
The Journal of Computing
Sciences in Colleges

Papers of the 33rd Annual CCSC
Southeastern Conference

October 25th-26th, 2019
Auburn University

Auburn, AL

Baochuan Lu, Editor John Hunt, Regional Editor
Southwest Baptist University Covenant College

Volume 35, Number 4 October 2019

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing Sci-
ences in Colleges. Printed in the USA. POSTMASTER: Send address changes
to Susan Dean, CCSC Membership Secretary, 89 Stockton Ave, Walton, NY
13856.

Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners & Foreword 7

Welcome to the 2019 CCSC Southeastern Conference 9

Regional Committees — 2019 CCSC Southeastern Region 10

Reviewers — 2019 CCSC Southeastern Conference 11

Introduction to Jetstream:
A Research and Education Cloud — Conference Tutorial 12

Sanjana Sudarshan, Jeremy Fischer, Indiana University

Using Eclipse and IntelliJ with Dynamic Viewers for Program
Understanding and Debugging in Java — Conference Tutorial 15

James H. Cross II, T. Dean Hendrix, Auburn University

Building and Expanding a Successful Undergraduate Research
Program — Panel Discussion 18

Sarah Heckman, NC State University, Brandon Fain, Duke University,
Manuel Pérez-Quiñones, University of North Carolina at Charlotte

A Comparison of Two Popular Machine Learning Frameworks 20
Chance Simmons, Mark A. Holliday, Western Carolina University

Alexa Skill Voice Interface for the Moodle Learning Management
System 26

Michelle Melton, James Fenwick Jr., Appalachian State University

Auto-Checking Digital Logic Design Labs Through Physical
Computing 36

Gongbing Hong, Gita Phelps, Yi Liu, Kenneth Trussell, Georgia College
and State University

Similarity Matching in News Articles 46
Nathaniel Ballard, Deepti Joshi, The Citadel

Categorizing User Stories in the Software Engineering Classroom 52
Brian T. Bennett, Tristan Onek, East Tennessee State University

3

Rethinking the Role of Simulation in Computer Networks
Education 60

Qian Liu, Rhode Island College

Detecting Areas of Social Unrest Through Natural Language
Processing on Social Media 68

Timothy Clark, Deepti Joshi, The Citadel

Take Note: An Investigation of Technology on the Line Note
Taking Process in the Theatre 74

René Borr, Valerie Summet, Rollins College

Exploring Collaborative Talk Among African-American Middle-
School Girls in the Context of Game Design for Social Change 80

Jakita O. Thomas, Auburn University, Yolanda Rankin, Florida State
University, Quimeka Saunders, Spelman College

Assessing Ethics in a Computer Science Curriculum: Instrument
Description and Preliminary Results 90

Kevin R. Sanft, University of North Carolina Asheville

Reflective Writing Through Primary Sources 97
Valerie Summet, Rollins College

Mapping and Securing User Requirements on an IoT Network 103
J. Delpizzo, R. Honeycutt, E. Spoehel, S. Banik, The Citadel

Ranking Privacy of the Users in the Cyberspace 109
Adrian Beaput, Shankar Banik, Deepti Joshi, The Citadel

One Department, Four Undergraduate Computing Programs 115
Tony Pittarese, Brian Bennett, Mathew Desjardins, East Tennessee
State University

Examining Strategies to Improve Student Success in CS1 124
Janet T. Jenkins, Mark G. Terwilliger, University of North Alabama

+, - or Neutral: Sentiment Analysis of Tweets on Twitter
— Nifty Assignment 133

Robert Lutz, Evelyn Brannock, Georgia Gwinnett College

4

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing
Sciences in Colleges (along with the
years of expiration of their terms), as
well as members serving CCSC:
Jeff Lehman, President (2020),
(260)359-4209,
jlehman@huntington.edu,
Mathematics and Computer Science
Department, Huntington University,
2303 College Avenue, Huntington, IN
46750.
Karina Assiter, Vice President
(2020), (802)387-7112,
karinaassiter@landmark.edu.
Baochuan Lu, Publications Chair
(2021), (417)328-1676,
blu@sbuniv.edu, Southwest Baptist
University - Department of Computer
and Information Sciences, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill
Rd., Kansas City MO 64110.
Judy Mullins, Central Plains
Representative (2020), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, School of
Computing and Engineering, 5110
Rockhill Road, 546 Flarsheim Hall,
University of Missouri - Kansas City,
Kansas City, MO 64110.

John Wright, Eastern
Representative (2020), (814)641-3592,
wrightj@juniata.edu, Juniata College,
1700 Moore Street, Brumbaugh
Academic Center, Huntingdon, PA
16652.
David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Lawrence D’Antonio,
Northeastern Representative (2022),
(201)684-7714, ldant@ramapo.edu,
Computer Science Department,
Ramapo College of New Jersey,
Mahwah, NJ 07430.
Cathy Bareiss, Midwest
Representative (2020),
cbareiss@olivet.edu, Olivet Nazarene
University, Bourbonnais, IL 60914.
Brent Wilson, Northwestern
Representative (2021), (503)554-2722,
bwilson@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Technology Department, College of
Computer & Information Sciences,
Regis University, Denver, CO 80221.
Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308-2099.

5

Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer
Science, Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2020), (530)898-4864,
bcdixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These
members are serving in positions as
indicated:
Brian Snider, Membership
Secretary, (503)554-2778,
bsnider@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Will Mitchell, Associate Treasurer,
(317)392-3038, willmitchell@acm.org,
1455 S. Greenview Ct, Shelbyville, IN
46176-9248.
John Meinke, Associate Editor,

meinkej@acm.org, UMUC Europe
Ret, German Post: Werderstr 8,
D-68723 Oftersheim, Germany, ph
011-49-6202-5777916.
Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,
MSC 2615, Pacific University, Forest
Grove, OR 97116.
Elizabeth Adams, National
Partners Chair, adamses@jmu.edu,
James Madison University, 11520
Lockhart Place, Silver Spring, MD
20902.
Megan Thomas, Membership
System Administrator,
(209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus,
One University Circle, Turlock, CA
95382.
Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

6

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft

Google for Education
GitHub

NSF – National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology

Teradata
Mercury Learning and Information

Mercy College

7

Foreword

The following five CCSC conferences will take place this fall.

Midwestern Conference October 4-5, 2019
Benedictine University in Lisle, IL

Northwestern Conference October 4–5, 2019
Pacific University, Forest Grove, OR

Rocky Mountain Conference October 11-12, 2019
University of Sioux Falls in Sioux Falls, SD

Eastern Conference October 25-26, 2019
Robert Morris University in Moon Township, PA

Southeastern Conference October 25-26, 2019
Auburn University in Auburn, AL

The papers and talks cover a wide variety of topics that are current, excit-
ing, and relevant to us as computer science educators. We publish papers and
abstracts from the conferences in our JCSC journal. You will get the links to
the digital journals in your CCSC membership email. You can also find the
journal issues in the ACM digital library and in print on Amazon.

Since this spring we have switched to Latex for final manuscript submission.
The transition has been smooth. Authors and regional editors have worked
hard to adapt to the change, which made my life a lot easier.

The CCSC board of directors have decided to deposit DOIs for all peer-
reviewed papers we publish. With the DOIs others will be able to cite your
work in the most accurate and reliable way.

Baochuan Lu
Southwest Baptist University

CCSC Publications Chair

8

Welcome to the 2019 CCSC Southeastern Conference

Welcome to the 33rd Southeastern Regional Conference of the Consortium
for Computing Sciences in Colleges. The CCSC:SE Regional Board welcomes
you to Auburn, AL, the home of Auburn University. The conference is designed
to promote a productive exchange of information among college personnel con-
cerned with computer science education in the academic environment. It is
intended for faculty as well as administrators of academic computing facilities,
and it is also intended to be welcoming to student participants in a variety
of special activities. We hope that you will find something to challenge and
engage you at the conference!

The conference program is highlighted with a variety of sessions, such as
engaging guest speakers, workshops, panels, student posters, faculty posters, a
nifty assignment session and several sessions for high quality refereed papers.
We received 25 papers this year of which 15 were accepted to be presented at
the conference and included in the proceedings – an acceptance rate of 60%.

Two exciting activities are designed specifically for students – a research
contest and an undergraduate programming competition, with prizes for the
top finishers in each.

We especially would like to thank the faculty, staff, and students of Auburn
University for their help in organizing this conference. Many thanks also to the
CCSC Board, the CCSC:SE Regional Board, and to a wonderful Conference
Committee, led by Conference Chair Dr. Richard Chapman. Thank you all so
much for your time and energy.

We also need to send our deepest appreciation to our partners, sponsors,
and vendors. Please take the time to go up to them and thank them for their
contributions and support for computing sciences education – CCSC:SE Na-
tional Partners: Turing’s Craft, Google for Education, GitHub, National Sci-
ence Foundation, Codio, zyBooks, National Center for Women and Information
Technology, Teradata University Network, Mercury Learning and Information,
Mercy College. Sponsoring Organizations: CCSC, ACM-SIGCSE, Upsilon Pi
Epsilon.

We could not have done this without many excellent submissions from au-
thors, many insightful comments from reviewers, and the support from our
editors Baochuan Lu and Susan Dean. Thanks to all of you for helping to
create such a great program.

We hope you enjoy the conference and your visit to Auburn University.

Kevin Treu, CCSC:SE Regional Board Chair, Furman University
John Hunt, Program Chair, Covenant College

9

2019 CCSC Southeastern Conference Steering Committee

Kevin Treu, Conference Chair .Furman University
Richard Chapman, Site chair .Auburn University
John Hunt, Program Chair . Covenant College
Jean French, Local Registrar . Coastal Carolina University
Chris Healy, Student Research Contest Director Furman University
Nadeem Hamid, Nifty Assignments Co-ChairBerry College
Steven Benzel, Nifty Assignments Co-Chair Georgia Highlands College
Andy Digh, Programming Competion Co-Director Mercer University
Chris Healy, Programming Competion Co-Director Furman University

Regional Board — 2019 CCSC Southeastern Region

Kevin Treu, Board Chair . Furman University
Kevin Treu, Board Representative . Furman University
Jean French, Registrar . Coastal Carolina University
John Hunt, Treasuer . Covenant College
Laurie Patterson, SecretaryUniversity of North Carolina Wilmington
Susan Dean, publicity chair . retired
John Hunt, Regional Editor . Covenant College

10

Reviewers — 2019 CCSC Southeastern Conference

Ali, Farha .Lander University, Greenwood, SC
Allen, Robert . Mercer University, Macon, GA
Alvin, Chris . Furman University, Greenville , SC
Angel, N. Faye . Ferrum College, Ferrum, VA
Besmer, Andrew . Winthrop University, Rock Hill, SC
Bogert, Kenneth University of North Carolina Asheville, Asheville, NC
Bonyadi, Cyrus . . .University of Maryland, Baltimore College, Longwood, FL
Bowe, Lonnie . Concord University, Princeton, WV
Carl, Stephen Sewanee: The University of the South, Chattanooga, TN
Dannelly, Stephen .Winthrop University, Rock Hill, SC
Dekhane, Sonal Georgia Gwinnett College, Lawrenceville, GA
Digh, Andy . Mercer University, Macon, GA
Drawert, BrianUniversity of North Carolina Asheville, Asheville, NC
Dumas, Joe University of Tennessee at Chattanooga, Chattanooga, TN
Elliott, Robert A.Southern University at New Orleans, New Orleans, LA
Garrido, Jose . Kennesaw State University, Marietta, GA
Gaspar, AlessioUniversity of South Florida, Lakeland, FL
Glass, Michael . Valparaiso University, Valparaiso, IN
Goddard, Wayne . Clemson University, Clemson, SC
Heinz, AdrianGeorgia Gwinnett College, Lawrenceville, GA
Holliday, MarkWestern Carolina University, Cullowhee„ NC
Hong, Gongbing Georgia College and State University, Milledgeville, GA
Hutchings, Dugald .Elon University, Elon, NC
Lartigue, Jonathan .Collins Aerospace, Cedar Rapids, IA
Lee, Gilliean . Lander University, Greenwood, SC
Lee, Ingyu . Troy University, Troy, AL
Lewis, Adam .Athens State University, Athens, AL
Li, Rao . University of South Carolina Aiken, Aiken, SC
Lindoo, EdNova Southeastern University, Fort Lauderdale-Davie, FL
Liu, Yi Georgia College State Universi, Milledgeville, GA
Lutz, RobertGeorgia Gwinnett College. Lawrenceville, GA
Lux, Thomas . Roanoke College, Ashland, VA
McGuire, Timothy Texas A&M University, College Station, TX
Murray, Meg .Kennesaw State University, Kennesaw, GA
Patterson, Brian . Oglethorpe University, Atlanta, GA
Pittarese, Tony East Tennessee State University, Johnson City, TN
Plank, James . University of Tennessee, Knoxville, TN
Pounds, Andrew . Mercer University, Macon, GA
Spurlock, Scott . Elon University, Elon, NC
Walker, Aaron . University of North Georgia, GA

11

Introduction to Jetstream:
A Research and Education Cloud∗

Conference Tutorial

Sanjana Sudarshan and Jeremy Fischer
Research Technologies
Indiana University

Bloomington, IN 47401
{ssudarsh, jeremy}@iu.edu

1 Introduction

Jetstream is the first production cloud funded by the National Science Foun-
dation (NSF) for conducting general-purpose science and engineering research
as well as an easy-to-use platform for education activities. Unlike many high-
performance computing systems, Jetstream uses the interactive Atmosphere
graphical user interface developed as part of the iPlant (now CyVerse) project
and focuses on interactive use on uni-processors or multiprocessors. This in-
terface provides for a lower barrier of entry for use by educators, students,
practicing scientists, and engineers. A key part of Jetstream’s mission is to
extend the reach of the NSF’s eXtreme Digital (XD) program to a commu-
nity of users who have not previously utilized NSF XD program resources,
including those communities and institutions that traditionally lack significant
cyberinfrastructure resources. One manner in which Jetstream eases this ac-
cess is via virtual desktops facilitating use in education and research at small
colleges and universities, including Historically Black Colleges and Universities
(HB-CUs), Minority Serving Institutions (MSIs), Tribal colleges, and higher
education institutions in states designated by the NSF as eligible for funding
via the Established Program to Stimulate Competitive Research (EPSCoR).

While cloud resources won’t replace traditional HPC environments for large
research projects, there are many smaller research and education projects that
would benefit from the highly customizable, highly configurable, programmable

∗Copyright is held by the author/owner.

12

cyberinfrastructure afforded by cloud computing environments such as Jet-
stream. Jetstream is a Infrastructure-as-a-Service platform comprised of two
geographically isolated clusters, each supporting hundreds of virtual machines
and data volumes. The two cloud systems are integrated via a user-friendly
web application that provides a user interface for common cloud computing
operations, authentication to XSEDE via Globus, and an expressive set of web
service APIs.

Jetstream enables on-demand access to interactive, user-configurable com-
puting and analysis capability. It also seeks to democratize access to cloud
capabilities and promote shareable, reproducible research. This event will de-
scribe Jetstream in greater detail, as well as how its unique combination of
hardware, software, and user engagement support the "long tail of science."
This tutorial will describe Jetstream in greater detail, as well as how its unique
combination of hardware, software, and user engagement support the "long tail
of science." Attendees will get a greater understanding of how Jetstream may
enhance their education or research efforts via a hands-on approach to using
Jetstream via the Atmosphere interface.

2 Tutorial Description

This tutorial requires two to three hours.

• Prerequisites: Basic Linux command line knowledge a plus (but not re-
quired)

• Required: Laptop, modern web browser (Chrome, Firefox, Safari)

• Targeting: Educators, Researchers, Campus Champions/ACI-Ref Facili-
tators, Campus research computing support staff

This tutorial will first give an overview of Jetstream and various aspects of
the system. Then we will take attendees through the basics of using Jetstream
via the Atmosphere web interface. This will include a guided walk-through
of the interface itself, the features provided, the image catalog, launching and
using virtual machines on Jetstream, using volume-based storage, and best
practices.

We are targeting users of every experience level. Atmosphere is well-suited
to both HPC novices and advanced users. This tutorial is generally aimed at
those unfamiliar with cloud computing and generally doing computation on
laptops or departmental server resources. While we will not cover advanced
topics in this particular tutorial, we will touch on the available advanced ca-
pabilities during the initial overview.

13

3 Tutorial Program

This is a sample tutorial program. Time required for this tutorial is approxi-
mately 3 hours.

• What is Jetstream?

• Q & A and what brief hands-on overview

• Getting started with Jetstream, including VM launching

• Break

• Accessing your VM, creating and using volumes

• Customizing and saving images, DOIs

• Cleaning up

• Final Q & A

14

Using Eclipse and IntelliJ with Dynamic
Viewers for Program Understanding and

Debugging in Java∗

Conference Tutorial

James H. Cross II and T. Dean Hendrix
Computer Science and Software Engineering

Auburn University
Auburn, AL 36849

{crossjh,hendrtd}@auburn.edu

New jGRASP plugins for Eclipse and IntelliJ bring the jGRASP viewers
and viewer canvas to the Eclipse and IntelliJ Java debuggers. The plugins pro-
vide automatic generation of visualizations that directly support the teaching
of major concepts, including classes, interfaces, objects, inheritance, polymor-
phism, composition, and data structures. The integrated visualizations are
intended to overcome the mismatch between what we want to teach and what
most IDEs provide in the way of support for learning. This tutorial will fo-
cus on the canvas of dynamic viewers which allows students and instructors to
create “custom” program visualizations by dragging viewers for any primitive
or object onto the canvas and then saving it. Participants are encouraged to
bring their own computers with programs from their courses. jGRASP and the
plugins are freely available.

All educators who teach Java will benefit from this tutorial. However, it
will be especially suitable for instructors who teach Java-based programming,
data structures, or algorithms courses. The overall objective of the tutorial
is to introduce faculty to the advanced pedagogical features provided by the
viewers and canvas for teaching and learning Java. The participants will be
guided through numerous scenarios to see how creating visualizations of their
programs and making them available to students can make learning to pro-
gram a more enjoyable experience. In addition to finding the visualizations
useful for understanding example programs, students can easily create visual-
izations of their own programs which will be especially useful while debugging.

∗Copyright is held by the author/owner.

15

Since the canvas can be populated with any primitives or objects created by
their programs, including traditional data structures (e.g., stacks, queues, lists,
and binary trees), the visualizations created by faculty and students are only
limited by their creativity. As they “play” or step through their programs in
debug mode, all viewers on the canvas are updated dynamically to provide the
opportunity for a much clearer understanding of the program.

Consider the following examples which contain multiple viewers on each
canvas. Figure 1 shows a canvas in Eclipse for a simple binary search program,
which includes five viewers: key, low, mid, high, and intArray. These were
created by simply dragging the variables from the debug window or details
pane in Eclipse onto the canvas. For the array viewer on intArray, the user
has added the variables for the indices which will move along the array as their
values change.

Figure 1: Canvas in Eclipse for a simple binary search program.

Figure 2 shows a canvas in IntelliJ for an implementation of selection sort,
which includes six viewers: two on the array ia (one as a bar graph and the
other as typical “textbook” presentation), index, min, scan, and temp. The bar
graph viewer and the presentation array viewer update automatically as the
program runs in the debugger. The bar graph makes it easy to see which value
will be the next min for a given iteration through the array.

In each of these examples, the user can simply click the play button on the
canvas to auto step through the program, which brings the canvas to life with

16

Figure 2: Canvas in IntelliJ for an implementation of selection sort.

an animated visualization of the program. Since the canvas can be saved, in-
structors can provide program visualizations with their examples for students,
or students can create visualizations to help them understand their own pro-
grams and even submit the visualizations as part of their assignments. The
canvas of dynamic viewers makes creating visualizations for explaining your
own programs quick and easy, and it makes debugging programs almost fun.

The jGRASP IDE and the plugins for Eclipse and IntellliJ are freely avail-
able at the jGRASP web site (https://www.jgrasp.org). jGRASP and the
plugins each include a complete set of examples, including the two in Figures
1 and 2 above.

17

Building and Expanding a Successful
Undergraduate Research Program∗

Panel Discussion

Sarah Heckman1, Brandon Fain2, Manuel Pérez-Quiñones3
1NC State University

sarah_heckman@csc.ncsu.edu
2Duke University
btfain@cs.duke.edu

3University of North Carolina at Charlotte
perez.quinones@uncc.edu

Undergraduate research is an important means of engaging computer sci-
ence students outside of the classroom in substantive and original inquiry into
the discipline, and to prepare them for independent work in industry or grad-
uate school. We discuss the approaches and challenges of starting, managing,
and expanding undergraduate research programs in computer science depart-
ments. The presentation should be of interest to faculty developing an under-
graduate research program in their department.

During the panel, we will discuss program contexts and how that informs
decisions about what type of undergraduate research program that may be cre-
ated and the support structures available for undergraduate students. Program
structure informs how students connect with faculty, the scope of an under-
graduate research project, and what students receive for their work. Additional
considerations on recruitment and admission into undergraduate research pro-
grams should be considered by departments as they think about how to support
and grow a program; students may not know undergraduate research is an op-
tion. Many students may not know that undergraduate research is an option.
Once students are part of a program, expectations for success and comple-
tion are critical to ensure a good experience. Students may be expected to
write a proposal about their work before the project starts, present their work
at a poster sessions locally or at the state (e.g., the State of North Carolina
Undergraduate Research and Creativity Symposium), national (e.g., National
Conference on Undergraduate Research), and international levels, supporting

∗Copyright is held by the author/owner.

18

retention in computing [3]. Finally, there are extensive resources for supporting
undergraduate research. For example, Affinity Research Groups [1] provide a
model for creating research teams.

Sarah Heckman is an Associate Teaching Professor and Director of Un-
dergraduate Programs for the Department of Computer Science at NC State
University. She oversees the CSC Honors Program which requires an under-
graduate research component.

Brandon Fain is an Assistant Research Professor at Duke University. He
built an undergraduate summer research program at Duke piloted during 2019
based on a collaboration with similar undergraduate summer programs in data
science and software engineering at Duke University.

Manuel Pérez-Quiñones is a Professor at University of North Carolina –
Charlotte. In the late 90s, Dr. Pérez-Quiñones was director of the Industrial
Affiliates Program1 at the University of Puerto Rico Mayaguez. The IAP pro-
gram [2] just celebrated 30 years. In 2002, together with Dr. Scott McCrickard,
they started the Virginia Tech Undergraduate Research in Computer Science
program2. This year’s poster session was the 18th iteration of the program.
From 2006 until 2010, Dr. Pérez-Quiñones was co-chair of the CREU program3

as part of the CRA-W/CDC Broadening Participation in Computing Alliance.

References

[1] Ann Gates, Steve Roach, Elsa Villa, Kerrie Kephart, Connie Della-Piana,
and Gabriel Della-Piana. The Affinity Research Group Model: Creating
And Maintaining Effective Research Teams. IEEE Computer Society Press,
2008.

[2] M. Velez-Reyes, M. Perez-Quinones, and J. Cruz-Rivera. The industrial
affiliates program at the university of puerto rico - mayaguez. In Proceedings
Of the 1999 Frontiers In Education Conference, FIE 1999, pages 13C5/13–
13C5/18. IEEE, 1999.

[3] Heather M. Wright and N. Burçin Tamer. Can sending first and second year
computing students to technical conferences help retention? In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education,
SIGCSE ’19, pages 56–62, New York, NY, USA, 2019. ACM.

1https://ece.uprm.edu/iap/
2https://www.vturcs.cs.vt.edu/
3https://cra.org/cra-w/creu/

19

A Comparison of Two Popular Machine
Learning Frameworks∗

Chance Simmons and Mark A. Holliday
Department of Mathematics and Computer Science

Western Carolina University
Cullowhee, NC 28723

ltcas97@gmail.com holliday@wcu.edu

Abstract

Using artificial neural networks is an important approach for draw-
ing inferences and making predictions when analyzing large and com-
plex data sets. TensorFlow and PyTorch are two widely-used machine
learning frameworks that support artificial neural network models. We
evaluated the relative effectiveness of these two frameworks to model a
binary classification problem. The binary classification was done using
sentiment analysis on a publicly-available data set of product reviews.
We first implemented the same model in the same testing environment
to see if we were able to achieve similar accuracy with both frameworks.
We then compared the training time, memory usage, and ease of use of
the two frameworks.

1 Introduction

Artificial neural networks (ANNs) [4] have been demonstrated to be effective
for many cases of supervised learning [6], but programming an ANN manually
can be a challenging task. Frameworks such as TensorFlow and PyTorch have
been created to simplify the creation and use of ANNs.

One of the major uses of artificial neural networks is natural language
processing[5] one aspect of which is sentiment analysis. To compare the two
machine learning frameworks, the first step was to develop, train, and evaluate

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

20

the same neural network model in both frameworks. In theory we should be
able to obtain the same accuracy in both frameworks. since the same underly-
ing model was being implemented. The second step was to compare the model
implementations in the two frameworks based on execution time, memory us-
age, and ease of development.

2 Data Set

The data set that was chosen to test the frameworks was a publicly-available
set of Amazon reviews for video games[1]. The ratings that the individual gave
were also included in the data set. Due to the nuances and bias involved in what
each individual feels a certain rating should be, the data set was then broken
down into only positive and negative reviews. The positive reviews consisted
of the reviews with ratings of 4 or 5, whereas the negative reviews consisted of
the reviews with ratings 1, 2, or 3. By having only two categories, the problem
then becomes a sentiment analysis problem that uses binary classification.

Neural networks use mathematical calculations, so the textual reviews needed
to be converted into numerical information. In this case, the text was analyzed
to find the most common 10,000 words. Each occurrence of each word in the
textual reviews was then replaced by the numerical index of that word in the
common word list if that word occurred in the common word list. Any word
that were not common enough to be found in the common word list was given
the value of 0. Below is an example sentence from the Amazon reviews and
the corresponding tokenization.

[’Dirt 3 on DVDi collect racing games so had to add this to my collectionSon
wated one also’]

[98 19 908 496 34 30 80 3 408 11 3 39 31 0 0 0 0 0 0 0 . . . (0x230)]

Each sentence is reduced to a total size of 250 indices. This number was
chosen by taking the average length of all the sentences in the data set. Any
sentence over 250 words used just the first 250 words found in the vocabulary.
If a sentence is shorter than 250 words, then the rest of list is padded with 0’s.
In the above example, there were only 13 words that were found to be in the
vocabulary. This meant that 13 words in the original sentence were converted
to their numerical representation and the rest of the list was filled with 0’s.

This sentence highlights some of the issues that were found with the data
set. Some of the user’s reviews included grammatical errors. These errors made
it so that those words were not common enough to be included in the final
sentence, removing some of the important information. In this case, words like
‘DVD’, ‘collection’, ‘Son’ and ‘wanted’ are left out from the tokenized sentence
because of errors present in the review.

21

3 Model

In a recurrent neural network (RNN) [3] the output of the RNN cell is fed
back into the recurrent network cell as input, allowing for sequences of infor-
mation to be learned. Since the words that occur before a certain word in a
sentence add importance to the current word being analyzed, RNNs are often
used in natural language processing. So we used a RNN instead of a simple
feed-forward fully-connected neural network.

3.1 Input Layer

The input of the model consist of 32 nodes that are a part of the embedding
layer. The embedding layer takes the list of 200 numbers representing the
review sentence, and changes them into vector representations that are stored
in a list of size 32. The main benefit of using the embedding layer is to cut
back on the size of the input list that is being passed into the neural network.
Another benefit of embedding layers is that they offer another layer of training.
As the inputs are passed in, the embedding will begin to learn the words that
are similar in meaning and group them together so they are given similar
numbers in the resulting vector list.

3.2 Hidden Layer

There are also 32 nodes in the hidden layer of the tested model. These nodes
represent Long Short Term Memory (LSTM) cells. LSTM cells use a memory
cell that can maintain its states over time in combination with gates that
regulate the information that is going into and out of the cell [3]. These cells
make up the recurrent part of the network. The benefit of using LSTM cells
over normal RNN cells is that more information of previous sentence structure
and words is kept for a longer period of time.

3.3 Output Layer

The output layer is made up of one node. There is only one node in the
output because the problem that is being solved is a binary classification prob-
lem. The activation function on this node is the sigmoid activation function.
The sigmoid activation function will convert the number being passed into the
output into a value between 0 and 1. This value is then rounded up/down to
get a overall value of 0 or 1. The final output value is compared to the optimal
value in order to determine the accuracy of the neural network model.

22

4 Training

We used Google Colaboratory as the testing environment since supports both
frameworks and Python as the language. To maximize the performance of both
implementations, we enabled use of the Graphics Processing Units (GPUs).

We used the Adam optimizer in both implementations. The Adam opti-
mizer is a basic optimizer that uses gradient descent and a momentum factor
to perform back propagation. Back propagation is the process of adjusting the
weights of the links between the nodes in order for the network to become more
accurate when similar input is passed into it. The momentum factor is used
to change the links weights at a higher rate whenever the same links are being
changed constantly.

Over-fitting is a serious issue when training a neural network. Over-fitting
occurs whenever the network’s training becomes so specific to the training data
that its predictions for other data become less accurate. After extensive testing
we were able to obtain the best accuracy on new data for both frameworks by
using 20 epochs, a dropout of fifty percent, a learning rate of 0.01, a batch
size of 1000, and a hidden layer size of 32 nodes. Dropout means that in
the training of the neural network during each epoch a random and usually
different 50 percent of the nodes in a layer would not be considered.

5 Results

5.1 Accuracy

The TensorFlow Accuracy graph (Figure 1) and the PyTorch Accuracy graph
(Figure 2) indicate how close the accuracies of the two frameworks are. The
training accuracy in both models are constantly increasing; this is due to the
fact that the models are starting to memorize the information that they are
being trained on. The validation accuracy indicates how well the model is
actually learning through the training process. In both cases, the validation
accuracy of the models in both frameworks averaged about 78% after 20 epochs.
Clearly both frameworks were able to implement the neural network accurately
and are capable of producing the same results given the same model and data
set to train on.

5.2 Training Time and Memory Usage

The TensorFlow Training Time graph (Figure 1) and the PyTorch Train-
ing Time graph (Figure 2) indicate that the training time for TensorFlow is
substantially higher (average of 11.1954 seconds while PyTorch’s average was

23

5 10 15 20
Epochs

50

60

70

80

90

100

Ac
cu

ra
cy

Accuracy Values
Training Accuracy
Validation Accuracy

5 10 15 20
Epochs

11.0

11.2

11.4

11.6

11.8

12.0

Ti
m

e

TensorFlow Training Time

Figure 1: TensorFlow Accuracy and Training Time

5 10 15 20
Epochs

50

60

70

80

90

100

Ac
cu

ra
cy

Accuracy Values
Training Accuracy
Validation Accuracy

5 10 15 20
Epochs

7.65

7.70

7.75

7.80

7.85

7.90

Ti
m

e

PyTorch Training Time

Figure 2: PyTorch Accuracy and Training Time

7.6798 seconds). The durations of the model training times can vary substan-
tially from day to day on Google Colaboratory. However, the relative durations
between TensorFlow and PyTorch remain consistent.

TensorFlow had a lower memory usage during training (1.7 GB of RAM
while PyTorch’s memory usage was 3.5 GB); both had little variance in memory
usage during training. Both had higher memory usage (4.8 GB for TensorFlow
and 5 GB for PyTorch) during the initial loading of the data.

5.3 Ease of Use

PyTorch’s more object-oriented style made implementing the model less
time-consuming and the specification of data handling more straightforward.
TensorFlow, on the other hand, had a slightly steeper learning curve due to
the low level implementations of the neural network structure. The Tensor-
Flow low level approach allows for a more customized approach to forming the
neural network which allows implementing more specialized features. The very

24

high level Keras library runs on top of TensorFlow. So as a teaching tool, the
very high level Keras library[2] can be used to teach basic concepts, and then
Tensorflow can be used to further the understanding of the concepts by having
to lay out more of the structure.

6 Conclusions

TensorFlow and PyTorch showed equal accuracy in our experiments. Ten-
sorFlow’s training time was substantially higher, but its memory usage was
lower. PyTorch allows quicker prototyping than TensorFlow, but TensorFlow
may be a better option if custom features are needed in the neural network.
Our model implementations and data set are available at
https://github.com/Ltcas/NLPFrameworkComparison.

Comparing PyTorch to the recently released TensorFlow 2.0 as well as to
using the Keras library is possible future work.

References

[1] Amazon reviews data sets. https://snap.stanford.edu/data/web-
Amazon.html. Accessed: 2018-12-14.

[2] Francois Chollet. Deep Learning with Python. Manning, 2017.

[3] Aurelien Geron. Hands-on machine learning with Scikit-Learn and Tensor-
Flow : concepts, tools, and techniques to build intelligent systems. O’Reilly
Media, Sebastopol, CA, 2017.

[4] Warren Mcculloch and Walter Pitts. A logical calculus of ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5:127–147, 1943.

[5] Delip Rao and Brian McMahah. Natural Language Processing with Py-
Torch. O’Reilly Media, Sebastopol, CA, 2019.

[6] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern
Approach Third Edition. Pearson Education, 2010.

25

Alexa Skill Voice Interface for the
Moodle Learning Management System∗

Michelle Melton and James Fenwick Jr.
Department of Computer Science

Appalachian State University
Boone, NC 28608

{meltonml,fenwickjb}@appstate.edu

Abstract
Most educational and training organizations today use some type of

learning management system (LMS) to make course material available
online to participants. An LMS can be used for face-to-face, fully online,
or hybrid courses incorporating versions of both. Learning management
system users want easy and fast access to learning materials. LMS access
is typically provided through an online interface or a mobile application,
both of which require the use of touch and sight on a computer or device.
With the rapid growth of technology advancements and user knowledge,
LMS users will expect faster and more convenient access.

The last decade has brought considerable progress in voice technology.
Significant improvement in the accuracy of speech to text translation
has made the use of voice-enabled devices more common. Since both
technology and usage are continuing to grow, voice interfaces will become
even more important for modern applications.

Two of the top three LMS frameworks on the market today have voice
interfaces. Both Blackboard Learn and Canvas by Instructure have Ama-
zon Alexa skill integrations that provide basic course information such
as announcements, assignments, and grades. Presently, there is no dis-
tributed voice integration for Moodle, the second-ranked LMS provider.

This paper details the development of a voice user interface for a
learning management system: specifically, an Amazon Alexa skill for
Moodle. The research thoroughly outlines the process of developing an
Alexa skill for Moodle, including:

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

26

• user-centered interface design;
• developing effective prototypes for early feedback on the design;
• usage of the Alexa Skills Kit for the front-end development of the

skill;
• implementing the Moodle API for the development of the back-end

web service for the skill; and
• planning and conducting effective usability testing sessions and

evaluating results.

An Alexa skill integration with Moodle will allow users to more
quickly and conveniently access information from the LMS. Immediate
benefits of the project include providing site announcements to all users,
course announcements to students and teachers, and overall course grades
and upcoming due dates to students. In the future, the application may
be expanded to implement instructor capabilities like getting a list of
assignments that need grading and the ability to create voice activities
for students. Future development may also include providing additional
course content for students, such as attendance, missing assignments,
and instructor contact information.

1 Introduction

Today, most educational and training organizations make at least some of their
course content available on a learning management system (LMS). Whether the
courses are online, face-to-face, or hybrid, an LMS makes assignments, grades,
and other course material available online.

Students rank easy access and fast access to learning materials as second
and third in importance for an LMS [3]. Most learning management systems
attempt to meet these needs with an online interface as well as some type of
mobile access. With both innovations in technology and user savviness growing
rapidly, LMS users will want even faster and more convenient access to course
material than the online and mobile interfaces can provide.

Historically, the biggest challenge for voice interfaces (spoken interactions
with a computer) was the accurate translation of speech to text [5]. Mod-
ern voice technology has improved significantly in the past decade; the speech
recognition error rate is now only about 8% [9]. With such a dramatic im-
provement in the usability of voice-enabled devices, they are becoming more
commonplace. In fact, 20% of Google searches are now performed by voice [8].

Many popular applications have already started integrating voice interfaces,
including some LMS frameworks. In 2017, Blackboard Learn and Canvas by
Instructure, two of the top three learning management systems, implemented
Amazon Alexa skills that provide standard course content like announcements,
assignments, and grades. There is currently no distributed voice integration

27

for Moodle, the second-ranked LMS provider.
This paper describes the development of an Amazon Alexa skill that en-

hances the speed and convenience of accessing information in the Moodle LMS.
Current features include providing all users access to public site announcements
and enabling student access to course announcements, grades, and upcoming
due dates. Future development may expand functionality to include instructor
actions, such as accessing assignments that need grading and possibly even cre-
ating voice interactive assignments, as well as expanding the content available
to students.

2 Alexa Skill

Similar to Google Home and Apple’s Siri voice assistant, Alexa is Amazon’s
cloud-based voice service available on Alexa devices. Alexa skills are apps
that enable voice-activated capabilities for connected smart devices and online
services. Users interact with Alexa by saying a wake word to wake the de-
vice and then speaking an invocation phrase that consists of an utterance and
the invocation name of the skill. For example, “Alexa, ask Daily Horoscopes
for the horoscope for Gemini” consists of the “Alexa,” wake word, the “Daily
Horoscopes” invocation name, and “the horoscope for Gemini” utterance.

3 Voice Interface Design

General interface design principles can and should be applied to creating voice
applications, but a few characteristics of voice user interfaces (VUIs) require
special consideration in their design. Auditory interactions differ from visual
ones in that they present information one word at a time, the information is
constantly changing, and there is no permanent record of what was said [5].
These unique characteristics can place cognitive demands on users by requiring
them to use short-term memory and to move at a predetermined pace [4]. It is
important to take these cognitive issues into account during the design of the
voice interface.

Due to the differences between visual and voice interfaces, standard proto-
typing for user feedback early in the design process has to be modified for voice
interactions. The interaction layer (the dialog and responses of the system) and
the presentation layer (the voice, word choice, and speaking rate of the sys-
tem) are more connected in a voice application, so both should be included in
prototypes. Prompts should be fully scripted for the interaction layer, so the
user’s ability to complete a task is not impaired. The production voice should
be used because pitch and pace (the personality of the system) can affect a
user’s evaluation of the interface [5].

28

The design process ensured careful consideration of the purpose and capa-
bilities of the skill, what users would say when interacting with the skill, and
planning for how Alexa would respond to build a voice interface that provides
value and is easy to use.

The process began by identifying user stories for the skill. To determine the
capabilities users would find most beneficial, reports from Google Analytics for
AsULearn (the Appalachian State University instance of Moodle) were exam-
ined to verify the most viewed pages. This data helped inform the decisions of
the initial intents for the skill: GetSiteAnnouncementsIntent, GetCourseAn-
nouncementsIntent, GetDueDatesIntent, and GetGradesIntent.

With the user story intents established, the way users will speak their in-
tentions needed to be considered, which involved outlining the utterances for
each intent. To ensure that the invocation phrases considered actually match
the words students might use, students completed a basic survey about their
preferences for the phrasing of the application name, courses, announcements,
grades, and due dates. These results helped guide the design of the Alexa skill
in terms of the invocation name, the way courses were spoken to the user and
to the skill, and the implementation of additional utterances for each intent.

The last step in the design process was planning how Alexa would respond
to user requests. Formatting the responses so they sound natural took priority
over using proper grammar to make sure Alexa sounds like a person when a
user is interacting with the skill [1]. Responses that need an answer from the
user were designed to end with a prompting question to serve as a cue for
the user to begin speaking. Multiple variations of responses were designed for
each intent, and acknowledgments such as “thanks,” “okay,” and “great” were
planned for inclusion to make the interaction more conversational [1].

Another element of the design focused on adding a layer of access protection
to the skill. To address privacy concerns, the design incorporated the ability
to set an optional PIN during account linking that can be used to verify the
user before personal information is returned.

4 Alexa Skill Architecture

4.1 Front-end

The front-end of the voice user interface for a custom Alexa skill is created in
the Alexa Skills Kit (ASK) developer console. Building the interaction model
involves configuring the invocation name, intents, sample utterances, and slot
types, which define information that can vary within an utterance and are used
to facilitate dialog with the user.

The skill invocation name was set to “as you learn” since this is how users
speak the branded name of the Appalachian State University Moodle site.

29

To enable the primary capabilities of the skill, four ASK intents were
created: GetSiteAnnouncementsIntent, GetCourseAnnouncementsIntent, Get-
GradesIntent, and GetDueDatesIntent. Between 50 and 250 utterances for
each intent were added to the interaction model, as Amazon recommends at
least 30 utterances per intent to enhance skill performance [1]. Several Alexa
built-in intents were also implemented to provide for the processing of standard
commands, such as handling the typical ways users end a skill session as well
as ask for help.

The Dialog interface in the ASK enables dialog between a user and Alexa.
A Dialog directive returned with a skill response lets Alexa know that a user
response is needed to complete the processing of a request. Responses are then
stored in slots in subsequent requests to Alexa. A custom COURSE slot type
was created and populated so users can say the name of a course for which they
would like to hear announcements. To handle PIN responses from the user,
the AMAZON.FOUR_DIGIT_NUMBER slot type was implemented. This
slot type provides built-in recognition of the variety of ways four-digit numbers
are spoken, such as “nineteen twenty-one” or “one nine two one”, and sends the
digits to the web service for processing [2].

To establish the connection between the Alexa skill front-end and the web
service back-end that receives and processes the skill requests, the address of
the Moodle web service was input as the endpoint. Account linking was enabled
to use OAuth 2.0 implicit grant authorization, and the address of the custom
login for the Alexa skill for Moodle plugin was set as the authorization URI.

4.2 Back-end

4.2.1 Web Service Plugin

The custom Alexa Skill plugin for Moodle was developed and coded to serve as
the back-end web service endpoint for the skill. Moodle already provides a web
service API enabling third-party customization. However, several deviations
from the standard API were necessary to adhere to the ASK requirements. The
Moodle core web service that custom plugins extend only allows the passing of
arguments via URL query strings. In order to receive the JSON documents sent
by Alexa, a third-party plugin providing the REST protocol with JSON pay-
load support [7] was forked and customized to meet the requirements. Moodle’s
web service API requires that the parameters for the web service be pre-defined
in the plugin, which would involve declaring all the JSON request properties in
the plugin code. This specification posed a problem because the Alexa Skills
Kit states that new properties may be added to the request and response for-
mats, and web service endpoints must not break when receiving requests with
additional properties [2]. In order to meet this specification, the RESTALEXA

30

plugin was designed to send the JSON request to the Alexa plugin as a text
string.

4.2.2 Skill Linking to Moodle Account

To enable account linking, the Alexa Skills Kit requires that the web service
login accept a username, password, state, client ID, response type, and redirect
URI. The web service needs to generate and return a token for the specified
user, along with the state from the request, to Alexa at the provided redirect
URI [2]. The Moodle core token request is similar to the core web service
request in that arguments are passed via URL query strings. It also only
provides the token in the response. This response structure was not sufficient
to meet the ASK requirements, so a custom login and account linking process
was created.

A PIN verification option was implemented for users who want an added
layer of security for accessing personal information in Moodle from Alexa. The
security PIN is useful for Alexa devices in shared living spaces like student
apartments. After users login to Moodle via their specified authentication
method, they are able to create an optional 4-digit PIN that is stored in Moodle
as user data. If the web service receives a request from a user with a linked
account and a PIN set, Alexa will prompt for PIN verification before providing
user-specific information.

4.2.3 Web Service Processing of Requests

When the web service receives an Alexa skill request, it parses the JSON and
calls an internal function for the request type specified. When the web service
receives a LaunchRequest, sent when a user opens the skill, it sends a response
that includes a welcome message and available options, ending with a prompt
for the user’s choice. If the Moodle account is linked, the response will be
personalized with the user’s first name.

For the GetSiteAnnouncementsIntent, the web service will respond with the
site announcements from the front page. The number of site announcements
retrieved is determined by the front page settings, limited to five for usability.

For the GetCourseAnnouncementsIntent, the web service performs account
linking and PIN verification, and the list of courses for which the user has
enrollments is retrieved. If there are no courses or if a single course with
no announcements is found, these respective messages are returned. If there
are announcements for a single course, they are provided. The number of
announcements retrieved is determined by the course settings, again limited to
five. If more than one course is found for a user, the web service responds with
the list of course names and a prompt for the user to select a course. The user’s

31

course name response is parsed from the COURSE slot value in the request
from Alexa and checked against the list of course enrollments for the user. If
a match is found, the announcements for that course are returned.

The GetGradesIntent performs account linking and PIN verification, and
a response is returned with the overall course grades for each of the student’s
courses.

The web service also performs account linking and PIN verification for the
GetDueDatesIntent and the course enrollments and group memberships for the
user are determined and events retrieved. The number of events returned in
the response is determined by the site setting, limited to five for usability. The
site setting for number of days in the future to look ahead is also used in the
evaluation of returned events.

Responses are randomly chosen from several variations so the user experi-
ence is more personal and conversational. Responses also include a reprompt,
which Alexa speaks if no response is heard from the user within 8 seconds, or
if the response is not understood.

4.2.4 Moodle Plugin Installation

Documentation and installation instructions were created for the web service
plugin. A JSON file of the interaction model was also included with the plugin
code for quickly building the base skill in the Alexa developer console with
the JSON Editor import feature. There are several GUI settings that are
automatically configured for the Moodle site administrator on installation, and
the plugin includes several configurable settings to facilitate installation and
use on any instance of Moodle.

5 Results

The overall objective was to build a voice user interface that enhances the speed
and convenience of accessing information in a learning management system.
This goal was achieved by implementing an Amazon Alexa skill for the Moodle
LMS that provides voice access to site announcements, course announcements,
grades, and due dates.

Upon development of the four primary intents for the Alexa skill, usability
testing was performed to evaluate the voice application. Students from a vari-
ety of different colleges, grade levels, and familiarity with Amazon Alexa skills
and AsULearn were recruited to participate.

After using the skill, participants were asked to complete an online survey to
rate their experience. The feedback survey was designed and built based on the
SUISQ-MR [6]. The four usability factors were distributed across the survey as
user goal orientation (questions 1-2), customer service behavior (questions 3-4),

32

Figure 1: Usability testing survey results.

speech characteristics (question 5), and verbosity (questions 6-8). A 5-point
Likert scale was used, with 1 being “Strongly disagree” and 5 being “Strongly
agree.” Figure 1 shows the results of the survey completed by participants after
using the skill.

A follow-up interview was also conducted to get additional feedback. The
interview consisted of several open-ended questions to allow participants to
discuss their opinion of the skill in greater detail. Participants were asked
what they found easy about using the skill, what they found difficult about
using the skill, if they encountered anything unexpected during the use of the
skill, and if there were other features or capabilities they would find useful to
have in the skill. They were also asked about the PIN section of the account
linking process; specifically, if it was obvious that it was optional, as well as its
purpose.

Interviews revealed that most participants realized the optionality of the
PIN after they had already created it during the account linking process, and
they assumed its purpose was for an additional layer of access protection. How-
ever, they expressed that additional clarity on the account linking form would
be helpful. All users reacted positively to the PIN feature.

Comments regarding what was easy as well as difficult about using the skill
tended to vary based on the user’s familiarity with Alexa. Users who were more
familiar with Alexa communicated that the skill was very similar to and even

33

easier to use than other Alexa skills. Those with less Alexa experience discussed
difficulty figuring out what they needed to say to use the skill; however, they
also indicated that any difficulty with the utterances would be easily overcome
with a little practice using the system.

Many of the suggestions for additional features or capabilities for the skill
were ideas discovered in previous research, such as the student survey con-
ducted to aid in the design of the skill. Most of these features are already
planned for future development work.

All users expressed surprise and delight that Alexa knew and used their
name in the response to the LaunchRequest. Personalization of the skill inter-
action appears to be appreciated and highly valuable for the usability of the
interface.

At the end of each testing session, all participants expressed their enjoyment
in using the skill and the capabilities it provided, as well as their hope that it
will be implemented on AsULearn in production.

6 Conclusion and Future Work

The next step in the project will be to release the skill in production and let a
broader audience of students interact with it. The increased usage will enable
further usability research, as well as more comprehensive analytics from the
Alexa developer console. The additional data will ensure that any proposed
changes align with the needs of most of the skill’s user base.

The plugin code for the Alexa skill is available on GitHub at https://
goo.gl/jCJGLG, and the plugin code for the RESTALEXA protocol plugin is
available at https://goo.gl/eMdmBT.

With the implementation of a few final modifications and enhancements
based on usability test feedback, the skill will be submitted to the Appalachian
State University Center for Academic Excellence Learning Technology Services
team for review before submitting for certification and launch in the Alexa
Skills Store.

The initial development of a voice application for accessing information in
the Moodle learning management system was the core of this research; however,
there are additional, further reaching implications to investigate in the future.
Future work may include adding instructor-specific tasks such as the ability to
hear a list of assignments that need grading, as well as the ability to create
voice activities in Moodle. Allowing students to complete quizzes verbally
is a feature that would offer added value for instructors and students alike.
Expanding the existing intents would also improve the current capabilities of
the skill.

In addition to expanding the functionality of the skill, research on the us-

34

ability impact would be interesting to explore. The spoken/auditory access to
Moodle may enhance the accessibility of the application for users with disabil-
ities. Providing students access to their current performance may also have
a positive impact on student success. Research to find out if the increased
access to academic status and learning materials afforded by the voice inter-
face positively affects overall student success is another area of interest. With
the development of the initial application and usability testing complete, these
extended areas of development and research can be explored in the future.

References

[1] Amazon Alexa. Alexa Voice Design Guide. World Wide Web electronic
publication, https://developer.amazon.com/designing-for-voice.

[2] Amazon Alexa. Understand Custom Skills. World Wide Web
electronic publication, https://developer.amazon.com/docs/custom-
skills/understanding-custom-skills.html.

[3] Lee Yen Chaw and Chun Meng Tang. The voice of the students: Needs and
expectations from learning management systems. In Proceedings. European
Conference on Games Based Learning, 2017.

[4] Michael H. Cohen, Jennifer Balogh, and James P. Giangola. Voice User
Interface Design. Addison-Wesley, 2004.

[5] Susan L. Hura. Usability testing of spoken conversational sys-
tems. Journal of Usability Studies 12: 155 - 163, August 2017.
http://www.uxpajournal.org/usability-spoken-systems.

[6] James R. Lewis. Standardized questionnaires for voice interaction design.
The Journal of the Association for Voice Interaction Design 1: 1 - 16, April
2016.

[7] Moodle. REST protocol (with JSON/XML payload support),
February 2016. World Wide Web electronic publication,
https://moodle.org/plugins/webservice_restjson.

[8] Cathy Pearl. Designing Voice User Interfaces: Principles of Conversational
Experiences. O’Reilly Media, 2016.

[9] John Rome. Alexa goes to college: Asu’s innovative use of voice technology.
In Annual Conference, 2017.

35

Auto-Checking Digital Logic Design Labs
Through Physical Computing∗

Gongbing Hong, Gita Phelps, Yi Liu, Kenneth Trussell
Information Systems and Computer Science

Georgia College and State University
Milledgeville, GA 31061

{gongbing.hong,gita.phelps,yi.liu,kenneth.trussell}@gcsu.edu

Abstract

In this paper we introduce a simple and inexpensive solution that
auto-checks digital logic design (DLD) labs using Raspberry Pi – a small
single board computer with physical computing capability. Given the
large number of test cases associated with any typical DLD lab, this
work has the benefit of dramatically cutting the amount of manual labor
required of an instructor to check DLD lab work. When used by stu-
dents for self-check, it helps improve learning outcome and experience
by providing quick feedback to students.

1 Introduction

This work is motivated by the enormous amount of manual work an instructor
has to perform in grading digital logic design (DLD) labs for students. DLD
labs often have a significant number of inputs and outputs. The number of test
cases grows exponentially with the number of digital inputs. For example, for
a simple 4-bit adder, the number of inputs is 8 for two 4-bit operands and the
number of outputs is 5 for a 4-bit sum and a 1-bit carry-out. The total number
of input combinations is thus 28 = 256. For each input combination, one has to
check all 5 outputs against the expected result. So the total number of checks
is 256 × 5 = 1280. Given the size of any typical class, that is undoubtedly
labor intensive if the check is done manually. So in reality, instructors often

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

36

“cut corners” in various ways to reduce the amount of work which in the end
can sacrifice the quality of teaching. One solution to this problem is thus
auto-checking / grading.

While auto-grading assignments in the teaching of programming related
courses is a well established practice, to the best of our knowledge, there has
been few simple and inexpensive solutions for the auto-checking / grading
of DLD labs. This is likely due to the relative “messiness” in dealing with
physical world objects by software tools. But thanks to the recently cheap and
commercially available small single-board computers such as Raspberry Pi [5]
that readily support physical computing, this issue can now be easily addressed
at a very low cost.

In this paper, we attempt to fill a void by presenting a simple and inexpen-
sive solution that extends auto-grading to the field of DLD labs. The remainder
of the paper is organized as follows. In Section 2, we review some background
information and related work. In Section 3, we introduce our methodology.
After that, we present our solution with some discussion in Section 4. In Sec-
tion 5, we conclude the paper with some future work.

2 Background and Related Work

2.1 Autograding in CS education

Auto-grading involves utilizing automated software tools called autograders to
check and grade student work automatically. It has been successfully used
in checking / grading programming assignments. When a student submits
a program to an autograder, the autograder automatically picks a test case,
supplies the input from the test case, and runs the program. When the program
terminates, its output is automatically compared against the expected result
for correctness. The autograder then iteratively tries the next test case until
all test cases are exhausted.

Auto-grading is beneficial to students by providing instant feedback about
their submissions, which can be used to help correct any mistakes in a timely
manner. At a minimum, students will be able to learn almost immediately
whether or not their solutions are acceptable. If a submission turns out to be
incorrect, a student can try again depending on the settings. Autograders are
often set to allow multiple submissions before the deadline of an assignment.
This is definitely something extremely useful but hard to do for a human grader.
As a result, auto-checking helps enhance the student learning experience – more
student work, more effective teaching, and better results. Due to its efficiency,
autograding is particularly essential for massive open online courses (MOOCs).
It has been reported that autograding helps improve the completion rates in
the offerings of MOOCs [6].

37

There are a variety of autograders available today, both open source and
commerical products such as Autolab [9], Submitty [4], and CodeLab [2]. These
tools, however, are for the auto-grading of software code only. Our proposed
system, on the other hand, will be an auto-checker / grader for hardware-
oriented digital logic design labs.

2.2 Current practices in teaching digital logic design

When it comes to teaching DLD, projects may be either simulated or hand-built
with tangible IC chips on actual breadboards or both. Commercial software
products are available for DLD simulations but are expensive. At our insti-
tution, we prefer to use a freely available, light-weight DLD simulation tool
called Logisim [1]. Students are instructed to create their design using Logisim
and simulate it to eliminate any design issues before they actually implement
their design on a breadboard.

While simulation may be considered adequate to some, we have found ben-
efit in having students build and wire the circuits by hand on actual bread-
boards thereby linking the practical and the theoretical. Tangible learning
engages students and the haptic experience concretizes the concepts discussed
in class. Constructing circuits can be frustrating because errors can arise from
different sources making it difficult to locate and correct hardware bugs. Re-
search has been done in this area to help students by visualizing the states of
circuits. Toastboard [3] and CurrentViz [10] are two examples of educational
tools used with designing on actual breadboards. Toastboard provides mea-
surement and visualization of voltage and CurrentViz provides measurement
and visualization of current on a breadboard. They both rely on custom built
breadboards not yet available for widespread use. These tools are more com-
plex than our auto-checker/grader. The DLD auto-checker we propose can be
easily reproduced by others using only a Raspberry Pi.

3 Methodology

In this section, we demonstrate how to check the correctness of a simple DLD
lab using Raspberry Pi. This example lab asks students to design and imple-
ment a half adder that adds two single binary digits A and B to produce two
outputs S (sum) and C (carry). Its functionality is given by the block diagram
and the truth table in Figure 1.

To auto-check the correctness of the lab work, the binary inputs must be
supplied and the outputs must be read and checked against the expected out-
puts given in the truth table. This can be done through GPIO signal pins of
a Raspberry Pi processor. The inputs and the outputs of the half adder can
be wired to any four chosen GPIO signal pins. Newer Pi models provide a

38

Figure 1: Half Adder Lab.

40-pin GPIO header with a layout as shown in Figure 2. For example, in the
figure, GPIO signal pin 22, which we will simply call GPIO pin 22, is found at
physical pin location #15 on the 40-pin GPIO header. As shown, we will use
the GPIO pins 27 and 22 for inputs A and B. We will use the GPIO pins 23
and 24 for outputs S and C.

Figure 2: Raspberry Pi GPIO Pin header.

Some of the pins on the GPIO header are labeled 5V/3.3V and Ground.
For most digital circuit labs that do not require much electrical power, these
pins can be a huge convenience to the user – they can be used to directly power
the circuits without issue.

The I/O pins on the GPIO header can be programmed to be either input
or output pins. A pin programmed as an output can be programmatically
driven to either high (1) or low (0). So an output GPIO pin can be used as a
binary input to a digital circuit. A pin programmed as an input can be wired

39

to an output of a digital circuit and read to get the value of the digital output.
Such reading can then be used to check against the expected result of a circuit
output for correctness. For the pin allocation shown in Figure 2, GPIO pins 27
and 22 should be programmed as output pins to provide digital inputs A and
B. GPIO pins 23 and 24 should be programmed as input pins to check digital
outputs S and C.

A script is then written to enable the auto-checking of the lab. We can
write such script using a variety of scripting/programming languages such as
Python and C/C++. Various GPIO driver libraries are available. GPIO Zero
[8], a Python package, is one of the easiest. Using this package, each GPIO
signal pin can be abstracted into a Python object:

Inputs to the circuit (outputs from Pi)
gateInA = DigitalOutputDevice (27) # use GPIO pin 27 for A
gateInB = DigitalOutputDevice (22) # use GPIO pin 22 for B

Output from the circuit (inputs from Pi)
gateOutC = DigitalInputDevice (24) # use GPIO pin 24 for C
gateOutS = DigitalInputDevice (23) # use GPIO pin 23 for S

With these Python objects, the following code snippet tests the input com-
bination (A = 1 and B = 0) and checks the actual output against its expected
output (C = 0 and S = 1):

Set digital input (Pi output)
gateInA.on() # A = 1
gateInB.off() # B = 0

Check digital output (Pi input)
if gateOutS.isActive and gateOutC.value == 0:

print(`Pass ')
else:

print(`Fail ')

The complete Python script for auto-checking the half adder DLD lab based
on this methodology is available here1.

4 Solution and Discussion

In the previous section we demonstrated how to use Raspberry Pi to auto-check
a DLD lab in an ad-hoc fashion. Based on that approach without additional
work, one would have to write a new script for each new lab. That is clearly
not ideal. Below we consider the problem of writing a generic script that can
be used for any DLD lab.

We will first present a generic script that works for any combinational
circuit DLD lab. Due to the complexity of sequential circuits, a generic script

1https://drive.google.com/open?id=1gDH_CZjsIClylR-JeSceihJ0h6IZ2nNB

40

is not available at this time. Instead we will choose an example sequential
circuit DLD lab and provide an ad-hoc solution to it to illustrate some of the
characteristics specific to sequential circuits.

4.1 A generic script for any combinational circuit lab

The key to a generic script is to separate the functionality of a specific DLD
circuit from the logic of the script. Our solution is that for every DLD circuit
lab, the user of the generic script will provide a definition file that describes
the functionality of the circuit. The generic script will first parse the definition
file and then automatically generate / drive the checks.

Fortunately the functionality of a combinational circuit is quite easy to
describe with either min-term or max-term expressions. For example, for the
half adder example above, the outputs S and C can be described in min-terms
as below:

S = ĀB +AB̄ = m1 +m2 =
∑

m{1, 2}

C = AB = m3 =
∑

m{3}

The min-term expression of a logic function is quite straightforward and easy
to understand. For example, the above min-term expression for S states that,
for S to have an output of 1, the input combinations AB will have to be either
01 or 10 in binary (that is 1 or 2 in decimal). The definition file for the half
adder lab is given below:

Input signals simply listed and separated by spaces
A B

Multiple output functions listed on separate lines in min -terms
S = 1 2
C = 3

The following example definition file specifies the syntax rules on writing a
definition file:

Comment lines start with `#'
Blank lines will be skipped
ALL tokens must be separated by spaces for correct parsing !!!

Input signals are simply listed and separated by spaces
A B C D

Multiple output functions are listed on separate lines
A function definition starts with an output signal name
followed by an "=" sign , then followed by min -terms.
Optionally min -terms can be followed by "\", then
"don 't care" terms.
F = 2 3 5 10 \ 7 8
G = 1 3 8 11 12

41

Our generic auto-grading script for any combinational circuit lab can be
found here2. Roughly it does the following:

1. Parse the input definition file line by line (skip comment / blank lines)

(a) Parse the first line for input signals into a list of inputs

(b) Parse the rest of the lines each as an output function into a list of outputs

2. Generate and drive the checks

(a) Initialize a GPIO pin list for all GPIO pins available on a Raspberry Pi

(b) Check if there are enough GPIO pins for the inputs and the outputs

(c) For each input or output signal, allocate a GPIO pin from the GPIO pin list

(d) Print out instructions for the user to wire their circuit to Raspberry Pi

(e) For each binary combination of the inputs:

i. Drive the inputs to the circuit
ii. For each logic function:

A. Read the actual output and compare it with the expected
B. Print the test result (PASS or FAIL)

Digital circuit labs may have more signal lines than the number of GPIO
pins available on a Raspberry Pi. Solutions are available to expand the number
of GPIO pins using off-the-shelf port expander IC chips such as MCP23017 and
MCP23S17 [7].

4.2 An ad-hoc solution for an example sequential circuit lab

Unlike combinational circuits, the functionality of sequential circuits is not
that easy to describe depending on the types of the circuits. Some types of
sequential circuits can be relatively easy but others will likely be difficult. For
this reason, we have not attempted a generic script for any sequential circuit
labs at this time.

In the following, however, to illustrate some of the characteristics specific to
sequential circuits, we demonstrate the use of an ad hoc script that can auto-
check a sequential circuit lab we gave to our students. The lab in question is
a RAM lab, in which students are asked to build a circuit for a random access
memory system as illustrated in Figure 3 using an Intel 2114 static RAM chip.

The operation of any sequential circuit such as the one for this RAM lab
requires the control signals to be given in proper order. For example, the
address must be provided before the chip is selected. Certain signals must be
maintained for a certain period of time to ensure proper operation. Together
these constraints require the steps to be properly sequenced and delays to be
inserted at critical junctions in the script.

A code snippet that tests writing/reading to/from the RAM is given below:

2https://drive.google.com/open?id=1HZ0FEM45MOkO3MpQ2hUgkyUrqnQiEH4u

42

Figure 3: RAM Lab.

Write value `val ' to address `addr '
setPins(addr , addrIn) # set address pins with `addr '
time.sleep (0.001) # address setup time
setPins(val , dil) # set data input lines with `val '
weIn.off() # write mode enabled
csIn.off() # chip selected
time.sleep (0.001) # hold sufficient time for write
csIn.on() # chip deselected (after data written)
weIn.on()
time.sleep (0.001) # input data hold time

Read from address `addr ' (data goes into `dat ')
setPins(addr , addrIn) # set address pins with `addr '
time.sleep (0.001) # address setup time
weIn.on() # read mode enabled
csIn.off() # chip selected
time.sleep (0.001) # hold sufficient time for read
dat = readPins(dol) # read data from the data output lines
csIn.on() # chip deselected (after data read)
time.sleep (0.001) # output data off delay

In the above, we have inserted more delays than is required. Actual required
delays can be shorter depending on the types of chips used. The complete script
is given here3.

4.3 Discussion

We have successfully deployed this solution in two of our hardware-oriented
courses at our institution. For each DLD lab, we asked students to do a self-
check with a Raspberry Pi. Student feedback has been all positive as it is easy
to do. Students are reportedly more engaged. For any failed check, students

3https://drive.google.com/open?id=1C4Mt7QNvEt7uL73MQU5rxSkhShYiMlz5

43

were motivated to address their design and / or implementation issues. Failed
checks were often due to wrong wiring and misreading of the datasheets – that
is the whole point of the automated checks. We have not seen any students
abandoning their labs in the last two years. Before this solution was deployed,
we had no idea how many students failed or partially failed a lab without telling
us.

As currently implemented, this automated check is black box in nature –
no details of the circuits are required for the script to run. Debugging help is
not supported but users can use the results of the auto-check as their guide to
troubleshoot issues. It is debatable as to whether it helps to pinpoint exact
errors in their circuits with specialized tools such as Toastboard [3] when it is
the time for the students to develop their own debugging skills. In addition, to
be able to pinpoint the exact errors in a circuit, systems such as Toastboard
have to be provided with the exact schematics of the circuit along with the
information on where each component is wired on the breadboard. This can
be quite complicated and hard to use.

5 Conclusions and Future Work

In this paper we presented a solution that can auto-check/grade digital logic
design labs similar to autograders for programming assignments. Our solution
to auto-check a DLD lab is very simple to use. By taking advantage of the
$35 Raspberry Pi with physical computing capability, the solution is also an
inexpensive one.

This solution has been successfully used at our institution. It has helped
instructors to greatly reduce the amount of manual work needed in the grading
of DLD labs. Students enjoy the solution because it is capable of providing
quick feedback to them about their lab work. Such feedback encourages them
to keep trying. The solution keeps students engaged at a higher level.

Moving forward a more generic solution for sequential circuit labs is an
apparent direction worth pursuing. A simple outright solution may not be
immediately available but generic scripts for certain subtypes of sequential
circuits are very likely.

44

References

[1] Carl Burch. Logisim. http://www.cburch.com/logisim/index.html,
Accessed May 2, 2019.

[2] Turing’s Craft. CodeLab: A powerful tool for programming instruction.
https://www.turingscraft.com, Accessed May 2, 2019.

[3] Daniel Drew, Julie L Newcomb, William McGrath, Filip Maksimovic,
David Mellis, and Björn Hartmann. The Toastboard: Ubiquitous in-
strumentation and automated checking of breadboarded circuits. In Pro-
ceedings of the 29th Annual Symposium on User Interface Software and
Technology, pages 677–686. ACM, 2016.

[4] Rensselaer Center for Open Source. Submitty. https://submitty.org,
Accessed May 2, 2019.

[5] Raspberry Pi Foundation. Raspberry Pi – Teach, Learn, and Make with
Raspberry Pi. http://www.raspberrypi.org, Accessed May 2, 2019.

[6] Katy Jordan. Massive open online course completion rates revisited: As-
sessment, length and attrition. The International Review of Research in
Open and Distributed Learning, 16(3), 2015.

[7] Derek Molloy. Exploring Raspberry Pi. Wiley Online Library, 2016.

[8] Ben Nuttall. GPIO Zero: A friendly Python API for physical com-
puting. https://www.raspberrypi.org/blog/gpio-zero-a-friendly-
python-api-for-physical-computing/, Accessed May 2, 2019.

[9] Carnegie Mellon University. Autolab Project. http://www.
autolabproject.com/, Accessed May 2, 2019.

[10] Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku,
Ming-Wei Hsu, Jun-You Liu, Yu-Chih Lin, and Mike Y Chen. Currentviz:
Sensing and visualizing electric current flows of breadboarded circuits.
In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology, pages 343–349. ACM, 2017.

45

Similarity Matching in News Articles∗

Nathaniel Ballard and Deepti Joshi
Department of Cyber and Computer Sciences

The Citadel
Charleston, SC 29409

{nballard,djoshi}@citadel.edu

Abstract

With the need for intelligence growing every day, big data analytics
has become the forefront of intelligence work. Having the ability to access
news archives and other news article databases have given a data analyst
a plethora of information to analyze, but which article is the same event,
is there any redundant data within these collection sets of data? This
paper expands on these questions. By implementing cosine similarity
and vector space modeling, we can start to get a better understanding of
the dataset. The results suggest that an article can be related to another
article by topic or word semantics allowing now the creation of a web of
articles that are similar or in some cases even the same.

1 Introduction

With most modern newspapers being available online, and now containing
easily accessible archives, access to big data has become more available to the
public. However, this abundance of news articles leads to the question – is
there some way to automate the discovery of article relation without manually
reading every single article? As of 2017, there were 30,948,149 total estimated
circulations of U.S. weekday newspapers [6]. It is safe to say that many if
not all of these articles contain different writing styles. So even though two
articles may be about the same event or topic, different writing styles can make
them significantly distinct from each other. This makes the problem even more
significant, where comparing large amounts of data with different writing styles

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

46

can be daunting, but not impossible. There already exists natural language
processing (NLP) algorithms, latent semantic analysis (LSI) [3,1], and topic
detection algorithms [4,5] that can analyze plain-text documents for semantic
structure [2]. However, these existing algorithms do not account for different
writing styles and semantics. In this paper, we outline one possible solution
that solves the problems stated above in a clear and concise manner.

Currently, our work centers around the use of the algorithm developed
by Radim Řehůřek named Gensim [2]. By compiling Gensim’s analysis for
plain text documents, we have created a structure that can analyze newspaper
articles’ pairwise similarities based on different parameters such as the topic
of the article, the primary actions in the article, the actors involved, or even a
full redundancy of the article.

The paper is outlined as follows: Section 2 discusses the background of
Gensim, why it was chosen, its features and how it will be implemented. Section
3 presents the methodology of our ongoing work – the ideas behind the structure
implemented and how it is used in real time. Section 4 shows our preliminary
results. We also analyze and expand the results to discuss the importance of
this research. Finally, Section 5 presents the conclusion and future work.

2 Background

Figure 1: Vector Space Model
as a graph [4].

Gensim (gensim = “generate similarly”) is a
topic detection modeling for humans algo-
rithm developed by Radim Řehůřek for his
Ph.D. thesis. This project uses Gensim’s al-
gorithms to develop a structure to be used
to tackle our big data set and produce ef-
fective results. Specifically, the solution uses
two sets of algorithms in Gensim’s “analyze
plain-text documents for semantic structure”
[2] approach, namely, cosine similarity and
vector space modeling. Vector space model-
ing is known as the representation of docu-
ments as vectors in common vector space [3].

Looking at Figure 1, sentence 1, sentence
2, and sentence n can be treated as docu-
ments on a vector space. Then when the documents are placed in the vector
space model, Gensim uses cosine similarities to find the distance between each
of the articles.

~a ∗~b = ||~a||||~b||cosθ , where cosθ = ~a∗~b
||~a||||~b||

47

The cosine similarity equation (~a ∗~b) shown above takes two vectors that
create a triangle; then the method finds the angle between the documents
which is the result of the similarities test, by looking at the angle of the vec-
tors instead of the magnitude [4]. By using the combination of vector space
modeling and cosine similarities, we create a space that allows the algorithms
to calculate similarities between the text of two articles, which is the entire
idea of this research problem.

Figure 2 shows how different vector locations can affect the similarity score.
The first graph contains an acute angle meaning that the theta of the cosine
similarity is smaller or nearing zero giving a similarity value of close to 100% or
1. The middle graph contains an orthogonal angle meaning close to 90 degrees.
In this case, because the vectors are orthogonal, the similarity score is 0%. In
the last graph, the angle of the two vectors is approaching 180 degrees meaning
that the “documents” are opposites of each other, giving a score of -100% or
-1. With the triangles and angles laid out, we can state that our scale for the
document similarity is [-1 to 1] – going from least similar (nothing in common)
to most similar (almost duplicates).

Figure 2: Different vector modeling spaces using cosine similarity [4].

The objective of using aforementioned algorithms in our work is to apply
them to a much larger dataset, and in the intelligence field. This paper will go
into greater detail about what was adjusted and developed on the algorithms
in the methodology section of this paper.

3 Methodology

The objective of this project was to analyze unrest articles by finding pair-
wise similarities to discover redundancies and episodes of unrest. We started
with a CSV file (Comma-Separated Values; see Figure 3) of pre-tagged articles
about unrest. We are classifying unrest as anything that follows the following

48

definition. “A state of dissatisfaction, disturbance, and agitation in a group
of people, typically involving public demonstrations or disorder.“ The goal of
this work is to find redundancies in the dataset of unrest articles, where the
redundancies can be of two kinds – the same article is added to the database
twice, or the same unrest event is reported from different sources. Additionally,
we also want to find articles reporting on related unrest events.

Figure 3: CSV file layout used for the analysis.

Our initial dataset contains 502 articles from the pre-tagged CSV file. When
comparing each article to itself and others, we get (502x502) 252,004 similarity
queues. However, to get to this point, we had to significantly change the
Gensim stop-word list, which is a list of words that need to be pulled out of
the vector space because they are redundant or might skew the data. The
stop-word list used is shown in Figure 4 below.

Figure 4: Stop-word list for words to ignore

The reason we chose this extensive list of stop-words, is that we wanted to
pull out any words from the articles that might have skewed our data away from
the significant vocabularies of unrest. We compiled a stop-word list of common
words, then built onto it. The list was made up of words that were scraped
from our sample article data set that were non-significant and common English
stop-words. With the inclusion of our words from our research and common
English stop words we eventually creating a more accurate list that led to more
accurate results as shown in Figure 4. Although this is an extensive list every
writing style is different, so words are still being added as new articles are being

49

added to the dataset. The ultimate goal is to make the most comprehensive
and practical stop word list for English news article analysis.

Another feature that we edited in the code is the frequency counter to count
the number of times a particular word shows up in a selected article. We set a
bound on the frequency count to ‘2’, to make sure that any words that were not
significant and not being picked up in the stop-word list did not skew our final
results. Once the stop-word list has completed removing all of the unnecessary
words Gensim places the remaining words into a corpus or a dictionary using
Latent Semantic Indexing (LSI) [1] that can be translated into a vector space.
After the translation to a vector space we started comparing each article to
itself and all other articles using Genism’s similarity algorithm [2] mentioned
in the background section.

4 Results

The results were delivered in a 502x502 matrix of ordered tuples from most
like the originating article to the least like the originating article. The data is
displayed as (article number, similarity value). See Figure 5 for an example.

Figure 5: Example of the output where each line is a new article

In our dataset the results for Article 0, 307, and 95 are: (0,1.0), (307,0.95),
(95,-0.99) where each of the results are comparing to article 0. Article “0”
states: “While many All India Anna Dravida Munnetra Kazhagam supporters
conducted celebrations on the occasion of VK Sasikala assuming charge as the
general . . . ” , and Article “307” states: “The sudden ban on sale of crackers
in NCR has caught shopkeepers by surprise. . . Both wholesalers and retailers
are now scared after the ban. . . ”

We can see that these two articles are not talking about the same event,
but with a score of 0.95 between the two articles we know that they are talking
about the same issue, and here we can see that the issue is “protest” and
“surprise.” The first article is talking about an election and the protest and
surprise against a political leader, and the second is talking about a firecracker
ban and the surprise and protest against the ban. We can see that these are
not the same event, but after doing the similarity analysis, we can see that
they are related in terms of semantics and being about protests.

On the other hand, Article “95” states: “ABOUT 60 members of a caste-
based outfit manhandled filmmaker Sanjay Leela Bhansali, damaged his crews

50

equipment . . . For all the latest Entertainment News, download Indian Ex-
press App.” Here, we can see that it is discussing mishandled equipment and
damage. This article is not about protest or surprise, so that is why it received
a similarity score of -0.99.

5 Conclusion and Future Work

The work presented in this paper is our initial work of finding similarities within
news articles related to unrest with the ultimate goal of finding episodes of
unrest – that is, related unrest events. We have created a stable structure that
produces accurate results with the use of Genism and providing our stop-word
list and customizing other parameters to work with our dataset. Our results
proved that the similarities found thus far are accurate and reliable.

Moving forward we will further modify the stop-word list with every new
article because each writer’s style is different, and there creating a comprehen-
sive English news article analysis stop word list. We will also take into account
the time and space for each article, to say that two articles are related. We
want to say that an event in an article is related to another event not only
semantically but also in its location and in time.

References

[1] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer,
and Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of
the American Society for Informational Science 41, 6 (1990), 391–407.

[2] Radim Řehůřek. 2019. Gensim Topic Modelling for Humans. (April 2019). Re-
trieved May 6, 2019 from https://radimrehurek.com/gensim/

[3] Cambridge University Press. 2009. The vector space model for scoring.
(April 2009). Retrieved May 6, 2019 from https://nlp.stanford.edu/IR-
book/html/htmledition/the-vector-space-model-for-scoring-1.html

[4] Christian S. Perone. 2013. Machine Learning :: Cosine Similarity for
Vector Space Models (Part III). (December 2013). Retrieved May 6,
2019 from http://blog.christianperone.com/2013/09/machine-learning-cosine-
similarity-for-vector-space-models-part-iii/

[5] James Allan. 2002. Topic Detection and Tracking: Event-Based Information Or-
ganization. Kluwer Academic Publishers, Norwell, MA, USA.

[6] PEW Research Center. 2018. Newspapers Fact Sheet. (June 2018). Retrieved May
6, 2019 from https://www.journalism.org/fact-sheet/newspapers/

51

Categorizing User Stories in the Software
Engineering Classroom∗

Brian T. Bennett and Tristan Onek
Department of Computing

East Tennessee State University
Johnson City, TN 37614
{bennetbt,onektr}@etsu.edu

Abstract

User story documentation is a significant aspect of Agile develop-
ment in which developers document possible actions that users may take
within a software system. It is essential to educate students in a software
engineering curriculum on how to create this documentation so they can
be competent developers in their future careers. This study uses the
INVEST user story rating system to assess user stories that students
wrote for a term project in a two-part software engineering course series.
We demonstrate potential issues that students experience in user story
creation based on the INVEST analysis and propose potential solutions
to this problem.

1 Introduction

The use of agile development methodologies has increased in the software en-
gineering industry since the signing of the Agile Manifesto [2] in 2001. This
manifesto grew from the application of lean production principles to software
engineering [4], and recognized that software development life cycles should
focus on customer interaction and user needs rather than copious amounts of
documentation. Therefore, the documentation focus of agile methods is writ-
ing down system features in terms of user interactions. Many modern software
systems, such as web and mobile applications, involve heavy user interaction

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

52

with the system, making documentation of such interactions imperative for
completing the project successfully.

The most common form of agile requirements documentation is the user
story. User stories provide a lightweight method for documenting a user’s
interaction with a piece of software. The most common form of a user story is
“As a <user role>, I want to <perform a task>, so I can <accomplish a goal>.”
These short statements describe in a few words what a user would like to do
within the system and why they would like to do it, but the story format is
not intended to describe how a developer should implement the feature. User
stories accomplish two things: (1) they allow customers to focus on each action
within the system, and (2) they provide developers with small, manageable
chunks of work and with implementation freedom.

Teaching students the proper format for user stories and the motivation
behind this format is vital for creating well-prepared employees. In a soft-
ware engineering curriculum, students should learn about and experience agile
software development through participation in a group project using agile con-
cepts to create a modern software system effectively. Participation in an agile
project requires students to create and maintain a backlog of user stories as an
integral part of their education, addressing the Agile Manifesto’s [2] concerns
for customer and user interaction. However, many students are unable to write
‘good’ user stories when they must first use the concept. This study aims to
categorize the problems found in student-produced user stories. We analyze
user stories produced by software engineering students during group project
assignments and categorize them using the INVEST method developed by Bill
Wake [5]. Locating the students’ weaknesses in user story design based upon
the INVEST principles can lead to appropriate revisions to the curriculum to
prevent students from causing documentation debt in future class assignments
and upon entering the industry. Based on the analysis and judgments made,
we conclude how to better educate students about user story development and
use, while keeping the limitations of the study in mind.

2 Motivation

Despite how useful user stories are for documentation, researchers show that
limitations exist when using them. Issues with poorly designed user stories can
lead to issues with code based on those user stories. Mendes et al. [3] identify
common issues with user stories and solutions to those issues, while Wake [5]
gives a precise method for analyzing user stories that has become a standard
for determining story quality.

Mendes et al. [3] describe documentation debt as the impact of missing, in-
adequate, or incomplete documents in a software engineering project. Mendes

53

et al.’s [3] goal is to analyze documentation debt instances in a software en-
gineering case study through agile requirements. Artifacts like user stories
constitute part of a project’s agile requirements [3]. These user stories cannot
be effective if certain causes lead to the aforementioned issues of incomplete-
ness and insufficiency. Mendes et al. [3] define several common causes leading
to these issues, including a lack of information, requirement volatility, and lack
of non-functional requirements (NFRs). For example, consider the following
user story.

“Get the back end set up.”

The story is not user-centered and attempts to describe an NFR. It is also
non-specific because it lacks information that is pertinent to the feature. It
has no meaning to anyone other than the project team who created it; even
the creators of this story could forget the meaning after time passes.

Students who create user stories should consider them carefully. One method
of performing careful consideration is through the INVEST mnemonic created
by Bill Wake [5] to assist with user story development and evaluation. Wake [5]
observed that good user stories should be independent (I) from other stories to
allow for easier scheduling. In addition, good stories should be negotiable (N)
to give flexibility in implementation. Furthermore, good stories are valuable
(V) to the customer and will show a return on the investment of development
effort. User stories should also be estimable (E) to allow for easier scheduling
and prioritization. Another quality of good user stories is that they are small
(S) in scope, effort, and description. Finally, Wake [5] notes that a good story
should be testable (T) so developers can effectively write test cases for it. For
novice software engineers, especially students, producing user stories that meet
these principles can be difficult.

The above studies provide considerations regarding the problem presented
in this research–improving the quality of student user stories. Good user story
design should ultimately lead to a minimization of documentation debt to
prevent other development issues from arising. If students understand how
to write user stories that accurately reflect actions users will take, and can
also write stories to adhere to standards such as INVEST, they will be more
prepared to work effectively in their future careers.

3 Approach

This research uses the INVEST mnemonic [5] to assess students’ user stories.
The INVEST system’s factors are significant because they consider the different
ways that user stories may add business value to a project. In the software
engineering curriculum, students learn about the importance of adding business

54

value throughout the development life-cycle. This system can be applied to
student user stories to determine if they understand how to write stories that
will result in increased business value. Students from several sections of two
courses were assessed–Software Engineering 1 and Software Engineering 2–
from Spring 2018 to Spring 2019. In both courses, students were divided into
groups each semester to create a software system for a client and were required
to write user stories for their projects. Students used the tracking software Jira
[1] throughout each semester to track user stories, and this allowed for ease of
data collection.

In total, seventeen projects were selected for analysis based on the avail-
ability of user stories in these projects. Because of the availability of user
stories, only seven projects were used from Software Engineering 1, while ten
were from Software Engineering 2. Ten user stories were chosen randomly
from each project, resulting in 170 user stories. Next, both authors assessed
each user story based on the INVEST criteria, quantifying each user story’s
INVEST values using a binary system in which ‘0’ does not satisfy the cate-
gory and ‘1’ satisfies the category. The authors’ scores were then averaged to
determine final ratings. The sums of the averaged values represent the user
story’s overall strength from 0 to 6, where 0 represents the worst score, and 6
represents the best score. This assessment allows computation of how many
of the overall user stories are considered ‘good’ according to INVEST, and the
number that adheres to each INVEST principle. These data points provide
insight into student performance and provide direction for updated instruction
with user stories in the software engineering classroom.

4 Results

Results are based on the 170 user stories analyzed using the INVEST method–
70 stories from Software Engineering 1 and 100 stories from Software Engineer-
ing 2. Figure 1 shows a histogram of INVEST scores. Only five user stories
received a perfect score (2.9%). The majority of user stories–101 (59.4%)–fell
in the 4-5 range, with 5 being the most frequent value (32.35%). User sto-
ries with INVEST scores in the range 0-3 accounted for 37.64% of the stories
analyzed, with 22 (12.9%) stories having an INVEST score of 0.

Figure 2 shows the average overall scores for each INVEST characteristic
(where 170 is the maximum) and the percentages of each. The highest scoring
characteristic is value, with an average score of 122.5. Results indicate that
approximately 72.1% of the user stories analyzed were estimated to be valuable
to the customer. The next-highest characteristic is testability with an average
score of 114 of 170 (67.1%). These numbers indicate that two out of every
three user stories contained enough information to write test cases for verifica-

55

Figure 1: Histogram of INVEST Scores in the analyzed data

tion. Similarly, 112.5 user stories were negotiable (66.2%), containing pertinent
details without attempting to enforce a specific design. A total of 97 stories
(57.1%) were considered small enough for agile development purposes. A to-
tal of 93.5 (55.0%) user stories were considered estimable, providing enough
information to estimate the time required for the feature. The lowest scoring

Figure 2: Overall INVEST Scores and Percentages

56

Figure 3: Normalized INVEST Scores of user stories created in Software En-
gineering 1 and Software Engineering 2

characteristic is independence, where only 83 (48.8%) of the user stories could
be developed without dependency with others.

Figure 3 shows normalized details by course. This figure shows percentages
for both Software Engineering 1 and Software Engineering 2 in each category.
Because the two Software Engineering courses are intended to be taken as a
sequence, one would hypothesize Software Engineering 2 students would show
improvements over those in Software Engineering 1. However, results show
this is not the case. In each INVEST category, Software Engineering 1 stu-
dents outperform Software Engineering 2 students. The largest difference is in
the independent category, where 58.6% of Software Engineering 1 user stories
are considered independent but only 42% of Software Engineering 2 stories are
considered independent, a difference of 16.6%. Others with fairly large gaps
include the negotiable (a gap of 13.8%) and small (a gap of 13.5%) character-
istics. The smallest gap (2.9%) is in the testability characteristic.

5 Discussion and Future Work

The assessments on student user stories indicate that students are more capa-
ble of fulfilling some INVEST characteristics than others. This leads to the
conclusion that students must learn not only how to write a user story but
also what components should be present and why those components are nec-
essary. Students demonstrate a stronger capacity to make user stories testable

57

and valuable, but these alone do not make a user story complete under the
INVEST criteria. Independence, estimation, and breaking stories into smaller
features should be enforced when teaching user story development. Because
scores dropped in the second course of the sequence, INVEST principles must
continue to be reinforced when requiring students to write user stories through-
out the course sequence.

To reinforce INVEST principles, which also support proper development
practices, students must receive consistent reinforcement on how to create good
user stories. Assessing student documentation abilities should be not done once
but multiple times through both courses. Thoroughly reviewing students’ user
stories at each stage of the group project and placing more focus on the quality
of this documentation can help students develop better habits with user story
creation and can also serve as a way to demonstrate how important user stories
are. This focus on reviewing documentation ideally leads to less documentation
debt both in the group projects assigned and in future industry jobs.

Some limitations exist within this study that could affect the stated con-
clusions. First, this study is dependent on the INVEST system rather than
other rating systems that may have a more comprehensive picture of user story
quality. Evaluating other review systems may prevent this conclusion from be-
ing entirely dependent on one system. Second, the study required the manual
rating of each user story, which is subjective. Although having two people
scoring each story attempted to mitigate this limitation, having more people
scoring stories would be ideal. Third, the study involved a small sample size
of only 170 user stories. Randomly choosing 10 stories from 17 projects could
affect results by missing problems that exist but were not selected for analysis.
However, the data set will continue to expand in future semesters.

This study provides a brief analysis of common issues with user stories in
software engineering education with a proposed solution to mitigate some of
these issues. The conclusions and reviewed literature in this study may serve as
a basis for future experiments that assess software engineering students across
different performance metrics. Future analysis may take the form of the case
study that Mendes et al. [3] performed, except that students would be analyzed
instead of professional software engineers. This would provide similar insights
that Mendes et al. [3] collected, but would be through an academic rather than
an industry context. By focusing on the academic context and understanding
its significance, however, students can receive appropriate training on essential
matters such as documentation before transitioning into their career paths.

58

References

[1] Jira. https://www.atlassian.com/software/jira.

[2] Manifesto for agile software development. https://agilemanifesto.org/.

[3] Thiago Souto Mendes, Mário André De F. Farias, Manoel Mendonça, Hen-
rique Frota Soares, Marcos Kalinowski, and Rodrigo Oliveira Spínola. Im-
pacts of agile requirements documentation debt on software projects. Pro-
ceedings of the 31st Annual ACM Symposium on Applied Computing - SAC
16, 2016.

[4] I. Nonaka and H. Takeuchi. The new new product development game.
Harvard Business Review, 64(1), 1986.

[5] Bill Wake. Invest in good stories, and smart tasks, 2013. https://xp123.
com/articles/invest-in-good-stories-and-smart-tasks/.

59

Rethinking the Role of Simulation in
Computer Networks Education∗

Qian Liu
Mathematics and Computer Science Department

Rhode Island College
Providence, RI 02908

qliu@ric.edu

Abstract

Fundamentals in Computer Networks are essential to one’s deep un-
derstanding of network internals. In general, simulators are used in intro-
ductory networking courses to illustrate abstract concepts and to help
students observe network behavior without requiring dedicated hard-
ware. However, due to their limitations, they don’t provide ways for
students to investigate some essential topics. In this paper, we intro-
duce several activities for students to practice, investigate, and learn
those underlying essentials in detail. Our activities create a personalized
learning environment in which students can learn things at their own
pace and explore topics based on their interests. Our study indicates
that students have achieved a better understanding of network internals
and have gained practical skills after these activities.

1 Introduction

Simulation is typically used in Computer Networks courses to illustrate network
fundamentals and to emulate various scenarios without requiring dedicated
hardware. In general, a typical undergraduate networking course focuses on
the topics listed in Table 1 although there are often differences in the teaching
order or covered depth. Various simulations are introduced and used in dif-
ferent ways to illustrate those topics. Some are using simulation applets [9, 7]

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

60

to illustrate fundamentals or algorithms in animations so that abstract con-
cepts could be explained visually. Some are using network simulators such as
GNS3 [2] or Packet Tracer [1] to provide students with subnet management
practice without the need for hardware devices. However, one big concern is
that simulators usually illustrate network fundamentals in an ideal scenario. In
actual environment, network events are not well-organized and do not occur in
the same order as in simulations. Therefore, student’s understanding of those
fundamentals may stay at the theoretical level.

Table 1: Topics offered in a typical introductory Computer Networks Course
Internet Stack Details

Layer 5 Application protocols and Socket Program-
ming

Layer 4
TCP error control, flow control, congestion
control, TCP/UDP headers and their usage
in data transfer

Layer 3 & Layer 2 IP fragmentation, subnet management, rout-
ing and switching, Ethernet, ARP, etc

Another concern is that students usually have no control on protocols and
mechanisms because simulators only visualize their behaviors to users, and that
conceals too much of lower layer details and their relations to upper layers [6].
For instance, OPNET [5] allows students to configure protocol parameters to
compare performance in various scenarios, but it doesn’t provide ways for stu-
dents to investigate protocol details such as how error control mechanism han-
dles various error cases to ensure reliability. In order to examine how protocols
are working internally, students need to delve into simulator internals. For ex-
ample, in order to investigate how error-control works internally in open-source
simulator OMNeT++ [4] or NS-3 [3], students need to introduce customized
models into these simulators, design experiments with specific traffic patterns,
and collect specific network statistics. These require students to learn and deal
with many simulator-private structures which would create a steep learning
curve that goes beyond course requirements.

2 Design and Deployment

We have introduced several learning activities to help students investigate pro-
tocol details in our introductory networking course. Those activities are not
a replacement for any existing simulators, instead, they are practical com-
plements to them. In our activities, students are instructed to write their

61

own “simulators” to delve into topics listed in Table 1 that are not fully cov-
ered or cannot be examined by existing simulators. Students are working in
groups, using socket library to build simulators. Unlike existing learning mod-
els [11, 12, 10] that arrange students to work in specific framework, students in
our activities are not limited in any context, and they can introduce customized
models or extensions to explore topics based on their interests and learn things
at their own pace.

2.1 Activity 1: Error Control Model

Figure 1: Basic Algorithms in Activity 1

In this activity, students are using socket model to simulate techniques
in error-control mechanism: acknowledgement and retransmission, which not
only are important to understand transport layer, but also have significant
effect on the design of other networks, for instance, InfiniBand [8] uses similar
techniques to ensure reliability in its transport layer. Students are instructed to
build their simulators on top of TCP. A random packet discarder is introduced
to discard packets (simulate packet loss), depending on a configurable “loss
rate” parameter. That is, after receiving a packet, receiver runs the discarder
to decide whether the current packet should be discarded “manually” as if it
was not received previously. Figure 1 lists the basic algorithms used in this
simulator. The reasons we use TCP and a random packet discarder, instead of
implementing those features on UDP, are:

• students have control on the loss rate and can simply adjust it to compare
different scenarios.

• It can create a personalized learning environment in which students could
learn essential error-control techniques at their own pace. For instance,

62

when students start with the basic concepts, it is not necessary to in-
troduce the discarder so that they could get familiar with basic TCP
workflow in ideal situation; then, the discarder could be introduced to
receiver only so that students could focus on how sender detects packet
loss and deals with retransmission; afterwards, the discarder could be
introduced to sender to simulate lost ACK scenarios, and in this case,
more events should be considered.

How TCP ensures reliability is important for students to understand the
internal principles of data transfer, but related techniques are usually discussed
theoretically in classrooms with diagram illustrations or animations. Although
existing simulators allow users to introduce packet loss rate, they don’t provide
ways for students to investigate those techniques in detail. In this activity, stu-
dents build their own simulators to deal with packet loss detection, timed out,
and retransmissions. That would help students obtain a deep understanding of
those error-control techniques, and of how changes in attributes, such as sliding
window size, loss rate and retransmission timer, impact network throughput.
In addition, this activity allows students to introduce error models step by
step to investigate error-control in various scenarios so that students can learn
things at their own pace, thus creating a personalized learning environment.

2.2 Activity 2: TCP State Transition

The model in activity 1 could be reused in this activity to simulate and keep
track of TCP state transition. Students are generally not aware of how TCP
states are transited because it is usually discussed theoretically without any
experiments, and existing simulators don’t visualize its procedure nor provide
interfaces for students to explore it. A good understanding of TCP states would
prepare students for advanced topics because similar transition technique is
used in RDMA QP (Queue Pair) transition [8]. This activity provides students
with hands-on practice to fully understand how TCP state changes.

In this activity, students could introduce TCP states into the model in
activity 1, handle incoming packets by analyzing their data payload (packet
format shown in Figure 2 and discussed shortly), and change current TCP state
if necessary. The random packet discarder could be disabled in this activity
so that students can focus on the transition. Packets sent between two hosts
(client and server) should at least convey the following simulated information:
packet sequence number, ACK number, and flags bits (FIN, SYN, etc).

Simulation begins when one side, client, calls socket connect method regu-
larly to connect to another side, server. Then, both sides maintain local states
starting from “simulated” CLOSED state with the simulated sequence number
field (Figure 2) set to 0. The complete transition procedure should be simu-

63

Figure 2: Packet Format in our Activities

lated, that is, from one side sends a SYN packet (a packet with the SYN bit
set) to initiate a (simulated) connection request, to one side sends a FIN packet
to terminate the “simulated” connection. Both sides should move local states
appropriately in response to different flag bits. The sequence number and ACK
number fields must also be considered, for instance, if one sends a packet with
SYN and ACK bits set (connection reply) and receives a packet with ACK bit
set only, then the sequence number in the ACK packet must match the ACK
number in the connection reply packet sent previously, otherwise, the TCP
state cannot transit to the “simulated” ESTABLISHED state.

2.3 Activity 3: Segmentation and Fragmentation

In this activity, students implement the basic arithmetic operations of TCP
segmentation and IP fragmentation in their simulations with several input
parameters: a (pseudo) destination IPv4 address, a port number, message size,
and a sequence of MTUs in which each value represents the MTU supported
by a (pseudo) router, therefore, the list of MTUs simulates the path of routers
between the local host and destination. The MSS value is set to the max MTU
value of the list minus 40 (TCP and IP headers). Students should divide the
(pseudo) message into segments and encapsulate them with appropriate TCP
and IP headers in their simulations, that means, students should build a packet
structure in their programs to simulate TCP header and IPv4 header exactly,
and fill out necessary fields in these headers, especially the sequence number
and port number in TCP header, and the length, DF, MF, fragment offset
fields in IP header. When a packet traverses a “pseudo” router with MTU less
than the packet length, the packet should be broken it into multiple fragments
based on fragmentation policy. When a packet leaves the last “router”, it should
be buffered, if necessary, and re-constructed into a complete TCP segment.

This simulation provides students with hands-on practice in protocol head-
ers, segmentation, and fragmentation; generally, the latter two are discussed
without programming exercises in a typical networking course. Running ping
command on a physical host would allow one to observe the fragmented packets
but not the internal principles. This model helps students comprehend when
and how external networks handle segmentation and fragmentation.

64

2.4 Activity 4: MAC Table and ARP

Students are instructed to implement switch self-learning capability and ARP
procedure in a simple star topology consisting of a switch and eight host ob-
jects. Initially, each host object has a (pre-assigned) IPv4 address and an
empty ARP cache table, and the switch object has an empty MAC table. In
order to clearly reflect the link layer internals, we introduce a mechanism called
softMAC that automatically converts an IPv4 address to a MAC address. The
softMAC conversion is simple: it attaches 16 bits of 0s at the front of a given
IP address to generate a MAC address.That means, a host with IP a.b.c.d has
MAC address 0-0-a-b-c-d. The simulation begins when a host sends a data
packet to a random selected host. The sending host should follow the ARP
look up procedure and send ARP request if necessary. The switch then checks
its MAC table to decide where to forward the packet and whether it has learnt
the MAC address. When a host receives a packet, it first determines the type
of the packet (ARP or data packet) and then sends a new data packet to a
new random selected host to continue the simulation if necessary. All hosts
perform random communication until the switch records all MACs in its table,
then the simulation stops.

Students could introduce more extensions in this model to gain better com-
prehension of link layer mechanisms. For instance, if MAC table aging time
is introduced, what would happen if the switch object receives a packet but
doesn’t know where to forward it (difference between broadcasting and flood-
ing). In addition, they would learn how to simulate sending/receiving by using
certain events instead of generating actual traffic, for instance, they could reg-
ister an event with pre-defined structure into a list in which each event will be
executed in the future based on its timer. This is the general way modern sim-
ulators use, and we hope this activity would help students conduct advanced
research in the future.

3 Results

We use these activities in our introductory networking course at undergraduate
level with the objective of engaging students in effective learning and helping
them comprehend core techniques in transport layer, network layer, and link
layer. For each activity, we give two tests in a stepwise learning process. We
first take a test after lecture and practice in network simulators, depending
on topics we discussed, then, students work in our activities, and after that,
we give another test on the same topics but with more advanced questions.
Finally, we grade these tests and review student progress. Figure 3 (aggregated)
shows grades comparison and the percentage of students making common errors
before and after taking those activities. They indicate that students have

65

shown remarkable progress, especially in error-control activity (A1), and have
developed well-organized, structured knowledge after these learning activities.

Figure 3: Student Assessment before and after our activities

4 Summary

This paper introduces several activities to help student practice, investigate,
and learn networking essentials such as error-control techniques, state transi-
tion, segmentation and fragmentation, ARP and switch working mechanism.
A good understanding of those not only helps students comprehend the ar-
chitecture and principles of network communication, but also prepares them
for advanced skills. These activities are not a replacement for existing sim-
ulators, instead, they are practical complements to introductory networking
courses. More importantly, these activities allow students to introduce cus-
tomized models to explore topics and learn things at their own pace, thus
creating a personalized learning environment. According to our observation,
these activities can be used not only in classrooms to demonstrate topics in var-
ious scenarios, but also in labs or after class to provide projects and hands-on
practice to enhance effective learning.

66

References

[1] Cisco Packet Tracer.
https://www.netacad.com/courses/packet-tracer.

[2] GNS3 Simulator. https://www.gns3.com/.

[3] NS-3. https://www.nsnam.org/.

[4] OMNeT++ Discrete Event Simulator. https://omnetpp.org/.

[5] OPNET Simulator.
https://www.riverbed.com/products/steelcentral/opnet.html.

[6] D. Feinberg. Teaching Simplified Network Protocols. In Proceedings of
the 41st ACM technical symposium on Computer science education, Mar.
2010.

[7] M. Holiday. Animation of computer networking concepts. In Journal on
Educational Resources in Computing, 3(2), Jun. 2003.

[8] InfiniBand Trade Association. Infiniband Architecture Specification
Volume 1, Release 1.3, March 2015.

[9] J. Kurose and K. Ross. Computer Networking: A Top-Down Approach
(7th edition). Pearson, 2016.

[10] K. Lee, J. Kim, and S. Moon. An educational networking framework for
full layer implementation and testing. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, Mar. 2015.

[11] J. M. Pullen. Teaching network protocol concepts in an open-source
simulation environment. In Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science
Education, Jul. 2018.

[12] W. Zhu. Hands-on network programming projects in the cloud. In
Proceedings of the 46th ACM Technical Symposium on Computer Science
Education, Mar. 2015.

67

Detecting Areas of Social Unrest
Through Natural Language
Processing on Social Media∗

Timothy Clark and Deepti Joshi
Department of Cyber and Computer Sciences

The Citadel
Charleston, SC 29409

{tclark6,djoshi}@citadel.edu

Abstract

With the growing use of internet and social media as a source for
news, information is becoming faster and easier to access than ever be-
fore. The rise of internet and social media has also brought a voice to
a much broader demographic. With this, each user has the ability to
take the role of an active reporter, creating a massive amount of data
on ongoing events. The goal of this research is to collect and review this
data, from Twitter in particular, to detect, analyze, and display events
of Social Unrest in India, Pakistan, and Bangladesh.

1 Introduction

From humble beginnings as amateur community platforms, social media has
rapidly blossomed into a complex web of global information and online inter-
action [4]. Due to this, many have turned to social media as an outlet to voice
their views and opinions on the communities, cities, and countries in which
they live. Not only does this create a broader spectrum of view points about
various events, but the response time in relation to those events far exceeds
that of conventional news. As pointed out by TwitterStand: News in Tweets,
there have been several events that show mass amounts of tweets pertaining

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

68

to the subject hours before the first news source reports it[3]. The goal of this
research is to use data collected from social media outlets, Twitter in particu-
lar,in an effort to detect, analyze, and display events of Social Unrest in India,
Pakistan, and Bangladesh.

In order to do so, we have collected large amounts of geo-coded tweets from
our region of interest (ROI), namely, India, Pakistan and Bangladesh. For
more details, see section 3.1. While data is being collected, we have attempted
to extract relevant data using several classification methods (see section 3.2).
Next, in order to run spatial queries, we have reverse geo-coded the geospatial
coordinates for the tweets (see section 3.3). Finally, we have started to conduct
natural language processing on each tweet to determine the who, what, when,
where, and why (5Ws) of each event (see section 3.4). Section 4 discusses our
results and the use of the graphical database Neo4j. Finally, Section 5 presents
the conclusion and future work.

2 Background

In recent years, twitter has become a major outlet for real-time news. Twitters
restriction to the use of 280 characters works as a double edged sword. While
confining users from creating a well formed idea or argument, it allows users to
post short blurbs that serve as bulletin for a much larger idea [3]. Tying these
blurbs in with images and links to further information allows tweets to serve as
headlines to pressing issues and events. In previous works, like TwitterStand,
applications have been created in order to sift through the noisy medium to
extract underlying trending topics[3].

Events of social unrest can be defined as a demonstration or action from
an individual or group against a larger group, organization, or government.
While most events initially intend to serve as a demonstration to the public or
government, in many occasions they often escalate into general chaos, resulting
in violent forms of crime and social disorder [2].

3 Methodology

3.1 Collection

Our first step in this research was the collection of Twitter data from the
ROI. To collect tweets and all of the metadata associated, we used two meth-
ods, both of which were built upon the Twitter API for developers. The first
method used an open source Java software Tweets2SQL (https://github.com/
jgontrum/Tweets2SQL). This software allows data from Twitter to be scraped
in real-time and automatically imported into a MySQL Database. This set

69

of tweets came with latitude and longitude for each tweet. However, for
spatial queries to work, we needed to reverse geo-code each tweet (details
in Section 3.3). In order to limit the amount of reverse geo-coding and to
import new data into Neo4j - a graphical database that allows better visu-
alization of dynamic relationships between the various data nodes, we be-
gan to collect Tweets using code created with the Tweepy python package
(http://docs.tweepy.org/en/v3.5.0/). To limit and maximize the tweet collec-
tion from our ROI, we first mapped out several overlapping bounding boxes
over the areas in question as seen in Figure 1. From there, using the coordi-
nates of the SW and NE corner of each respective bounding box, these can be
added into the streaming service’s filter configuration.

Figure 1: Bounding box for tweet scraping.

3.2 Classification

Once a large set of tweets had been compiled, identifying tweets related to
unrest was the next task. The first approach implemented for this task was
to look for presence of social unrest vocabulary key words within the tweet.
This approach however returned futile results when applied to look for a tweet
with any single term. Searching for multiple instances of our vocabulary, on
the other hand, returned a very limited subset of our data due to the brevity
of tweets. Thus, to identify tweets related to some form of social unrest, we
applied supervised machine learning to classify tweets as related or unrelated
to unrest. By hand selecting a subset of tweets and categorizing them as
being within the context of social unrest, we can train a neural network to
accurately classify tweets as social unrest. Facebook’s open source software
FastText has served as a wonderful framework to build our neural network.
Using a training set of 146 hand selected tweets, FastText’s neural net creates

70

a list of unique words and weights them based on their appearance in tweets
considered relevant or irrelevant [1]. From there, each new tweet is given a
score based on the tweets text compared to that of the weighted list.

3.3 Reverse Geo-coding

While tweets collected recently through Tweepy include place names associ-
ated with the coordinates, our older data contains gaps in data that is key to
viewing geographic connections. To solve this, reverse geo-coding allows us to
link a physical address to each tweet. Using The Nominatim python package
(https://geopy.readthedocs.io/en/stable/), we are able to input the latitude
and longitude from each tweet node, and return a formatted address. List-
ing 1 provides an example of the output produced, providing several degrees
of preciseness. These varying degrees will be used in displaying geographic
connections and serve as points to query in our graphical database.

Listing 1: Reverse geo-coding output example

{ ' neighbourhood ' : ' Is lampura ' , ' suburb ' : ' Cantonment ' ,
' c i t y ' : ' Sargodha ' , ' county ' : ' Sargodha␣ D i s t r i c t ' ,
' s t a t e ' : ' Punjab ' , ' postcode ' : ' 40100 ' ,
' country ' : ' Pakistan ' , ' country_code ' : ' pk ' }

3.4 Natural Language Processing

Once our data has been scrapped, classified, and formatted, we are able to start
analysis on the tweets themselves. This is done using popular natural language
processing (NLP) techniques of named entity recognition (NER) and parts of
speech (POS) tagging. In order to help identify the 5W of analysis of tweets
(Who, What, When, Where, and Why of the twitter post), the tweet must
be stripped down to its key parts. Named entity recognition helps us with this
by identifying organizations, people, and places referenced in the tweet. Parts
of speech can also help us further extract context by finding verbs and other
nouns in each tweet. With these we can start to identify each of the 5Ws for
each tweet. These key items can then be attached to the corresponding tweet
node to help identify similarities between tweets and where certain subjects or
organizations are becoming topics of discussion.

71

4 Results

From our research, we now have a strong data set that can be used to identify
key events of social unrest in our ROI. With our classification techniques we
are able to identify tweets with accuracy of 77% based on a testing our neural
net with a training set of 110 and and a testing set of 36. From our reverse
geo-coding, we can now filter events based on key geographical points, as well
as map coordinate points to view concentrations of social unrest tweets (see
Figure 2). Lastly, our NLP strategies will allow us to set a foundation for topic
detection by identifying the 5Ws for each tweet. Associating each tweet with a
Who, What, When, Where, and Why, also provides further points to be used
to filter data to analyze.

Figure 2: Heatmap of identified social unrest tweets

To compliment our research we have began the development on a web appli-
cation to serve as an easy way to access, query and display every aspect of our
data. Tying in our named entity recognition software, the text visualization
tool is able to view text of tweets with each entity annotated and highlighted.
Also, as stated before, with the use of the graphical database system Neo4j, we
have the ability to create visual representations of each data point and the re-
lations that connect each point. Figure 3 gives an example of how our database
displays the geographic connections of tweets. In this example, each country
node is linked with several nodes representing the cities residing in that coun-
try. Each city node is then connected with all tweets posted from that specific
city or region. Note that the example graph is only partially expanded.

72

Figure 3: Neo4j graphical representation of Twitter data

5 Conclusion and Future Work

From this research, tweets can now successfully be processed to complete 5W
analysis. Moving forward we hope to incorporate more elements of twitter, i.e.
the use of hashtags and emojis, as another way to fill in components of the
5W analysis as well as start to analyze sentiment. Other aspects of of future
work include refining our training set and classification methods to increase
detection accuracy. As we further our research, we will also begin to expand
our ROI into more countries. With this the importance of translating tweets
while maintaining sentiment value will become pertinent in our research.

References

[1] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov. Bag of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759, 2016.

[2] Fengcai Qiao, Pei Li, Xin Zhang, Zhaoyun Ding, Jiajun Cheng, and Hui
Wang. Predicting social unrest events with hidden markov models using
gdelt. Discrete Dynamics in Nature Society, pages 1 – 13, 2017.

[3] Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler, Michael D.
Lieberman, and Jon Sperling. Twitterstand: News in tweets. In Proceedings
of the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, GIS ’09, pages 42–51, New York, NY,
USA, 2009. ACM.

[4] J. van Dijck. The Culture of Connectivity: A Critical History of Social
Media. Oxford Scholarship online. OUP USA, 2013.

73

Take Note: An Investigation of
Technology on the Line Note Taking

Process in the Theatre∗

René Borr and Valerie Summet
Mathematics and Computer Science

Rollins College
Winter Park, FL 32789
{rborr,vsummet}@rollins.edu

Abstract

The very nature of theatre is that every performance is unique, which
establishes one of the main challenges when creating technology to be
used in the theatrical setting. Often, technology used in the theatre is
adapted from another field such as art, music, lighting or construction.
This paper discusses the design, creation, and evaluation of a software
program to help stage managers take line notes during rehearsal for the-
atrical productions.

1 Problem and Background

Before a play or musical can be seen by an audience, it must be fully rehearsed
and have a series of full runs. A full run of a production occurs during a
rehearsal when the show is performed in its entirety without any of the technical
elements such as lighting, sound, or costumes. The stage manager is in charge
of ensuring that the production as a whole goes smoothly by working alongside
the actors, designers, and technicians. During a full run, the stage manager
also takes line notes. Line notes serve as feedback to the actors and indicate
what they said on stage versus what they should have said according to the
script. Unfortunately, all current methods – including handwritten notes on a

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

74

photocopy of the script or digital notes on a digital copy of the script – used
are not fast or efficient enough to make the process of taking line notes simple
for the stage manager.

2 Literature Review

There is little computing technology developed for theatre in comparison to
other fields. However, there are current commercial software products available
for theatre management. We begin by examining these areas.

One of the most challenging aspects of a theatre production is the collab-
oration between the different artists involved, such as costume designers, set
designers, directors and actors. Theatre design software is developed to foster
collaboration among the different parties. For example, A virtual reality sys-
tem was developed to help theatrical designers collaborate over long distances
[2]. This system helped designers visualize aspects of a production such as
lighting design and abstract set designs by utilizing a tabletop projection sys-
tem. Another system is a digital script user interface that allows both actors
and directors to visualize a script in a more cohesive fashion [5].

There are multiple commercial software systems that assist with organiza-
tion during a rehearsal process. Virtual Callboard [7], Propared[3] and Stage
Write [6] are software systems used by both designers and actors to manage
a production including document management or tracking an actor’s location
and movements during rehearsal. There are also systems such as Cuelist [1] and
QLab[4], which were designed to help with the process of creating a prompt
book, a book which specifies all cues for all parts of a production.

Products like the ones outlined in this section can prove to be invaluable
when organizing large-scale theatrical productions. However, none of these
systems assisted stage managers in taking lines notes.

3 System Design

Before implementing the system, a series of preliminary interviews were con-
ducted. A total of six stage managers with experience working on at least one
full production were interviewed about their experience taking line notes.

While methods varied slightly, most stage managers highlighted the lines
in a digital version of the script that were said incorrectly. The color of the
highlight would correspond to the type of error made. Stage managers would
re-organize lines said incorrectly and distribute them to actors after rehearsal
ended. Based off of these interviews a series of user requirements were compiled:

75

• parse and format a text-based script for display.
• allow script traversal which facilitates monitoring the play in real time.
• allow the user to quickly mark specific words if a line was said incorrectly,
preferably with color coordination.

• export all notes in a readable format which can be understood by an
actor performing in the production.

• allow the user to categorize how lines are exported (by character or scene).

Following object-oriented principles and a loose SCRUM methodology, we
developed a Java-based software system for taking line notes which met the
above user requirements. The system consisted of a Parser which assisted the
stage manager in importing a digital script and segmenting it by Acts, Scenes,
Lines, Words, and Characters. This “master script” could then be saved and
used again to avoid repeating the parsing process. The Notetaker Interface
(Figure 1) is the GUI component that allows the user to notate errors said by
the actor and includes the ability to navigate between Scenes (top buttons)
and change categories of errors with a button click (lower buttons). The stage
manager could then export these line notes with color coordination as feedback
to the actors.

Figure 1: The Notetaker Interface

76

4 Evaluation

To understand the effectiveness of the software, we designed a study to as-
sess the system’s usability in a simulated theatrical environment. We recorded
four scenes using different volunteer actors from the Rollins College Theatre
Department. Each scene was one to two minutes long and included approxi-
mately ten errors of varying types. These error types fell into three different
categories that could be easily simulated: missed (Red), added (Yellow), and
changed (Green). Each of the four scenes was played in succession, and five
different veteran stage managers used our system to notate the errors in com-
parison to the scripts they were given. After they completed the line notes, we
interviewed each participant to obtain qualitative data.

To analyze the data, the line notes from each participant were compared
to a correct version and the total number of errors found was calculated. If a
participant located an error but marked additional words, or if the error was
found but categorized incorrectly, we counted the line note as correct. In a real
theatrical setting, the actor would be able to use this feedback to understand
that a line was said incorrectly.

While this study format does not allow us to simulate the fatigue experi-
enced by the user during a two hour rehearsal, nor all the possible categories,
it does allow us to efficiently test the system for learnability and ease-of-use.

5 Analysis and Discussion

Overall, the results from the study were positive. However, the testing pool
was small, and we cannot assume that these findings will generalize without
further study.

As a group, the participants were able to locate 70% of the 41 errors in the
experiment. There was improvement in performance from the first scene (48%
of errors found) to the final (84% of errors found). This increase in correctness
can be attributed to two factors: participants becoming more familiar with the
system and the speed at which the scenes were performed. The first scene was
comedic scene which tends to be performed faster while the second was a dra-
matic scene which has a slower pace. Table 1 shows breakdown of performance
by participant.

5.1 Usability and Strengths

During the interviews, the users identified several strengths of the software
system. The users liked the ability to click to navigate from scene to scene
instead of scrolling. Participant 2 talked about the ability to change scenes by

77

Table 1: Errors Found by Each Participant
Scene 1 Scene 2 Scene 3 Scene 4 Total

Participant 10 Errors 10 Errors 10 Errors 11 Errors 41 errors
P1 5 8 8 10 31
P2 4 8 7 10 29
P3 5 7 8 8 28
P4 6 8 7 9 30
P5 4 6 7 9 26

AVERAGE 48% 74% 74% 84% 70%

saying, “I like how you can flip back and forth between the scenes. I think it is
a lot easier to be able to see all the scenes instead of having to scroll."

Second, the users liked the ability to use the buttons to change error cate-
gories. Due to the fact that the buttons were marked with the category name
and color, the system helped reduce the cognitive load. Participant 3 said, “
[Changing the color of text in Word or Adobe] takes longer than this program
did because this ... will automatically make it the color you want if you click
on the right thing [button].”

Third, stage managers liked the ability to mark individual words with a
double click which made it easier to mark small details while keeping up with
the actors. Participant 2 remarked, “I think [error marking] is especially easier
when it’s just one word. When you can just double click on it, it is a lot easier.”

While not explicitly tested in the study, the participants appreciated the
software’s ability to export categorized line notes. This functionality is unique
to this software, and it saves the stage manager time post-rehearsal. Partici-
pant 3 said “[Compiling notes] is what takes the longest for me, so it’s really
helpful that I don’t have to do that manually.”

5.2 Critiques and Future Work

The biggest criticism of the software were some UI details. For example, the
placement of a drop down menu which appears when the user highlights words
blocks their vision of some of the remaining sentences. Additionally, several
participants complained that yellow was hard to see on the button panel. Both
of these complaints are easily solved in future versions.

Some participants were concerned that the software does not have a backup
if the user’s computer is rendered unusable for a period of time. Several stage
managers currently use Google Docs to ensure their notes are accessible at any
time. This concern informs future work to include cloud backups.

Additionally, future work includes a study of the system during a full length

78

production. This would provide a stage manager with the time to become an
expert with the system and would allow us to study the system in a fast-paced,
in situ use case.

6 Conclusion

In this paper we have discussed the design, implementation, and study of a
software system to aid stage managers in taking line notes during theatrical
productions. We have designed a system that not only allows for accurate line
note taking, but provides a better user experience. Additionally, our system
saves the user time by compiling notes for distribution. After completing a
user study, we found that on average, the users were able to find errors with
70% accuracy using our system and all the stage managers who evaluated the
software were enthusiastic about trying it during a full length production.

References

[1] Cuelist. reinventing collaboration for theater and live events, 2019 (accessed
May 2, 2019). https://www.thecuelist.com.

[2] Y. Horiuchi, T. Inoue, and K. Okada. Virtual stage linked with a physical
miniature stage to support multiple users in planning theatrical produc-
tions. In Proc of the 2012 ACM Intl Conf on Intelligent User Interfaces,
IUI ’12, pages 109–118. ACM, 2012.

[3] Propared. Production Planning Software Revolutionizing How Organiza-
tions Manage Show Logistics and Streamline Communications, 2019 (ac-
cessed May 2, 2019). https://www.propared.com.

[4] QLab. QLab, 2019 (accessed May 2, 2019). https://figure53.com/qlab/.

[5] S. Sinclair, S. Ruecker, S. Gabriele, and A. Sapp. Digital scripts on a virtual
stage: the design of new online tools for drama students. In Proc of the
5th IASTED Intl Conf on Web-Based Education, WBE ’06, pages 155–159.
ACTA Press, 2012.

[6] Stage Write. Capture Creativity with Stage Write, 2019 (accessed May 2,
2019). https://www.stagewritesoftware.com.

[7] VirtualCallboard. Online Stage Management and Production Management,
2019 (accessed May 2, 2019). https://www.virtualcallboard.com.

79

Exploring Collaborative Talk Among
African-American Middle-School Girls in
the Context of Game Design for Social

Change∗

Jakita O. Thomas1, Yolanda Rankin2, Quimeka Saunders 3

1Auburn University, Auburn, AL 36849
jnt0020@auburn.edu

2Florida State University, Tallahassee, FL 32306
yolanda.rankin@cci.fsu.edu

3Spelman College, 350 Spelman Lane
Atlanta, GA 30314

qsaunder@scmail.spelman.edu

Abstract

Computer Science education research establishes collaboration among
students as a key component in learning, particularly its role in pair pro-
gramming. Furthermore, research shows that girls, an underrepresented
population in computing, benefit from collaborative learning environ-
ments, contributing to their persistence in CS. However, too few studies
examine the role and benefits of collaborative learning, especially col-
laborative talk, among African-American girls in the context of complex
tasks like designing video games for social change. In this exploratory
study, we engage 4 dyads of African-American middle school girls in the
task of designing a video game for social change, recording the dyads’
conversations with their respective partners over an eight-week summer
game design experience during the second year of what has now become
a six-year study. Qualitative analysis of dyadic collaborative discus-
sion reveals how collaborative talk evolves over time in African-American
middle-school girls.

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

80

1 Introduction

Collaborative Learning has been presented as one of the many ways of address-
ing some of the known failures of traditional methods of instruction. Some of
these known failures include low rates of retention, failure to transfer learning
and inability of learners to apply knowledge flexibly. Collaboration, for the
purposes of this research, has been defined as the joint effort of two individuals
to complete a given/task or project. The act of collaboration allows groups to
reveal conflict, negotiate meanings and uncover common ground that can serve
to model the thinking necessary to carry out certain actions/task.

Computer Science (CS) education research espouses collaborative learning
as beneficial for students learning how to program whether in an entry level
or advanced CS course [10][7]. However, additional studies are needed to bet-
ter understand how diverse populations of students master collaboration while
developing key computational thinking skills. In this paper, we explore collab-
orative talk between dyads of African-American middle school girls engaged
in game design for social change. This research poses the following question:
What conversational patterns do the African-American middle school girls gen-
erate as they engage in collaborative talk in the context of designing games for
social change? We address this research question by analyzing recorded video
observations of dyads working together during the second year (or Season) of
SCAT’s two-week intensive summer game design experience.

2 Background

Collaborative learning has been presented as one of the many ways of address-
ing some of the known failures of learning by traditional methods of instruction
[4][1]. Although, collaborative learning has been shown to improve some of the
challenges of individual learning, putting two children together for group work
will not necessarily ensure that they will profit from the interaction in a learn-
ing environment. Children benefit from the interaction to the extent in which
they participate [6]. Teasley [8] found, when comparing dyads that talked with
and dyads that did not (i.e., no-talk dyads), that dyads that talked generated
better hypotheses than no talk dyads. In her study, dyads collaboratively pro-
grammed a sprite to move a certain way. She also characterized and categorized
the collaborative talk, called utterances, that those dyads engaged in using ver-
bal coding scheme. The coding scheme accounted for utterances, which were
defined as individual message units that consisted of single sounds, sentence
fragments and interruptions or complete sentences and nonverbal activity such
as nods, shrugs, pointing, writing and control of the computer mouse [8]. The
coding scheme included the following categories: procedural, command selec-

81

tion, plans, predictions, strategies, describes movement, references program,
hypothesis, meta, off-task, questions experimenter, other, checks with partner,
and resource management [8]. Procedural, command selection, plans, predic-
tions and strategies together were called program generation utterances, which
relate to the dyad creating the program. Describes movement, references pro-
gram, and hypothesis were evidence evaluation utterances, using the program
itself as evidence to evaluate or assess what is happening in the program or
to explain the program’s output. Meta, off task, questions experimenter, and
other were described as general utterances. Checks with partner and resource
management were described as dyad utterances because they characterized
how utterances that dealt with the way the dyad engaged in the collaborative
implementation of the program.

Looking at the individual verbal coding categories [8], procedural utterances
concern the basic “how to operation of the task”. Command selection names
a selected program command. Plans states the intended plans of action (more
than the selection of individual commands). Predictions make a specific predic-
tion about an action or outcome. Strategies note that an individual command
or sequence of commands affects the interpretability of the program. Describes
movement identifies and/or counts sprites’ movement as the program was ex-
ecuting. References program refers back to the program that was entered.
Hypothesis states a (correct or incorrect) hypothesis about the effect of the
command. Meta indicates an assessment of one’s own understanding. Off task
states information that was unrelated to the specific task, in this case, mak-
ing a sprite (spaceship) move a certain way. Other indicated utterances that
were inaudible, uninterpretable, or did not fit in any other category. Checks
with partner addresses questions to a partner that serve to remind or clarify.
Finally, resource management manages turn-taking or sharing the computer.

When engaging in collaborative talk, dyads are likely to use informal con-
versational like talk, which is talk that allows them to work out meanings and
clarify, expound on and qualify ideas, known as expressive talk [5]. As dyads
converse, the talk they produce becomes more formal, and use of appropriate
vocabulary occurs instead of ambiguous terms like “it” or “that” [10]. Game
design is inherently collaborative, with game design companies consisting of
individuals working together on large teams to design and implement games
over a certain number of years. As a result, the collaborative context that game
design provides makes it an ideal context for examining collaborative talk, even
in younger game designers (i.e., African-American middle school girls). Game
design also involves the design, implementation, adaptation and assessment of
algorithms, making it an ideal context to study a complex cognitive capability
like computational algorithmic thinking (CAT). CAT is the ability to design,
implement, and assess the design and implementation of algorithms to solve a

82

Figure 1: Game Design Cycle

broad range of problems [9].

The game design cycle consists of seven phases, which include brainstorm-
ing, storyboarding, physical prototype, design document, software prototype,
implementation and quality assurance/maintenance, are iterative themselves
(See Figure 1). Between each iterative phase beginning with storyboarding,
playtesting occurs. Playtesting involves target players playing the game in dif-
ferent forms and providing feedback that informs the iterative design of the
game [3]. During the brainstorming phase, dyads are to come up with as many
game ideas as they possibly can and may present these ideas to an audience for
feedback. After an idea is generated, dyads are required to explain their idea
visually using paper-and-pencil in order to give a thorough explanation of their
game. The images or series of “screenshots” are called storyboarding, which
simulate the players’ movement throughout the entire game while using few
words to describe non-visual elements of the game (e.g., sound). During the
physical prototyping phase, dyads create a playable prototype using craft ma-
terials, and their physical prototypes are playtested. After iteratively working
through each prototype, the design document is drafted, which describes every
aspect of the game. Next, each dyad creates software prototypes, which model
the core gameplay and are playtested to help dyads make remaining design
decisions. During the implementation phase, dyads implement their games,
which are playtested after each iteration. Lastly, quality assurance is done and
consists of making sure that the target audience has access to the software
game and there are no lingering issues within the software prototype[3][9].

83

3 The SCAT Learning Environment

Supporting Computational Algorithmic Thinking (SCAT) is a longitudinal
between-groups research project that explores how African-American middle-
school girls develop CAT capabilities over time (i.e., three years) in the con-
text of game design for social change. SCAT is also a free enrichment pro-
gram designed to expose African-American middle-school girls to game design.
Originally intended to span three years, but now in it’s sixth year, partic-
ipants develop CAT capabilities as they work in dyads to design more and
more complex games that address issues or problems identified by the Scholars
themselves. SCAT Scholars began the program the summer prior to their 6th
grade year and have continued through their 11th grade year (i.e., June 2013 –
present). For the first three years of the program, each year Scholars engaged
in 3 types of activities: 1) a two-week intensive game design summer expe-
rience; 2) twelve technical workshops where Scholars implemented the games
they designed using visual and programming languages in preparation for sub-
mission to national game design competitions; and 3) field trips where Scholars
learned about applications of CAT in different industries and careers. Scholars
also had several scaffolds in the learning environment to support them in the
ways cognitive apprenticeship suggests including the facilitator, undergraduate
assistants, the Design Notebook, and other Scholars[2][9].

4 Methodology

4.1 Setting and Participants

We have worked with 23 African-American middle school girls over the past
six years, beginning the summer prior to their 6th grade year and continuing,
now, through their 11th grade year. Note that 23 represents the total number
of African-American girls who have participated in the program for the past 6
years but always in dyadic formation. In this study, we focus on the second year
(or Season) of SCAT (June 2014), particularly the two-week intensive summer
game design experience. Out of the 10 dyads in SCAT that Season, here
we examine four target dyads (8 Scholars total): two dyads each consisting
of two Scholars who were in the SCAT program for two consecutive years
(called returning Scholars) who worked together both of those Seasons; one
dyad consisting of two returning Scholars working together for the first time,
and one dyad consisting of one returning Scholar and one Scholar who was new
to SCAT at that time.

84

4.2 Data Collection and Analysis

We videotaped each dyad for six hours each day over the course of two weeks
(10 weekdays), generating over 600 hours of video data for all 10 dyads. Our
four target dyads represent over 240 hours of video data. Transcripts of the
target dyads’ conversations were generated from the videotaped observations.
Each of the transcribed blocks were analyzed by two coders using Teasley’s
coding scheme [8]. Differences in categorization were settled via discussion.
We expected those dyads of returning Scholars who worked together both Sea-
sons would talk more, and that the character of those utterances would largely
involve procedural, plans, and checks with partner. We expected the dyad
of returning Scholars working together for the first time would talk less than
the dyads who had worked together for two Season, and that the character of
those utterances would largely involve command selection, meta, checks with
partner, and resource management. Finally, we expected the dyad consisting
of a returning Scholar and a new Scholar would talk even less than the dyad
of returning Scholars working together for the first time because former dyad
members would be less familiar with each other. We expected that the char-
acter of those utterances would largely involve command selection, meta, and
checks with partner.

5 Results

Here, we present and characterize the discussions (or utterances) that our four
target dyads produced as they engaged in designing and implementing their
games. For those utterance types, we include excerpts of collaborative talk
as representative examples of how our target dyads conversed as they moved
through the game design cycle.

5.1 Procedural

Our analysis revealed new Scholar/returning Scholar dyads communicated more
about tasks and the basic “how-to” operations for each phase of the game design
cycle. The returning scholar was able to scaffold the novice scholar through
the different phases when needed. For example, in the following excerpt, Team
member A (the returning Scholar) and Team member B (the new Scholar)
are constructing their physical prototype. Team member B is not clear about
physical prototype construction, and Team member A, who has had prior ex-
perience constructing a physical prototype, explains:

Team member A: "They have to a c t ua l l y play i t "
Team member B: "No I mean l i k e on t h i s "
Team member A: " I know"

85

Team member B: "For r e a l ?"
Team member A: "Yeah . "
Team member B: "So what are we going to do?

Like attach the th ing to something ?"
Team member A: "Yeah were going to attach a s t r i n g to i t . "

We found that dyads with at least one returning Scholar also communicated pro-
cedural tasks when one partner was opposed to the way a task was being completed.
For example, in this excerpt, the dyad is implementing their game using SCRATCH.
They are trying to use the same screen in two different parts of the game, but only
have the Play button show on one of those screens. Team member A (the returning
Scholar) and Team member B (the new Scholar) disagree about how to accomplish
that:

Team member A: "We can use the same play button −
no not that play button"

Team member B: "No no no no no −− no s e r i o u s l y no"
Team member A: "You don ' t have to do that −

stop stop stop stop "
Team member B: "No s e r i o u s l y no −

i t s going to make me angry"
Team member A: "No j u s t do that " ,
Team member A: " I know but i t has to be on that page −

so what you do i s j u s t make i t h ide "
Team member A: " j u s t put that c o l o r to show at um −

backdrop f i v e " .

5.2 Plans

Analysis reveals that new Scholar/returning Scholar dyads stated intended plans to
be completed together, or plans were stated in such a way that one member asked
questions to clarify a portion of a task. However, dyads of two returning scholars
working together for the first time discussed plans to assure that each partner agreed
before beginning to work the task. For example, below Team Member A and Team
Member B (returning Scholars working together for the first time) discussed, during
implementation, how they will display character descriptions and instructions for
playing the game:

Team member A: " so that i f they choose Cal i ,
then how about we have the in fo rmat ion
about her . . . that s c r e en . "

Team member B: "yeah I know ."
Team member A: " then l i k e her fami ly and f r i e n d s and teacher .

Then i f they choose Johnson then they have
h i s fami ly , h i s f r i e n d s and h i s t eacher and
we have , l i k e , the p r i n c i p a l and the nurse

86

− people . "
Team member B: "and then t e l l them how to play " .

Dyads with two returning Scholars did not state or discuss intended plans of action.
Instead, using the Design Notebook, they worked simultaneously on different portions
of one task, or one partner took the lead with no prior discussion of which partner
would take the lead or which part of the task each partner would work on. Instead,
those roles were negotiated in a seamless way without dialogue.

5.3 Checks with Partner/Meta

Both new Scholar/returning Scholar dyads as well as dyads with two returning Schol-
ars working for the first time consistently checked with their partner for clarification
to assure tasks were being completed accurately and in a way their partner liked.
Below, Team member A and Team member B are designing levels of their game,
discussing how players will be able to access the bonus level:

Team member A: "game . . . bonus l e v e l . . . games . . . bonus l e v e l . . .
but that ' s only i f they pass the game . "

Team member B: "yeah , they pass the game then they ' l l
get the bonus l e v e l . . . how about i f they
only get a c e r t a i n amount o f po in t s
they get the bonus l e v e l . . . l i k e i f the
most amount o f po in t s you can get to pass
the l e v e l i s l i k e 50 the l e a s t you can get
i s l i k e 30 to pass the l e v e l . . . but i f
they get they 40 po in t s then they get
the bonus l e v e l but they don ' t get to
go to the next round " .

In dyads with returning Scholars working together for a second Season, partners rarely
checked with each other, but focused instead on getting agreement from their partner
on the process they were engaged in. For example, while creating their storyboards,
Team member A checks in with her partner around the process for creating the
storyboards.

Team member A: "Like we drew . . . we drew l i k e the f r on t page ,
but i f you c l i c k on each one . . . l i k e where
would we go to . . . So are we supposed to l i k e
draw the game l i k e somebody ' s p lay ing i t ?"

Team member B: "mhm"
Team member A: " I know , but I s t i l l get confused that was

l i k e , a whi l e ago " .

87

6 Conclusion

We anticipated that dyads with two returning Scholar who had also worked together
for two Season would engage in the most discussion, while dyads with one returning
Scholar and one new Scholar would engage in the least discussion. The analysis of
data of our four target dyads suggests otherwise. Instead, we found the opposite. The
new Scholar/returning Scholar dyad engaged in collaborative talk most frequently
with the returning Scholar (the more expert team member in terms of designing
games for social change) helping scaffold the novice team member throughout the
game design cycle. Further, while the returning Scholars working together for the
first time, engaged in collaborative talk less than the new Scholar/returning Scholar
dyad, they did engage in more collaborative talk than the returning Scholars working
together for the second time. Perhaps most surprising was the finding that the dyads
containing two returning scholars working together for the second time (or second
Season) engaged in the least collaborative talk out of all of the target dyads with
sporadic discussions throughout each phase of the game design cycle and with these
dyads working mostly independently on each task and checking in with each other
after completing a portion of a task. This suggests that the amount or duration of
collaborative talk may not be the best indicator of collaboration for every task or
process, especially when dyads work together for extended periods of time (in this
case, into the second SCAT season, or more than one year). It would appear that these
groups had developed practices over the course of the first Season that later supported
them in engaging in game design for social change without a lot of collaborative
talk during the second Season. Further, our analysis revealed that the utterance
categories that showed up most in the data were Procedural, Plans, and Checks
With Partner/Meta. Additionally, our analysis revealed that the utterance categories
that showed up most in the data were uttered or enacted differently depending upon
the type of dyad (i.e., two returning Scholars working together for a second Season,
two returning Scholars working together for the first time, or one returning Scholar
working with one new Scholar). For example, for dyads with one returning Scholar
and one new Scholar, plans utterances focused on stating the intended plans together
or asking questions about the plan for clarity. For dyads with two returning Scholars
working together for the first time, plans utterances focused on ensuring that both
members of the dyad agreed before proceeding with a plan of action. However, for two
returning Scholars working together for a second Season, plans utterances were not
stated or spoken at all. Instead, these dyads relied almost completely on the Design
Notebook, and were able to divide the workload up in such a way that they could
work independently, trusting that each partner would execute their plans in the ways
they both intended. Future work includes conducting the same examination for the
same groups using dyad video observations from the first Season of SCAT during the
two-week intensive summer game design experience, where all Scholars participated
in the SCAT program for the first time and where all dyads worked together for the
first time.

Acknowledgements: We would also like to gratefully acknowledge the support of
NSF (DR K -12 #1150098).

88

References

[1] Margarita Azmitia. Peer interaction and problem solving: When are two heads
better than one? Child Development, 59(1):87–96, 1988.

[2] Allan Collins, John S. Brown, and Susan E. Newman. Cognitive apprenticeship,
chapter 14, pages 453–494. Erlbaum, Hillsdale, NJ, 1989.

[3] Tracy Fullerton, Christopher Swain, and Steven Hoffamn. Game Design Work-
shop: designing, prototyping and playtesting games.

[4] T. D. Koschmann. Towards a theory of computer support for collaborative
learning. The Journal of the Learning Sciences, 3:219–225, 1993.

[5] B. Latour. Science in action: How to follow scientists and engineers through
society. Harvard University Press, 1987.

[6] Barbara Rogoff. Apprenticeship in thinking: Cognitive development in social
context. Oxford University Press, 1990.

[7] O. Ruvalcaba, L. Werner, and J J. Denner. Observations of pair programming:
Variations in collaboration across demographic groups. Proceedings of the 47th
ACM Technical Symposium on Computing Science Education, March 02-05:90 –
95.

[8] S. D. Teasley. The role of talk in children’s peer collaborations. Developmental
Psychology, 31(2):207 – 220.

[9] J. O. Thomas. The computational algorithmic thinking (cat) capability flow: A
methodological approach to articulating complex cognitive skills and capabilities
over time. Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (SIGCSE), 2018.

[10] L. Werner, J. Denner, and S. Campbell. Children programming games: A strat-
egy for measuring computational learning. ACM Transactions on Computing
Education, 4(4):22.

89

Assessing Ethics in a Computer Science
Curriculum: Instrument Description and

Preliminary Results∗

Kevin R. Sanft
Department of Computer Science

University of North Carolina Asheville
1 University Heights
Asheville, NC 28804

ksanft@unca.edu

Abstract
Ethics and professional conduct are components of many undergrad-

uate computer science curricula. Assessment of students’ knowledge and
conduct is important for evaluating ethics-related student learning out-
comes and teaching effectiveness. We present a survey designed to assess
a student learning outcome evaluated on five dimensions related to ethics
and professional conduct. A rubric application is provided to categorize
the responses into rubric levels. Preliminary assessments from an in-
troductory programming course, a professional development course and
a computer science capstone course are presented and compared. As-
sessing ethics is challenging due to time demands and the variety and
nuance that realistic ethical dilemmas entail. Shortcomings such as the
possibility of dishonest responses are discussed. Overall, the instrument
provides a mechanism requiring minimal time commitment for assessing
ethics-related student learning outcomes.

1 Introduction

Ethics and professional values have been a part of many computer science cur-
ricula for decades [2, 8]. However, these topics have received renewed attention

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

90

in recent years due to the increasing role of technology in society and scandals
at tech companies. From the use of social media to spread misinformation, poor
data privacy policies, security breaches, concerns about automation and artifi-
cial intelligence, and many other challenges, ethical issues related to technology
continue to make headlines, underscoring the importance of emphasizing these
topics in the computer science curriculum.

In this work we will use the term ethics broadly to encompass ethics, pro-
fessional values and professional conduct. Previous work on assessing ethics-
related student learning outcomes has often focused on scenario-based ap-
proaches (e.g. [7, 11, 5, 9]). These typically involve a description of a chal-
lenging hypothetical scenario and the application of a rubric to categorize the
response. Other work has emphasized the importance of aligning assessment
instruments to the student learning outcomes and the difficulties in assessing
hypothetical scenarios [6, 4]. Scenario-based assessments tend to be time-
consuming and most approaches are susceptible to bias due to disingenuous
responses.

In this work we present an assessment survey to evaluate an ethics-related
student learning outcome across five predefined dimensions. The questions
feature some answer choices that are designed to detect dishonest responses.
Student responses are classified into rubric levels automatically. The assess-
ment results are designed to provide useful metrics in a continuous improvement
plan.

2 Student Learning Outcomes

The student learning outcome assessed in this work is based on an outcome in
the ABET Criteria for Accrediting Computing Programs, 2018-2019, namely,
“Students will make informed judgments in computing practice based on legal
and ethical principles" [1]. The outcome is assessed on five dimensions that
are adapted from the 2018 ACM Code of Ethics and Professional Conduct [3]:
1) Knowledge of Legal Issues, 2) Plagiarism, 3) Privacy and Confidentiality,
4) Societal Impact, and 5) Quality of Work. These dimensions, along with a
matrix of rubric levels are available in Reference [10].

3 Instrument

The survey consists of fifteen multiple choice questions, including scenario-
based, factual, and opinion questions. The questions and response options are
listed below. The Likert scale choices are 1=Strongly Disagree, 2=Disagree,
3=Neutral, 4=Agree, and 5=Strongly Agree. The first question is “check all
that apply", the rest are single option response.

91

1. Legally, which of the following factors are relevant in determining if a
student can use a portion of copyrighted text or images in a homework
assignment (check all that apply): a) You can never use someone else’s
copyrighted material; b) If the copyright holder is given attribution; c)
That the use is for academic/educational purposes; d) The amount of
material copied; e) The effect of the use on the copyright holder’s income.

2. Suppose you sign a contract with a company to develop a portion of a
large software product. The contract states that you are the author and
not the owner of the software you write. This means: a) As the author, I
am allowed to use my code only for my own personal future projects.; b)
As the author, I am allowed to help other software companies using the
same code.; c) Since I’m not the owner, I can’t use the code anywhere
else.; d) I’m not sure.

3. Copyright law applies to computer programs. (True, False, Don’t know)

4. Copyright applies only when the copyright is registered. (True, False,
Don’t know)

5. Have you plagiarized (code or other writing) on a homework assignment
(in any course) at the college level within the past 12 months? (Yes, No)

6. Have you ever plagiarized (code or other writing) on a homework assign-
ment (in any course) at the college level? (Yes, No)

7. If you did not have time to finish a computer program for a homework
assignment, would you copy programming code from another student?
(Yes, No)

8. Imagine you work for a social media company. When do you think it
is acceptable to use or share private and confidential user data (choose
the best response): a) When it is convenient for software development
purposes.; b) When the financial benefits of using the data are worth
more than the expected cost of the risks.; c) When necessary for busi-
ness purposes and it adheres to the company’s privacy policy.; d) When
necessary for business purposes but only with explicit user consent.; e)
It is never acceptable to use or share confidential data.; f) None of these
choices reflect my views.

9. It is important that computer scientists consider societal impacts when
implementing systems. (Likert scale)

10. In the future, I will consider social needs and accessibility in design and
implementation of computing systems. (Likert scale)

92

11. It is important that Computer Scientists create awareness and under-
standing of systems, their limitations, vulnerabilities, and opportunities.
(Likert scale)

12. I sacrifice the quality of my work to meet deadlines and/or if other
projects have higher priority. (a) Frequently, b) Rarely, c) Never)

13. How important is it for computer scientists to produce quality work
(choose the best response): (a) Not particularly important; b) It can
be important for the individual’s success as an employee and for their
company’s success; c) In some cases, it can be a matter of life and death)

14. Are you aware that the Association for Computing Machinery has a “Code
of Ethics and Professional Conduct"? (Yes, No)

15. It is important for computer scientists to pursue continuing education
throughout their careers. (Likert scale)

4 Rubric Application

Figure 1 shows how the responses to the survey are mapped to the rubric levels.
A simple script aggregates the results.

5 Preliminary Results and Discussion

The survey was administered via Google Forms in a single semester to three
computer science courses: an introductory programming course open to majors
and non-majors (majors were primarily first-year students, while non-majors
were typically further in their program), a mid-level professional development
course, and a capstone project course. Rubric application results are shown in
Table 1. All students at our institution complete a Humanities program that
includes ethics-related topics; we did not consider students’ prior exposure to
ethics via the Humanities program or other courses in our assessment. The
professional development course was created as part of a recent curriculum
redesign. The ethics-related student learning outcome was introduced with
the new curriculum, therefore, it was not assessed in the previous curriculum.

5.1 Discussion and Conclusion

Several response choices are designed to detect answers that are disingenuous
or that fail to capture the nuance of ethical issues. For example, “Never"
sacrifice work quality on Q12 or on Q8 saying “It is never acceptable to use
or share confidential data", which neglects legitimate business purposes (e.g.

93

Figure 1: The criteria for mapping responses from the instrument to the rubric
levels.

billing). One may be able to use these and perhaps additional questions to
create a reliability score but this was not explored in this work. On plagiarism,
the preliminary results were interesting. In the intro course, four students had
been caught plagiarizing earlier in the semester, yet all four of them answered
that they had not plagiarized! Conversely, in the professional development
seminar, where ethics were discussed, two students admitted to plagiarizing
(in other courses). Our university maintains a repository of academic honesty
violations which we intend to use to supplement the survey responses.

In evaluating the assessment results, “success" is institution and program
dependent and should be based on the curriculum’s learning outcomes. For
the baseline results reported here, preliminary conclusions might be that our
program should increase emphasis on dimensions 1 (Knowledge of Legal Is-
sues), 3 (Privacy and Confidentiality) and 5 (Quality of Work), which could be
integrated into a continuous improvement plan. The instrument described in

94

Dimension
Rubric
Level

Overall
(N=54)

Intro
(N=30)

Seminar
(N=17)

Capstone
(N=7)

Knowledge of
Legal Issues

0 15% 10% 18% 29%
1 50% 40% 65% 57%
2 30% 40% 18% 14%
3 6% 10% 0% 0%

Plagiarism

0 13% 20% 6% 0%
2 2% 0% 6% 0%
3 85% 80% 88% 100%

Privacy and
Confidentiality

0 2% 0% 6% 0%
1 50% 53% 41% 57%
2 48% 47% 53% 43%

Societal
Impact

0 4% 3% 6% 0%
1 4% 3% 6% 0%
2 26% 30% 24% 14%
3 67% 63% 63% 86%

Quality of
Work

0 0% 0% 0% 0%
1 70% 80% 59% 57%
2 11% 17% 0% 14%
3 19% 3% 41% 29%

Table 1: Baseline assessment results for three computer science courses: an
intro programming course open to majors and non-majors, a professional de-
velopment course, and a capstone course. Percentages may not add to 100%
due to rounding. Dimensions are described in Reference [10]. Rubric levels are
0=Unsatisfactory to 3=Exemplary as applied in Figure 1.

this work provides a convenient mechanism for assessing ethics-related student
learning outcomes. Future work will explore longitudinal results and the effects
of specific continuous improvement plan actions.

Acknowledgements

The author thanks Charley Sheaffer of the UNC Asheville Department of Com-
puter Science for his contributions to the learning outcome, dimensions and
rubrics.

95

References

[1] ABET. Criteria for accrediting computing programs, 2018-2019.
https://www.abet.org/accreditation/accreditation-criteria/criteria-
for-accrediting-computing-programs-2018-2019/.

[2] Richard H. Austing, Bruce H. Barnes, Della T. Bonnette, Gerald L. Engel,
and Gordon Stokes. Curriculum ’78: Recommendations for the undergraduate
program in computer science— a report of the acm curriculum committee
on computer science. Commun. ACM, 22(3):147–166, March 1979.

[3] Association for Computing Machinery. Acm code of ethics and professional
conduct. https://www.acm.org/code-of-ethics.

[4] Ursula Fuller and Bob Keim. Assessing students’ practice of professional values.
SIGCSE Bull., 40(3):88–92, June 2008.

[5] Mary J. Granger, Elizabeth S. Adams, Christina Björkman, Don Gotterbarn,
Diana D. Juettner, C. Dianne Martin, and Frank H. Young. Using information
technology to integrate social and ethical issues into the computer science and
information systems curriculum: Report of the iticse ’97 working group on so-
cial and ethical issues in computing curricula. SIGCUE Outlook, 25(4):38–47,
October 1997. Chairman-Little, Joyce Currie.

[6] Matthew W. Keefer, Sara E. Wilson, Harry Dankowicz, and Michael C. Loui.
The importance of formative assessment in science and engineering ethics edu-
cation: Some evidence and practical advice. Sci Eng Ethics, 20:249, 2014.

[7] Keith Miller. Integrating computer ethics into the computer science curriculum.
Computer Science Education, 1(1):37–52, 1988.

[8] The Joint Task Force on Computing Curricula Association for Comput-
ing Machinery (ACM) IEEE Computer Society. Computer science curricula
2013. https://www.acm.org/binaries/content/assets/education/cs2013_
web_final.pdf.

[9] D.B. Parker. Ethical Conflicts in Computer Science and Technology. AFIPS
Press, 1981.

[10] Charley Sheaffer and UNC Asheville Department of Computer Science,
2018-2019. https://drive.google.com/file/d/1wTsOP4M-50RLUWR9fx1g--
6bb_Fvkzw8/view?usp=sharing.

[11] L.J. Staehr and G.J. Byrne. Using the defining issues test for evaluating com-
puter ethics teaching. IEEE Transactions on Education, 46(2):226–234, 2003.

96

Reflective Writing Through Primary
Sources∗

Valerie Summet
Mathematics and Computer Science

Rollins College
Winter Park, FL 34761

vsummet@rollins.edu

Abstract
In this paper, we present a series of reflective writing assignments.

In contrast to previous use of reflective writing in computer science, this
work aims to provide a discussion of ways of incorporating reflective
writing and primary sources into higher level courses and providing a
platform for reflection on a large scope of events including the computer
science major, the undergraduate learning experience, and plans for both
education and careers. We give examples of the primary sources, the
overall structure of the assignments, and some student reactions to them.

1 Background

Reflective writing is an important skill in an undergraduate education. Reflec-
tive writing encourages critical thinking, assists in developing student inquiry,
and may help students understand content material or larger patterns in their
learning. In CS, reflective writing has most often been used to reflect on a
small, practical activity such as a specific exercise. The purpose of this paper
however, is to examine how students reflect on their undergraduate education
and, in particular, their major in Computer Science. In this paper, we present a
series of writing assignments designed to expose CS student to primary sources,
facilitate a close reading of those sources, and encourage students to reflect on
the connections between the reading and their experiences as a computer sci-
ence major at Rollins College.

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

97

2 Related Work

In CS, reflective writing has been highly targeted. For example, Stone and
Madigan [7] integrated reflective writing into two specific assignments: a tear-
down of a PC in an architecture class and in case studies during a network
security class. They noted, “The early papers were more like research papers
where the students repeated the concepts but did little in tying the mate-
rial to their own experiences. As the term progressed the reflections became
less research and fact-oriented and more reflective and personal.” George [3]
used reflective journal in a Data Structures and Algorithms course. These
journal entries were specifically tied to course content and programming as-
signments and asked students to reflect on their understanding and learning of
those topics. Fekete, et al. [2] used reflective diaries in CS1 to encourage stu-
dents to develop regular study habits and learning patterns. The diary entries
asked concrete questions such as what new things the students had learned this
week, what readings they had completed, how they did on last week’s plan,
and what their plan for the coming week was. VanDeGrift [9] studied writing
in the context of pair programming. Specifically, she designed project reports
which were completed after three different pair projects based around reflective
writing. “Reflective and personal” writing was an explicit goal of the current
project, but the desire was to decouple and expand the reflection away from
course-specific programming or content.

Reflective writing has also been used as a feedback mechanism to the course
instructor in Computer Science (e.g. [6]) but instructor feedback was not the
goal of this project.

3 Assignment Structure and Methodology

For each reflective writing assignment, a reading was chosen which served to
highlight a different topic in computer science and require the students to make
connections to that theme in their education. On the day an assignment was
due, the class also had a discussion about the reading and student responses.

3.1 Structure

Each assignment was scaffolded to take the students through three levels of
questions leading to deeper reflection. The assignment began with questions
encouraging close reading, for example, asking the students to find quotes that
they found funny, insightful, or confusing. Then the students had a series
of questions which tied the reading to a theme or topic. These two types of
questions provided a low-stakes way of beginning class discussion and served as

98

a starting point for students to share their opinions on value-neutral questions.
The assignment then transitioned to the reflective questions.

The reflective questions at the end of the assignment specifically ask the
student to reflect on their education thus far and the choices they have made.
Students are also asked to think critically about the entirety of their education
and how they will actively manage their careers and lives in the future.

3.2 Primary Sources

While there are many possible choices for primary sources, the readings below
were chosen to expose the students to a wide spectrum of writing: women au-
thors, historical sources as well as modern writing, and peer-reviewed scholarly
articles as well as accessible pieces written for a lay audience.

1. Ada Lovelace’s Note A [5]. This writing is a historical primary source
which few students had interacted with. Most students found it challeng-
ing due to the language (typical of the 19th century), its mathematical
foundations, and the wildly different vocabulary concerning the “compu-
tational” aspect of her writing.

2. Vannevar Bush’s article As We May Think [1]. Again, this is a historical
primary source which has had vast implications in information manage-
ment and the development of the World Wide Web as we know it today.

3. Nancy Leveson’s article Medical Devices: The Therac-25 [4]. This article
provides an in-depth dive into a medical disaster brought about by poor
software engineering and software bugs. In spite of its length (35 pages),
this is one of the most popular readings and discussion sessions.

4. D.A. Winsor’s Communication Failures Contributing to the Challenger
Accident: An Example for Technical Communicators [10]. This article
highlights the importance of communication with both your peers and
managers who may not have the same technical background to facilitate
a common understanding.

5. Ellen Ullman’s book chapter New, Old, and Middle Age [8]. In this piece,
Ullman reflects on the mental effort required to stay educated in the field
of computer science. As she approaches middle-age, she questions if she
has the drive to learn the skills younger people graduate with. Unsur-
prisingly, the students relate to the mental exhaustion of always learning
new things. Again, this has proved to be a very popular discussion piece.

3.3 Topics

Each primary source serves as the basis for one assignment on a specific topic.
Some sources correspond to the topic better than others, but the desire was
for the student to begin to reflect on this topic in relation to the reading.

99

There are several questions in which the students must tie the topic into the
reading. Some of the topics included creativity, lifelong learning, career plan-
ning and management, ethics and ethical work, prioritization and perspective,
communication, and teamwork.

Some assignments focused on only one topic while others incorporate mul-
tiple topics. Many class discussions tied into multiple topics. For example,
communication between technical experts and lay people was a theme that
was discussed in Bush’s, Leveson’s, and Winsor’s writing.

4 Data, Observations, and Reactions

During the Spring 2018 semester, student writings were collected and analyzed
with IRB approval. Specifically, a total of 101 unique writings were collected
from 24 students over five assignments given during the Senior Capstone course
which students traditionally take in their final semester.

In general, the students liked the readings and class discussions. From
anonymous course evaluations, we received the following comments:

• I also looked forward to the class discussions about the readings. There
are not enough discussion based classes in the computer science program.

• I really enjoyed having the reading assignments within this class because
it helps broaden the work of computer science majors.

• ...the discussions we had during class were actually interesting.
• I really liked the inclusion of a writing component this semester, because
I think that is hugely beneficial in the job setting...

• Reading about the programming cases made me interested in some of the
policy. Not enough to go into law, but definitely interested enough to keep
up with regulations.

The majority of negative comments were focused on the mechanics of the as-
signments and included things such as grading and due dates.

Moreover, we saw evidence that the students were using the primary source
readings and the writing assignments as venues for personal reflections. The
following quotes showcase some reflections:

On teamwork: “I believe a pretty universal aspect of teamwork for com-
puter scientist is documentation of code. API’s and libraries of code need docu-
mentation so people outside of those who created the documents can understand
and implement them. Reflecting on this question made me realize how collabo-
rative the computer science field is. ... One of the most interesting parts about
teamwork and CS is how it looks differently than teamwork for other fields.”

On begin prepared for the responsibilities outlined in the ACM
Ethics Code: “I worry about responsibility 2.5, ‘Give comprehensive and thor-
ough evaluations of computer systems and their impacts, including analysis of

100

possible risks.’ I don’t feel comfortable exhaustively testing my code for all er-
rors. I can detect some errors along the development of an application but
exhaustively testing a program from all possible errors worries me.”

On communication: “I’d love to offer some great examples of times when
I was able to communicate some complex Computer Science idea to a lay per-
son, but I find myself struggling to communicate on basic levels sometimes.
This is something I am working on.”

On keeping skills up-to-date: “I have to be honest here. I have been
languishing in learning fatigue for a few semesters now. The only thing keeping
me going is my friends, my pride, and caffeine.”

On how learning changed over time: “When I first started at Rollins I
wanted to learn every little detail of everything that we touched on in any class.
However, I quickly found out that there is too much technology and its being
updated too quickly to have any possibility of ‘keeping up.’ So I tried to focus
a lot more on learning skills that I can apply regardless of what language or
technology I’m currently using. Things like problem solving techniques, algo-
rithm analysis, or good coding practices will most likely remain useful no matter
what new language I use. Then when it comes to learning a new language or
technology I focus on learning what I need to accomplish a specific goal.”

On not understanding new things: “This [reading] made me feel like
I was not alone. Often, I feel like I am scrambling to know what is going on
around me and want to make others realize I know what is going on.”

These quotes demonstrate the student candor and depth of thought which
went into their writings. Students were surprisingly willing to share these
thoughts with us through their writings and sometimes shared them during
class discussions as well. Moreover, in class the students sometimes shared
moments of cohort bonding. For example, Ullman’s writings in particular
helped students of all genders discuss imposter syndrome and how even the
“best” students experienced it to some degree.

5 Future Work and Conclusion
One of the unexplored themes to arise from the analysis of the students’ writ-
ings has been program deficiencies. We have been able to identify several areas
of our curriculum that need enhancement or redesign based on the students’
reflections. These type of insights provide an opportunity for instructor and
department reflection on missing components and opportunities to restructure
certain courses to meet these needs, and further analysis in this area is planned.

These reflective writing assignments have shown promise in encouraging
students’ critical thinking, inquiry, and self-reflection. They have also provided
students with valuable context provided by primary sources and historical doc-
uments and allowed the students to reflect on the entirety of their education.

101

References

[1] Vannevar Bush. As we may think. Atlantic Monthly, (176):101–108, 7
1945.

[2] Alan Fekete, Judy Kay, Jeff Kingston, and Kapila Wimalaratne. Sup-
porting reflection in introductory computer science. In Proc of the 31st
SIGCSE Technical Symp on Computer Science Education, SIGCSE ’00,
pages 144–148. ACM, 2000.

[3] Susan E. George. Learning and the reflective journal in computer science.
In Proc. of the Twenty-fifth Australasian Conf. on Comp. Sci., ACSC ’02,
pages 77–86. Australian Computer Society, Inc., 2002.

[4] Nancy Leveson. Safeware: System Safety and Computers, chapter Ap-
pendix A - Medical Devices: The Therac-25 story. Addison-Wesley, 1995.

[5] Ada Lovelace. Sketch of the analytical engine invented by charles babbage:
Note A. http://www.fourmilab.ch/babbage/sketch.html. Accessed:
2019-04-24.

[6] Jeffrey A. Stone. Using reflective blogs for pedagogical feedback in CS1. In
Proc of the 43rd ACM Technical Symp on Computer Science Education,
SIGCSE ’12, pages 259–264. ACM, 2012.

[7] Jeffrey A. Stone and Elinor M. Madigan. Integrating reflective writing in
CS/IS. SIGCSE Bull., 39(2):42–45, June 2007.

[8] Ellen Ullman. Close to the Machine: Technophilia and Its Discontents.
City Lights Publishers, 2001.

[9] Tammy VanDeGrift. Coupling pair programming and writing: Learning
about students’ perceptions and processes. In Proc of the 35th SIGCSE
Technical Symp on Comp Sci Ed, SIGCSE ’04, pages 2–6. ACM, 2004.

[10] D.A. Winsor. Communication failures contributing to the Challenger ac-
cident: an example for technical communicators. IEEE Transactions on
Professional Communication, 31(3):101–107, 9 1998.

102

Mapping and Securing User
Requirements on an IoT Network∗

J. Delpizzo, R. Honeycutt, E. Spoehel, S. Banik
Department of Cyber and Computer Sciences

The Citadel, Charleston, SC 29409
{jdelpizz,rhoneycu,espoehel,baniks1}@citadel.edu

Abstract
The number of IoT (Internet of Things) devices connected in the

Internet has been increasing rapidly. Each of these devices are manufac-
tured by different vendors and provide multiple options for connections.
When these devices are connected with default settings to create a user
centric IoT network, it exposes a lot of vulnerabilities. In this research
we propose a framework that will create a 3-layered abstraction in the
IoT network to identify the user requirements on the IoT devices and ex-
plore all possible connections in an IoT network. Our goal is to provide
a mapping of the user requirements on the IoT network and ensure that
the mapping is secured.

1 Introduction

Internet of Things (IoT) is a set of devices that are connected to the Inter-
net and offer different services to the users. These devices that include smart
phone, smart watch, smart switch, smart thermostat, smart refrigerator have
become seamlessly integrated into our everyday lives. Network created with
these devices have expanded to smart homes, smart cities, medical centers, and
corporate offices. It is estimated by 2025, there will be 50 billion connected
smart home devices, making up a 6 trillion dollar industry [5]. Fundamen-
tally it will change the landscape of the Internet and increase the surface area
for malicious attackers. Vendors have introduced different types of IoT de-
vices that provide different types of connectivity. While the product meets

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

103

the functionality requirements, it may not always meet security requirements.
A unsuspecting user may purchase IoT devices to add convenience to their
lives. However, when these devices are connected to the home IoT network,
they open major gaps in the existing network that can be exploited to expose
private information or create a botnet, like the mirai botnet, to infect other
systems.

We propose a framework of three layers in an IoT network. For a set of
IoT devices, the physical layer identifies all possible connections among these
devices, the requirement layer identifies all the connections required by the user
for using these devices, and the logical layer maps the user requirements on the
physical network. First the user needs to identify the devices that they would
like to have connected in their home IoT Network. We propose an algorithm
that will identify all the physical connections between the user selected devices.
Next we get the requirement of user for connecting these devices. For example,
the user wants to use the smart phone to control the temperature. We propose
an algorithm that maps the requirement of the user on the physical network
of IoT devices. We identify the physical connections that are used to map the
user requirements. Our goal is to design the secured logical layer that will map
the user requirements on the physical network and restrict the connections that
are not used in the mapping.

The remainder of this paper is organized as follows. In Section 2, we present
the recent research in IoT security from the literature. Section 3 describes our
System Model. Section 4 outlines the proposed algorithms. In Section 5, we
discuss our experimental testbed and results. Section 6 provides ideas for future
work and concludes the paper.

2 Literature Review

Lee et. al. [1] has described different types of IoT devices and their networking
technologies and outlined different types of attacks on these devices. The au-
thors have proposed some recommendations for securing the smart home that
include robust user authentication, device authentication, network monitoring,
secure key management, and physical protection. Kolias et. al. in [2] have
created IoT security labs that include a light switched system, remote plant
watering system, and system to automatically control devices. Security flaws
encountered by the authors are insecure web applications, wireless protocol
vulnerabilities, architectural vulnerabilities, and limits on resource available
on the IoT devices for security. In [3], the authors explains the holistic aspects
of smart home security. This requires security in depth, integrated hardware,
software, network, and application layers. Some core issues addressed by the
authors are on the computational and energy constraints of hardware, access

104

control, routine software updates, protocol diversity, and loopholes in machine
learning at the application layer. Jjung et. al. [4] have proposed to divide an
IoT network into the Task, Interface, and Interaction layers. Semantic depen-
dency links are generated to create the Interface layer that connects entities
across the task layer. Once the interface layer is created, the authors proposed
algorithm that searches for semantically matching interfaces.

3 Proposed System Model

Our proposed system model creates a three layered abstraction (Figure 1) in
an IoT network. The bottom layer which is the Physical Layer is composed
of all the physical connections present in the IoT network for a given set of
IoT devices. The top layer that keeps track of all of the connections that the
user wants is called the Requirements Layer. The middle layer that is called
the Logical Layer is in essence the Requirements layer superimposed onto the
Physical Layer.

Figure 1: Diagram of Layer
Model

Figure 2: Graph example of
Layer Model

Each layer is represented with a graph (Figure 2) where vertices are devices
and edges are the connections between those devices. In the Physical Layer
Graph (PLG), the graph describes the connectivity between the devices. A
variety of common protocols that characterize the edges at this level include
Wi-Fi (IEEE 802.11), Bluetooth, Zigbee, and Ethernet. In the Requirement
Layer Graph (RLG), we connect two vertices with an edge if that connectiv-
ity is required by the user. The Logical Layer Graph (LLG) includes all the
vertices from RLG but it includes only the edges that are required to map the
RLG into PLG. For any edge that exists in the RLG we find all of the paths
from those two vertices in the PLG, those paths are then added to LLG. The
point of constructing the LLG is to remove or block unnecessary connections
that exists in PLG which might be exploited by attackers. After creating the
LLG, we prune the LLG to create a Secured Logical Layer Graph (SLLG). For
constructing the SLLG, we analyze the security of each path in the LLG, and
keep the path that is secured for each mapping of RLG onto PLG.

105

4 Proposed Algorithms

In this section we present two algorithms. Algorithm 1 constructs PLG for a
given a set of IoT devices. Algorithm 2 maps each edge in RLG into PLG and
constructs LLG.

Algorithm 1 starts with scanning all devices connected to the host machine
and records information for connected devices in a database. Then for each
device in the database it requests, scans, and records the connection informa-
tion in the database. The algorithm stops when all the devices in the database
are scanned. The approach is very similar to a breath first search.

Algorithm 2 for mapping RLG to PLG traverses the adjacency matrix of
RLG to discover all paths in RLG. Then it passes two nodes and the list to the

106

procedure CreatePaths. CreatePaths checks if there is the same connection
in the PLG. If the path is found in PLG then it is added to the LLG. The
complexity of Algorithm 2 is M ∗N2 where M is number of nodes in RLG and
N is the number of nodes in PLG.

5 Experiment

To test Algorithm 1 for constructing PLG, we created a home IoT network
with a computer, a Samsung Galaxy phone, an Echo Dot, a Google Home, a
Nest Thermostat, a router, a Smart Hub and a bulb. Using a python script
utilizing bluetool for bluetooth scanning and the bash command iwlist for Wi-
fi scanning, the program actively listened for the command to scan on each
virtual machine, the virtual machine controller (VMC) gave the command and
all the devices used Secure File Copy (SCP) to transfer their portion of the
database to the VMC which then combined the database parts to form the
PLG [6]. The PLG is shown in Figure 3. A snapshot of the database is shown
in Figure 5.

To demonstrate the effectiveness of Algorithm 2 for mapping RLG to PLG,
we use PLG constructed by Algorithm 1. For the RLG we used different types
of connectivity requirements in IoT network that users may need. An example
of RLG is shown in Figure 4. A snapshot of the output of Algorithm 2 is shown
in Figure 6.

Figure 3: PLG Example Figure 4: RLG Example

6 Conclusion

The number of IoT devices are growing rapidly. Many of these devices leave a
plethora of security and privacy concerns for users when they are connected to
their home network. In our research we propose a three layered abstraction of
IoT Network - Physical Layer, Logical Layer and Requirement Layer. We pro-
pose algorithms for constructing Physical Layer Graph (PLG) and mapping of
Requirement Layer Graph (RLG) onto Physical Layer Graph for IoT Network.
Our ultimate goal is to create a Secured Logical Layer Graph (SLLG) of IoT

107

Figure 5: Output Algorithm 1 Figure 6: Output Algorithm 2

network that will satisfy the user requirements, keep the secured connections
and remove the unnecessary connections from the IoT Network. The next
step in our research is to assess the vulnerabilities of each path in LLG and
keep the least vulnerable path to create the SLLG. Then we will keep adding
new devices to our IoT testbed to test the adaptability and scalability of our
solution.

References

[1] C. Lee, L. Zappaterra, K. Choi, H. Choi, “Securing smart home: Tech-
nologies, security challenges, and security requirements” in IEEE Commu-
nications and Network Security and Privacy, 2014, pp. 67-72.

[2] C. Kolias, A. Stavrou, J. Voas, I. Bojanova,R Kuhn, “Learning Internet-of-
Things Security Hands-On” in IEEE Communications and Network Secu-
rity and Privacy, Vol 14, Issue 1, Jan.-Feb. 2016, pp. 37-46.

[3] E. Fernandes, A. Rahmati, K. Eykholt, A. Prakash, “Internet of Things
Security Research: A Rehash of Old Ideas or New Intellectual Challenges?”
in IEEE Communications and Network Security and Privacy, Vol 15, Issue
4, 2017, pp.79-84.

[4] J. Jung, S. Chun, K. Lee, “Hypergraph-based overlay network model for
the Internet of Things” in IEEE 2nd World Forum on Internet of Things
(WF-IoT), 2015, pp. 104-109.

[5] E. Bertino, (2016) “Data Security and Privacy in the IoT” in 19th Interna-
tional Conference on Extending Database Technology , March 2016.

[6] A. Aleksandrov (2017) “Bluetool” (Version 0.2.3) [Library]. Python Soft-
ware Foundation.

108

Ranking Privacy of the Users in the
Cyberspace∗

Adrian Beaput, Shankar Banik, Deepti Joshi
Department of Cyber and Computer Sciences

The Citadel, Charleston, SC 29409
{abeaput,baniks1,djoshi}@citadel.edu

Abstract

When websites are accessed, online shopping is done, or social media
is used, a user’s privacy is assumed to be protected. However, the In-
ternet provides a widely available and easily accessible way to discover a
vast amount of personal data. If this information is aggregated to create
a digital footprint for the user, there are many security concerns that
arise with this to include identity theft and other malicious intents. In
our research, we build a user profile based on the personal information
of a user through Twitter, and additional information collected using a
web crawler. The web crawler keeps track of the websites that contain
user attributes. Using the web ranks of these websites, and the number
of counts of the attributes, we propose a formal and novel model to rank
the privacy of a user in the cyberspace. Our proposed model of privacy
assigns privacy ranking of each user between 0 and 1 with 0 being more
private.

1 Introduction

The Internet provides a widely available and easily accessible way to discover
a vast amount of personal data. If this information is aggregated to create a
complete profile of an individual, or a digital footprint, there are many security
concerns that include identity theft and other malicious intents. However,
with the ubiquitous use of Internet and our digital footprint ever increasing,

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

109

understanding how exposed we are online is a critical problem to solve. When
information is posted online on different websites open to the public, online
shopping is done, or social media is used, a user assumes that their privacy is
protected.

Privacy is defined as the state of being free from the public eye; however,
when information is posted on the Internet it loses its state of privacy. Privacy
on social media then translates to being the concealment of information that
reveals personally identifiable information (PII) which include Social Security
Number, Passport Number, Driving License Number, etc. Some of these PII
are directly made available by the users or can be derived from information.

In this research, our goal is to build a digital footprint of a user and then
analyze and rank the user’s privacy using our own proposed novel privacy met-
ric (see Section 3) on the scale of 0 to 1, with 0 being most private, and 1 being
least private. To achieve this, we build a user profile based the personal infor-
mation that an individual makes available on the web. The initial data points
collected using a user’s social media profile, are ran through a web crawler.
The web crawler provides new information about the user, which also provides
a feedback loop into the crawler to collect additional information. Based on
the information collected and aggregated using the web crawler, we propose a
formal model to rank the privacy of a user in the cyberspace. Industry and
government agencies that deal with sensitive information can use our model to
calculate the privacy of the users. This information will be useful when users
are given access to sensitive information. If a user is less private, then the
probability of leaking sensitive information through that user will be higher.

Our paper is organized as follows. Section 2 provides literature review. In
section 3, we describe our proposed privacy ranking metric. Section 4 provides
our system model. In section 5, we describe our experimentation setup and
present the obtained results. Finally, section 6 outlines the conclusion and
future work.

2 Literature Review

Cheung et al in [1] have evaluated the privacy risk of user shared images.
They have explored the possibility of whether or not widely accessible user
images invade the privacy of a user. This is done by de-anonymizing social
graphs and online profiles. Zafarani et al in [4] have presented a behavioral-
modeling approach for connecting users across social media sites. They have
proposed a methodology called MOBIUS that identifies user’s unique behav-
ioral patterns, constructs features that exploit information redundancies, and
employs machine learning for effective user identification. Narayanan et al in
[3] have looked at de-anonymizing users across heterogeneous social comput-

110

ing platforms. They have showed that correlations in users’ activity patterns
across different sites provide enough evidence that the two profiles belong to
the same user. Kamiyama et al in [2] have presented a unified metric for mea-
suring anonymity and privacy with applications to online social network. They
have developed a privacy metric that first measures the current anonymity for
a specific question using the user’s present blog posts, and estimates the user’s
future privacy by predicting future blog posts.

3 Privacy Metric

Our proposed Privacy Metric first identifies the attributes of a user that are
present in the cyberspace. Next we check the web rank value for each of the
website that contains these attributes. If the website is frequently visited, its
web rank value will be higher which will make the attribute that appears at this
website less private. We calculate the number of times the attribute appears
in different websites. Based on the web rank values of all the websites that
contain the attribute, we use a maximizing expression that finds the highest
web rank value for the attribute. Next, we derive an expression for privacy
ranking of the user using the maximum rank of value of each of the attribute
and its count. We normalize the expression so that privacy ranking of each user
will be between 0 and 1 with 0 being more private and 1 being less private.
The derivation of the privacy ranking of the user is explained below.

Let us assume that user u uses Social Media SM from where we obtain the
attributes A = a1, a2, a3, . . . , . . . , an. We create a subset S = a1, a2, a3, . . . , am
where S ∈ A. For S, we find the derived set of attributes DA(S). DA is the
set of attributes that can be found about user u using the known attributes.
Given S and u as input to the web crawler, we find DA(S). The Web Crawler
finds the webpages WP1, WP2, WP3, . . ., . . ., WPk. Let us assume that WP1

reveals attributes b1, b2, b3; WP2 reveals attributes b2, b3, b4; WP3 reveals b3,
b4, b5; . . . ;. . .; WPk reveals b1, b2, b3, b4, b5, b6, . . ., bt. We obtain the Web
Rank values for each of WP1, WP2, WP3, . . ., WPk. Let us assume that Web
Rank of WPi is WR(WPi) where 1 ≤ i ≤ k. We define Matrix B where B[i][j]
= 1 if bj appears in WPi. 1 ≤ i ≤ k and 1 ≤ j ≤ t. We define vector R where
R[i][1] = WR(WPi), 1 ≤ i ≤ k.

B =


1 1 1 0 0 . . . 0
0 1 1 1 0 . . . 0
0 0 1 1 1 . . . 0
...
0 0 0 0 1 . . . 1

 , R =


WR[WP1]
WR[WP2]
WR[WP3]
...
WR[WPk]


111

We find vector Count where

Count[j] =

k∑
i=1

B[i][j], 1 ≤ j ≤ t

Count[j] calculates how many times attribute bj appears in the web pages
returned by the web crawler. We calculate Matrix P where P [i][j] = B[i][j] ∗
R[i], 1 ≤ i ≤ k and 1 ≤ j ≤ t.

P =


B[1][1] ∗R[1] B[1][2] ∗R[1] . . . B[1][t] ∗R[1]
B[2][1] ∗R[2] B[2][2] ∗R[2] . . . B[2][t] ∗R[2]
...
B[k][1] ∗R[k] B[k][2] ∗R[k] . . . B[k][t] ∗R[k]


We calculate vector M where

M [j] = max
i≤1≤k

P [i][j], 1 ≤ j ≤ t

M [j] finds the maximum value of web ranks for the webpages that reveals
attribute b[j]. Finally, Privacy Ranking PR of user u, PR(u) is defined using
the following expression.

PR(u) =

t∑
j=1

(Count[j] ∗M [j])/(t ∗ k ∗ 10)

where t is the total number of derived attributes, k is the total number of
webpages returned by the web crawler and 10 is the highest web rank value.

4 System Model

Given a user and his/her social media information, we collect the publicly avail-
able attributes of the user. We then run these attributes with the user’s first
and last name through a web crawler to determine how much PII information
is available on each website that is found by the web crawler. Combining a
formalized version of the Alexa Page Ranking [6] in conjunction with the count
of found attributes, we use our privacy metric to calculate the privacy ranking.
Figure 1 presents the overview of the system model.

5 Experimentation and Results

Initial attributes of a user are gathered from a selected social media. The
attributes gathered are then mixed together to create unique combinations.

112

Figure 1: System model for ranking a user’s privacy on the web
These combinations are then added to a search queue that is ran through our
web crawler. Our web crawler starts off by entering the search entry from the
queue into a Google search. We then collect all of the URLs from the Google
search. Each URL collected will be scraped for URLs in the web page and
added to a separate queue. The separate queue gives our breadth first search
a distance of one to limit the number of websites not pertaining to the user
searched. We then combine the two queues and crawl through all the websites
again. The next time we crawl through the websites we search for PII using
the formulated regular expressions (see Figure 2).

In concurrence with the search for PII in each website, we also calculate our
formalized version of the Alexa Page Ranking [6]. The Alexa Page Ranking is
calculated based on the number of visits to a website. This number can range
from 0 to infinity. In order to formalize the Alexa Page Ranking, we grouped
webpage rankings based on similarity to their Google Page Rank. This allows
us to limit the website rankings from 1 to 10, where 1 is the least visited.
For each website searched we create a row in our table and indicate if a PII
attribute is found, and its cardinality (number of times the attribute is found
in the different pages visited) based on our formulated privacy metric. After
all the websites are crawled for PII, we take the cardinality of the PII attribute
and highest ranking of the websites that contain this attribute, apply these
values towards calculating the user’s privacy ranking based on our proposed
privacy metric.

For our data collections, we were able to successfully collect data about
searched users using our regular expressions and web crawler. The level of ac-
curacy varies based on user attributes and websites crawled since our crawler
relies on the Google search algorithm for accuracy. Then privacy metric was
successfully implemented in combination with the web crawler to produce re-
sults for the user searched. Figure 3 shows the example of calculating the
privacy values of two users where the first user has privacy value of 0.25 and
second user has a privacy value of 0.39.

6 Conclusion and Future Work

Users share information about themselves in social media. This information
can be used to derive more attributes about the user using web crawlers. We

113

Figure 2: Regular expressions
to discover and match user at-
tributes

Figure 3: Privacy ranking ob-
tained for two sample users –
anonymity maintained

analyze the websites that contains these derived attributes. If other users fre-
quently visit the website, then the derived attribute contained at that website
becomes less private. Based on the number of times these attributes appear
at the websites, and the web ranking of the websites themselves, we propose a
novel privacy ranking method to calculate the privacy of users. The range of
the privacy rank for each user is between 0 and 1, where 1 means less private
and 0 means more private. Industry and government agencies that deal with
sensitive information can use our model to calculate the privacy of their em-
ployees. If an employee is less private, then the probability of leaking sensitive
information through that employee will be higher. As part of future work, we
will categorize attributes based on their weights toward privacy.

References

[1] M. Cheung, J. She, “Evaluating the Privacy Risk of User-Shared Images” in
ACM Transactions on Multimedia Computing, Communications, and Applica-
tions (TOMM), Volume 12 Issue 4s, Article 58, November 2016.

[2] K. Kamiyama, T. Ngoc, I. Echizen, H. Yoshiura, “Unified Metric for Measuring
Anonymity and Privacy with Application to Online Social Network” in 6th In-
ternational Conference on Intelligent Information Hiding and Multimedia Signal
Processing, 2010, pp. 506-509.

[3] A. Narayanan, V. Shmatikov, “De-anonymizing Social Networks” in 30th IEEE
Symposium on Security and Privacy, 2009, pp. 173-187.

[4] R. Zafarani, H. Liu, “Connecting users across social media sites: a behavioral-
modeling approach” in 19th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 2013, pp. 41-49.

[5] E. Bertino, (2016) “Data Security and Privacy in the IoT” in 19th International
Conference on Extending Database Technology , March 2016.

[6] https://www.alexa.com/siteinfo.

114

One Department, Four Undergraduate
Computing Programs∗

Tony Pittarese, Brian Bennett, Mathew Desjardins
Department of Computing

East Tennessee State University
Johnson City, TN 37614

{pittares,bennetbt,desjardins}@etsu.edu

Abstract

While most departments accredited by the ABET Computing Ac-
creditation Commission offer only one undergraduate program, the De-
partment of Computing at East Tennessee State University houses three
such programs: Computer Science, Information Systems, and Informa-
tion Technology. In fall 2019 a fourth undergraduate program in Cy-
bersecurity and Modern Networks will be added. Combining multiple
programs in a single department allows for increased student opportu-
nity, improved faculty utilization, efficient course scheduling, streamlined
accreditation and assessment management, improved student retention,
and enhanced financial stability to support growth.

1 Introduction

The East Tennessee State University Computer Science Department was founded
in 1975 as one of the first computing-focused departments in the Tennessee
higher education system and the region overall[8]. In subsequent years the
Department has added multiple undergraduate programs making it, as of this
writing, the only ABET-accredited institution to house three or more ABET-
accredited computing programs in a single academic department served by a
single team of faculty that reports to one department chair [2]. Reflective of

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

115

its unique structure, in 2010 the department changed its name to the Depart-
ment of Computing. The department employs 16 tenured/tenure-track faculty,
5 full-time non-tenured faculty, 19 graduate students, and 5 full-time support
staff. The Department currently enrolls 500 students, graduates 80-85 students
per year, and generates over 17,500 credit hours each academic year. (Roughly
45% of those hours come from service courses offered to the university as a
whole). Rather than operate as four distinct academic departments, or even
as four distinct entities merged into one unit such as a college or school, the
department has structured itself as a single, unified department with four in-
tegrated programs. This structure provides many positive opportunities for
students, faculty, staff, and college/university administration. The efficiency
such a structure affords has proven useful to ensure consistent funding to sup-
port growth in a time when overall university attendance has been stagnant or
in decline.

2 Curriculum and the “Computing Core”

The Computer Science (CS) program has a traditional theoretical approach,
relying heavily on advanced math and disciplines such as computer architec-
ture and operating systems. The Information Systems (IS) program focuses
on business applications of computing and requires students to complete a 15-
hour application emphasis area in management or accounting. The Informa-
tion Technology (IT) program serves students interested in applied computing
fields such as web development and system administration. The Cybersecurity
and Modern Networks (CSMN) program focuses on advanced topics in com-
puter security and contemporary networking applications such as Internet of
Things and cloud computing. The structure of the Department’s curriculum
has evolved over its 44-year history to facilitate its current integrated format.
Initially, CS and IS programs shared an introductory programming sequence
based on C++ and data structures, while IT students learned Visual Basic
and took courses in web design and advanced database [4]. As all programs
required at least 3 computing electives, the intent was for students to be able
to take courses required in other departmental programs to meet this need.
In reality, course prerequisites often made this difficult. The first major step
towards unifying the department around an integrated set of core courses was
made in 2007 when all undergraduate programs moved to require Java as the
introductory language. While this change was heavily debated at the time [6],
it reduced any potential setbacks for students who wished to switch programs
their freshman year and also established a programming lingua franca among
all programs to serve as a foundation for later coursework[8]. This went a
long way toward resolving prerequisite issues, providing students with a robust

116

set of elective course choices. Given the success of the above, the department
worked to restructure all programs such that they built off a common set of
core courses that became known as the “Computing Core.” This Computing
Core encompasses all the coursework needed to fulfill the ABET “a through k”
outcomes required for all computing programs at that time. All programs were
designed such that (1) their freshman year courses were similar and (2) during
their senior year all programs completed the same set of software engineering
courses. This strategy starts all students together and then brings all stu-
dents back together—allowing inter-program teams to be created for projects,
a structure which is often employed in engineering programs [1]. The set of
courses that compose the Computing Core is listed below:

CSCI 1250 Introduction to Computer Science I (Java I)

CSCI 1260 Introduction to Computer Science II (Java II)

CSCI 1400 PC Set-Up and Maintenance

CSCI 1510 Student in the University (Freshman Orientation)

CSCI 1900 Math for Computing (Discrete Math)

CSCI 2020 Fundamentals of Database

CSCI 2150 Computer Organization

CSCI 3400 Networking Fundamentals

CSCI 3500 Information Security and Assurance

CSCI 4250 Software Engineering I

CSCI 4350 Software Engineering II

To represent the organization of the programs, a recommended program of
study showing student progression through coursework is shown in Figure 1.

3 Staffing and Course Scheduling—Student Benefits

A number of benefits have been realized from creating multiple computing
programs that build from the Computing Core. While freshmen are asked
during the university admission process to select a program, they generally
are ill equipped to judge the difference among various computing programs
prior to beginning coursework. By making the freshman year fairly uniform
for all computing students, they have the opportunity to experience the Core
for two or three semesters before committing to a program. When students do
elect to change programs, courses which were taken that are not required in
their new program can be counted as in-program electives. Migration from one

117

computing program to another is facilitated by the Core, and the Department
benefits from retaining students after the program change.

Not all students have the desire or ability to excel in the Computing pro-
gram they initially choose upon entry to the university. Approximately 25For
students who wish to go beyond the completion of a single program of study,
the Computing Core facilitates students completing a “double concentration”
by using program and free electives toward completing a second program. (IS
students, for example, can use their IS major electives to take courses required
for IT students. They then have to complete only 1-2 additional courses to
complete a second concentration in IT.) This “de-siloed” approach allows stu-
dents to achieve cross disciplinary study from the other programs, diversifying
their knowledge and experience in computing. The ease with which students
can transition from one Department program to another and combine elements
of multiple programs are key drivers in recruitment and retention.

4 Staffing and Course Scheduling—Faculty Benefits

One of the most common questions raised regarding this structure has come
to be realized as one of the structure’s prime benefits: How can one team of
faculty teach four distinct programs, particularly given that most other institu-
tions conduct such programs in different departments? While this is a readily
acknowledged challenge, it provides an opportunity to create synergies among
the faculty that are similar to the benefits afforded students. Instead of faculty
members serving only one program, faculty members instead teach in their
area(s) of expertise across all programs. A study of the spring 2019 schedule
revealed that every full-time faculty member taught one or more courses that
spanned multiple programs. Due to the combination of faculty skills present
in the department, a survey of faculty in spring 2017 determined that every
course offered by the department could be taught by at least 2 faculty members,
with an average of 4.5 qualified instructors being available to teach all required
courses. By housing all Computing courses in a single department, course en-
rollments are increased, making it feasible to offer a diverse set of special topics
courses and other special course offerings while having confidence that these
courses will attract sufficient student enrollment—since students from all four
programs may elect to enroll. This structure allows a diverse team of faculty
members to teach a diverse body of students in their field of expertise. It pro-
motes esprit de corps among the students as they frequently work on projects
with students from other Departmental programs, and it also fosters a similar
spirit among the faculty as all programs are viewed as a shared effort.

118

5 Staffing and Course Scheduling—Administrative Ben-
efits

Housing all four programs in one department allows one department chair to
administer all programs, one system manager and one assistant system manager
to administer computing systems for all programs (7 labs, over 225 machines,
1 unified lab image), and two full time student advisors to work with freshmen
in all four programs. This has resulted in reduced administrative overhead and
expenses, providing more funds for professional development of faculty and
staff, travel, equipment purchases, and other Departmental priorities. While
such a structure promotes efficient topic coverage within the Department, it
introduces challenges. As faculty members tend to not think of themselves
in terms of individual programs, it has proven helpful to recognize program
champions to be advocates for each program and fulfill program-specific re-
sponsibilities in tasks such as accreditation visits. During accreditation visits,
time must be taken to explain the unique Department structure and align fac-
ulty interviews and other activities so as to provide evaluators the opportunity
to become comfortable with the staffing structure employed.

6 Program Outcomes and Assessment

Building off the structure provided by the Computing Core, a set of five “Gen-
eral Outcomes” has been defined. These General Outcomes apply to all gradu-
ates, regardless of their program. Program-specific outcomes extend the Gen-
eral Outcomes similar to how program-specific courses extend the Computing
Core. These outcomes are shown in Figure 2. A key strength of this structuring
of outcomes is how it facilitates program assessment [7]. General Outcomes are
measured either (1) via course-embedded activities and rubrics in Computing
Core courses—most particularly Software Engineering I and II, which serve as
the Computing Core capstone courses—or (2) by a senior exit exam taken by
all graduates. Regardless of which of these two methods are employed, General
Outcome data is collected for all programs at one time. Although all scores,
rubrics, results, etc. are anonymous, each of these are tagged with the student’s
program of study to facilitate data reporting and analysis. Program-specific
outcomes are collected in courses unique to individual program. To ease as-
sessment workload, program-specific data is collected only for students in the
particular program. (No program-specific data is captured for students taking
elective courses outside of their program.)

119

Figure 2: General and program-specific outcomes.

It is common for assessment-driven improvements implemented for one pro-
gram to also result in improvements for the other programs. In situations where
assessment data reported for one program is lower than that of the other pro-
grams, it is possible to compare the course outcomes across all programs to
more precisely pinpoint ways to implement improvement. For example, in
2015 it was noted in IT assessment reporting that students were doing poorly
in oral communication. As this was investigated further, it was discovered that
performance of students varied greatly based on what general education speech
course they selected. A change was made in all programs to require students
to take Argumentation and Debate—thereby having an improvement needed
in the IT program to drive improvement in all programs. In 2014, tools such as
Slack were introduced to improve teamwork skills of CS students in Software
Engineering work, which also resulted in improvements across all programs.
These examples show how changes introduced to improve performance for one
program can also benefit students in all programs. While conducting activities
such as Self-Studies for accreditation purposes, the multi-program character of
the department facilitates reporting. Only one ABET Self-Study document is
required to maintain accreditation (although outcome reporting and other doc-

120

ument elements differentiates the programs), and only one ABET team visits
campus to evaluate the programs.

7 Four-in-One Benefits

The flexibility of the programs’ structure makes the Department’s offerings
more attractive to students who are unsure of their major. This improves
initial enrollment as students have more flexibility in their planning. The
Department is more resilient when it comes to changes in the popularity of one
major over another. The Department has a much higher rate of retention than
the University as a whole (50% vs. upper 30%’s). This diversity of programs
plays a role in the higher retention rate for the Department when compared to
the University, as students can change their program of study without changing
their home department, classmates, advisor, etc. Faculty research benefits from
a diverse student base. Many research projects within the department involve
students from more than one program. For example, one ongoing computer
security research project uses CS students as developers, IT students as system
administrators, and IS students as data analysts [5]. The breadth of skills that
faculty have access to is much deeper than that often found in more traditional,
siloed departments. The diversity among the students benefits the Software
Engineering I and II sequence that serves as the capstone of the Computing
Core. Through various course projects, students complete the full development
life cycle of a software product. Having students with diverse programs of study
work together provides diverse expertise, resulting in a more robust software
solution. In addition, it allows for the introduction of other concepts like
DevOps in Software Engineering [3], which relates to each of the disciplines.
The department’s graduate program also benefits from the common Computing
Core. Students from any of the Department’s undergraduate program who
move on to do graduate work with the department find they have no need
to take undergraduate foundational courses to succeed with their program of
study.

8 Conclusion

While the combination of four computing programs into one department is
atypical, there are curriculum, assessment, staffing, and scheduling benefits as
outlined. Student retention is stronger than the university norm, and students
gain more flexibility in tailoring their coursework to their interests and career
goals. Additional studies on the benefits of this program structure are ongoing.

121

F
igure

1:
R
ecom

m
ended

progression
through

the
four

program
s
of

study

122

References

[1] ABET. Criteria for accrediting engineering programs, 2018–2019.
https://www.abet.org/accreditation/accreditation-criteria/
criteria-for-accrediting-engineering-programs-2018-2019.

[2] ABET. ABET accredited programs, 2019. http://main.abet.org/aps/
Accreditedprogramsearch.aspx.

[3] B. T. Bennett and M. L. Barrett. Incorporating DevOps into undergraduate
software engineering courses: A suggested framework. Journal of Comput-
ing Sciences in Colleges, 34(2):180–187, 2018.

[4] T. Countermine and P. Pfeiffer. Implementing an IT concentration in a CS
department: content, rationale, and initial impact. In Proceedings of the
thirty-first SIGCSE technical symposium on Computer Science education,
pages 275–279. ACM, 2000.

[5] B. Franklin J. Dangler M. Lehrfeld, A. Ogle. Dimensioning spam–an in
depth examination of why users click on deceptive emails. Journal of Com-
puting Sciences in Colleges, 30(2):213–219, 2014.

[6] ETSU Department of Computing. Proposal for using Java as our teaching
language. unpublished internal document, 2006.

[7] D. Sanderson. Assessment in the department of computer and information
sciences at East Tennessee State University: An overview. International
Journal of Engineering Education, 25(5):920–927, 2009.

[8] D. Tarnoff. Interview with Don Bailes, founding chair of the department of
computer science: History of the computing department at East Tennessee
State University.

123

Examining Strategies to Improve Student
Success in CS1∗

Janet T. Jenkins and Mark G. Terwilliger
Computer Science and Information Systems

University of North Alabama
Florence, AL 35632

{jltruitt,mterwilliger}@una.edu

Abstract

With the pervasiveness of the necessity of computational thinking
across fields, more universities are requiring courses that build students’
ability to think computationally. Computer Science 1 (CS1) is one such
course where computational thinking is required. This paper summarizes
the work of two CS faculty who co-taught separate sections of CS1 for
five semesters. Course modifications were made to augment CS1 with
support inside and outside of the classroom for students to be successful.
The use of in class tutors and requiring design documents were two of
the primary modifications made to the course. A variety of data was
collected in areas such as student planning, program design, frustration,
and resources used to determine what relationships impact student suc-
cess. One of the main benefits observed was an increase in the student
pass rate.

1 Introduction

There have been many efforts to seek out better ways to teach Computer Sci-
ence 1 (CS1), from lecture, to lab, to pair programming, to flipped classrooms.
However, Watson and Li claim that a “pass rate of CS1 courses of 67.7%, and
comparable results were found based on course size, and institutional grade
level” [10]. Additionally, they assert “contributions of this study have been to

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

124

show that CS1 pass rates vary by different countries, have not improved over
time, and they are largely unaffected by the programming language taught in
the course.” [10]. There is no shortage of research in efforts on improving CS1,
and yet pass rates have not made a turn for the better.

There is a global need for an increasing number of skilled programmers.
The United States Bureau of Labor Statistics show that software developer
jobs are predicted to grow at a rate of 24% as far out as 2026. This growth rate
is much faster than the average for all occupations reported [6]. Additionally,
the National Center for Education Statistics and Code.org cited that in 2015,
there were just under 530,000 open computing jobs and only 60,000 students
graduating with computer science degrees [4]. The gap between needed skilled
developers and actual skilled developers could lead to somewhat of a crisis
without attention to mass preparation for current students. Already, we see
an uptick in the number of states in the US requiring at least some level of
computer science education in K-12 [1].

This gap provides motivation for CS1 educators to provide a course with
embedded support to help students master the rigorous material in CS1. Al-
though K-12 state CS requirements are on the rise, there are still schools that
do not offer CS curriculum [1], meaning some students will still lack the neces-
sary background in computational problem solving. Shein posits that learning
to think like a programmer is important for students in a variety of fields, even
if they do not need the coding skills in their work. In effect, computational
thinking helps students to break larger problems down into smaller problems
in order to solve them [8].

2 Overview and Methodology

2.1 Background

In our CS1 course, the same programming language has been used for over 15
years, taught by a variety of professors, with a variety of teaching styles. We
define pass as a student earning a grade of A, B, or C. Our institution shows a
range of CS1 pass rates from lows under 45% to highs that rarely exceed 70%.
In fact, before we began our study, a pass rate of 60% or higher was achieved
in only 35% of the semesters. Additionally, assessment of our program showed
that our upper level students were not prepared to build an appropriate design
for their larger projects. Specifically, too many of the students did not develop
algorithmic thought prior to writing code. Often, when advising our students
who are struggling or are considering changing their major from CS, frustration
is dominant in their demeanor.

We want students to be able to transition from critical thinking to computa-
tional thinking so computational thinking can become a tool for their problem

125

solving [3]. We also want to provide support to meet student frustration to help
them through the discomfort of solving a problem without clear solutions. The
high attrition rate in CS1 due to recognizing students not persevering through
problems, seeing our upper division students struggling to appropriately build
a design prior to coding large projects, and wanting to have consistency among
distinct sections, were the motivations for adding support for and modifying
our CS1 course. This paper summarizes findings from two faculty who co-
taught separate sections of CS1 for five semesters, supported by tutors who
provided assistance to students inside and outside of the classroom.

2.2 Design Document

It is important for students to build mental models from their code, and we
propose doing this in the form of representing algorithms in pseudocode and
flowcharts. Ramalingam et al. [7] state “the student’s mental model of pro-
gramming influences self-efficacy and that both the mental model and the self-
efficacy affect course performance.” When our assessment process showed a
weakness in design in upper level courses, we added design documents into
CS1 in an ad hoc fashion. At the beginning of this study, we began formally
requiring a specified design document for every major project in CS1. The
design document has iteratively been improved from each semester to better
meet our goals. A successful design document in our course will completely
and unambiguously describe all of the following items: program requirements,
program inputs, program outputs, a test plan with specific test cases, a so-
lution algorithm, and a flowchart of the algorithm. The design document is
considered complete if someone who is not familiar with the problem could
read the document and implement the solution in any language without input
from the individual who designed the plan.

Some students, especially those who have some programming experience,
struggle to delay coding to develop a design. However, we want students to
use the design document as a planning tool to prepare for larger projects. This
activity helps the student think about the solution before they begin coding.
The model also encourages students to build test cases before they develop their
solution, helping them to gain a better understanding of what their program
should achieve [5]. It is our goal that through analyzing the problem carefully
and considering important aspects of the problem prior to coding a solution,
the student will completely understand the problem before attempting a code
solution.

126

2.3 Tutoring

We began our first semester of co-teaching with upper level CS students serving
as tutors outside of class. Every semester since, at least one tutor has served
to assist the instructor during the class time of each CS1 section. With a
classroom of 30 students, each with a computer, this provided opportunities to
expand classroom activities. Having another person to assist students makes
it more manageable to add more essential, hands-on, in-class exercises where
immediate feedback is available. It was our goal that attending class would
allow the tutor to deepen his or her understanding of the material, the tutor
knew exactly what the students had been taught during class, and students
would be more comfortable visiting tutoring hours outside of class from the
familiarity of the tutors. Other studies have shown that in-class tutors and
peer-mentor tutors have a positive impact on both students and the tutors
[2][9].

2.4 Data Collection

In order to assess the impact of our changes, as well as gather input on stu-
dent perceptions, we collected data from three sources. First, on the week-long
projects, we looked at student scores on the design documents, scores on the
project source code, as well as questions we asked associated with each project.
These questions asked students to rate the frustration level associated with the
project and what resources they used when they encountered difficulties. Sec-
ond, we looked at student scores on the three semester hourly exams, the final
exam grades, and the final semester course grades. Finally, we administered
an end-of-semester survey that asked students to provide background infor-
mation (academic major, mathematics experience, programming experience),
their perceptions of the helpfulness of design document components (algorithm,
flowchart, test plan), where they turned to when stuck on a project, the help-
fulness of various resources (textbook, professor, tutor, Internet, class notes),
and tutoring usage.

3 Results and Observations

With all of the data collected from ten course sections of CS1, we looked for
data trends, relationships between variables, as well as student responses from
open-ended questions. In this section, we will provide a few results we found
both interesting and practical.

127

3.1 Design Document

We feel strongly that students need to spend some time thinking and planning
a problem solution before they start hacking away at the keyboard. Figure 1
compares the mean project source code grade (out of 70 points) compared to
the mean design document grade (out of 15 points) on six projects. It is easy
to see the strong relationship between design success and coding success.

Figure 1: Project Source Code vs Design Document Grades

Another piece of data we collected was student estimates of time spent on
the design document as well as the source code. In Figure 2, we show an
example of student scores on the first hourly exam compared to the amount
of time (in minutes) that students spent on the design document for their first
project. Students that invested more time on design performed better on the
exam.

3.2 Tutoring

After incorporating tutors into the CS1 classroom experience, a noticeable dif-
ference in the classroom atmosphere was obvious. In addition to improvements
in the classroom environment, there were several unexpected results. As shown
in Figure 3, the usage for our out-of-class, drop-in tutoring increased dramat-
ically. We believe students became familiar and comfortable with the tutors
in the classroom and felt less threatened to visit the drop-in tutoring on their
own. We also noticed an observable change in our tutors, as they would fre-
quently stop by our offices to discuss student issues, offer alternative strategies
to solving problems, and suggest activities to try in upcoming classes.

Paying student tutors to attend course lectures costs money, but we believe

128

Figure 2: Exam Grade vs Time Spent on Project Design

Figure 3: Student Attendance for Open Tutoring

the benefits to the classroom atmosphere, the improved students’ mastery of
concepts, and unique feedback to instructors are worth the investment. The
unexpected benefits to the tutors acting as near-peer mentors are also positive
side effects.

3.3 Project Frustration Levels

While seeking to provide support to help students, we wanted to hone in on
frustration levels students experienced while completing the source code for
their project. Students rated the frustration associated with each project from

129

1 to 10, higher values meaning more frustration. In Figure 4, we looked at the
scores on the first hourly exam compared to the students average frustration
level on the first three projects. In this example, you could actually predict
a student’s exam score with some degree of accuracy just by looking at their
coding frustration level

Figure 4: Exam Grade vs Frustration Level on Projects

We were also interested in where they went for help first when they were
frustrated or hit a road block when they were coding. In each of the five
semesters, the resource students used when encountering difficulties was to
search the Internet. This was followed by looking at class notes, visiting the
tutor, going to the professor’s office hours, referring to the textbook, and asking
a classmate for help. As shown in Figure 5, the student practice of searching
the Internet for the answer first is trending downwards. Over recent semesters,
we have seen a spike in frequency of visits to tutor sessions and professor office
hours.

3.4 Course Success Rates

One of the most important data points we are following is the success rates of
our students, not only in CS1 but also in the subsequent course CS2. In the 12
years before our study, a 60% pass rate in CS1 was achieved during 35% of the
semesters. In the five semesters of this study, a 60% pass rate was achieved in
all five semesters.

130

Figure 5: Students Seeking Internet Help When Stuck on Projects

4 Conclusions and Future Work

Between the three data sources mentioned, we have collected an enormous
amount of both quantitative and qualitative data over five semesters and ten
recent sections of CS1. We feel the changes we have made over the past three
years have contributed to the increased success rates in CS1. We are also very
interested in digging more into what happens when students get stuck and
become frustrated while working on a project. This inevitably happens with
all students at some point and we want to provide students with the necessary
tools to persevere when they do encounter obstacles. More work is needed to
continue exploring our data and collecting new data to help determine where
students are still struggling and which of our course changes have made the
most impact. This will help to inform how future CS1 courses may be developed
or augmented, and what teaching methods, learning strategies, and course
resources will make the most significant impact for the success of our students.

References

[1] Code.org. 2018 state of computer science education, policy and implemen-
tation. https://code.org/files/2018_state_of_cs.pdf.

[2] P.E. Dickson. Using undergraduate teaching assistants in a small college
environment. In Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education, SIGCSE ’11, pages 75–80, New York, NY,
USA, 2011. ACM.

131

[3] H. Fleenor. Establishing computational thinking as just another tool in
the problem solving tool box. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, SIGCSE ’19, pages 1253–
1253, New York, NY, USA, 2019. ACM.

[4] S. Kessler. You probably should have majored in computer sci-
ence. https://qz.com/929275/you-probably-should-have-majored-
in-computer-science.

[5] W. Marrero and A. Settle. Testing first: Emphasizing testing in early
programming courses. In 10th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, ITiCSE ’05, pages 4–8,
New York, NY, USA, 2005. ACM.

[6] US Bureau of Labor Statistics. Us bureau of labor statistics. computer and
information research scientist. https://www.bls.gov/ooh/computer-
and-information-technology/software-developers.htm.

[7] V. Ramalingam, D. LaBelle, and S. Wiedenbeck. Self-efficacy and mental
models in learning to program. In 9th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education, ITiCSE ’04,
pages 171–175, New York, NY, USA, 2004. ACM.

[8] E. Shein. Should everybody learn to code? Communications of the ACM,
57(2):16–18, 2014.

[9] G. Trujillo, P.G. Aguinaldo, C. Anderson, J. Bustamante, D.R. Gelsinger,
M.J. Pastor, J. Wright, L. Márquez-Magaña, and B. Riggs. Near-peer
stem mentoring offers unexpected benefits for mentors from traditionally
underrepresented backgrounds. Perspectives on Undergraduate Research
and Mentoring, 4(1):1–13, 2015.

[10] Christopher Watson and Frederick Li. Failure rates in introductory pro-
gramming revisited. In Proceedings of the 2014 Conference on Innovation
and Technology in Computer Science Education, ITiCSE ’14, pages 33–34,
New York, NY, USA, 2014. ACM.

132

+, − or Neutral: Sentiment Analysis of
Tweets on Twitter∗

Nifty Assignment

Robert Lutz and Evelyn Brannock
Georgia Gwinnett College

1000 University Center Lane
Lawrenceville, Ga 30043
{rlutz,ebrannoc}@ggc.edu

1 Introduction

Sentiment Analysis is a popular application of Natural Language Processing
(NLP). This exercise offers the capability to perform opinion mining in the
political arena by feeding data into a cloud natural language processor, without
in-depth proficiency in machine learning (ML) algorithms. It is an engaging
mechanism for interesting students in using ML to extract information from
voluminous amounts of text found in Twitter to understand the structure and
meaning of text.

∗Copyright is held by the author/owner.

133

2 Materials

• Educational codes for access to Google Cloud Platform (GCP)
• Credentials to access API
• Jupyter Notebook

3 Summary

Students are asked to provide an app that provides results of a sentiment analy-
sis of tweets on some current “hot” political subject, such as the Mueller report
or tweets from President Trump as shown below.

Step 1: Load required libraries by running the install commands.

Step 2: Provide credentials to access APIs.

134

Step 3: Establish calling endpoint, call parameters and make the request.

Step 4: Coerce the response into a list of messages.

Step 5: Create a (reusable) function for sentiment analysis using Google’s
Natural Language Processing.

135

4 Metadata

136

