the PhD program at
UCCS, this year would be the first year where our MCL graduate student who
is also a SFS scholar is entering the PhD program at UCCS in 2021 Fall. This
MCL graduate student has participated in various research projects within the
University of Washington system as well as collaborating with faculty and other
PhD students at UCCS in research projects. With a program like CWSSP, that
particular graduate student benefited from the tight relationship between the
two campuses and was able to build a strong foundation in collaboration and in
establishing research direction even before MCL graduation and into the PhD
program. In other words, CWSSP is a platform for SFS scholars to network
and work on research topics with other faculties and professionals in the area
of cybersecurity. This enhances the overall experience of SFS scholars within
CWSSP regardless if their next pathway would be joining the workforce or if
they would continue on their education path within cybersecurity.

41

4 Project Outcomes

CWSSP was launched in Fall 2019 and is ongoing. This section describes
the project outcomes in the first two years of the program since its launch. In
these two years, CWSSP recruited and supported one PhD scholar, six master’s
scholars, and six bachelor student scholars.

Employment data - CWSSP is a part of the CyberCorps Scholarship for
Service (SFS) program where the scholars are required to fulfill the service re-
quirements to work in the US government after graduation. CWSSP provided a
total of 9 scholar graduates and those graduates began their security-clearance-
required employment at the US government, including Department of Defense
(DoD), Department of State (DoS), National Renewable Energy Laboratory
(NREL), Pacific Northwest National Laboratory, Washington State Govern-
ment and National Security Agency (NSA).

Diversity - CWSSP prioritizes diversity and inclusion for the scholar se-
lections. The students supported in the past two years include three female
students, one Hispanic student, one African American student, and two South-
east Asian students.

Outreach - CWSSP is designed for outreach and specifically has the CWSSP
Conference to outreach and network beyond the CWSSP and the participating
departments. Our CWSSP Conferences in 2020 and 2021 included cyberse-
curity experts’ presentations from the academic, government, and industry
sectors. The scholars also attend the yearly nationwide SFS Career Fair events
to represent CWSSP and network with the cybersecurity experts and potential
employers beyond CWSSP.

Testimony - CWSSP has a systematic evaluation plan to solicit and re-
ceive feedback from the scholars to improve the program every year. The
evaluations include semesterly surveys and individual communications between
the scholar and the faculty. The student responses have been overall positive
about the program and demonstrates that the CWSSP program improves the
student’s aptitude in cybersecurity research/project and virtual teamwork. Ex-
ample qualitative responses about the overall program quality and usefulness
include: “It [the CWSSP program] is potentially life changing and people need
to know about the opportunity” and “This program has provided me a great
opportunity to achieve more than just an education” and “It met and exceeded
expectations.” Other feedback/responses helped improve the CWSSP events
and components, for example, “I think a research discussion session would be
a nice touch, since everyone’s research is similar, everyone would have things
to contribute” and “[...] I enjoyed being involved in events as a group where I
could interact with others.”

42

5 Lessons learned

From Faculty - CWSSP is a unique CyberCorps SFS program enhancing the
host institutions’ degree programs by focusing on cybersecurity research/pro-
jects and virtual teamwork/collaborations. Having these focuses anchor the
design and the execution of CWSSP components and mechanisms provided
a unifying theme and goal. Sharing these visions and the success cases also
helped engage the student scholars.

From Students - Additionally, the program has been beneficial to the
participants through the hands-on research projects and collaboration across
campuses. In fact, the two student authors of this paper have utilized many
CWSSP opportunities for networking and gaining real-world experience. By
driving the research across many projects, and learning effective collaboration
skills, this has been a valuable learning experience not only for the educa-
tion provided by the program, but from the interactions with potential future
employers, and experts in the cybersecurity field.

6 Conclusions

The CWSSP collaboration is unique and it shows the creativity of the col-
laboration through various events and projects while all communication was
through a virtual environment. According to our project outcomes, not only
does CWSSP enhance the cybersecurity education between the two campuses,
but the program also better helps and prepares its scholars for the cyberse-
curity workforce within government agencies. More importantly, it broadens
the perspective of all its scholars with multidisciplinary research and increases
their professional network by connecting with other professionals outside of
their own campus.

7 Acknowledgements

The research was in part supported by the National Science Foundation (NSF)
Grants 1921576 and 19922410.

43

References

[1] CyberCorps. Cybercorps: Scholarship for service. https://www.sfs.opm.
gov.

[2] Wenjun Fan, Hsiang-Jen Hong, Simeon Wuthier, Xiaobo Zhou, Yan Bai,
and Sang-Yoon Chang. Security analyses of misbehavior tracking in bit-
coin network. In 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), pages 1–3. IEEE, 2021.

[3] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse
attacks on bitcoin’s peer-to-peer network. In 24th {USENIX} Security Sym-
posium ({USENIX} Security 15), pages 129–144, 2015.

[4] Jinoh Kim, Makiya Nakashima, Wenjun Fan, Simeon Wuthier, Xiaobo
Zhou, Ikkyun Kim, and Sang-Yoon Chang. Anomaly detection based on
traffic monitoring for secure blockchain networking. In 2021 IEEE Interna-
tional Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9.
IEEE, 2021.

[5] UW Tacoma. Cybercorps scholarships to expand cybersecurity
education. https://www.tacoma.uw.edu/news/article/cybercorps-
scholarships-expand-cybersecurity-education.

[6] Colorado Springs University of Colorado. Colorado-washington security
scholars program. https://cwssp.uccs.edu.

[7] Li-e Wang, Shan Lin, Yan Bai, Sang-Yoon Chang, Xianxian Li, and Peng
Liu. A privacy preserving method for publishing set-valued data and its cor-
relative social network. In ICC 2020-2020 IEEE International Conference
on Communications (ICC), pages 1–7. IEEE, 2020.

[8] Simeon Wuthier and Sang-Yoon Chang. Proof-of-work network simulator
for blockchain and cryptocurrency research. In ICDCS 2021 - 41st IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS). IEEE,
2021.

[9] Kay Yoon and Sang-Yoon Chang. Teaching team collaboration in cyberse-
curity: A case study from the transactive memory systems perspective. In
2021 IEEE Global Engineering Education Conference (EDUCON), pages
841–845. IEEE, 2021.

44

Is Programming Relevant to CS1
Students’ Interests?∗

Kevin Buffardi and Subhed Chavan
Computer Science Department

California State University, Chico
Chico, CA 95929-0410

kbuffardi@csuchico.edu, sachavan@mail.csuchico.edu

Abstract

By surveying students (n=198) at the beginning of an introductory
programming (CS1) course, we polled students’ hobbies and interests and
investigated which they considered relevant to Computer Science (CS)
or coding. Analysis of student responses used Grounded Theory and
revealed that the most popular interests were games, athletics, music/-
film/audio/visuals, STEM, and nature/outdoors. Of those most popular
interests, students only widely perceived games and STEM as hobbies
that could be relevant. Hypothesis testing using chi-square goodness of
fit revealed that gender minorities were disproportionately less likely to
be interested in games and STEM than their male counterparts. How-
ever, no disparities in interests were found for racial minorities.

1 Introduction

Relating course materials to students’ interests may promote motivation and
engagement, which is essential in improving learning as well as retention in
the major. Meanwhile, Computer Science (CS) course enrollments have dis-
proportionately represented male White and Asian students so there are on-
going efforts to broaden participation, especially to improve gender and racial
representation. To promote engagement in introductory programming (CS1)

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

45

courses, educators have adopted different themes and applications such as in-
corporating robots, games, or media computation. However, to best suit CS1
courses for improved student motivation, we first must understand students’
interests.

In an exploratory study, we investigated students’ hobbies and interests as
they began CS1. To gauge whether or not students’ considered coding and
CS as a discipline relevant to their interests, we identified a primary research
question: RQ1. What popular interests do students perceive as rele-
vant to CS/coding? Conversely, we also set out to discover RQ2. What
popular interests do students perceive as not relevant to CS/coding?

Since CS1 classes are often predominantly male and White or Asian, we
did not want the interests to only represent those backgrounds. Accordingly,
we investigated RQ3. Are there differences in how interested different
genders and races are in common CS1 applications?. Finally, with a
motivation for broadening participation in CS, we explored RQ4. Are there
interests that uniquely appeal to gender and racial minorities? With
these four research questions in mind, our study examined: is programming
relevant to CS1 students’ interests?

2 Background

Constructivism [7] is a theory of cognitive development that describes learn-
ing new knowledge by integrating it with preexisting knowledge. Relating new
information to what students already know should help them construct new
skills and understandings. Additionally, students who feel motivated also tend
to demonstrate more engagement, longer persistence, and better learning out-
comes [8]. In an effort to motivate students in CS1 courses, educators have
explored different approaches to introduce the discipline in a fun and relevant
manner.

Developing games in programming classes is a popular application that has
yielded improved student engagement [5]. Another common approach is to
apply introductory coding skills to operate robots [9] or even digital represen-
tations, such as Karel the Robot [1]. Alternatively, Media Computation [2]
courses leverage coding to manipulate digital representations of sound, images,
movies, and even produce music [3]. While studies of each of these applications
have found positive outcomes, there is an open question whether they have a
neutral, positive, or negative affect on diversity in CS.

For decades, CS has lacked diversity. The problem has been so persistent
that the National Academies of Sciences, Engineering, and Medicine has called
for innovating practices to drive interest in CS [6]. In addition, the National
Center for Women & Information Technology’s framework for engaging women

46

in CS encourages making course content matter to students with practices
including “Use Meaningful and Relevant Content” and “Make Interdisciplinary
Connections to CS”. Accordingly, this paper explores differences in interests
between gender and racial minorities and how they relate to CS.

3 Method

During the first week of Fall 2020 and Spring 2021 semesters at California State
University-Chico (Chico State), CS1 students completed a survey (n=198) on
their identities and interests. The survey included the following items (with
form entry methods specified):

• What is your major? (Free response)

• Gender (Select one from: Female, Male, Non-binary, Prefer not to say,
or Other [with free response])

• Race (select all that apply) (American Indian or Alaska Native, Asian,
Black or African American, Hispanic or Latin American, Native Hawai-
ian and Pacific Islander, White, or Other [with free response])

• What are your hobbies and interests? (separate by commas) (Free re-
sponse);

• Of those hobbies and interests, which do you believe can be relevant to
Computer Science or programming? (Free response).

The online survey did not require items to be answered, but most students
responded to every item.

The CS1 course at Chico State serves as the first in a three-course sequence
focused on programming and algorithms, all taught in C++. Both Computer
Science and Computer Information Systems majors require the three-course se-
quence while students from several other disciplines take CS1 to fulfill electives
in their respective majors or for general education. Consequently, we coded
Computer Science and Computer Information Systems as Majors and all other
responses as Non-Majors.

Students’ self-reported gender included 154 Male (78%), 41 Female (21%),
1 Non-binary, 1 Prefer not to say, and 1 no response (<1% each). Since en-
rollment has been predominantly male in recent decades, we coded males as
Gender Majority, Female and Non-binary as Gender Minority, and excluded
Prefer not to say (and omissions) for analysis on gender.

Similarly, recent enrollment has also skewed White and Asian so those re-
sponses were coded as Racial Majority and all others were coded as Racial

47

Minority. Students who selected multiple races were only counted as Racial
Majority when White and Asian were the only selections. When one or more
of any other race was selected, we coded the mixed identity as Racial Minority.
Student responses indicated 119 Racial Majority (60%) and 77 Racial Minor-
ity (39%) students; two students omitted a response and were excluded from
analysis on race. Chico State is an official Hispanic Serving Institution, lending
to higher representation in CS1 courses than national averages. However, His-
panic student enrollment in CS1 is still not proportionate to the University’s
demographics.

We manually reviewed students’ responses that indicated their interests
and which of those interests could be relevant to Computer Science or coding.
Using Grounded Theory [4], we coded responses into fifteen common categories
of interests: games; reading; arts and crafts; music, film, and audio/video;
athletics; Science, Technology, Engineering, and Math (STEM); other academic
disciplines (non-STEM); socializing; sleep and relaxation; animals; culinary;
fashion and cosmetics; nature and outdoors; travel; and automotive.

We also inspected students’ responses about which of their interests were
relevant and coded each of their interests as either Relevant or Not Relevant.
Table 1 summarizes students’ interests and their perceptions of whether or not
those interests can be relevant to Computer Science or coding.

Table 1: Students’ Interests and Perceived Relevance

Interest Relevant Not Relevant % Relevant
STEM 60 1 98%
Games 99 20 83%
Other Academic Disciplines 14 6 70%
Automotive 10 10 50%
Fashion and Cosmetics 2 3 40%
Arts and Crafts 14 23 38%
Reading 9 21 30%
Music, Film, and Audio/Visual 20 48 29%
Sleep and Relaxing 2 5 29%
Socializing 4 22 15%
Athletics 13 94 12%
Nature and Outdoors 6 43 12%
Culinary 1 13 7%
Travel 0 8 0%
Animals 0 3 0%

48

4 Results

The most popular categories for students’ interests were: games (n=119, 60%,
such as playing video or tabletop games); athletics (n=107, 54% such as team
sports or exercising); music, film, and audio/visuals (n=68, 34%, such as play-
ing musical instruments or watching movies); STEM (n=61, 31%, such as
tinkering with electronics or learning about science); and nature and outdoors
(n=49, 25%, such as hiking, camping, and gardening). Fewer than a quarter
of the students identified each of the other interests.

Most students perceived their interests in games (83%) and STEM (98%)
as relevant to CS. However, the other most popular interests were mostly per-
ceived as not relevant. Only 12% of students interested in athletics perceived
it as relevant. Music, film, and audio/visual were only perceived as relevant
to 29% of students with those interests while only 12% of students who enjoy
nature and outdoors considered their interest relevant.

To answer RQ1, games and STEM are popular interests that stu-
dents perceive as relevant to CS. It is fairly common to find CS courses
that integrate coding with these applications, as we discussed in the Back-
ground section. In investigating RQ2, we found that interests in athlet-
ics; music, film, and audio/visuals; and nature and the outdoors were
popular but considered not relevant to CS. Media Computation courses
may reinforce relevance to students’ interests in music, film, and audio/visu-
als. However, there may be untapped potential in incorporating applications
of athletics or nature and the outdoors in coding courses.

We also investigated whether there are differences in interests between
White and Asian males who account for the majority of CS majors and histori-
cally underrepresented groups. Table 2 summarizes the percentage of students
with each interest, as dissected by gender and racial majority/minority.

To investigate common applications in CS1 courses, we examined the in-
terests: games; STEM; and music/film/audio/visual. To determine whether
interest was proportionate to gender and race representation within the courses,
we performed chi-square goodness of fit tests. Goodness of fit tests whether
the observed proportions of majority and minority students match the ex-
pected proportions, given the class demographics (summarized in the Methods
section).

When investigating interest in games, we found that most of students in
the gender majority (n=104, 68%) expressed interest, while most of the gen-
der minority (n=15, 36%) did not. Interest was disproportionate (�2=5.50,
df=1, p<.05) with statistical significance. However, interest was proportion-
ate (�2=0.50, df=1, p=.48) between racial majority (n=76, 64%) and minor-
ity (n=43, 56%), due to a lack of statistical significance. Games garnered
disproportionate interest from male students at the sake of gender

49

Table 2: Students’ Interests by Demographic

Interest Gender Race
Majority Minority Majority Minority Major Non-Major

Games 68% 36% 64% 56% 67% 56%
Reading 12% 29% 14% 17% 15% 15%

Arts/Crafts 14% 36% 18% 21% 14% 22%
Music/Film 33% 38% 31% 39% 36% 34%

Athletics 56% 48% 57% 51% 55% 54%
STEM 36% 14% 35% 25% 29% 32%

Other Disc. 8% 17% 11% 9% 8% 12%
Socializing 12% 19% 12% 16% 12% 14%

Sleep/Relax 3% 5% 2% 6% 3% 4%
Animals 1% 5% 2% 1% 1% 2%
Culinary 3% 21% 5% 10% 6% 8%

Fashion/Cos. 1% 7% 3% 3% 3% 3%
Nature/Out. 25% 24% 29% 18% 22% 27%

Travel 5% 2% 4% 4% 3% 5%
Automotive 12% 2% 10% 9% 8% 12%

minorities, but interest in games was proportionate between racial
groups.

We compared STEM interests and found that gender majority students
(n=55, 36%) were disproportionately more likely to be interested (�2=4.87,
df=1, p<.05) than gender minority students (n=6, 14%). Interest was approx-
imately proportionate (�2=1.69, df=1, p=.19) between racial majority (n=42,
35%) and minority (n=19, 25%) students. Similarly to games, male students
reported disproportionately higher interest in STEM hobbies than
gender minorities, but there was no significant variation in interest
between racial majority and minority students.

We also compared interest in music, film, and audio/visuals. The chi-square
goodness of fit indicated no significant variation from proportionate interest
between gender majority (n=51, 33%) and minority (n=16, 38%) (�2=0.24,
df=1, p=.62) nor between racial majority (n=37, 31%) and minority (n=30,
39%) students (�2=0.85, df=1, p=.36). As a result, our investigation of RQ3
indicated that gender minorities have disproportionately less interest
in both games and STEM hobbies, while there were no significant
differences between racial majority and minority students. Interests
in Music, film, and audio/visual were proportionate for both racial
and gender minorities.

Finally, for RQ4 we inspected gender and racial minorities’ interests. Ath-

50

letics was the most popular interest among gender minorities. While gender
minorities did not express as much interest in games as male students, they
did express more interest in music/film/audio/visual and were more interested
in arts/crafts than their male counterparts. Racial minorities also expressed
proportionate interest in athletics, music/film/audio/visual, and arts/crafts. It
may also be noteworthy that both gender and racial minorities indicated more
interest than their majority counterparts in several other categories including:
reading, socializing, culinary, and sleeping/relaxing.

5 Discussion and Conclusions

In this study, we investigated students’ interests and whether they thought
those personal interests could be relevant to Computer Science (CS) or coding.
A survey of CS1 students (n=198) indicated that games and STEM hobbies
were popular and widely considered relevant to CS. However, athletics, mu-
sic/film/audio/visual, nature/outdoors, and arts/crafts were popular interests
that most students perceived as not relevant to CS or coding. To broaden CS’
appeal to students with different interests, CS1 courses (and any preceding CS
curricula) may incorporate applications to these areas.

The question of whether or not any hobby can be related to CS/coding
may even draw differences of opinions between CS academics and professionals.
However, with a focus on discovering engaging course material that appeals to
students’ interests, any hobby that can incorporate data and an algorithm
to process it has potential to motivate students. Novel applications that are
relevant to students’ interests, but not often represented in CS courses, may
broaden participation and promote engagement.

Many CS1 courses adopt game or robot applications for coding, but our
study found that gender minorities are disproportionately less interested in
those hobbies than male counterparts. However, we found no such disparity
between music/film/audio/visual hobbies based on either race or gender. We
also discovered popular interests that are usually untapped in CS1, includ-
ing athletics, nature/outdoors, and arts/crafts. Curricula that concentrate on
game and STEM applications of coding may be harmful to gender minori-
ties in the absence of options to apply coding to other interests. Curricular
and course development should consider these findings in an effort to broaden
participation in CS.

Nevertheless, future work is necessary to address limitations and build upon
this study. Firstly, the study was conducted at a Hispanic Serving Institution
so similar phenomena might be found at similar institutions with comparable
demographics. However, research into students’ interests and perceptions of
CS should replicate this study in different settings. Additionally, students

51

surveyed were all enrolled in a CS1 course so our findings may be impacted by
selection bias; future work should also investigate interests and perceptions of
those students who have not (yet) enrolled in any CS courses.

Pairing this study’s survey with a corresponding post-semester survey could
reveal whether or not CS1 course interventions have an impact on students’
perceptions. Moreover, students have many characteristics that shape their
identities and interests. This study should only be interpreted as a preliminary
investigation to discovering opportunities to broaden the appeal of CS, not to
diminish students to individual characteristics. Future work should also in-
vestigate how intersections of identity and background may influence students’
interest and perceptions in CS.

6 Acknowledgements

The authors of this paper are grateful for the instructors who incorporated the
surveys into their courses, which was essential for this work.

This material is based upon work supported by the Learning Lab, an initia-
tive of California Governor’s Office of Planning and Research. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Learning
Lab.

52

References

[1] Byron Weber Becker. Teaching cs1 with karel the robot in java. SIGCSE
Bull., 33(1):50–54, February 2001.

[2] Mark Guzdial. A media computation course for non-majors. SIGCSE Bull.,
35(3):104–108, June 2003.

[3] Brian Magerko, Jason Freeman, Tom Mcklin, Mike Reilly, Elise Livingston,
Scott Mccoid, and Andrea Crews-Brown. Earsketch: A steam-based ap-
proach for underrepresented populations in high school computer science
education. ACM Trans. Comput. Educ., 16(4), September 2016.

[4] Patricia Yancey Martin and Barry A. Turner. Grounded theory and orga-
nizational research. The Journal of Applied Behavioral Science, 22(2):141–
157, 1986.

[5] Briana B. Morrison and Jon A. Preston. Engagement: Gaming throughout
the curriculum. In Proceedings of the 40th ACM Technical Symposium on
Computer Science Education, SIGCSE ’09, page 342–346, New York, NY,
USA, 2009. Association for Computing Machinery.

[6] Engineering National Academies of Sciences and Medicine. Cultivating In-
terest and Competencies in Computing: Authentic Experiences and Design
Factors. The National Academies Press, Washington, DC, 2021.

[7] Jean Piaget. A history of psychology in autobiography. 4:237–256, 1952.

[8] P.R. Pintrich. A motivational science perspective on the role of student
motivation in learning and teaching contexts. Journal of Educational Psy-
chology, 95(4):667–686, 2003.

[9] Jay Summet, Deepak Kumar, Keith O’Hara, Daniel Walker, Lijun Ni, Doug
Blank, and Tucker Balch. Personalizing cs1 with robots. In Proceedings
of the 40th ACM Technical Symposium on Computer Science Education,
SIGCSE ’09, page 433–437, New York, NY, USA, 2009. Association for
Computing Machinery.

53

Cybersecurity Virtual Labs Open-Source
Teaching Initiative: Creating an

Entrepreneurial Mindset – Curiosity,
Connections & Creating Value (3Cs)∗

Radana Dvorak1 and John L. Whiteman2

1City University of Seattle
Seattle, WA 98121
dvorakradana@CityU.edu

2Intel
bulepdx@gmail.com

Abstract

Cybersecurity classes continue to present challenging problems to
computer science departments. IT departments often don’t have the
resources to set up specialized labs to support the curriculum and pur-
chasing third-party cyber labs are not an option for many departments
due to reduced budgets. Setting up environments is often left to the in-
structor. Instructors having to create labs is a problematic option since
it is a very time-consuming. COVID-19 has recently compounded this
problem due to universities having to close-down labs.

We discuss delivering a cybersecurity curriculum designed based on a
framework that introduces a topic, followed by publicized case study and
then real-life hands-on practice lab using current industry applications.
The modules are designed to help students develop entrepreneurial mind-
set [13, 7, 8] based on the three C’s (Curiosity, Connections and Creating
Value for society). The framework is part of an open source project ini-
tiative that allows universities, students, and others to contribute their
lab work to a public repository hosted by an entity like GitHub. We be-
lieve the success of this project has great potential for community colleges
and universities.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

54

1 Introduction

This paper reports two years of teaching a cybersecurity curricula using the
Keen framework with the goals of engaging and exciting students about the
cybersecurity field to address the job shortage, and also address the challeng-
ing problems computer science departments undergo to prepare and set up
specialized labs to support the cybersecurity curriculum.

Opportunities for engineering student to develop an entrepreneurial mindset
has been given attention in the last 5 years [13, 7, 8]. The teaching model pre-
sented is motivated by the Kern Entrepreneurial Engineering Network frame-
work (KEEN) which has three key elements [13]:

• Curiosity -Understanding and engaging on a topical issue to “understand
the broader world, look toward the future and explore multiple perspec-
tives.”

• Connections – connecting the issue and solutions to the real world. “Think
outside the box; place old ideas in the new context and gain insights"

• Creating Value – the lab environment teaching students to think through
the problem, identify new solutions to “seek opportunity, understand the
stakeholders and have impact.”

The paper first reports the success of delivering a cybersecurity curriculum
designed based on a framework consisting of introducing a topic, a case study,
followed by real-life application practice lab. We also describe the platform
developed to support the framework. These labs were deployed outside the
university IT infrastructure and successfully supported hands-on-practice, and
practical experience industry expects of graduates [5].

In teaching cybersecurity classes for the last two years, we found that stu-
dents learn best by doing hands-on exercises immediately after a security con-
cept is introduced in the lecture. The more traditional lecture followed by a
different day for labs, often with only TAs present, has shown to be less ef-
fective. Furthermore, the authors found that the more realistic the scenarios,
the more students became curious and engaged. This interest the topics and
experiences generated connections with internships, attending cybersecurity
talks and led to a significant number of students making decisions to pursue
cybersecurity internships, apply for cybersecurity jobs or apply to Master’s
programs in cybersecurity. This initiative continues to be work in progress
as we are expanding and updating the labs. The outcomes reported are only
from University wide end of semester course evaluations; these evaluations are
standardized across all courses. Empirical research to evaluate the outcomes
was not carried out. This work will be carried out in the second phase of this
work.

55

The realistic scenarios also provided students with the confidence to dis-
cuss real-life cases and demonstrate their knowledge and practical know-how
in technical interviews when applying for internships and jobs. Documented
complaints from the industry report that students have the ’theoretical’ knowl-
edge and can talk about how to approach the problem; however, when it came
to actual demonstration of their skills, they were not competent and gener-
ally lacked hands-on experience. Computer Science departments, world-wide,
have not prepared students to meet the demands of industry. In August 2018,
the Forbes Technical Council published an article, "The Cybersecurity Talent
Gap Is An Industry Crisis", stating 3.5 M jobs world-wide will not be filled
by 2021 [10]. A recent workforce study published in 2019 by (ISC)2 [12], the
world’s largest non-profit association that certifies cybersecurity professionals,
reported that in order to meet the needs of cybersecurity workforce globally,
skilled cybersecurity professionals needs to grow by 145% to meet the demand.
The report further stated that in order to meet the crucial needs of American
businesses, the US cybersecurity workforce needs to grow by 62%!

The lack of students’ practical experience often stems from difficulties uni-
versity departments have setting up environments, restricting students to prac-
tice skills such as pentesting1, sniffing networks2, or analyzing malware3- skills
that are covered in cybersecurity courses.

We outline the solution to developing practical virtual labs based on real-
world cybersecurity scenarios students will encounter at workplace and how it
aligns with the 3C’s framework and conclude by proposing interested parties,
students, and faculty contribute to developing and adding cybersecurity lab
activities to an open source collaborative infrastructure platform.

2 Curiosity: Understanding the issues, explore multiple
perspectives and look to the future

Three cybersecurity classes were delivered in a classroom/lab setting before
COVID-19 restrictions. One course was held in Spring 2020, half in the class-
room, and the remainder online because the University closed in-person classes.
In Fall 2020, the course was delivered entirely online. Having the infrastructure
set up before the University classes were entirely online made the transition
seamless for students and the instructor compared to what other engineering
courses experienced.

1Pentesting (penetration testing), also referred to as ethical hacking is an ‘authorized’
cyberattack. Can be simulated or real-life. Pentesters are hired to find security vulnerabilities
in systems.

2Network sniffing, also known as packet sniffing (or sniffers) are snapshot copies of data
flowing over a network without altering it or redirecting it.

3Malware is software designed to damage, disrupt or gain access to a computer system.

56

Lectures were designed around specific topics, taking to more than 20-30
minutes each. A short discussion followed. The labs were created based on
highly publicized security incidents, like data breaches. After the breaches
were introduced, students discussed the incidents and shared their thoughts on
the ethics of the organizations’ actions and / or legal outcomes. Initial work
started on introducing ethical components to cybersecurity modules in 2019
[4].

3 Connections: Thinking outside the box; gain insight;
pursue knowledge and integrate it with students’ own
discoveries

The lab sections followed right after the discussion. The first lab is designed
to teach students how to set up their own laptop environments. Although
students worked individually, they were able to chat and share in an online
public forum. We stressed the importance of figuring out the problem by
themselves. If students requested help, instructors would first quiz the students
on what was tried and guide them to discover the solution.

Here are several examples of the typical problem-solving scenario given to
the students where each lab created simulation of a real-world cybersecurity
event:

• Extracted and analyzed malware from a binary image using open source
forensic tools. It was the infamous WannaCry ransomware that affected
over 200,000 computers in 2017.

• Found a famous fugitive, John McAfee, by extracting coordinates from
pictures taken of him while on the lam in Central America [11].

• Created an encryption and decryption C program for one assignment and
have it continuously bombarded with garbage data to see if any security
vulnerabilities exist. If so, students learn how to write more secure code
to fix the problems.

• Ran a capture-the-flag event that simulated a vulnerable website that
sold juice.

• Students participated in the National Cyber League (NCL) competition
during the term. This competition is only for college students. Over
4,700 students participated.

57

4 Creating Value: Virtual Lab Infrastructure: As educa-
tors, we must train students to persistently anticipate
and meet the needs of a changing world

Creating virtual labs for cybersecurity classes has been given attention in the
last few years, and ASEE has published papers on the topic [9, 1, 16, 4].
Some universities create their labs while others use the NSF-funded SEED
Labs Project [3, 2]. The drawbacks of instructors creating labs are addressed
above. Relying on graduate students is hit or miss, often not sustainable
due to graduate students’ priorities to graduate, not to mention, no one to
support what was initially developed. The solution to the ongoing challenges
CS departments experience, is to use a virtual lab framework as designed and
developed for our courses. We propose to share what we have started to develop
and launch an open source initiative for the academic community.

5 Class Offering

The same course was offered over a two year period, and as the labs were
continued to be added on to, we optimized the delivery for the students.

5.1 First Class Offering

Dedicated lab space on campus was not planned since the course was starting
from scratch. Although the curriculum was prepared in advance and presented
as such in the syllabus, the actual lab content was still in active development
throughout entire course. Using a cloud-based hosting environment for the labs
was initially considered, but the costs were not factored in on time as student
fees. Initial budget estimates seemed high too. A localize lab environment
needed to be created. Every student had a laptop, but their operating systems
(OS) were not the same. Some students used macOS, others used Windows,
and a small number of students preferred to work in a Linux environment.
For those students who used the same OS, many ran different versions which
caused installation issues due to compatibility issues with software. We had
to standardize the lab environment starting with the OS. One way to accom-
plished this was to use virtualization technology. Students installed a special
software application called a hypervisor on their OS. A hypervisor runs a vir-
tual machine (VM). Think of a VM as a software application that when started
acts like a fully functional computer running inside the host OS. Multiple VMs
can run at the same time as long as the host system has enough processing
and memory resources to handle it. Each VM has its own configurable CPU,
memory, networking and disk space. Students did not have to purchase addi-

58

tional hardware and many hypervisor programs are free. We took advantage
of this technology to install a common OS to host the lab environment. As
long as students installed a compatible hypervisor, they could run the same
VM regardless of what host OS they used. Applications ran consistently and
troubleshooting issues became easier. Figure 1 shows a simplified virtualization
configuration on a computer.

Figure 1: Virtualization

During the first week of class, we asked students to install the hypervisor
software on their laptops. We assigned this exercise as Lab 0. We also had them
create three VMs that were needed to support the future labs. Students learned
the basics of virtualization during the lab. We also took the opportunity to
teach them basic virtualization security. For example, we explained why some
types of network connections are less secure than others. We also had students
prepare special cryptographic keys that were later used to digitally sign their
homework to prevent cheating. Students learned the mathematical behind
these keys later during the cryptography sections of the class, thus giving them
a real-world example of how they can be applied.

Students experienced difficulty with this lab because they were not accus-
tomed to working exclusively in a command line environment. Most only used
graphical user interface-based operating systems like macOS and Windows.
The university offered a Unix Tools Laboratory course that students were ex-
pected to take as a prerequisite. Many challenges students faced during the
lab are the same ones faced in real-world security jobs. To solve these issues,
students learned to collaborate and communicate with others as the KEEN
framework shows. To create a VM, students start by installing an OS. We
used Metasploitable, Kali Linux and Ubuntu. Figure 2 shows how the hyper-
visor can manage multiple VMs on the same host.

Once the OSes were installed, students were asked to download files that

59

Figure 2: Multiple virtual machines

contained our lab materials from a public source code repository hosted on
GitHub. The hosting is free. We provided helper scripts to automate the
setup process for each VM. Figure 3 shows our first VM framework, including
the applications, tools and samples that we used for our labs and class activities
along with the network connections between the VMs and GitHub.

Figure 3: Our first offering

The entire process to setup took less than an hour to complete with most
time spent on waiting for the programs to download and install. The class did
not need to rely on IT department support. Another advantage of using VMs

60

is isolation from the host OS and institution’s network. For example, one of
our labs involved reverse engineering a famous malicious computer worm called
Stuxnet. It can only be executed on the Windows operating systems. All of
our VMs are Linux-based so there was no worry about the worm activating and
spreading to the outside world through execution. Security professionals call
this sandboxing and students got to apply this concept through engineering
though and action.

Advantages

• Standardized and secure lab environments
• Automated setup and teardown
• Students took ownership of the labs, not dependent on the IT department
• Instructors taught students about basic VM security principles
• All software was free

Disadvantages

• Running multiple VMs concurrently caused less powerful laptops to per-
form poorly

• Storage size of all of VMs took significant disk space, up to 75 GB.
• Misconfiguration of network connects between VMs could disrupt the IT

network
• Some students were not prepared to work in Linux command line envi-

ronments

5.2 The Second Class Offering

We reduced the number of VMs to only one. We chose Kali Linux 2020 since
it already came pre-packaged with many of the security tools used during the
first iteration. As a result, the storage footprint size to less than 25 GB since
we extraneous content was omitted. We initially coordinated with the IT de-
partment to host the VM on the school’s network. Many advantages came from
this approach. First, students could use the institution’s computer resources
instead of their laptops. The machines were powerful, and it also solved the
potential problem for future students who did not own a laptop. Second, in-
structors were given administrative access to students’ VMs in case they needed
to remotely assistance with running the labs. Third, IT could effectively isolate
the VM network from the rest school’s main network to prevent accidental dis-
ruptions from running misconfigured security tools. Forth, once the instructor
designs the VM, it can be handed-off the IT to mass deploy to the students’
accounts.

61

Unfortunately, we experienced a few problems. First, when students had
technical issues with accessing their VM instance, they needed to contact the
IT department that could cause delays. Second, the lab content was always
evolving which meant that IT needed to refresh the students’ VMs for every
new update provided by the instructor. After a valiant effort working with IT,
we decided to revert to the local VM installation to take back control of the
lab environments. Since the labs were refined to just one VM, the installation
and maintenance effort went smoother.

We also introduced the use of containers. They too perform a kind of
virtualization but from an application perspective. Each container can serve
a special purpose. For example, we can use one container to house a web
application that has known security vulnerabilities then another to run tools
that scan the web application. What is beneficial about containers is that
they already come prepackaged with all of the right dependencies installed.
Students can focus on the learning objective at hand instead of worrying about
installation. Figure 4 depicts what that might look like.

Figure 4: Containerization with VM

We wanted to keep each container as application specific as possible, since
we can treat each one as an ingredient for a lab recipe. For example, other
containers were created that perform a different kind of testing against the
vulnerable web application. Figure 5 below depicts a multiple container frame-

62

work.

Figure 5: Multiple containers

Packaging individual labs into containers standardizes the lab environments
even more. All students get the same recipe for each lab with each designed a
specific learning purpose in mind. Consequently, we discovered that can add
more labs and class activities than before with containers since everything is
ready to go when students come the lectures. We did not have to rewrite each
lab from scratch, we stitched containers together to create new labs as such
shown in Figure 6.

Each lab can consist of one-to-many interconnected containers and because
we are running inside a VM, none of these container connections leave the VM
thus protecting the IT network.

• Lab 1 is a container that connects to an intentionally vulnerable website
called JuiceShop. The lab is a capture-the-flag (CTF) event that allows
students to learn how to hack and, in doing so, collect points. They are
free to use offensive tools such as fuzzers to find these vulnerabilities.
Everything is done securely in containers inside the VM.

• Lab 475 is a container that connects to an intentionally vulnerable OS
called Metasploitable. It’s completely isolated from the host including its
antimalware tools.

63

Figure 6: Container interconnectivity

• Lab 13 is an example of a lab that combines two other labs. Lab 5 is an
older lab completed by the students who were supposed to write a fully
functional encryption and decryption program in the C language. Later
in the term the instructor assigns this lab to see if the AFL fuzzing tool
can find vulnerabilities in their program by continuously bombarding it
with garbage data.

5.3 The Latest Class Offering

Although we considered running the labs in a hosted cloud environment such as
Amazon AWS or Microsoft Azure, the matter of funding was still in progress.
We continued to add new labs and class activities levering on our existing vir-
tualization and containerization approach. The culmination of these activities
led to this extreme example of how multiple exercises can be stitched together
to create a new and compelling assignment that uses real-world scenarios:

1. Students are given a file containing recorded wireless traffic from an over-
seas hotel in Asia.

2. They are requested to analyze it using a few open source tools such as
Wireshark and tcpreplay. The traffic is encrypted except at the start
where a cryptographic handshake takes place to establish the secret key.

3. Students are asked questions about this exchange including the random
values that are passed in the clear between the client and server. Later the

64

students are prompted to find anomalous traffic. This is next to impossible
since the traffic is encrypted, so the instructor helps by providing the
actual secret key to decrypt it.

4. The students quickly observe that a suspicious Windows executable is sent
from the server to the client.

5. They use a forensics tool to extract it from the rest of the file and with
a free malware analyzer, they find that it contains the infamous Wan-
naCry ransomware worm that affected hundreds of thousands of comput-
ers across 150 countries in just days, including hospitals and other critical
infrastructure. The damage could have been worse though except that a
young British security researcher found a hidden "kill switch" hardcoded
in the program to stop the virus from spreading.

6. The students download the Ghidra reverse engineering tool provided by
the National Security Agency (NSA). They find the same kill switch as
the security researcher with excitement because they are looking at the
real thing.

7. Instructor delivers a lecture about legal and ethical issues associated with
computer security. Instructor informs students that the security research
was also wanted for alleged security crimes he committed in the past. All
of this was happening at the same time.

8. Students are given an assignment to debate the issue and make a decision
about criminal activities – court room scenario. Students need to decide
whether the hacking hero should be exonerated of his alleged previous
criminal past.

5.4 Future Class Offering

We strongly believe using a cloud service provides the best experience for the
students and have seen this from previous work at Oregon Health and Science
University (OHSU) where a web class we created had its labs securely hosted
by Amazon Web Services. The model is similar to the IT networking effort we
described earlier at UP, but here instructors have administrative access to the
dashboard to maintain and update the labs. Cost is the biggest factor though
when considering using the cloud to host labs. Charges include what software is
being installed, the hardware that it uses, how much data is transferred, how
many instances per student and how long each remains active. These costs
add up fast and can exceed any reasonable lab fee for students. We estimated
hundreds of dollars per semester per student at regular prices. Still most cloud
providers offer academic prices to universities. Our goal is to continue to pursue
cloud hosting as the best option.

65

6 Creating an Open Source Community to Provide Free
Content

Successful open source projects [14, 15] have a strong, active, transparent com-
munity behind them. Our goal is to create an open source project that leverages
trusted and reliable content from anyone who wants to contribute. We start
with a free public Git repository provided by companies such as like GitHub,
GitLab or BitBucket.

6.1 Contributions

Any member in the open source community can contribute, whether new lab
exercises, bug fixes, testing or documentation. New lab content is first peer-
reviewed by the community to ensure that high quality and security best prac-
tices are followed before submission. If bugs are found, they can be reported
and tracked in the repo’s ticketing database. All labs require documentation
using a well-known formatting language such as Markdown. Students can even
contribute to the labs. They are the end-users who can add the most sig-
nificant value to them. We strongly encourage this since contributions to an
open source project focused on security are practical experiences students can
showcase in their resumes. Our goal is to reach a wider academic community,
excite them about what is being created, and contribute to a successful project.
Since this is an open source project, it should be treated as using standards
the community expects. At the heart of contribution is something called a Pull
Request on GitHub as described next.

Members are not allowed to add their content without first going through
a pull request (PR) process. Each PR contains a description of the proposed
changes along with the content itself. Any member of the community can
review the PR, often adding suggestions and comments along the way to en-
sure quality. Once a PR is thoroughly reviewed, a core project member can
accept the PR by merging or rejecting it. The PR process is the same used
by most open source projects that use Git. Community peer reviews help
keep the integrity of the project intact as well as encourages collaboration and
transparency.

6.2 Maintenance
Figure 7 proposes a well-known branch flow used by many other organizations.
Starting from bottom to top, the new branch contains cutting-edge content
not officially released. Once mature, it gets merged to the Dev (Development)
branch, where it gets integrated with other new content. The Dev branch is
eventually tagged with a release number then merged to the Release branch.
How often a release occurs is determined by the community; either by quarter or

66

semester which can nicely align with academic calendars. Releases are merged
into the Master branch. The Patch branch contains emergency fixes in case
critical/high bugs are reported shortly after a release. They can be released
quicker to fix serious issues. All other bugs are tracked in a bug database which
are triaged and dispatched to developers to fix in the Dev branch.

Figure 7: Git repository

7 Course Outcomes
No formal survey was designed and administered to evaluate the outcomes. The
instructors used the University wide end of semester formal student course
evaluation, compared grades from their previous offerings and the improved
result of students participating in the National Cyber League (NCL).

Students were very engaged in the labs; they reported enjoying them and
felt it was a valuable learning experience. Grades were higher than prior of-
ferings of similar content, which was contributed to the engagement in being
active participants in ’real-world’ cybersecurity scenarios. As mentioned above,
we did not carry out empirical research to report student performance and en-
gagement. However, the end of the term evaluation showed that using real life
scenarios helped students understand and apply their knowledge of cybersecu-
rity concepts. Furthermore, students were given the opportunity to experience
what a team in industry experiences when confronted with a breach.

A few students used the open response area to provide more general feed-
back on the course. Most of the responses were positive, with students offering
appreciation for this assignments’ complexity compared with the more tradi-
tional lab elements. Sample of students’ comments:

67

• I do think that in some cases it’s good to get your hands dirty. I wish the
course could be expanded or divided into more electives, as the material
here is really important.

• Labs are fun and relatable to course content – homework is derived from
lectures, which I like – the course gives great background on cybersecurity
– I really enjoyed the extra credit assignments

• I liked the interactive lessons
• Each of the topics taught was very interesting and the labs were also just

as interesting as well.

8 Discussion
Based on students’ engagement, improved grades and end of the course eval-
uations, the delivery model has been deemed successful. Both instructors will
continue to teach using the open source lab framework. Of the students who
completed the courses, twenty percent (20%) decided to pursue cybersecurity
fields from our junior and senior standing students. Two students were ad-
mitted to the Carnegie Mellon University Cyber Security Master’s program;
other students were successful in securing internships. This is a success for the
instructors dedicated to exciting students to pursue careers in cybersecurity to
help fill the extreme technical gap currently experienced in industry. Recently
reported by "The Cybersecurity Talent Gap Is An Industry Crisis”, stating 3.5
M jobs world-wide will not be filled by 2021 [10]. A recent workforce study
published in 2019 by (ISC)2 [12], the world’s largest non-profit association that
certifies cybersecurity professionals, reported that to meet the needs of the cy-
bersecurity workforce globally, skilled cybersecurity professionals need to grow
by 145% to meet the demand. The report further stated that to meet Amer-
ican businesses’ crucial needs, the US cybersecurity workforce needs to grow
by 62%!

9 Conclusion - future work
The success of open source projects is well documented [14, 15]. Most recently,
GitHub, acquired by Microsoft Inc. 2018 launched GitHub Learning in 2019,
fully supporting education lab classrooms [6]; however, there is still not one
open source project specifically aimed at supporting educators to teach cyberse-
curity curriculum. Our work following the KEEN framework has demonstrated
initial success with just several modules; future work will continue to build on
the initial structure and ideally tested by partnering universities. Processes
need to be in place to ensure quality and security. We are proposing and call-
ing for an open source project initiative that allows universities, students, and
others to contribute their lab work to a public repository hosted by an entity
like GitHub. Our goal is to provide a centralized, trusted platform where tools

68

are well vetted and cataloged beforehand. As we continue to add to the labs,
we plan to formalize our research and collect data on the success of the pro-
gram, and research whether the outcomes led to continued interest in pursuing
cybersecurity internship, jobs and enrolling in graduate programs in cyberse-
curity. The authors are also interested in collecting demographic data to study
non-represented populations in cybersecurity. The research outcomes will be
reported in future conferences/papers.

References

[1] Aaron Carpenter. A hardware security curriculum and its use for
evaluation of student understanding of ece concepts. In 2018 ASEE
Annual Conference & Exposition, 2018.

[2] Wenliang Du. Seed labs. https://seedsecuritylabs.org.

[3] Wenliang Du. Seed labs: Using hands-on lab exercises for computer
security education. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, pages 704–704, 2015.

[4] Radana Dvorak, Heather Dillon, Nicole Ralston, and Jeffrey Matthew
Welch. Exploring ethical hacking from multiple viewpoints. In 2020
ASEE Virtual Annual Conference Content Access, 2020.

[5] Nuryake Fajaryati, Muhammad Akhyar, et al. The employability skills
needed to face the demands of work in the future: systematic literature
reviews. Open Engineering, 10(1):595–603, 2020.

[6] GitHub. Github learning labs. https://lab.github.com.

[7] Löbler. Fostering an entrepreneurial mindset by using a design.
https://journals.sagepub.com.

[8] Rita Gunther McGrath and Ian C MacMillan. The entrepreneurial
mindset: Strategies for continuously creating opportunity in an age of
uncertainty, volume 284. Harvard Business Press, 2000.

[9] Alyssa Mendlein, Aunshul Rege, and Thuy-Trinh Nguyen. Cybersecurity
awareness and training through a multidisciplinary osint course project.
In 2020 ASEE Virtual Annual Conference Content Access, 2020.

[10] Brian NeSmith. The cybersecurity talent gap is an industry crisis.
Forbes (online), pages 08–09, 2018.

69

[11] Daria Onitiu. ‘the case for open source’a report on matt wells’ seminar
by ninso, northumbria internet & society research group. Northumbria
Internet & Society Research Group (June 19, 2020), 2020.

[12] (ISC)2 Cybersecurity Workforce Study. Strategies for building and
growing strong cybersecurity teams. https://www.isc2.org.

[13] Engineering Unleashed. Keen - the framework. https:
//engineeringunleashed.com/mindset-matters/framework.aspx.

[14] Mike Volpi. How open-source software took over the world.
https://techcrunch.com/2019/01/12/how-open-source-software-
took-over-the-world/.

[15] Steven Weber. The success of open source. Harvard University Press,
2004.

[16] Austin Whipple, Keith B Smith, Dale C Rowe, and Samuel Moses.
Building a vulnerability testing lab in an educational environment. In
2015 ASEE Annual Conference & Exposition, pages 26–301, 2015.

70

Visual Sensor Networks: Analysis of
Environmental Impacts via
Computational Thinking∗

Tisha Brown-Gaines
Computer Science

College of Sciences and Mathematics
Belmont University, Nashville, TN 37212

tisha.gaines@belmont.edu

Abstract

Visual Sensor Networks (VSNs) are comprised of camera nodes that
are capable of acquiring, distributing, and processing images. Thus,
providing rich information about a given event. However, image sensing
is an extremely powerful electrical consuming mechanism, causing visual
sensor networks to indirectly contribute to greenhouse gas emissions. As
our society adopts emerging technologies central to the field of Internet
of Things (IoTs) such as smart homes and smart surveillance systems,
it is imperative to consider energy consumption and efficiency to create
environmentally friendly technology. In this study, we will investigate
the environmental footprint of visual sensors and develop a program
that optimizes object tracking and energy efficiency via computational
thinking. The energy consumption of a PixyCam2 will be measured with
a multi-meter while performing several algorithms to analyze various
metrics central to the visual sensor’s functionality.

1 Introduction

Energy consumption is an important factor in creating sustainable and eco-
friendly technology. Approximately forty percent of energy consumed by the

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

71

United States is used to generate electricity [7]. As a result, electricity use
constitutes a significant portion of every individual’s environmental footprint
[7]. Cameras provide wide coverage and rich information, producing large
amounts of data [5]. However, image sensing is extremely power consuming [3].
Thus, the usage of visual sensor networks can contribute to air pollution and
greenhouse gas emissions. Using computational thinking techniques (CTT), we
will decompose this complex real-world problem into manageable concepts for
student groups to recognize patterns, use abstraction and construct feasible
algorithms [9]. By reducing the energy consumed by visual sensor networks
from non-renewable resources, such as fossil fuels, one can reduce greenhouse
gas emissions, therefore, mitigating the effects of climate change.

2 Related Work

The energy consumption of VSNs have been studied under different coverage
conditions and network states [1]. Singh et al. analyzed energy efficiency
in wireless visual sensor networks under the conditions of barrier coverage,
blanket coverage, and grid coverage [8]. Margi et al. studied VSNs executing
various benchmarks such as processing, acquiring images and communicating
as the sensors are in sleep or awake modes [6]. Casares et al. utilized peer-to-
peer (P2P) object tracking and detection in wireless embedded smart-camera
systems in their analysis of power consumption and performance to showcase
the importance of lightweight algorithms and data transfer [3]. LiKamWa et
al. focused on the issue of high-power consumption in CMOS image sensors
[4]. Obringer et al. considered the environmental footprint of Internet use
[7]. Although there exist research pertaining to visual sensor networks, there
exists no research analyzing the environmental impact posed by visual sensor
networks in relation to their energy consumption.

Figure 1: Micro-controller and PixyCam2 Setup

72

3 Problem Formulation

We will study the environmental footprint of visual sensor networks as it re-
lates to object tracking and energy consumption. We then determine the extent
to which a visual sensor contributes to one’s environmental footprint by cal-
culating the carbon emissions produced based on the energy consumed when
performing various algorithms such as: object tracking utilizing pan-tilt mode,
stationary object tracking and paused mode. We developed a sleep program
that optimizes object tracking and energy efficiency. Additionally, this study
focuses it’s methodology on computational thinking to promote well-defined
problem solving and research skill sets in secondary and undergraduate learn-
ers [9].

3.1 Energy Consumption Model

The PixyCam2 utilized is representative of a single camera node within a visual
sensor network as shown in Figure 1. The camera node is capable of tracking
objects that enter its field of view (FOV) as discussed in the recent study [2].
The Arduino Uno micro-controller was utilized to program algorithms that
instruct the camera nodes to capture information pertaining to the object being
tracked. As shown in Figure 2, a laptop is used to power the camera and micro-
controller through a micro-USB and USB A/B cable, respectively. The camera
and micro-controller can communicate through the 6-pin-to-10-pin-IDC cable.

Figure 2: Model Configuration Setup Figure 3: Object Tracking Environment

73

The Klein Tools ET900 Type-A USB Digital Multi-meter (DMM) is used to
measure the voltage and current flow as certain algorithms are executed. The
DMM is attached to the laptop while the camera is attached to the DMM.

3.2 Pan-Tilt with Object Tracking

The camera node makes use of the pan-tilt mode and color tracking capabilities
as shown in Figure 3. The pan-tilt mode allows the camera to rotate left, right,
up, and down. The PixyCam2 is programmed to track and follow an object
based on its color, allowing it to track a small green plastic ball. The number of
objects detected is returned and displayed on the serial monitor of the Arduino
platform followed by the object’s location in terms of xy coordinates and color.

Listing 1: Sleep mode coding example
void s l e e p () {

i f (delayRunning && ((m i l l i s ()− de l aySta r t) >= DELAY_TIME)
&& pixy . ccc . numBlocks == 0) {
delayRunning = fa l se ;
de lay (5000) ;
LowPower . powerDown(Sleep_8S , ADC_OFF, BOD_OFF) ;
LowPower . powerDown(Sleep_2S , ADC_OFF, BOD_OFF) ;
de l aySta r t = 0 ;

} }

3.3 Stationary with Object Tracking

The camera node is mounted on the pan-tilt stand but no longer utilizes that
feature. However, it utilizes the color tracking feature to identify the green
ball as long as it remains present within the node’s field of view (FOV). The
object’s xy coordinates and color is displayed on the serial monitor as shown
in Figure 4.

3.4 Pause Mode

The camera node is mounted on the pan-tilt stand but it is no longer connected
to the Arduino board. The program that the PixyCam2 is running is stopped
as the camera is put in paused mode. No object tracking or object information
is obtained.

4 Sleep Algorithm
The sleep algorithm was developed with the aim of optimizing energy efficiency
and object tracking. The camera node makes use of the pan-tilt mode and

74

color tracking features ensuring object tracking. In order to optimize energy
efficiency, the Arduino board is put to sleep if no object is identified within
30 seconds. The Arduino board sleeps for 10 seconds and automatically wakes
up, repeating these actions. The sleep and wake process is highlighted in
the Listing 1: Sleep algorithm code snippet referenced. The Arduino micro-
controller notifies the user whether it is awake or asleep using the serial monitor.
The xy coordinates and color is displayed.

Figure 4: Sleep Algorithm Output

5 Methodology
The DMM provided the voltage and current of an algorithm in real-time. Both
the voltage and current were collected within the time frame of 1 minute in-
tervals for each algorithm. Figure 5 depicts the power consumption of each
algorithm at a given time calculated by P = V × I, where P is the power,
V is the voltage, and I is the current; the power is converted and depicted in
kilowatts. The average power consumption was then determined. Power is the
rate at which energy is consumed and the energy consumed by each algorithm
is given by the formula E = Pavg

× T , where E is energy. Pavg
is the average

power and T is the execution time, which is 1 hour [3]. Figure 6 shows the
CO2 emissions produced by each algorithm. To determine the CO2 emissions,
the energy provided in kilowatts per hour (kWh) was converted to kilograms
(kg) of CO2 based on the conversion factor provided by the EPA: 0.000709
kg CO2 /kWh [6]. C = E × F , where C is the CO2 emissions emitted, E is
energy, and F is the conversion factor.

75

Figure 5: Performance Results (kW) Figure 6: Performance Results (CO2)

6 Performance Evaluation
Figure 6 shows the energy consumption and CO2 emissions of the camera node
for each algorithm. The results show that energy consumption is slightly dis-
proportional to CO2 emissions. Regarding the baseline algorithms, the pan-tilt
algorithm consumed more kWh, thus emitting the most CO2 emissions. The
stationary algorithm produced the least amount of CO2. The sleep algorithm
was successful in optimizing energy efficiency and object tracking as it con-
sumed less energy than the pan-tilt algorithm, thus producing less CO2 while
being able to track an object beyond the coverage of the stationary algorithm.
The study of energy consumption and the environmental impact of visual sen-
sor networks can be extended to consider different coverage models including:
barrier, blanket and point to strategically save power by exploiting the redun-
dancy of coverage in a multi-camera system.

7 Future Work
The data obtained in this study can serve as the foundation for calculating
the energy consumption of larger-scale simulated environments and Industrial
IoTs technologies. Additionally, a system scaling model highlighting the tran-
sition from a single camera node to multiple camera nodes is targeted. Given
the positive student outcomes seen in grade improvement, student-instructor
rapport and content engagement we hope to expand the study to integrate the
computational thinking techniques into a broader curriculum. We noted that
computational thinking techniques allow instructors to connect different topics

76

of study by reducing subject-matter lines to emphasize unifying concepts by
implementing one well-defined step at a time. As computational thinking is
referred to as a "21st Century skill set" plans to engage undergraduate cohorts
into Big Idea Micro-Projects (BIMPs) that will be integrated into intro-level
computing, data science and mathematics courses.

References

[1] Sidra Aslam, Farrah Farooq, and Shahzad Sarwar. Power consumption in wireless
sensor networks. FIT ’09, New York, NY, USA, 2009. Association for Computing
Machinery.

[2] Tisha Brown, Zhonghui Wang, Tong Shan, Feng Wang, and Jianxia Xue.
Obstacle-aware wireless video sensor network deployment for 3d indoor moni-
toring. pages 1–6, 12 2017.

[3] Mauricio Casares, Alvaro Pinto, Youlu Wang, and Senem Velipasalar. Power
consumption and performance analysis of object tracking and event detection
with wireless embedded smart cameras. pages 1 – 8, 10 2009.

[4] Robert LiKamWa, Bodhi Priyantha, Matthai Philipose, Lin Zhong, and Paramvir
Bahl. Energy characterization and optimization of image sensing toward continu-
ous mobile vision. In Proceeding of the 11th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’13, page 69–82, New York,
NY, USA, 2013. Association for Computing Machinery.

[5] Sharad Malik and Andrew Wolfe. Power analysis of embedded software: First
step towards software power minimization. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2:437 – 445, 01 1995.

[6] C.B. Margi, V. Petkov, K. Obraczka, and R. Manduchi. Characterizing energy
consumption in a visual sensor network testbed. In 2nd International Conference
on Testbeds and Research Infrastructures for the Development of Networks and
Communities, 2006. TRIDENTCOM 2006., pages 8 pp.–339, 2006.

[7] Renee Obringer, Benjamin Rachunok, Debora Maia-Silva, Maryam Arbabzadeh,
Roshanak Nateghi, and Kaveh Madani. The overlooked environmental footprint
of increasing internet use. Resources, Conservation and Recycling, 167:105389, 04
2021.

[8] Juginder Singh, Manas Mishra, and Mohd Khan. Energy efficient video surveil-
lance in wireless sensor networks under grid coverage over barrier coverage. SSRN
Electronic Journal, 01 2018.

[9] Jeannette Wing. Computational thinking. Communications of the ACM, 49:33–
35, 03 2006.

77

A Conceptual Framework for an
Introductory Machine Learning Course∗

Anthony D. Bowman and Leon Jololian
Electrical and Computer Engineering
University of Alabama at Birmingham

Birmingham, AL 35294
anbowman@uab.edu, leon@uab.edu

Abstract

Historically, computer science curricula have largely focused on the
development of algorithmic solutions. However, in recent years a new
paradigm has emerged which focuses on machine learning as a data-
driven approach to problem solving. To better equip students with the
background needed for this emerging method of problem solving, the cur-
ricula would benefit from including a greater emphasis on the concepts
frequently found in a data-driven workflow. Furthermore, continued ad-
vances in hardware should be considered to exploit parallelism in com-
putations. Other concepts from machine learning include data cleaning,
feature engineering, and concurrency in computation. In this paper, we
propose a conceptual framework for an introductory course in machine
learning with a data-driven workflow. With this framework, students
will be exposed to the high-level design and concepts of data-driven de-
velopment, gradually equipping them with the tools to fully grasp the
machine learning paradigm. Further research is ongoing to construct a
development environment that supports this framework for full adoption
of the machine learning paradigm.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

78

1 Introduction

Since their inception in the latter half of the 20th century, computer science
curricula have faced the challenge of preparing students for the demands placed
on them by their post-collegiate career paths. For the better part of that
history, the predominant method of problem solving involved the development
of algorithmic solutions, therefore curricula were adopted with courses teaching
concepts and skills which supported such development including traditional and
more recent models for software development ([1, 9]). In recent years, new data-
driven approaches like machine learning have emerged and continued to gain
widespread prominence and complexity in both industry and academic research
[6]. While there is significant overlap in the background knowledge required
for both approaches, there are also some concepts in the data-driven workflow
that bear greater emphasis because of the critical role they play in generating
solutions. Thus, there is a need for curricula to adapt to the increasing demand
for students with sound knowledge bases of both the algorithmic and data-
driven approaches. To facilitate this, we propose a framework as the basis for
an introductory course to the data-driven approach which will expose students
to key concepts while providing a high-level design overview of the processing
pipeline. Previous literature has seen proposals for degree programs in data
science, including a range of courses to establish the knowledge base students
will need to fully grasp this new paradigm [2]. A course built from our proposed
framework can serve as the anchor course to such a program, providing students
with a broad overview and context to tie in lessons learned in the rest of their
coursework. Absent such a specialized degree program, this course would serve
as the gateway course in a machine learning or data science concentration
within a computer science or engineering degree program.

2 Machine Learning Development Framework

We characterize our framework by three layers of abstraction, shown in Figure
1. Due to the more exploratory nature of the data-driven approach, it is natu-
ral to consider the developer as a researcher in this process. Doing so leads the
student to shift their mindset more towards a research perspective where they
must be asking and answering questions related to the data and the overall
problem at multiple levels. This role would also lend itself to prepare students
for an interdisciplinary team setting, increasingly common with the globaliza-
tion of industrial markets [4]. While working in such a group environment, the
student developer needs to be cognizant of the variety of engineering factors
to be analyzed and communicate with other, potentially non-engineering team
members [5]. Coursework and software to facilitate this team setting and in-

79

teraction have been created with positive results in previous literature ([3, 8]).
Effective communication in this setting is a critical skill that can be applied in
the industrial setting while working with a client to explore and clarify their
needs, which often must be translated from domain specific vernacular to the
engineering domain. Thus, our framework for an introductory course in data-
driven methodology includes ample opportunity for the students to interact
with and gather feedback from others at each layer.

Figure 1: High Level Design

Beginning with a high-level view, our framework guides the researcher
through multiple layers of abstraction encompassing the machine learning pro-
cessing pipeline. The traditional mindset and pipeline as seen in previous
literature commits the researcher to a particular solution, locking them into
that specific implementation within the vast solution space, often without jus-
tification. This unnecessary restriction often leads to sub-optimal results due
to current limitations in valid methods of predicting the optimal algorithm
[10]. Our framework addresses this problem directly by forcing the researcher
to consider alternatives at each layer, guiding them to more thoroughly ex-
plore that solution space. At the highest level of abstraction, the research
layer forces the researcher to consider the possibility that multiple research
questions could be tested using the same data set, perhaps exploring the same
research topic but from different perspectives. Preprocessing of the data in
different ways could also be considered in its potential to influence the results
of the research. Descending into the control layer, the researcher would then
be directed toward possible feature sets and subsets thereof before generating
a set of possible machine learning algorithms for testing. Students would be
instructed as to how this layer would also provide guidance in how to paral-

80

lelize the process of building and testing the resulting models, leading into the
composite layer. Here, the researcher would be faced with the variety of ways
the features can be preprocessed before model construction. Different metrics
in testing methodology should also be considered as related to the research
questions decided upon at the top level.

Figure 2: Control and Composite Layer Internal Structure

Establishing a three-layer architecture can naturally be thought of in a
hierarchical way: The lower, control layer involves the aforementioned testing
methodology, which is constructed as a set of classification problems. For
every classification problem, the layer includes a user-defined feature set and
set of algorithms. Every algorithm is then trained and tested with a variety
of feature subsets. One pairing of an algorithm with feature subset is selected
based on performance metric(s) and deemed the empirically best solution to
the current classification problem. The control layer repeats this process for
all classification problems until it arrives at a set of best solutions for those
problems.

This solution set is contained within the control layer, which encapsulates
them into a single package that is prepared to accept an unknown instance
from the subject domain. The control layer extracts the appropriate features
from this instance of interest and provides them to the package, distribut-
ing the features to each trained algorithm according to the algorithm-feature
pairings. Each algorithm in this ensemble then produces a classification inde-

81

pendent of each other with the complete set of classifications provided to the
user afterward. This overall approach allows for a great degree of flexibility
as each algorithm in the ensemble can adapt to the needs of each problem.
The problems themselves can also be complementary in the subject domain
or completely independent, allowing for further flexibility in adapting to the
needs of the domain user.

3 Summary

With the increasing prevalence of data-driven problem solving, computer sci-
ence curricula stand to benefit from including additional coursework specifically
geared for that approach. In this paper, we proposed a conceptual framework
to form the basis of a course for data-driven problem solving which would
introduce them to critical concepts and provide a high-level design. Through
this course, the curricula can show students how to adopt the machine learning
paradigm and serve as students’ jumping off point into the world of big data,
machine learning, and the like.

4 Future Work

Continual development of this framework is ongoing to establish it as the con-
ceptual design of a development environment built from the ground up with
data-driven methodology in mind. In addition, we have tested this framework
as a machine learning model applied to a case study involving the localization
of the seizure onset zone within the brain of epilepsy patients. Early results
show great promise when compared to the limited success seen by previous
studies [7]. Preliminary results show higher accuracy and the ability of our
framework to facilitate the application of data-driven research for parallel re-
search projects. In the interim, our framework can serve as both a conceptual
design for our proposed introductory course into machine learning and data-
driven problem solving as well as a high-level model for students to follow in
future projects to facilitate full adoption of the machine learning paradigm.
This embracing of the machine learning paradigm would be further enhanced
by using a development environment constructed by implementing our pro-
posed framework. Thus, our framework can serve as the basis for the course to
teach students, a model for students to follow, and the underlying architecture
for the tool students can use for their machine learning needs.

82

References

[1] Kent Beck, Mike Hendrickson, and Martin Fowler. Planning extreme pro-
gramming. Addison-Wesley Professional, 2001.

[2] Ismail Bile Hassan, Thanaa Ghanem, David Jacobson, Simon Jin, Kather-
ine Johnson, Dalia Sulieman, and Wei Wei. Data science curriculum de-
sign: A case study. In Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education, pages 529–534, 2021.

[3] Lisa J Burnell, John W Priest, and JB Durrett. Teaching distributed
multidisciplinary software development. IEEE software, 19(5):86–93, 2002.

[4] James J Duderstadt. Engineering for a changing world. In Holistic engi-
neering education, pages 17–35. Springer, 2010.

[5] Atila Ertas, Timothy Maxwell, Vicki P Rainey, and Murat M Tanik.
Transformation of higher education: The transdisciplinary approach in
engineering. IEEE Transactions on Education, 46(2):289–295, 2003.

[6] Elif Eyigoz, Sachin Mathur, Mar Santamaria, Guillermo Cecchi, and
Melissa Naylor. Linguistic markers predict onset of alzheimer’s disease.
EClinicalMedicine, 28:100583, 2020.

[7] Jiayang Guo, Kun Yang, Hongyi Liu, Chunli Yin, Jing Xiang, Hailong Li,
Rongrong Ji, and Yue Gao. A stacked sparse autoencoder-based detector
for automatic identification of neuromagnetic high frequency oscillations in
epilepsy. IEEE transactions on medical imaging, 37(11):2474–2482, 2018.

[8] Letizia Jaccheri and Guttorm Sindre. Software engineering students meet
interdisciplinary project work and art. In 2007 11th International Con-
ference Information Visualization (IV’07), pages 925–934. IEEE, 2007.

[9] Brian Randell. The 1968/69 nato software engineering reports. History of
software engineering, 37, 1996.

[10] David H Wolpert and William G Macready. No free lunch theorems for
optimization. IEEE transactions on evolutionary computation, 1(1):67–82,
1997.

83

Developing a Machine Learning Course
for Anomaly Detection∗

Shyam P. Prabhakar and Leon Jololian
Electrical and Computer Engineering
University of Alabama at Birmingham

Birmingham, AL 35294
shyamp@uab.edu, leon@uab.edu

Abstract

Machine learning has shown its effectiveness in solving many prob-
lems for which traditional algorithmic solutions are not easy to find. For
the past decade, we observed the rapid emergence of machine learning
courses throughout the curricula. However, the focus of many machine
learning courses is predominantly on introducing basic algorithms, such
as linear regression, logistic regression, neural networks, and K-nearest
neighbors, to name a few. There is limited emphasis on data wrangling,
the process by which cleaning and unifying messy and complex data sets
for easy access and analysis. In this paper, we discuss the introduction
of special topics in a course on machine learning geared towards two ma-
jor ideas: a) data processing techniques, b) introduction to real world
scenario with anomaly detection in datasets using machine learning clas-
sifier techniques, and b) the augmentation of the data by introducing
new data synthetically created. The objective is to raise awareness of
the importance of the pre-processing of the data ensuring the quality
of the results obtained in the post-processing stage. The work on this
paper was a joint collaboration between the University of Alabama at
Birmingham and IBM, where the authors currently work.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

84

1 Introduction

Many data science courses devote much emphasis on teaching machine learn-
ing algorithms and to a lesser extent on data engineering and data processing.
Yet, processing datasets as a preliminary step is widely considered essential for
achieving trustworthy results prior to applying machine-learning algorithms.
This paper provides the guidelines for introducing data processing and engi-
neering into the curriculum, highlighting data collection, processing, organiz-
ing, and analyzing data for anomaly detection. Understanding the data and
its characteristics is an important aspect of the machine learning model de-
velopment. Introduction to Cross Industry Process for Data Mining (CRISP-
DM) benefits the curriculum to understand the data flow and processing. The
needed skills for developing an understanding of anomaly detection requires
an intermediate level of mathematics in the areas of linear algebra, calculus,
probability, and statistics.

Figure 1: CRISP-DM Model

We define anomalous behavior in a dataset as one that deviate from the
known normal. Anomalies are not defined by their own characteristics but
in contrast to what is normal. One can build a domain-specific, rule-based
system to identify and define normal patterns in the transactional set. The
rest of the data in the dataset would be outliers and don’t match with the
typical behaviors. These sets of data need further analysis to determine if

85

the distribution possesses normal characteristics or abnormal. Though labeled
data is hard to come by, clean, processed, and cataloged data helps in applying
machine learning and AI techniques to find the normal and then the plausible
anomalous data. Transactional datasets in domains like Finance, Insurance,
and Medical have normal and abnormal or anomalous data. Public availability
of these datasets is sparse due to various strict federal regulations like HIPAA,
BSA AML, etc. Including anomaly detection as a curriculum project helps
students apply end-to-end data engineering and data science process.

Main type of anomalies: 1) Point Anomaly: Data instance thar deviates
from normal. Most used type in research. One example is credit card fraud
detection, 2) Context or Conditional Anomaly: If data instance behaves dif-
ferently in a context. E.g., If a credit/debit card is used in a different location
(state or country), that has no association with the customer. Sudden changes
in the spending habits flag anomaly, 3) Collective Anomaly: If a collection of
related data instances is anomalous with respect to the entire data set. E.g.,
If ftp, ssh, and buffer-overflow happen together, it will flag as anomalous in a
network intrusion. An individual data instance may not be anomalous.

Challenges in anomaly detection process are the following. 1) The boundary
between the normal and anomalous behavior is often not precise, 2) New normal
evolve and current normal may not be the same as future normal, 3) Availability
of labeled data for training/validation of models are rare. Often the information
is noisy and difficult to identify and remove, 4) The abnormal data is often rare
and much smaller in volume when compared to the normal data. Therefore,
to achieve good results often requires that we augmented the data with new
synthetically created anomalous data that is statistically consistent with the
provided anomalous patterns in the dataset.

Generative models like Variational Autoencoder (VAE) and Generative Ad-
versarial Network (GAN) demonstrated that they could recreate or regener-
ate and modify specific input data characteristics, especially with image data.
Therefore, our course will include material that explains generative models like
general auto encoders, VAE and GAN.

Anomaly detection is done first as it needs to find out what you need to look
for in normal behavior. The use of anomaly detection models such as point
anomaly detection, context or conditional anomaly detection, and collective
anomaly detection methodology helps in identifying outliers efficiently. The
next step would be to train and implement an efficient classification model to
assign new examples to the categories that you have already identified. Update
the anomaly detector with the new examples and repeat the process. Logistic
Regression, SVM, Random Forrest, and XGBoost Classifiers are some of the
commonly used classification models. Figure 2 shows an anomaly detection
process that could be used in the initial stage of discovery process.

86

Figure 2: A high level Anomaly Detection Process (Courtesy: [3])

2 Literature References of Anomaly Detection and Data
Augmentation

Focus of all the main research in the field of anomaly detection is to use Ma-
chine Learning or Deep Learning classifier to classify normal and abnormal data
behaviors. Various techniques in machine learning, deep learning, statistical,
and rule-based methods are available to detect frauds, information security,
and electronic crimes. These techniques address domain-specific anomaly de-
tection and are based on finding outliers in a single instance, context-based,
and collective anomaly. Varun Chandola, Arindam Banerjee, and Vipin Kumar
(2009) [1] provided an extensive survey on Anomaly detection where they lay
out and compare all the anomaly detection techniques developed until 2009.

Many proposed pattern detection methods are optimized to detect abnor-
mal patterns in data from a specific domain (Chau et al., 2006; Neill and
Cooper, 2010; Neill, 2011) [2, 10, 9, 8]. Das and Schneider (2007) used Bayesian
Network (BN) [4] anomaly detector to detect anomalies at the individual record
by computing likelihood of each record to the base and assumes that records
with lowest likelihood records are most anomalous. This process loose power
to detect anomalous groups produced by a subtle anomalous process where
each record, when considered individually, is only slightly anomalous. Also,
BN ignores the group structure of anomalies and thus fails to provide specific
details useful for understanding the underlying anomalous processes. Das et
al., 2008 [2], created another model by improving BN called Anomaly Pattern
detection (APD) where APD allows looking for anomalies in a subset of records
rather than individual records. Other studies based on Bayesian Networks are
Anomaly Group Detection (AGD) by Neill et al., 2008; Das, 2009 [2] and FGSS
(Fast Generalized Subset Scan) by Edward McFowland III, Skyler Speakman,
and Daniel B. Neill (2013) [7]. These models combine BN with statistical meth-
ods to identify anomalous patterns in a group. Since AGD has a large search
space for the rules, the search would be more time consuming. APD uses 2

87

component rule for search and AGD uses greedy heuristic search, and this will
lose the ability to identify most interesting subset of the data. Though FGSS
can efficiently maximize a scoring function over all possible subsets of data
records and attributes, allowing to find most anomalous data. The limitation
of FGSS is that it will not work on continuous, unstructured, and high dimen-
sional data such as images. We have provided a summary of the research in
the anomaly pattern detection domain. All the above research provides a great
base to start identifying the abnormal by assuming the models know what the
real normal patterns are.

3 Suggested topics for a Course Syllabus

3.1 Data Engineering and Processing

An AI ladder includes data collecting, organizing, and analyzing process. Col-
lection process is where all the data are collected from various sources systems
and external sources. The data can be collected in various databases like IBM
DB2, Oracle, MS SQL and big data file systems like HDFS (Hadoop Dis-
tributed File Systems) and GPFS (General Parallel File System). Organizing
process is done through various Extract Transform and Load (ETL) tools like
Apache SPARK, Apache KAFKA, and IBM DataStage. In this process we
define and create various data stores to summarize and organize the data for
easy access. Analyzing process is where we discover and develop strong feature
list for machine learning modeling. Efficient feature list with labels helps the
classification models to perform better.

3.2 Anomaly Detection with Supervised Learning: Classic Classi-
fication Machine Learning Algorithms

In this section we provide lab exercises to help the student in familiarizing with
the data pre-processing, feature engineering and modeling supervised learning
classifiers to detect anomalies. As discussed before, public datasets are not
available due to regulation in vast majority of the domains, so simulating data
or using dataset from known domains like Kaggle will help start the process.
We will cover the simulated synthetic data in a little detail in the next section.
Here we are using credit card fraud detection data [11], PaySim [6]: A syn-

thetic data that simulates mobile money transactions and KDD cup Intrusion
detection data [5] to show how various machine learning classifiers performed.

Deep Learning models can be also used in detecting anomalies. Like, Au-
toencoder, would be an ideal neural network to learn a typical or normal data
behaviors. Any test data that deviates from the normal would be considered
as anomalous. We can use the loss functions like MSE, Cross Entropy, BCE

88

Figure 3: Classification Model testing outputs

Loss, and L1 Loss to determine the possible outliers. We tested this with the
credit card fraud data [11] and the outputs are shown below, in Figure 4. We
got a better performance with the neural network Autoencoder and used credit
card fraud data to test the hypothesis.

Figure 4: Outputs from the Autoencoder

3.3 Synthetic Data Creation

Synthetic data creation is a process of creating similar data that we can use to
train a model when the data is available in a limited quantity or unavailable.

89

In anomaly detection scenario, not only the source data is limited but also
the anomalous events are rare, the data would be very small in numbers when
compared to the normal.

It would be point to ponder the ideas of generating this rare events or
anomalous data probability distribution and also creating the distribution that
has close resemblance with the rare events that could occur in the future. This
would help in anomaly detection by predicting futuristic anomalous behaviors.
Our research further extends to these aspects and future studies. Introduction
of deep generative models like Variational Autoencoders (VAE) and Generative
Adversarial Network (GAN) would provide the student with advanced model
development abilities in the situation where they have to depend on limited
data.

Figure 5: Showing Variational Autoencoders (VAE) and Generative Adversar-
ial Network (GAN)

4 Conclusion and Future Work

In this paper, we suggest the inclusion of topics in data preprocessing in ma-
chine learning courses. We discussed anomaly detection and data augmentation
as two necessary steps in preprocessing of datasets for machine learning appli-
cations. We characterize abnormal data as one that deviates substantially from
the majority of the data. The detection and removal of the anomalous data
from the dataset leads to a higher degree of accuracy in the machine learning
models being developed. A related problem is how to augment the data when
the dataset does not include enough samples of the anomalous data. We show
how machine learning techniques such as Generative Adversarial Networks and
Variational Autoencoders are used to synthetically create anomalous data.

90

References

[1] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[2] Kaustav Das, Jeff Schneider, and Daniel B Neill. Anomaly pattern de-
tection in categorical datasets. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
169–176, 2008.

[3] Ted Dunning and Ellen Friedman. Practical Machine Learning: Innova-
tions in Recommendation. " O’Reilly Media, Inc.", 2014.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gener-
ative adversarial nets. Advances in neural information processing systems,
27, 2014.

[5] The UCI KDD Archive Information and Computer Science. Kdd cup 1999
data.

[6] Edgar Lopez-Rojas. Synthetic financial datasets for fraud detection.

[7] Edward McFowland, Skyler Speakman, and Daniel B Neill. Fast general-
ized subset scan for anomalous pattern detection. The Journal of Machine
Learning Research, 14(1):1533–1561, 2013.

[8] Daniel B Neill. Fast subset scan for spatial pattern detection. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology),
74(2):337–360, 2012.

[9] Daniel B Neill and Gregory F Cooper. A multivariate bayesian scan
statistic for early event detection and characterization. Machine learn-
ing, 79(3):261–282, 2010.

[10] Daniel B Neill and Jeff Lingwall. A nonparametric scan statistic for multi-
variate disease surveillance. Advances in Disease Surveillance, 4(106):570,
2007.

[11] Machine Learning Group ULB. Credit card fraud detection.

91

Wrapper Algorithm for Choosing
Machine Learning Functions and

Methods in SSAS∗

Kelsey Buckles1, Eduardo Bezerra2, Eduardo Ogasawara2,
and Mario Guimaraes3

1NASA & Saint Martin’s University, Huntsville, AL
kelsey.d.buckles@nasa.gov

2CEFET/RJ, Rio de Janeiro, Brazil
ebezerra@cefet-rj.br, eogasawara@ieee.org
3Saint Martin’s University, Lacey, WA

MGuimaraes@stmartin.edu

Abstract

Installing and using machine learning software has become signifi-
cantly more accessible over the years. The abundance of data, the afford-
ability of computer power, and the availability of literature and quality
data mining software have made it easier to use data mining tools. The
cloud has reduced the difficulty of installing these tools. Meanwhile, the
abundance of available data mining functions and algorithms options has
created a major challenge for selecting adequate ones. Despite literature
about selecting the best machine learning algorithm for a given mining
function, there are still opportunities for improvement and we believe it
is an essential topic for any Machine Learning/Data Mining class. This
paper presents a wrapper algorithm that looks at the data and desired
outcome (regarding what the user would like to glean from the given
data) and chooses an optimal method for data mining. We have eval-
uated this approach targeting Microsoft SSAS, however the framework
can be used for any environment.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

92

1 Problem and Motivation

Consider the research scenario of studying a new dataset to find novel patterns
and relationships among attributes. In this case, we are not only targeting to
find a proper data mining method. We are interested in discovering which data
mining function (prediction, clustering, or pattern mining) to apply.

With many different data mining and machine learning methods available
for various applications, one might have difficulty choosing the proper methods
to use. Such problems can be decreased for prediction problems in the presence
of tools such as Auto Weka [6]. However, when it comes to combining the choice
of data mining function with data mining methods, we lack tools. Having some
level of automatization to drive users to find appropriate data mining functions
and initial data mining methods becomes a productive approach to get insights
from data.

Even though Microsoft SSAS has an easy-to-use interface for implementing
the data mining methods, some intuition is required on the user’s part regarding
what data mining function and method to use. This paper presents a wrapper
algorithm that looks at the data and desired outcome (regarding what the user
would like to glean from the given data) and chooses an optimal method for
data mining. We have evaluated this approach targeting Microsoft SSAS. We
will expand this approach for any machine learning/data mining environment.

Besides the introduction, this paper is organized into three more sections.
Section 2 provides generally related literature. Section 3 provides baseline data
mining methods available at SASS. Finally, Section 4 presents the wrapper
algorithm for data mining function and methods using Microsoft SSAS.

2 Related Literature

Consider the scenario of finding proper data mining methods for a given data
mining function. We can find solutions driven to non-expert users such as
Auto-WEKA [6]. It considers the problem of finding algorithms and setting
their hyperparameters. It applies grid search hyperparameter optimization for
each available data mining method. It is computationally expensive and a
black box solution, which does not explain the non-expert strategy adopted
while selecting the algorithm.

After a cursory search, it appears there is not much research into selecting
the proper method for any data mining application. It appears there was a
project that intended to rank the best data mining algorithms for any applica-
tion called ESPRIT METAL, but the project itself is no longer available online
[2].

Most research available on the topic investigates either the accuracy of

93

different algorithms on the same data set or compares two algorithms using a
handful of applications [13].

3 Baseline data mining methods in SASS

First, to develop a way to assign a data mining method to the data, we must
define the different data mining methods available, their strengths and weak-
nesses, and which mining functions are commonly applied.

Decision Tree. A decision tree algorithm uses information theory to cre-
ate an accurate tree driven to a classification problem. It categorizes all the
attributes into predictable bins. In addition to being easy to understand (white
box algorithm), decision trees are helpful when you need to traverse the entire
solution space. However, decision trees can become relatively unstable when
they are deep [15]. In this case, a small perturbation in the data can change
the resulting decision tree. Generally, the use of Random Forests helps find
robust optimal trees, but it appears SSAS does not use Random Forests [9].

K-Means. The goal of the K-Means algorithm is to partition the data
into groups. The k in K-Means refers to the user-defined number of data
points that originally seed the solution space. The algorithm works by first
seeding this data and then iteratively refining the corresponding clusters. At
the same time, new points are being thrown down into the solution space by
minimizing the differences between members of one cluster and maximizing the
distance between all the clusters formed. Although the clustering problem is
computationally expensive (NP-hard) [5], heuristic methods reduce this cost.

Expectation-Maximization. Expectation maximization is an iterative
process that uses optimization to find the best parameters to model the prob-
ability distribution of the data [3]. A particularity of this algorithm is that it
can build models that depend on latent (unobserved) variables. This algorithm
is commonly used for data clustering [8] and computer vision. As a clustering
algorithm, EM can be viewed as a generalization to K-Means, because it can fit
multi-dimensional Gaussians to the training data. Natural language processing
applications are also common. The algorithm can be very slow and works best
when you only have a small percentage of missing data, and the dimensionality
of the data is not too large [1].

Apriori algorithm. The Apriori algorithm generates and counts candi-
date itemsets [7] to identify underlying patterns. The Apriori algorithm is tra-
ditionally used to find patterns in data sets that are collections of transactions,
each transaction being a set of items taken from a fixed set. A bottom-up
algorithm identifies frequent individual items in the transactions, creating a
subset of these frequent items. Although the algorithm is robust and histori-
cally significant, it is inefficient in that it scans through the transactions too

94

many times, reducing overall performance.
Linear Regression. Linear regression models the relationship between

a set of predictor variables and a dependent variable. Microsoft SSAS cur-
rently only supports linear regression with two predictor variables to create a
linear regression line [10] but could be expanded to three (creating a plane)
or more variables with ease. The algorithm fits a line to the training data
by minimizing the squared mean distance between the predicted values and
the teaching signal stored in the dependent variable. However, it can oversim-
plify relationships. Not all relationships are linear, and not all predictors are
of equal weight, distorting the predictions obtained from the linear regression
model. This model has fast performance even on large sets of data. Although
it is notorious for oversimplifying predictions, in some fields, one can expect a
linear relationship, like a supply and demand model, and in those situations,
it performs exceptionally well.

Logistic Regression. Logistic regression is like linear regression, except it
uses the sigmoid function to model the relationship between the predictors and
the dependent variable, which is categorical [11]. Applications of the vanilla
version of logistic regression algorithm must be binary classification problems,
although there are extensions to multiclass classifications problems. Addition-
ally, the algorithm will not automatically reduce noise, so some cleaning of the
data to remove outliers might be required in the preprocessing phase. Simi-
larly, it can overfit if there are too many data points that are too similar. One
might also consider removing these duplicates during preprocessing. The algo-
rithm can fail to converge, especially if the data is sparse or has many highly
correlated inputs [4]. Logistic regression is easier to interpret and very efficient
to train.

Naive Bayes Algorithm. Naive Bayes algorithm is a classification algo-
rithm that assumes features of examples are conditionally independent given
the class. Hence, the simplifying assumption is that none of the characteristics
depend on each other, giving the moniker ’Naive’ to the algorithm. Naive Bayes
works by estimating the prior probability of each class from the training data.
It also estimates the likelihoods for each of the predictor attributes. A given
example, represented as a feature vector x, can be classified by maximum-a-
posteriori estimation at inference time. For each class c, its posterior proba-
bility is computed through the following equation: P(c|x) = P(x|c)P(c)/P(x).

In the above expression, P(c|x) is the posterior probability of class (c, tar-
get) given predictor (x, attributes), P(c) is the prior probability of a class,
P(x|c) is the likelihood of the predictor given a class, and P(x) is the prior
probability of the predictor. The predicted class for x will be the one with the
greatest posterior probability mass.

The benefit of this algorithm is that it is fast and computationally inex-

95

pensive. It performs well when there are multiple classes to predict. It also
performs well when the input is categorical rather than numerical. If the at-
tributes are independent, Naive Bayes performs well overall and requires less
training data than other algorithms [14]. However, if a category is presented in
the testing phase that was not shown to the algorithm in the training phase, it
cannot make a prediction. Realistically, it is almost impossible for predictors
to be completely independent.

Neural Network Algorithm. The neural network algorithm works by
calculating the probabilities of each combination of each possible state of the
input attribute against each possible state of the predictable attribute [12].
The network can be used for association analysis and can include multiple
outputs. The algorithm performs well when analyzing highly complex data if a
significant amount of training data is available. Classic applications of neural
networks include image processing, natural language processing, and pattern
recognition.

Summary. Each of these algorithms is used within Microsoft SSAS under
some Microsoft-specific names. Some of the Microsoft names are the names of
the actual algorithms, as in the case of Decision Trees, Naive Bayes, Neural
Networks, Linear Regression, and Logistic Regression. Microsoft also provides
some direction as to which method to use in specific applications. Figure 1
displays an infographic for a quick breakdown of how these Microsoft-specific
algorithms are related.

Figure 1: Infographic to explain how the Microsoft SSAS algorithms are used
and where they originated. Their SSAS name knows SSAS algorithms with no
’under the hood’ algorithm connection

96

4 Wrapper algorithm

In this section, we described our proposed wrapper algorithm. As it was pos-
sible to observe in Figure 1 displays, given a mining function, the infographic
lists the available mining methods available at SAS. However, the wrapper
algorithm differs as the dataset drives it. Instead of starting from the data
mining method, the algorithm indicates possible data mining functions from
the dataset structure.

As each algorithm is application-dependent, the approach of this wrapper
algorithm is to start with a complete set of every algorithm available in MS
SSAS and then pick off algorithms that are not suited for that application until
only one algorithm remains.

To illustrate how the algorithm chooses which data mining method to use,
Figure 2 presents a Decision-Tree flowchart for an example. In the chart, D
represents the Decision tree, K is K-Means, EM is Expectation-Maximization,
A is Apriori, Lin, and Log for Linear and Logistic Regression (respectfully),
NB for Naive Bayes, NN for Neural Networks.

Figure 2: A decision tree is showing how to decide the appropriate algorithm.

97

The first characteristic of the data mining application to be analyzed should
be whether classes are defined. If the classes are not defined, then KMeans
would be the only reasonable choice.

If there are defined classes in the data, then the algorithm continues to
decide the best data mining algorithm by next looking at the completeness
of the training data. Of course, training data sets are not perfect–if they
were, it wouldn’t be considered machine learning. If the data is primarily
incomplete, expectation-maximization, logistic regression, Naive Bayes, and
Neural Networks are running.

Next would be to look at the number of decision variables. Assuming this
algorithm will be distributed with SSAS if the number of decision variables
is greater than 2, then Linear and Logistic Regression would be out of the
running. If the number of decision variables is 2, then either Linear or Logistic
Regression are the best choices. To choose between the 2, if a linear relationship
was expected of the data (i.e., the data is studying supply and demand), then
linear is the chosen algorithm. If not, then logistics is the chosen one. If the
application chooses what comes next in a series, then the chosen algorithm will
use Markov chains.

If the application is to find everyday items, then a Decision tree or Apri-
ori is the best choice. To decide between the two, if the data is’ transaction’
style, then Apriori is the best algorithm. Otherwise, the choice is Decision
trees. Lastly, if the input is categorical, then Naive Bayes is the best. Other-
wise, Expectation-Maximization or Neural Networks are in the running. Ac-
cording to Nelwamondo, the accuracy of Expectation-Maximization is highly
problem-dependent. Still, it seems that Expectation-Maximization performs
better when there is minimal dependency among the variables [13].

These ideas can be summed up in the pseudocode described in Figure 3.

5 Conclusion

In this paper, we sketch the design of a wrapper algorithm to choose the ap-
propriate data mining function and methods for a given training dataset. It
appears this contribution of a wrapper algorithm for choosing the best MS
SSAS algorithm application is unique in the field of data mining. Further
research is necessary to implement the algorithm into future releases of MS
SSAS. Perhaps a wizard-style format will best suit users’ needs in determining
the best data mining algorithm to use. Selecting the appropriate algorithm for
a specific problem is an essential topic of any machine learning / data mining
class and there is a need for more literature and tools.

98

Figure 3: Wrapper algorithm that returns mining function and method for a
given dataset.

99

References

[1] Stephanie Andale. Em algorithm (expectation-maximization): Simple
definition.

[2] Helmut Berrer, Iain Paterson, and Jörg Keller. Evaluation of machine-learning
algorithm ranking advisors. In In Proceedings of the PKDD-2000 Workshop on
DataMining, Decision Support, Meta-Learning and ILP: Forum for Practical
Problem Presentation and Prospective Solutions. Citeseer, 2000.

[3] Jason Brownlee. A gentle introduction to expectation-maximization (em
algorithm).

[4] Jason Brownlee. Logistic regression for machine learning.

[5] MR Garey, David Johnson, and Hans Witsenhausen. The complexity of the
generalized lloyd-max problem (corresp.). IEEE Transactions on Information
Theory, 28(2):255–256, 1982.

[6] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin
Leyton-Brown. Auto-weka 2.0: Automatic model selection and hyperparameter
optimization in weka. Journal of Machine Learning Research, 18(25):1–5, 2017.

[7] Microsoft. Microsoft association algorithm technical reference. Technical
report, 2018.

[8] Microsoft. Microsoft clustering algorithm technical reference. Technical report,
2018.

[9] Microsoft. Microsoft decision trees algorithm technical reference. Technical
report, 2018.

[10] Microsoft. Microsoft linear regression algorithm technical reference. Technical
report, 2018.

[11] Microsoft. Microsoft logistic regression algorithm. Technical report, 2018.

[12] Microsoft. Microsoft neural network algorithm technical reference. Technical
report, 2018.

[13] Fulufhelo V Nelwamondo, Shakir Mohamed, and Tshilidzi Marwala. Missing
data: A comparison of neural network and expectation maximization
techniques. Current Science, pages 1514–1521, 2007.

[14] Business Analytics Sunil Ray and Intelligence. Learn naive bayes algorithm:
Naive bayes classifier examples.

[15] Jay Trivedi. The indecisive decision tree — story of an emotional algorithm
(1/2).

100

Computing-As-Literacy:
Cross-Disciplinary Computing for All∗

Arianna Meinking, Kanalu Monaco, Zachary Dodds
Harvey Mudd College
Claremont, CA 91711

{ameinking, kmonaco, zdodds}@g.hmc.edu

Abstract

As a means of inquiry and expression, computing has become a liter-
acy across many professional paths. This paper casts a vision for how a
small, STEM-focused school supports this role of computing-as-literacy.
We share several examples, both future visions and past experiences.
We hope to prompt and join discussions that further the reach, use, and
enjoyment of computing.

1 Computing beyond CS

More and more, computing is contributing to pursuits beyond software – in
fact, beyond CS itself. Computing offers a means of inquiry toward under-
standing and insight. Thought experiments and live-tunable simulations, for
example, offer rich environments in which to build understanding of coun-
terintuitive phenomena (such as special relativity) or surprising interactions
(e.g., climate-equilibrium simulations). Beyond inquiry, computing offers an
expressive medium for experiences, perhaps tailored to an individual style or a
group’s priorities. Our shared-media era leaves no doubt: Computing expands
humans’ aesthetic range. Our goal is that this be accessible to everyone.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

101

2 Computing As Literacy

Computing’s ability to advance inquiry and expand expression surpasses older
roles as a valuable-specialty and liberal-art: Computing is emerging as a pro-
fessional literacy. In fact, as a personal literacy, computing is well-established
– at times, perhaps, too-well-established!

We posit that computing’s role as a professional literacy will deepen in
years ahead. This work shares two curriculum-development paths by which
our small, STEM-focused program embraces this trend:

• discipline-specific bridges using computing to scaffold student interac-
tions and promote insight in physics, climate science, and mathematics.

• we also share tools for building computing context and community, de-
signed to support an undergraduate-universal computing curriculum.

Both efforts are in process. They reflect our community’s support for Computing-
As-Literacy among all students and all fields of study, building on deep, cross-
disciplinary foundations, e.g., in biology[6] and engineering[4]. The possibili-
ties, it seems, grow faster than we can instantiate them. We look forward to
teaming with other institutions on this path!

3 Disciplinary Bridge: Paradoxical Physics

Although physics is an inescapable part of the human experience, it is not
intuitive as an intellectual endeavor. First-term students at our institution
are “thrown into the deep end” with a half-semester special relativity class.
Students solve problems and untangle paradoxes. In one classic problem a
spaceship is traveling from the sun to another star[3]. But along the trip, our
Sun explodes!

This scenario raises a large family of questions about the relative times
at which events take place. When is the explosion perceived? When is the
second star reached? Formulas yield “answers,” but formulas contribute less
to conceptual understanding – understanding our physicists want to nurture –
of concepts like time dilation or length contraction[3]. Computing provides a
path for students to build those sophisticated, interwoven intuitions.

Those intuitions are visual, dynamic, and geometric. Whether imagin-
ing force vectors or watching momentum-conserving collisions, physics educa-
tion benefits from more than the calculations computing offers. To illustrate
this, we have built a simulation of the sun-exploding family of special rel-
ativity problems. (This and all of this paper’s interactions are available at
myappkanalu.firebaseapp.com).

When run, the student notices that moving clocks run slower than station-
ary ones (an example of time dilation) and that the distance between moving

102

Figure 1: A demonstration of relativity. The left image depicts a simulation
in the Sun-and-star’s rest frame; both are at rest, and the clock simply travels
from the Sun to the star. The right image depicts the same scenario, but in
the clock’s rest frame; from its point of view, the Sun and star are both moving
to the left!

objects is smaller than their distances when not moving (an example of length
contraction). Other important concepts, like “leading clocks lag” or the Pa-
parazzi Principle, emerge from this single simulation. And, as physicists like
to insist, you’ll notice that nothing moves faster than light!

4 Data-Driven Physics

Physical insight and computing share more than simulations. The data-analysis
branch of physics depends on computing to create insights – in fact, the com-
puting required is accessible, and adds to student understanding of both CS
and physics.

In one such example, students are provided a CERN csv file with 99,999
rows describing distinct particle-collision runs in the Large Hadron Collider[5].
This size is a sweet spot: too much data to process by hand, but a student-
with-laptop will succeed! The workflow starts with experiential understanding:
making sense of the features across the file’s columns using concepts learned
in Special Relativity. From there, the data is transformed into a list of masses;
these, in turn, are graphed as a histogram. The second half of the challenge
incorporates disciplinary insight: students use that histogram to determine the
mass of an otherwise-unseen particle created – and destroyed – before it reaches
the collision-detector.

Thus, students take data and make it meaningful to them en route to

103

Figure 2: The physics assignment makes use of CERN’s open source data to
analyze files. Using equations from Special Relativity and the conservation
of energy and momentum, students find masses for each collision in the file.
Mass-histogram abnormalities indicate particles that decayed from a “rare” par-
ticle: in the assignment, students find this “mystery” particle’s mass. Python’s
matplotlib and pandas are crucial libraries.

analysis and understanding. To cope with a task that has many steps and lots of
data, students break down a problem into “helper functions,” and mentally, into
steps of a repeatable workflow. Such an approach supports not only physics,
but real-world scientific and data-handling processes across many fields.

5 Disciplinary Bridge: Mathematics Experienced then
Expressed

Like physics, mathematics is a universal requirement at HMC. Many students
love math; others disagree; some are in between. Common to all groups is that
humans first do, then distill. Put another way, students only meaningfully
express mathematics after they have meaningfully experienced mathematics.
Calculations are useful, but computationally-empowered experiences are far
more useful for drawing out what mathematicians hope students will share!
Here, we show two such example-experiences: the German Tank Problem and
the Fenced Random Walk.

6 Teutonic Tanks

The German Tank Problem is a classic statistical thought-experiment. Ab-
stractly, it asks, “What’s the maximum?” from a discrete uniform distribution,

104

Figure 3: Students can input their own equation to estimate the max. The
program will generate over 1000 random samples and calculate an estimate for
each one to create a sampling distribution. The one above has decent accuracy
and low precision; not so good. The challenge is to create equations that have
high accuracy and high precision.

given a small subsample. Its open-endedness and authenticity are its power.
During WWII Allied forces wanted to estimate the number of tanks the Axis
was producing. Statisticians used the serial numbers from the small number of
captured tanks to create estimates – estimates that proved to be much more
accurate than traditional intelligence-gathering methods[2].

As an example, suppose seven serial numbers were known/captured: 302,
1953, 1917, 1082, 2176, 1728, and 1401. From these, we want to estimate the
maximum – not of those numbers – but of the production-sequence from which
they were captured. (In reality, the max was 2329.) Producing an estimate
from a single sample-of-seven is not a very effective strategy. Applying another
naive solution to this particular sample yields 2486, a bit too high. Using
random sampling however, we can create many seven-number-samples less than
2176 (the “observed” max) and track the distribution-max from each. Taking
an average of these maxima yields 2328, only one smaller than the real value!

Statistics is an incredibly valuable field, but this problem requires very little
knowledge of statistics; in fact there is no “right answer.” Our online interac-
tion allows students to create their own formulas and see how well they work!
Supported by a statistics curriculum, this reinforces deeper, experiential un-
derstandings of accuracy/precision tradeoffs, sampling distributions, and bias.

105

7 Random (Walk) Insights

Random walks offer students and instructors several points of engagement. In
their computing coursework, for instance, all students create a random walker
in python (initially an S) that roams back and forth until it hits a wall, re-
turning the number of steps taken. Students build, experiment with, analyze,
and extend their simulation. Through many trials, students find that a walker
ventures

p
N steps away from the origin after N random steps. On average, it

takes
p
N steps to reach the wall of the simulation.

This conclusion is powerful, because it is not intuitive: students determine
this by relying on experimentation and exercising their computing skills. In CS,
students create a fun and simple interface! For instructors, the simulation itself
is a door to more. After all, random walks are not limited to the command-
line. We have presented the web-versions to high-school and middle-school
teachers, who were able to use the interface to deduce the same counterintuitive
conclusions.

8 Disciplinary Bridge: Visualizing Interdependencies in
Climate Science

“Daisy World” is a climate-science simulation demonstrating how living things
affect climate in a hypothetical planet inhabited only by black daisies and white
daisies[7]. White daisies reflect a lot of sunlight; black daisies absorb a lot of
sunlight (they have different albedos). The Sun grows hotter and hotter over
time, but the simulation shows that under certain conditions, the temperature
of the planet remains relatively constant for a long period of time.

How is this possible? The presence of daisies has a dramatic impact on
the temperature of the planet. Black daisies that absorb heat bloom when the
temperature is low, and white daisies that reflect heat replace them as the Sun
grows hotter.

Daisy World is a great way to illustrate many fundamental climate concepts
such as albedo, feedback systems, and radiative equilibrium. Despite being a
relatively simple simulation, there are many functions and calculations needed.
The site encapsulates these calculations to emphasize student exploration and
understanding of the interdependencies present. Sliders allow students to test
how different parameters affect daisy growth and temperature. A map also
shows where daisies bloom and provides a different visualization of how species’
populations vary over time.

106

Figure 4: Students have control over simulation parameters and can generate
dynamic graphs of daisies vs. time and temperature vs. time. One of the goals
of this activity is to explore how to create a temperature equilibrium like the
one depicted above.

9 Vision vs. Verdict

We believe these new resources can stand alone as accessible, compelling ex-
amples of computational support for science, statistics, and mathematics. As
such, they have value as demonstrations, as launchpads to additional analysis,
and for building intuition in CS and the bridged field.

Valuable as we hope these examples are, we hope such resources become a
larger and larger part of the undergraduate computing experience. As of 2021,
building such sites requires more scaffolding than could comfortably fit into a
single course. This is also true of the powerful, popular PhET simulations that
inspire us[1]. Every year, however, technology and sophistication chip away at
these constraints!

In fact, all of these examples here been developed by students – including
the coauthors – who researched the available technologies and developed the
mindsets needed to leverage them. As computing tools become more accessible
and powerful, we promote both the authoring of such simulations and their use
as explorations – and insight-generators – in parallel. Authorship and owner-
ship: these are our community’s most important scientific resources. As these
example resources suggest, computational approaches offer a natural onramp
to both.

Acknowledgments The authors gratefully acknowledge the funding sup-
port of NSF projects 1707538 and 1612451, along with resources made available
by Harvey Mudd College.

107

References

[1] PhET interactive simulations. https://phet.colorado.edu/.

[2] George Clark, Alex Gonye, and Steven J Miller. Lessons from the german
tank problem. 2021.

[3] T.M. Helliwell. Special Relativity. University Science Books, 2010.

[4] C. F. Van Loan and K. Y. D. Fan. Insight through computing: a matlab
introduction to computational science and engineering. 2010.

[5] Thomas McCauley. Dimuon event information derived from the run2010b
public mu dataset, 2014.

[6] Parrish Waters and Jennifer A Polack. Interdisciplinary research experience
in computer science and biological sciences. CCSC Eastern, 36(3):63–69,
2020.

[7] Andrew J. Watson and James E. Lovelock. Biological homeostasis of the
global environment: the parable of daisyworld. Tellus B: Chemical and
Physical Meteorology, 35(4):284–289, 1983.

108

Curricular and community resources:
Supporting Scripting for All∗

Lilly Lee, Hallie Seay, Zachary Dodds
Harvey Mudd College
Claremont, CA 91711

{lglee, hseay, dodds}@g.hmc.edu

Abstract

This work envisions resources that help all of an institution’s un-
dergraduates build a foundation of computational authorship. Here we
present materials evolved from many years of experience requiring Intro-
to-Computing (Comp1) of all first-semester students. We hope to prompt
and join other institutions looking for ways to engage as much of their
undergraduate cohort as possible in computing.

1 Context-and-Community Tools: Developing shared
computational models

Every direction we look, our era offers opportunities for computing to con-
tribute. Whether through intensive calculations or insight-producing sum-
maries, computing offers accessible, repeatable, executable interaction-models.
From their patterns and dynamics, deeper insights can emerge and fundamen-
tal relationships can be discovered or reinforced.

The creation of conceptual models is at the heart of computing. Exploring
such models is the realm of introductory computing; our institution requires a
“Comp1” course of all first-semester students. This universality has prompted
us to develop and customize curricular tools that emphasize students’ “shared
computing-experience” and promote student-support of each year’s new, in-
coming cohort. This work highlights new directions along this path.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

109

Figure 1: CodingBat interface. It is a clean, simple website with a code editor
and test cases with which you can check your code.

2 Coding with Wally: A “multiple-path” CodingBat

For many years our students have used CodingBat, a venerable – and wonderful
– set of small-function exercises by Nick Parlante and co-authors at Stanford
University[3]. Students are prompted to compose a function matching desired
input-output behavior. Once run, students see the test cases they have passed
with others, perhaps, failed. Sometimes some of the test cases are hidden.

CodingBat’s approach is enormously valuable! It’s with good reason that
it has become so widespread: to solve a problem, one internalizes the specifi-
cation, perhaps tries a few examples, understands it, and expresses a solution.
Codingbat’s interface supports this workflow well.

3 The opportunity: Additional “approach headings” to
computational problem-solving

Each of that workflow’s components, however, offers opportunity for elabora-
tion. For example, the first step, “understanding the problem,” is no trifle! In
many cases, understanding the problem is the problem – what’s more, it is a
skill we can actively reinforce.

To that end, we have developed an institution-specific variation on Coding-
Bat named Coding with Wally (Wally is our informal mascot)[1]. Figure 2’s
example displays Coding with Wally’s interface; it is similar to CodingBat in
that students are given the prompt, a code editor, and test cases. However, it

110

Figure 2: Coding with Wally augments CodingBat’s approach, offering al-
ternative ways of exploring a problem, its specification, and its input/output
behavior. The interface supports the traditional approach of simply writing the
function body. The upper-right menu offers several other options: predicting
outputs, anticipating inputs, and finding bugs in provided, incorrect versions
of the function body itself.

Figure 3: The test input section. Users are given test inputs and are asked
to determine the corresponding output. The answer is checked, and the result
shared.

differs in also offering each facet separately.
To focus on the challenge of internalizing what the problem “wants you to

do,” Coding with Wally offers several alternative interfaces.
Figures 3 and 4 show Coding with Wally’s “test input” and “test output”

pages of the previously-shown dropdown. Because it is more focused than the
“wide-open” writing of a function body like in CodingBat, this mechanic is a
powerful one for developing a deeper understanding of the problem. Before
diving in, students have the opportunity to step back and carefully consider
what the transformation should do, both forward and “in reverse.”

This is especially useful for motivating edge cases and/or other details that
may escape attention the first time the problem is encountered. It also re-
inforces that problem understanding is worthwhile – and takes time. Too
often anxiety results from the inadvertently-absorbed belief that problem-
understanding needs to be immediate: it shouldn’t be!

A mechanic that further bolsters understanding is the “test bugs” section. A
user is provided a buggy or incomplete version of the code, as shown in Fig. 5.

111

Figure 4: The test output section. Users are given test outputs and are asked
to find a possible input (as there can be multiple). Again, the answer is checked
and result shared.

Figure 5: The test bugs interface. Users are provided a buggy version of the
code at right. The bottom left provides an interface for users to write inputs
that reveal the bugs.

By parsing and digesting that code, students are asked to consider how it does
– and doesn’t – meet the problem specification. This interaction requires deep
understanding with the problem specification and, more generally, problem-
specification space! In most cases, comprehending code that someone else has
written is more difficult than one’s own code. This is all the more true when
errors are lurking among its lines. (In this case, the buggy sum13 code does
not appropriately consider the numbers that come after 13!)

Philosophically, the contributions of Coding with Wally echo the insights of
Gamage’s “Bottom-up” approach[2], in which entire, working artefacts provide
a rich, authentic context. From that context, memorable and deeply engaging
interactions arise. By approaching a computational challenge in multiple ways,
each factored into a purpose-tuned interface, we conspire for each student to
develop a nuanced and useful “computational grounding” from which to wrestle
with future problems.

4 Slicer: Engaging a particular Python strength

At times, introductory students feel flooded with “sublanguages,” those spe-
cialized pieces of every language whose expression is worth developing, first

112

Figure 6: (left) Upon inputting a string or array into the first input box,
the user is presented with that same input right below in large letters. The
user can then “highlight” what they wish to keep by simply clicking on each
index. Hitting the second submit button generates a possible combination of
concatenated Python slicing to retrieve the indexes highlighted in blue. (right)
Here, the user inputs their own slicing syntax. The website then highlights
what part of the string or array that the user has selected with their code.

by practicing in isolation, then by integrating into a Coding-with-Wally-type
challenge. (From there, it’s on to problems “in the wild.”) With Slicer, we
scaffold this confidence-expanding process.

Python slicing and indexing can be difficult to grasp at first; it constitutes
its own mini-language, complete with syntactic and semantic idiosyncrasies
worthy of any full-fledged programming idiom! In general, slicing a sequence
item takes the format of item[start:end:stride], where start represents
the starting index, end represents the ending index, and stride representing
the number of indices traversed each step. For example, if item="abcdef",
then item[1:4:2] would evaluate to "bd". There are many edge cases.

This syntax takes time for newcomers to digest. To help, we introduce
Slicer, an interactive visual aid that singles out slicing syntax and invites stu-
dents to build their own conceptual model mapping from that syntax to state-
ment behavior[1]. Figures 6 and 7 show two “directions” for these interactions.

5 Hmmm with Wally: Making “the Machine” Accessible

High-level programming languages frame most of students’ “Comp1” interac-
tions. Base-two representation is also part of the experience. Our curriculum
further includes a unit on assembly language. We feel assembly valuable-as-
knowledge (all software “runs in assembly,” after all). It is also further op-

113

Figure 7: On the left is a description of each operation in the Hmmm assembly
language. On the right is a sample program that takes an input integer and
outputs its factorial. This also shows how students traditionally run Hmmm
programs through the terminal.

portunity to practice “computational patterns,”[4], i.e., conceptual models of
computing processes. There is a cohort-building facet, too, borrowing the spirit
of experiments such as [5].

A short, hands-on tour of assembly uncovers a layer of abstraction that
enriches the experience of high-level program development, and opens doors
to fuller models when the need arises. In a way, assembly is computing’s
“genetic translation and transcription.” Like genetics, it’s worth having as part
of a computational worldview – even if students don’t see their future selves
wrestling with machine architectures (or biological ones!)

6 Hmmm...

Thus, every student programs in the assembly language, Hmmm, in their re-
quired computing course. Hmmm, the Harvey Mudd miniature machine, is a
small, conceptually central subset of all in vivo assemblies. Hmmm digestibly
conveys instruction syntax and direct interaction with registers and memory.
The machine itself is a 16-register system with 256-memory locations, emulated
by a single Python file. Students run, debug, and reason about the Hmmm
code they write.

114

Figure 8: App interface: The page has a simple layout, displaying the editor
at left, registers at right, and input/output boxes in the center. The short
program shown in the editor was run with the “run all” button. This is similar
to how students would previously run their code, with the added benefit of
seeing the state of the registers and stack at the end of the execution.

7 Accessible Assembly: Hmmm with Wally

Though Hmmm makes the low-level mindset accessible, all assembly language
can be chin-scratching stuff! Beyond the command-line interface, we present
here an accessible web application with which students can visualize and tinker
with what their Hmmm code is actually doing – and how. This interface
reinforces the conceptual model we hope all students take away from their
Hmmm experience. Figures 8, 9, and 10 show this interface and summarize its
opportunities.

8 Perspective(s)

Sandboxes – where students can focus on one facet of a computational model
– offer benefits especially when computing is a universal, shared experience.
This work has illustrated the vision – and advantages – of embracing many
exploratory and explanatory paths of computing-as-literacy. When building
confidence and comfort with a new mindspace, multiple approaches – unpack-
ing problems from different perspectives – offer “onramps” into engagement
and understanding. For skills as broadly applicable as computing, this is all
the more important. As computing embraces more roles, such approaches are
vital: they open doors in all directions, both inward to further computational
work and onward across disciplinary specialties.

115

Figure 9: (left) “Step through” functionality allows students to run one in-
struction at a time, moving forward and back incrementally through their code,
seeing how registers and the stack changes with each line. Here, the last three
lines of code have not yet been run, as reflected in the stack and registers.
(right) The stack is positioned and changed as an extension of the editor to
emphasize how both instructions and the data-stack are stored in the same set
of memory locations.

Acknowledgments The authors gratefully acknowledge the funding sup-
port of NSF projects 1707538 and 1612451, along with resources made available
by Harvey Mudd College.

References

[1] All of the authors’ applications in this work are available at
https://myappkanalu.firebaseapp.com/.

[2] Lasanthi N. Gamage. A bottom-up approach for computer programming
education. Journal of Computing Sciences in Colleges, 36:66–75, April
2021.

[3] Nick Parlante. Nifty reflections. SIGCSE Bulletin, 39:25–26, 2007.

[4] Richard Rasala and Viera K. Proulx. Pattern and toolkits in introductory
cs courses. Proceedings of the second annual CCSC on Computing in Small
Colleges Northwestern conference, October 2000.

[5] Rita Sperry. We’re all in this together: learning communities for first-year
computer science majors. The Journal of Computing Sciences in Colleges
and Proceedings of the 32nd Annual CCSC South Central Conference, page
11–19, April 2021.

116

Security In Intelligent Home∗

Mario Garcia and Yeshihareg Hailu
Southeast Missouri State University

Cape Girardeau, MO 63701
{mgarcia,yfhailu1s}@semo.edu

Abstract

As human needs of intelligent aid are growing higher and higher, peo-
ple’s lives are becoming more dependent on various technologies. One
of the fastest-growing Internet of Things’ (IoT’) technologies, Intelligent
Home is becoming more involved in people’s lives. Controlling and mon-
itoring home appliances remotely with just a single click or touch of a
smart device or a laptop is becoming a common practice. This is possible
through IoT like Intelligent/Smart Home System. Since home appliances
are required to be connected to internet in order to make them accessible
and being monitored remotely, it is obvious that they are vulnerable to
cyber-attack. Thus, security and privacy are the main concerns when
implementing smart home systems. This paper has discussed and ana-
lyzed about security constraints, identify major potential security risks,
security constraints, security requirements, the nature of attacks, the se-
curity threats at each layer of IoT architecture on smart home and finally
design secure smart system.

1 Introduction

The Internet of Things (IoT) refers to the network of devices that are embedded
with sensor, software, and other technologies for the purpose of connecting and
exchanging data with other devices and system over the internet connection.
Therefore, smart homes are benefiting from these IoT technology. It is easy to
handle the home lights, switches, doors, cameras, and other electric appliances
using a laptop or smart phones with just a single touch.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

117

People can control home appliances from office or anywhere else using their
laptop or smart phone. Sensors are used in almost all the connected house
appliances. This paper focuses on security issues of intelligent home system
and proposed a solution that secure an intelligent home system. Layer based
security solution which includes physical protection, implementing smart home
firewalls, hub, encryption, and cryptographic strategies are proposed.

2 Problem Description

2.1 Security Requirements

Security and privacy are the main concerns during the implementation of IoT
as devices in the IoT system need to be connected to internet in order to be
accessed remotely.

The major security requirements of IoT are Confidentiality, Authenticity,
Integrity and Availability [11, 19]. Violation of any of these requirements can
cause a disaster in the system. Figure 1 illustrates the data security require-
ments of IoT.

Figure 1: Security Requirements ([1], Figure 2)

2.2 Security Challenges

Fulfilling the above-mentioned security requirements during the implementa-
tion of intelligent interconnected systems such as smart home always faces chal-
lenges. The major challenges could be Limited devices capabilities[11], Data
Management[19], Radio Frequency Identification (RFID)Tags Vulnerability[19],
Diverse Communication Protocols[18], Cascading Effect[3, 19], Autonomic control[11,
18, 19] and Physical liability.

Different layers of IoT network architecture are vulnerable for different
types of security attacks. Thus, Security attacks can be broadly classified

118

as Attack based on IoT architecture and RFID and WSN Classifications [11,
18, 19, 5, 6, 10, 17]. Figure 2 illustrates general and layer-based security issues
and attacks of IoT architecture.

Figure 2: IoT architecture and security issues/attack ([16], Figure 8.3)

2.3 Security Threats and Constraints

When planning to implement IoT system such as smart home, security is al-
ways a major concern. The capability of accessing house appliances through
the smart home system exposes for cyber-attack and unauthorized access of
personal information and data by third party who has special interest about
on extracting one’s personal data. The IoT system security attack can be clas-
sified into main categories as Physical Attack, network attack, Software Attack
and Encryption Attack. IP camera hacking through buffer overflow attacks [8],
a Distributed Denial-of-Service (DDoS) attack [14], Botnet attack to hack IoT
devices [4], SQL injection attacks and cross-site scripting attack [20] are the
major potential security threats that IoT is exposed to.

Resource constraints, along with the above mentioned and other types of
IoT threats, are the other security problems that IoT system suffering from [15].

119

Due to lower hardware size of device of IoT, thin operating system installed
in some types of IoT devices, and the characteristics of IoT devices which are
(heterogeneity, scalability, presence of multiple communication protocols and
portability) are barriers of implementing expensive security algorithm, robust
communication protocol, dynamic security patches, and conventional security
protocol respectively in IoT system.

As mentioned above, Smart Home System is possible through connection of
several digital appliances with the use of IoT. Mostly, end users communicate
through smart phones to control home appliances. Attacker can easily com-
promise the users’ privacy and security of home devices and related data [7].
Table 1 illustrates security issues of smart home in terms of the vulnerabilities
associated with few smart home devices.

Table 1: Smart home devices, functionality, and associated security threats
([16], Figure 8.1)

Since smart home system is controlled and monitored via smart mobile

120

phone Apps like Geolocation Services that can track one’s location, the privacy
and security of the smart home users are compromised [26]. One of the risks
of using this technology is that users are not aware that their location is being
tracked by third party. Geolocation and mapping are Apps commonly used by
criminals [30].

The other risk is using Wi-Fi. All Wi-Fi clients that were tested were
vulnerable to the attack against the group key handshake [28]. Figure 3 shows
Smart Home objects internet connection via Wi-Fi.

Figure 3: Smart Home internet connection via Wi-Fi [9]

These limitations, the risks, threats, and constraints of IoT system discussed
above, makes implementation of secured IoT system a challenge. Thus, having
Efficient Cryptography Techniques, Interoperability, Scalable Solution, Privacy
Protection, Resilience to Physical Attacks, Autonomous Control, and Cloud
Security are challenges that need to be considered during designing security
mechanisms to prevent the risks and threats of personal information misuse.

3 Proposed Solution

For the above-mentioned security attacks, the respective counter measures are
described in brief below.

3.1 Physical Attack

To protect the IoT from Physical Attack, use of the correct safety efforts on IoT
devices is essential. This is best done by utilizing equipment-based security.
Hardware security can also be used to authenticate device ID. This means that
a series of security measures can be put between the server and the device itself
to establish the authenticity of that device. human-based physical attacks and
natural disaster threats are to be addressed and managed as follows:

• Secure sensor design
• Secure sensor deployment
• Secure infrastructure
• Efficient user authentication approach (biometric or smart card) to im-

plement for legitimate access to physical devices and confidential infor-
mation.

121

• Implement efficient accessibility control mechanisms
• Efficient implementation of trust management
• Efficient hardware failure recovery schemes

3.2 Network Attack

The first and the main measure to protect from network attack is to make
sure that only required ports are exposed and available. After that prepare the
services that must not be vulnerable to buffer overflow and fuzzing attacks.
The other proposed solution to close the security hole of smart home system
is using firewall both at software and hardware level. A firewall is a network
security device or software that monitors incoming and outgoing network traffic
and decides whether to allow or block specific traffic based on a defined set of
security rules. Figure 4 illustrates the smart home secured architecture using
firewall.

Figure 4: Secure architecture for Smart Home ([27], Figure 2)

The other important proposed solution is using smart home hub [29] net-
work devices. The proposed smart home hub hardware device can connect
the appliances which are nodes of the smart home network and provides an
intrusion detection system that controls and monitors where and how the in-
formation should be exchanged. The device may also include the computing
resources that sends a warning message when unauthorized access is detected.

After this, the detail security measure that should be taken to protect
network attack is listed below.

• Renaming the router instead of keeping the name provided by the man-
ufacturer.

• Use strong encryption method for Wi-Fi router setting.
• Alter the default username and passwords.

122

• Setting up a guest network in Wi-Fi access to prevent the private data
in the network from being accessed by intruders.

• Disabling the features which are already enabled by the manufacturer
like, a remote access if it is not required.

• Change the default privacy and security settings of the devices which are
provided by the manufacturer.

• Software updating regularly.
• Avoid connecting to public Wi-Fi networks.
• Two step verifications to easily understand whether the communication

is with the genuine sender.
• Use strong, unique passwords for Wi-Fi networks and device accounts:

Strong and unique passwords are essential for Wi-Fi networks and de-
vices.

• Disable Telnet login and use SSH [25] where possible.
• Auditing of the IoT devices at regular intervals.
• Have an individual user account for each employee.
• Limited accessibility: Granting limited authority to employees.
• Passwords should be changed at regular intervals.
• Trained cyber security professionals are needed.
• Use proper certification for accessing the internet.

In addition to above mentioned, important technique to prevent the IoT
from network attack is connecting the IoT devices to the 0G network because
this is a dedicated, low power wireless network specially designed for sending
small and critical messages from any IoT device to the Internet [22]. The 0G
network does not support network-initiated downlinks, it only supports device-
initiated downlinks. These properties make the 0G network not susceptible to
network attackers.

3.3 Software Attacks

This attack, which affects the application layer at the top of the three-layer
of IoT architecture can be overcome by controls the legitimacy of authorized
users (through authentication and access control systems), protection of appli-
cation software, OS, and end-user interfaces through the utilization of high-level
programming languages which assists to avoid insecure programming. Regu-
lar updating and installation of antivirus and antispyware software, installing
updates that are required by the operating system and application software,
taking a backup of business data and information, Controlling Physical access
to the system and network components.

123

3.4 Encryption Attack

The public key infrastructure (PKI) has ensured that the encryption of data
must be done through asymmetric and symmetric encryption processes.

3.5 Cryptographic Strategies

Cryptographic algorithms such as symmetric key crypto- graphic algorithms,
and advanced encryption standard (AES) [13], Secure hash calculations (SHA)
[24], Diffie Hellman (DH) [21], Revest Shamir Adelman (RSA) [12], Elliptic
curve cryptography (ECC), and Key Administration are utilized to safeguard
information secrecy. Even though the mentioned cryptography algorithms are
secure and efficient but that they require more CPU power and consume more
battery power. For this reason, they are not a feasible way to verify IoT devices,
so there has been an emergence of new cryptographic calculations or advances
the existing ones for battery operated IoT devices.

3.6 Authentication and Access Control

The IoT concentrates on a machine to machine (M2M) method of correspon-
dence [2]. Table 2 summarizes the security attacks with counter measures on
different layers of the IoT network architecture.

4 Conclusion

This paper has introduced about IoT and smart home which is one of the
implementations of IoT in the introduction section. The problem description
section identified Security Requirements, Challenges, and discussed in detail.
In addition to that, different security Risks, threats and IoT device constraints
in terms of hardware, software, and communication protocols which are barrier
for implementation of standard security guard are investigated. Cyber-attack
and the respective security issues at each layer of IoT have been discussed. Fi-
nally, in the proposed Solution section, solutions to fulfill the identified security
requirements and to protect the smart home system from the mentioned cy-
berattack such as physical attack, network attack, software attack, encryption
attack, and others are proposed and discussed.

124

Table 2: Summary of attacks on different layers of IoT with counter measures
([23], Table 14.2)

125

References

[1] Razan AL MOGBIL, Muneerah AL ASQAH, and Salim EL KHEDIRI. Iot: Secu-
rity challenges and issues of smart homes/cities. In 2020 International Conference on
Computing and Information Technology (ICCIT-1441), pages 1–6. IEEE, 2020.

[2] Anum Ali, Ghalib A Shah, Muhammad Omer Farooq, and Usman Ghani. Technologies
and challenges in developing machine-to-machine applications: A survey. Journal of
Network and Computer Applications, 83:124–139, 2017.

[3] Bako Ali and Ali Ismail Awad. Cyber and physical security vulnerability assessment for
iot-based smart homes. sensors, 18(3):817, 2018.

[4] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, et al.
Understanding the mirai botnet. In 26th {USENIX} security symposium ({USENIX}
Security 17), pages 1093–1110, 2017.

[5] Trevor Braun, Benjamin CM Fung, Farkhund Iqbal, and Babar Shah. Security and
privacy challenges in smart cities. Sustainable cities and society, 39:499–507, 2018.

[6] Leela Krishna Bysani and Ashok Kumar Turuk. A survey on selective forwarding at-
tack in wireless sensor networks. In 2011 International Conference on Devices and
Communications (ICDeCom), pages 1–5. IEEE, 2011.

[7] Ziv Chang. Iot device security-locking out risks and threats to smart homes. Trend
Micro Research, 30, 2019.

[8] R Chirgwin. Get pwned: Web cctv cams can be hijacked by single http request-server
buffer overflow equals remote control, 2016.

[9] Ivan Del Pozo and Denise Cangrejo. Creating smart environments: analysis of improving
security on smart homes. In 2018 IEEE 6th International Conference on Future Internet
of Things and Cloud (FiCloud), pages 303–310. IEEE, 2018.

[10] Otmane El Mouaatamid, Mohammed Lahmer, and Mostafa Belkasmi. Internet of things
security: Layered classification of attacks and possible countermeasures. electronic
journal of information technology, (9), 2016.

[11] Panagiotis I Radoglou Grammatikis, Panagiotis G Sarigiannidis, and Ioannis D Moscho-
lios. Securing the internet of things: Challenges, threats and solutions. Internet of
Things, 5:41–70, 2019.

[12] Shay Gueron, Simon Johnson, and Jesse Walker. Sha-512/256. In 2011 Eighth Interna-
tional Conference on Information Technology: New Generations, pages 354–358. IEEE,
2011.

[13] Simon Heron. Advanced encryption standard (aes). Network Security, 2009(12):8–12,
2009.

[14] S. Hilton. Dyn analysis summary of friday october 21 attack. https://dyn.com/blog/
dyn-analysis-summary-of-friday-october-21-attack.

[15] Md Mahmud Hossain, Maziar Fotouhi, and Ragib Hasan. Towards an analysis of security
issues, challenges, and open problems in the internet of things. In 2015 ieee world
congress on services, pages 21–28. IEEE, 2015.

[16] Muhammad Azhar Iqbal, Sajjad Hussain, Huanlai Xing, and Muhammad Ali Imran.
Enabling the Internet of Things: Fundamentals, Design and Applications. John Wiley
& Sons, 2020.

126

[17] Hasan Ali Khattak, Munam Ali Shah, Sangeen Khan, Ihsan Ali, and Muhammad Imran.
Perception layer security in internet of things. Future Generation Computer Systems,
100:144–164, 2019.

[18] Changmin Lee, Luca Zappaterra, Kwanghee Choi, and Hyeong-Ah Choi. Securing smart
home: Technologies, security challenges, and security requirements. In 2014 IEEE
Conference on Communications and Network Security, pages 67–72. IEEE, 2014.

[19] Engin Leloglu. A review of security concerns in internet of things. Journal of Computer
and Communications, 5(1):121–136, 2016.

[20] Zhen Ling, Kaizheng Liu, Yiling Xu, Chao Gao, Yier Jin, Cliff Zou, Xinwen Fu,
and Wei Zhao. Iot security: An end-to-end view and case study. arXiv preprint
arXiv:1805.05853, 2018.

[21] Kevin S McCurley. A key distribution system equivalent to factoring. Journal of
cryptology, 1(2):95–105, 1988.

[22] M Meraj and Sumit Kumar. Evolution of mobile wireless technology from 0g to 5g.
International Journal of Computer Science and Information Technologies, 6(3):2545–
2551, 2015.

[23] Rajit Nair, Preeti Sharma, and Dileep Kumar Singh. Security attacks in internet of
things. Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications,
pages 237–261, 2020.

[24] Shireen Nisha and Mohammed Farik. Rsa public key cryptography algorithm–a review.
International journal of scientific & technology research, 6(7):187–191, 2017.

[25] SSH Communications Security. Ssh protocol – secure remote login and file transfer |
ssh.com. https://www.ssh.com.

[26] Shigeaki Tanimoto, Rei Kinno, Motoi Iwashita, Tohru Kobayashi, Hiroyuki Sato, and
Atsushi Kanai. Risk assessment of home gateway/smart meter in smart grid service.
In 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI),
pages 1126–1131. IEEE, 2016.

[27] Shafiq ur Rehman and Volker Gruhn. An approach to secure smart homes in cyber-
physical systems/internet-of-things. In 2018 Fifth International Conference on Software
Defined Systems (SDS), pages 126–129. IEEE, 2018.

[28] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing nonce reuse
in wpa2. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1313–1328, 2017.

[29] Adriana Wilde, Olivia Ojuroye, and Russel Torah. Prototyping a voice-controlled smart
home hub wirelessly integrated with a wearable device. In 2015 9th International Con-
ference on Sensing Technology (ICST), pages 71–75. IEEE, 2015.

[30] Wang Xi and Luo Ling. Research on iot privacy security risks. In 2016 International
Conference on Industrial Informatics-Computing Technology, Intelligent Technology,
Industrial Information Integration (ICIICII), pages 259–262. IEEE, 2016.

127

An Introduction to MPI for Python∗

Conference Tutorial

Xuguang Chen
Computer Science Department

St. Martin’s University
Lacey, WA 98503
xchen@stmartin.edu

Because parallel computing has many potential applications, such as
databases and data mining, real time simulation of systems, and advanced
graphics, it is becoming more and more important. There are two widely
known parallel programming models today: message-passing model and shared
memory model. In the message-passing model, each task has its private mem-
ories, and different tasks can communicate each other via message exchanges.
Message Passing Interface (MPI) is a specification designed by a group of re-
searchers from academia and industry and primarily addressing the message-
passing model. It specifies the syntax and semantics of a core of library routines
useful for message-passing programs and can be implemented in different pro-
gramming languages, for example, C, Fortran, Java, and Python.

Python is an interpreted, high-level and general-purpose programming lan-
guage, emphasizing code readability with its notable use of significant inden-
tation. Other than using as a major programming language in CS1 and CS2
courses, Python has also been applied in many areas such as machine learn-
ing, artificial intelligence, data science, and data visualization. The package,
mpi4py, is an MPI for Python package that provides bindings of MPI standard
for Python and allows any Python program to exploit multiple processors.
This package is constructed on top of the MPI specifications, providing an
object-oriented interface similar to MPI-2 C++ bindings. The package mpi4py
supports point-to-point (i.e., sends, receives) and collective (e.g., broadcasts,
scatters, and gathers) communications of any picklable Python object, as well
as optimized communications of Python object exposing the single-segment
buffer interface (NumPy arrays, built in bytes/string/array objects).

In this tutorial, Python MPI parallel programming with mpi4py is intro-
duced. It firstly will introduce where to acquire and how to install the needed

∗Copyright is held by the author/owner.

128

software like mpi4py and Anaconda on Windows machines and Linux machines.
After that, the tutorial will explain how to edit, compile, and run an MPI pro-
gram in Python on a Windows machine and a Linux machine, including the
basic organization of a Python MPI program. Thirdly, it will cover some MPI
routines available in mpi4py and used for point-to-point and collective com-
munications. Finally, the materials suitable for further study will be listed and
described.

The intended audience of this tutorial is anyone who is a beginner to parallel
programming and/or is interested in MPI programming, but has learned basic
knowledge of the programming languages, such as Python, Java, C#, Fortran,
or C++. The expected learning outcomes include the followings. Firstly,
after attending the tutorial, the audience should know what software will be
needed for MPI parallel programming in Python, especially where to get a
copy and how to install on a windows machine or Linux machine. Then, the
audience should know what MPI is and what are point-to-point and collective
communications. Other than that, how to edit, compile, and run an MPI
programs in Python will be learned. Moreover, the audience should learn
how to implement various MPI operations in Python, such as point-to-point
communications and collective communications. At the end of the tutorial, the
e-version of the lecture notes, code in Python as examples, and other materials
for self-study can be provided, if needed.

129

Using Cocalc to Teach Python∗

Conference Tutorial

Harold Nelson
Computer Science Department

Saint Martins University
Lacey, WA 98503
hnelson@stmartin.edu

Description

Cocalc (Collaborative Calculation) is a cloud-based system originally created
to facilitate the use of SageMath, a computer algebra system. It also provides
a platform for other languages, including python. It enables a literate style of
programming through the use of Jupyter notebooks. The collaborative feature
makes it an ideal system for teaching remotely.

Tutorial Proposal

This hands-on tutorial session will provide a walkthrough of the steps needed to
deliver a course: creating a course, a handout, and an assignment. There will
also be a demonstration of the literate programming style and collaboration.

∗Copyright is held by the author/owner.

130

Teaching Numerical Methods to
Computer Science Majors using

SageMath Interacts∗

Conference Tutorial

Razvan A. Mezei
The Hal and Inge Marcus School of Engineering

Saint Martin’s University, Lacey, WA 98503
rmezei@stmartin.edu

In this tutorial we will demonstrate the use of SageMath Interacts ([2, 3])
to as a great way to implement various numerical methods in a class consisting
of mostly undergraduate Computer Science majors (although students can also
be non-CS majors). The use of Interacts (SageMath Interacts) is a great and
fun way to introduce Computer Science students various Math concepts such
as: variables, functions, solving non-linear equations, approximation, polyno-
mial and spline interpolation, etc. Such Interacts help students visualize the
problems they are working on, as well as give them a chance to easily pro-
gram nice Graphical User Interface applications. SageMath is an open-source
Python-based tool, so learners will get exposed to the syntax of Python and
will also make use of the symbolic computation capabilities provided by Sage-
Math. In this tutorial we will explore all the above topics through hands-on
applications. While the tutorial will focus on programming examples used in
a Numerical Methods course ([1]), they can be used in other courses such as:
Introduction to Computer Science, Discrete Mathematics, and other.

References

[1] G.A. Anastassiou and R. A. Mezei. Numerical Analysis Using Sage. Springer,
2015.

[2] G.V. Bard. Sage for undergraduates (online version).

[3] W.A. Stein et al. Sagemath - open-source mathematical software system.

∗Copyright is held by the author/owner.

131

Teaching Computer Science in 3D
Virtual Worlds∗

Conference Tutorial

Cynthia Calongne
St. Martin’s University

Lacey, WA 98503
calongne@pcisys.net

Virtual worlds are 3D environments where educators simulate real or imag-
ined online learning spaces and teach classes within them. During a pandemic,
it was a delightful experience to teach synchronous classes on a virtual beach
or within a French village and to watch the student projects come to life.

Considerable work goes into planning these imaginative classrooms. This
tutorial describes the experiences from past classes taught in virtual worlds and
provides examples from a case study for a virtual reality class hosted in the
Fall 2020 term for a Saint Martin’s University class. It features the technology,
design of the learning environment, and the course design activities as well as
educator observations.

The goal is to identify the requirements and process for planning and host-
ing a computer science class in a 3D virtual world.

For visual examples from past classes and conference presentations, visit
the repository hosted online as provided in the references[2] and review the
images from the Fall 2020 class[3].

Computer science topics taught in virtual worlds featured the following.

• software requirements engineering
• software design
• usability testing
• systems engineering methods
• game development with pervasive computing
• cloud computing
• robotics
• virtual reality

∗Copyright is held by the author/owner.

132

Topics

The session features planning, preparation, resource gathering, learning site
design, and tips on how to stage learning activities from the initial classes and
throughout the course. It also explores the challenges of authentic assessment
projects, project evaluations, FERPA compliance, and navigating the issues
related to interaction with students in game-like environments.

Figure 1 features a Design Studio Framework for structuring class activities
during the creation of projects that apply the course concepts. The tutorial
will explain how to use it as well as a rubric designed for staging the activities
and assessing the results.

Figure 1: The Design Studio Framework builds on the work by Brown[1]

References

[1] Tim Brown et al. Design thinking. Harvard business review, 86(6):84, 2008.

[2] Cynthia Calongne. Cynthia Calongne’s presentations [Slides].

[3] Cynthia Calongne. TCC 2021 teaching for the Saints [Slides].

133

A Comparison of ETL (Extract,
Transform, and Load) Tools: Python vs.

Microsoft SQL Server Integration
Services (SSIS)∗

Conference Tutorial

Guangyan Li1, Mary Donahoo2, Mario Guimaraes1
1The Hal and Inge Marcus School of Engineering

2Integrated Technology Services
Saint Martin’s University, Lacey, WA 98503

{gli,mdonahoo,MGuimaraes}@stmartin.edu

ETL (extract, transform, and load) is a process of gathering large volumes
of raw data from multiple (internal and external) sources, transforming the
data to meet certain needs, and consolidating data into a single, centralized
location such as data warehouse database for analytics or storage. There are
many ETL tools available in the data warehousing market, and the choice
of ETL tools depends on many factors such as company data needs, existing
technology, and budget. Microsoft SQL Server Integration Services (SSIS) is
an integrated ETL tool for building enterprise-level data integration and data
transformations solutions, and it is a natural choice if SQL Server and other
related Microsoft technologies are used. Python is a popular programming
language choice for data analytics and data science. Python offers a variety of
free ETL tools such as Apache Airflow, Petl and Pandas.

This tutorial aims to expose participants to the basics of ETL process and
the role it plays in data warehousing, and help participants choose the right
ETL tools for teaching courses such as data warehousing, business intelligence
(BI) and business analytics. The complete ETL tasks using both SSIS and
Python ETL tools are demonstrated. The pros and cons of using enterprise
ETL tools like SSIS and open-source software tools like Python and its libraries
are discussed. Given the increasing trend of migrating enterprise data to cloud,
other prominent ETL tools, particular those handle cloud data, are also briefly
introduced and explained.

∗Copyright is held by the author/owner.

134

