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Welcome to the 2021 CCSC Southeastern Conference
Welcome to the 34th Southeastern Regional Conference of the Consortium

for Computing Sciences in Colleges. The CCSC:SE Regional Board welcomes
you –virtually, at least! –to Asheville, NC, the home of UNC-Asheville. The
conference is designed to promote a productive exchange of information among
college personnel concerned with computer science education in the academic
environment. It is intended for faculty as well as administrators of academic
computing facilities, and it is also intended to be welcoming to student partic-
ipants in a variety of special activities. We hope that you will find something
to challenge and engage you at the conference!

The conference program is highlighted with a variety of sessions, such as
engaging guest speakers, workshops, panels, student posters, faculty posters, a
nifty assignment session and several sessions for high quality refereed papers.
We received 38 papers this year of which 21 were accepted to be presented at
the conference and included in the proceedings –an acceptance rate of 55%.

Two exciting activities are designed specifically for students –a research
contest and an undergraduate programming competition, with prizes for the
top finishers in each.

We especially would like to thank the faculty, staff, and students of UNC-
Asheville for their help in organizing this conference, especially under the chal-
lenging circumstances caused by the pandemic. Many thanks also to the CCSC
Board, the CCSC:SE Regional Board, and to a wonderful Conference Commit-
tee, led by Conference Chair Dr. Marietta Cameron. Thank you all so much
for your time and energy.

We also need to send our deepest appreciation to our partners, sponsors,
and vendors. Please take the time to go up to them and thank them for their
contributions and support for computing sciences education – CCSC National
Partners: Turing’s Craft, Google for Education, GitHub, National Science
Foundation, Codio, zyBooks, National Center for Women and Information
Technology, Teradata University Network, Mercury Learning and Information,
Mercy College. Sponsoring Organizations: CCSC, ACM-SIGCSE, Upsilon Pi
Epsilon.

We could not have done this without many excellent submissions from au-
thors, many insightful comments from reviewers, and the support from our
editor Baochuan Lu. Thanks to all of you for helping to create such a great
program.

We hope you enjoy the conference and your virtual visit to UNC-Asheville.
Kevin Treu, CCSC:SE Regional Board Chair

Furman University
John Hunt, Program Chair

Covenant College
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Improving Machine Learning Fairness
with Sampling and Adversarial

Learning∗

Jack J Amend and Scott Spurlock
Computer Science
Elon University
Elon, NC 27302

{jamend,sspurlock}@elon.edu

Abstract
Machine learning approaches learn models based on the statistical

properties of training data. Learned models may be unfair due to bias
inherent in the training data or because of spurious correlations based
on sensitive attributes such as race or sex. This type of bias can lead
to detrimental outcomes in important applications, including prison sen-
tencing, credit scoring, and loan approvals. In this work, we perform
a comparative study of techniques to increase the fairness of machine
learning based classification with respect to a sensitive attribute. We
assess the effectiveness of several data sampling strategies as well as of a
variety of neural network architectures, including conventional and ad-
versarial networks. Results are evaluated in terms of metrics measuring
both classification accuracy and fairness. We find that model architec-
ture and sampling strategy can both greatly affect metrics of fairness.
We also find that there is no single best combination that should be
used; the particular problem domain should drive the selection of neural
network architecture and sampling strategy.

1 Introduction
Machine learning is becoming increasingly common in everyday life. Models
are used to select ads to show users, recommend movies, and predict patient

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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outcomes. Advances in computing power, machine learning algorithms, and
availability of training data have enabled the creation of models that can ex-
hibit high accuracy, but are typically difficult to audit because of their com-
plexity. Recently, many such models have been found to perpetuate societal
biases. For example, a study by ProPublica found that a system that pre-
dicted recidivism scores was racially biased, predicting a higher likelihood of
recidivism for Black individuals even when other factors were similar [1]. The
frequency and disproportionate impact of this type of systemic bias motivate
the necessity of finding ways to measure and mitigate bias in machine learning
models.

In this paper, our focus is on classification, the most common application
of machine learning, in which, given a data set of training examples and cor-
responding desired (ground truth) labels, a training process learns a model
that can accurately predict the correct labels for given data examples. The
training process seeks statistical patterns in the data that may be difficult or
impossible for humans to identify. The resulting model is typically optimized
to yield high levels of accuracy. We focus on artificial neural networks as the
learning method most commonly employed in recent machine learning research
and compare differing network architectures, particularly a vanilla "basic" net-
work, and an adversarial network that optimizes competing objectives during
training.

The training process is vulnerable to learning spurious correlations between
attributes, particularly when the amount of data is limited. Sometimes these
spurious correlations are harmless, e.g., learning that thin people always wear
hats [9]. Learning is further vulnerable to codifying bias already present in the
training data. These factors can result in models that are potentially detrimen-
tal, e.g., the association of Black individuals with higher rates of recidivism.
Such factors as race and sex are of particular relevance to bias in models, and
are often described as protected (or sensitive) attributes. Prior research has
sought to quantify bias using several different criteria. Below we give defini-
tions for two commonly used metrics. Following the notation of Zhang et al.
[11], we use X, Y , and Z to indicate the input data, true label, and protected
attribute, respectively. The model prediction for a given example is given by
Ŷ = f(X), where the function f is the learned model represented by a trained
neural network. We indicate a particular value of the output variable, Y , by
y, and of the protected variable, Z, by z.

• Demographic Parity measures that the predicted outcome is indepen-
dent of the value of a protected attribute. P (Ŷ = ŷ) = P (Ŷ = ŷ|Z = z)

• Equality of Opportunity measures that the predicted outcome is con-
ditionally independent of the value of a protected attribute for one par-
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ticular value of the outcome, which we indicate as 1.
P (Ŷ = ŷ|Y = 1) = P (Ŷ = ŷ|Z = z, Y = 1)

Our research evaluates strategies to reduce bias in learned models due to
spurious correlations and biased training data that may have an adverse im-
pact based on protected attributes. We conduct several experiments using the
UCI Adult Data set [3] with the goal of predicting whether individuals belong
to the high or low income group. We evaluate prediction accuracy with re-
spect to the target variable and several fairness metrics with respect to the sex
(male or female) attribute. Our experiments vary data sampling strategies as
well as neural network architectures with the goal of addressing four research
questions:

• RQ1 Can a basic neural network achieve boosts in fairness metrics?
In particular, we investigate whether basic network architectures can be
effective when paired with an appropriate data sampling strategy.

• RQ2 Which network architecture outputs the least biased predictions?
We compare the results of training models with simple architectures as
well as more complex, recently developed adversarial architectures.

• RQ3 What is the best data sampling strategy to increase fairness?
We compare several different strategies, including resampling to ensure
the number of training examples is balanced over possible values of the
sensitive attribute, of the desired label, and of both.

• RQ4 Can we combine good architecture and data sampling to achieve
better results?
We evaluate the results of pairwise combinations of several sampling
strategies and network architectures.

In the next section, we review recent work in the area of machine learning
fairness. In Section 3, we describe our methodology, including data sampling
strategies and neural network architecture choices, followed by a review of our
experiments and results in Section 4. We conclude in Section 5 and offer some
thoughts on potential directions for future work.

2 Related Work

Fairness in machine learning is becoming an active area of research. A recent
survey focuses on the role that unbalanced training data can play in con-
tributing to this issue, and groups work in the area into approaches that focus
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on pre-processing the data and approaches that address the issue algorithmi-
cally [7].

Wang et al. evaluates several bias-reduction techniques in a computer vision
context [10]. The authors propose training an ensemble of domain-independent
classifiers (i.e., one classifier per possible value of a protected attribute). In-
terestingly, while this approach often outperforms a variety of alternatives, in
some experiments, sampling with replacement to manually balance a training
data set performs better. Oversampling techniques appear to be particularly
effective when the data set is large (mitigating overfitting) and the amount of
bias inherent in the data is smaller.

2.1 Adversarial Networks

A particular emphasis in much of the recent work has been on using specialized
neural network architectures to help reduce bias in learned models. Adversarial
learning seeks to optimize multiple neural networks with competing objectives.
Typically, one network optimizes classification accuracy for a given model,
while another network optimizes the ability to guess the value of a protected
attribute given the classifier’s output. By alternately training both networks,
the goal is to learn a model that can predict with high accuracy while also
exhibiting low levels of bias.

Several recent approaches [2, 4, 8, 11] propose to learn a mapping from
input data to a new representation that removes bias from the source data.
This learned representation is then suitable for learning unbiased classification
models. The approach leverages an adversarial network seeking to predict a
protected attribute based on the representation. Some work also finds that
having balanced data sets in terms of the distribution of examples over the
protected attribute is helpful in producing a fair model and that an adversarial
approach allows for smaller numbers of training examples [2].

2.2 Fairness Metrics

There are many different metrics to measure fairness in a learned model, with
new metrics being regularly proposed in the literature. Unfortunately, there
is no consensus as to a single best approach to quantifying fairness, and there
is generally a trade-off between model accuracy and various different fairness
metrics. One recent study, which conducted a survey of the human perception
of fairness of competing models in a hypothetical scenario, found that, while
participants showed a slight preference for equalizing fairness over accuracy,
they disagreed on how to measure it [6].

One measure to quantify fairness is equality of opportunity, introduced in
recent work to remove bias from learned models [5]. Other common metrics
include demographic parity and equality of odds [11].
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3 Methodology

In this section, we review our study’s neural network architectures and data
sampling strategies, as well as the data set used for evaluation.

3.1 Architecture

We experiment with four network architectures:
The Basic model is implemented as a simple fully connected 4-layer neural

network that takes in the data, X, and outputs the predicted label Ŷ . This
model serves as a baseline for comparison to the others.

The Split approach trains a separate Basic model for each of the possible
protected attribute values, allowing each network to model a separate distri-
bution. For a protected attribute like sex with two possible values, we train
two independent basic models. At test time, each example is classified by the
appropriate model.

The CAN (Classifier-Adversarial Network) architecture follows an adver-
sarial learning approach, similar to several recent methods [2, 4, 11]. Adver-
sarial learning works by pitting two competing neural networks against each
other. The first, f , is the classifier, based on the Basic architecture described
above, which attempts to predict the label, Y . The second network, g, uses the
output from the classifier, Ŷ , to predict the protected attribute, Z. Training
proceeds iteratively, alternately optimizing each network. After training, the
networks reach an equilibrium, with the goal that the classifier performs with
a high level of accuracy and the adversary performs poorly, near the level of
random guessing in its ability to predict the protected attribute, thus limiting
the correlation between the output of the classifier and the sensitive attribute.

The CANE model (CAN with Embedding), similar to CAN, trains com-
peting classification and adversary networks. However, for CANE, the input
to the adversary is augmented to include, in addition to Ŷ , the prediction from
the classifier, the features from the penultimate layer of the classifier network.
These features constitute an embedded, or lower-dimensional, representation
of each input, X. They provide the adversary with more information, with the
goal of helping to learn a less biased model. This variant of the CAN approach
is actually more common in recent literature [2, 4, 11].

3.2 Data Sampling

Several recent approaches have focused on the impact of data sampling on
fairness [5, 10]. To see how data affects the overall fairness of the model, we
compare 4 sampling approaches. No Sampling, NS, uses the data without
modification, serving as a baseline. Sensitive Sampling, SS, resamples the
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Income Female Male
<=50K 9,592 15,128

>50K 1,179 6,662

Table 1: Counts of observations across income and sex in the highly unbalanced
UCI Adult data set. Of 32,561 examples, there are many more low-income male
observations (46.5%), while only 1,179 (3.6%) are high-income females.

training data so that the number of examples from each possible value of the
sensitive attribute is the same (e.g., the same number of men and women).
Label Sampling, LS, resamples the training data in a similar fashion with
respect to the target variable, while Sensitive Label Sampling, SLS, equalizes
the number of examples across each combination of sensitive attribute and
target variable value.

3.3 Data

For our study, we selected the UCI Adult data set [3], which contains 14 contin-
uous and categorical features including age, education, race, sex, and marital
status, as well as an associated target variable indicating whether or not each
individual’s income is above or below $50K. This data set is well suited to our
experiments because it is unbalanced in terms of the number of examples across
both the sensitive attribute of sex as well as the target label. It has been shown
to contain bias based on sex, and has been used in a variety of recent work
on bias mitigation [2, 8]. As Table 1 shows, counts of observations across sex
and income in the UCI Adult Data set are heavily skewed. Nearly two thirds
of the observations are male and nearly three quarters of the observations are
low-income. These disparities become even more apparent when looking at the
counts for each combination of sex and income. Observations falling into both
the high-income and female bins make up less than 4% of the entire data set.

4 Results and Discussion

In this section, we present our results and discuss findings for each of the four
research questions.

Implementation The neural networks were implemented in Python using
TensorFlow. For each architecture and sampling combination, models were
trained for 100 epochs using the ADAM optimizer and a learning rate of 2e-4.
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Acc. Acc. Acc. Parity Equality Equality
Model Sampling Overall Female Male Gap Gap - Gap +
Basic NS 0.8479 0.9214 0.8116 0.1870 0.0808 0.1102
Basic SS 0.8759 0.9399 0.8119 0.1732 0.0841 0.0446
Basic LS 0.8744 0.9391 0.8097 0.1780 0.0880 0.0245
Basic SLS 0.8766 0.9416 0.8116 0.1866 0.0936 0.0069
CAN NS 0.8481 0.9192 0.8129 0.1613 0.0632 0.0257
CAN SS 0.8742 0.9399 0.8085 0.1610 0.0776 0.0670
CAN LS 0.8764 0.9413 0.8115 0.1631 0.0770 0.0513
CAN SLS 0.8737 0.9402 0.8073 0.1458 0.0673 0.0899
CANE NS 0.8444 0.9208 0.8066 0.1375 0.0496 0.0030
CANE SS 0.8752 0.9394 0.8110 0.1647 0.0764 0.0218
CANE LS 0.8732 0.9386 0.8078 0.1673 0.0820 0.0545
CANE SLS 0.8582 0.9301 0.7862 0.1301 0.0618 0.0365
Split NS 0.8428 0.9133 0.8080 0.1737 0.0712 0.0845
Split SS 0.8532 0.9478 0.8064 0.1695 0.0896 0.0919
Split LS 0.8539 0.9468 0.8080 0.1684 0.0876 0.0946
Split SLS 0.8529 0.9447 0.8075 0.1748 0.0916 0.0816

Table 2: Experimental results with best value for each column bolded, second
best underlined. For accuracies, higher is better; for gap metrics, lower is
better. There tends to be a trade-off between better accuracy and gap metrics.

Metrics Table 2 lists the results for experiments with each of the models
and sampling strategies. Results are averaged across multiple trials using 5-
fold cross validation. For fair comparison, the same training-validation splits
are used for each variant. Metrics include classification accuracy (overall and
broken out for male and female) as well as fairness [2], based on the concepts
of demographic parity and equality of opportunity defined in Section 1. The
parity gap is calculated as the difference between probabilities of the model
predicting high-income for the two sexes. The equality gap is the difference
in probability of predicting each class, given the sex. This metric can be
calculated for each of the target values, i.e., one for low and another for high
income (Equality Gap - and +, respectively).

Question 1: Can a basic neural network achieve boosts in fairness
metrics? Our results show that, for the basic network architecture, compared
with not sampling, the other sampling strategies improve accuracy (SLS sam-
pling yielded the highest overall accuracy of 87.66% across all experiments), but
do not greatly improve fairness, with the exception of the high-income equality
gap, which shows some of the lowest scores across all tests. Interestingly, the
accuracy increase for SLS sampling comes primarily from more accurate classi-
fication of female examples, suggesting that this strategy improves the model’s
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ability to generalize for this underrepresented set. This outcome is supported
by a closer look at classification error. Figure 1 breaks out errors in terms
of false positive rate (FP), when the model incorrectly predicts high-income,
and false negative rate (FN), when the model incorrectly predicts low-income.
FP and FN are shown separately for overall, female, and male examples. For
female examples, switching from no sampling to SLS causes the false positive
rate to drop from 0.052 to 0.038, and the false negative rate from 0.027 to
0.021, while for male examples the error rate increases.

Question 2: Which network architecture outputs the least biased
predictions? Compared to the basic model, all other model types result in
some improvement in parity gap. This pattern was somewhat visible for the
low-income equality gap, and less so for the positive equality gap. Overall,
the adversarial architectures (CAN and CANE) produce models with better
fairness metrics, and the CANE architecture unquestionably shows the best
improvements to fairness metrics compared with the basic model. With no
sampling, CANE results in the lowest equality gap (0.0496 and 0.0030) and
second lowest parity gap (0.1375) across all experiments. The split model gen-
erally results in fewer improvements to fairness metrics, although combined
with sampling strategies, does result in the highest accuracies for female ex-
amples in particular. Additionally, for false negative rate (Figure 1), we find a
17.47% decrease when using CANE with SLS vs. the CAN model with SLS.
Compared to the basic model with SLS, false negative rate decreases by 27.43%.

Question 3: What is the best data sampling strategy to increase
fairness? No single data sampling strategy improves all metrics across the
board. For the adversarial models (CAN and CANE), no sampling (NS) gen-
erally results in the best parity and equality metrics, followed by SLS. For the
basic and split models, parity gap is lowest for SS and LS sampling, with no
clear-cut pattern for equality gap metrics. Figure 1 shows the impact of the
type of sampling and model architecture on classification error rates. Most of
the variability is due to female examples, with female false positive and nega-
tive rates exhibiting greater changes due to architecture and sampling choices.
We theorize that this means that the models learn the distribution of females
at varying levels based on the way the data is supplied and the model chosen.
It is interesting to note that the false negative rates for CAN and CANE are
similar for each of the resampling methods.

Question 4: Can we combine good architecture and data sampling
to achieve better results? We find that overall, sampling strategies have
more positive impact on the basic architecture. The adversarial architectures
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Figure 1: False positive (top) and false negative (bottom) rates for each sam-
pling method grouped by architecture. The columns show (left to right) overall,
female, and male rates, respectively.

perform better from a fairness perspective with no sampling, although sampling
can lead to accuracy improvements. In general, the results suggest a trade-off
between classification accuracy and fairness, with improvements in one com-
ing at the cost of reduction in the other. While there is no one clearly best
combination of architecture and sampling, CANE with SLS provides the best
scores on the fairness metrics. For a good compromise between accuracy and
fairness, we note that CAN with LS scored second-highest in overall accuracy
while achieving fairness scores near the median of all experiments.

5 Conclusion
In this paper, we evaluate the impact of data sampling and neural network
architecture on classification accuracy and fairness metrics with a series of
experiments on the UCI Adult data set. We find that sampling and archi-
tecture can both have important effects on classification results, but that no
single combination of approaches yields top scores across all measures. In-
stead, there is a trade-off that allows an approach to be tuned to a particular
domain where one metric may be more important than another. For example,
a low false negative rate might be vital for medical diagnosis, while for credit
scoring, a provably low bias might be required by law. For the future, further
work investigating explicitly incorporating fairness metrics into neural network
training may provide valuable improvements to learned models. We are also
interested in learning generative models of data distributions to support data
augmentation of under-represented examples.
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Abstract
We present the design of an Algorithms Analysis course, based on the

recently developed Scrumage approach, which allows students to work in
cohorts if they choose and also allows each student to choose for them-
selves how they spend class time. We describe the course structure as
well as the results from a survey to assess learning attitude outcomes.
We show that the Scrumage method resulted in students taking more
responsibility for their own learning and having improved impressions of
the course and the course material.

1 Introduction
Algorithm Analysis is at the core of computer science [13]. At our institution,
the anecdotal reputation of the course is somewhat negative, with end-of-term
surveys from prior semesters surfacing student comments such as“material is
miserable,”“so much information,”and “very confusing.”Our observations
are that students frequently struggle to engage with the material and, worse,
often display a lack of understanding of how to improve, as well as a degree of
passivity in their own learning.

In order to address these issues, we re-worked the course to follow the re-
cently developed Scrumage pedagogical approach [6]. In Scrumage (SCRUM
for AGile Education), course content is divided into short (2-3 week) units

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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called sprints, and students work in self-organizing teams to complete require-
ments (e.g., problem sets and programming assignments). A key component of
Scrumage is that students have the freedom to choose multiple different learn-
ing approaches. Thus, one student may choose a traditional in-class lecture,
while another may prefer a flipped model, watching videos outside of class in-
stead. Students are provided with a variety of resources each sprint (textbook
readings, slides, videos, sample problems, etc.) to allow them to dynamically
choose how to learn the material.

We were interested to apply the Scrumage model to our Algorithms course
with an eye toward helping students take more responsibility for their own
learning and allowing them to have more choice in how they learn. With this
idea in mind, we redesigned the course to include five sprints, each with its
own set of assignments and a quiz at the end. Students had the freedom to
choose a team (or to work individually) each sprint and to decide how to use
the provided resources as they saw fit.

We have taught our Algorithms course using Scrumage for the past three
offerings, observing each time improving student attitudes and evidence of
metalearning, as students discover how they learn best. As instructors, we
have found the experience of adopting Scrumage to have made the teaching
process more enjoyable as students have transitioned psychologically from a
model where a teacher pushes the material at them, to a model where they are
empowered to make decisions about their own learning experience.

2 Related Work

As might be expected given the central importance of the topic, a variety
of work has been published over the years related to teaching Algorithms to
undergraduate students, including various pedagogical alterations to improve
student learning. For example, one recent paper describes modifying a tradi-
tional course to focus on group-based problem solving [3], while another adapts
a course to use an interactive e-book [9]. Including peer assessment in one algo-
rithms course helped enhance students’ critical thinking skills [5]. Other work
looks at incorporating card games [10], puzzles [12], or programming competi-
tions [8] to increase student interest.

The variety of approaches in the literature suggests that there is no single
best pedagogy for teaching Algorithms. It seems clear from the scholarship of
teaching and learning more broadly that active learning approaches are effective
[11], but there appears to be no consensus on the effectiveness of particular
techniques such as lecture [4], gamification [1], or a flipped model [2]. This
observation informs the development of Scrumage, which aims to allow for all
of these approaches to be available simultaneously to students within a single
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classroom [6]. It is inspired by Scrum, a widely adopted project management
technique that emphasizes lean processes (no busy-work), autonomous teams
(no dictated decisions from management), and a fast feedback loop on both
process and product (no static plans) [16]. Scrumage has previously been
applied to a Discrete Mathematics course with a resulting improvement in
student attitudes [7], but no work exists on using Scrumage for a higher-level
course like Algorithm Analysis. In the following section, we describe the design
of a Scrumage-based Algorithms course as well as a survey constructed to assess
how student attitudes about learning changed from the start to the end of the
semester.

3 Methodology

We have taught Algorithm Analysis at our institution many times in the past
following a traditional, lecture-based approach; we have used the Scrumage
approach in each of the last three offerings, observing each time similar im-
provements compared to our prior traditional approach. The authors have
individually implemented Scrumage with slight differences in content, assign-
ments, and incentives, but with the same core principles. In the following
sections, we describe the most recent offering.

3.1 Course Structure

In the Scrumage approach, a course is divided into a series of units called
sprints, each with its own set of topics and requirements. Each sprint begins
with team assignment (after the first sprint, students have primary input into
team formation) and the distribution of available resources (videos, readings,
slides, etc.) and requirements (work to be completed by the end of the sprint).
We provide a form for teams to make requests for how class time should be spent
each day of the sprint. For example, a student might request the instructor
to work through example problems similar to one of the requirements on a
given day or play a review game prior to a quiz. Students are required to
come to class each day to meet with their team at the start of class and to
complete a check-in problem - a short (5-minute), lightly graded quiz designed
to help students better understand how well they are progressing. After these
required activities, students have the liberty to stay for the remainder of class
or not, depending on whether the planned activities are helpful to them or
not. On many days there is an optional lecture, followed by in-class work time
when students can make progress on their requirements while the instructor
circulates providing help as requested. The last day of each sprint culminates
in a quiz.
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Sprint Topics Requirements
1. Fundamentals I Basics PS1 - basic analysis
(3 weeks) Analysis PA1 - unique elements

Sorting Quiz 1
Divide & conquer
Master method

2. Fundamentals II Recurrence relations PS2 - more analysis
(3 weeks) Quicksort PA2 - k largest

Lower bounds Quiz 2
Linear sorting

3. Data Structures Data structures PS3 - heaps and trees
(3 weeks) Binary search trees Quiz 3

Hash tables
4. Graphs Graphs, DFS, BFS PS4 - graphs and greedy
(3 weeks) Dijkstra’s Algorithm PA3 - fastest route

MST Quiz 4
Huffman trees

5. Adv. Techniques Dynamic programming PS5 - DP & NPC
(2 weeks) NP-Completeness Final exam

Table 1: The course is divided into 5 sprints, each focused on a subset of topics
and with defined requirements to be completed. The requirements are either
team-based problem sets (PS) or individual programming assignments (PA).

Table 1 shows a breakout of the topics and assignments for each of the five
sprints. In particular, there are problem sets covering the more theoretical
elements of algorithm design and analysis (15% of the total points), as well
as more practical programming assignments (20% of the total points). The
first four sprints end with a quiz (32% of the total points). Material from
the fifth sprint is included on the (cumulative) final exam (23% of the total
points). A small number of points (5%) is awarded for learning management
activities, such as attending team meetings, making and following through on
plans, and completing a retrospective survey at the end of each sprint. Finally,
the daily feedback check-ins comprise a small number of points (5%) so students
complete them thoughtfully.

3.2 Survey Development

To help identify changes in student attitudes over the course of the semester,
we created a survey to be administered at the start and end of the course. The
survey included 30 Likert-scale (1 - 7) questions. Of these, six related to student
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Figure 1: Kernel Density Estimate (KDE) distributions of average scores across
categories from the learning attitudes survey questions show how student re-
sponses changed from the start to the end of the semester.

learning preference, such as“Small group discussion is an effective approach for
me when I am learning new material.”Also included were 24 questions focusing
on student learning attitudes taken from the“Motivated Strategies for Learning
Questionnaire”[15] from 4 categories: Effort Regulation, Metacognitive Self-
Regulation, Help Seeking, and Control of Learning Beliefs. The surveys also
included several free-text fields, such as “What are your impressions of the
topic of Algorithm Analysis?”In the following section, we describe the survey
results and our observations of student learning and attitudes.

4 Results and Discussion
The most recent course offering included 31 students across two sections. The
majority of students were in their 3rd or 4th year in the program, with a few
students in their 2nd year. We administered the survey the week prior to the
start of the course, which established a baseline for our analysis, as well as
providing input to initial team formation, where students providing similar
survey responses were grouped together.

Of the 4 categories, the largest change in average student score was in
the Control of Learning Beliefs category, which focuses on the extent to which
students feel that they are able to learn the course material and are responsible
for their own learning outcomes. While the sample size is small, this change was
found to be statistically significant (p = 0.05) using the Wilcoxon signed rank
test. This outcome suggests that we met one of our key goals: to help students
take responsibility for their own learning. Figure 1 shows the distribution of
student responses on each category of student attitude questions using kernel
density estimation (KDE) [14] for the pre- and post-surveys.

In particular, the student attitudes questions with the largest absolute
change over the semester were, "It is my own fault if I don’t learn the ma-
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terial in this course," which is part of the Control of Learning Beliefs category,
and "Even if I have trouble learning the material in this class, I try to do the
work on my own, without help from anyone," which is part of the Help Seeking
category. We observed an average decrease in the Help Seeking category score,
which we attribute to students being more inclined to make use of the pro-
vided resources rather than asking the instructor for help. While this outcome
could indicate more independence in learning, we did not observe a decrease
in student questions in class or by email, and attendance in office hours re-
mained strong throughout the course. Other responses that showed significant
increases related to learning preferences for working in small groups and for
"jumping straight into problem-solving and looking up relevant information
along the way" as opposed to a more structured introduction to material.

4.1 Text responses

In addition to Likert-scale questions, students responded to several free-text
prompts. The following sections focus on changes in student impression of
the topic, their feelings about ownership of their own learning, and their met-
alearning about their own individual approach to the course.

4.1.1 Student Impressions

One survey question related to student perceptions of the topic of algorithm
analysis. Running the Vader sentiment intensity analyzer shows an improve-
ment in student sentiment from pre- to post-survey. In particular, the com-
pound sentiment score, which varies from -1 for extremely negative to +1 for
extremely positive, increased from 0.1254 to 0.4543, over the semester. For
additional insight, we coded the responses based on keywords related to four
categories: difficult, interesting, useful, and enjoyable. The following example
comments are typical for each category:

• Difficult: "Algorithm analysis was very difficult... but I learned a lot from
the class. "

• Interesting: "Tough but interesting. I like the more academic lens of
computer science that we have in this class."

• Useful: "It seemed to be very important and mostly a way of thinking. It
helped me think of new ways to solve problems and approach program-
ming from a different perspective."

• Enjoyable: "I enjoyed it. I liked going beyond writing functional code
and evaluating what made code efficient/fast/generally ’good’."
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Figure 2: Counts of sentiment tags relating to student impressions of the topic
of algorithms on a pre- and post-test.

Figure 2 shows how these counts changed over the course of the semester,
with students indicating increased positive impressions and decreased negative
impressions. (Note that a response could be tagged with multiple categories.)

4.1.2 Student Ownership of Learning
One interesting observation is that, while in-class lectures were explicitly la-
beled as optional, with students invited to leave if they preferred a different
learning approach, in practice, almost all students stayed every day for lecture.
However, they noted in surveys that they appreciated the freedom to choose,
e.g.,“every day I made the choice to stay for the lectures”and“⋯the optional
lectures helped because I always stayed to advance my learning.”We hypothe-
size that the psychological impact of“opting in”is a key part of the success of
the Scrumage approach. One survey question related specifically to students’
feelings about responsibility for their own learning. Multiple responses suggest
that the Scrumage approach was effective at promoting student ownership:

•“I think this learning approach was successful for getting me to take
ownership of learning material. It allowed me to be able to study at my
own pace ... Compared to my other classes I would honestly rate this one
the highest in terms of how much I’ve been motivated to understand
the concepts and it’s the class I feel I’ve learned the most in.”

•“This freedom to decide between videos, slides, readings, and lectures,
not only made class more meaningful, but also helped dampen the feeling
that showing up to class was a chore (ex. if you felt comfortable with the
topic, the lecture may not have been necessary to stay for).”

•“⋯[The] sprint style was my favorite class organization I have seen...
The division into smaller topics helped make the course load feel more
manageable, and allowed additional emphasis to be put on each topic.
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Figure 3: Counts of which learning approaches were mentioned in student
responses to a survey question about how students chose to learn material.

Further by having group and individual work for each sprint, I was able to
improve my teamwork skills, and also ask questions to help work through
problems and facilitate my own discussion and learning.”

4.1.3 Metalearning

One survey question asked students to indicate their strategy for using the
available resources to learn the material. Gratifyingly, many students reported
progress in learning about their own learning:

•“I learned over the semester that my best way to learn was to watch
the videos and look over the slides before a class. This way, I could ask
questions during the lecture, and reinforce what I had taught myself."

•“I generally went over lecture slides first, then if I still had trouble under-
standing material I went to the book, and if I still wasn’t sure I used the
videos. I tried to understand the material first before going into solving
problems so if I got stuck I would know where to refer to for answers.”

•“I primarily learned from jumping into the problems and trying to piece
it together with videos textbook and slide. If all else failed I went straight
to office hours.”

•“⋯My approach changed slightly over time as I realized the pre class
prep is what helped me the most for truly understanding the topics.”

Coding the free text responses indicates that lectures were the most popular
learning approach, closely followed by videos (Figure 3). Of note, most students
mentioned preferring multiple learning modalities.
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5 Conclusion and Future Work
Our results suggest that the Scrumage teaching approach can be effectively
applied to an Algorithms course and resulted in students taking more ownership
over their learning, discovering how they personally learn best, and having
better impressions of the course and the topic of Algorithm Analysis.

While we saw a marked increase in attitudes, grade outcomes from the
course were similar to semesters that followed a traditional pedagogical ap-
proach. However, because a number of factors change from one course offering
to another, no clear conclusions can be drawn from this outcome. We look
forward to further studying the effect on content learning as well as the effect
on instructor experience in the future.

Finally, we note that, from the instructor perspective, Scrumage resulted
in a more enjoyable teaching experience. Students appeared more motivated
and better prepared for class, often asking better questions that suggested they
had already attempted to solve homework problems on the topic of discussion.
Our experience has been that less time is needed for spoon-feeding students
the basics, and more time is spent on applications of techniques and drawing
connections between different ideas.
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Abstract
Specifications grading has been proposed as a method to improve stu-

dent outcomes and reduce faculty grading time. There are many ways
to implement specifications grading that differ in their details, but the
overarching philosophy is that student work receives credit only when
it fully satisfies a given set of requirements. Therefore, grading requires
only a satisfactory/unsatisfactory designation, reducing grading time.
By allowing students to resubmit assignments, it encourages mastery of
the material. We present a version of specifications grading that was im-
plemented across five undergraduate computer science courses over four
semesters, comprising twelve total course offerings. We find evidence for
improved student outcomes, especially among middle to low performing
students. Grading time was reduced for most programming assignments.
Assignments with many small independent parts, such as short answer
textbook problems, generally did not lead to grading time savings. Stu-
dent enjoyment of specifications grading when compared to traditional
grading was polarized with some students strongly disliking it. Overall,
the modified specifications grading scheme presented here offers a num-
ber of benefits to students and faculty that make it an appealing option
for undergraduate computer science courses.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
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or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Specifications grading has gained popularity since it was described by Nilson
in 2015 [5]. Several investigators have reported their experience in applying
variations of specifications grading across a variety of fields [10, 7], including
computer science [2, 6, 8, 3, 1]. In its prototypical form, (“standard”) specifica-
tions grading is characterized by: satisfactory/unsatisfactory (i.e. pass/fail or
binary) grading of assignments, final letter grades determined by “bundles” of
satisfactory assignments, and allocated “tokens” that students can spend to re-
submit unsatisfactory assignments [4]. Rather than a prescriptive scheme, how-
ever, specifications grading is better viewed as a philosophy that emphasizes
experience and demonstrated mastery of material over partial credit grading.
In that sense, specifications grading has much in common with longstanding
pass/resubmit pedagogical approaches (e.g. [9]). Therefore, there are many
variations that can be called specifications grading [5]. Independent of the im-
plementation details, the purported benefits of specifications grading include
improved student engagement and learning outcomes and reduced grading time
for instructors.

In this work we describe the experience of using a modified specifications
grading variant in several sections of five undergraduate computer science
courses over four semesters at University of North Carolina Asheville (UNCA).
The remainder of this paper is organized as follows. In the next section we de-
scribe the implementation details of the modified specifications grading scheme
used in this study and the courses in which it was used. Section 3 presents
results of a grade timing study and a student perception survey. Section 4
presents a discussion of lessons learned and various trade-offs to consider when
implementing specifications grading. Section 5 provides a summary of the
work.

2 Modified Specifications Grading and Course Descrip-
tions

2.1 Modified Specifications Grading

The specifications grading scheme used in this study featured pass/resubmit
grading on assignments. Assignments could include homework, which are
mostly short answer problems or small programming problems, typically from a
textbook; labs, which are small to moderate programming tasks that are often
started in class, sometimes with students working in pairs; and projects, which
are larger programming problems. Each assignment had an initial due date
and was graded out of 10 points. An initial round of grading was completed
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shortly after the due date with students receiving either 10/10 if they satis-
fied 100% of the requirements or 0/10 if they did not satisfy the requirements,
which includes students who did not turn in the assignment. Any student with
a score of 0 can update their solution and resubmit. Each submission (or re-
submission) after the initial deadline incurs a penalty of 1 point. Therefore,
the only way to earn the full 10/10 on an assignment is to submit it prior to the
original deadline and satisfy all the requirements. After the initial deadline,
instructors monitor for resubmissions and grade them as needed. In practice,
instructors can use discretion to deem the assignment to be satisfactory even if
minor errors exist. In some courses, there was an imposed deadline after which
resubmissions would no longer be accepted. For example, in Data Structures
students could resubmit any time within one week after the next exam following
the assignment’s original due date.

Beyond the pass/resubmit grading on assignments described above, the
other aspects of the courses were structured traditionally. All courses had
exams with traditional grading. Final course grades were determined using
a weighting formula with heavy weight on exams. Different types of assign-
ments, i.e. homework, labs, and projects, could have different weights in the
final grade calculations. Since the pass/resubmit grading considered here re-
sults in a numerical grade, the only substantial difference between this modified
specifications grading scheme and a traditional course is the grading and resub-
mission of assignments. The effect is that assignments require demonstrated
mastery, since students receive no credit without successful completion, and
low stakes, since students lose only 10% per attempt.

2.2 Courses in this Study

The authors used the modified specifications grading scheme in five different
courses over four semesters, comprising twelve unique course offerings. This
subsection presents brief descriptions of the courses. Table 1 summarises the
course offerings and initial enrollments.

CS0 Intro Programming for Web Applications. This is an introductory
programming course open to majors and non-majors. It is one of three CS0
options, of which CS majors and minors must take one. Non-majors receive
credit for UNCA’s Scientific Perspectives general education requirement. This
CS0 option has a web focus, so students learn basic HTML, CSS, and pro-
gramming in JavaScript. There are no prerequisites for this course.

Data Structures (D.S.) This is a standard data structures course in Java
that is required for CS majors and minors. The prerequisites are CS0, which
is described above, and CS1, which is an Introduction to Object-Oriented Pro-
gramming in Java. Data Structures is considered the gateway course in the CS
curriculum at UNCA, as a grade of C or better in this course is a prerequisite
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Course Semester(s) Instructor(s) Enrollment
CS0 F18, S19, F19, S20 BD 20, 20, 18, 18
Data Structures S20 KRS, BD 32
Algorithms S19, F19, S20 AW 29, 21, 27
Cybersecurity S19, S20 BD 18, 18
Systems F18, F19 BD 17, 17

Table 1: Courses in this study from Fall 2018 through Spring 2020. Enrollment
is the number of students initially enrolled in the course. Note the Data Struc-
tures course comprised two sections that were team-taught by authors Sanft
and Drawert.

for most upper-level courses.
Algorithms (Alg.) This is a standard upper level algorithms course in

Java that is required for CS majors and is an elective for CS minors. The
prerequisite is a grade of C or better in the Data Structures course.

Cybersecurity (Security/Sec.) This is an upper level elective for CS ma-
jors and minors. The prerequisite is a grade of C or better in the Data Struc-
tures course.

Systems (Sys.) This is an upper level course that is required in one CS
major track (Computer Systems) and an elective in the other CS major track
(Information Systems) and in the CS minor. The prerequisites are an Intro-
duction to Systems course and a grade of C or better in the Data Structures
course.

3 Results
Of particular concern for instructors considering modified specifications grad-
ing is whether the grading time will be reduced. Total grading time for spec-
ifications grading includes the initial grading session and potentially several
additional resubmission grading sessions. In the next subsection we present
the distribution of resubmissions and the results of a grade timing study. In
Section 3.2, we present the results of a survey assessing student perception of
specifications grading compared to traditional grading.

3.1 Resubmissions and Instructor Grading Time

Table 2 shows the distribution of student submissions per assignment. Data
Structures had the highest number of submissions with 1.37 submissions per
student per assignment, while also having the lowest number of students who
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never submitted. This was expected, considering the course’s placement within
the curriculum. In CS0, assignment specifications are detailed and explicit,
so students can more easily self-check correctness. In upper level courses,
the specifications are higher-level but the students are more sophisticated and
better able to test edge and corner cases. Data Structures occurs between
those extremes with fewer details in the specifications but the students are
less skilled at identifying edge and corner cases themselves. The number of
students who do not submit assignments should be higher than in traditional
grading, since students should not submit if they know their work is incorrect
and will not receive credit. The number of zero submissions in Systems was
unusually high for the semester included in Table 2, in part due to an atypical
number of students (5 out of 17) who effectively quit during the semester due
to personal circumstances without officially withdrawing from the course.

Course
(term)

Submissions per Assignment
0 1 2 3 4 Mean (SD)

CS0 (S20) 14.6% 79.2% 6.3% 0% 0% 0.92 (0.45)
D.S. (S20) 8% 61% 19% 10.5% 1.5% 1.37 (.83)
Alg. (S19) 13.8% 60.3% 21.1% 4.3% 0.4% 1.17 (.73)
Security (S20) 22% 72% 6% 0% 0% 0.83 (0.5)
Systems (F19) 35% 55% 8% 2.2% 0.4% 0.78 (0.71)

Table 2: Distribution of number of submissions per student across all assign-
ments. The maximum number of submissions encountered across all semesters
was four, which occurred rarely.

Table 3 shows the results of a grade timing experiment comparing spec-
ifications grading to traditional grading for a selection of assignments. For
each assignment, a random sample of approximately ten students per grading
method was selected. Overhead (accessing the assignment, additional grading
time for the first submission, setting up a grading spreadsheet, etc.) and the
average time per submission were recorded. Based on the sample, the total
grading time for the assignment was estimated for both grading methods. We
note that all the samples were taken from courses that used specifications grad-
ing. To estimate the traditional grading time, we assumed that the number of
submissions was equal to the number of initial submissions observed in specifi-
cations grading. We expect this to underestimate the traditional grading time,
as traditional grading encourages submitting incorrect work to receive partial
credit.

Grading correct work is relatively fast in both traditional and specifications
grading. However, the time savings of specifications grading that are seen in
Table 3 come from: 1) not spending time allocating partial credit points, and 2)
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not grading as much incorrect work because students are less likely to submit
work that they know will be worth zero points. However, the grading time
benefits are offset somewhat by having to grade resubmissions.

There is substantial variation in the time savings of specifications grading.
Some of the variation is due to the sampling of students in the timing ex-
periment. For example, with Algorithms “HW4” where specifications grading
actually took longer, 7 of the 10 submissions in the traditional grading sam-
ple were “good” submissions, while only 5 of the 10 initial submissions were
satisfactory in the specifications grading sample. In general, the time savings
for specifications grading is highest when assigning partial credit in traditional
grading is most complex. For example, there was essentially no time savings
benefit on Data Structures “HW2” , which featured several textbook questions
that were graded independently and required few, if any, partial credit decisions
in traditional grading. Conversely, it is more time consuming to assign partial
credit on assignments with several interrelated components, as in programming
project “Proj1” in Security.

Assignment Overhead Time per submission Time
SavingsTrad. Specs. Resub. Trad. Specs. Resub.

CS0 Lab9 288s 120s 27s 84.2s 41.4s 26s 47%
D.S. HW2 123s 65s 50s 81s 71s 26.3s 0.4%
D.S. Proj3 270s 137s 97s 273s 74.5s 73.7s 53%
Sec. Proj1 556s 182s 89s 380.4s 52.2s 40s 83%
Sec. Paper1 249s 183s 25s 61.6s 41s 33s 29%
Alg. HW4 502s 298s 127s 141.7s 126.1s 87.4s -9.0%
Sys. HW2 229s 125s 66s 83s 32.8s 33s 49%
Sys. Lab3 348s 304s 104s 68.6s 64.4s 32s -8%

Table 3: Instructor grading time and time savings for specifications grading
compared to traditional grading for a selection of assignments and random
samples of students. Grading time is split into Overhead and an average grad-
ing time per submission. Traditional (Trad.) grading is done in one grading
session. Specifications grading has an initial grading session (Specs.) and typ-
ically one to three resubmission grading sessions (Resub.). The number of
resubmission grading sessions is usually the same as the maximum number of
resubmissions for that assignment (see Table 2 for averages). Grading time for
specifications grading was estimated by applying the grading time averages of
the sample students to the actual distribution of submissions. Grading time
for traditional grading was estimated by assuming the number of submissions
was equal to the number of initial submissions in specifications grading.
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3.2 Student Perception

Improved student outcomes is the most important reason for adopting specifi-
cations grading. Anecdotally, we find improved student outcomes, and subjec-
tive discussion appears in Section 4. Unfortunately, conducting a randomized
trial to assess the direction and magnitude of the effect was not feasible in
this study. However, we were able to conduct a small student perception sur-
vey in CS0 and Data Structures in Spring 2020. The survey asked students
their agreement with two statements: 1) Compared to traditional grading of
assignments, I prefer specifications grading, and 2) Compared to traditional
grading of assignments, specifications grading helped me learn the material
better. Responses used a standard Likert scale: 1=Strongly Disagree, 2=Dis-
agree, 3=Neutral, 4=Agree, 5=Strongly Agree.

Statement Response (5=Strongly Agree)
(vs. traditional grading) Course 1 2 3 4 5
I prefer specifications
grading.

CS0 0 1 1 5 1
D.S. 2 1 1 2 2
Total 2 2 2 7 3

Specifications grading
helped me learn the
material better.

CS0 0 0 3 2 3
D.S. 0 0 4 2 2
Total 0 0 7 4 5

Table 4: Student perception survey results from Spring 2020 for CS0 and
Data Structures. Responses are on a Likert scale with 1=Strongly Disagree,
2=Disagree, 3=Neutral, 4=Agree, and 5=Strongly Agree. Response rates were
8/18 (44%) and 8/21 (38%) for CS0 and Data Structures, respectively. The
total N denominator values differ from Table 1 due to attrition, which was
affected by the COVID-19 pandemic.

As shown in Table 4, students had mixed opinions on whether they preferred
specifications grading over traditional grading. But no student who responded
disagreed with the statement that specifications grading helped them learn the
material better. Intuitively, this aligns with our experience that the opportu-
nity and incentive to fix mistakes improves student outcomes. We note that
the survey could be subject to selection bias, as only students who completed
the course and were motivated to respond were counted. Of particular concern
is that student attrition could be influenced by students who strongly dislike
specifications grading, yet students who withdrew from the course did not par-
ticipate in the survey. Despite this concern, the survey results in Table 4 from
Spring 2020 generally agree with the anecdotal experience of authors Draw-
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ert and Whitley from previous semesters that specifications grading helped
students learn the material better.

4 Discussion
The modified specifications grading scheme presented here seems particularly
beneficial for low to middle performing students. These are students who may
in traditional grading receive individual assignment scores in the 50-70% range
(i.e. low “C” to failing range) and may have an assignment average that is
“passing” but are nonetheless likely to perform poorly on the next exam. With
pass/resubmit grading, these students are incentivized to revisit incorrect as-
signments and fix their mistakes. In introductory courses like CS0, assignment
specifications tend to be explicit and detailed because students are not yet
sophisticated enough to fully consider edge and corner cases, while in upper
level courses, the specifications can be higher level with less detail because
the students are better at identifying special cases and testing. Intermediate
courses such as Data Structures present the most interesting tradeoffs when
considering specification detail. On the one hand, making assignment spec-
ifications explicit and exhaustive increases the likelihood that students will
submit correct work and, in turn, reduces grading time. But, on the other
hand, providing a complete checklist of test cases may prevent students from
developing the crucial skills of determining these details themselves.

In one real worst case example, all students in Data Structures who sub-
mitted a solution to a particular assignment problem got it wrong on their
first attempt! The problem was to write an instance method to determine
the size (number of elements) for a particular circular array queue implemen-
tation without using a size instance variable. The correct solution requires
students to correctly handle the cases where the array index of the front of the
queue is smaller than, greater than, and equal to the index of the back of the
queue. Furthermore, when the indexes of the front and back are equal, it could
mean that the array is empty or full, requiring additional code to discrimi-
nate between those two conditions. However, the assignment specifications did
not enumerate these cases. Some students perceived this as a failure of the
instructor’s teaching or poor assignment specifications, but these failures are
important learning tools. By the end of the semester, students were much bet-
ter at identifying corner and edge cases and were less likely to submit incorrect
work.

4.1 Pros and Cons of Specifications Grading
There are several advantages and disadvantages of specifications grading. These
are outlined in the next two subsections.
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4.1.1 Pros

• Instructor grading time is usually reduced (see Table 3). The benefit is
primarily due to spending less time assigning partial credit on program-
ming tasks, with negligible benefit for short-answer response questions.
The benefit is enhanced by eliminating the incentive for students to turn
in incorrect work.

• Instructors are motivated to grade assignments quickly.

• Students learn the material better. We have only anecdotal support for
this claim, but it seems especially true for low to middle performing
students who are forced to revisit and fix incorrect submissions.

• Low performing students are better able to self-assess their performance.
A student who receives a score of 60% on a traditionally graded assign-
ment might feel they are “passing”, even though they are positioned to
perform poorly on an exam, while a student receiving zeros on assign-
ments in specifications grading is motivated to revisit and correct their
mistakes.

• Students learn that taking time to ensure that their work is correct will
actually save them time in the end.

4.1.2 Cons

• Resubmissions require more grading sessions, and grade turnaround time
should be short to be most effective. The unpredictable nature of resub-
missions can be burdensome for instructors. Specifications that include
programming practices or checking for plagiarism may require closer in-
spection of the code, limiting the time saving benefits.

• Students can feel frustrated that their grade of zero does not reflect how
close they were to a correct solution or their effort.

• A backlog of assignments to resubmit, along with new assignments, can
become overwhelming for students. A backlog can be exacerbated if the
instructor does not provide fast turnaround on grading.

• Time spent by students correcting previous submissions could be spent
on additional assignments instead.

• Instructors may be reluctant to review assignment solutions in class if
some students are still working on resubmissions.
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The pros and cons are interrelated. For example, specifications grading works
best when feedback is timely, which encourages instructors to grade work
promptly. However, this increases the burden on instructors, undermining
the grading time saving benefits. In the student perception survey, students
were given the opportunity to provide comments. The majority of negative
comments were related to instructors needing to grade assignments quickly
and assignments piling up. From the instructor perspective, author Sanft par-
ticularly disliked the unpredictable nature of grading resubmissions and the
feeling that grading was always on his to-do list.

4.2 Implementation Details to Consider

When considering implementing specifications grading, there are several de-
tails to consider. In “standard” specifications grading, final letter grades are
determined by bundles of assignments where students may need to complete,
say, the first seven assignments to receive a grade of “C” and ten assignments
to receive an “A”. This may work well in introductory programming courses.
Bundles also can be beneficial for top students who can be pushed with a set of
more challenging assignments. However, we prefer the modified specifications
grading scheme presented here, in part, because it reduces the incentive for
academic dishonesty (e.g. plagiarism). By having traditional exams that have
high weight in the final grade determination, the grade benefits of cheating on
an assignment should be smaller than the negative effect on the exam grade
from not learning the material. Assignments were given weights ranging from
15% to 30% in the five courses in this study. Top students can still be chal-
lenged by providing some difficult problems on the exams and/or by offering
additional “stretch” assignments as extra credit.

In modified specifications grading, instructors can also consider the details
of assignment resubmissions and regrading. In many implementations of spec-
ifications grading, students are issued or may earn “tokens” which they can
spend to resubmit unsatisfactory assignments. Using tokens can reduce the
number of resubmissions and, hence, grading time. This can be used with or
without a grade penalty for resubmissions. A policy to earn tokens can also
serve to motivate top students who might compete to earn the most tokens [4].
We did not use tokens, but grading turnaround time delays and diminishing
returns of the 10% grade penalty naturally limited the number of resubmis-
sions (see Table 2). However, it may be beneficial to have a grading policy
that explicitly states when grading sessions will happen. An example pol-
icy could be that resubmission grading sessions will be done on Mondays, so
any resubmission submitted by Monday at 8:00am will be graded on Monday,
while anything after that will be graded the following Monday. An explicit pol-
icy can set student expectations appropriately and make resubmission grading
more predictable for instructors.
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The amount of feedback to give when grading assignments is also a con-
sideration. Author Sanft tended to give less feedback in specifications grading
compared to traditional grading. This encourages students to figure out the
errors themselves or contact the instructor via email or office hours. Students
who follow up via email or office hour visits tend to benefit from these interac-
tions, however, this strategy might benefit certain types of students, i.e. those
students who are comfortable contacting the instructor, over others. Author
Whitley tended to give equivalent feedback in specifications grading and tra-
ditional grading. Though this limits the grading time savings somewhat, as he
put it “[specifications grading] eases the mental burden of grading...it allows
me to focus on the problem [the student is having] rather than on how many
points to take off”.

5 Conclusions

The experience of using modified specifications grading in five undergraduate
computer science courses over four semesters has been largely positive. The
grading scheme featured pass/resubmit grading of assignments, with a 10%
penalty for each resubmission after an initial deadline. The remainder of the
courses were structured traditionally, with relatively large weights on exams in
the final grade calculations.

Allowing students to resubmit assignments leads to unpredictability in the
amount of grading that instructors face. However, this is offset by reduced
grading time per submission. Time savings accrue primarily from the simple
pass/fail grading rather than spending time determining the amount of partial
credit. The unpredictability in grading assignment resubmissions can be miti-
gated by an explicit policy stating the frequency at which grading sessions will
occur.

Beyond reducing grading time, the most important benefit of specifications
grading is that it improves student outcomes. While this is difficult to quantify
objectively, our experience is that pass/resubmit grading encourages low to
middle performing students to spend more time engaging with the material by
revisiting and correcting their own mistakes. This anecdotal experience agrees
with the results of a small student perception survey where students were all
neutral or agreed with the statement that specifications grading helped them
learn the material better than traditional grading. Furthermore, specifications
grading reinforces in students the important lesson that taking the time to
ensure their work is correct is worthwhile and will actually save them time in
the end.

The modified specifications grading scheme presented here can be utilized
throughout the computer science curriculum. In introductory courses, assign-

44



ment specifications can be given as an explicit checklist, effectively allowing stu-
dents to self-grade their assignments. In upper level courses, specifications can
be higher-level, forcing students to identify and test the edge and corner cases
themselves. Specifications grading is perhaps most challenging for instructors
and students at the intermediate level. In this study, the Data Structures gate-
way course featured the highest levels of assignment resubmissions, meaning
students were initially submitting incorrect work and instructors were doing
more grading. This should be viewed as part of the learning process; by the
end of the semester nearly all students who remained in the course were able to
satisfy the course learning objectives. Our experience across five courses sug-
gests that modified specifications grading is an appealing option for computer
science courses.
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Abstract
Cross-cultural interactions are increasingly important and encompass

many types of activities including recreational, educational, financial,
and scientific. Exchange of ideas during these activities is often hindered
by the inability of those involved to understand diverse written or verbal
communication. Language acquisition is the process through which lan-
guages are learned and mastering vocabulary is the foundation of that
process. However, techniques employed when teaching vocabulary often
consist of exercises that are inadequate substitutes for meaningful and
contextual interaction in the target language. This paper presents a novel
system that utilizes real-time object recognition and game play to pro-
vide a high level of interaction with the surrounding environment during
vocabulary acquisition. The system provides immediate feedback with
either a structured or unstructured approach and supports multiple lan-
guages. We conclude with a discussion of the strengths and weaknesses
of the system and areas of future work, all based on the cross-disciplinary
perspectives of the authors.
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1 Introduction
Interactions spanning multiple cultures and geographical locations are becom-
ing increasingly common. The inability to express or perceive ideas during
these interactions can cause a host of problems. For example, children may be
kept from making academic progress in a new country, business leaders may
find expansion into new markets more difficult, and research collaborations
could take longer to find solutions to important problems.

One of the primary ways of bridging intercultural communication gaps is
through the learning of other languages, a process known as language acqui-
sition. While virtually everyone is able to communicate in his or her native
language (known as L1) after just a few short years of life, most people find
it extremely difficult to master a second language (known as L2) outside of
the full-immersion experience, and this difficulty increases substantially with
age. Vocabulary is the foundation of all language acquisition, and without it,
nothing meaningful can be understood or communicated [7]. It follows that
new methods of learning vocabulary that increase interactive and contextual
interactions with the L2 lexicon can speed and deepen language learning [11].

Mobile devices are now ubiquitous and provide a platform for making lan-
guage acquisition more interactive and contextual. Mobile technology users
are not only comfortable using their devices to learn, but increasingly expect
it. Mobile devices can provide students a way to interact with their immedi-
ate surroundings, making abstract ideas more concrete. Mobility also provides
instructors the flexibility of accommodating students with various schedules,
learning speeds, and physical locations.

We present Vocabulo, a novel mobile application that supports interactive
learning in the context of the learner’s current surroundings. Vocabulo differs
from other mobile vocabulary learning applications by smoothly integrating:

• real-time object recognition and label translation;

• immediate feedback on vocabulary recall ability;

• creation, modification, and utilization of target word lists corresponding
to the user’s environment; and

• support of multiple languages.

The paper is organized as follows. First, we present background informa-
tion on vocabulary instruction including the basics of vocabulary acquisition
pedagogy and relevant computer use. We next describe both the system design
and the user experience. The strengths and limitations of our work are then
discussed. Finally, we conclude with future work.
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2 Background

Language learning methodologies have a rich history spanning millennia. The
techniques employed have continuously evolved as the specific needs of the
learners have changed. Current pedagogy is nothing near homogeneous and is
influenced by a variety of philosophies. However, all recent attempts at finding
suitable learning tasks integrate computer technology.

2.1 Pedagogy for Vocabulary Acquisition

Strategies for building L2 vocabulary span a wide variety of approaches. Schmitt
[11] reports that formal vocabulary instruction goes back at least to the sec-
ond century BC in Greek and Roman societies. More recently, the Grammar-
Translation method was the guiding philosophy during the nineteenth century
and focused on the analysis and translation of (usually ancient) texts rather
than on practical, conversational use. The Direct Method followed and favored
realistic exposure to the new language. This technique shunned irrelevant
translation exercises, but it failed to take into account the important differences
between L1 and L2 acquisition. Later approaches included the Audiolingual
Method and the now nearly ubiquitous Communicative Approach which, like
earlier approaches, have their own preferred strategies and practices regarding
vocabulary building. The fact that all these modern methodologies still co-
exist in formal instruction and continually compete with an onslaught of new
products claiming to make language learning painless lends credence to the
widespread belief among teachers that no single methodology is intrinsically
better than others in all situations [8].

The lack of a single, proven method for L2 vocabulary acquisition makes
defining a specific suite of tasks for student completion difficult. Instead, in-
structors may choose to rely on guiding principles when designing tasks. One
of the most prominent frameworks specifically for guiding task development
during vocabulary acquisition was developed by I.S.P. Nation [9]. Nation pro-
poses a framework consisting of three processes in recalling vocabulary. The
first step is noticing. Noticing is the acknowledgement by the learner that a
word is important in the language. Motivation and interest are important dur-
ing this phase. A definition and translation in the L1 language are common
characteristics of noticing which often encompasses supporting tasks such as
deliberately studying a word, guessing a word’s meaning from context, or hav-
ing a word explained. Retrieval is the next step and often requires repetition.
The third step is creative use or generative use where there are encounters with
target words in varying contexts and alternatives to previously learned mean-
ings. There are many degrees of generative use and developing a classification
system that appropriately conveys the level of generation is difficult and an
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area of ongoing research.

2.2 Computerized Vocabulary Acquisition
Since the 1990s, the use of computer technology for L2 vocabulary building has
increased dramatically such that now virtually every foreign language textbook
includes computer-based supplements. The most common of these are simple,
two-sided online flashcards with audio pronunciation for the L2 terms. The
inadequacies of these basic tools are overcome by web applications like Quizlet
[4] which allow instructors and students to build their own vocabulary lists and
then quiz themselves. A few of these employ artificial intelligence to re-quiz
a term at changing intervals, based on an individual’s quiz results with that
term. This technique, commonly referred to as spaced repetition, is cited by
Nation [9] as highly effective.

The use of more sophisticated artificial intelligence in L2 vocabulary build-
ing applications has only recently become possible, and at the time of this writ-
ing, there are no widely available applications that incorporate high-level ar-
tificial intelligence techniques such as the instant classification and translation
of objects captured by mobile video. One mobile application that approaches
the capabilities of Vocabulo is a system announced by Microsoft in 2019 called
Read My World [10] which is still being developed and tested. According to
the press release, the system allows learners of English to take pictures, after
which the spelling and the pronunciation of objects recognized in the image
are provided. The application then gives the user the opportunity to store the
image for later review in one of the three provided games. The application
also supports instantaneous translations and pronunciations of written text, a
feature already available in a host of cloud-based machine learning platforms.

Read My World [10] and the system presented here both incorporate objects
recognized in the user’s surrounding environment, use game play mechanics as
a learning tool, and make extensive use of cloud services and machine learning
APIs. However, our system and Read My World have important differences.
The two frameworks differ in target audience, the time and type of feedback,
the space needed for asset storage, the potential involvement of an instructor,
and the specific platforms used. A more detailed description of Vocabulo’s
features will be provided next.

3 System Design
Vocabulo utilizes real-time object detection to provide interaction with the
learner’s environment and immediate feedback during language acquisition.
The user focuses the camera on an object of interest. In the simplest mode,
an instantaneous translation of the object label is given. The user can also
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choose a quiz mode that tests the learner on the translation of objects as they
are encountered. Testing can take the form of either a multiple choice or fill-
in-the-blank question. The sequence of events for the quiz mode is shown in
Figure 1(a). In the unstructured approach, questions are based on any object
of interest in the immediate surroundings. The structured approach uses an
embedded text file containing a list of target objects to be found, recognized
by the application, and reviewed. Storing a text file of target words instead of
individual images provides greater flexibility and preserves storage space. The
list of target objects can be created by either the learner or deployed by an
instructor, an important characteristic of well-designed vocabulary programs
[9].

Vocabulo consists of a main application, object capture, object recognition,
and label translation. The application utilizes a mix of on-device and off-
device resources which provides real-time access to popular third-party services.
The system’s general structure is illustrated in Figure 1(b) and consists of the
following components:

• Main application. The main application is currently designed for An-
droid devices, implemented in the Kotlin language [2], and utilizes several
third-party services. After login, the main application is responsible for
managing user options, directing data flow to and from camera capture
and translation services, and controlling the scavenger hunt.

• Object capture. User experience depends on the application to recog-
nize objects of interest for which the translation or review of the English
label is desired. The object of interest is chosen by centering the object
within the camera’s focus.

• Object recognition. The application uses the on-device version of Fire-
base ML Kit [3] to provide the English label of the captured object. The
on-device version of Firebase ML Kit eliminates potential delay from ac-
cessing cloud-based object recognition services and provides flexibility to
add more complex, customized TensorFlow Lite [5] models if needed.

• Label translation. After capture and recognition, an object label is
provided. The label is sent to Google Translate [1] which returns the L2
version of the word. The user can also retrieve the audio representation
of the object using on-device text-to-speech.

4 User Experience
Vocabulo requires logging into the system with a Gmail account. Once logged
in, the user is presented with several options, the most direct being immediate
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Figure 1: Vocabulo’s general structure. (a) The user centers the camera on
an object of interest which is recognized, given a label, and translated to the
chosen language. In the simplest mode, the translation is immediately shown.
In the quiz mode, the translation is used to form a multiple choice or fill-
in-the-blank question. (b) The main application is responsible for managing
data traffic and game play. An object of focus is captured by the camera
and on-device machine learning recognizes and labels the object. The label is
translated off-device. On-device text-to-speech translates the object label text
to audio in the target language.

translation of surrounding objects (Figure 2). From the main screen, a scav-
enger hunt may be started, a list of target objects created or edited, and the
language changed. Currently, the application supports English speakers who
want to learn Spanish, German, French, Japanese, and Italian. The quiz for-
mat and characteristics of the audio translation can be changed in the settings
menu.

4.1 Unstructured Scavenger Hunt

The scavenger hunt requires the student to find an instance of an object in their
surrounding environment. In the unstructured approach, users gain points for
knowing the correct translation of any object labeled by the system. The object
of interest is simply centered in the camera’s field of view and then a button
in the lower right corner is selected to notify the application that the user has
chosen an object (Figure 3(a)).

Users are immediately quizzed on their recall of the recognized object. Af-
ter the object is recognized, Vocabulo sends the original label for the object
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Figure 2: (a) Vocabulo’s main screen. (b) and (c) The unstructured approach
consists of real-time object recognition and real time translation.

of interest to Google Translate [1] and the L2 label is returned. If the mul-
tiple choice format is selected (Figure 3(b)), random words are selected from
a dictionary of words stored as a text file. The same translation process just
described is followed for the randomly selected words. The translations of the
chosen object and the random words are merged to create a quiz question.

Beside each word in the question, there is a speaker icon. When the speaker
icon is selected, the pronunciation in the target language is produced. Choosing
the correct translation results in a point being added to the running total. If
the fill-in-the-blank option is chosen (Figure 3(c)), the learner must enter the
word solely from recall. Since this is a more advanced version of recall, two
points are added to the user score.

4.2 Structured Scavenger Hunt

An instructor or the student may wish to target a more specific subset of words.
To create a target word list (separate from the multiple choice dictionary), the
user selects the scavenger hunt option in the main menu followed by the Create
Scavenger Hunt option. Users can then enter a filename for a text file that
will be stored on the device and contains the target words. The label for an
object is added to the list by selecting a button in the lower right corner when
the object of interest is recognized by the application and the label of interest
appears on the display. Additional objects can be added to the list at a later
time by selecting Edit Scavenger Hunt and entering the filename of the text
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Figure 3: (a) The user can choose the object currently in camera focus by
tapping the blue button on the bottom right. (b) Multiple choice quiz question
with optional audio translation. (c) Fill-in-the-blank where the user generates
the entire word. (d) Settings include speed, pitch, and quiz type. The current
search objective in a structured approach is shown in the bottom left.

file containing the target words. Multiple word lists can be stored on the same
device resulting in flexibility in both the difficulty of game play and variation
in languages.

To select a particular list for the scavenger hunt, the user chooses Start
Scavenger Hunt and then enters the appropriate file name. The next target
word is displayed on the settings screen which can be visited at any time during
game play. When the current target is correctly identified, the next word to
be found is updated and displayed for the learner (bottom left in Figure 3(d)).

4.3 Other Settings and Options

There are many options available in Vocabulo to facilitate both game play and
learning in addition to those mentioned above (Figure 3(d)). Users can seam-
lessly move between the multiple choice and fill-in-the-blank question formats.
There are also options for adjusting the audio translation pitch and speed.
Scores are kept per language and users have the ability to reset all scores.
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5 Evaluation and Discussion
The authors include two students from a senior capstone course in computer
science, a computer science faculty member, and a world languages faculty
member. The design was initially conceived by the computer science faculty
member and implemented by the senior capstone students. The world lan-
guages faculty member provided expertise in language acquisition pedagogy.

Our system’s design is guided by widely accepted pedagogical standards for
language learning, specifically the framework proposed by Nation [9]. Because
the user is presented with and focuses on one recognized object at a time, our
system encourages noticing, which is further enhanced if game play is guided by
a list of target words deemed important by an instructor. Vocabulo supports
retrieval by providing two quiz format types. Its game feature, the scavenger
hunt, is one of the fundamental activities of the Communicative Approach,
with the key difference that, in the traditional classroom setting, the infor-
mation that the students are trying to find in their environment (from other
students), is strictly audio, whereas with Vocabulo it is both audio and visual.
This sensory combination increases retention [6] and therefore contributes to
the student’s generative use of the term in future situations. In the system
presented here, an entire scene is presented to a user in which an object of
focus can be labeled, translated, and reviewed in real-time.

The primary drawback in the current system is the level of granularity
provided by the artificial intelligence for recognizing complex objects, abstract
ideas, or instances of generative use [9]. This is especially problematic in those
instances where action, judgement, and context are central to labeling and
represented in language at least partly by adjectives, verbs, a broad under-
standing of the relationships among multiple objects, and language nuances,
such as gender. Recognition of complex ideas by computational methods are
often investigated in areas of research specific to a given subarea of recognition
and labeling. Simultaneous utilization of these techniques in a single mobile
application having objectives other than labeling would require not only ex-
tensive future work for this application but would also require advances in
streamlining and integrating multiple state-of-the-art techniques.

Improving the quality of the underlying artificial intelligence for the lan-
guage complexities and nuances listed above is a long-term goal, but there are
several additions to the current system that would ease adoption into the class-
room in the short-term. The application needs to be accessible by operating
systems other than Android. Implementation as a web application presents a
more manageable approach but may increase latency for services now provided
on the device. We plan to evaluate this tradeoff in the future. We also want
to strengthen the link between specific application tools and language acqui-
sition pedagogy. Specifically, increasing the functionality for spaced repetition
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exercises that map directly to words for which a student needs more practice
and deepening the integration with formal assessment, especially of correct
pronunciation, are top priorities.

6 Conclusion
This paper presents a novel framework for integrating object detection, trans-
lation services, and user interaction. Our framework offers several advantages
to other current systems including immediate feedback, decreased storage re-
quirements, and potential instructor involvement. In the future, we want to
perform a comprehensive user study, increase the suite of teaching tools, and
continually integrate more advanced artificial intelligence techniques.
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Abstract
Given a black-and-white photograph, recently proposed methods can

generate a single plausible colorization. However, generated colorizations
are often biased toward average colors, creating outputs that are muted
and unnatural looking. Our proposed model learns to generate multiple
diverse colorizations for a given grayscale input. Multiple outputs allow
each colorization to appear more vibrant and realistic. The final system
is implemented as a Generative Adversarial Network (GAN) and incor-
porates a loss function that encourages diversity across multiple outputs.
Experiments with datasets of indoor and outdoor photographs support
the effectiveness of our approach qualitatively, and a study with human
participants indicates that colorizations generated by our method are
perceived as realistic by human observers.

1 Introduction and Related Work
The goal of image colorization is to generate a color image given a black-
and-white, or grayscale, input image. The ability to algorithmically generate
such a colorization is highly desirable because of how time-consuming this
process is when performed manually by skilled artists. Given the number of
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Figure 1: Example colorizations generated by our model for a grayscale input.

historical grayscale photos, it would take a very long time to color them all.
The Library of Congress has over 8,500 photographs of the Civil War alone. If
an artist colored one image per day, it would take nearly 25 years to colorize this
collection manually, and there are of course many more historical photographs
and even films that might benefit from colorization.

One factor that makes colorization such a challenging problem is that, for
any gray pixel in the input, there are many possible colors consistent with it.
For example, a gray balloon could have originally been red or blue or some
other color, even, potentially, gray. Thus, the goal of colorization is not to
generate the correct colors for a given grayscale input, but to generate plausible
colors. Figure 1 shows several sample colorizations generated by our proposed
approach for a grayscale hotel room input photograph. This type of problem
poses difficulties for a traditional neural network-based approach seeking to
minimize the difference between a predicted colorization and a known ground-
truth color image. Such a network would tend to generate average colors,
typically producing muted, brown-tinted outputs [6].

Automatic image colorization is a relatively recent area of study, with most
work occurring in the last few years. Early efforts into scribble-based coloriza-
tion [9] require human interaction, while transfer-based colorization [2] requires
a reference color image. The most recent work is fully automatic and typically
relies on deep learning-based approaches to train a neural network [4]. These
approaches tend to suffer from desaturated colors. Zhang et al. directly ad-
dresses the inherent multi-modality of the colorization problem by generating a
probability distribution over a discretized color space [12]; while this approach
can predict realistic colorizations (and can be regarded as the current state of
the art in colorization), it can suffer from unrealistic color variations in some
instances and is limited to a single output for a given grayscale input.

A recently developed type of neural network, the generative adversarial
network (GAN) [5], can generate multiple outputs for a given input. This
approach is used in the Pix2Pix model, which we adapt in this work, for image-
to-image translation, including predicting what a daytime photo would look
like if it were taken at night [7]. GAN models include a stochastic component
to allow them to generate random samples from a learned distribution, e.g.,
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Figure 2: In our model, the generator network produces colorizations given
grayscale input. The discriminator network predicts whether it has received
real or generated input. The two networks are trained alternately so that they
improve together over time.

the distribution of valid colorizations for a given grayscale image. However, in
practice, GANs often suffer from mode collapse [10], where instead of sampling
from across the range of a distribution, they are able to generate output only
in a very limited range. For example, a GAN model designed to produce
colorizations might always color balloons red, ignoring other modes in the color
distribution for blue or other plausible colors.

Our proposed colorization model, based on a GAN architecture, is designed
to address the issue of mode collapse by explicitly generating multiple coloriza-
tions for a given grayscale input, as shown in Figure 1. During the training
process, each output learns to cover a different mode in the distribution of
plausible colorizations. In the next section, we will describe the network ar-
chitecture behind our model and the custom loss function that enables it to
produce a variety of diverse outputs. In Section 3, we will show example col-
orizations produced using our method and discuss a user study designed to
assess how well human observers are able to distinguish between generated
and real color images. Section 4 concludes the paper and suggests directions
for future work.

2 Method
As is common in other recent work on colorization [12, 1], we adopt the CIE
LAB color space, which represents color images with three channels: L, the
lightness, A, the green and red, and B, the blue and yellow colors in an image.
LAB has the helpful property that the L channel is equivalent to the grayscale
version of the color image. To train a model to produce colorizations, we use
a set of N color images, S = {I1, I2, ..., IN}, where, for each image, the L
channel is the input and the A and B channels are the ground-truth, desired
output. We represent the L channel as s ∈ RH×W×1 and the A and B channels
together as u ∈ RH×W×2, where H and W are the image dimensions.
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Figure 3: A grayscale image is input into the generator network, which pro-
duces K colorizations. The network is based on the Pix2Pix architecture [7],
consisting of a series of downsampling and upsampling convolutional layers.

2.1 Model Architecture
Our proposed approach is based on a conditional generative adversarial net-
work (CGAN), illustrated in Figure 2. A CGAN consists of two separate neural
network models: a generator, G, and a discriminator, D. The generator learns
a mapping G : s → �u, where �u is a generated colorization. The goal of the
generator is to fool the discriminator network, which takes as input either a
generated colorization or a real color image and attempts to predict whether
the input is real or fake. Training proceeds by alternating between the two
models, with each model improving over time. Ultimately, after training, only
the generator network is retained to produce future colorizations. The gener-
ator network architecture, based on Pix2Pix [7], is depicted in Figure 3. The
discriminator architecture, not shown due to space constraints, is similar to
the first 5 layers of the generator.

The objective of a CGAN can be expressed as follows [7]:

LCGAN (G,D) = EX,Y [HQ;D(X,Y )] + EX [HQ;(1−D(X,G(X)))] (1)

During the adversarial training process, the generator attempts to minimize
this objective while the discriminator attempts alternately to maximize it over
the set of training images, S, so that at convergence, the optimal generator is
given by [7]

G∗ = �`;KBMGK�tDLCGAN (G,D) (2)
Previous work [10] has found it advantageous to incorporate a second term

in the network loss function to encourage the generator to produce outputs
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similar to the ground truth input. For example, we could represent the summed
absolute error (SAE) between the pixel values of a predicted colorization, �u,
and a known, ground-truth colorization, u, as

LSAE(u, �u) =
∑

h,w,c

∣∣∣uh,w,c − �uh,w,c

∣∣∣ (3)

where h, w, and c index the height, width, and color channel (A or B),
respectively, of each pixel in the image.

For our method, rather than a single prediction, we would like to generate a
diverse set of K plausible outputs. We adapt the hindsight loss from Chen and
Koltun [3], which computes the SAE between the single output most similar
to the ground truth:

LH(u, �u) = KBM
k

∑

h,w,c

∣∣∣uh,w,c,k − �uh,w,c,k

∣∣∣ (4)

where k indexes over K outputs. The hindsight loss includes, for a given
training example, only the output most similar to the ground truth in the
loss calculation, encouraging specialization and diversity among the outputs.
Adding this term into Equation 2 gives us our final objective function:

Gopt = �`;KBMGK�tDLCGAN (G,D) + LH(G) (5)

In the following section, we show a variety of colorizations produced by
models trained to minimize this loss function.

3 Results
To evaluate our approach, we train two different colorization models, one for
indoor and one for outdoor scenes, using two different datasets. The Large
Scale Scene Understanding (LSUN) dataset contains images of a variety of
scenes, from bridges to classrooms to dining rooms [11]. We select a subset
of LSUN’s bedroom category to represent indoor scenes, using 50,000 images
split into 49,000 for training and 1,000 for testing. The Places2 dataset contains
an even broader variety of scenes with over 434 classes [13]. We sampled 5,000
images from each of the following categories: badlands, butte, canyon, cliff,
field-wild, forest-broadleaf, forest-path, lake-natural, mountain, and tundra.
From each category, we used 4,900 images for training and 100 for testing;
resulting in 49,000 training and 1,000 test images. While images from the
Places2 dataset all have a resolution of 256x256, LSUN images are a variety of
sizes. Because the resolution of images input to our model must be consistent,
the LSUN images are cropped around the center to ensure a size of 256x256.
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The models are implemented using TensorFlow. (Code is available at
https://github.com/drew-bowman/Colorization-CGAN.) Images are pre-
processed by converting from RGB to LAB and normalizing values to [−1 : 1].
To prevent overfitting during training, data augmentation is performed with
small random rotations and translations (±5W). To learn the optimal parame-
ters for the two networks, we alternate training one step of gradient descent for
the discriminator and the generator on each minibatch of 6 training examples
using the ADAM optimizer with learning rate 2e-4 over 100 epochs. We set
the hyperparameter, K, to be 5, observing empirically that producing 5 out-
puts results in a variety of diverse outputs, while higher values of K produce
some very similar outputs. Training takes approximately 2 days on a Tesla
K40 GPU, while generating K colorizations for a given input using a trained
model takes 11.5 milliseconds on average.

Figure 4 shows several examples of colorizations generated by our outdoor
and indoor models for gray input images taken from the test sets (i.e., images
not used in training). For each example, the original color image is shown,
along with the grayscale version used as input to the model. For comparison,
we include a colorization produced by the method of Zhang et al. [12], the
current state of the art in colorization, followed by four colorizations produced
by our model. We observe that our colorizations exhibit both realistic colors
and diversity. More diversity is evident in the indoor scenes than the outdoor
scenes, which seems reasonable since there is greater diversity in the indoor
scenes used for training.

While our approach tends to produce convincing colorizations, not all re-
sults are plausible. Figure 5 shows several representative failure cases. The
first two examples include unrealistic artifacts that occasionally appear in gen-
erated images. The next two examples show images containing people which
were not successfully colored by the model. The last example shows splotchy
color changes that are uncharacteristic of natural images. Larger datasets of
training images would help the model learn to overcome these issues.

3.1 User Evaluation

Because our goal is to produce a variety of plausible colorizations, rather than
an exact replica of a particular input, it is difficult to quantify the results. We
conducted a user study to measure how convincing generated colorizations ap-
pear to a human observer. We administered a survey consisting of 25 real color
images and 25 colorized images asking participants to determine whether each
image was real or artificially colored. Images were selected randomly from the
test datasets for inclusion. For the generated images, we selected for inclusion
the best scoring from among the K colorizations based on calibrated scores
from our discriminator model. Among the randomly selected colorizations
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Figure 4: Each row shows an example color image, the grayscale version, the
colorized version using the method of Zhang et al.[12], and multiple coloriza-
tions produced by our approach. The top four rows were colorized by a model
trained on outdoor scenes, while the bottom four rows were colorized by a
model trained on bedroom scenes.

63



Figure 5: Generated images occasionally contain unrealistic artifacts, unnatu-
ral colorings, or unlikely color splotches.

Figure 6: Images from the survey with the highest false positive (identifying a
colorized image as real) and highest false negative (identifying a real image as
colorized) rates are shown on the top and bottom rows, respectively.

were obvious artificial examples (e.g., the first image from Figure 5). This
enabled us to perform a quality control step by discarding survey responses
where these obvious fake colorizations were selected as real color images by a
respondent. We collected 54 survey responses from undergraduate computer
science students and discarded 9 based on this criterion.

Overall, respondents identified colorized images as real 52% of the time,
suggesting that colorizations were convincing enough to reduce selection to
random guessing. Supporting this finding, real images were identified as artifi-
cial 30% of the time. Figure 6 shows the images that were most often classified
incorrectly. It appears that respondents suspected that more colorful real im-
ages were likely to be artificial, while more muted colorized images were likely
to be real.

We also apply our model, trained on outdoor images, to historical pho-
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Figure 7: Example colorizations produced by our approach given input black-
and-white photographs taken by Henry William Jackson in the 19th century [8].

tographs taken in the 19th century by Henry William Jackson [8]. Figure 7
shows several examples of the original black-and-white photos and a selected
colorization generated by our model. As is evident, the colorizations are real-
istic, capturing plausible colors for these nature scenes.

4 Conclusions and Future Work
This paper presents an approach to automatic image colorization using a gener-
ative adversarial network. We incorporate a loss term in the learning process to
encourage the model to produce diverse colorizations. Our approach overcomes
a weakness of some prior work to generate unrealistic, "average" colorizations
as well as a common issue with GANs, mode collapse, by explicitly generating
a variety of different colorizations. Experiments with datasets of indoor and
outdoor photographs demonstrate qualitatively that our method produces var-
ied realistic colorizations, and the results of a user study support these findings.
We apply our trained outdoor model to historical black-and-white nature pho-
tographs and show realistic colorizations. Our models, created with a machine
learning approach, are limited by the datasets used to train them. For the
future, we would like to extend the scope of the datasets to improve the ability
of a trained model to colorize more diverse scenes. We are also planning to
explore other machine learning approaches, such as mixture density networks,
that allow for more explicit learning of the parameters of the color distribution
within an image.
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Abstract
A flipped classroom approach can solidify AI ethics lessons in a few

sessions. The approach described here introduces the Montreal Decla-
ration of Responsible AI Development then asks students to apply it to
a few case studies. Students post threads and responses to an on-line
discussion board prior to a class session where student groups explore
the cases in depth. Feedback and grades encourage high student en-
gagement. Instructors could integrate similar AI ethics modules into
any class where students have a minimal conceptual understanding of
machine learning or AI. The learning objectives do not depend on the
cases selected so new articles would be used over time to ensure student
engagement. Instructors can easily modify the approach for use in an
on-line setting.

1 Introduction
Artificial Intelligence (AI) and Machine Learning (ML) based technologies play
a crucial role in how we work, learn, communicate, and participate in society.
As with many major scientific and technological breakthroughs, the use of
AI and ML techniques has profound social and ethical implications. AI and
ML technologies may reinforce racial and gender biases, perpetuate economic
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the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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inequality, and violate privacy rights. These systems can target user beliefs
and psychological traits with minimal transparency and accountability while
eroding societal trust. Many academic, government, and industry efforts to
develop principles for developing ethical AI have stressed the need for education
among programmers, users and managers [8]. We use one broad-based effort,
the Montreal Declaration for a Responsible Development of AI, as a framework
for ethical analysis in the course modules described here [1].

Some universities have incorporated ethics contents into their AI/ML cur-
ricula specifically targeted toward the CS/CE majors [8]. While ethical training
is essential for future developers of AI-enabled products, it is equally important
for general practitioners and users of such systems. As educators, we need to
weave such social and ethical considerations across all majors in all disciplines.
We want to make sure these future practitioners can explore the ways AI/ML
technology can have an impact on business stakeholders and their communities.

Instructors occasionally embed ethics in more technical curricula [3] [10] [6]
[7], however, these courses are often not available to all university students.
Another approach is to embed AI ethical issues into discipline-specific courses,
ideally those targeting large groups of students or all students of a specific
major. This ensures the ethical training is relevant but often requires train-
ing instructors in AI and ML. We used the latter approach. An instructor
embedded an ethics module into a Business Analytics course required for all
business-related majors. The approach could easily be adapted into many other
disciplines that teach modeling or computing techniques.

Incorporating AI/ML related ethical training using this approach involves
1) teaching students some necessary ethical guidelines in a non-technical way
and 2) providing them the opportunity to apply those guidelines to an AI-
enabled situation, identify ethical issues, and assess potential trade-offs and
solutions. In this paper, we present a novel modular approach for teaching
societal and ethical implications of AI systems to non-majors with very limited
prior technical and programming experiences. Ultimately, the goal is for stu-
dents to recognize and describe ethical issues in real-world AI-based systems
affecting their daily lives.

The AI ethics module presented in Section 2 introduces students to a
principles-based framework developed in Dec 2018 by a group affiliated with
the University of Montreal [1]. This framework describes 10 principles for re-
sponsible AI development. Students apply the ten principles to assess ethical
problems with an AI/ML case-study in a flipped-classroom format [9] that
facilitates collaborative learning. Students create and respond to threads in
an on-line discussion forum before working in classroom-based groups to make
short presentations on these topics. The instructor built two such case-studies
by posting engaging questions in the forum and providing opportunities for
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learners to formulate answers (or sometimes to come up with inquisitive ques-
tions) independently and collectively.

Our empirical study is based on student performance and self-reflection
survey data. They reveal that the on-line discussions act as catalysts to pro-
ductive in-class conversations, persuasive arguments, and diverse viewpoints.
These increase student engagement and academic performance. Our goal is to
create a repository of case studies along with engaging questions and discussion
activities.

The flipped-classroom approach could easily be adapted to an entirely vir-
tual environment. Therefore, we anticipate that both the flipped-classroom
modular approach and the repository of case studies will be useful in both
traditional and virtual classrooms.

2 AI Ethics Module

We describe a modular, flipped-classroom approach to embedding AI Ethics
instruction into a Business Analytics course in this section. The approach is
well suited for courses focusing on modeling, computing or ethical issues in any
discipline and is easily adapted to online learning. In the following subsections,
we present learning outcomes, the flipped-classroom approach, and example
case studies.

2.1 Learning Outcomes

We hope that students will be able to apply AI ethics frameworks to novel
machine learning applications they encounter in their careers. Such frameworks
will help them analyze, describe and suggest remedies for potential ethical
violations. The specific learning outcomes for the presented module are

1. Learn about the Montreal Declaration for Responsible AI guidelines and
apply the guidelines to recognize and describe ethical issues in AI-based
systems. (LO1).

2. Discuss and reason, both alone and in collaboration with others, about
the violation of the guidelines in an AI-enabled case-study and potential
solutions of these violations. (LO2).

3. Gain enhanced awareness of approaches to minimize ethical problems
that can arise in the development and implementation of AI-based sys-
tems. (LO3).
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2.2 Flipped Classroom Approach

We followed a“flipped classroom”approach to teach the AI/ML ethics mod-
ule. As an initial exercise, students read articles summarizing the Montreal
Declaration for the Responsible Development of AI and efforts to build AI
ethics boards. The module then utilizes two 75 minutes class sessions devoted
to applying the framework to two AI-based applications (case study articles).
Optionally, instructors can add more real-world case studies to explore other
AI ethics issues with the Montreal framework.

Before each in-class ethics session, students contribute to an on-line dis-
cussion forum where they apply their knowledge of the ethical framework to
assess a case study article describing an AI/ML application. Instructors as-
sign students into one of two groups: each student in the first group creates a
discussion thread and briefly describes and critically assesses the article based
on engaging questions posed by the instructor. They also submit three ques-
tions or suggestions for in-class discussion. Each student in the second group
then has one extra day to reply to one of the discussion threads created by
a student in the first group. The instructor can reverse the roles of the two
groups in subsequent case studies so each group has a chance to both assess the
articles and respond to other student threads. At this phase, students worked
independently.

The instructor then used the student-posed questions along with others
to develop group discussion topics for an in-class session. Students split into
groups of approximately five students. The instructor assigned each group a
topic with a set of questions to orally present before the end of class. The groups
had 15-20 minutes to formulate responses before presenting. Our classes were
small enough to expect each student to contribute orally to the presentation and
to respond to additional questions. Instructors could scale this for large sections
by using parallel sessions supported by teaching assistants (TAs) and multiple
presentation spaces. Instructors can encourage participation by grading each
student’s discussion board response and oral contribution.

2.3 Case Studies

We utilized a case-study based approach to teach students about violations
of ethical principles and possible solutions. In our modular intervention, we
used two case studies based on popular newspaper articles. In this section, we
detail our case studies as a template for use as is, or as inspiration for inclusion
of other such case studies into the module. The first case study used a 2019
NY Times news article [2] detailing the facial recognition and tracking systems
used by the Chinese government to monitor minority Uighur communities in
Kashgar, China.
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Half of the students described the monitoring system from the article, as-
sessed it with the principles from the Montreal Declaration and posed three
questions/topics for class discussion. Remaining students "added value" to
their threads with answers to questions and/or expressing alternate view-
points. Most students believed the Kashgar system violated all ten principles
of the Montreal Declaration. A few questioned the neutrality of the article
and wanted to read other viewpoints on this system. One important benefit
of exposing students to these question/response activities is to allow them to
think critically and independently about source information, ethical issues and
possible solutions.

During the in-class discussion applying the Montreal Declaration principles
to the Kashgar monitoring system, the instructor assigned a few principles for
each group to apply to the AI-based monitoring system. Student participation
was graded on critical analysis. Grades for individuals occasionally varied from
the group.

A second case study given about four weeks after introducing the Montreal
Declaration explored the ethical issues surrounding labeling and categorizing
images. Students assessed Crawford and Paglen’s claim that labeling and
categorizing is inherently political [4]. The article cited ethically problematic
examples from the ImageNet datasets [5]. Subsequently, half of the labels and
categories in the dataset have been deleted.

The roles of the students were reversed from the first exercise above –half
created threads assessing the article and listed three topics for discussion while
the other half responded to those threads. The instructor did not directly
prompt students to use the Montreal Declaration for analysis. Unfortunately,
most students did not choose to use the Montreal Declaration as a framework
for discussing the ethical issues posed by the new case study. With a bit of
instructor prodding during the in-class group presentations, it dawned on a
few students to use the Declaration to describe ethical issues. At this point,
many saw the benefit of the using the principles to inform their analyses.

3 Experimental Evaluation

3.1 Results and Discussion
To evaluate the potential usefulness of the flipped classroom approach to learn-
ing AI ethics, we conducted a pilot study. We hypothesized students in the
Business Analytics class could identify, describe and respond to ethical issues
in AI/ML enabled systems. To test this hypothesis, we assessed the three
learning outcomes (LO1, LO2, LO3) outlined in section 2.1 with student per-
formance data. We also utilized an anonymous student experience survey (IRB
approved) conducted at the end of the semester.
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To evaluate LO1 (competency on the declaration principles and their appli-
cations), we used the student performance data on three ethics related multiple
choice questions (MCQ) utilized in the final course exam. Twenty-five students
enrolled but one student did not do any work. We eliminated that student from
the statistics. Summarized responses from three exam questions are listed in
Table 1. The results show the majority students (83%) were able to grasp
the Montreal Declaration for AI guidelines (Q1.) More than half (54%) of the
students were able to identify the violation of declaration principles in Ama-
zon’s automated firing of warehouse workers, a scenario not discussed in class
(Q2.) Unfortunately, only 29% were able to correctly identify the three issues
requiring removal of half of labels in the ImageNet dataset (Q3.) While 3 of
the top 5 exam performers got the question correct, it was negatively worded
(choose the non-issue) and the correct answer (replace human-generated labels
with machine-generated) was not something discussed in class. The instructor
should reword or replace Q3 in the future. Excluding Q3, about 68 percent of
the students were able to correctly apply the ethical guidelines to recognize and
describe ethical issues in AI-based systems (LO1). This result is consistent with
observations during in-class labeling case study. Without prompting, students
had difficulty applying the Montreal principles to a novel scenario. Perhaps
additional case studies would improve future performance.

Table 1: MCQ Assessment in Final Exam

MCQ Question Learning Objective Correct Responses
(%)

Identify ethical principles from Montreal
Declaration (Q1)

20/24 (83%)

Apply ethical principles to a new situation
(Amazon’s automated firing of warehouse
workers.) (Q2)

13/24 (54%)

Identify issues requiring removal of half of labels in
the ImageNet dataset. (Q3)

7/24 (29%)

We assessed the second learning objective, LO2 (ability to discuss ethical is-
sues in person and in collaboration with others,) by utilizing two on-line discus-
sion forum assignments and two 75-minute in-class group discussions devoted
to discussing ethical issues related to the two case studies discussed earlier.
Figure 1 shows the student performance data for the rubrics (A-F) described
in section 2.3.“N”refers to students who did not submit or were not present.
The surveillance system used in Kashgar, China case study is referenced as
CS1. The image labeling and categorization procedures used for AI training
sets case study is CS2. Most (76-84 percent) of the 24 students posted on the
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Figure 1: Discussion board and in-class group discussion results.

discussion boards prior to the corresponding in-class group discussion sessions.
Higher percentages (84-92%) of students participated in group discussions and
presented responses to questions during class.

Overall, 75-83 percent of the students earned C grades or better on the
discussion board and in class on the two case studies. There was a small im-
provement in engagement on the second case study compared to the first. The
grades on the two case studies made up 6 percent of the student’s final grade
in the course. Those who did not participate in either case study received a
partial letter course grade less than they otherwise would have. The instructor
may have improved engagement with this policy.

The grades of the engaged students also improved on the second study.
Some may have been disappointed with “C”grades on the first case and re-
calibrated their expectations on the required work. Perhaps students learned to
apply the ethical principles better after the first case. Overall, most students
were engaged both in the on-line discussion forums and the in-class group
presentations. Based on these assessments, most students met LO2.

We assessed LO3 (awareness of ethical issues in AI/ML systems) using two
self-satisfaction end-of-course survey questions. Students responded using a
5-point Likert scale. Results are shown in Figure 2.

• Q1: I understand how the data science topics covered in this course could
be utilized for societal good.

• Q2. I can discuss ethical issues surrounding the use of artificial intelli-
gence in a professional setting.
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Figure 2: Student self-satisfaction survey results.

Of 22 questionnaire responses, only about half were confident about their
ability to discuss AI ethical issues in a professional setting. A few more thought
they understood how AI could be used for societal good. Fortunately, only a
few disagreed with these statements. These questions produced more positive
student feedback than 7 of the other 8 questions on the same survey. Most
data science topics covered in the course involved statistical programming and
the use of machine learning software. Based responses to the remaining 8
survey questions, we concluded that students are more confident about their
knowledge of ethics than their ability to use software. Additional case studies
might help more students achieve LO3.

3.2 Instructor Perspective

Based on these two sessions, the instructor thought the“A”students had a firm
grip on the three learning objectives. They would be able to utilize guidelines
in a professional setting to minimize ethical problems that could arise in the
development and implementation of proposed AI systems. All students realized
AI systems can have ethical problems.

Applying the Montreal Declaration to labeling and categorization without
prompting was difficult for students after a month had passed since introducing
the topic. Still, the goal is for students to recognize ethical problems with AI
systems and use the Declaration to help describe these issues. Achieving this
objective would have required at least one more ethical case study for these
students.
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4 Conclusions and Discussion
The flipped classroom used in this study requires students to participate in an
on-line discussion board before attending an in-class session. It is an effective
way to learn AI ethics. This approach allows students to assess AI-based
systems with a set of ethical principles in as few as two in-class sessions. Once
an ethical framework such as the Montreal Declaration for Responsible AI
Development is introduced, applications from the popular media or academic
literature may be assessed.

New applications appear frequently in these outlets and instructors can
substitute them for the Uighur monitoring and labeling cases described above.
One could easily construct cases to achieve the same learning objectives from
descriptions of self-driving cars, social media monitoring, and other topics fre-
quently explored in the popular press. Changing the cases from year to year
limits opportunities for students to inappropriately use the work of others.
Students must engage and add value to the discussion boards and in-class
presentations to achieve the learning outcomes and receive positive instructor
feedback.

The flipped classroom approach can facilitate discussions of AI ethics into
any course. Students needed minimal prior knowledge to analyze the Kashgar
case study. However, students need a conceptual understanding of machine
learning before exploring some ethical issues. Appreciating the ethical issues
involved with ImageNet requires some background in training machines, finding
examples, labeling, modeling and predicting. The ImageNet labeling case can
reinforce student’s conceptual understanding of machine learning, especially in
non-technical courses. Instructors could easily develop similar cases to reinforce
other AI concepts.

The flipped classroom can be easily adapted to on-line learning environ-
ments. On-line instructors could replicate the in-class group discussions and
presentations with the help of a synchronous conferencing tool. Chat facili-
ties with breakout rooms can substitute for in-class group work. A moderator
could replace in-class group presentations with chat responses or video presen-
tations. In an asynchronous on-line environment, student groups could produce
a written response to assigned topics on a discussion forum or similar venue.
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Abstract
A particularly fascinating, but now largely forgotten, episode in com-
puting history was the Japanese Fifth Generation Computing Project
in parallel knowledge-based AI, based on logic programming (LP). In-
corporating this Project into the curriculum (for even just a lecture or
two, or a supplemental reading, in a variety of courses) might motivate a
more lengthy and detailed technical discussion of LP. The logic paradigm,
while out of fashion in the current machine-learning AI environment, still
retains potential as an AI tool. Here we hope in part to illustrate LP’s
techniques and to motivate its inclusion in the CS curriculum.

1 Historical Introduction
In the decade, 1983-1993, Japan was actively pursuing their Fifth Generation
Computing Project (alternatively known as the Fifth Generation Computer
Systems Project, and abbreviated herein as 5Gen). For a variety of reasons in
technology history, this concerted effort of industry, academia, and government,
resulted in considerable anxiety in the U.S. and the West [10]. Briefly, the
project was to produce a pervasive artificial intelligence that, while containing
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a hardware component emphasizing parallelism, was to be primarily software-
based. This itself was striking; the previous four“generations”were hardware-
based (vacuum tube through VLSI microprocessors).

5Gen, however, relied on inference processing using a relatively new comput-
ing paradigm known as logic programming (LP: symbolic logic as an approach
to computation) and its then exemplar language, Prolog (PROgrammable
LOGic). And the intent was for a high-performance personal Prolog machine
with a“beautiful appearance”[16]; the initial vision was that the user would
communicate intelligently with the computer using natural conversational lan-
guage and images. That is, to some extent this vision in the 1980’s contained
the seed of what much later became the smart phone.

The West was caught by surprise with the announcement of 5Gen with its
seeming promise of Japanese domination of yet another industry: computing.
Artificial Intelligence experts Edward Feigenbaum (Turing Award recipient)
and Pamela McCorduck wrote in their 1983 book, The Fifth Generation: AI
and Japan’s Computer Challenge to the World, “We are writing this book

Figure 1: CACM Cover: 09/83

because we are worried”[4]. At about the same
time, the September 1983 Communications of the
ACM, the flagship publication of the America-
based leading international organization for com-
puting, published a cover (Figure 1) further in-
dicating the sense of threat from the Japanese
initiative [2].

The West responded in several ways, notably
the creation of the MCC (Microelectronics and
Computer Technology Corporation) in the U.S.
For additional historical details, see [10]. Suffice
it to say here that a cursory evaluation of 5Gen
after its decade of intense work is that it“failed”
; that is, something akin to a pocket computer or
smart phone did not emerge by the mid-1990’s.

That this evaluation is based on incomplete assumptions of the purpose of
5Gen and its various achievements is beyond the scope of this discussion; any
final assessment is complex (see [17]).

2 Applications

Prolog is most closely associated with the applications area of artificial intel-
ligence, but currently, machine learning (ML) is dominating AI. Prolog rep-
resents a symbolic approach to AI, utilizing logic; whereas ML represents a
statistical approach, utilizing neural nets, data mining, etc.
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There are advantages to each approach. A symbolic approach lends it-
self to formal verification, and the explicitly stated rules can be checked as
to completeness. Statistical approaches become relevant when rules are too
complex for explicit expression (e.g., learning facial recognition). In such cases
statistical and big data approaches are most suitable.

And there are disadvantages to each approach. As mentioned, in complex
scenarios rules may be too complex to list explicitly; and then statistical ap-
proaches, based on training and validation, allow the machine to derive its own
rules. But then we don’t have explicit access to those rules –rules that might
allow for mis-classifications that are hard to remedy.

Indeed, as pointed out in [10], Vardi [15] and others believe that philosoph-
ically a robust approach to AI will incorporate both “lizard brain”(quick/
fast: machine learning) and“fore-brain”(slow/logical reasoning for decisions).
So, logic may emerge within the main-stream again, giving reason enough to
introduce the LP paradigm.

In any event, currently, as a symbolic/logic-based approach, Prolog is well
suited for and is utilized in a number of diverse applications. While Prolog is
not exactly booming, it still occupies a substantial role in applications within
business, law, medicine, AI, etc. [13]: rule-based expert systems and training,
theorem provers, intelligent search, semantic web development, natural lan-
guage processing, decision support systems, semantic nets, combinatorial and
optimization tasks, planning, scheduling, and cryptography.

2.1 Curricular Application I: History

Whether 5Gen is seen as a failure or success (too coarse of a dichotomy), be-
cause of the farsighted nature of the Project, the intensity of reactions to it,
and the current dominance of AI, 5Gen should not fade into obscurity. The
historical aspects of 5Gen are fascinating; some have posited that it led to an
“AI Spring,”ending a sustained “AI Winter”[10]. In any course/seminar

involving the history of computing or AI, 5Gen is a most apt topic for lec-
tures, discussions, modules, or supplemental readings. And in other related
classes, a brief acknowledgement of 5Gen would certainly enrich the students’
appreciation of the topic’s rich history and the importance of logic [8].

The relevance of 5Gen historically is the topic of [10]; its use in a computing
history course was discussed in [9]. To be developed further is an account of
a History/Ethics seminar class led in Spring 2020 where some student-selected
covered topics were old or ancient (abacus, Euclid, Babbage/Lovelace etc.);
but most were much more recent (e.g., 5Gen).

But we now turn to our primary focus here: illustrating, and hopefully
motivating, the incorporation of the logic programming (LP) methodology in
the CS curriculum.

79



2.2 Curricular Application II: The LP Paradigm

The technical 5Gen aspects of logic programming, resolution, unification,
knowledge representation, etc. are well suited to be included in any course
that emphasizes symbolic logic, AI, knowledge bases, etc. Such course inclu-
sion would provide an alternative or supplement to neural nets and machine
learning for AI: namely, the application of logic. The following discussion is ori-
ented toward a technical presentation within a course or module in a computing
curriculum. These are often challenging topics for students; nonetheless they
are often required for an undergraduate CS major (e.g., in a Discrete Struc-
tures course). A full special-topics course can be (and has been) developed for
undergraduates using the LP paradigm. And, given the importance of logic
for CS, a course on Logic & Computing [14] would be appropriate and could
easily incorporate LP. Shorter modules would be appropriate for courses in (see
Appendix 3): Discrete Structures (the logic component); AI (e.g., reasoning
and knowledge representation); Database (alternate and historical approaches);
Logic & Computing (various forms of logic); and Programming Languages (the
LP paradigm).

Because these curricular uses are focused on more technical issues, we will
forthwith assume that the reader is familiar with basic concepts and nota-
tion for symbolic/mathematical logic (e.g., as typically presented in a Discrete
Structures course).

LP is a separate programming paradigm, distinct from procedural, func-
tional, and object-oriented. That in LP, the knowledge base = the program is
a truism! Regarding standard relational databases, the leader of 5Gen, Kazuo
Fuchi wrote [5], “At present it is common that databases and programming
languages belong to different systems. This is not a desirable situation. Their
unification appears to be quite feasible.”That the program = the data is the
ideal. Dahl [3] notes that“the logic program serving to define the data serves
at the same time to compute it. ⋯The user need only be concerned with the
declarative semantics of [the] database.”This is demonstrated in examples be-
low, with a trivial but semantically correct knowledge base (KB), or see any
standard Prolog textbook (e.g., [1]).

The key to fulfilling the above ideals was the fact that the large and cum-
bersome apparatus of standard logical systems (axiomatic, natural deduction,
⋯) can be replaced with just one rule of inference: resolution. However, res-
olution necessitates listing all of a KB’s statements and relationships in a
specified format called clausal form. With standard first-order predicate logic
(FOPL, using variables and quantification), these clauses constitute a nor-
mal (standard, universal) form in that there is a straight-forward algorithm
to convert any arbitrary statement of FOPL into a logically equivalent set of
clauses. These clauses may be further refined into more intuitive and useful
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Horn clauses (a stricter version of clausal form with only one consequent):

Variables in FOPL are, of course, quantified universally (∀) or existentially
(∃); for example: over the integers: ∀x∃y(x + y = 0). Here y is within the
scope of x and so its choice is dependent on the choice for x (y = -x). However,
while ∃y∀x(x+ y = 0) is false, this is true: ∃y∀x(x× y = 0): (y = 0).

Interestingly, all clauses are universally quantified (happily obviating the
need for resolution to deal with quantification at all). And fortuitously there is
a particularly elegant procedure to eliminate existential quantification through
the use of Skolemization where, for each statement, quantified variables
become, depending on their scope, either constant symbols or functions of
the relevant universal variables (see, e.g., [6] or [7]; for a more theoretical
approach: [12]. In our example statements above:

(i) ∀x∃y(x + y = 0); the choice of y is dependent upon x. Thus, we
have ∀x(x+ f(x) = 0) [of course, here the relevant function is f(x) = -x].

(ii) ∃y∀x(x × y = 0); the choice of y is independent of the choice for x; so
that y becomes a constant c, regardless of x. Thus, we have ∀x(x× c = 0)
[of course, y=0 is the relevant constant here].

Thus, e.g., a more complicated statement ∃x∀(y, z)∃tP (x, y, z, t) is Skolemized
into P (c, y, z, f(y, z)) :
–x exists globally, so it is replaced by a constant symbol c;
–y, z are universally quantified, so they remain;
–t exists locally (dependent on y and z since it is within their scope); so,

replace t with function symbol f showing the dependency on y and z;
–now the remaining (free) variables (y & z) are taken to be universally

quantified; so “∀”, being implicitly there, may be disregarded.

In Appendix 1, the algorithmic conversion from FOPL to clausal
form is demonstrated on a representative FOPL statement. However, the even
more restrictive Horn clauses are a very natural way of asserting knowledge
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and relationships; hence, the conversion algorithm, from arbitrary FOPL
statements, rarely needs to be applied. Its primary purpose is to show that
Horn clause resolution has robust expressive power and is Turing-complete.

As above, the knowledge base (KB) is the program; the KB has just that
one rule of inference: resolution –a generalized modus ponens (→-elimination
or detachment in natural deduction). Resolution is available at all times to
work within the KB; hence the system is called a KIPS (knowledge information
processing system); this fact makes a KIPS amenable to intense parallelization.
Resolution operates by a kind of cancelling out of terms on the RHS of a clause
with identical terms on the LHS of another clause, followed by a merging of
those terms remaining. Propositional logic example, resolving on B:

This is easy to understand intuitively. Indeed, A∧B∧C∧D → S indicates
that all of the A,B,C,D need to be satisfied for S to be derived. But now
C ∧ E → B indicates that C,E are sufficient for B to be satisfied. So, we may
eliminate/resolve B in the first clause by replacing it with the sufficient C ∧E
(removing a now redundant C). And, of course, this is most clear in modus
ponens where B is an asserted statement (no sufficient conditions).

So now, assuming that we have a concrete knowledge base (KB) of relevant
Horn clauses, the computational strategy is to append the denial of the desired
outcome A to the KB: (A →) as the goal clause. Thus, if the KB also included
the “fact”(→ B) and the implication/relationship (B → A), then

1. → B [in the KB]
2. B → A [in the KB]

3. A → [goal clause (denial of A)] - appended to the KB

4. B → [RES: 2,3] - resolution application on statements 2 & 3
5. → [RES: 1,4] - the null clause → (often abbreviated as !)

So, the augmented (with the goal clause) KB is shown to be inconsistent
(it will allow derivation of the falsehood !). So, negated A (i.e., A →) is
disproved, resulting in (standard notation): ¬(¬A). And, as is the case in
indirect proofs, ¬¬A ≡ A, so that A is proved.

Most interestingly, this one rule of inference, RES, replaces the entire suite

82



of the familiar Gentzen natural deduction rules: ten introduction/elimination
rules of inference; see Appendix 2 here (for propositional logic) [11].

The computational simplification is obvious: one rule to replace ten! How-
ever, there are still complications aplenty (there is no free lunch); in order to
resolve (cancel) two terms they must be identical. Hence variables must be
unified (made the same): instantiated with identical constants and functions.
There are unification algorithms to accomplish this, probably the single trick-
iest aspect of applying RES; their use can be computationally intensive. For
technical details on this and also on how a LP-Resolution program (= KB)
performs a non-Boolean (numeric) computation, see [1] or [6]. As a simple, ex-
ample employing straightforward unification, consider the following knowledge
base K (recall that all variables are universally quantified; so there is no need
to attend to matters of scope). Each step adds a new statement to K:

1. parent(x,y) ∧ parent(y,z) → grandparent(x,z)
2. father(x,y) → parent(x,y)
3. → parent(Tom, Jane)
4. → parent(Jane, Ann)

5. grandparent (t, Ann) → [goal clause: append to find who Ann’s
grandparent is, we deny that Ann even
has a grandparent! (t, like all variables,
is universally quantified)]

6. parent(x,y) ∧ parent(y, Ann) → grandparent(x, Ann)
[unify 1 (with 5); z := Ann]

7. grandparent (x, Ann) → [unify 5 (with 6); t := x]
8. parent(x,y) ∧ parent(y, Ann) → [RES: 6 & 7]
9. parent(x, Jane) ∧ parent(Jane, Ann) → [unify 8 (with 4); y := Jane]
10. parent (x, Jane) → [RES: 4 & 9]
11. parent (Tom, Jane) → [unify 10 (with 3); x := Tom].
12. → (or !: null clause) [RES: 3 & 11].

Thus, not only does Jane have a grandparent (the indirect proof), but
by tracing the variable t back to x and then to Tom, we also know who her
grandparent is (Tom). Suffice it to say that while the LP resolution-driven
computations are indirect proofs (reductio ad absurdum, as above), they are
nonetheless constructive since the concrete answer (calculated value) results
from backtracking the instantiations provided by unification.

While the above provides a reasonable look and feel for a resolution com-
putation, there are issues that do sometimes arise and must be attended to:
renaming of variables, order of clauses, ∞-loops, and so on [1, 12]. These are
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too intricate for our brief purpose here.

Acknowledgements
I am indebted to many. I especially acknowledge Dr. Katsuo Nishikawa who arranged
for my first trips to Japan; Dr. Yoshihiro Omura UTF8min (小村吉弘先生) who
hosted me at Kindai University UTF8min (近畿大学) ; and Dr. Mario Gonzalez for
his continual encouragement. Trinity University awarded me a Summer Stipend for
this project.

References
[1] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, New

York, 1981.
[2] Cover. Communications of the ACM, 26(9), 1983.
[3] V. Dahl. On database systems development through logic. ACM Transactions

on Database Systems, 7(1), 1982.
[4] E. Feigenbaum and P. McCorduck. The Fifth Generation: AI and Japan’s

Computer Challenge to the World. Addison-Wesley, Reading, MA, 1983.
[5] K. Fuchi. Aiming for knowledge information processing systems. In International

Conference on Fifth Generation Computer Systems, October 1981.
[6] M. Ginsberg. Essentials of Artificial Intelligence. Morgan-Kaufmann, San Ma-

teo, CA, 1993.
[7] G. F. Luger. Artificial Intelligence: Structures Strategies for Complex Problem

Solving. Addison-Wesley, London, 2002.
[8] J. P. Myers, Jr. The central role of mathematical logic in computer science.

SIGCSE Bulletin, 22(1), 1990.
[9] J. P. Myers, Jr. Looking back: computing history, 2020. (Lightning Talk,

CCSC:SW Conference. March 2020).
[10] J. P. Myers, Jr. and K. Yamakoshi. The Japanese fifth generation computing

project: A brief overview. Journal of Computing Sciences in Colleges, 36(2),
2020.

[11] R. E. Prather. Elements of Discrete Mathematics. Houghton-Mifflin, Boston,
1986.

[12] T. Richards. Clausal Form Logic: An Introduction to the Logic of Computer
Reasoning. Addison-Wesley, New York, 1989.

[13] M. Triska. The power of prolog (https://www.metalevel.at/prolog). 2005.
[14] R. Turner. Logics for Artificial Intelligence. Wiley, New York, 1984.
[15] M. Vardi. Conversation with the author, September 2018.

84



[16] D. H. D. Warren. A view of the fifth generation and its impact. AI Magazine,
3(4), 1982.

[17] K. Yamakoshi and J. P. Myers, Jr. Assessing the Japanese fifth generation
project. (in preparation).

APPENDIX 1: Algorithmic Conversion of a FOPL Sentence to Clausal Form

We will convert this sentence into clausal form, thereby revealing most of the steps
of the algorithm: ∀x(∀y(P (y) → Q(y, x)) → R(x))

1. remove →’s (using the equivalence A → B ≡ ¬A ∨B):
∀x(¬∀y(P (y) → Q(y, x)) ∨R(x)) ; and again, concluding with:
∀x(¬∀y(¬P (y) ∨Q(y, x)) ∨R(x))

2. move ¬ inward (here using De Morgan’s Law: ¬∀t(A ∨B)� ≡ ∃t(¬A ∧ ¬B):
∀x(∃y(¬¬P (y) ∧ ¬Q(y, x)) ∨R(x)); then using the equivalence ¬¬A ≡ A:
∀x(∃y(P (y) ∧ ¬Q(y, x)) ∨R(x))

3. remove ∃’s (Skolemize existential variables; here, ∃y is within the scope of ∀x):
∀x((P (f(x)) ∧ ¬Q(f(x), x)) ∨R(x))

4. remove quantifiers (since all variables are now universally quantified):
(P (f(x)) ∧ ¬Q(f(x), x)) ∨R(x).

5. place into conjunctive normal form (distribute ∨ over ∧, with the equivalence
(A ∧B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C):

(P (f(x)) ∨R(x)) ∧ (¬Q(f(x), x)) ∨R(x))

6. reintroduce →’s (again using the equivalence A → B ≡ ¬A ∨B):
(P (f(x)) ∨R(x)) ∧ (Q(f(x), x)) → R(x)).

7. separate the conjuncts to produce a set of clauses (implicitly conjuncted):
→ P (f(x)) ∨R(x)

Q(f(x), x)) → R(x))

[Note: there is a small technicality not needed here, involving scope and the possible
renaming of variables between steps 3 & 4 (see [1]). But the above shows the basic
conversion process.]
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APPENDIX 2: Gentzen’s Natural Deduction Rules for Propositional Logic [11]

APPENDIX 3: Curricular Relevance & Uses of LP

The author previously taught a course on LP (clausal-form logic upon which Prolog
is based) in a study abroad course in Osaka, Japan for undergraduate CS majors.
The course was on Knowledge-Based AI where the emphasis was on principles
rather than programming techniques. Hence, the main prerequisite was a standard
Discrete Structures course. The bulk of such a course is FOPL; students completed
the course with a substantial grounding in logic, a topic central to CS [8].

Suggested possible courses for the presentation of LP:

[DS] Discrete Structures [DB] Database
[LC] Logic & Computing [LP] Logic Programming
[AI] Artificial Intelligence [PL] Programming Languages

Over the years, the author has taught each of the above to undergraduates
(except DB), incorporating at least a discussion of LP and/or Prolog. Below are
broadly listed syllabus topics for an entire course on LP (excerpts may guide the use
as lectures or modules in relevant courses as shown in the above table).

(A). Introduction: The Central Role of Logic in CS and AI; discussion [8]:
(B). The Japanese Fifth Generation Computing Project; text [4]:

1. Background, history, and purpose. 3. “Failure”? “Success”?
2. Reactions worldwide. 4. Legacy.

(C). Logic Programming; text: [6]:
1. AI knowledge representation & reasoning.
2. Propositional & predicate logics. 5. Skolemization.
3. Clausal form & resolution. 6. Unification.
4. Logic as computation (programs). 7. Applications.

Certain aspects of this LP course outline might be selected for the recommended
courses:

• (A) is germane for: DS LC AI DB LP PL
• (B) is germane for: AI DB LP
• (C) is germane for: DS LC AI LP PL
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Abstract
We propose a hardware course component to a course such as Com-

puter Organization and Architecture. Along with it, we present a delivery
method of the course component. This hands-on component gives under-
graduate computer science students an experience to build a very simple
but working computer from a given design. Through this experience,
students achieve a level of hardware literacy so that they can expand
their career into software development areas that require a basic under-
standing of hardware.

1 Introduction
In the last two or three decades, computer science programs have gradually
shifted to a more software-focused program, more precisely, an application de-
velopment oriented program with much less focus on low-level hardware knowl-
edge. If one compares the hardware content required by the latest computer
science curricula [3] with its previous versions [2, 7], it is not hard to see that
hardware content has been reduced to a bare minimum. Small colleges where
the teaching load is heavy and many professors teach out of their personal
interest areas are estimated to suffer even more.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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In practice, hands-on hardware labs are most likely no longer offered. Some
replace hands-on labs with simulations, which do not necessarily simulate every
aspect of a hands-on lab. As a result, recent computer science graduates are
more likely to be hardware illiterate. They are less likely capable of working
in the fields of software development for industrial control systems, embedded
systems, device drivers, network software stack, and system software.

With the proliferation of embedded systems and hand-held mobile devices,
we are still motivated to offer a hardware experience to our undergraduate
computer science students. In this paper, we introduce a hands-on hardware
course component that helps enhance the undergraduate computer science ex-
perience. It is relatively easy to implement even in a small liberal arts college
such as ours where technology oriented disciplines are not the institution’s main
focus. Our goal is for our computer science graduates to achieve a basic level
of hardware literacy so that they can expand their career horizon beyond com-
mon enterprise applications development to software development areas that
require a basic understanding of hardware.

The paper is organized as follows. In section 2, we review the relevant
background information. We discuss the current trend of a reduced hardware
computer science curriculum and review the very simple computer [4] this work
is based upon. In section 3, we present our design and implementation of the
very simple computer for the proposed hardware course component. After that,
we suggest a content delivery method in section 4. We provide some discussion
in section 5. Finally, we conclude the paper with remarks in section 6.

2 Background
Despite hardware being so fundamental to computing, we have seen hardware
content being drastically reduced from computer science curricula. In this
section, we will first review the trend in the reduction of hardware requirements
for computer science curricula. Then we will review the Very Simple Computer
that forms the base of our proposed hardware course component in the paper.

2.1 Trend of Hardware Requirements in CS Curricula
From both theoretical and practical perspectives, Hoffman [1] argued for the
inclusion of more digital logic components in a computer science curriculum.
He compared two past revisions of the computing curricula from year 1991 [7]
and year 2001 [2]. He found that the required core hours in the knowledge area
of computer architecture and organization (AR) was reduced from 59 to 36, a
39% reduction. Fast forward to the latest 2013 revision of the computer science
curricula [3], the number of required core hours in AR is further reduced to
only 16 core-tier2 hours with 0 core-tier1 hours.
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While this trend occurs with good intentions such as being able to ac-
commodate new and popular topics, it may eventually lead to the complete
hardware illiteracy of computer science graduates. If it continues, computer
science graduates who are trained to specialize in software development may
no longer be prepared to do development work in the areas of software that
require a basic understanding of hardware. For certain areas such as network
software stack and system software that are so critical to computing, whether
or not that is a good thing is hard to know right now.

2.2 Review of the Very Simple Computer
We disagree with the current trend of a reduced hardware curriculum and
believe our computer science graduates should be equipped to do software
development work that requires a basic understanding of hardware.

Figure 1: Organization of the Very Simple Computer (reprinted from [5]).

We have incorporated a hardware course component based on Pilgrim’s
Very Simple Computer (VSC) [4, 5]. VSC as its name suggests is indeed very
simple but still sufficiently educational with all basic functional components of
a working computer (Figure 1). While the 8-bit VSC only supports 8 instruc-
tions, its design still provides a great insight into the hardware realization of a
working computer. In addition, hardware realization of a control unit remains
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as an elective component in the latest computer science curricula [3]. VSC
includes a small memory in its design. Although it only supports 32 memory
locations, it fully demonstrates the design of a RAM. VSC also includes a sim-
ple I/O system which can be used to program the simple machine and view its
output.

3 Design and Implementation of the VSC
The design of VSC given by Pilgrim in [5] includes a number of PowerPoint
slides with block diagrams but without a detailed implementation. While it
is certainly possible for a few stronger students to create a working schematic
from the design and then successfully wire the VSC on a few breadboards, most
students will likely be at a loss. Therefore, we created a schematic based on the
design for the students. This is reasonable because our goal is simply for the
students to become familiar with hardware. Our objectives for the students are
two-fold: (1) to be able to read a schematic using publicly available datasheets
of various ICs so that they can do software work that requires the understanding
of hardware in the future; (2) to wire a digital system for an undergraduate
study experience using small- to medium-scale ICs on breadboards. We think
this is a more realistic expectation out of a computer science student.

Our original breadboard version of the schematic is available here1. From
this schematic, a printed circuit board was made for verification purposes. Even
with a given schematic and plenty of time, we still expect students to have
difficulties with successfully building a VSC on breadboards because so many
practical problems are stacked against them. For example, the inexperience
of the students, loose wires and mis-wires, poor electrical contacts, bad IC
components, etc., are among the common problems.

Figure 2: VSC Module Connection Diagram.

To address these difficulties, we further modularize our schematic into an
1https://drive.google.com/open?id=1HM-UsD69HjbEj2McoSp7mHA_Osca8MJd
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updated version (available here2). This new schematic divides the VSC into
four modules: the Arithmetic Logic Unit (ALU), the Control Unit (CU), the
Memory and Program Input (MEM), and the Connection Board. In addition
to providing power, clock, and output display functions, the Connection Board
plays a key role of interconnecting the other three modules (Figure 2).

With this new design, the work of building a VSC by the students can
be phased into several hardware labs. To make testing easier, we implemented
small (2.6-inch × 3.0-inch) separate printed circuit boards for each of the ALU,
CU, and MEM modules. When the boards are plugged into the connection
board via standard 40-pin header connectors, the VSC is complete and opera-
tional. The complete assembly is shown in Figure 3. Now students can build
the entire VSC on breadboards module by module and test each module inde-
pendently with confidence that the remainder of the system is functional. For
example, if a student builds an ALU module, s/he can replace the pre-built
ALU module with her/his breadboard realization of the module for a test run,
which can simply include running a few VSC assembly programs and check
to see if they produce correct results. In this way, the student can focus on
troubleshooting just one module before moving forward to working on another.
Students can build the entire VSC in this step-by-step fashion.

Our finished VSC has a number of useful features including:

• LEDs showing the status of the data bus, address bus, and ALU latches

• Ability to vary the clock speed from sub-1 Hz to about 500 Hz via a
potentiometer

• Ability to disable the free-running clock and instead single step through
each of the eight fetch and execute cycles

• Ability to load a program into memory via DIP switches or from an
interface to a computer.

• An expansion connector on the Connection Board for future use

4 Content Delivery
In this section, we present a content delivery method, which we have used for
years, for the course component we proposed in the paper. If the reader adopts
this course component in any of their courses, they should adjust their method
of delivery according to their own institutional setup.

We first have a two-in-one Assembly Programming and Digital Logic Design
course ahead of the Computer Organization and Architecture course. Students

2https://drive.google.com/open?id=1zFFv0SK3egY_gbWgLgEB2YY1wjwM0FFU
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Figure 3: VSC Modular Boards
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in that two-in-one course spend roughly a quarter of a 15-week semester study-
ing introductory combinational logic design using only the most basic logic
gates. The course has two labs for students to implement two combinational
logic functions with different requirements using TTL IC chips.

In the Computer Organization and Architecture course, we continue the
study of combinational logic with popular small- to medium-scale ICs such as
adders, decoders, and multiplexers. Students do a multiplexer lab to implement
a logic function and learn the use of chip select. After that, we start our content
on sequential circuits, for which we introduce register transfers and memory
structure. Students complete a lab using RAM chips and tri-state line drivers.

Following that, students can start building the ALU and then MEM mod-
ules on their own. Simultaneously we introduce the design of VSC and its
instruction set. Assembly code examples using these instructions are given.
Students learn how to manually assemble the examples into machine code.
When students finish building a module, they must immediately hook it up
with the Connection Board for a test by running some of the example code
such as these3.

This is then followed by the introduction of a simple computer [6] including
its organization and hardware design. By this time, students are ready to
build the CU module. Again, the module, once built, must be hooked up
with the Connection Board for testing. While it is encouraged, we do not
expect students to build the Connection Board module unless time permits
as this module is most labor intensive. Finally the entire course component
culminates with the students integrating all of the modules they have built.
The sequence of the lab work leading to the final hardware module integration
is summarized in Figure 4.

Figure 4: Lab Sequence

3https://drive.google.com/file/d/1R0GIMXtbOOxJqnIaT9NpEWcQGBAHbQgo
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5 Discussion

For departments in small colleges similar to ours, one immediate concern for
adopting this hardware course component is the cost. Overall, the cost of
building a VSC using small- and medium-scale TTL ICs is estimated to be no
more than $100. We use TTL ICs because of their robustness. The necessary
hardware components including ICs, breadboards, and wires can be ordered
from online electronics distributors such as Digi-Key and Mouser for reasonable
prices. The most consumable supply is likely wires but most of the hardware
components can be reused year after year. Although the initial cost may be
a little high, over the semesters the cost on average becomes quite low. We
charge students a $40 course fee. Over the years, using these fees, we have
built a substantial inventory of IC chips, breadboards, and lab equipment. We
do not have a dedicated lab space but a shared single-room, multiple-purpose
lab.

Another concern is likely time. Lecture time is always at a premium, so
the addition of these hardware labs seems problematic. We only allocate class
time for the introductory labs. The rest of the labs are done as outside as-
signments. Students may work in groups of two or three. Group projects help
students learn the dynamics of teamwork and the value it brings. Class time is
still available for important topics such as interrupts, memory hierarchy, and
parallel architectures.

In addition to getting students familiar with hardware, the hands-on experi-
ence provides other benefits to students. “Tinkering” with hardware was quite
routine for the old-timer computer science students but is completely new to
many current students. As Pilgrim already observed in 1993, “In such a rapidly
changing area as computer technology, it is easy to forget that even small-scale
integrated digital logic technology is new to the student.” [4]. Having the
opportunity to know this level of hardware details is considered a “bonus” by
many of our computer science students. At a minimum, it helps demystify the
magic machine that can follow instructions.

Before this new modular design, we only achieved moderate success with
the building of a working VSC. Some groups of students have had some of
their modules working. For years only one group of students have ever gotten
their entire VSC working. Despite the low success rate, the feedback from
our students was mostly positive. Due to the COVID-19 global pandemic,
in-person meetings were canceled this semester. As a result, we did not get
the chance to try our new modular design. However, we do expect the new
modular design will increase the success rate of building a working VSC. We
will report the results with this new modular design in the future.
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6 Conclusion
We disagree with the current trend of a reduced hardware computer science
curriculum. This trend, if continued, will eventually leave computer science
graduates completely hardware illiterate. Computer science graduates will no
longer be able to do software development work that requires even a minimal
understanding of hardware.

In this paper, we proposed a hardware course component to a computer
science course such as Computer Organization and Architecture. Through a
hands-on hardware experience, we intend to achieve a level of hardware literacy
among our computer science graduates so that they can expand their career
horizon beyond common enterprise applications development to the fields of
software development such as industrial control systems, embedded systems,
device drivers, network software stack, and system software.

For this hardware course component, we provided a design and implemen-
tation of the Very Simple Computer (VSC) by Pilgrim [4]. For educational
purposes, this 8-bit VSC is really simple to follow. With a modular design, it
is easy to do and cost-effective. In addition, we proposed a delivery method we
have been using for anyone willing to incorporate this hardware course com-
ponent into any of their courses. We also addressed potential concerns about
the delivery of this course component. During our delivery of this course com-
ponent, students have given mostly positive feedback. We believe building the
VSC is an experience they will cherish through a lifetime.
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Abstract
This experiment trained classifiers to monitor the dialogue of stu-

dents working together in a Java programming class. The classifiers
recognized four activities within the problem-solving conversation: shar-
ing ideas, negotiating, regulating, and maintaining conversation. These
dialogue acts are characteristic of problem-solving conversations. This
experiment trained classifiers that utilize specific words in the dialogue.
It also trained classifiers that use a statistical topic model built from the
dialogue transcripts. If dialogue acts can be recognized, then the counts
of student interactions could be used for computer monitoring of online
student collaborative group exercises.
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1 Introduction
This study works toward computer identification of the collaboration dialogue
acts of students working together solving problems. The students are in a Java
programming class. In this class, small-group problem-solving exercises are
administered as a way for students to learn and apply conceptual knowledge.
As they work, student conversations are partly monitored by teaching assistants
and the instructor [6].

A goal of the COMPS project is to provide computational assistance in
overseeing the student conversations. The computer could judge in real time
whether the conversation groups are productive or could benefit from inter-
vention. The computational model should work for a broad variety of college
classes [11]. It should also detect a variety of conversational phenomena, e.g.
students becoming frustrated or not working together.

Dialogue acts are the different actions that a person can take while inter-
acting with other people in a conversation. For example, in a problem-solving
conversation some dialogue acts might be advancing a new idea or referring to
some information from the problem statement. Other dialogue acts are dis-
agreeing with another person, summarizing earlier ideas, and suggesting the
next problem-solving move. Categorizing the parts of the conversation in terms
of dialogue acts provides a basis for analyzing or assessing the conversation.
Relative frequencies of dialogue acts are potentially diagnostic. For example if
students never negotiate then it is not likely that all students are engaged in
the problem-solving task. Counting pairs of successive dialogue acts can reveal
interactive behaviors, e.g. [1]. The theoretical basis of this project is by first
analyzing a dialogue as a sequence of small dialogue acts, it could be possible to
approximately assess a variety conversational phenomena. This method does
not depend on knowing the substance of the students’conversation. Thus it
could be generally applicable to student small-group problem-solving exercises.

Prior work toward machine-assessment of COMPS project Java dialogues
targeted linguistic phenomena that were less specific to problem-solving con-
versations: initiate-respond pairs [4] and whether students were contributing
substantive turns and agreeing or disagreeing [3, 11]. Compared with dialogue
acts, the phenomena studied earlier were less directly related to collaborative
problem-solving skills. For example, when students are chatting about their
summer vacations their conversation will contain initiate-respond pairs and
could contain agreement/disagreement.

In this experiment, 1395 turns of dialogue were annotated manually accord-
ing to a simplified set of four problem-solving dialogue acts. The annotated
dialogue turns were used for training and testing four different classifiers, one
for recognizing each type of dialogue act. The features from the text utilized
by the classifiers were derived from the dialogue text in three ways:
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• the presence or absence of individual words, using the most frequent
English words attested in the transcripts. These did not include words
which were specific to the topic of the conversation, which was analyzing
Java code.

• individual words including Java-related words such as “method” and
“double”.

• topic modeling [9], a statistical technique based on word-co-occurrences
which models each turn as a combination of a small number of latent
feature values.

A motivation for training with different feature sets is to train classifiers
that are independent of the particular problems the students were discussing.
A danger is that machine learning can utilize the variable names from the Java
code under discussion. This classifier won’t work as well when presented
with students discussing a different problem. By being careful in selecting
individual words as features, we were able to experiment with a classifier that
is not cognizant of any words from the computer programming domain. We
also experimented with a classifier that was cognizant of Java programming
terms generically, but excluded words from the specific problem.

This paper describes the dialogue act categories and the transcripts of stu-
dent dialogues. It then reports on experiments in training classifiers for the
acts.

2 Background

2.1 Dialogue Act Categories
For this study we adopted categories of dialogue act as defined by Hao et al. [5].
Each different dialogue act corresponds to a skill that students can evince while
engaged in collaborative problem-solving (CPS). The list of dialogue acts was
developed for the purpose of assessing student CPS ability. The published
scheme has 33 skills among four different categories. For purposes of this
experiment we utilize only the categories, as shown in Table 1.

2.2 Theoretical Background
The theoretical underpinning of this experiment is: it is possible to detect
fingerprints of various collaborative problem solving dialogue phenomena from
the dialogue acts. For example [2]:

• Counts of successive dialogue-actions in CPS discussions show sequences
of sharing followed by negotiating occur much more frequently than
chance.
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Table 1: Dialogue Act Categories, after Hao et al. [5]

Dialogue Act Cat-
egory

Definition

A Sharing ideas Student advances an idea or points to problem-
relevant information.

B Negotiating ideas Student agrees/disagrees, rephrases or completes
or elaborates, identifies a conflict or a gap or mod-
ifies the ideas from teammates, modifies or up-
dates own previous ideas.

C Regulating
problem-solving

Metacognitive processes for the team: identify-
ing the goals, expressing lack of understanding,
suggesting next step, reflect on problem-solving
process, etc.

D Maintaining com-
munication

Student engages in social interactions, apologizes,
corrects spelling, offers help, prompts other stu-
dents, etc.

• The counts of dialogue interactions are distinctly different when the stu-
dents are working among themselves, versus when the teaching assistant
is involved in the conversation.

• The different roles of students within a discussion can be discerned by
counting dialogue acts. The student who was most prepared at the start
of the conversation (measured by pre-test) produces more sharing dia-
logue acts. A less-prepared student negotiates relatively more often. The
least prepared student engages in relatively more frequent conversation
maintenance.

The skills categories of Hao et al. [5] correlate with categories of transactive
activities cataloged by Weinberger and Fischer [10] that are often used in dia-
logue analysis. Transactivity is the social mode of knowledge co-construction,
the ways that students can interact while engaging in a group cognitive ex-
ercise. For example the “sharing” skill corresponds to an “externalization”
transactive act. Skills such as rephrasing or identifying a conflicting idea,
which are labeled “negotiating” by Hao et al., are “integration-oriented” and
“conflicted-oriented” consensus building transactive acts. The correspondence
between student CPS skills and transactive acts indicates that these categories
of dialogue act are likely to be fruitful for dialogue analysis.
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Student Text Categories
S1 its calling the method foo and then it is reading

throught he array
A

S1 the* D
S2 yea but what its it printing out B, C
S3 "foo" is an array, not method B
S3 0|0|0 A
S1 your right my mistake. so they are both printing

0|0|0
B

S3 this is what I think the second one is printing out
0|0|0 1|1|2 2|2|4 3|3|6 0|0|0

B

S1 yes i agree your using the array values in the
tostring method so its fromatted the same but
has different values

B

S3 yeh and foo[4] wouldve been 4|4|8 but then you
have that line of code foo[foo.length-1] = f; which
sets foo[4] to f

B

S1 ok so we have an answer C
S3 so im bout to type the answer so he can check it C

Figure 1: Transcript of Discussion with Manually-Annotated Dialogue Acts.

2.3 COMPS Project Collaborative Exercise Dialogues

Figure 1 shows an extract from students discussing a problem in a second
semester Java programming class. The code and questions are visible to the
students in a separate document outside the chat window. Three students S1,
S2, and S3 are participating. This transcript shows the categories of dialogue
acts for each turn.

The dialogue example shows students analyzing Java code. The students
do not execute the code, COMPS project exercises emphasize learning and
operationalizing Java concepts. Figure 2 shows part of the Java code under
discussion. The students in the Figure 1 transcript are debating the result of
the print statements, the proposed answers are in the form of numbers and
strings the code would print out.

Part of the theory of group problem-solving exercises is that group discus-
sion forces students to verbalize concepts and explain their reasoning [7]. To
encourage this process, the exercise protocol asks students to come to agree-
ment on parts of the exercise. Students positively affirm their agreement by
clicking a button. Then an instructor or TA inspects the agreed-upon answer
and provides feedback. The Java concepts involved in solving the exercise in
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Figure 2: Java Code Discussed by Student Problem-Solving Group.

this experiment included: classes, instance variables, static variables, construc-
tors with different signatures, arrays, and instantiating objects within an array.
In addition to the printed output discussed Figure 1, other questions concern
how many objects were created at various points in the code (including the
array itself), and how many objects are still accessible.

The Java terms associated with these concepts occur frequently in the dia-
logues. This raises possibility that the machine classifier of dialogue acts might
be trained to work well with Java collaborative problem-solving exercises if it
were cognizant of Java terms.

3 Experiment

3.1 The Dialogue Data

The dialogue data for this experiment consisted of 1385 turns of typed dialogue,
from transcripts of 8 collaborative discussions involving 24 students. Each dis-
cussion was approximately 1 hour. The discussion exercises were administered
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during the programming lab time of a 2nd semester university Java class. The
groups were also joined at intervals by teaching assistants. Different dialogue
act patterns occurred when a TA was participating in the discussion. As the
goal of this experiment is to study student dialogue for purposes of assessing
whether the students are working together. The segments of discussion with
the TA present were thus not included in the data for this experiment.

An artifact of typed-chat conversation is that the speaker can end a typed
chat turn by pressing“enter”and then continue typing, maintaining the con-
versational focus without anybody intervening. In spoken dialogue this might
be a momentary pause in a dialogue turn. When one person had control of the
conversation for several successive typed-chat turns, we combined them into a
single dialogue turn for classification. Merging successive turns from the same
person single turns resulted in a data set with 870 turns.

Every turn was annotated by two coders, who then resolved disagreements.
One turn could contain several dialogue acts. Figure 1 illustrates a turn where
the student first agrees with the preceding student (a negotiating act), then
focuses the discussion on deciding the program’s printed result (a regulating
problem-solving act). The result was 1270 dialogue acts. Table 2 shows the
frequencies of the four categories of acts.

Table 2: Distribution of Dialogue Act Categories.

Category Count Pct
A. Sharing 377 30W
B. Negotiating 406 32W
C. Regulating 259 20W
D. Maintaining 228 18W

3.2 Feature Sets for Classification

Machine classifiers require extracting a set of features from each dialogue turn.
The classifier algorithm then learns to predict the dialogue act categories within
the turn based on the values of the features derived from the turn.

To be generally useful, it is important to train classifiers that don’t require
the presence of words that are specific to the problems under discussion. The
word “foo” in these dialogues is the name of a variable. It tends to occur
in dialogue acts that are sharing or negotiating but not in dialogue that is
simply maintaining conversation. The presence or absence of “foo” could be
excluded from the feature set, so that the classifier won’t utilize its predictive
association.

103



The first feature set is a vector indicating the presence (1) or absence (0) of
41 different words. For each turn, a vector is produced from the words in that
turn. The set was produced from the 50 most common words in the dialogue
transcripts. Words that were specific to the problem under discussion, mostly
names of variables in the Java code, were excluded [3].

Another feature set started with the 41 common word features but further
excluded common English words which were being used in their Java context.
These included, e.g., “static” and “class.” This feature set of 33 common words
was thus even further removed from the specific problems the students were
discussing.

A final feature set is a Latent Dirichlet Analysis topic model [9] derived
from the transcripts. The topic model contained a 10 number vector for each
turn. Conceptually, a topic model is a form of dimensionality reduction. The
original text of a dialogue turn could be modeled as a high-dimensional vector
with one dimension for the presence/absence of each vocabulary word. In the
topic model, each dimension represents bundles of words which tend to co-
occur in the same contexts. For the topic model, words which were not in a
lexicon of the 10,000 most common English words were excluded.

For the 41-word and 33-word feature models, we checked whether the vo-
cabulary words were likely to contribute information to a machine classifier
algorithm. For each word and each dialogue act, a Fischer exact test showed
the likelihood that the word contributed information toward diagnosing the
presence of the dialogue act. The confusion matrix of presence/absence of
word and presence/absence of dialogue act was counted. The Fischer test
computed the likelihood that the co-occurrences of that word and dialogue act
could be due to chance. Most of the words were significantly related to at least
one dialogue act at p ≤ 0.05.

4 Results and Conclusions

4.1 Classifier Experiment

Scikit-Learn was used for training linear regression classifiers. We used 60%
of the data for training, randomly drawn, and 40% for testing. Each classifier
was trained and tested with the three feature sets: the topic model features,
the 33 common English words, and the set of 41 words including Java concept
terms. Table 3 shows the F1 combined precision and recall scores.

4.2 Conclusion and Future Work

The three different feature sets performed similarly. The topic model features,
which utilized the largest set of words, was more accurate at recognizing shar-
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Table 3: Classification accuracy of dialogue acts using different feature sets.

Feature Set Sharing Negotiating Regulating Maintaining
Topic model 0.623 0.473 0.545 0.329
Generic words only 0.546 0.534 0.556 0.388
Plus Java terms 0.568 0.510 0.563 0.437

ing. Sharing is the dialogue act which most directly expressed the ideas of the
problem. The small sets of generic words more accurately recognized negoti-
ating acts, such as agreement/disagreement. Achieving problem-independent
recognition of dialogue acts might be harder for some types of acts.

Although these classifiers are not very accurate, it might be possible to de-
tect anomalies in the relative percentages of dialogue acts. Table 2 shows that
each category of dialogue act can be expected to occur frequently. If no regu-
lating turns or no negotiating turns were occurring, for example, even a poor
classifier might reveal their relative absence in a typical 150-turn conversation.
An earlier COMPS dashboard assessed conversations based simply on relative
occurrence of substantive turns and agreement within the dialogues [3].

A deeper model of assessing dialogue would count successive pairs of di-
alogue actions. The interaction between two students can be recognized by
how the second responded to the first, e.g. sharing followed by negotiating.
Counting these interactions entails correctly tagging both acts in the pair.
Higher classification accuracy will be needed for successfully recognizing these
interactions in student dialogues.

Future work includes finding better-performing feature sets. The models
used in this experiment used bags-of-words, where the order of the words in
sentences did not contribute. We will try word embedding feature vectors that
are more sensitive to sequences of words, for example the doc2vec model [8].
We will also develop and test a revised, simpler, annotation rubric, that we
hypothesize may result in more consistent categorization.

Potential future work includes applying the same experiment to the threads
in class-related discussion board postings, where the students interact with each
other but do not post their dialogue turns in real-time interactions.
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Abstract
The creation of a short animated film is the organizing theme be-

hind assembling and instructing multiple teams of students across two
universities and multiple generations. The variety of cross-disciplinary
skills that the students acquire in the process fall into many categories of
creative and technical subjects. Here we describe the concept and origins
of the project, faculty and research components, and student experiences
from the first two years of the project.
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1 Concept and Origins
Our approach to this project utilizes project-based, studio-style teaching and
learning for collaborative teams of students. The students are an interdis-
ciplinary group along the spectrum from art, design and humanities to sci-
ence and technology. The studio-style approach for instruction in undergrad-
uate computing-intensive courses has been used in practice for only about
30 years, as documented by Tomakyo at Carnegie Mellon University in 1987
[16]. Their courses and the subsequent revisions primarily focused on cap-
stone and graduate-level subjects that mirror industry methods for project
design, analysis, and code review. Identified benefits of the studio approach
for computing-intensive work are the extension of the skill set of the group,
the capacity to employ technology attuned to the individual needs of group’s
members, and ownership of responsibility for outcomes assumed by the group
members, and student agency over aspects of the project for which each as-
sumes responsibility [11][3]. In 1990, Rensselaer Polytechnic Institute in Troy,
New York, instituted curriculum-wide changes embracing studio-style instruc-
tion [17]. Such substantial change, partially funded by the National Science
Foundation, was undertaken to both improve the educational experience in
science and engineering, and to adapt a model for delivery of education that
was extensible through distance learning.

The embrace of studio-style learning for computing-intensive subjects fol-
lows over 100 years of studio-style education in art and design and repeated
empirical analysis of the connection between studio learning and creative think-
ing [7]. Information technology is changing the way studio courses are taught,
both in computing and design [13]. The challenge faced by instructors and
course developers is how to integrate technology and technology development
into the process of iterative discovery rather than allowing technology to be-
come either a barrier to learning or the primary focus of learning; i.e., teaching
problem solving, not how to use software.

A new frontier in science and engineering is the design and development
of complex systems that operate in extreme environments: e.g, autonomous
ships in stormy seas, off-shore energy platforms in hurricanes; airplanes in
rough weather; and urban response to flooding/tsunamis. Scientific analyses
of these phenomena are difficult (if not impossible) in laboratory set-up or
field experiments due to the extreme and stochastic nature of these events.
A novel approach to studying systems in extreme conditions is to develop a
virtual rendering of the event. To full utilize the data from these simulations,
it is important to animate and visualize the full environment so that it can be
observed as in a physical experiment. Simulated data field that is animated
and visualized is loosely termed a “digital-twin” of the corresponding physical
realization. If a digital twin (DT) can be trained with appropriate physical
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laws, it can then be used to explore a broad parameter range of the phenom-
ena including extreme conditions. It is evident that DT can also be used for
teaching and training. In summary, development of a high-fidelity DT can have
a transformative effect on science and engineering disciplines.

One of the biggest challenges in developing DT is the in situ high-fidelity
simulation of underlying physical phenomena. Flow physics simulation is par-
ticularly difficult due to stochastic long-range interactions, complex non-linear
effects, inherent chaos and most importantly, (nearly) infinitely many degrees
of freedom (DOF). The state-of-the art of computational fluid dynamic (CFD)
simulation of large systems is still in its infancy: it only handle large DOF
in highly localized domains or small DOF over large domains. It must be
noted even with current computational capability, high-fidelity simulations are
restricted to highly localized flow phenomena and only in a small parameter
regime. Yet, full-system flow simulations, albeit of very low fidelity, are rou-
tinely performed in entertainment industry. These simulations are visually
realistic, but need infusion of more physical models for engineering use. A
high-fidelity digital twin can be used as a: (1) Research tool for design, im-
plementation and operation in extreme environments; (2) Operational tool for
playing out different scenarios; and (3) Training tool for simulating emergency
conditions. The long-term goal of DT development is to bridge the divide
between rigorous scientific CFD, and flow animation from the entertainment
industry, to develop a unique and transformative computational capability that
can be used for research, training and teaching. The short film represents a
key step in the progress toward the development of a high-fidelity digital-twin
model. The short film represents an important event in maritime engineering
history.

The creation of a computer animation short film provides a problem set that
addresses a range of learning goals in computing-intensive studio-style learn-
ing. Computer animation is a complex and time consuming process, in both
professional and academic environments. Participants must acquire and apply
skills in many subjects, including aspects of software development, computer
graphics, animation, natural sciences, engineering, mathematics, anthropol-
ogy, psychology, optics, and art. In our case study we added to the design and
problem solving difficulty by requiring that the forms and motion elements de-
veloped must accurately reflect known factual details of engineering, science,
and society that drive the storyline of the short film. Creating a compelling
visual story with fact-based visuals and high production values can have enor-
mous instructional value for the student participants, who must develop and
exercise, as a team, skills in all of those subject areas while applying them
with craftsmanship. For such an ambitious project, the organization of the
team focuses on software development and usage based on skills and processes
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spanning a variety of disciplines, training, experience, educational status, and
temporal presence.

Our project began in 2018 and was initially planned to take roughly one year
to complete. The project has proven too complex for that period of time and
is still underway, using multiple generations of student cohorts to continue the
work, at both undergraduate and graduate levels. The undergraduate students
major in computer science, visualization, and anthropology. The graduate stu-
dents are working toward MS, MFA and PhD degrees in Visualization, Digital
Production Arts, and Human Centered Computing. At launch, the team con-
sisted on five undergraduate seniors and two graduate students. During the
second year the student team reduced to a single graduate student, and as the
project spins up for its third year, a new group of students will participate.

The project benefits an ongoing DT software development research project.
An environmental scene simulator that includes maritime environments, is in
a continual development process since 2016. This software consists of a mix
of C++ libraries and Python modules, and creates highly detailed scenes that
are rendered with its own global illumination renderer. The simulator, named
Gilligan, is mostly developed in-house by faculty, staff, and students. A few
open source libraries are used for efficiency and standardization. At the outset
of this project, Gilligan’s feature set was not up to the full range of needs for
this short film, and so the film is a driver of new development.

2 Story Within the Short Film

On November 10, 1975, between 7:15 p.m. and 7:30 p.m., the cargo ship The
Edmund Fitzgerald sank in Lake Superior during a strong storm, costing the
lives of all 29 crew members and a cargo of 26,000 tons of taconite iron balls.
While suffering some damage earlier in the voyage, its complete and sudden
loss was unexpected and remains unexplained today. The ship and crew remain
at 530 feet below the surface, the wreck has been designated a gravesite, and
since 1995 diving expeditions are prohibited. The events and tragedy were the
inspiration for the popular song “The Wreck of The Edmund Fitzgerald” by
Gordon Lightfoot in 1976. The surviving families of the lost crew have suffered
over the years, and apparently have never been officially notified of their loss
by the company operating the ship [4].

The sudden and total loss has motivated numerous maritime-safety and
engineering assessments of potential factors and failure modes [2, 15], but
no concensus has been reached. Multiple explanations, or combinations of
explanations, cannot be ruled out, including rogue waves, human error, and
structural failure. Interest in this event has come from a vary wide range of
disciplines. Known weather data has been tabulated [5]. Weather researchers
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Table 1: Description of sequences in the short film.
Sequence Time Description
1 5pm, Nov 9 Initial traversal in good weather
2 10pm, Nov 9 Strong storm on the first night
3 10am, Nov 10 Calm waters
4 2pm, Nov 10 Increasing stormy water in the afternoon
5 5pm, Nov 10 High waves in late afternoon; ship damage
6 7pm, Nov 10 Highest waves; ship passes under the surface

and forecastors have analyzed the events in detail [1]. Computer simulations
of the weather during the event time frame help to better understand wind
and wave conditions, supplementing limited in-situ measurements Documen-
tarians and biographers have interviewed the friends and family of the crew,
and witnesses of the final voyage of The Edmund Fitzgerald (although none
of them witnessed the moment of sinking), and presented results in books [12]
and videos [6, 14]. Engineering analyses, initially from the NTSB [2], up to a
very recent study with modern engineering failure models [9], have never found
a definitive cause of the event, but point to multiple potential factors.

Ocean engineers, who study the design and function of equipment in mar-
itime environments, are a specific group who find the sinking particularly of
interest. This event represents a catastrophic failure of engineering systems –
perhaps from a design flaw, perhaps from an operational mistake, or perhaps
from tolerances being exceeded – but there is insufficient knowledge to make
conclusions. A virtual "re-enactment" of the event that faithfully depicts the
conditions at sea and the operational history would be of value to this group
as a tool to better inform engineers about harsh operating conditions.

All of these factors of weather and sea conditions, operational details, and
societal stress-points strongly influence the design and content of the short film
described here. The intent is to create a photo-realistic depiction of the factual
events up to the sinking, using all of the data that is available via the extensive
literature. Facts that are not known are either avoided by appropriate selection
of story points that do not require those unknown facts, or by inferring rea-
sonable conjectures. This short film does not pick a particular scenario for the
final moments, or try to develop a new one, because of the speculative nature
of such a choice. The depiction of the final moments will visually emphasize
the strength and violence of the storm as the ship slips below the surface.
Six sequences have been selected depicting key moments during the 30 hour
voyage, as described in Table 1.
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3 Short Film Production
Production of a short computer graphic film invokes a very broad range of
technical and artistic disciplines, shared among team members with distributed
responsibilities and skills. For this project, the sharing also takes place across
generations of students and faculty that come to the project, contribute their
expertise for a time, and depart. A single faculty member serves as overall
coordinator across all of the groups. Up to this moment in the project, students
and faculty have worked the following aspects of the production:

1. Research the known facts of the story.
2. Gather visual reference material.
3. Construct a timeline of known events and weather conditions.
4. Research factual details about the ship The Edmund Fitzgerald.
5. Install and improve software for production pipeline workflow. This soft-

ware is patterned after a professional production pipeline [8].
6. Create pipeline scripts for visualization.
7. Create training materials for using pipeline software.
8. Capture 360-degree images of stormy skies.
9. Create composite stormy sky from the 360-degree images for image-

based-lighting, as depicted in Figure 1.
10. Initial low resolution modeling of the ship.
11. Create multiple sequences of storyboards of key moments in the timeline.
12. Create animatic video from the storyboards and low resolution model.
13. Research camera options and create a layout reel and animatic video.
14. Generate a high-resolution model of The Edmund Fitzgerald, with many

parts.
15. Test initial ideas for whitewater and splash dynamics against the ship

hull.
16. Create first surfacing textures for the hull, pilot house, and stern.
17. Rig the ship for animation.
18. Assemble all of the model components into a complete ship model.
19. Revise model shapes and texture coordinates.
20. Create revised surface textures for the entire ship.
21. Create revised rig system for animating the ship.
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Figure 1: Two of many 360-degree photos of stormy skies on the Texas A&M
College Station campus, and (far right) the resulting composite sky.

Figure 2: Renders combining the ship model, composite sky, and ocean.

22. Create rough “hand”-animation of ship cruising with response to waves.
23. Create Python scripts for exporting the ship model from proprietary

software.
24. Create Python scripts for exporting the camera data from proprietary

software.
25. Set up ocean surface conditions for each of the story sequences.
26. Render initial demonstrations of the ship, ocean, and sky together. Fig-

ure 2 shows the revised model with lambertian shading, combined with
ocean conditions corresponding to sequence 1, and the composite sky.

27. Research models of paint Bidirectional Reflectivity Distribution Func-
tions (BRDFs).

28. Create custom code for surface shaders of a paint BRDF model.

There are many more steps to come in completing the short film:

lighting: There are two primary sources of light for these scenes to be ren-
dered: (1) the sky, although most of the film takes place at night in a heavy
storm, and (2) the “streetlights” that run the length of the ship on either side
of the deck. This very limited lighting will be implemented directly through
the custom global illumination renderer in Gilligan. A shader based on the
paint BRDF research has to be written in order to get realistic illumination
of the ship.

animation: Initially we elected to not use physical simulation techniques to
dynamically force the motion of the ship in response to wave motion, in favor
of hand-animating the motion of the ship, including ship flexing. Recently one
of the graduate students has embarked on developing a rigid body simulator
for floating bodies in height-based ocean, extending recent work by others [18].
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This will allow us to mix the hand-animation with simulated animation of the
ship motion.

FX: To provide splashes against the side of the ship, and up onto the deck,
preliminary studies have explored a systematic process of using particles un-
dergoing a variety of dynamical forces and emission mechanisms[10]. This
method requires a substantial amount of coding skills, understanding of com-
puter graphics techniques, and hard work.

scene integration: All of the elements have to be integrated into a custom-
built Python rendering framework that is under development.

rendering: The complete length of the film is approximately 6500 frames at
24 FPS. Render time for each frame has not yet been budgeted, but it is
expected to be between 8 and 80 core-hours per frame, depending on scene
complexity.

post production Foley sound and titles.

4 Undergraduate Student Participation
The role of undergraduate students up to this point in the development of the
short film is described. Opportunities exist for additional involvement of un-
dergraduate students as the project progresses. At the start of this project,
in the Summer 2018 Semester, the participants were five female senior hon-
ors students at Texas A&M University. Four were enrolled in the Bachelor of
Science in Visualization program and one was pursuing her Bachelor of Arts
in Anthropology. The Department of Anthropology is home to Texas A&M’s
nautical archaeology program. They were guided by supervising faculty to
organize their work along the structure of an animated film production, in-
cluding significant concentration on the front end work of story development,
visual development, and tools and pipeline development. Both the story and
the visual development were heavily reliant on their research into the form and
structural behavior of the ship, weather and sea conditions at the time of the
event, and material and light conditions of the ship and its environment. Dur-
ing the summer and fall 2018, the five undergraduates completed items 1-17 of
the list in section 3. For this work, the students received the Award of Excel-
lence for Best Presentation of a Creative Work at the 2018 Capital of Texas
Undergraduate Research Conference1. A joint honors thesis was approved for
these students, and the students graduated in the spring of 2019.

The most difficult task was research and development of a system to simu-
late whitewater and splashes against the ship. Because of the intensity of the

1https://sites.google.com/view/cturc/past-conferences/2018-awards-and-
pictures
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storm, direction and speed of the ship, the waves traveled faster than the ship,
approaching from the stern, and were tall enough to crash completely over the
deck. Violent splashing of this sort is normally accomplished in industry set-
tings using sophisticated commercial simulation software. For this project, in
which we want to avoid commercial software and create capabilities as much as
possible, one of the students embarked on a process of assembling simple parti-
cle simulations with enhancements from volumetric tools in Gilligan, following
the process described for FX in section 3. This required to development of
numerous Python and shell scripts to accomplish the basic task of converting
particles to volumes, and workflow scripts to conduct huge amounts testing of
variations.

5 Graduate Student Participation

During the 2018-2019 academic year, two graduate student volunteers joined
the production team. These students were in the graduate program in the
Department of Visualization at Texas A&M University. One took on the task
of cleaning up pipeline code and organization, and the other tackled research
and development of a shader for oil-based paint for rendering the ship in our
custom renderer. Both contributed scripts for exporting data from commercial
modeling/animation software into the renderer.

During the summer of 2019, a Ph.D. graduate student in the Human Cen-
tered Computing division of the School of Computing at Clemson University
worked quickly to revise and improve the ship model, animation rig, and tex-
ture painting. That student was able to be very productive because he had a
previous history in this topic, having received an MFA from the Digital Pro-
duction Arts program in the School of Computing, and having spent several
years working in an animation studio for feature films and commercials. A
second Ph.D. student in Computer Science at Clemson University has devel-
oped sophisticated algorithms for creating detailed and realistic splash and
foam events (a publication is in preparation), which will be incorporated into
the film production workflow soon. A Digital Production Arts MFA student
recently joined the production team and is focused on implementing rigid body
dynamics for the ship in response to forcing from the ocean waves.

6 Faculty, Administration, and Staff Participation

Faculty, Staff, and Administration have acted throughout this project in both
supportive and leadership roles. The project arose from the combination of an
initiative jointly driven by the Department of Visualization and LAUNCH pro-
gram at Texas A&M University to involve honors students in research and/or
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creative development, from the curiosity of faculty in the Department of Ocean
Engineering about the long-standing engineering mysteries in the sinking of
The Edmund Fitzgerald, and from the interest by the Hagler Institute of Ad-
vanced Study in collaborative out-of-the-box research and creativity. The years
after the first one have brought opportunities for students in the Digital Pro-
duction Arts program at Clemson University to participate in a way that hones
skills developed in that program. This project is an opportunity to collabo-
ratively mix many organizations and ambitions within our university adminis-
trative organizations.

At the outset of this project, studio space was provided by the Department
of Visualization for the first year, so that students, supervisors, and faculty
could work together in close proximity. This strongly facilitated and focused
the creative process for the students. Because of the computational demands of
the computer graphic elements of the project, specialized computing facilities
and IT support were provided by the Department of Ocean Engineering during
that initial one year period. In later years, as we near the moment of rendering
the full frame set for the film, we will be able to use the Palmetto Linux
Cluster2, a resource available to all faculty and students at Clemson University.

7 Conclusions
Faculty working in Visualization and Digitial Production Arts have, for many
years, recognized the unique educational character and opportunities afforded
by students building a short film from start to finish. Despite the affordable
availability of very advanced commerical graphics software running on con-
sumer grade hardware, production of carefully crafted short films requires the
participants to hone skills in art, computer science, psychology, coding, physics,
and many other disciplines. By choosing a topic for the short film that is com-
plex and relevant to engineering interests, and setting the quality expectations
high, we are able to extend this educational opportunity to a larger group of
students across disciplines, institutions and time, while encouraging them to
develop skills beyond normal outcomes. Simultaneously, this project success-
fully induces new research and development of “Digital Twin” environmental
simulation software with capabilities well exceeding those otherwise available.
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Abstract
Providing opportunities in both written and oral communication con-

tinues to grow in importance within the undergraduate Computer Science
major. An introductory course in Artificial Intelligence that includes the
ethical issues surrounding how society will respond to automation and
machine learning systems in the future workplace is the perfect place to
provide some instruction in writing and diction specific to computing.
This paper explicates how students in a recent first course in AI became
stronger writers and speakers because of this instruction.

1 INTRODUCTION
In the criteria for accrediting computing programs, the "ability to communicate
effectively with a range of audiences" is imperative [5]. In the last two years at
Mercer University, we have been tasked with teaching our own majors skills in
writing and oral communication, which are specific to each of our disciplines
within the College of Liberal Arts and Sciences. This is designed to build upon
the foundational skills they acquired in the first two years of their general
education courses.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1.1 Background

Assigning writing is not the same thing as giving students writing instruction.
Writing is a slow, difficult, and recursive process. Writing should be repeated
over and over again throughout the undergraduate curriculum for students to
become better and stronger at it [3]. As Zobel indicates in his book Writing
for Computer Science, "many researchers undervalue the importance of clarity,
and underestimate the effort required to produce a high-quality piece of writ-
ing" [20].

In our college at Mercer University, we have a three-course core integrative
curriculum for students in their first two years with writing instruction that
includes modules on thesis development, citing sources responsibly, and struc-
turing arguments and paragraphs. Students are also exposed to different types
of writing so that once they arrive in their junior and senior level courses they
are well prepared for writing, documenting, and speaking about significant re-
search.

Although we had been assigning some writing and oral presentations
throughout our computer science curriculum for many years, we had not
been doing any specific instruction in these areas especially in our upper level
courses. As Taffe argues, "professional writing must be taught in Computer
Science courses as a continuation of the more general writing instruction of
general education courses" [15].

1.2 Exposing Students to Different Kinds of Writing Early in the
CS Curriculum

Ideally, writing can be taught throughout the major discipline, and begins in
those early courses [8]. By including writing in any computer science course,
you emphasize that "writing is important" and that "principles taught in
English apply to technical areas as well" [19]. Also, students benefit when
they do different kinds of writing in the major [2]. We recently introduced a
lab in our CS1 course that exposes students to looking at scholarly articles
and using the ACM Digital Library. In our CS2 course, we require significant
documentation within the code as well as an accompanying analysis document,
which defines the problem, states the input/output specifications, and provides
insight into the design of the project. This document forces them to think
critically about the choices behind their data structures and algorithms, as
well as any relationships between classes used.
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1.3 Related Work in Writing Instruction

More writing instruction within the major has been done at other peer
universities with great success in recent years. At Furman University, a
few lessons using scholarly articles in the first courses in the CS major have
"helped reinvigorate students" and "exposed them to reading real research
without having them worry about understanding everything in the article"
[16]. They also have a mandatory 400-level seminar course that requires
students to prepare papers from research journals and give oral presentations.
Rollins College requires a Senior Capstone course in their major which exposes
students to "primary sources, facilitates a close reading of those sources, and
encourages students to reflect on the connections between the reading and
their experiences in the major" [14].

The SIGCSE 2018 panel "Writing in CS: Why and How?" discussed ways
that writing can be brought into the major "without massively increasing the
load on teachers and students". Strategies were discussed by panelists for
assessing results such as "designing clear rubrics" which have shown "clear ev-
idence of improvement in student writing in the context of project reports".
Panelist Maxwell mentioned the importance of integrating five different types
of writing throughout the major (analytic, code, descriptive, explanatory, and
persuasive). And, panelist Minnes gave evidence that students who were re-
quired to do weekly reflections during internships showed "greater depth of
integrative learning" in their writing by the end [1].

1.4 Writing Instruction in the Discipline

Most computer science professors are not trained in writing instruction. The
easiest way for computing professors to facilitate this instruction in an upper
level course is to spread it out using scaffolded writing assignments. By doing
this, you provide "a variety of instructional techniques used to move students
progressively toward stronger writing" [7]. This can be done by emphasizing the
prewriting steps as well as multiple drafts. It means giving students feedback
and/or doing peer review on a first draft, and then requiring them to revise
their work. Another great way to scaffold is to simply require students to
submit an annotated bibliography of their sources before actually beginning
the writing of their research.
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2 DISCUSSION

2.1 Format of an Introductory AI Course

There are many different, reasonable approaches to teaching a first course
in AI. In our curriculum, the introductory AI course is offered at the junior
level with prerequisites of data structures and discrete mathematics. It is
an overview course which tends to explore the breadth of many areas in the
field including the history of AI, search techniques, expert systems, machine
learning, natural language processing, and genetic algorithms. We typically
do one of these topics about every two weeks paired with a lab or assignment.
Guest speakers or alumni from the field currently involved in any of the areas
of AI covered are also invited into the classroom to complement the instruction.

The AI course textbook is supplemented by popular current books, which
interweave many of the ethical issues and challenges in developing a unified
theory of artificial intelligence. This past year these included The Master
Algorithm by Pedro Domingos [6], The Sentient Machine by Amir Husain [13],
and Rise of the Robots by Martin Ford [9]. These short, interesting books
are all examples of excellent writing on AI. Reading them can help students
improve as a writer and communicator. Selected portions or chapters can
easily be assigned, and these books can become excellent sources to later use
in their debates or research.

In the first week of the course while pondering what intelligence is, we read
Alan Turing’s original 1950 paper "Computing Machinery and Intelligence"
where he proposes what is now known as the Turing Test [17]. To make time
to facilitate the writing and speech instruction throughout the semester, some
of the coverage from the textbook had to be excluded. But, "it is possible to
both teach the students the important content of the course and to improve
their writing and critical thinking abilities" [10].

2.2 Debates in the AI Classroom
Artificial intelligence in particular raises many ethical questions. On the first
class day, I polled them on which of these questions in AI they were most
interested in discussing and learning more about. The two topics that generated
the most votes were used to form the scope of two in class debates we would
do later in the course. The two debate topics selected were:

1. Robots, Automation, and AI will destroy low-wage and middle class jobs the
world over in the next 50 years.

2. Autonomous self-driving cars will make driving safer than human-driven cars.
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I asked them for suggestions on others they might like to work with in a
group, and then used that information to assign them to one of four debate
groups. Each of the four groups was then assigned to one side (Yes or No)
of one of the two topics. I felt it was important for them to research the
point of view and arguments for that particular side. In addition, they had
to decide on a role they would play during the debate. For the first topic on
automation, the student roles they decided on included Economics Professor,
Data Scientist, Software Engineer, and Automation Engineer. The roles for
the second debate on self-driving cars were most creative. They included Vice
President of Autonomous Vehicles, Chief Technology Officer, Self-Driving Car
Engineer for Waymo, and Environmentalist.

2.3 Oral Communication Instruction and Feedback

Students prepared well for the debates and we held them on two separate
class days near midterm of the course. Each debate was structured for fifty
minutes broken down into an opening statement from each participant on each
side, a question and answer session, and a free form discussion with points,
counterpoints, and rebuttals. The students not participating in that debate
acted as members of the audience who were providing peer review on five
components: their opening statement, persuasion, clarity of communication,
grasp of subject matter, and teamwork. Students were asked to provide both
comments and a numerical evaluation on a five-point scale for each of these
components.

Prior to the debates, I taught them about verbal citations and their
importance when giving a speech or oral presentation. Students are often
not aware of the need to incorporate these types of citations [18]. Students
were instructed to introduce points or quotes of someone else using phrases
like "According to", "As reported by", etc. to clearly demarcate when using
quotes. They were reminded "listening to a live debate is a linear process, and
it is best to introduce a source before presenting information, so the audience
is ready to evaluate the information with the source" [4].

Both debates were a great way to engage students and get them excited
about many of the course topics. The discussions were quite lively, and
included a nice interaction with questions from both sides as well as the
audience members. Students listened and respected arguments from both
sides as well as used critical thinking skills to formulate meaningful questions
in real time. The students made integrative connections from computing to
many other disciplines throughout the debates. They also learned to argue
their point of view with someone who may be in disagreement.
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Following the debates, I compiled the anonymous peer review comments
from the non-debating students. I added up the numerical scores received on
each of the five components. This was used to later help provide a holistic
evaluation of a group’s performance along with my own comments and those
from their peers. As a teacher, I really enjoyed seeing how the debates energized
their imaginations and helped prepare them well to think about writing a
research paper related to many of the debate topics during the second half of
the course.

2.4 Readings and Topics on Artificial Intelligence and Society

Following the midterm break of the course, students in my course were required
to pick one of the eight topics below that would become the focus of a final
research paper due at the end of the course.

1. Robots – their Rights & Roles in our Future; Place of Robots in Healthcare &
Military

2. Dealing with Bias in Artificial Intelligence
3. Glass Cage: The Dangers of Too Much Automation
4. Technological Singularity: When Artificial Intelligence Exceeds Human Intel-

lectual Capacity
5. Books & Newspapers of the Future; Will some be written by Robots (Robo-

Journalism)?
6. The Ethical Challenges of Self-Driving Cars
7. Data Mining & Machine Learning for Recommendation Systems or Social Me-

dia
8. How Artificial Intelligence and Deep Learning Can Be Used to Evaluate and

Create Art; Can Machines Recognize Beauty Itself?

As a class, we spent one day at the library learning more about creat-
ing an annotated bibliography with current sources from the last five years
for their selected topic. Students practiced finding good journal articles using
the academic databases our library had access to and gained more experi-
ence in different citation styles. Their annotated bibliography had to have at
least four books, as well as four scholarly journal articles. It was good to get
them away from always using Google, and searching for articles using academic
databases specialized in computing research. Learning to dig, collect, and eval-
uate sources from different databases is a great skill to develop. By doing so,
they also become "part archaeologist and part anthropologist" [12].
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2.5 Implementing Writing Instruction and Peer Evaluation

There is no one way of writing well. By requiring students to do an annotated
bibliography followed by a first draft of their research paper, you make writing
more of a developmental process spread over time. They begin to see how
writing is like a puzzle, and that writing and critical thinking go together.
The annotated bibliography helps them generate and organize ideas gleaned
from the sources they have gathered. Most importantly, it prevents them from
procrastinating on their writing, and helps combat writing block. As Garvey
indicates, "the writing process students go through is at least as important as
the writing products that they eventually produce" [10].

My students were required to hand in their annotated bibliography two
weeks before the first draft of the final research paper was due. Each source
in their annotated bibliography included a short paragraph annotation, which
evaluates the author, audience, relevance to their topic, quality of scholarship,
and any connections to prior readings or research. I was able to quickly grade
the annotated bibliographies using a rubric which simply checked off whether
each of their annotations cited the source properly and included each of the
five required components. The annotated bibliography prepared them for the
actual writing of their paper, and moved them further along in formulating
better quality research.

Like Garvey, I stressed that the final draft "will receive a lower grade
(regardless of quality) if they do not hand in a serious effort for the first draft"
[10]. After they completed their first draft, I randomly distributed these
drafts to other students. Their classmates used a peer evaluation rubric to
give them feedback in four areas: format, clarity of argument, use of evidence,
and suggestions for improvement. Students appreciated the feedback on their
work from their peers, and commented how much they learned from reading
the writing of their peers. After returning and reading their peer reviews,
I reminded them "expert writers do extensive rewriting" and of the motto
to always "write once and edit twice" [2]. If time permits, doing a writing
conference with the student on their first draft before they revise it can also
be very beneficial.

By scaffolding the writing of the research paper into drafts, it gives
students a chance to not only improve their writing, but also improve their
grades. As Bean tells his students, "A C paper is an A paper turned in too
soon" [2]. This helps them not be afraid of making mistakes, and take more
risks in their writing. As students were revising their first draft, I encouraged
them to read it aloud or to a friend. I also provided a few helpful They
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Say / I Say writing templates for strengthening their arguments. I wanted
them to see a final draft like an academic conversation with their audience [11].

Grading student writing can be incredibly taxing. To help save time grading
their final drafts, I used a rubric broken down into these five categories.

1. Completed First Draft and Peer Review (30%)
2. Use of Evidence / Content from Sources (25%)
3. Organization of Paragraphs, Thesis, Clarity of Argument (25%)
4. Sentence Structure, Spelling, and Mechanics (10%)
5. Format and Documentation Style (10%)
Completing the first draft and peer review process was worth a lot and

could be cursory checked off and scored when grading. For the other four
categories, I provided an explanation of poor, fair, average, very good, and
excellent along with the possible range of points that could be earned in each
category. On average, it would take me about half an hour to read, score, and
provide comments for a five to seven page paper using this rubric.

3 CONCLUSIONS AND FUTURE WORK
At the end of the course, students were asked four specific questions regarding
the writing and debate components of the course. They could respond on a
five-point scale from Strongly Disagree (1) up to Strongly Agree (5).

1. As a result of this course, I am better able to write for different purposes and
audiences.

2. As a result of this course, I am better able to analyze sources/evidence.
3. As a result of this course, I am better able to use library resources.
4. The in-class debates helped me to improve my communication and critical

thinking skills.

All four questions scored an average of at least 4.6 on the five-point scale
with my class of 18 students from this past year. Being able to better use
library resources scored the highest. Student comments mentioned how helpful
the annotated bibliography assignment was in guiding and producing better
writing. Their comments also showed they responded well to both debates
and really enjoyed them. I highly recommend recording any in class debates
to share with colleagues or to document and point out improvements students
can make. By recording, you can also provide evidence of oral communication
in the classroom for assessment or accreditation purposes.

Overall, the writing and speech instruction of this course gave students
invaluable experience, which can benefit them greatly in their future careers.
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For those that choose to go on to graduate school, it can boost their confidence
for the writing and presenting of a thesis or dissertation. In addition, many
of our students now have a GitHub account to display their coding projects.
Writing samples would make a great addition here as well. These samples
on a GitHub account can serve as a valuable e-portfolio for students upon
graduation in addition to their resume.

For future research, it would be good to survey both graduating seniors
and graduates from the last couple of years to see the long-term benefits of
this writing and speech instruction in the major. I would also like to do an
initial writing assessment at the start of the course, and compare it to an
assessment of their writing in the final research paper. In addition, we hope
to start doing more writing instruction in the discipline in courses that lend
themselves to writing like Programming Languages, Theory of Computation,
and Software Engineering.
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Abstract
Classical Software Engineering education often includes traditional

methodologies that do not adequately describe today’s industry practice.
DevOps is a culture that promotes fast delivery, continuous feedback, and
an environment of learning. Its non-linear path requires a shift in soft-
ware engineering pedagogy. This case study describes the redevelopment
of a second-semester course in software engineering to focus on DevOps
principles. The study evaluates student performance using formative
and summative assessment through a team project tracked throughout
the semester and final exam results. Results indicated that students
developed DevOps skills during the course, but may have needed more
reinforcement of some traditional Software Engineering topics.

1 Introduction
Software Engineering (SE) continues to evolve as new and diverse technologies
become pervasive. The waterfall model emerged in the late 1960s, describing
a flow from one phase of development to another. The waterfall methodology
was a natural fit for the time, considering the long software development cycles
caused by technological constraints that existed in the 1970s. As technology
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Software Engineering 1 Software Engineering 2
1. Introduction to Software Engineering
2. Requirements Gathering, Analysis, and
Specification
3. Software Architecture, Detailed Design,
and Design Patterns
4. Implementation and Refactoring
5. Unit, OO, and Integration Testing
6. Software Maintenance
7. Introduction to Project Management
8. Software Engineering Ethics

1. Planning and Estimation
2. Configuration Management
3. Working with Teams
4. Metrics and Quality Assurance
5. DevOps Overview
6. Emerging Architectures: Microservices,
Serverless, and IoT
7. System and Acceptance Testing
8. Security and Social Impacts of Software
Engineering

Table 1: Original Software Engineering Curriculum

improved, software engineers strove to make methodologies more agile [2] so
customers could receive a faster return-on-investment. Today, the extensive
use of cloud-based technology has enabled software developers to continuously
produce and deliver software, leading to the DevOps paradigm [5]. DevOps
relates to the development and operations tasks involved in the rapid delivery
of software in a way that breaks down the silos associated with software devel-
opment and system provisioning. SE education requires a shift in its focus to
align with this paradigm shift in the industry.

Traditional SE instruction has focused on classical waterfall development
phases and project management. Some university programs offer only a single
overview course in SE, potentially limiting their ability to expand on various
topics. Such courses focus more on classical waterfall model phases than on
newer practices that graduates will see in the industry. University programs
that offer two SE courses have a better opportunity to separate concepts: the
first course could focus on development phases, ethics, and life cycle models.
The second could focus more on project management and newer development
methodologies like DevOps.

Previous work in this area proposed ways to incorporate DevOps into exist-
ing coursework, without assessing effectiveness [3]. This paper describes a new
curriculum for a second SE course that shifts the focus to DevOps practices.
While the classic material remains, the new curriculum uses DevOps as the
guiding methodology for course content and application. The curriculum was
implemented and assessed during the Fall 2019 semester, and the results of the
various learning outcomes were assessed.

2 Evolving Software Engineering Curriculum

This paper assumes a two-course sequence in Software Engineering. Table 1
shows the major topics covered in previous iterations of each course. Software
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Engineering 1 discussed each main phase of the Waterfall Model: Require-
ments, Design, Implementation, Testing, and Maintenance. The first course
also introduced project management and software engineering ethics. Software
Engineering 2 provided an in-depth discussion of project management: plan-
ning, estimation, configuration management, working with teams, and using
metrics for quality assurance. The second half of the second course included a
selection of contemporary topics like DevOps (including continuous integration
and continuous delivery), emerging architectures, issues with testing, and the
security and social impacts of Software Engineering [3]. Because of the emer-
gence and prevalence of DevOps in today’s industry practice, a paradigm shift
in the software engineering curriculum has become necessary.

Software Engineering education researchers have begun to investigate how
to incorporate DevOps practices into the curriculum. Kuusinen and Albertsen
[6] suggested collaborating with industry partners to teach DevOps and contin-
uous delivery practices. The authors included a DevOps-focused set of learning
outcomes that dealt directly with the automation of the DevOps pipeline. By
using both examination and student survey results, the assessment found that
improvements were necessary for explaining Infrastructure as Code, but stu-
dents generally understood the DevOps pipeline. Also, results showed a gap
between student understanding of DevOps as it relates to other agile method-
ologies.

Christensen [4] listed several challenges for teaching DevOps with tradi-
tional SE curricula. These challenges included a lack of instructor experience
with DevOps and the fact that DevOps crosscuts many traditional courses.
Christensen [4] also noted challenges related to DevOps being a skills-heavy
discipline and added that creating a realistic environment for students to ex-
periment could be difficult. To address these challenges, the author proposed
a seven-week course that included a tool-heavy curriculum. Therefore, the
author focused on the details of using specific tools like Docker to extend an
existing project continuously. Because of this focus, the study may have missed
some of the team dynamics required in a DevOps environment.

Bennett and Barrett [3] took a more robust team-based approach when
discussing a framework for incorporating DevOps into an existing SE curricu-
lum. Their work suggested three significant steps to help instructors begin to
introduce DevOps. First, the framework suggested that instructors encourage
DevOps understanding by placing students from various Computing programs
into project teams. Because not all institutions require SE across all Com-
puting programs, this suggestion might prove problematic. Second, the frame-
work encouraged the introduction of emerging architectures like microservices,
serverless architectures, and the Internet of Things. Introducing these architec-
tures without requiring their use might limit the effectiveness of the instruction.
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Software Engineering 2
Learning Objective Abbreviation

1. Project Management in a DevOps World
2. The First Way: Maximizing Flow

(a) Planning and Estimation
(b) Configuration Management and Continuous Integration
(c) Testing Review and Automated Testing
(d) System and Acceptance Testing

3. The Second Way: Principles of Feedback
(a) Metrics and Quality Assurance
(b) Reviews and Inspections
(c) Create and Analyze Telemetry

4. The Third Way: Continual Learning and Experimentation
(a) Emerging Architectures

5. DevSecOps
(a) Security Design Patterns
(b) Secure Use Cases

1. SPM
2. 1W

(a) PE
(b) CMCI
(c) TG
(d) SAT

3. 2W
(a) MET
(b) RI
(c) CAT

4. 3W
(a) EA

5. DSO
(a) SDP
(b) SUC

Table 2: Updated Software Engineering Curriculum Using DevOps

Third, the framework encouraged instructors to require project planning and
management activities within team projects using Kanban boards. Without
proper guidance, a student might miss the point of using the tools to encourage
project progression.

3 Proposed DevOps Curriculum

3.1 Learning Objectives
Table 2 shows an evolved curriculum in the second SE course based in part on
the DevOps Handbook [5]. This curriculum creates a DevOps thread through-
out the semester, using the “Three Ways” that help define the paradigm. The
First Way discusses continuous integration, continuous builds, and continuous
testing to move the software to the customer quickly. The Second Way allows
for feedback from deployments to inform developers about how to improve the
product and the process. The Third Way encourages developers to try new
things because the DevOps framework has built-in safety features that prevent
failures from becoming catastrophes. Each of these “Three Ways” allows for a
different means of exploring traditional SE topics.

3.2 Project Objectives
Because DevOps requires a team structure, a team project is an integral part of
the course. Creating a DevOps scenario involved a simple project that required
students to use DevOps techniques across four sprints. The project’s objectives
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appear in Table 3. Each sprint evaluated four particular items: CALMS eval-
uation, Code Development & Management, Work In Process (WIP), and the
Use of Scrum Practices. CALMS is an acronym used to evaluate DevOps im-
plementation based on Culture, Automation, Lean practices, Measurement,
and Sharing [1]. Students reflected on their use of DevOps at each stage in
the process by writing a brief CALMS report. Grades for Code Development
and Management assessed students’ use of BitBucket to manage their code
repositories. WIP using Trello was evaluated based on a constant left-to-right
movement of work, from inception to completion. The team’s effective use of
standard Scrum practices to complete the project across sprints provided the
basis for evaluating the Use of Scrum Practices.

Course instructors evaluated additional practices at a more granular level,
based on topics covered in class. API Development occurred during Sprints 1
and 2 and involved creating a microservices architecture that interacted with
a database. Sprint 3 focused on creating a testing environment that the team
could automate while also collecting other telemetry metrics about the software
itself. The final sprint involved a comprehensive retrospective of the entire
process.

Table 3: Project Objectives Across Sprints

4 Evaluation

An evaluation was performed across two sections of the Software Engineering
2 course in Fall 2019, with 31 students and six project teams. Although the
population size is small, this study gives an initial idea of effectiveness and
highlights areas where adjustments are necessary. The assessment was both
summative and formative. Summative assessment used the final exam to eval-
uate all 15 learning objectives. Formative evaluation assessed project objectives
throughout the four sprints during the semester.
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4.1 Learning Objectives
Each learning objective result comes from each student’s average percentage
for that learning objective on the final exam. These scores determine if a
student exceeds expectations (scores at or above 90%), meets expectations
(scores between 70% and 89.99%), or does not meet expectations (scores below
70%). Aggregate counts for each learning objective, as assessed by the final
exam, appear in Figure 1 as red (does not meet), yellow (meets), or green
(exceeds).

Figure 1: Learning Objective Results from Software Engineering Final Exam

Figure 2 shows the average percentage scores for each learning objective,
clustered by similarity. The objectives showing the lowest performance include:
Testing Review and Automated Testing (TG: 45% Does not meet, 61% aver-
age score), Security Design Patterns (SDP: 42% Does not meet, 69% average
score), and Planning and Estimation (PE: 48% Does not meet, 72% average
score). DevOps topics were among the objectives showing the best perfor-
mance, including: Creating and Analyzing Telemetry (CAT: 77% meets or
exceeds, 94% average score), Configuration Management and Continuous In-
tegration (CMCI: 81% meets or exceeds, 92% average score), and The Second
Way (2W: 81% meets or exceeds, 92% average score). Other similar objectives
showing positive results include: Reviews and Inspections (RI: 88% average
score), The Third Way (3W: 87% average score), The First Way (1W: 86%
average score), System and Acceptance Testing (SAT: 84% average score), and
DevSecOps (DSO: 82% average score). Software Project Management (SPM),

134



Figure 2: Learning Objective Percentages from Software Eng. Final Exam
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Metrics and Quality Assurance (MET), Emerging Architectures (EA), and Se-
cure Use Cases (SUC) showed average scores between 79% and 74%.

4.2 Project Objectives
Project objectives were assessed for each of the six project groups. Each group
received a letter grade that converted to a grade-point value on a four-point
scale for each project objective. For example, A- converted to 3.7, B+ to 3.3,
etc. Figure 3 shows the averages for each objective by sprint, while Figure 4
shows the averages for each project objective overall.

Figure 3: Project Objectives by Sprint

The four project objectives that crossed sprints were CALMS, Code, WIP,
and Scrum. CALMS (overall average 3.16), showed a dip in Sprint 2, but a
strong recovery by Sprint 4. This result indicates that students became better-
adapted to the DevOps framework over time and were better able to reflect as
time progressed. Coding (overall average 3.03), increased during Sprint 3, but
fell to its lowest level in Sprint 4. This result likely indicates that most teams
spent Sprint 4 addressing issues that occurred in previous sprints, and less
product progression occurred. Tracking WIP (overall average 3.31) showed an
upward trajectory that peaked during Sprint 3, with a slight decline in Sprint 4.
This decline indicates that students became more accustomed to tracking their
work over time using DevOps principles. It also agrees that the final sprint
had less product progression. Finally, Use of Scrum (overall average 3.31)
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remained nearly constant throughout the project. This consistency shows that
students had a base understanding of the Scrum framework from the Software
Engineering 1 course.

Other objectives showed some interesting trends. Work on API develop-
ment (overall average 3.23) was strong during Sprint 1 but fell during Sprint
2. This decrease indicates that students had additional difficulties because
they had to begin using their APIs during the second sprint. Testing (overall
average 2.72) was the lowest-scoring objective. Many students struggle with
setting up unit tests, but the added responsibility of automating those tests
likely decreased this score. Metrics (overall average 2.80) also proved to be
a problem area for students, who had to learn, implement, and use metrics
during the semester. These problems indicate the need for additional practice
with using metrics. The project Retrospective (overall average 3.45) was the
highest-scoring objective, which indicates that students were good at honestly
reflecting on the process throughout the semester.

Figure 4: Project Objective Averages

5 Conclusion
This study shifted the focus of the second course in software engineering from
traditional topics to DevOps. The experimental offering in Fall 2019 showed
that some DevOps topics were well-received, including The Three Ways, par-
ticularly topics surrounding the Second Way (Reviews and Inspections and
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Creating and Analyzing Telemetry). The use of Scrum practices remained con-
stant throughout, but other classic software engineering topics were lower than
expected. Testing seems to be a problem both in practice and in content re-
tention and needs reinforcement in the curriculum through exercises or other
hands-on assignments. Metrics was another topic that seemed problematic for
students in both content retention and practice. Because most students had
never used metrics, continuous reinforcement of their importance would im-
prove student understanding. Instructors who adopt this methodology should
ensure that DevOps topics do not overshadow important classical topics like
metrics and testing. To ensure maximum effectiveness, a course in DevOps
must balance content delivery with practical application to ensure student suc-
cess.
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Abstract
This paper focuses on the development of classifiers capable of de-

tecting a skin cancer(s) given dermoscopic images. The dataset used
for the training is a part of the 2019 ISIC Challenge, and consists of
more than 25,000 labeled dermoscopic images. Specifically, classifying
dermoscopic images accounts for nine different diagnostic categories:
melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis,
benign keratosis, dermatofibroma, vascular lesion, and squamous cell
carcinoma, some of which are benign. We have developed classifiers –a
binary classifier and a multiclass classifier –on the Google Cloud Platform
using Convolutional Neural Networks (CNNs). To prevent the classifiers
from overfitting and to achieve higher accuracy even with the smaller
training data size, we use image data augmentation. The binary classi-
fier achieved an accuracy of 79% with 220 epochs of training, and the
multiclass classifier’s accuracy is 72% with 200 epochs.
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1 Introduction
Skin cancer, more than any other type of cancer, causes more death than heart
disease in wealthy countries [3] and is increasingly the most common form of
cancer in the United States [14]. In 2019, it is estimated that 7,230 deaths are
attributed to melanoma alone. However, skin cancer is also one of the most
treatable types of cancer. The five-year survival rate for melanoma patients is
99% if it is detected and treated before it spreads to the lymph nodes; thus,
early detection is crucial. The warning signs of skin cancer include changes
in size, shape, and color of moles or skin lesions [14]. Despite all this, it is
very unlikely that during a routine check-up a skin lesion will be classified as a
possible skin cancer. A fair number of patients diagnosed with melanoma had
visited their regular doctors in the two years or so preceding the diagnosis [21].
In most cases, the melanoma was not diagnosed, and some patients were incor-
rectly cleared after having reported concern about skin lesions [21]. Over the
last decade, the growing focus has been put on identifying screening obstacles
in order to implement more tailored strategies that promote early detection
efforts [21]. Locating skin cancer is not generally a part of the main practice
for essential care. The chance of detecting a clinically imperative early skin
cancer is low, thus practitioners are often not able to detect skin lesions at their
earliest stages of development. Yet physicians never face the consequences of
missing an early skin cancer diagnosis. Further, there are not many specialists
who have the expertise to suitably diagnose potentially cancerous lesions [21].

Skin cancer detection is being revolutionized by deep learning. Deep learn-
ing is a subset of machine learning and a specific form of artificial neural net-
work (ANN), similar to the multilayered human cognition system [12]. Deep
learning methods have changed the investigation of natural images and videos,
and similar examples are emerging with the investigation of biomedical data.
Deep learning has been used to classify lesions and nodules, and to localize or-
gans, regions, and landmarks [4]. In numerous areas of medicine, deep learning
technology is used widely. One area of its application includes breast cancer
detection. Here, traditional detection methods are often expensive, painful,
and inaccurate with respect to measuring the location and size of the tumor.
To overcome these deficiencies, neural network models for early breast cancer
detection have been used [1]. Additionally, research on leukemia classification
in later years has been primarily based on computer vision techniques. Ma-
chine learning techniques, such as K-means clustering, have been implemented
in order to detect and classify blood cells in images. There are two advantages
to using Convolutional Neural networks (CNNs): not only do they diminish
the processing time by allowing us to skip most of the pre-processing steps,
but they also are capable of extrapolating features that are more robust than
the customary statistical features [19]. In recent years, deep learning has been
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revolutionizing liver lesion segmentation, which is a fundamental step in the
diagnosis of liver cancer. While manual segmentation is time-consuming and
prone to error, scholars have designed a two-step U-Net approach in order to
automatize such segmentation, and they have reported a very high accuracy
rate (Dice score above 0.94) on their test data [7]. The Dice score, or Sørensen–
Dice coefficient, is a common metrics for the evaluation of segmentation tasks
in medical imaging [2]. All this is only a portion of the vast progress made in
recent years in the biomedical field with regard to the detection of tumors.

Our research aims to develop a binary skin cancer classifier and a multi-
class classifier using deep learning technology by training them with dermo-
scopic skin images from the 2019 ISIC Challenge dataset [9]. We designed and
implemented the classifiers as CNNs using TensorFlow [18], and planned on
reducing anticipated overfitting by expanding training images using an image
augmentation technique.

2 Related Work

Over the years, new techniques that seek to improve the accuracy of skin cancer
diagnosis and detection have emerged in the biomedical world. In 2012, Sheha
et. al. [16] developed a system based on the use of two different multilayer
perceptron (MLP) classifiers. The highest classification accuracy was achieved
by using the traditional MLP classifier over an automatic one, with 92% and
76% classification accuracies, respectively [18].

Sharma and Srivastava [15] have proposed the use of Back-propagation
neural networks (BNNs) and Auto-associative neural networks (AANNs) for
accurate prevention and diagnosis of skin cancers. They developed a BNN-
based classifier that achieved a 90.2% overall accuracy with three hidden layers
of 40, 25 and 10 neurons in each hidden layer. In this case, the high number
of neurons per hidden layer helped reduce the probability of overfitting. They
also developed an AANN-based classifier that achieved overall accuracy of 81.5

It should be stated that the type of image you work with in some cases
affects the performance of a certain diagnostic method [20]. In the past it has
been observed that using dermoscopic image sets improves the accuracy with
which CNNs classify malignant cases, while CNNs that were trained with close-
up images were better at diagnosing benign cases [20]. Dermoscopic images
are obtained through dermoscopy, an imaging technique which removes the
reflection of the skin on the surface [8]. Thus, compared to close-up images,
dermoscopic imaging provides an enhanced visualization of the skin [8].
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3 Data Preparation

The 2019 ISIC Challenge dataset [10] contains 25,331 dermoscopic images for
training with labels across 8 different categories. A part of the dataset is the
HAM10000 dataset. Of these images, we use 80% as a training set and the
rest as a validation set. All the images in the dataset come with different
sizes, so we apply random cropping with a fixed resolution of 256x256 pixels.
Random cropping allows our models to generalize better, for what we want
them to learn is not always completely visible in the images or the same scale
in our training data [17]. We also applied image augmentation technique to
artificially expand the dataset and to increase the accuracy with fewer images.
Specifically, we use some properties of the ImageDataGenerator class of Keras,
such as rescale, rotation, shear range and zoom range for image augmentation.
During the whole training, we had to deal with the fact that the initial dataset
was heavily imbalanced, and the number of images in some classes was greater
than in the rest, as reported in Table 1. For instance, for the Melanocytic
Nevus class we have 12,875 images, almost half of the entire dataset, while
the class Dermatofibroma consists of just 239 images. Precisely, four of these
categories constitute 92% of the available data, while the rest make up only
8%. The ratio of malignant and benign images is about 1 to 2 in the training
dataset. We organized the image data in subfolders according to the type of
skin cancer or lesion to which they belong, so that the ImageDataGenerator
class can make use of it.

Table 1: Number of Samples for Each Class in the Training Dataset

Diagnostic Class Number of Images Percentage
Melanoma - MEL 4522 17.9%

Melanocytic Nevus - NV 12875 50.8%
Basal Cell Carcinoma - BCC 3323 13.1%

Actinic Keratosis - AK 867 3.5%
Benign Keratosis - BKL 2624 10.4%
Dermatofibroma - DF 239 0.9%

Vascular Lesion - VASC 253 1%
Squamos Cell Carcinoma - SCC 628 2.4%

Total 25,331 /
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4 Training and Testing
We built two models - a binary classifier for malignant and benign cases, and
a multiclass classifier to classify the lesions and types of skin cancer reported
in Table 1. Initially, we developed and trained our models on a local computer
in Jupyter Notebook [11] environment, but the time to train the model by
going through the whole training set just one time, also known as an epoch,
was too long due to lack of computing power. Usually training a model takes
well more than a hundred epochs, so training models on a local computer
turned out to be an infeasible solution. Then, we updated our models and
moved the development environment to Google Colaboratory [5] where users
can develop and execute Python code in Jupyter Notebook environment with
cloud computing free of charge. Still, the code in Google Colaboratory couldn’
t run for more than about 30 minutes due to timeout.

As a consequence of receiving the Google Cloud Platform (GCP) Research
Grant, we were able to set up virtual machines with multiple GPUs and train
without time limit. This way, the time to run a single epoch went from about
three and a half hours on a local machine to 4 minutes on a virtual machine
with GPUs.

All training and tests ran using different configurations of GPUs to be able
to decrease the time to run epochs as much as possible. For our binary classifier,
we initially used a virtual machine with two NVIDIA Tesla T4 GPUs with
64GB of video memory, but in order to run more epochs in less time we took
a step forward and upgraded to eight NVIDIA Tesla K80 GPUs with 128GB
of video memory. For our multiclass classifier we used a virtual machine with
two NVIDIA Tesla T4 GPUs and 64GB of video memory, without upgrading.
In the multiclass classifier, the upgrade was unnecessary because we didn’t’
need to train as many epochs since overfitting happened at an earlier epoch.

Convolutional Neural Networks (CNNs) emerged from the study of the
brain’s visual cortex and are known to perform well in computer vision tasks
such as image classification [6]. A CNN can be defined as a Deep Learning
model which can analyze images, define weights and biases for different objects
in those images, and be able to distinguish one from another. CNNs are made
up of different layers, of which the convolution and pooling layers are very
important. The convolution layers transform the input image so as to extract
features from it. The pooling layers are used to reduce the size of the input
image.

So as to achieve the best training model, we tried different configurations,
changing the number of neurons per layer and the number of convolutional /
pooling layers. The models that are presented are the ones that have obtained
the best performances. Our CNN models are composed of a Sequential layer
that includes four pairs of convolutional and pooling layers, a Flatten layer that
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shapes 2d image data into single dimensional data, and a Dense layer which
consists of densely connected layers. There is a Dropout layer, which applies
the dropout regularization technique by randomly disabling neurons at certain
percent during training to avoid overfitting in artificial neural networks, just
before the dense layer. The dropout layer has a 50

Regarding the number of filters per convolution layer, we tried different
combinations to see how the model would respond. There is no standardized
way to choose that, so most of the time the combination depends on the data
available and the results obtained. In the end, the number of filters in the four
convolutional layers set to 32, 64, 64, and 128 obtained the best results. The
configuration of our CNN is shown in Figure 1.

The Adam optimizer, which is known to converge to the global optimum
quickly, is one of the most popular optimizers in deep learning [6], and was
used for training our models. The last layer of the model is an output layer
with the SoftMax activation function for our multi-class classifier, or with the
Sigmoid activation function for our binary classifier. The design of the models
is shown in Figure 1.

Figure 1: The Training Process of the Skin Cancer Classifier

With the training and test image data ready, we trained the models with
the data, considering the loss and the accuracy, which are indicators of how
the training process is going. We used a split ratio of 80:20 of training and
validation data for both our binary classifier and multiclass classifier. After
each epoch, the accuracy and loss of the models were logged and graphed. Ac-
curacy is the portion of correct predictions, and loss is a measure of a model’
s performance. We use the Cross-Entropy loss function for our models. More
precisely, the Binary Cross-Entropy loss function for our binary classifier, and
the Categorical Cross-Entropy one for out multiclass classifier. Both loss func-
tions measure the performance of a model whose output is a probability value
between 0 and 1 [13]. We have to use slightly different Cross-Entropy loss
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functions because, based on the nature of our classifiers, we may have more
than two classes. We run batches of 25 epochs to account for overfitting and
we save it every 50 epochs of training to prevent data loss due to a connec-
tion timeout. After each epoch, training accuracy and validation accuracy are
recorded. Training accuracy is the percent of correct predictions by the model
being trained on the training data, and validation accuracy is calculated from
the validation data. We use the validation set to compare the two obtained ac-
curacies in order to correctly evaluate the results and observe the performance
of the classifier; Figures 2 and 3 show training and validation accuracy curves
of the models as training takes place.

Training has to stop when overfitting happens. Overfitting occurs when
the model performs well on training data, but poorly on data that were never
used during the training. We consider the occurrence of overfitting as the gap
between training accuracy and validation accuracy gets bigger. In Figure 2,
approximately at 100 epochs, overfitting is observed with the training accuracy
at about 72%. In Figure 3, overfitting is not observed, even though the accuracy
is plateaued at 79% at around 200 epochs.

5 Result

Our binary classifier’s accuracy approaches 79% with 220 epochs of train-
ing, and our multiclass classifier’s accuracy approaches 72% with 100 epochs,
as described in Table 2. Evaluating the accuracy curves for each model, we
observed that the multiclass classifier began to overfit around at 100 epochs,
while the binary classifier performed well without overfitting until it plateaued,
as shown in Figures 2 and 3.

Table 2: Classifier Accuracy

Classifier Type Validation Accuracy
Binary (Malignant or not) 79%

Multiclass (Types of skin cancer/lesion) 72%

Figures 4 and 5 show the confusion matrix, and present the prevalence of
misclassifications on each label for the classifiers. Basically, the bright blocks
in the diagonal show high accuracy, and MEL, BCC, BKL and NV show high
accuracy. The number of images per diagnostic category in Table 1 helps us
understand why some of these present more misclassifications than others. As
mentioned above, the initial dataset was heavily imbalanced, therefore affect-
ing those diagnostic categories with fewer images. As a matter of fact, NV,
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Figure 2: Accuracy Curve
of the Skin Cancer Multiclass
Classifier.

Figure 3: Accuracy Curve of
the Skin Cancer Binary Classi-
fier.

BCC, MEL, and BLK were likely to be classified correctly than others in the
multiclass classifier due to the greater number of images in the training set.

Observing Figure 4 and 5, we notice from the confusion matrices that the
number of true positives is quite low compared to the true negatives. This is
another consequence of the heavily imbalanced training set and validation set.
The ratio of images representing malignant skin cancers/lesions to benign ones
is 8,473 to 17,058, roughly 1 to 2.

Figure 4: Confusion Matrix of
the Multiclass Classifier

Figure 5: Confusion Matrix of
the Binary Classifier
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6 Conclusion
In this paper, we have presented a deep neural network using CNNs that we
designed and developed to detect skin cancer and lesions. The results are
promising with an accuracy of 72% (multiclass classifier) and 78% (binary
classifier). It also confirmed that the accuracy of the model is heavily influenced
by the size and ratio of the classes in the training set.

Future studies exploring new learning models, such as transfer learning that
trains an existing well-performing model rather than from the scratch, may be
needed to improve accuracy. A focus on improving the pre-processing, thus
making it more effective so as to handle the imbalanced data during the skin
lesion/cancer analysis, is another area of future research.

We believe research like ours plays an important role in the early detection
and treatment of skin cancers thanks to its simplicity and accuracy. Further-
more, this kind of research can aid in developing other tools, such as apps for
physicians and patients to use, further decreasing the time required to arrive
at a correct diagnosis and, subsequently, expediting the treatment of what can
be a debilitating disease.
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Abstract
Academic disruptions are an eventuality that must be anticipated

and handled in an efficacious manner. While many schools have general
plans, especially for hurricane and other weather-related disruptions, the
COVID-19 pandemic has elevated the issue beyond regional risk mitiga-
tion. Team-based software engineering and capstone courses in computer
science are especially vulnerable to these types of disruptions, and this in
turn risks the attainment of key student and program outcomes near the
culmination of the academic program. By practicing some of the pro-
cesses and tools they preach, however, software engineering courses have
a natural advantage and ability to adapt rapidly to changes. This paper
recommends specific classroom adaptations for professional software en-
gineering practices and tools, provides a sample rubric and assessment
instruments, recommends instruction approaches that ensure continuity
of instruction, and concludes with a brief experience report for recent
hurricane and COVID-19 disruptions.
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1 Introduction

Ensuring continuity of instruction during academic disruptions is paramount
in higher education. While hurricanes are a frequent cause of academic disrup-
tions in the American Southeast and along the Eastern seaboard, the COVID-
19 global pandemic has brought the issue into sharp focus worldwide. Beyond
institution-wide disruptions, students recovering from illness are often out of
the classroom for more than one week, which can greatly hinder their abil-
ity to participate and keep up. In these situations, within computer science
education, courses dependent upon teamwork (e.g. software engineering and
capstone-style courses) create unique challenges and urgency. By implementing
some best practices, leveraging institutional resources, and adapting software
engineering tools and techniques to the classroom, instructors of these courses
can ensure the continuity of instruction, maintain attainment of course and pro-
gram outcomes, and most importantly, provide all students the best chances
to learn and succeed.

2 Background

Since the Agile Manifesto[5], and well before the ACM/IEEE 2013 curricu-
lar recommendations for computer science programs[9], incorporation of agile
software engineering practices into computer science coursework has been in-
crementally moving forward. Fox and Patterson argued, in 2013, how agile
should be more than an additional chapter in textbooks and that it should
be discussed alongside plan-and-document processes[6]. In recent years, many
courses and books have shifted to embrace agile methods and their use in the
classroom.

While this paper is not debating the pedagogical merits of agile software
development in principle, it does make the case that courses featuring ag-
ile software development projects are well equipped to gracefully handle ma-
jor academic disruptions, including mandatory evacuations for hurricanes and
pandemics, and even dramatically shifted instructional modalities, if we indeed
practice what we preach.

3 Courses

The recommendations in this paper are based on our program’s two-course
capstone sequence in software engineering. The first course includes material
on software processes (both agile and plan-and-document) and culminates in
a large team-based software engineering project ideally dictated by an exter-
nal client. The second course is a practicum and is based on a full-semester
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team software engineering project intended to be delivered to an external
client. While plan-and-document software processes are good choices for some
projects, due to the spread of agile practices and their applicability to small-
and medium-scale projects, both courses encourage students to adopt an agile
process incorporating elements of Scrum and Extreme Programming (XP).

Student teams are typically instructor-selected based on strengths and
weaknesses known about individual students, combined with survey and pref-
erence information collected from students at the start of the term. Ergin
describes instructor-formed team selection strategies in his 2019 paper[4]. Our
teams typically contain 4-7 students depending on the size of the class.

4 Agile Processes

While it comes in many varieties, agile software development focuses on de-
livering working software incrementally while responding to change gracefully.
Teams typically self-organize and work in iterations, or sprints, each lasting 1-4
weeks. Scrum is a popular agile process that organizes through particular roles,
ceremonies, and artifacts[2]. The primary roles of Scrum Master and Product
Owner, and their adaptation to the classroom, are detailed in the next section.
Scrum ceremonies include sprint planning, review, and retrospective, as well
as a daily “stand-up” meeting. Artifacts of this process include the product
backlog (the overall to-do list for the project), the sprint backlog (a subset for
the current iteration), and various tracking and burndown charts. Extreme
Programming (XP) takes some of these agile ideas to the extreme, emphasiz-
ing short iterations, test-driven development, and pair programming[7]. Some
of these practices are quite efficacious in the classroom[8]. The next sections
describe how these agile practices, roles, and tools have been adapted to the
classroom.

5 Adapted Scrum roles

Teams applying a Scrum (or Scrum-like) software development process typi-
cally have two key roles: the Scrum Master, who represents management to the
project, and the Product Owner, who defines the features of the project. While
it is useful to study (and even practice) Scrum and other software processes, it
is also helpful to acknowledge that students in our courses work under a com-
pletely different reality than a trained, full-time development team. As such,
a slight adaptation of these roles to serve their academic needs can enable the
student teams to be more productive and successful. We encourage our teams
to rotate the roles with each sprint/iteration so that each team member has
the opportunity to learn the responsibilities. We further encourage either the
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Scrum Master or the Product Owner to rotate into the other role as one new
person steps in. This provides a continuity of leadership as one rotates on and
one rotates off. Since few students like to be the teammate always dictating
to others and “cracking the whip,” letting each teammate play that role for
a short time both avoids team conflict and ensures that the responsibilities of
the roles are actually carried out regularly.

Table 1 compares typical professional roles[3] of the Scrum Master with
adapted versions of these roles for the academic setting. The academic roles are
flexible whether or not the course staff is functioning as the project’s customer
and if not, whether or not a team must also check in with course staff. In
a hypothetical sprint, the Scrum Master may join the Product Owner at a
customer meeting if needed. The Scrum Master will make sure the team meets
for regular stand-up meetings and makes sure the Scrum ceremony formats
are followed. As development proceeds, it is the job of the Scrum Master to
make sure that developers are following best practices, including proper code
organization and software architecture, proper branching and version control,
and proper progress monitoring of user stories. Finally, the Scrum Master
would be the one (perhaps with the Product Owner) to represent the team to
the course staff for progress reports.

Table 1: Adapted Scrum Master Role

Professional Academic
Represents management to the project Bridge between course staff and the project team
Responsible for enacting Scrum values and practices Responsible for enacting Scrum practices
Removes impediments Helps team to work around other responsibilities
Ensure that the team is fully functional and productive Enforce team rules, norms, and standards
Enable close cooperation across all roles and functions Ensure teammates are working and communicating
Shield the team from external interference Encourages team focus and advocates for resources

Table 2 compares typical professional roles[3] of the Product Owner with
adapted versions of these roles for the academic setting. In a hypothetical
iteration, the Product Owner would re-prioritize the product backlog after
speaking with the customer for a check-in and demo (perhaps along with the
Scrum Master). At the start of the sprint, the Product Owner will facilitate the
story/task estimation process with the rest of the team, helping to clarify ques-
tions and represent the voice of the customer. As team members mark stories
as complete, the Product Owner would verify that the described functionality
was implemented, tested, and reviewed properly before marking the story as
complete and merging the code into the mainline branch. When necessary, the
Product Owner will add new stories to the backlog and re-prioritize.

153



Table 2: Adapted Product Owner Role

Professional Academic
Define the features of the product Takes responsibility for the product backlog
Decide on release date and content Leads the maintenance of the sprint backlog
Be responsible for the profitability of the product (ROI) Represents the voice of the customer in meetings
Prioritize features according to market value Primary contact for meeting with the customer
Adjust features and priority every iteration Adjust features and priority every iteration
Accept or reject work results Accept or reject work results (enforce code review)

6 Adapted Agile Ceremonies

In the sprint/iteration planning meeting, the team selects user stories from
the product backlog for completion in the upcoming sprint. These stories are
deconstructed into tasks and estimated. For student teams with no experience,
these estimates are quite coarse, but there is benefit to repeating this process
even for just a few weeks of a term. In these meetings, team members also give
their commitments to their work, providing an accountability mechanism for
the Scrum Master and Product Owner for the week. The student version of
this real-world ceremony is similar, but smaller in scope.

The daily stand-up meeting, or “scrum,” is a key part of a full-time agile
software engineer’s workflow. The agenda for this meeting consists of three
simple questions[2] for each team member: 1) What did you do yesterday? 2)
What will you do today? 3) Is anything in your way? While daily is ideal for
this ceremony, students have classes two or three days per week and may not
see their teammates at other times, especially if they live off-campus or go to
school part time. While student teams will need to meet regularly outside of
the classroom, we have found that providing a short amount of time at the
end of each class period gives teams a chance to hold at least two or three
stand-up meetings per week, thereby facilitating momentum, accountability,
and hopefully, further team communication.

The sprint review is where a team typically presents and demonstrates the
accomplishments of the sprint [2]. The student version of this ceremony is likely
less formal, but it provides an important accountability check for the team
and reinforces the principle of always refining working software. Regularly
demonstrating new features to an external client and/or course staff keeps
student teams on the right schedule and increases their likelihood of delivering
a good final product without requiring last-minute heroics. In the next section
we discuss some tools that can enable this ceremony, especially for students.

The sprint retrospective provides a critical improvement opportunity for
professionals and students alike, as teams reflect on what worked and what
did not work during the last sprint. While it is good to give student teams
autonomy, if possible, we have seen benefit in the earlier sprints from the course
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staff facilitating the first of these short meetings. Asking team members in a
group setting what we should start, stop, and/or continue doing encourages
them to participate candidly in this process of continuous improvement.

7 Tools Supporting Agile Processes

Tool support for agile processes is not new, but helping one’s students choose
the right tools can enable learning and continuity of instruction in the event
of an academic disruption.

7.1 Tracking User Stories

Perhaps the key artifact of Scrum and other agile processes is the product
backlog. Using a physical tracking system such as Kanban[1] is a great way
to visualize and collaborate, but it is difficult to implement for teams without
a dedicated space for each team. Virtual systems provide a good alternative,
accommodating full- and part-time student team members, and those who do
not reside on campus. Some currently popular tools include Jira (jira.com),
Pivotal Tracker (pivotaltracker.com), Trello (trello.com), and the Issues feature
of GitHub (github.com). Some tools integrate the ability to note user story
points and facilitate other estimation practices, and most offer free access for
educational use. We have had success with Tracker from Pivotal. Most of these
tools can also automatically generate tracking and burndown charts that are
useful for measuring student progress throughout the project.

7.2 Version Control

Version control is critical for any software project’s success, and as an industry
standard practice, promoting its use by students helps equip them for the next
steps in their careers. Git is arguably the most popular technology currently
in use, and its decentralization and branching makes it an ideal fit for team
projects. GitHub.com arguably provides the best tool support around Git, and
builds in many features useful for professionals and students alike.

We encourage the “shared repository model” for team collaboration in
GitHub, whereby all team members add new features to a project in a devel-
opment branch, and then open a pull request to merge that branch back into
the mainline branch. This pull request and its subsequent approval or rejec-
tion by the product owner further reinforce accountability and the code review
process. Conveniently it also leaves a clear trail of activity for inspection by
course staff. Over time, the branch and commit history of a team’s repository
is the plain and true evidence of participation from each team member.
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7.3 Continuous Integration and Continuous Deployment

As they are able and as time permits, we encourage students to use web services
to test, deploy, and monitor their applications in production. Tools like Heroku
(Heroku.com) not only provide a production environment in addition to their
development environment, but provide a convenient way to demonstrate the
current version of the software to customers and of course staff, online. Other
tools, such as TravisCI (travis-ci.org), Jenkins (jenkins.io), and others, provide
a way for students to automate tests and measure code quality. Many of these
tools cross-integrate and enable an academically disrupted or geographically
distant team to feel like their project is still in motion despite circumstantial
changes.

7.4 Team Communication

We require the use of Slack (Slack.com) for team communication as it (and
similar technologies) are widely used in the industry. Slack in particular offers
many integrations that can tie in useful process information from our other
tools. Each team member is added to a private team channel with the course
staff, and they are encouraged to download desktop and mobile applications
and enable notifications. Students often want to default to group text messages
or other options like Discord, but getting student buy-in for one system provides
eventual communication benefits to them, and oversight abilities for the course
staff.

We instruct students to link their Slack channel with their GitHub reposi-
tory, which will automatically post whenever there is a commit, pull request, or
other significant activity in the repository. This serves as a reminder that one’s
teammates are working (and maybe they should be as well), and that there
may be important changes to the mainline code base that they should pull into
their development branches. After a few iterations, we also encourage teams
to connect their Slack channel to their production environment (e.g. Heroku
for web applications), to their Continuous Integration tools (e.g. Jenkins or
TravisCI). All of these recommendations make Slack the home base of commu-
nication for everything regarding the project. If Slack is being regularly used
when students are together, in the event of a disruption, there can be a nearly
seamless transition to a distributed team modality.

8 Student Assessment

Like any course, early and expedient instructor feedback to students is help-
ful and allows corrections and improvements not possible when only the final
project output is assessed. The iterative nature of agile software development
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lends itself well to instructor feedback by assessing student contributions to
each sprint. For the first course in software engineering we recommend one-
week sprints to allow this feedback and to avoid inevitable student procras-
tination. For second or capstone courses, teams should consider one or two
weeks for a sprint length since they have prior experience. We make team ex-
pectations clear for each sprint in terms of the number of expected user stories
to be delivered, test coverage to be achieved, etc. We also hold individuals
accountable with a simple survey completed by each person. The survey ques-
tions are listed below, and allow the instructor to quickly intervene if red flags
in participation or attitude are discovered.

• Select role: Scrum Master, Product Owner, or Team Member
• List all team meetings you attended
• List all team meetings you missed
• Describe the top two achievements by your team this sprint
• Describe your biggest personal contribution this sprint
• Who on your team deserves recognition for this this sprint?
• Who on your team was not doing their job this sprint?
• What letter grade does your team deserve for this sprint?
• What letter grade do you deserve for this sprint?

The answers to these questions can be quite telling. Some students are
very self-aware and know they need to do better next time. Other students are
a bit delusional and claim to be deserving of high grades when there is little
or no evidence of activity. Weak team members and strong leaders become
evident quickly. All of this information can be used to inform the strategic
interventions of the course staff with the teams.

Additionally, the course staff at our institution schedules a weekly meeting
with the Scrum Master and Product Owner of each team. This is a purely
instructor-role meeting, so if the instructor is also serving as the team’s cus-
tomer, those discussions happen separately. This meeting is useful in obtaining
a candid, leader’s view of the team’s progress and is a way for the course staff
to indirectly influence the team and its members towards corrective actions.
Rotating the Scrum Master out, the Product Owner into the Scrum Master
role, and a new team member into the Product Owner role keeps a longer
continuity of leadership and a better opportunity for instructor influence.

Assessing each sprint or iteration involves examining the agile project arti-
facts: version control history, product backlog, test coverage/code quality, etc.,
combined with the sprint evaluations from team members. For version control
and user story tracking systems, we provide students with the following letter
grade rubric shown in Table 3 to make clear what kind of activity is expected.

157



Table 3: Letter Grade Rubric for Version Control and User Story Tracking

Grade Description
A Organized with regular updates from all team members
B Mostly organized with updates from all team members
C Mostly organized with updates from some team members
D Disorganized with sporadic updates
F Disorganized with little to no activity, or missing

9 Experience Reports

In recent years, our institution was closed for at least one week due to hurricane
evacuation orders in 2016 (Matthew), 2017 (Irma), 2018 (Florence), and 2019
(Dorian), each happening in early to mid-September, except Matthew, which
was early October. In 2016, team projects had just begun and were highly
disrupted since most of the recommendations in this paper were not yet in
place. Storms in 2017, 2018, and 2019 came very early in the semester and
had a smaller impact on projects since they’d not fully started at the time of
evacuation. If we experience another hurricane evacuation in 2020 or beyond,
we will have the recommendations in this paper in place to ensure continuity
of instruction.

The spring semester of 2020 confirmed the efficacy of these recommenda-
tions when our institution broke for Spring Break and never returned for face-
to-face instruction due to the global pandemic of COVID-19. Because students
were already communicating via Slack, the team stayed engaged. The instruc-
tor moved weekly meetings with the Scrum Master and Product Owner to video
conferencing and collected individual sprint reports online instead of in hard
copy. As a result, a monumental academic disruption basically amounted to a
switch to a distributed team – an incredibly real-world experience our students
will be able to describe in job interviews. Some students had difficulty keeping
up and participating with such an abrupt shift in academic circumstances, but
red flags were easy to spot and the course staff intervened and accommodated
as much as possible. In the end, despite all the challenges, projects were com-
pleted successfully. While not as satisfying as the in-person experience, teams
presented final projects virtually and demonstrated working projects from their
web-based production environments.

10 Conclusion

In this paper we have reviewed some agile software development processes,
practices, and roles, and described their adaptations to the academic envi-
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ronment. We have made recommendations for course and team organization,
tools, and processes to ensure the ability of our software engineering courses to
thrive face-to-face, online, or in a situation where they are forced to jump from
one modality to another. Finally, we have described a rubric and assessment
instruments and strategies for providing early and helpful feedback to team
members and leaders to provide the best environment for students to succeed.
If any type of course should be able to adapt quickly to disruptions and ensure
continuity of instruction, it should be agile software engineering courses.
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Abstract
This paper describes a study away course in Computer Science on the

history of technology and discovery, implemented in various locations in
the United Kingdom and Ireland. The author intends for the course to
be a possible template for replication as a short-term travel course, or as
a component of a comprehensive semester-long program.

1 Introduction
Study away programs (alternatively referred to as “travel study”or “study
abroad”) have long been considered to be the near-exclusive domain of dis-
ciplines in the arts, humanities, and social sciences. Though there have been
successful examples reported in the natural sciences [10, 13] and even some
in computer science [2, 3, 4, 5, 12], proportionately few such experiences have
been designed and implemented. Yet the benefits of studying computer science
(CS) in the context of a travel experience are certainly no less than in other
disciplines. Indeed, the history of CS over the last two decades suggests that
broadening the worldview of our students is a particularly beneficial objective.

Though the academic discipline of CS is currently enjoying what some have
called the “third surge”of enrollment spikes [14], the times between those

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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surges have prompted considerable reflection. It has been argued, for exam-
ple, that CS has not always adequately emphasized its grand challenges –often
focusing more on narrow applications than on enhancing the capabilities of hu-
mans and human society through machines and algorithms [11]. Others have
demonstrated that the appeal of studying CS is closely tied to the marvelous
diversity and versatility of the field [8], leading to significant emphasis on versa-
tility, flexibility, and interconnectedness in the ACM/IEEE Computer Science
curriculum guidelines –for example: “Computer science curricula should be
designed to prepare graduates for a variety of professions, attracting the full
range of talent to the field.”[1]
“Are we about a machine or an idea?”[11] This paper describes the de-

sign and implementation of a study away course entitled CSC-273: History of
Technology and Discovery, conducted in various locations in the British Isles,
and argues for the effectiveness of the lesson that technology is about ideas
more than machines when the lesson is taught on-site of some of history’s
greatest technological discoveries. Following is a description of the course and
the logistics of the travel element, along with a discussion of lessons learned.
It is hoped that this experience –or certain elements of it –might be useful to
others interested in designing a study away experience in computer science for
a students from a broad spectrum of academic backgrounds and interests.

2 Course Components
History of Technology and Discovery was offered from August to December in
the United Kingdom and Ireland in 2018, but was in the planning stages for
three years prior to that. The semester-long program entitled “Study Away
in the British Isles”is Furman University’s oldest established study away
program. It partners a faculty member from the Department of English with a
colleague from a different discipline, with the curriculum adjusted accordingly.
Frequent collaborators have included the departments of Theatre Arts, Political
Science, History, and Art. The partnership between English and Computer
Science was implemented for the first time in 2018, with a recognition among
both faculty directors that the combination of disciplines was both appropriate
and advantageous, due to the interdisciplinary natures of both English and CS,
and to the rich histories of both that are specifically connected to the British
Isles.

The English/CS version of the program consisted of four courses in total:

• Drama in Stratford and London
• Literature of Early Modern Britain
• History of Technology and Discovery
• Travel Study in the British Isles
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19 students were accepted for the program after an application process that
began in the fall of 2017. All of the students were required to attend multiple
orientation sessions in the spring of 2018, and were well versed on rules of
deportment, details of the technology that would be employed, and course
expectations. Structurally, the modules and assessment techniques for all of
the courses were consistent with each other by design. The details of the History
of Technology and Discovery course components are largely representative of
those comprising the other courses, which had successfully been offered for
many years.

It is worth noting that this course has been offered several times on campus.
The components were significantly modified to take advantage of study away.

2.1 Summer Requirements
Prior to the departure of the group in August, the students were required to do
a considerable amount of reading and writing during the summer break. This
included several Shakespeare plays, and readings from British literature for the
other classes in the program. For CSC-273, the workload was light. With a
trip to Bletchley Park planned as a highlight of the trip, a full module was
designed around Alan Turing. Thus, the students were assigned the biography
Alan Turing: Computing Genius and Wartime Codebreake [6]. Students were
given several discussion prompts and were each required to submit three one-
page papers in response to these prompts. These were accompanied by three
original discussion questions each. Representative prompts included:

• Chapter 4 attributes two specific contributions that Turing made to code-
breaking at Bletchley Park – the use of cribs (as dramatized in one of the
best scenes in The Imitation Game), and analysis of probabilities. De-
scribe to the best of your ability the workings of the Enigma machine and
these two prominent techniques that Turing used to break the code.

• The previous reading discussed Turing’s theoretical contributions to com-
puters at length. Summarize the specific contributions that he made to
the actual construction of real computers.

• One objection to the notion of machine intelligence in general is that "a
machine is not conscious". Do you agree or disagree that this is a funda-
mental impediment to machine intelligence? Is it the only impediment?
What was Turing’s response to this objection?

• The final section of the book is entitled "Turing’s Shrouded Legacy." What
about his legacy is "shrouded," do you think? Give three reasons why
Henderson (and other historians) might describe it this way.

This preparatory work was designed to prime the group for subsequent con-
versation during the trip, when the Turing module was scheduled.
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2.2 Readings and Site Visits
The heart of the course was found in the visits to various sites during our trav-
els. Each site visit was preceded by a reading or viewing assignment. Articles,
videos, and/or book chapters were provided for each, with students expected to
prepare in advance for the visits. In addition to the Turing biography, required
texts included Science and Technology in World History, by McClellan and
Dorn [9] and The Innovators, by Isaacson [7]. Otherwise, articles and videos
were generally provided as web links.

A comprehensive list of site visits follows, along with the theme or lesson
associated with each. Reading and viewing assignments are omitted for space
considerations, but are available upon request.

• Dublin — Book of Kells — Preservation, Conservation, and Digi-
tization of Ancient Texts

• Dublin — Guiness Storehouse — Technology of Brewing
• Belfast — Titanic Belfast — Failures of Technology
• Edinburgh — Camera Obscura — Tech of Cameras, Light, and Op-

tical Illusions
• Leicester — King Richard III Visitor Centre — Tech of Archaeology

and Identification
• Milton Keynes — National Museum of Computing — History of Com-

puters
• Milton Keynes — Bletchley Park Trust — Alan Turing and Code-

breaking
• Cambridge — Cavendish Museum — DNA: Discovery, Fingerprint-

ing, and the Human Genome Project
• Oxford — Museum of the History of Science — Women of Science
• Salisbury — Stonehenge Monument — Ancient Computing and Math
• London — London Transport Museum — (1) Tech and Big Data in

Transportation; (2) Industrial Revolution
• London — Victoria Albert Museum — Future Technology and Art
• London — Science Museum — Darwin and the Origin of the Species
• Greenwich — Royal Observatory — Invention of Mobile Timepieces

2.3 Travel Journals
Simply participating in the site visits listed above was an enriching experi-
ence. However, to optimize the educational value some focused reflection was
required. All students were to maintain an online travel journal recording their
experiences at historic sites and museums as they relate to the history of tech-
nology. Each student was required to find at least one experience to record
from ten of the technology-related historic sites or museums that we visited
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during our tour. For example, when we visited Bletchley Park, multiple stu-
dents posted an entry describing the strategy employed by Alan Turing to
defeat the Enigma, while others wrote about the role played by women in the
codebreaking effort, or the inner working of the Enigma itself. It was expected
that journal entries would be heavily documented with photography or other
graphics.

2.4 Papers

As noted previously, short one-page papers were required in response to sum-
mer reading assignments. During the actual semester, three papers of 1000-
1500 words were assigned with staggered due dates, including one in early
December after our return home. Topics were designed to be related to spe-
cific site visits, or to aggregate thematic ideas from multiple visits. The topics
were:

• When Good Technology Goes Bad (And We Allow It To)
This topic was assigned after our visit to the Titanic Museum in Belfast,
but students were asked to reflect on the possible dangers of misuse or
overreliance on technology from any of our visits, or from their own re-
search. Topics included analysis of the dangers of gene editing with
CRISPR, reliance on artificial intelligence (inspired by the Turing Test),
and the space shuttle Challenger disaster.

• The Historical Significance of Alan Turing
As mentioned earlier, the life and work of Alan Turing –along with a two-
day visit to Bletchley Park where he helped break the German Enigma
code –was a centerpiece of the class. Until very recently, however, he was
an obscure historical figure at best. With the 2015 release of the film The
Imitation Game, however, he has had something of a renaissance. Is it
deserved? Students were asked to select one of two topics: the breaking of
the Enigma code, or the invention of the computer. For their selection,
they had to build a case either for or against Turing as a significant
historical figure.

• Prominent Women in the History of Technology
Throughout the trip we had the opportunity to study the often over-
looked contributions of women to the history of technology. From an
exhibit devoted to women in science at the Oxford Science Museum, to a
lecture on Ada Lovelace that was fortuitously scheduled during the week
we spent in Oxford, to a chance visit to the Herschel Museum of Astron-
omy in Bath (devoted to William Herschel but highlighting the work of
his sister Caroline as well), there were ample opportunities to celebrate
the significant roles that women have played. Student were given the
opportunity to select one for their paper topic.
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2.5 Lectures

Though there was significantly less emphasis placed on lectures than during a
typical class, there was a lecture component. During the first half of the trip,
as we frequently moved from location to location, we scheduled several lectures
during evening hours in hotel meeting rooms. A notable lecture on the history
of computing took place in the conference room of our hotel in Milton Keynes.
Upon our arrival in London for the second part of our trip on October 1, we
had a room reserved at the nearby University of London, Birkbeck campus,
where lectures and discussions on various topics were held four days a week.

2.6 Student Assessment

Student assessment was very straightforward. Journal entries counted for 3% of
the grade each, for 30% total. The three papers described above each counted
for 20% of the grade, for a total of 60%. The last 10% of the grade was earned
through deportment. This included the one-page summer papers, but also
critically important elements such as class discussion participation, punctuality,
and attentive behavior at site visits.

3 Conclusion

By most measures, the class (and the entire program) was a success. Quan-
titatively, 92.9% of the students Strongly Agreed that the experience of this
class was an “enriching educational experience”. 100% Strongly Agreed or
Agreed that it“stimulated their desire to learn”. Responses for other student
evaluation questions were comparable.

The quantitative measures tell only part of the story, however. There are
a number of lessons and conclusions to be drawn from the experience.

The history of technology did indeed fit beautifully together with the other
topics covered in the program. It was particularly gratifying, for example, to
observe the number of times references were made to Ada Lovelace outside of
the expected context –in reference to her father Lord Byron, and also to her
friendship with Charles Dickens. Additionally, we were all repeatedly reminded
about how the history of technology impacts –and is impacted by –theatre and
literature. Technology involved in the preservation and sharing of the Book of
Kells is one obvious example. And quite frequently we talked about the effects
that technology had on various theatrical productions that we saw.

Demonstrating to students the relevance that computing technology has to
a variety of disciplines is a significant objective of the CS curriculum, and this
course was a qualified success in that area. Students certainly benefited from
integrating their domain knowledge with computational thinking skills, specific
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techniques and tools, and a broad understanding of the role technology plays
in society that I believe they are likely to find relevant.

However, this benefit was hard-earned. As noted previously, the history of
study away at Furman –and of this particular program –is dominated by hu-
manities, fine arts, and social sciences. It was a constant struggle to overcome
student bias in the form of“Why do we have to take this course?”There was a
pre-conceived notion of what CS entails (e.g., difficult, uninteresting program-
ming) that was dispiriting at times. But anecdotal feedback provided since the
end of the trip gives strong support for the idea that the interconnection of the
material with the other courses was ultimately understood and appreciated.

It is a hypothesis of this paper that the experience of this study away class
is potentially replicable by others. Though it may be unlikely for a semester-
long program of this exact composition to be re-created elsewhere, perhaps the
History of Technology and Discovery course could be an effective part of an
immersive curriculum in partnership with Mathematics, Physics, or Biology –
all topics that were touched upon in the class.

More likely is the possibility of teaching this course as a standalone expe-
rience in a short semester, such as a January or May term, or in the summer.
These types of study away experiences have gradually become predominant at
Furman, in fact. Should such a course be planned, one of the most encouraging
lessons of this experience is that the travel itinerary doesn’t necessarily have
to follow a strict list of sites dictated by a pre-determined list of topics. Sev-
eral of the site visits listed above were added after the itinerary was set. The
history of technology is such a rich field that it seems just about any major city
has ample locations of educational value. This was demonstrated on our trip
by the number of fortuitous opportunities the students found to explore the
topic. The National Museum of Scotland, for example, has an entire science
wing that several students explored on their own and reported on. Also in
Edinburgh, a planned visit to the Royal Yacht Britannia quickly became an
opportunity to learn about technology at sea. While in Bath, England to visit
the Roman Baths, we came across the Herschel Astronomy Museum, celebrat-
ing the pioneering work of William Herschel and his sister Caroline. (Later, we
saw a telescope invented by the pair at the Royal Observatory in Greenwich.)

Of course there were many lessons learned about the planning and logistics
of such a trip, but those are outside the scope of this paper and available upon
request.
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Abstract
In the summer of 2019, a group of Mercer University students and

professors joined with South African educators for a unique Computer
Science intervention. The cooperative efforts of these groups lead to
the development of a curriculum particularly suited to teaching middle-
school-aged children in impoverished areas of South Africa. The curricu-
lum was designed to give these children the tools to be life-long learners
of Computer Science (CS). Two professors and thirteen undergraduates,
including computer science, engineering and humanities majors, traveled
to South Africa to join with their South African counterparts to teach
children over the course of three weeks. We present the key components
of our innovative curriculum, reflections on the overall project, and ideas
that may be of interest to the body of Computer Science educators at
large. In particular, we believe that teaching children general problem-
solving skills, and teaching them how to use tools for learning Computer
Science, is greatly empowering. This paper explains our initial project
development and implementation, and it outlines plans for similar future
work.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Purpose with Clarifications

1.1 Commitment to Computer Science Education

The core agents in developing this curriculum and intervention are not formal
researchers in the field of Computer Science Education (CSE). This project
was built with a service-first perspective. Formal methods of evaluation were
not implemented, and this paper stands as qualitative reflection of a CSE
intervention, rather than a quantitative report of a CSE experiment. The
intervention described in this paper was inspired by anecdotal experiences, and
the qualitative findings may be of interest to the larger body of CS educators.

1.2 Concerns on Human Aspect

All references to the South African children have been made anonymous, and
in no way are we attempting to present them as a part of a human study.
Our community partners in South Africa (SA), the undergraduate student
participants, and professors have all given their permission to have their names
and pictures shared in any report that presents the findings of this project.

1.3 Terminology

We describe two groups of people who may be referred to as students, namely
the South African middle school students, and the Mercer undergraduate stu-
dents. We adopted the terminology commonly used in SA to distinguish be-
tween college-level students and children going through primary and secondary
schools. The South African children are referred to as learners and the under-
graduate students as simply students.

2 Intervention Origins

During the summer of 2018, undergraduate CS student William Darragh was
a participant in an international service learning project working with small
businesses around Cape Town, SA. While there, he met Filbert Mushiringi,
an educator who works through his non-governmental organization (NGO) to
empower children in the impoverished urban townships around Cape Town by
teaching CS. Mushiringi feels that technical skills are particularly important,
given that these learners are not exposed to any CS through their normal cur-
riculum. Darragh and Mushiringi began correspondence, sharing ideas about
best practices for teaching coding to children. Through their conversation,
Mushiringi expressed that he had been struggling to teach children in such
a way that they could move from completing guided tutorials to inventing
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their own projects. He has also experienced working in schools with sufficient
computer facilities, but without experienced CS educators. Seeing an opportu-
nity to take advantage of Mercer’s unique resources, Darragh joined with Dr.
Allen to design a project where undergraduate students would teach coding
to middle-school learners in SA. Mercer has a rich history of service through
their Mercer on Mission (MOM) program. This program funded the interven-
tion that Darragh and Allen designed with Mushiringi. Figure 1 depicts the
students with the learners in Durban.

3 Curriculum Development

3.1 Intervention Constraints

3.1.1 Timing

There were many complex components to consider when outlining a plan for
this intervention. MOM funds three weeks of service in country. Based on
recommendations from our SA community partners, we decided to work for
one week in Durban and two weeks in Cape Town. We designed a plan to
deliver one, week-long curriculum to three different sets of students, one in
Durban, and two in Cape Town. So, one constraint was that this would only
be a week-long course of instruction. Conveniently, we were able to schedule
our three weeks to correspond with South Africa’s three-week Winter break.
Our community partners were able to arrange access to the respective schools’
computer labs for five days each week, and four hours each day.

3.1.2 Hardware, Software, and Internet

Working in multiple classroom environments means working with different sets
of hardware, software, and internet access. The tools used during this in-
tervention needed to be flexible enough to function on these different sets of
limitations. Through discussions with our community partners prior to the
intervention, we found that we could rely on having internet access but had
little information on specifications of the computers being used. Based on this,
we decided to use cloud-based tools. This gave us the advantage of not being
reliant on the hardware, as the processing of programs happens remotely. Ad-
ditionally, cloud-based tools only require a browser, with no installations. In
Cape Town, the school already had internet infrastructure prior to the inter-
vention, while in Durban, we had to set up a cellular hot-spot WiFi router.
We wanted the target learners to have the ability to use these tools after the
intervention. This was not an issue for the learners in Cape Town; however, in
Durban we left behind the wireless router to use for any future CSE endeavours.
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3.2 Our Unique Pedagogical Approach

Our curriculum was designed to supplement existing Open Educational Re-
sources (OERs) for CS by teaching students how to seek out additional infor-
mation themselves. There are already many OERs available through a web
browser online. Common examples include Code.org [4] and CodeCombat [3].
Mushiringi expressed a concern that these tools had little in terms of exit strat-
egy. He described how once students finished tutorials on these sites, they were
unsure of how to continue their learning. We sought to address that need. We
did not set out to create an entirely new set of tools to teach coding. Instead,
we combined existing OERs into an innovated curriculum that would turn al-
ready effective tools into starting points for life-long learning. Our idea for this
extends from the same spirit of learning to read to read to learn. We wanted
to show leaners that tools like Google-searching, reading documentation, and
interacting with community pages is an effective way to problem solve and con-
tinue learning. Thus, we came up with the idea to split lessons into two parts:
intro and explore. The intro section would use existing OER material and get
students introduced to the tools. After spending a day with an introductory
lesson, we transitioned into an explore lesson. Explore lessons focused on how
to use the internet to find answers to questions, how to use documentation,
and how to generally troubleshoot. Our goal was not to teach them everything
about any one particular tool, but to show them how they could use resources
readily available to learn as much as they desired.

3.3 A Three-Part Approach

With only one week with each set of learners, we wanted to maximize their
chance of connecting with coding. Various approaches to problem solving will
catch different students attention. We chose to present three approaches to
solving problems, combined with an explore-on-your-own capstone component.
Our curriculum includes problem solving in the physical world, with block-
based coding, and with traditional text-based coding. This three-part approach
was designed so that students would understand the basic fundamentals of
programming, no matter the format, and to understand that coding is simply
giving instructions.

3.4 Selection of Specific Languages and Tools

3.4.1 Problem Solving in the Physical World

We incorporated real-world models into our curriculum, and given the some-
what uncertainty on internet reliability, we prepared a collection of physical
world lessons based upon CS Unplugged [1]. "CS Unplugged is a collection of
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free teaching material that teaches Computer Science through engaging games
and puzzles that use cards, string, crayons and lots of running around." Each
Mercer student prepared to lead a CS Unplugged exercise as needed. We pur-
posefully over-prepared with CS Unplugged in case we had days with poor
internet connections. Our signature physical world exercise involved role-play
with a robot standing on a sidewalk chalk grid. The other learners issued a
series of commands written on note cards, which told the robot to do things like
move forward or turn. The task was to have the robot move a ball from one
cell to another. This activity was adapted from the CS Unplugged "Kidbots"
activity [2]. Learners participating in this activity are shown in Figure 2.

3.4.2 Problem Solving with Graphical Code

An obvious candidate for graphical coding was the Scratch programming lan-
guage [6]. Scratch is a free, web-based, visual programming language developed
at MIT. Users program with drag and drop blocks that snap together. Scratch
is well suited for making games and animations and is a great option for stu-
dents first learning programming. The drag and drop blocks reduce syntax
errors and the visual environment offers responsive feedback. The tutorials on
the Scratch website provide great introductory lessons. We followed them up
with exploration exercises, including some game development and animating
green-screened photos of the learners, as shown in Figure 3. Verhine originally
learned programming using Scratch and gave key insight into planning Scratch
lessons, as well as serving as a leader in the classroom.

3.4.3 Problem Solving with Text-Based Code

A challenge with text-based programming is ensuring that students have ac-
cess to a reliable code editor and proper compiler/interpreter. Recent advance-
ments in online integrated development environments (IDE)s have mitigated
this problem. We chose to work with a powerful tool called Repl.it. Repl.it
is designed “to make programming more accessible. [They] build powerful yet
simple tools and platforms for educators, learners, and developers.”[5] Repl.it
is an excellent education tool and programming environment for a host of rea-
sons. First of all, the compiling and interpreting happens on remote servers, so
it can be used effectively on any machine with a web browser and reasonable
internet. Second, Repl.it has features that enforce fundamental ideas to coding,
such as file management and publishing code. Third, Repl.it has the ability to
create classrooms where it is easy to deliver assignments to the students.

Repl.it has the capacity to be used with a variety of languages. We chose to
teach Python for its unique duality of being famously easy to pick up while still
being used in real technical applications, and it will likely remain a relevant
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Figure 1: Mercer Students with the learners in Durban, South Africa

Figure 2: Learners participating in CS Unplugged exercise

Figure 3: Learners animate green screen photos of themselves
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language to CS education for years to come. We wanted to also play off the
graphical nature of Scratch and our CS Unplugged lessons, so we chose to
use the Turtle library to enhance the Python learning experience. The Turtle
library allows the programmer to draw 2D shapes by using basic commands to
move a cursor, or turtle, around the screen as shown in Figure 4.

3.5 Bringing It All Together

To add an element of cohesiveness to our curriculum, we focused on similar
topics in all three approaches. All lessons focused around simple procedural
programming, manipulating an object on a grid. In the case of CS Unplugged,
it was a robot moving on a physical grid. For Scratch, it was manipulating
sprites using simple block commands. And for Python, it was programming
with the turtle module, using text commands to move a turtle around. Some
common ideas in all three system were coordinates, angles, order of commands,
and relative versus absolute positions. With the CS Unplugged activity, we
drew a direct link between the physical world example and Python program-
ming by using command note cards with plain English instructions on one side,
and Python syntax equivalent commands on the other. See Figure 5.

4 Experience and Reflections

4.1 One Teacher, Many Helpers

Throughout this intervention, we employed what we think is a novel classroom
setup. We used the large number of student teachers to our advantage. We
had one student leader or professor in the front of the classroom teaching each
new concept through demonstrations. This lecturer was the group’s expert on
the particular subject. The remaining students were divided among groups of
learners. Although these students may not have been as knowledgeable as the
lecturer about a particular subject, they were able to give special attention to
each group of learners and provided instant technical support when necessary.
These students also served as an intermediary between the learners and the
teacher. Often, the learners felt more comfortable talking directly to the helper
student teachers than the lecturer, so they were able to communicate to the
lecturer that he or she needed so slow down or clarify a concept.

4.2 Local Support for Basic Concepts

We found that local support was integral to effectiveness in teaching. Students
in Cape Town had been working with Mushiringi and other CS instructors
prior to our intervention. This gave them a solid foundation for us to build on.
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The students in Durban had a much weaker foundation. A local community
member Brian Mtolo had been volunteer teaching some computer skills, but
the Durban learners had significantly lower digital literacy than the learners
in Cape Town. Many digital and mathematical concepts were foreign to them,
especially when these concepts were explained in English, a second language
to them. Mtolo was able to translate our explanations for especially tricky
concepts, which had a significant impact on the learners’ understandings.

4.3 Working with Non-technical Majors

Our humanity majors contributed greatly to the refinement of our program.
During the team training sessions, prior to going to SA, our humanity ma-
jors provided valuable feedback on presentation, terminology, and flow of our
lessons. Their non-technical perspective of learning this material taught all of
our technical students a great lesson - don’t preach to the choir. We adjusted
the delivery and flow of our lessons accordingly and believe these changes im-
proved the SA learner’s understanding. Our humanity majors also brought a
unique, added-value while teaching in SA. They related with the young SA
learners on a very human level. They connected in a deeper, more personal
way, and brought out many SA learner’s willingness to be creative while coding
our lessons. Figure 6 showcases some SA learners finding a way to put a pink
hat on their Turtle-drawn character.

5 Intervention Summary and Final Thoughts

5.1 The Intervention in Summary

We have observed a Win, Win, Win situation from this intervention:

• The SA learners were excited about coding. They eagerly explored to
create new projects. They demonstrated ability in continuing learning.
Even months after the intervention, some learners were logging into our
Repl.it classroom.

• The Mercer students experienced the joy of teaching. They witnessed
growth and discovery by their learners, which empowered them, and
many expressed the desire to continue work in this area. Tangentially,
the Mercer students also broadened their world view by working in the
SA impoverished township.

• The SA CS teachers benefited greatly as they, too, experienced our cur-
riculum. There were many moments when we spent extra time teaching
the teachers in SA a variety of tools and tricks in CS. Both teachers
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Figure 4: Learner demonstrates a Python with Turtle Project

Plain English Turn Left Turn Right One Step Forward
Python Syntax turtle.left(90) turtle.right(90) turtle.forward(1)

Figure 5: Example note cards helped learners relate the CS Unplugged activity
to Python code

Figure 6: Learners demonstrate an enhancement to their Python project where
they have added a matching pink hat to the figure
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expressed a gracious gratitude for our work and a sincere desire for our
return.

5.2 Final Thoughts
There were numerous factors that lead to the success of the trip. Having
local community partners participate in teaching helped build trust with the
learners and supplemented our instruction in English with some instruction in
the learners’ native language. Despite only having access to computers with
meager hardware resources, cloud-based OERs allowed for effective education.
Encouraging students to search the internet for solutions to problems gave them
great satisfaction and may have improved their overall problem-solving skills.
These lessons were also taught with the help of non-technical undergraduate
majors, who were able to provide valuable insight on learning programming
with no previous experience.

We are pleased to report that our intervention created a total of 1300
student-learner contact hours. This means that each SA learner received about
15 hours of direct instruction. We were able to impact a total of 90 differ-
ent learners spread out over two different primary schools. The relationships
formed and insight gained will surely guide Mercer through future years of
continued collaboration.

The Intervention in Numbers

13 Undergraduate students participating
2 South African primary schools
3 Weeks of teaching in country
90 South African learners participating

1300 Learner-contact hours
10 CS, IST and Engineering majors
3 Humanities majors

5.3 Final Points
• Having joint instruction with adults from the local community, who chil-

dren already know, builds trust and helps to communicate in language
the children are likely to understand.

• Cloud-based OERs are effective tools for teaching in impoverished areas
with limited resources.

• Encouraging students to search for solutions on their own may help build
problem solving skills.
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• Non-technical majors can be helpful in designing CS curriculum as they
provide critical perspective that technical majors may not have.

• Abundant learning can take place with meager resources.

5.4 Future Plans
Plans for a follow-up MOM to SA during the summer of 2021 are underway
which include coordination with Mercer’s College of Education. Getting educa-
tion majors involved will prove beneficial all around. We are actively exploring
ways to encourage more local teachers to prepare for and teach CS in Georgia.
We have also begun to build a website to coordinate, and assist in delivering
intro and explore lessons. One goal for the website is to make it easy for teach-
ers to add new explore lessons associated with existing OER’s intro lessons. We
also envision including an anonymous chat feature where learners could assist
each other. And long term, we are investigating ways to conduct research in
learning differences between vastly different populations.

Future Work and Improvements

5.5 Next year’s MOM
We were approved by Mercer University to return to South Africa to continue
our work and build on relationships already formed. One of the greatest en-
hancements to next years MOM trip will be the inclusions of Mercer’s College
of Education.

5.6 Work in Macon
Several students on the trip expressed a desire to continue teaching computer
science to middle-schoolers in our local community in Macon, GA. We plan
on looking into partnering with some existing programs to give students an
opportunity to continue this work.

5.7 Continued Development of Mercoder
Although Mercoder was originally generated as a means of facilitating instruc-
tion in South Africa, we want to continue to develop the website to be a tool
for educators all over the world. As we have mentioned before, we do not aim
to create an entirely new toolset for teaching computer science. The goal of
Mercoder is to compile these resources and to create some lessons that one,
show off these great resources, and two, show how to move from using these
resources to creating your own projects.
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Abstract
This paper describes a study designed to compare the performance

of students on homework problems with their performance on similar
exam questions in an Introduction to Data Structures course. It focuses
on code selection/code completion problems and the performance of 132
students from Fall 2017 through Fall 2019. The results indicate that,
with the exception of linked list traversal exercises, there is little or no
correlation between performance on homework problems and scores on
the corresponding exam questions. One should be careful in interpret-
ing these results by characterizing code selection/completion homework
questions as useless. Instead, the results should motivate future research
to investigate the possible causes for the lack of correlation.

1 Introduction
The attitude of many students toward the correspondence between what they
studied and what is on an exam can be summed up by the Venn Diagram
shown in Figure 1 below. Of course, their professors would disagree. Most
professors would argue that their exams accurately reflect what they taught

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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Figure 1: Common student perceptions

in the class, but do they? How do professors link their exams and what they
teach in class? A major way of linking the material taught with exams is
through homework. Ideally, the problems assigned for homework are models
for similar problems on exams. Is this linkage successful? Do students who
do better on homework do better on similar exam questions? This paper will
examine these questions as they relate to teaching data structures to computer
science majors. In particular, the paper will consider code selection and code
completion questions. The paper will compare the performance of students on
homework problems with their performance on similar exam questions. It will
compare the performance of students from Fall 2017 through Fall 2019 for our
Introduction to Data Structures course.

2 Background

Code completion problems on exams require students to have developed a
degree of code comprehension through study and practice acquired in pro-
gramming labs and homework assignments. How do professors ensure that
their students are developing code comprehension? Cutts and his associates
[1] examined this question through the development of Thinkathon activities
for students in an introductory programming class. While they felt that their
course design included the development of conceptual understanding and code
comprehension, they also believed that students needed a more immersive ex-
perience to prepare them for the final exam and follow-on programming classes.
All of the Thinkathon exercises were paper-based to break the dependence of
students on computers. The researchers concluded that there is huge value in
students thinking and working on programming exercises away from computers
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and on their own without the help of their peers and their instructors.
Zingaro and Porter [5] also looked at ways to improve student performance

on the final exam. In particular, they investigated the effect of in-class learn-
ing on success on the final exam. The researchers used isomorphic questions
(i.e. questions that test the same concept) in class and on the final exam. For
each lecture, the researchers chose a pair of isomorphic questions focused on
a particular concept. For the first question, they used a Peer Instruction (PI)
format. Following the PI format, they asked the class to answer the question
individually and then discuss it with their classmates. The normal PI format
would have them answer the same question after the discussion. Instead the
researchers asked a second isomorphic question. Finally, a third isomorphic
question was placed on the final exam. They concluded that isomorphic ques-
tions provide strong evidence that the in-class PI process helps students to
learn and retain that learning for the final exam.

Petersen and his associates examined the contents of final examinations in
the introductory programming course at fourteen North American institutions
[3]. In their research, the authors considered different types of questions and
attempted to identify the skills and concepts related to each question. As a
result, they proposed a classification of exam questions into four categories:
writing code, reading code, programming concepts, and non-programming. A
key conclusion of their work is that code-writing questions -–which require un-
derstanding a larger fraction of concepts—were both more frequent and carried
greater weight than any of the other question types.

Morrison and her associates examined the issue of data structure questions
on final exams. In their first paper [4], they looked at 76 final exams from a
variety of institutions around the world to see if there is a consensus on what
should be taught in a data structures class. In the second paper [2], they
looked at whether final exam questions actually required students to apply
their knowledge of data structures. They looked at 59 data structures final
exams and found that only 36 required the application of data structures.
They concluded that questions that require the application of data structures
are very important to assess student knowledge and should be based on similar
homework problems.

3 Project Goals

The aim of this research is to do a comparative study of the performance of
students from Fall 2017 through Fall 2019 in our Introduction to Data Struc-
tures course. The research is focused on specific types of questions that require
students to apply their understanding of data structures by producing code
segments that manipulate particular structures. The objective of this research
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is to answer these questions:

• Is the linkage between homework problems and similar exam problems
successful?

• Do students who do better on homework do better on similar exam ques-
tions?

4 Methodology
Our study is focused on students’performance on code completion/selection
homework problems and corresponding test questions. For context, the Intro-
duction to Data Structures course is the last in a three-course introductory
programming sequence and is taught using Java as the implementation lan-
guage. Homework questions are assigned after the corresponding material is
discussed and similar exercises are solved in classroom sessions. Students typi-
cally have three days to submit homework solutions using our electronic learn-
ing management system. Test questions are administered electronically in a
time-constrained, proctored environment using a secure browser. The primary
method used to address our research questions relied on the computation of
Pearson correlation coefficients to determine the strength of the relationship
between two variables: scores obtained in assigned homework problems and
scores obtained in the corresponding test questions.

As stated before, the course in question uses Java as its implementation
language. Therefore, the homework problems and test questions involved in
this study rely on standard Java Collections Framework interfaces, classes, and
API. While a valid argument can be made advocating for language indepen-
dence when teaching and testing knowledge of fundamental data structures
concepts, we feel it is important for students to have the ability to test their
solutions using an actual programming language.

Data was obtained by tabulating anonymized scores from 132 students who
completed the course in five semesters (from Fall 2017 through Fall 2019). For
the purposes of this study, six code completion/selection questions were cho-
sen and numbered sequentially from 1 to 6. The selected questions, which
were included in exams in each of the five semesters, cover standard material
considered fundamental in courses at this level: linked lists, iterators, stacks,
queues, and recursion. As summarized in Table 1 below, homework problems
present the student with partially completed code segments and ask the stu-
dent to enter missing expressions or statements (hereafter referred to as code
completion questions), while test questions –with the exception of questions 3
and 4– ask students to select appropriate statements or expressions from a list
of possible choices (hereafter referred to as code selection questions). It is our
contention that use of code selection/completion questions contribute to the

183



assessment of important concepts while avoiding some of the issues identified
in [3] when students are asked to write significant pieces of code in an examina-
tion, since errors caused by low-level concepts affect the ability to demonstrate
understanding of higher-level concepts.

Table 1: Selected Questions Summary

Question Topic Homework Question Test Question
Type Type

1 Linked List Traversal Code Completion Code Selection
2 Traversal using Iterator Code Completion Code Selection
3 Stack Manipulation Code Completion Code Completion
4 Queue Manipulation Code Completion Code Completion
5 Recursive Method 1 Code Completion Code Selection
6 Recursive Method 2 Code Completion Code Selection

It is worth noting that homework questions are typically accompanied by
starter code files in order to facilitate implementation and testing of the stu-
dent’s solution. As shown in Figure 2, which contains a snapshot of homework
question 4, students are encouraged to use the starter files to compile and test
their code prior to entering the corresponding answers in the submitted solu-
tion.

Figure 2: Homework Question 4

Figure 3 presents a snapshot of the corresponding test question. In contrast
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to the homework question above, since students are working under time con-
straints without the ability to compile/test their solution, the question includes
sets of choices for each required answer.

Figure 3: Test Question 4

Every effort has been made to link the concepts explored in homework
problems with the corresponding test questions. As a second example, consider
the code segment presented in Figure 4, corresponding to question 5 (Recursive
Method 1).

As was the case with the first example, the corresponding test question
(shown in Figure 5) is designed to assess the same skills while providing a set
of possible choices for each required entry.

5 Results

After extracting the scores earned by each student in the selected questions and
scaling them into a 0-1 range, a Pearson correlation coefficient was computed
between the homework problem score and corresponding test question score
for each topic, with n = 132 in all cases. The results are summarized in Table
2. As can be observed, homework scores and test question scores were found to
be moderately positively correlated for question 1, corresponding to the linked
list traversal exercises, r(130) = .18, p = .0348 (significant at p < .05). For
questions 2-6, the correlation coefficients were extremely small –and in three
cases negative—but not significant at p < .05.
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Figure 4: Homework Question 5

Figure 5: Test Question 5
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Table 2: Summary of Results

Question Topic Correlation Coefficient
1 Linked List Traversal 0.1839
2 Traversal using Iterator -0.0230
3 Stack Manipulation -0.0284
4 Queue Manipulation 0.0757
5 Recursive Method 1 0.0739
6 Recursive Method 2 -0.0521

6 Threats to Validity

There are any number of factors that must be taken into account when inter-
preting the results presented above. First, as any instructor knows, students’
performance on test questions can be affected negatively for reasons such as test
anxiety and time constraints, which may be largely unrelated to their under-
standing of the material. Second, when solving homework problems, students
have the ability —and are probably expected to—consult legitimate sources
such as notes, textbooks, and related internet sources. In contrast, the exams
administered in our course expressly prohibit access to such resources during
test taking sessions. In addition, the availability of starter code to accom-
pany homework problems is intended to encourage students to use a compiler
to implement and test their solutions before submitting homework answers.
While we have considered ways to allow students’use of a compiler during
exams, this was not the case during the period used as the basis for this study.
However, it must be noted that the use of code selection questions —and to
a lesser extent, code completion questions—in exams is partially designed to
compensate for the lack of an available compiler. Lastly, the issue of academic
dishonesty is one that must be considered, as students increasingly have an-
swers to homework questions produced by their peers, by students who have
taken the course in previous semesters, and by contributors to internet sites
that profit from storing and making solutions available to their audiences.

7 Conclusion

The purpose of this study was to determine to what extent – if any – stu-
dents’performance on homework problems correlates with their performance
on corresponding test questions. In particular, this paper focused on code selec-
tion/code completion questions in the context of an introductory course in data
structures. As shown in Table 2, with the exception of the linked list traversal
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exercise, the most salient conclusion is that there is little or no correlation
between performance on homework problems and scores on the corresponding
homework questions.

One should be careful in interpreting these results by characterizing code
completion homework questions as useless. Rather, we are motivated to dig
more deeply and investigate the possible causes for the lack of correlation. Is
this result unique to code selection/code completion problems, or are similar
results to be expected with other questions types, such as code tracing or code
writing? Can the lack of correlation be attributed to the fact that, in solving
homework problems, students have a variety of resources available (compilers,
books, internet sources, classmates, etc.) while none of these are available
during exam sessions? While a thorough examination of these questions is
beyond the scope of this paper, we believe that the answers are important for
computer science educators and that further research in this area is warranted.
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Abstract

We consider the problem of identifying all convex and concave poly-
gons in a geometric figure. We present two such algorithms. The first
approach examines sets of segments in a powerset-style construction.
The second approach takes a more holistic approach combining select
pairs of polygons into new polygons. We then provide empirical evidence
investigating the limitations of each approach as they search the space
of polygons in a geometric figure. Our goal is to provide a large, finite
space for further exploration in an Algorithms or an AI course.

1 Introduction

We consider the problem of identifying all polygons (both concave and convex)
in a geometric figure. For example, in Figure 1, our goal is to identify all 12
triangles (e.g., 4ABC, 4BCD, etc.), 3 quadrilaterals (DECB, ACXB, and
AEXD), and 6 concave pentagons (DECBX, DEXCB, etc.). We present and
discuss two distinct search techniques to solving this problem as an example
of the importance of reducing the size of a search space, even though, as we
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Figure 1: A motivational geometry fig-
ure.
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Figure 2: A complex geometry figure.

will show does not control potential unboundedness. Our intent is to present a
real-world problem with two solutions that can be viewed as a search of a vast
search space or as a search in a much-reduced space, respectively. We believe
it is a critical part of artificial intelligence education (and other computational
areas) to demonstrate reducing a search space while also demonstrating the
limitations of computing on a single machine. In this case we are focusing
on a computational geometry problem applicable to, for example, intelligent
tutoring systems that feature problem generation in the spirit of [1, 2].

Our first approach identifies polygons using a semi-exhaustive combination
of all segments. Valid polygons are identified by determining if the given set
of segments makes a non-overlapping cycle. For example, AD, AE, and DE
result in 4AED while segments AE, BD, and AD do not result in a triangle.
This combinatorial approach results in an exponential search space even for
smaller geometric figures.

The second approach takes a more holistic computational geometry ap-
proach by identifying the smallest polygons in a given figure and then combin-
ing those basic polygons into larger polygons. In Figure 1, the first phase of the
algorithm identifies triangles 4AED, 4DEX, 4DXB, 4ECX, and 4XCB.
The second phase exhaustively combines polygon pairs that share segments
or subsegments into one larger polygon. For example, 4ECB will result from
4XCB and 4ECX since they share side XC. As a second example, 4DEB
and 4ECX each share a subsegment of each triangle; combining results in
concave pentagon DECXB.

2 Preliminaries

We begin with some terminology before describing our algorithms. A minimal
segment is a segment which does not share internal points with any other
segments. For example, Figure 1 contains 10 minimal segments (AD, DE,
CX, etc.) whereas AB is not a minimal segment since point D lies between
the endpoints.
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We define a polygon as a Jordan curve [6] consisting of a finite set of seg-
ments. A face polygon (basis polygon in [7]) is a polygon that contains no other
polygon. For example, in Figure 1, there are 5 face polygons: 4AED, 4DEX,
4ECX, 4XCB, 4DXB. Our goal is to identify the set of all polygons in a
given figure, not simply face polygons. Therefore, we say that a polygon that
consists of more than one face polygon is a decomposable polygon. For example,
as shown in Figure 1, quadrilateral AEXD is a decomposable polygon because
it consists of 4DEX and 4AED.

3 Algorithm 1: Combinatorial segment approach

One approach to identifying the set of all polygons is to consider combinations
of segments in a figure. We begin with the set of all segments in a figure–a
larger set of segments than may be expected. For example, in Figure 1, there
are 10 minimal segments between individual vertices, but also include 4 super-
segments built from the minimal segments (e.g., AB is a unique segment con-
sisting of AD and DB). While these super-segments do not create an onerous
search space, it is easy to surmise that a more complex geometric figure will
result in many segments overall. Consider segment MQ in Figure 2. Along with
subsegments created by internal collinear points N , O, and P , there are a total
of

�5
2

�
= 10 subsegments. Thus for Figure 2 there are a total of 100 segments

to consider. If we identify the set of all triangles in Figure 2 we must consider�100
3

�
= 161700 different possible triangles even though it is clear that none

exist. For quadrilaterals, the set of all possible quadrilaterals has cardinality�100
4

�
= 3921225 and in the case of Figure 2 we would need to consider the

entire space. However, in cases such as Figure 1, we do not need to consider�14
4

�
= 1001 quadrilateral cases. This is due to the fact that if a set of segments

forms a triangle, that same set of 3 segments cannot be used to form a sin-
gle polygon of more than 3 sides. We generalize this idea of a minimal set of
segments in Definition 1.

Definition 1. Let S be a set of segments that form a polygon. We say S is
minimal provided there does not exist any proper subset T ⇢ S such that T
forms a valid polygon.

Algorithm 1 is an exhaustive bottom-up construction of polygons based on
combining sets of segments. The algorithm begins by constructing all triangles
using sets of three segments on Line 4. If a candidate set of three segments
successfully forms a polygon, we save that set (in P) otherwise we save the
set as a ‘failed’ polygon in Fn. Using the sets of segments that fail to form
triangles, we inductively consider sets of segments of size 4, 5, etc. until (Line 9)
we have identified all polygons or reached the limit on the constituent number
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Algorithm 1 Polygon identification through sets of segments
1: S: Set of segments ; MS: Maximum number of sides for a polygon
2: function polygons(S, MS)
3: P  ;; Fn  ; . Polygons identified; Sets that are not polygons
4: for each {s1, s2, s3} ✓ S do . For each set of 3 segments
5: if isPolygon(s1, s2, s3) then P.add({s1, s2, s3})
6: else Fn.add({s1, s2, s3})
7: return inductiveConstruct(P, S,Fn, ;,MS)

8: function inductiveConstruct(P, S,Fn,Fn+1,MS)
9: if Fn = ; or |Fn[0]| �MS then return P

10: for each F 2 Fn do . For each non-polygon set
11: for each s 2 S do . Can adding a segment result in a polygon?
12: if isPolygon(F [ {s}) then P.add(F [ {s})
13: else Fn+1.add(F [ {s})
14: return inductiveConstruct(P, S,Fn+1, ;,MS)

of sides (MS) in the identified polygons. In the loop beginning on Line 10 we
construct quadrilaterals (pentagons, etc.) by taking a failed sets of 3 segments
and sequentially adding one more segment results in a polygon. If not, we add
the set of 4 segments to a new list Fn+1 on Line 13; 5-sided polygons are then
constructed with a recursive call to inductiveConstruct with sets of failed
quadrilaterals in Fn+1.

Lemma 3.1. Algorithm 1 guarantees polygons consisting of minimal sets of
segments.

Proof. The loop starting on Line 4 constructs all 3-polygons using minimal sets
of segments. inductiveConstruct is then invoked with sets consisting of 3
segments that are not minimal; hence, each F 2 Fn on Line 10 is not minimal.
For each segment s 2 S, if F [ {s} is not a minimal polygon, it is added to
Fn+1 on Line 13. Hence, all sets in Fn+1 are not minimal and the recursive
call maps Fn+1 ! Fn ensuring again Fn contains non-minimal sets. Thus, for
F 2 Fn consisting of n segments, the inductive process only considers polygons
of minimal set size n+ 1.

4 Algorithm 2: Combining existing polygons to form
polygons

Our second approach for identifying all polygons in a figure first identifies face
polygons and second continues to combines those polygons into new polygons

192



Algorithm 2 Polygon identification using stitching
1: S: Set of segments
2: MS: Maximum number of sides for a polygon
3: function polygons(S, MS)
4: P<Segment, Polygons>  ; . All polygons containing a given

segment
5: pg  buildPlanarGraph(S) . Graph corresponds to input

segments
6: FP  FaceIdentification(pg) . Identify ‘basic’, face polygons
7: initialize(P, FP ) . Initialize polygon dictionary with face polygons
8: q  FP . Combine polygons beginning with face polygons
9: while q 6= ; do

10: p q.dequeue()
11: for each s 2 p do . For each side of a polygon
12: for each p0 2 P[s] [ P[subsegmentsOf(s)] do
13: p00  stitch(p, p0) . Combine two polygons sharing a side
14: if p00 /2 P then . or subsegment of a side
15: P.add(p00) . Add new poly to set of polygons and

worklist
16: q.enqueue(p00)

17: return collect(P) . Extract and return unique polygons in the
dictionary

by a process we call stitching. Algorithm 2 takes as input a geometry figure
represented as a set of minimal segments S. We begin on Line 5 by constructing
a planar graph pg corresponding directly to S. On Line 6, face identification is
executed as described in [3, 5] and returns the set of face polygons FP .

To identify all decomposable polygons in a figure described by S, our algo-
rithm exhaustively combines all polygons with all other adjacent polygons. We
begin with the set of face polygons, FP , by initializing the set of identified
polygons P (Line 7) as well as the queue of polygons to process (Line 8). Our
goal is to exhaustively combine adjacent, non-overlapping polygons in p 2 q
with all of the currently known polygons in P that share a side with p; we do so
on Line 10 through Line 16. The process of combining two polygons together
into a decomposable polygon we refer to as stitching ; we describe this process
via some examples below.

Stitching is the process of identifying all segments shared between two poly-
gons, and creating a new polygon from the segments not shared between the
two polygons. Two polygons are adjacent if they share a side or if a side of
one polygon comprises a subsegment of a side of the other polygon. For ex-
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Figure 3: A demonstrative geometric figure for the stitching operation.

ample, 4AED and 4DEX in Figure 1 explicitly share segment DE. In the
second case, 4ECX consists of side segment XE while XE is a subsegment
of 4DEB. In both cases, we may stitch the polygon pairs together: 4AED
and 4DEX result in quadrilateral AEXD while 4ECX and 4DEB result
in concave pentagon DECXB.

We describe three cases for stitching combinations of face polygons and
decomposable polygons as well as cases when the operation fails to produce a
polygon.

Face-Face. Consider face polygons KJDB and JIED that share side JD
in Figure 3. By combining the sides of KJDB (KJ , KB, etc.) and JIED (JI,
IE, etc.), minus the shared side, JD, we find the decomposable polygon KIEB.

Face-Decomposable. In Figure 3, face polygon BKIE is combined with
decomposable polygon KNMH since the two share segment KI. Stitching
results in the concave, six-sided polygon BNMHIE. We observe that KI is
an entire side of BKIE, but is a subsegment of side KH in NMHK.

Stitching is a process that may combine two ‘complex’ polygons into a
‘simpler’ polygon. In particular, stitching (1) may take two polygons with many
sides and result in a polygon with fewer sides and (2) may eliminate more than
the shared segment between two polygons. For example, in Figure 3 stitching
the 7-sided concave polygon BNMEIJD with quadrilateral JIED results in
4NMB.

Decomposable-Decomposable. In Figure 3, quadrilateral BHFA and
4HMF are decomposable polygons that share side HG (and do not share
any face polygons). By removing HG, these polygons stitch into decomposable
polygon 4MAB which encapsulates all of the face polygons of its predecessors
(CGFA, 4GLF , etc.).

Stitching considerations. On its face, stitching is a simple operation.
However, there are special cases for which we are not interested in stitching
two polygons. Our first case is when two decomposable polygons overlap. In
Figure 3, we would not stitch 4BMA with pentagon KNMLG because both
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Figure 4: Sample circle-based con-
struction of a geometry figure with in-
creasing numbers of triangles within a
circle.

Figure 5: Progression of three geomet-
ric figures with 3 fixed columns; one
square is added each iteration.

decomposable polygons share 4HMF . We identify this overlap by taking the
intersection of the sets of constituent face polygons in a decomposable polygon;
if the intersection is non-empty, we do not stitch. We argue the correctness of
this approach since face polygons are minimal and must not contain any other
polygons.

The second case we describe attempts to combine two polygons resulting
in a shape that is not a polygon according to our definition of a polygon as
a Jordan curve. Consider the concave polygon BNMEIJD and the trapezoid
BHFA. The two polygons share two distinct subsegments BD and EH. If we
stitch the polygons together, the result is a shape with a ‘hole’ on the interior
defined by quadrilateral DJIE. The resulting shape is not a Jordan curve and
hence is not a polygon. Thus we must be mindful of stitching polygons when
combining concave polygons.

5 Experimental Analyses

We implemented our algorithms in Java and executed our experiments on a
64-bit 1.2Ghz Intel processor with 16 GB running Windows 10. We will demon-
strate empirically that Algorithm 2 is superior to Algorithm 1 in its efficiency
and capacity for processing more complex figures, but also has its limitations.
We used a corpus of 10 geometry figures to verify the correctness of the al-
gorithms: both identified the same set of polygons in each figure, which we
verified by hand. Since Algorithm 1 is prone to exceed memory limitations, our
corpus of figures consisted of simpler geometry figures (e.g., Figure 1).

Geometric figures. We describe some of our geometric figures we used as
a testbed for our analyses of Algorithm 1 and Algorithm 2. Our first geometric
figure is a set of increasing triangles oriented around a circle. Figure 4 is a figure
with 8 face polygons oriented around the center of a circle (the circle is dashed
and provided as reference). Creating a geometric figure with an additional
triangle only requires computing a central angle and the associated points on
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Figure 6: Total polygons compared to
face polygons in circular sequence of
triangles (a la Figure 4).

Figure 7: Total polygons compared to
face polygons in an increasing grid of
squares (a la Figure 5).

the circle. In this construction we can explicitly control the number of face
polygons in our geometry figure.

Our second progressive geometry figure is based on a sequence of squares.
In Figure 5 we observe a geometry figure consisting of a 3 ⇥ 3 grid. Again,
controlling the number of face polygons, the next progressive geometry figure in
Figure 5 has one additional square. The sequence of geometry figures progresses
in this fashion adding a single square at a time, always maintaining three
columns.

Controlling face polygons and total number of polygons. We ar-
gue that the complexity of a geometric figure is related to the number of face
polygons and the corresponding number of total polygons. Before we put our
algorithms through their paces, we consider the relationship between face poly-
gons and total polygons with respect to our geometry figure progression from
Figure 4 and Figure 5. We observe in Figure 6 a very strong linear correlation
(r2 = 0.9982) between the number of face polygons and the total number of
polygons.

We consider the progressive grid of squares shown in Figure 5. There are two
aspects to consider with this figure. We see a nonlinear relationship between
the number of face polygons and total polygons: r2 = 0.9908 for a quadratic
curve. A construction of such a geometric figure provides a more stressful, but
controllable testing grounds for our algorithms. In the second case, we ask the
reader to consider every third point in Figure 7. We observe that the total
number of polygons increases more when adding a face polygon completes a
row compared to when adding a face polygon results in an ‘incomplete’ row.
For example, the increase in total polygons from 29 face polygons to 30 face
polygons, 3975 polygons, is greater than that found between 30 face polygons
and 31 face polygons, 1441.
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Figure 8: Execution times for Algo-
rithm 1 of triangles arranged in a circle
(a la Figure 4).

Figure 9: Execution times for Algo-
rithm 2 stitching a sequence of square
grids of square face polygons.

Algorithm 1. As Algorithm 1 is a powerset-based analysis of segments,
stress testing was difficult due to excessive memory usage. Our initial stress test
consisted of a square grid-based figure similar to that shown in Figure 2. How-
ever, such a figure does not contain any triangles and thus all possible sets of
size 3 segments are considered when identifying the constituent quadrilaterals
(and other even-sided polygons).

We executed Algorithm 1 setting the maximum number of sides (MS) to
identify all polygons up to octagons on a sequence of triangles oriented around
a circle (Figure 4). For 18 face polygons (containing 93 total polygons) in Fig-
ure 8, Algorithm 1 took approximately 69 seconds; we do not have data beyond
that point due to heap space being exceeded. We argue that allocating more
heap space simply delays the limitation of Algorithm 1. With an extremely
strong linear correlation (r2 = 0.9972) of log-transformed data in Figure 8, we
are confident that our empirical data aligns with the theoretical notion that
constructing and analyzing subsets is an exponential operation in the number of
segments. Since the number of segments in a simple figure is large, Algorithm 1
is not a strong, general approach to identifying polygons. We note Algorithm 2
identified polygons in each of the test cases in less than one second.

Algorithm 2. We initially executed Algorithm 2 using an increasing se-
quence of square face polygons in a square configuration. That is, we started
with a 1⇥ 1 face polygon adding one square at a time. After 3 iterations, the
geometry figure would be a 2⇥ 2. After 5 more iterations, the geometry figure
would be a 3 ⇥ 3, and so forth. Algorithm 2 was executed seeking polygons
with 8 or fewer sides. We did not encounter memory problems executing Al-
gorithm 2; time was our main restriction. We observe a quadratic polynomial
relationship in Figure 9 with r2 = 0.9993 as might be anticipated in a queue-
based pairing algorithm. The largest grid in the experiment contained 19 face
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Figure 10: Time required for Algorithm 2 stitching on a sequence of grids with
a fixed row length.

polygons, 3160 total polygons, and took stitching approximately 15 seconds.
The next grid (4⇥5) containing 20 face polygons, could not be completely pro-
cessed by Algorithm 2 after 4 hours of analysis. We attribute this steep increase
in processing time to the fact that 20 face polygons would have resulted in a
grid with a newly completed row similar to our discussion of Figure 5. Thus,
the increase in total polygons to be stitched was disproportionately larger than
any previous iteration.

Noting the ceiling from the previous experiment, we conducted a similar ex-
periment using a grid construction as described in reference to Figure 5 fixing
the number of columns at 3. The largest grid processed in this experiment was a
3⇥12 grid of squares containing 36 face polygons and 42510 total polygons tak-
ing approximately 178 minutes to complete stitching. We observe in Figure 10
processing time for Algorithm 2 growing as a quadratic (r2 = 0.9778).

6 Related Works

Identifying faces and polygons in a geometric figure is well-studied, but iden-
tifying all such polygons is not. Laha, et al. [7] used face identification for two
dimensional figures of lines by exhaustively cycling through points of intersec-
tion and creating convex chains of n-sides from the resulting segments; we can
view these chains as cycles in a graph. Their exhaustive technique performs
their construction in parallel compared to our approaches executing with a
single thread of control.

While our approach to polygon identification focuses on a two-dimensional
geometric figures, Dobkin et al. [4] considers multiple dimensions. Using face
identification and a procedure similar to our stitching algorithm, Dobkin et
al. identify all empty, convex polygons with multi-dimensional points using a
‘Visibility Graph’: cycling through all points in a set and constructing edge
chains of less than or equal to n-sides between subsets of points which contain
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no points within the covered area. After identifying two dimensional polygons
in a visibility graph, their algorithm combines polygons which share an edge or
vertex to identify empty convex polygons. While the work of Dobkin et al. is
close to our work in spirit by identifying all convex polygons (and in multiple
dimensions), our algorithms identify both convex and concave polygons, but in
a two-dimensional setting.

7 Conclusions

We have presented two distinct algorithms to identify polygons in a geomet-
ric figure. Our first algorithm takes a powerset-style approach and encounters
problems with exponential sizes of sets. Our second algorithm is a bit more
robust, but was lacking with particular sets of geometric figures. Empirically,
both algorithms are successful in exploring restricted, although not equivalent,
search spaces. The utility of the algorithms in, for example, problem generation
in an intelligent tutoring system may be fruitful, but beyond the confines of
figures in high school geometry problems, the algorithms may not suffice for
larger geometric figures or planar graphs.
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Abstract
Computing professionals make hundreds of decisions every day. De-

velopers, security consultants, operations engineers, designers, and com-
puter engineers all make small decisions that affect the final product.
The values people choose to promote and ignore appear in the constraints
and biases of the products they craft. This paper discusses the process
of developing, distributing, and analyzing a values survey for computer
professionals and computer science students in East Tennessee. We use
advanced calculations of significance and beta for chi-squared tests to de-
termine significance and discuss the ethical conclusions from the survey
data.
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1 Introduction

Ethics in programming is a hot topic in data privacy [11] and in machine
learning [12], but programmers’ values also play a significant role in product
development and maintenance. When a developer, security consultant, or op-
erations specialist makes any decision about a product, that decision, in part,
comes from the programmer’s values. Given a buildup of similar choices, de-
veloper values can affect the project. One example of this phenomenon is Huff
and Cooper’s empirical study of sex-bias in design. The researchers asked a
group of designers to propose designs for educational software for students. In
two test groups, the researchers explicitly specified that the students were male
or female, while they told a third test group to propose designs for “students.”
Huff and Cooper found that the designs proposed by subjects in the gender-
unspecified group were empirically similar to the designs proposed for boys and
were different from the designs proposed for girls, even among designers who
were female [9]. Huff and Cooper showed how preexisting biases and values
implicitly influenced the design and gave rise to bias in the software.

Cory Knobel, CEO of RAW Consulting, and Geoffrey Bowker, Director
of the Values in Design Laboratory at Bren, warned that “conversations and
analyses of the values found in technologies are generally engaged after design
and launch, and most users are faced with a daunting set of decisions already
made on their behalf” [10].

Friedman and Nissenbaum, in their seminal essay, “Bias in Computer Sys-
tems”, outlined three kinds of bias in software: preexisting, technical and emer-
gent [6].

• Preexisting bias is societal, systematic bias held implicitly by consumers
of a society that disseminates those biases. This includes gender bias, as
in Cooper and Huff’s research, and racial bias [6].

• Technical bias is exclusion by the constraints of software or hardware,
and the design choices made as a result. As Friedman and Nissenbaum
explain, “A technical constraint imposed by the size of [an airport mon-
itor] screen forces a piecemeal presentation of flight options and, thus,
makes the algorithm chosen to rank flight options critically important.
Whatever ranking algorithm is used. . . the system will exhibit technical
bias” [6].

• Emergent bias is the most difficult to spot during design, as it becomes
apparent after development with changes to the software’s environment
after launch, creating scenarios or use cases that designers never had to
consider during development [6]. This bias can unveil the values inherent
in the designers. Programmers building software for coworkers will see
emergent problems if that software is distributed to the public.
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Friedman and Nissenbaum explain,

Envision a hypothetical system designed for a group of airlines all of
whom serve national routes. Consider what might occur if that sys-
tem was extended to include international airlines. A flight-ranking
algorithm that favors [flying with the same company for every flight
segment] when applied in the original context with national airlines
leads to no systematic unfairness. However, in the new context with
international airlines, the automated system would place these air-
lines at a disadvantage and, thus, comprise a case of emergent bias
[6].

Don Gotterbarn, current chair of the Association for Computing Machinery
(ACM) Committee on Professional Ethics, said that,

The changes in technology and the kinds and number of impacted
stakeholders changed the fundamental nature of society. The devel-
opment of the cell phone has changed people’s access to information
and to a wide variety of entertainment ⋯Computers impact all ar-
eas of our lives and many life preserving functions are relegated to
a piece of computer guided machinery [7].

If programming as a discipline is to continue having as profound an im-
pact, the decisions programmers think about should not end at the design and
maintenance of a project. As Don Gotterbarn continued, “It is not sufficient to
limit any computer discipline to addressing purely technical issues. As a pro-
fession, we must not retreat behind the obscurity and complexity of computing
artifacts. We must acknowledge and embrace our role in shaping society and
take responsibility for our part in those changes” [7].

It is because of these concerns that the ACM and other professional societies
develop and publish codes of ethics. In the field of computer science, agencies
such as the ACM and the British Computing Society release codes of ethics for
their members. They promote integrity, professionalism, leadership, and the
public good. The ACM describes the purpose of these codes as to “serve as a
basis for ethical decision-making.” Recent research shows that these codes do
not affect programming habits [14]; however, the codes are a comprehensive
view of the values programmers parse through in the decisions they make.
Our research uses the professional codes of ethics as a lens for the values and
internal biases of programmers and how those biases work their way into the
products they create, support, and maintain.

This research aims to answer one question: “Is the way programmers re-
spond to ethical scenarios dependent on their age, years of experience, or role
as a student or a professional?” The goal of this research is to understand the
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individual biases that influence programmers’ choices during ethical dilemmas
that plague modern programming, as well as to gain an understanding of how
to correct those biases.

2 Related Work
To test how programmers respond to ethical situations, this research uses a
scenario-based model based on past surveys. The two surveys discussed below
use scenarios in their tests and use statistical regressions to interpret their data:

In 1996, Dr. Susan Harrington at Georgia State University studied codes
of ethics and the influence on the denial of responsibility, with the conclusion
that codes of ethics do have some small effect, especially for people who deny
their responsibility to be ethical. While this helps build the case for the use
of codes of ethics, it shows that codes are not strong enough to enforce ethical
responsibility. Harrington concludes that“at minimum, managers must use a
multifaceted approach to deterring computer abuse and not depend upon the
simple solution of codes of ethics. The use of tactics, such as codes of ethics,
for purposes of general deterrence should not be overstated but should not be
discarded”[8].

In 2018, Andrew McNamara, Justin Smith, and Emerson Murphy-Hill sur-
veyed software developers to determine whether the codes of ethics affect pro-
fessional decision-making. The research concluded that they do not. McNa-
mara’s research shows that computer scientists are not significantly affected by
codes of ethics; however, independent from the ACM code, the survey did not
compare how respondents select responses according to their own biases [14].

Like these two studies, our research includes several ethical scenarios. Un-
like these two studies, this research is entirely observational. It does not use
a control group with a controlled stimulus. The goal of this research is to
observe the ethical climate of programmers through the lens of the codes of
ethics. Many of the scenarios used in this survey were adapted from the ques-
tions made by McNamara, Smith, and Murphy-Hill, making this research a
continuation of their work. The questions in this survey place pairs of ethical
values in a mutually exclusive scenario. This ensures that the respondents’
results describe how they would react in making everyday decisions that force
them to choose between two values. For example, one question says:

Question 0: The last customer meeting for your project was a disaster.
Communication has been limited for the last month and the customer is ex-
pecting a full report from today’s meeting. As you leave your office for the
meeting, you overhear the administrative assistant saying,

“If Joe calls in, please see that he calls home. His spouse says there
is a mini-crisis.”
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You are to meet with Joe at the customer’s office, and the two of you are
to lead the meeting. Joe’s participation is critical. Joe is quite nervous and
often gives a bad impression if distracted. What do you do?

• Relay the information to Joe before the meeting
• Not relay the information to Joe before the meeting

This question is one of the scenarios adapted from McNamara, Murphy-
Hill, and Smith’s survey, except that this version adds the variable of the
unhappy customer and how critical this meeting is for keeping the customer
informed. This scenario forces a choice between helping one’s coworker and
one’s responsibility to the client, two cornerstone values for many codes of
ethics [1, 2, 3, 16].

3 Methodology
The survey categorized questions according to six values that are common to
most ethical codes:

• Transparency, the principle of being open and honest to all stakeholders
about everything that goes on before and during software production
[1, 3, 16].

• Respect for Privacy, the principle of respecting other people’s data, sen-
sitive or otherwise [1, 2, 3, 16].

• Respect for Intellectual Property, the principle of honoring other people’s
work, property, and ideas [1, 2, 3, 16].

• Helping colleagues, the principle of helping one’s fellow workers, and
teaching them what they need to know to succeed [1, 2, 3, 16].

• Quality assurance, the principle of refusing to release software that falls
short of what has been promised in terms of security, usability, and com-
pleteness [1, 2, 3, 16].

• Self-improvement, the principle of continual learning in computing, ethics,
and the skills of communication [1, 3, 16].

These values were chosen based on their regular appearance through the
above codes and their applicability in scenarios that force respondents to choose
one over the other. Other values in the codes included competence, quality of
life (of all people), social good, and security. These values were not chosen to
keep the survey short and because many of them are dependent on, or covered
by, the values already in the survey. For example, a programmer who values
self-improvement will, by extension, become more competent.

Each scenario in the survey is a multiple-choice question, including two
responses that favor one value more than the other and sometimes two other
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responses that respect both equally. Respondents picked responses to each
scenario based on how they would act in that situation. Along with these sce-
narios, respondents supplied their age, number of years of experience, student
status (whether or not they were currently a student), and how highly they
thought they held each value.

This survey was exclusively advertised to programmers in the East Ten-
nessee area, specifically from the Chattanooga region, to get a geographically
consistent sample. Southeast Tennessee is unique in the United States due
to the region’s strong startup support network. Significant contributors to
this network are the economic development agency Launch Tennessee and en-
trepreneur centers such as the Company Lab in Chattanooga. This survey was
distributed through these communities, making this survey not just a discus-
sion on the values of programmers, but of programmers in the startup culture
of Greater Chattanooga.

4 Results

Data collection officially closed February 13th, 2020, with a total of 90 re-
sponses from local professionals in computing. The respondent count, dis-
tributed by age, was: 57 respondents of 18-30 years of age; 21 respondents of
31-40 years of age; 12 respondents of 41+ years of age. The distribution of
respondents by years of experience was: 38 respondents of 0-5 years of experi-
ence; 29 respondents of 6-15 years of experience; 23 respondents of 16+ years
of experience. Student status was distributed as follows: 48 non-students; 42
students.

Results were analyzed for significance using the chi-squared test for inde-
pendence. This is a test that determines whether two categorical factors are
related based on a“contingency table”of the counts of each category [13]. The
statistical test works by stating a“Null Hypothesis.”The hypothesis assumes
the categories have no relation to each other with the hope that the observed
data will contradict this assumption. If it does, we can say that the categories
are related.

The chi-squared test begins by comparing counts between several categories
based on the assumed distribution of values if the categories were not related
[13]. To do this, the data is compiled into contingency tables. In a contingency
table, rows represent the number of responses for a specific question, while
the columns represent respondent characteristics (student vs. non-student,
experience range, age range). To get statistically significant findings, the chi-
squared test uses a selected alpha, which represents the chance of getting a
false result. A significant result should have a low alpha, such as 0.05, to lower
the chance of a faulty result to 5%.
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The chi-squared test assumes that the expected value (Ei,j) of each cell
in a contingency table is greater than 5 for at least 80% of the cells and that
all cells are greater than 1 [13]. This can usually be ensured by having more
samples than 5 times the number of cells in any table. For our survey, the
cell count never exceeds 10, which would make a sample size of 90 acceptable.
Unfortunately, for four out of the ten questions, the results are skewed towards
one or two responses. Experts advise combining the rows to remove the rows
with too few counts [13], but while this validates the use of the chi-squared
test, it limits the conclusions we can make on the relations after testing.

For these questions, combining two rows is sufficient, but one of the ques-
tions is skewed so far towards one response so that the chi-squared test cannot
work, and may not even be needed to see a trend in user responses.

This research used a survey with 10 questions, each of which can be com-
pared against respondent age, years of experience, and student status. Using
an alpha of 0.05, we found only one significant result: with 95% certainty (1-
alpha), we can say that whether a respondent is a student affects how they
answer question zero. To try to find more significant results, we must vary
alpha in order to increase the power of the test.

The Null Hypothesis assumes that the categories have no relation to each
other, which the data either accepts or rejects. This test can be invalidated if
the risk of mistakenly labeling a result becomes too high. This error can be
visualized with the following table:

Should be rejected (Null
Hypothesis is false)

Should not be rejected
(Null Hypothesis is true)

Test rejects the
null hypothesis

True Positive Rate (TPR)
= Sensitivity = Power =
1- β

False Positive Rate (FPR)
= 1-Specificity = α

Test fails to re-
ject the null hy-
pothesis

False Negative Rate = 1-
sensitivity = 1 –Power =
β

True Negative Rate
(FNR) = Specificity = 1 -
size = 1 - α

Type I errors (α) represent seeing correlations where one does not exist.
For the previous alpha of 0.05, there is only a 5% chance that our singular
result is wrong. The sacrifice for this accuracy is that it increases β, the Type
II error rate, resulting in missed significant results. This is especially true for
the chi-squared test, which is a low-power test [4]. For this data, a better alpha
must be calculated to increase power while keeping alpha acceptably low.

Beta can then be used to calculate the true positive rate, which is the
“power”of a function. Power is equal to 1-β. A low beta results in a high

power, which is good. To counteract the chi-squared test’s naturally low power,
this research uses the Youden index of a ROC Curve.
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A ROC (Receiver Operating Characteristic) curve is a visual representation
of the tradeoff between the true positive rate (power) and true negative rate
(alpha) [5]. Figure 1 shows an example of a ROC curve (orange). The diagonal
(blue) shows where power (true positive rate) and alpha (false positive rate)
are equal. A point on the ROC is better when power is greater and alpha is
smaller. This scoring of a point is its “Youden”(J) [15], where J = power –
alpha. The point where the Youden is largest is the“optimal cut-point.”The
alpha value of this optimal cut point is the “calculated alpha,”which is a
superior value for alpha compared to the nominal alpha, 0.05.

Figure 1: ROC curve depicting the Youden (J) and optimal cut-point (c)

Because power is a function of the chi-squared value of each contingency
table, every contingency table has a different optimal cut-point and resulting
alpha. Using Python’s statistical packages, we calculated each table’s optimal
alpha before testing each chi-squared value for significance. Applying this
approach to revisit every contingency table, we found the following results:

• The response to question 0 is related to whether the respondent is a
student (alpha=0.15 power=0.809)

• The response to question 2 is related to whether the respondent is a
student (alpha=0.262 power=0.535)

• The response to question 3 is related to whether the respondent is a
student (alpha=0.162 power=0.807)

• The response to question 5 is related to whether the respondent is a
student (alpha=0.162 power=0.806)

• The response to question 7 is related to whether the respondent is a
student (alpha=0.25 power=0.651)
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• The response to question 8 is related to whether the respondent is a
student (alpha=0.175 power=0.779)

• The response to question 9 is related to whether the respondent is a
student (alpha=0.15 power=0.801)

• The response to question 0 is related to the respondent’s age (alpha=0.225
power=0.683)

• The response to question 3 is related to the respondent’s age (alpha=0.15
power=0.817)

• The response to question 8 is related to the respondent’s age (alpha=0.15
power=0.806)

Interestingly, the test failed to find any relation between question responses
and the respondents’ years of experience. Note that this does not prove that
there is no relation between programmer values and years of experience. The
chi-squared test works by rejecting the null hypothesis that there is no relation
between two factors [13]. We cannot prove that there is no relation when we
began the test with that assumption.

While these results are significant, the chi-squared test cannot tell us how
they are significant, or what these results signify. The results from the chi-
squared test must be studied to find the trends between the independent vari-
able (age and student status) and the dependent variable (question responses).
For example, question 0 is a question about valuing one’s coworkers versus
keeping good relations with one’s client:

#5: Quality Assurance v Privacy: You and your coworkers have been work-
ing for the last year on an update to an already existing accessibility app to
make texting on smartphones easier. The software is used in a wide variety
of applications, and you believe there may be issues that haven’t been found.
The release deadline is approaching, and one coworker suggests configuring the
initial release to send an error report of everything being done by the user
whenever a system breakdown occurs. This data collection would keep track
of all recent events, running apps and current texting channels. Data collec-
tion for the sake of improving the software is allowed in the company’s privacy
policy. What do you do?

• Begin development of the data collection software
• Request to push back the deadline and build a small group of users with

whom to test the software
• Release the software without collecting data and wait for users to report

errors
• Develop the data collection software to get information on customers for

future use and begin work on the next update without checking for errors
in the last update
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Figure 2: Stacked proportions of the Student Status v Question 5 contingency
table

Respondents who are no longer students are more likely to value the privacy
of users and quick release of a product over ensuring quality. Figure 2 visualizes
this relationship. The relationships for all other tables show similar leanings,
which are compiled into these results:

• Student v 0 : Non-students value coworkers over clear communication
with the client.

• Student v 2 : Non-students are more likely to honor their Non-Disclosure
Agreements, even if it means missing a project milestone.

• Student v 3 : Non-students are more likely to contact customers about
issues during project specification, while students are more likely to build
the project even with the flawed requirements.

• Student v 5 : Non-students are more likely to opt to release a product
immediately without data-collection software even if it means project
bugs go undiscovered.

• Student v 7 : Non-students are more likely to sell data to third parties,
while students are more likely to add an opt-out setting for customers.

• Student v 8 : Non-students are more likely to value the licenses of privacy-
invasive libraries and use them as-is, while students are more likely to
attempt to find a different library.

• Student v 9 : Non-students are more likely to tell employers, rather than
customers, about valuable information about the risks a product may
have, while students are more likely to tell customers.

• Age v 0 : Users older than 18-30 years old are more likely to value cowork-
ers over communication with the client.

• Age v 3 : The older a user is, the more likely he/she is to contact cus-
tomers about issues during project specification.
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• Age v 8 : The older a user is, the more likely he/she is to value the licenses
of privacy-invasive libraries and use them as-is, while 18-30-year-olds are
more likely to attempt to find a different library.

The last significant trend is from question 1, which was not calculated due
to its uniform skew towards one response: Student v 1: Both students and
non-students value helping coworkers over ensuring that a shipped product is
usable. The conditional distribution table for Question 1 illustrates this:

Student v Question 1 Not a Student Is a Student
Response 1 0.00% 0.00%
Response 2 12.50% 11.90%
Response 3 2.08% 2.38%
Response 4 85.41% 85.71%

Question 1 is a question comparing helping coworkers (with whom com-
munications have broken down) and the quality of a product that is shipping
tomorrow. Most respondents would ship the product even if it does not work
and would instead take time to repair the relationship with their coworkers.

5 Conclusions
From these results, we can infer about the values of programmers in southeast
Tennessee:

• Most programmers seem to value their coworkers more than the good of
a singular project.

• Older programmers care even more about coworkers than younger re-
spondents do.

• Respondents out of college are more likely to value releasing a project
quickly, even at the expense of quality or privacy.

• Respondents out of college are more likely to value intellectual property,
while students are more likely to respect privacy.

• Older programmers and non-students value clients more than younger
students.

Most of these results match common understandings of programming (such
as more experienced programmers being more beholden to their bosses), but it
is significant that all programmers, especially older ones, value their coworkers,
or at least treat it as the ethical thing to do. This shows that, contrary to
the stereotype, programmers are not predisposed to live in solitude or to be
antisocial. Programmers in the startup community of Southeast Tennessee feel
a responsibility to their colleagues. Future iterations of this work would center
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response collection in regions with different developer climates, such as the
competitive atmosphere of Silicon Valley against the enterprise community of
large tech companies, to get a complete snapshot of the computing ecosystem.
Ethics is a complicated subject, and the ways programmers interact with ethics
is even more complicated. This survey gives a glimpse into the choices computer
professionals are forced to weigh and the values they rely on to make them.
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Abstract
As the world was turned upside down by COVID-19 and the resulting

decision to immediately transition all face-to-face classes to 100% online,
the decision was made to turn CS1 upside down as well, and pivot to
flipped class delivery. There is no shortage of documentation on the ben-
efits of the flipped classroom model, specifically in introductory computer
science courses, however, this model was not implemented in this partic-
ular CS1 classroom prior to COVID-19 [1][5][2][3][4][6]. The COVID-19
pandemic resulting in the immediate switch from 100% face-to-face to
100% online delivery served as the catalyst necessary to facilitate the
change to a flipped classroom model. This paper serves as an experi-
ence report and details the steps taken to implement the switch to a
flipped classroom, the students’reactions to such and lessons learned
for moving forward. The unique nature of a single collection of students
experiencing both traditional and flipped delivery in a single course dur-
ing a single semester provides much insight as to the viability of this
approach moving forward.

1 Introduction
Southeastern Louisiana University is a mid-sized public university with approx-
imately 14,000 students. Approximately 450 students have declared computer
science or information technology as their major course of study. CS1 is a
required course for all majors, minors and concentrations in the Department of
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Computer Science, as well as numerous other majors in the College of Science
and Technology. This paper presents the details of flipping 3 sections of CS1 in
the Spring of 2020, each section having a maximum of 24 students. The course
teaches the basics of programming concepts using a late objects approach, the
Eclipse IDE and the Java programming language, assuming no prior knowl-
edge of IDEs or programming. At this point, all are well aware that the effects
of COVID-19 have permeated every aspect of life and none more so than the
university classroom. Both students and faculty who began the semester in a
traditional face to face paradigm were thrust into distance learning with mere
days to facilitate the transition. This paper serves as an experience report
in transitioning a traditional face-to-face CS1 class mid-semester to a flipped
class model with 100% online delivery in response to the COVID-19 pandemic.
The transition to online delivery was abrupt and without instructor or student
input, however, the decision to transition to a flipped delivery model was not
cavalier. While the COVID-19 pandemic response provided the catalyst, suf-
ficient impetus was a result of two factors: (1) ongoing research into flipped
vs. traditional delivery and (2) previous student surveys indicating increased
engagement and understanding provided when class time is used for coding
and problem solving rather than traditional concept lectures [1][5][2][3][4][6].

2 Implementing the Flipped Online Delivery

2.1 Pre-COVID-19 Traditional Delivery

Prior to the COVID-19 pandemic, the class was delivered face-to-face on cam-
pus to 24 students per section in a computer lab classroom in two 75-minute
traditional lectures a week. No lab hours were required, however students had
access to computer labs with free tutoring during the week from 9am - 5pm.
The initial 25% of lecture time was spent working concept review problems
from previous lectures. Approximately 75% of the lecture time was spent on
concept lectures using PowerPoint slides which were made available to students
prior to class. There was minimal live coding in class meetings. Students ac-
cepted this approach since it was within their comfort zone and experience of
class structure, however, student surveys repeatedly reported that they found
the initial portion of the class spent solving concept problems and the live cod-
ing portion the most engaging and informative. The motivation to maximize
the strengths of the current classroom (i.e. concept review problems at the
beginning of class, regular meeting times, and live coding exercises in class)
solidified the decision to flip.
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2.2 Post-COVID-19 Online Flipped Delivery

Synchronous-only, asynchronous-only and hybrid approaches to content deliv-
ery were evaluated. The following benefits of the synchronous approach were
considered: continuity between pre-pandemic and post-pandemic delivery; the
ability for student-instructor and student-student interaction in an environ-
ment that otherwise did not foster such; the ability for the instructor to foster
relationships and provide intervention where necessary. Drawbacks to syn-
chronous delivery considered included technology issues beyond student con-
trol limiting the ability to attend class at a specific time, locational issues that
may cause distraction or prevent the student from attending. Asynchronous
delivery benefits that were considered included the availability of technology
at times other than scheduled class time, the ability of students to access ma-
terials multiple times [1]. The only drawback of the asynchronous delivery
considered was the possibility of students to disengage in the class. Because
students did not register for online delivery, the decision was made to provide
a hybrid approach of both synchronous and asynchronous elements, thereby
utilizing the benefits of both delivery methods, minimizing the drawbacks and
setting the environment for a flipped classroom.

2.2.1 Asynchronous Elements of the Online Flipped Delivery

To achieve a "blending of direct instruction with constructivist learning" [1]
an asynchronous component is necessary. This serves not only to deliver di-
rect instruction but also to provide a place where "content is permanently
archived for review or remediation." [1] To this end, a YouTube channel was
created for the class with two playlists to contain all asynchronous material:
a PowerPoint lecture playlist and recorded Google Meet sessions playlist. All
PowerPoint slides on programming concepts which originally comprised the
in-class lectures were recorded with voice-over and uploaded to a dedicated
playlist on the class channel. Accessibility issues were addressed by writing a
script for the voice-over content and including it in the notes section of the
slides and utilizing closed caption capabilities. As per the flipped class model,
the PowerPoint presentation, which students were expected to view prior to
the synchronous Google Meet, would inform the concept review problems and
live coding in the class [2]. The Google Meet recordings of synchronous class
delivery were uploaded to a dedicated playlist on the class channel. In addition
to the standard, anticipated benefit that students were able to view the lecture
portion multiple times and at their convenience [1], this provided the added
benefit that students were able to view the Google Meet for class sections other
than their own. This afforded the students access to the in-class discussion of
other sections. Accessibility compliance was addressed using the speech recog-
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nition feature, “Turn on captions”, in Google Meet that generates closed
captioning as shown in Figure 1.

Figure 1: Google Meet Concept Problems

2.2.2 Synchronous Elements of the Online Flipped Delivery

The synchronous lecture was completely modified to fit the protocol of the
flipped classroom to “increase interaction and personalized contact time be-
tween students and teachers”and to be a place where“all students are engaged
in their learning.”[1] This was achieved by structuring class time into two parts.
At the beginning of class, students were given small problems that required the
use of previously covered concepts to solve as shown in Figure 1. The instruc-
tor worked through the solutions interactively with the students, revisiting the
major concepts required for solution. The students were encouraged to ask
questions where they needed clarification. The remaining portion of the class
was spent in "live coding" small programs as shown in Figure 2. The program
requirements were introduced by the instructor and an algorithm was devised
for a solution. The class worked as a group to code the algorithm to a running
program. These programs served to reinforce the concepts covered in the cor-
responding asynchronous voice-over PowerPoint lecture that the students were
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Figure 2: Google Meet live coding examples

expected to view before attending the live lecture.

3 Challenges

The transition to a flipped classroom with 100% online delivery mid-semester
was not without challenges. While several of these challenges were anticipated,
other challenges materialized. These challenges fall into two categories: in-
structional challenges and student challenges. The challenges associated with
the immediate transition to online delivery were ubiquitous, ranging from tech-
nology issues to student mental health issues and everything in between. It is
worth reporting that the issues surrounding the flipped delivery of the class,
however, were both anticipated and minimal. It is these challenges that are
the focus of this report. Instructional challenges in flipping the class were min-
imal and surrounded lesson planning and time constraints as predicted [4]. As
previously discussed, class materials had been created for traditional delivery,
therefore significant time had to be dedicated to creating both the synchronous
and asynchronous content required for the flip. Synchronous content presented
the least challenge as it consisted of in-class concept review problems (which
were successfully incorporated prior to the flip) and coding exercises (which
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were only minimally incorporated prior to the flip). Asynchronous content
preparation proved more demanding as it required writing scripts and record-
ing voice-over PowerPoint lectures. Thus the challenge was twofold: content
creation and time requirement. Of the two, the time required to script, record
and produce the asynchronous lectures proved far more extensive, particularly
when coupled with a significantly increased amount of student and adminis-
trative emails. Student challenges to the flipped classroom model were time
management and self-discipline related, causing them to not respond well to
the flip initially, as predicted [6]. Students informally reported not viewing
the assigned lectures prior to attending the class. It quickly became obvious
which students had spent the requisite time in pre-class preparation. Because
of external factors surrounding the flip, it is not possible to say how the same
students would approach the pre-class preparation in a “normal”semester.
With that being said, the in-class engagement was high and students reported
high levels of satisfaction with the flipped class format.

4 Conclusions
Prior to COVID-19 the CS1 class at Southeastern Louisiana University was
delivered face-to-face in a traditional lecture format, however, the immediate
transition to 100% online delivery served as the catalyst to re-evaluate the
format of the class. Based on ongoing research into the flipped classroom
model and previous student surveys indicating increased engagement and un-
derstanding when such practices as concept problem solving and live coding
were utilized, the decision was made to flip the class. The decision of syn-
chronous, asynchronous and a hybrid approach to delivery was informed by
the flipped classroom model and the class was delivered in the hybrid model.
The traditional PowerPoint lectures moved to asynchronous delivery for pre-
class viewing and valuable synchronous class time was spent solving concept
problems and live coding. The transition was not without challenges, but the
challenges from flipping the class were expected as they are well documented
in the literature [3]. The student response was favorable and the class will
proceed in the flipped model.
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Abstract
Often, higher educational institutions must purchase software to man-

age their operations. However, the cost to purchase some software is pro-
hibitive, particularly for smaller institutions, resulting in software that
can be difficult to use, poorly developed, or not fully-featured for the
specific needs of the institution. An alternate solution is to hire a team
of student developers, led by a faculty and minimal staff support, to cre-
ate custom, institution-specific software that meets the college’s exact
needs, while providing students with valuable skill-building experience.
In its sixth year of operation, our team has developed a framework to
lead students who create software for an academic institution, resulting
in nine software systems thus far. This case study details the student
software development team framework, whose goal is to benefit students
by emulating the software engineering industry. Lastly, the modifica-
tions made to continue pursuing this goal during the COVID-19 crisis is
discussed.

1 Introduction
Academic institutions are unique in their software needs, and at times the
right tools don’t exist. Adapting existing software sometimes solves part of
their needs, but is rarely a complete solution. Software modifications (i.e.,
custom features) are supported, for a cost, by software companies. Our insti-
tution took another approach, leveraging a team of students led by faculty and
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staff with software engineering experience to craft custom, institution-specific
software. The institution can avoid the high cost of software and maintenance,
and get applications that are tailored specifically to meet their needs. More
importantly, the program supports students in learning software engineering
through the building of meaningful software, aligning with the educational mis-
sion of academic institutions. The students gain numerous technical and soft
skills, most of which are valuable to employers [8] as previous work has shown
[6], preparing them for the software engineering industry post-graduation.

There are plenty of examples of students creating real-world software (i.e.,
software that is used by the product owner to do their business) in courses
[12], capstone experiences [2], and internships [9]. Kaminar [7] summarizes
an instance where students developed software that was adopted by the insti-
tution. However, these adoptions occurred organically and were presumably
one-off ventures with no long-term support. To our knowledge, no examples
were found of institutions hiring students to develop custom software solu-
tions, including maintaining the software throughout its lifetime, making this
framework novel.

In March 2020, the program was challenged by the COVID-19 pandemic.
Our institution made the decision to close its campus within one week of the
WHO declaration [15], one of the earliest campuses to do so. As many academic
institutions moved to remote-only classes and work, their dependency on soft-
ware and supporting services became more significant. The change resulted
in many adjustments to our student-led software development framework to
continue maintaining software while students worked remotely.

This paper begins by describing one of the nine systems developed by the
Student Software Development Team (SSDT). Next, the framework for the
program is described, which blends the best parts of a software engineering
course, a capstone experience, and an external experience like an internship.
The paper will conclude with a discussion about how the program shifted to
remote-only work during the COVID-19 crisis, demonstrating the adaptability
of the program and how the students are benefitting from the framework being
applied to a remote-only working environment.

2 Software Developed by Students

The challenge and experience of building entire software applications for the
institution gives students the opportunity to grow outside of a traditional class-
room setting, while benefitting the institution with custom applications to solve
their unique needs. The software projects the SSDT undertake are uniquely
specific to the institution. The team receives requests for help from depart-
ments across the institution. A number of factors determine which systems
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will be implemented, including the request’s urgency, value to the institution,
and the expected effort required to complete the project. The vast majority
of the applications the SSDT build are web applications, using familiar web
frameworks that are consistent across all of our applications.

In the six years since the creation of the SSDT, the team has undertaken
twelve software systems, nine of which are still actively maintained by the team.
Systems have been built to support the specific needs of one department, such
as a tool for managing the entire Art program’s archives, while others serve
the entire institution, such as the labor status forms system described next.

2.1 The Labor Status Forms Application

There is not a large market for the creation of software to support the specific
needs of work colleges, considering there are only nine in the United States
[14, 4]. As a work college, our institution of approximately 1,600 students
hires every student into a work-study program as part of their requirements
for graduation. Each student works 10-20 hours a week, and each department
at the college is allocated a specific number of students. The office in charge
of regulating student labor was using paper forms to manage each student,
resulting in significant errors. This process not only required additional student
labor, it also expected students to walk across campus gathering signatures
from multiple supervisors and academic advisors to complete their forms. A
lean project estimated approximately 114 minutes per student to complete a
hire.

The SSDT was asked to develop a custom application that would replace
the antiquated process. A new web application was designed and developed
to be used by every labor supervisor to hire and fire students. It was built
with an administration interface, meaning all labor to be maintained within
one web application, streamlining the process. The new web application, with
its first version completed in 2015, provided the labor administrators with a
much needed improvement to their previous process. The aforementioned lean
project estimated a hire could be completed in 4 minutes, with significantly
less errors.

After five years of developing this one system, a large backlog of requests
had been received and were not getting integrated. This was largely due to the
language selected when we began, as well as five years of code that had dras-
tically improved over time. However, old code still lingered that occasionally
didn’t fit our new standards for quality. In 2019, the team decided to move
the web application to a new framework that mirrored the other eight applica-
tions also managed by the SSDT, reducing the amount of relearning necessary
when switching between software systems, as well as eliminating the many
mistakes made by previous programmers that still lingered. The new system
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also opened the door for new potential, as it introduced new processes. For
example, sometimes a student needs proof of employment. Since paper forms
no longer existed, a new proof of employment document had to be generated
from the system.

This application began as an idea to eliminate the error prone paper-based
process, and eventually evolved into an application that is now handling all
aspects of student labor. The SSDT is driven to build software solutions for
departments across the institution, with an emphasis on building maintain-
able software. This is why the SSDT has structured their software engineering
process in a way that gives the team the necessary time needed to build appli-
cations from the ground up, while still being able to maintain all the systems.

3 Our Existing Software Engineering Framework

Over these last six years, an evolving process was created that informs the
current framework presented here. Following best practices in lean thinking,
the current framework is regularly evaluated and modified to meet the team’s
current needs. Thus, the framework presented in this section represents the
current state and has been generalized as much as possible, but will certainly
continue to evolve as the needs of the team change.

The SSDT follows Agile principles [5] using a modified version of Scrum
[10]. The Scrum methodology identifies three key roles in a software develop-
ment team: product owner, Scrum Master, and the development team. The
product owner is the customer who made the software request and determines
the vision and purpose of the software product. All work must be approved
by the product owner before it is considered complete. The Scrum Master is
typically a full-time employee of the college, managing the development team
and the backlog of work, ensuring focus is maintained on the most important
features of the application. Finally, the development team in this framework
consists of undergraduate students who are “structured and empowered by the
organization to organize and manage their own work” [10]. Scrum theory pro-
vides an iterative, yet incremental approach to cut down on risks and enhance
the predictability of the project for the product owner.

Scrum also prescribes four events in the software engineering process: sprint
planning, the sprint, sprint review, and sprint retrospective. These four events
are implemented differently in the framework depending on the term, because
the summer term has students working four times more than the regular term
(i.e., 40 hours per week versus 10 hours per week). In the summer, the team
follows a traditional Scrum model with a product backlog and work in progress
determined during spring planning, daily Scrum meetings, and a Sprint Review
and Retrospective happening every two to three weeks before starting the next

223



cycle. In a typical regular term, the Scrum timeframe is stretched out; Scrum
meetings happen weekly, and sprints take four to six weeks. We often save
new systems and major features for summer terms, while smaller features and
bug fixes happen during regular terms. The next section details the framework
during these two phases: the Summer Internship Phase, and the Maintenance
and Customer Support Phase (i.e., the regular term).

3.1 The Summer Internship Phase

Starting in the summer term, students are hired into the SSDT based on a
few metrics, including grades in core classes, their ability to work well with
others (namely, pair programming [13]), and the perceived value they will
attain from participating in the program (i.e., the strongest students are not
always selected, as they may not benefit as much from the program).

A typical summer operates much like an internship, where students are
employed for 40 hours per week for 8-10 weeks, resulting in up to 400 hours
of software engineering experience. Their expectations mirror an internship in
many ways: they are expected to be punctual, productive throughout the day,
and regularly reporting their progress to supervisors. Each summer consists of
six to ten students managed by one faculty and two staff (the leadership team).
The students work in pairs as they design interfaces and develop code. Very
rarely will a student have been explicitly trained on software engineering prin-
ciples such as Agile methodologies, Model-View-Controller (MVC) or similar
frameworks, or large-scale application development, prior to joining the team.

A key skill gained by our students very early in the summer internship is
the ability to translate customers’ needs into usable software (i.e., requirements
gathering and design). Students begin by paper prototyping [11] a design of the
application. This design process consists of many iterations of interfaces drawn
on paper. Designs are critiqued and modified until there is a group consensus
to move forward. This avoids the students spending significant hours writing
code that doesn’t match the team’s understanding of the application or
the product owner’s needs. After paper prototyping, the students begin to
construct the models that support their prototype. As a group, they propose
the underlying data structures of the application and the relationships between
parts of the model. This process provides students with a better understanding
of the model when they begin implementing their prototype, reducing confusion
about how data is stored and retrieved. Having the front-end design and
data model in place, the students begin building the application. Students
are first given a virtual machine to develop on, which mirrors the production
environment, but also requiring them to learn some basic Linux commands
and usage (again, a new skill for most). Working from a template, pairs of
students begin construction from a common git repository, also learning about
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git workflow.
Throughout the summer, everyone meets for a daily Scrum. Students are

encouraged to ask lots of questions early in the process. In fact, most of the
training happens as a result of a question being asked, since no formal tech-
nical training is done. As the summer progresses, the leadership team begins
expecting the students to ask each other for help first. This promotes sharing
of knowledge among the students, as pairs begin to solve similar problems that
others have already seen, and can help each other from making the same mis-
takes. To maintain organization and visibility about what features each pair is
working on, we leverage Kanban boards [1]. Applying the Kanban model with
the Scrum framework manages the overall flow of the project well.

As interfaces near completion, usability tests [3] are performed to test user
interactions. The usability tests are run with another team, then the leadership
team, and lastly with the product owner for final approval of the implemen-
tation. Then, the students’code gets tested for security, coding standards,
accessibility guidelines, and bugs before being integrated into the production
environment by the leadership team. Ideally, by the end of summer, the com-
pleted product is delivered to the customer. Because this is not always the
case, constant communication with the product owner and clear expectation
setting reduces surprises about delays in deployment. Any features that aren’t
completed migrate to the regular term, after critical bugs are resolved.

3.2 The Maintenance and Customer Support Phase

In the fall term, the team shifts to 10 hours per week, as the students begin
attending classes. As expected, the productivity of the students reduces dra-
matically in the regular terms. The framework takes this into consideration.
The team shifts its focus to maintaining existing software and responding to
customer needs (e.g., bug fixes or small feature requests) before attempting
to build new interfaces. Students gain valuable experience maintaining their
software after deployment, a skill rarely taught in software engineering courses
after projects are “completed” and delivered to customers.

Similar to summer, the Kanban board is instrumental to keeping the team
organized and aware of each others’ work, particularly since the students’ sched-
ules become more spread out. Students check the Kanban board for new issues,
claim them, and keep record of their progress. This flow helps developers visu-
alize their progress and estimate their time, which is essential given they only
have 10 hours per week to work. When the issue is resolved and tested, a pull
request is created and reviewed by the leadership team.
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4 Shifting Process in Response to COVID-19

Following the COVID-19 campus closure, the SSDT program was put on hold
midway through the Spring 2020 term. Only the leadership team continued to
work on the software systems in our last sprint. The shutdown itself required
a few changes to existing systems. For example, updated syllabi were needed
for every course, outlining how classes would change during emergency online
teaching. One of our software systems was currently being used to collect
syllabi during regular terms; our team quickly modified the system to support
an new “COVID-19” term, where new syllabi could be uploaded quickly.

The SSDT team worked with the administration to permit students to work
on software in a remote-only capacity. The team quickly adapted its framework
to this new work environment. One of the many considerations that had to be
acknowledged during this process is that some students were now dealing with
outside distractions that did not exist when working on-campus, including
moving, balancing parenting and other duties, and unreliable technology at
home.

The leadership team began by prioritizing issues in the queue. A thorough
walkthrough of the current application was done to identify new issues created
by unfinished work as students left campus. The final and most important step
was deciding which tools the team would use that would most closely resem-
ble the workflow while on-campus. Ultimately, the leadership team identified
four tools that were key to facilitating student success in a remote SSDT en-
vironment: 1) a digital version of the Kanban board for organizing tasks; 2)
a communication platform to facilitate online meetings; 3) a wireframing tool
for creating low-fidelity prototypes, replacing our paper prototyping process;
and 4) a collaborative code editor for modeling pair programming. The next
section details how these tools were implemented.

4.1 New Tools and Processes

Consistent communication between the students and the leadership team was
of the utmost importance in ensuring progress. An online Kanban board was
used to digitize the physical board in our workspace. Figure 1 shows the old
(left) and new (right) versions of the Kanban boards, indicating similar objects
on each. The old version of the board required students to write their current
issue on a “card” and place that card on “the wall.” Cards moved up the wall
as they got closer to completion, starting in the backlog and ending with a pull
request, with percentage complete in between. This same organization was
used in the digital version of the Kanban wall with the only major difference
being that cards moved from left to right as they neared completion.

The team already utilized a platform for much of its online communication,
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Figure 1: The physical Kanban board (left) and its virtual equivalent (right)

so it was decided to continue with a more significant reliance on this tool. The
student programmers followed a “Did, Doing, Stuck” (DDS) structure, where
the students would explain what they did the previous day, what they will be
doing this work day, and if they are stuck on anything. The leadership team
would check these updates daily to monitor progress and ensure students are
not stuck for an extended amount of time, closely mirroring our process before
the crisis. The communication platform also offered video calling capabilities,
allowing the team to continue doing Scrum meetings as they did in the previous
summers, just through video conferencing. Screensharing and virtual drawing
tools were leveraged to simulate whiteboards, provide “just-in-time” training
to newer students, and share interfaces for feedback.

Given the situation, students were not able to collaborate in-person on
paper prototypes. Instead, an online collaborative wireframing tool was used
to create mockups. The wireframing tool proved nearly as effective as paper
prototyping, but also allowed designs to be responsive and perform like actual
webpages (e.g., demonstrating “on click” events). This ensured that the team
did not stray from our design standards, and introduced a tool that provides an
efficient way to prototype interfaces that will likely be adopted post-pandemic.

Pair programming was particularly important to the leadership team, for
many reasons [13]. Our solution was for the student programmers to video call
during the entire work session, allowing them to discuss their work, similar to
before the pandemic. However, pair programming from different terminals is
highly ineffective. So, a plugin was added to their IDEs that allowed pairs to
share code and see edits in real-time. The leadership team also used this plugin
to perform code reviews and demonstrations with the student teams.

Anecdotal evidence suggests that the students are feeling productive, ef-
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ficient, and are still learning from the experience despite the circumstances.
The leadership team regularly asks the students in the morning scrum meet-
ings to provide feedback about how to improve this process for them. They
are mostly indicating they simply need practice and time to develop the skills
needed, which is largely in line with what is expected of them when in person.

5 Conclusion
Higher educational institutions are often limited by proprietary software that
can’t meet their exact needs at a reasonable cost. The Student Software De-
velopers Team is a framework for developing software, where the development
team is composed primarily of undergraduate students who are not trained soft-
ware engineers. Detractors are quick to indicate that trusting undergraduates
with this task, even under the leadership of faculty or staff, is an unacceptable
risk to the institution. However, the Student Software Development Team has
developed nine software systems which are used broadly by the campus com-
munity in the last six years, proving its viability. The framework presented
here represents one way in which this can be achieved.

The importance of remote work has been well known in the software engi-
neering industry for years, but rarely is any effort spent in training students to
work remotely. In the span of one month, we were able to move the SSDT to
a remote-only process. The Summer 2020 cohort consisted of twelve students,
seven of which had never participated in the program before. They were able
to participate without any noticeable negative impact on efficiency and code
quality. In fact, some new tools were added which we plan to adopt as part of
the team’s process as a result of the pandemic. The cohort was able to com-
plete nearly all of the planned upgrades to the Labor Status Forms application
described in Section 2.1, which is going into the production environment by
the time of this writing. In fact, the Summer 2020 cohort was finished early
enough that they were able to begin the planning phase for the next new appli-
cation. Finally, the students are adding an additional important skill to their
blossoming resumes: remote collaboration in a software engineering team.
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CS0, the gateway course to most computer science degrees, is challenging
and can be an obstacle to retaining students in the computer science majors [3].
Due to the COVID-19 crisis, many colleges are having to rapidly create online
lecture materials for students aka "‘emergency remote learning"’ [4]. Clearly,
given the nature of CS0 quality online materials are essential. Simply taping
a face to face lecture has been shown to not effectively reach students [1].

In this tutorial, we explore different methods to create online videos that
effectively support student’s success in CS0. We will look at approaches of
incorporating activities into lecture videos that promote active learning [5, 2, 6].
Participants will be given an opportunity to share both challenges and success
stories of online materials for CS0. A variety of resources to support the
creation of online video lectures will be presented. Specific examples included
will be focused on content to support CS0.

This tutorial session will provide instructors with a broad range of ideas and
approaches in how to create more effective online video lectures. Instructors
will be given time to work in groups on creating short lecture videos using the
approaches covered.

Biography
Dr. Works joined Florida State University Panama City in the summer of
2019. At FSU, she teaches courses for the distant learning computer science
degree program. Prior to coming to FSU, she had 6 years university teaching
experience in traditional face to face classroom settings.
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In 2016, Dr. Works flipped her Intro to Programming course and won the
Massachusetts Colleges Online Course of Distinction award. Flipping a course
is where all lecture materials are provided online, and class time is devoted
to working on hands on labs and projects. She is passionate about teaching
computer science and always looking for innovate methods to best support her
students.
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Introduction
Combinatorial game theory [1] affords a rich collection of interesting problems
for students to sharpen their coding skills. Impartial combinatorial games with
complete information live on acyclic directed graphs and an optimal strategy
for a player can be given using Grundy theory [2][3]. CGT was discussed in
an introductory functional programming course and students were challenged
to develop a game player procedure which takes a state of a game as input
and perform a move by outputting the resulting new state. Developing a game
player to efficiently implement a winning strategy requires students to imple-
ment a variety of abstract concepts including: subset generation, recursion over
states, memoization, and nim addition.

The game of take-away is defined as follows: given a subset S of natural
numbers (for example S = {1, 2, 4}) and a pile of tokens, two players alternate
taking n tokens from the pile where n is an element of S. Play continues until
the pile is empty and the last player that takes a token wins. S is known as
the take-away set for the game. Multi-take-away is the extension of take-away
to a multiple of piles where a player can only take n tokens from a single pile,
where again n is an element of S. The last player to take a token (necessarily
from the last remaining pile) wins.

Assignment
Students were assigned the task of providing a Scheme procedure with input
S, the take-away set given as a List, and output a game player to play multi-
take-away. The game player must itself be a Scheme procedure which given
input a game state (the sizes of the piles given as a List) outputs the new
state, the List of new pile sizes. The new state must derive from the old state

∗Copyright is held by the author/owner.
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by a valid take-away move. An example of running and testing the procedure
generate-player is as follows:

> (define S ‘(1 2 4))
> (define player (generate-player S))
> (define old-state ‘(3 4 5))
> (define new-state (player old-state))
> new-state
(3 4 1)
> (is-valid-move? old-state new-state S)
#t

For multi-take-away the grundy value of a state can be efficiently computed
by first computing the grundy value for each pile of the state and then com-
bining these values using the nim sum [3]. Thus, it is possible to produce an
efficient player with perfect strategy. Although Grundy theory was discussed
in detail, students were not required to produce a such a player and were only
graded on correctness of their player and on their percentage of wins against
the make-random-move player. For fun, a competition was run where stu-
dent’s players were matched head-to-head for 100 random games and winning
percentages were reported.
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About
If you only need to detect a few frequencies, a much faster (and computa-
tionally superior) method than the FFT, called the Goertzel algorithm [3], is
available. This is a lightweight DFT computation that has the positives of su-
perior simplicity, speed, and lower CPU requirements and therefore has many
uses. One is the recognition of which key on a dial pad has been chosen –only
a very few well-known well-described frequency ranges need to be detected. [5]

Students convert a prewritten Java Swing application that contains the
implemented Goertzel algorithm to a JavaFX application. The Goertzel class
can be used to detect if one or more predefined frequencies are present in a
signal. If these frequencies are present, this identifies which key on the dialpad
has been selected and presents this information via a GUI.

Can you reuse code by finding other creative applications of the Goertzel
class?

Process
Students will begin with the Chitova263’s Swing-based app [1] in Figure 1 and
modify it to produce a JavaFX-based app shown in the same figure.

In both the original and derived app, processing is performed in a multi-
step workflow. First, upon a keypress event, a waveform is generated for each
of the dual frequencies, according to the DTMF standard [4]. Next, these
signals are added into a composite waveform. Then, the combined signal is
split into batches of samples. For each batch, an energy level is reported for
each frequency of interest. After thresholding, tone detection is performed by
comparing a detected frequency pair to a lookup table for the DTMF standard

∗Copyright is held by the author/owner.
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Figure 1: Goertzel Assignment Flow

[4]. When two frequencies match the DTMF specification, the detected key is
reflected in the UI. Algorithm details are provided in Goertzel’s original paper
[3], Kevin Banks’ EETimes discussion [5] and wikipedia.org [2].
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