The Journal of Computing
Sciences in Colleges

Papers of the 14th Annual CCSC
Southwestern Conference

March 26th-27th, 2021
UC San Diego (virtual)
San Diego, CA

Baochuan Lu, Editor Mariam Salloum, Regional Editor
Southwest Baptist University UC Riverside

Volume 36, Number 10 April 2021

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright (©2021 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

Table of Contents

The Consortium for Computing Sciences in Colleges Board of

Directors 5
CCSC National Partners 7
Regional Committees — 2021 CCSC Southwestern Region 8
An Analysis of Using Coral Many Small Programs in CS1 9

Joe Michael Allen, Frank Vahid, University of California, Riverside

Progression Highlighting for Programming Courses 17
Nabeel Alzahrani, Frank Vahid, University of California, Riverside

vWaterLabs: Developing Hands-On Laboratories for Water-focused

Industrial Control Systems Cybersecurity Education 24
Stu Steiner, Eastern Washington University, Matthew J. Kirkland, Daniel
Conte de Leon, University of Idaho

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:

Karina Assiter, President (2022),
(802)387-7112,
karinaassiter@landmark.edu.

Chris Healy, Vice President (2022),
chris.healy@furman.edu, Computer
Science Department, 3300 Poinsett
Highway Greenville, SC 29613.
Baochuan Lu, Publications Chair
(2021), (417)328-1676, blu@sbuniv.edu,
Southwest Baptist University -
Department of Computer and
Information Sciences, 1600 University
Ave., Bolivar, MO 65613.

Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umke.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill Rd.,
Kansas City MO 64110.

Cathy Bareiss, Membership Secretary
(2022),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical
Engineering Sciences, 1001 Bethel
Circle, Mishawaka, IN 46545.

Judy Mullins, Central Plains
Representative (2023), Associate
Treasurer, (816)390-4386,
mullinsj@Qumkc.edu, UMKC, Retired.
Michael Flinn, Eastern Representative
(2023), mflinn@frostburg.edu,
Department of Computer Science
Information Technologies, Frostburg

State University, 101 Braddock Road,
Frostburg, MD 21532.

David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.

Grace Mirsky, Midwest
Representative(2023), gmirsky@ben.edu,
Mathematical and Computational
Sciences, 5700 College Rd. Lisle, IL
60532.

Lawrence D’Antonio, Northeastern
Representative (2022), (201)684-7714,
ldant@ramapo.edu, Computer Science
Department, Ramapo College of New
Jersey, Mahwah, NJ 07430.

Shereen Khoja, Northwestern
Representative(2021),
shereen@pacificu.edu, Computer
Science, 2043 College Way, Forest
Grove, OR 97116.

Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.

Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308.

Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer Science,
Greenville, SC 29613.

Bryan Dixon, Southwestern
Representative (2023), (530)898-4864,

bedixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These members
are serving in positions as indicated:

Bin Peng, Associate Editor, (816)
584-6884, bin.peng@park.edu, Park
University - Department of Computer
Science and Information Systems, 8700
NW River Park Drive, Parkville, MO
64152.

Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,

MSC 2615, Pacific University, Forest
Grove, OR 97116.

Elizabeth Adams, National Partners
Chair, adamses@jmu.edu, James
Madison University, 11520 Lockhart
Place, Silver Spring, MD 20902.
Megan Thomas, Membership System
Administrator, (209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus, One
University Circle, Turlock, CA 95382.
Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft
Google for Education
GitHub
NSF — National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology
Teradata
Mercury Learning and Information
Mercy College

2021 CCSC Southwestern Conference Committee

Niema Moshiri, Conference Chair University of California, San Diego
Megan Thomas, Papers Chair California State University, Stanislaus
Mariam Salloum, Authors Chair University of California, Riverside
Adam Blank, Posters Chair California Institute of Technology
Michael Shindler, Panels/Tutorials Chair . University of California, San Diego
Paul Cao, Lightning Talk Chair University of California, San Diego
Michael Shindler, Partner’s Chair University of California, Irvine

Regional Board — 2021 CCSC Southwestern Region

Michael Doherty, Region Chair University of the Pacific
Niema Moshiri, Treasurer/Registrar University of California, San Diego
Bryan Dixon, Regional Representative California State University, Chico
Angelo Kyrilov, Webmaster University of California, Merced
Colleen Lewis, Past Region Chair Harvey Mudd College
Youwen Ouyang, Past Conference Chair California State University, San
Marcos

An Analysis of Using Coral Many Small
Programs in CS1*

Joe Michael Allen and Frank Vahid
Department of Computer Science and Engineering
University of California, Riverside

jalle0100@ucr. edu, vahid@cs.ucr.edu

Abstract

Coral is an ultra-simple programming language designed to look like
pseudocode while resembling industry programming languages like C++,
Java, and Python. Coral was created specifically for learners and thus,
in 2019, our CS1 began teaching programming fundamentals with Coral
during the first 3 weeks before switching to C++ for the remainder of
the term. Our university already adapted a many small programs (MSP)
teaching approach which involves assigning students multiple smaller as-
signments instead of only giving them one large assignment each week.
In this work, we share our experience using a hybrid Coral/C++ MSP
approach versus a pure C++ MSP approach. We summarize similarities
and differences between student performance and other metrics such as
time spent, start date, and more. We found that instructors can use a
hybrid Coral/C++ approach to have an easier class startup while main-
taining high student grade performance.

1 Introduction

Introductory programming courses known as CS1, are known for their plethora
of problems leading to high student stress and high DFW rates. These high
numbers are a result of many different factors [9, 6, 7, 10]. These issues are
especially problematic for CS1 courses as they are essential to keep students
in the major, attract new students to programming, and to introduce non-
major students to the basics of programming. Like many other universities

*Copyright (©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

around the nation, our university has also struggled to find ways to alleviate
these issues. To try and remedy this problem, we began actively pursuing
intervention strategies to make our CS1 more accommodating to our students.

1.1 Many small programs (MSPs)

In 2018, we adopted a many small programs (MSPs) teaching approach. An
MSP teaching approach involves assigning students multiple smaller program-
ming assignments, typically 5-7, each week instead of only assigning one large
programming assignment (OLP) each week. Using an MSP approach allows in-
structors to give students more assignments to practice programming concepts
without overloading them with too much additional work. Previous research
[5, 4] has shown that using an MSP teaching approach can improve student
grade performance and decrease student stress. Other research has shown other
benefits such as earlier start dates, good time spent on programming assign-
ments, better exam preparation, and more. We have found success with this
approach and have received positive feedback from our students and our CS1
instructors.

1.2 Coral

In 2019, we tried another intervention technique: we taught our CS1 via a
hybrid approach of Coral and C++ together. Coral is an introductory web-
based, pseudocode-like language designed to help learners [1]. Coral is free
to use and resembles popular commercial programming languages like C+-+,
Java, and Python, allowing for a smooth transition between languages. The
language comes with a limited set of 7 instructions to help students focus on
the fundamentals of programming. Not only is Coral fully executable, it also
comes with a flow chart language to help visualize the execution of the code in
real-time.

The authors of Coral published an initial work showing Coral’s ease of use
and we decided to apply the language in our CS1 [8]. We had considered using
other introductory programming languages like Snap [3] or Scratch [2], but we
found they are not designed for a CS1 class. We began using Coral at the start
of the class and then switched midway to C++. This paper is written to share
our experiences and findings from our second time using this approach.

10

2 Methodology

2.1 Course

We analyze a Spring 2020 CS1 course taught at our public research university.
Our CS1 typically serves around 300-500 students during a 10-week quarter
(fall, winter, spring) split into 3-5 sections of 80 students. All sections use
the same zyBooks interactive textbook and require students to complete the
same weekly participation activities (class readings), challenge activities (small
coding homeworks), and lab activities (programming assignments). Our CS1
regularly serves half computing major students and half non-major students.
The course is taught fully in C++ and covers basic input/output, variables,
expressions, branches, loops, functions, and vectors.

2.2 2.2 Experiment details

For one CS1 class section (hybrid Coral/C++ group) we taught Coral for the
first 3 weeks and then switched to C++ instead of the typical way of teaching
C+-+ for all 10 weeks (pure C++ group). Other differences between each group
include the instructors; however, they both have a very similar teaching style
and consistently earn similar marks on the end-of-quarter student reviews and
the midterm as hybrid group had a few additional Coral related questions. All
other class components were the same, including the lesson plan, interactive
online textbook, assignment deadlines, etc.

2.3 Data Collection

We asked zyBooks to provide us with a detailed log of all student activity for
our CS1 class. Student activity consists of develop runs, when a student tests
their code using zyBooks’ automated system, and submit runs, when a student
turns in their code for grading. Each log entry includes the activity name, an
anonymized user 1D, a score, a max score, and a timestamp.

3 Student grade performance

We gathered gradebooks for each section and to calculate average scores on
weekly MSP assignments we gathered all student activity. Students that did
not submit any code for grading in a given week were excluded from calcula-
tions.

Results: Figure 1 shows our results. The pure C++ group data is shown
on the left bars and hybrid Coral/C++ group data is shown on the right bars.
The grade percentage is on the y-axis and the week number is on the x-axis. A

11

Table 1: Student grade performance on all categories of our CS1 class

Class category Pure C++ | Hybrid Coral/C++
Total class grade 88% 95%
Final exam 83% 88%
Midterm exam 83% 95%
Participation activities 94% 95%
Challenge activities 94% 95%
Lab activities 96% 93%

total grade average column is added to the end of the chart. Table 1 summarizes
the average grades for all class categories.

100%

= pure C++
80% hybrid
60% Coral/C++
40%
20%
0%
1 2 3 4 5 6 7 8 9

Avg

Grade (%)

)}

Week #

Figure 1: Grade performance results: Both the pure C++ group (avg. 96%)
and the hybrid Coral/C++ group (avg. 93%) scored equally well on MSP
assignments.

Figure 1 shows that both the pure C++ group (96%) and the hybrid
Coral/C++ group (93%) do equally well on weekly MSP assignments. Ta-
ble 1 also shows that both groups perform well in all categories of the class,
with the hybrid C++/Coral group slightly outperforming the pure C+-+ group.

4 Weekly MSP assignment metrics

We report results on various metrics related to weekly MSP assignments. For
each metric, calculations exclude students that did not attempt any lab activ-
ities for the given week. For all charts, the pure C++ group data is shown on
the left bars and the hybrid Coral/C++ group data is shown on the right bars.

4.1 Time spent

We expect students to spend around 3 hours working on lab activities each
week. To measure student time spent, we summed the differences between

12

each activity timestamp; excluding differences greater than 10 minutes as we
considered the student to have taken a break or moved on something else. As
such, this data is likely an under-representation as students could have spent
that time studying or testing their code outside of the zyBooks IDE.

Results: Figure 2 displays our results. The total time spent is on the y-
axis and the week number is on the x-axis. A total time spent average column
is added at the end of the chart.

140
120
100

80
60
40
20 J I
0 — S— — —
1 2 3 4 5 6 7 8 9 Avg

Week #

= pure C++

hybrid
Coral/C++

Time spent (min)

Figure 2: Time spent results: The hybrid group (avg 95min) spends slightly
more time working on MSPs each week than the pure C++ group (avg. 81
min).

Figure 2 shows that the pure C++ group (81 minutes) spends less time
working on MSPs each week than the hybrid Coral/C++ group (95 minutes).

4.2 Activity runs (develops / submits)

We sought to understand how students develop their code and how frequently
students test (develop run) and check (submit run) their code while working.
We gathered all student activity and calculated the average number of develop
runs and submit runs on weekly MSP assignments.

Results: Figure 3 displays our results. Develop runs are indicated by the
dark bars at the bottom and the submit runs by the light bars at the top. The
total number of develop/submit runs are on the y-axis and the week number
is on the x-axis. A total average column is added at the end of the chart.

Figure 3 shows that the pure C++ group develops less than the hybrid
Coral/C++ group, but submits more frequently. To fully understand the data,
a more in-depth analysis is required; however, since there are more develops
than submits on average, it seems like students show a healthy programming
practice of testing their code (developing) and then submitting.

4.3 Start date

Each assignment is due one week from the time it is assigned. We consider
starting at least 2 days prior to the assignment’s due date as healthy behavior.

13

125 Hybrid -

5 100 Subs

g = Hybrid -
3 75 Devs

§ 50 Pure -
5 25 Subs

- l = Pure -
= 0 Devs

1 2 3 4 5 6 7 8 9 Avg

Week #

Figure 3: Activity run results: The pure C++ group (avg. 48dev / 24sub)
develops less and submits more than the hybrid Coral/C++ group (avg. 67dev
/ avg. 16 sub).

To calculate students’ average start date each week, we found each students’
earliest activity timestamp, calculated the difference between that and the due
date, and averaged the differences.

Results: Figure 4 displays our results. The number of days are on the y-
axis and the week number is on the x-axis. A total start date average column
and an adjusted total average column is added at the end of the chart to
account for a ‘grace period’ (late submissions allowed) during weeks 1 and 2.

2 = pure C++
g s CoralG+
L o4
8
T 3
g 2
8 1

0

1 2 3 4 5 6 7 8 9 Avg Avg (ad))

Week #

Figure 4: Start date results: The pure C++ group (avg. 4.5days / 4.8days
adj.) begins working earlier than the hybrid Coral/C++ group (avg. 4.6days
/ 3.9days adj.)

Figure 4 shows that both groups begin working about 4.5 days before the
due date. Removing weeks 1 and 2 to account for the ‘grace period’, Figure
4 shows that the pure C++ students begin 4.6 days early whereas the hybrid
Coral/C++ students begin 3.9 days early (see ‘Avg (adj)’ column).

4.4 Pivoting

A pivot is when a student switches from one lab activity to another without
completing (scored 100%) the current one they are working on. Pivoting en-
ables students to score additional points when stuck or even use another lab
activity to help them solve the current problem they are facing.

Results: Figure 5 displays our results. The total number of pivots are on

14

the y-axis and the week number is on the x-axis. A total pivot average column
and total pivot average adjusted column is added at the end of the chart to
account for the midterm in week 6.

5 = pure C++
4 hybrid
®o 3 Coral/C++
s
a2 2
* 1
o I l | [| I I
1 2 3 4 5 6 7 8 9 Avg Avg (adj)

Week #

Figure 5: Pivot results: The hybrid Coral/C++ group (avg. 2.4 / 2.2adj.)
pivots more than the pure C++ group (avg. 1.3 / 1.5adj.) each week.

Figure 5 shows that the hybrid Coral/C++ group (2.4) pivots more fre-
quently each week than the pure C++ group (1.3). Even after removing week
6 from the calculations to account for the midterm, the hybrid Coral/C++
group (2.2) still pivots more than the pure C++ group (1.5).

5 Conclusion

In this paper, we shared our experience using a hybrid Coral/C++ MSP teach-
ing approach in our CS1 class. We found that using a hybrid Coral/C++ ap-
proach did not harm student grade performance. We found that both groups
spent a healthy amount of time working on lab activities. We saw that students
in the hybrid group developed their code more and submitted their code less
frequently than the pure C++ group. Both groups start working about 4 days
before the deadline and both groups make good use of pivoting. This work is
not meant to conclude that one teaching approach is better, but rather to show
that both approaches work. Using a Coral/C++ approach to begin a CS1 class
does not harm students but can offer benefits such as having an easier time
teaching programming fundamentals when the class begins. As such, we will
likely continue using this approach in our CS1, and we encourage others to try
this approach as well.

15

References

1]
2]
13
4]

5]

16]

17l

18]

19]

[10]

16

Coral. https://corallanguage.org/ Accessed: August, 2020.
Scratch. https://scratch.mit.edu/ Accessed: August, 2020.
Snap. https://snap.berkeley.edu/ Accessed: August, 2020.

Joe Allen, Frank Vahid, Alex Edgcomb, Kelly Downey, and Kris Miller.
An analysis of using many small programs in csl. pages 585-591, 02 2019.

Joe Michael Allen, Frank Vahid, Kelly Downey, , and Alex Daniel Edg-
comb. Weekly programs in a csl class: Experiences with auto-graded
many-small programs (msp). In 2018 ASEE Annual Conference & Ex-
position, number 10.18260/1-2-31231, Salt Lake City, Utah, June 2018.
ASEE Conferences. https://peer.asee.org/31231.

Jens Bennedsen and Michael E. Caspersen. Failure rates in introductory
programming: 12 years later. ACM Inroads, 10(2):30-36, April 2019.

Susan Bergin and R. Reilly. The influence of motivation and comfort-level
on learning to program. In PPIG, 2005.

A. Edgcomb, F. Vahid, and R. Lysecky. Coral: An ultra-simple language
for learning to program. ASEE Annual Conference and Ezxposition, Con-
ference Proceedings, 2019.

Péivi Kinnunen and Lauri Malmi. Why students drop out csl course?
In Proceedings of the Second International Workshop on Computing Ed-
ucation Research, ICER 06, page 97-108, New York, NY, USA, 2006.
Association for Computing Machinery.

Christopher Watson and Frederick W.B. Li. Failure rates in introductory
programming revisited. In Proceedings of the 2014 Conference on Inno-
vation & Technology in Computer Science Education, ITiCSE 14, page
39-44, New York, NY, USA, 2014. Association for Computing Machinery.

Progression Highlighting for
Programming Courses”

Nabeel Alzahrani and Frank Vahid
Department of Computer Science and Engineering
University of California, Riverside

nalza0010ucr.edu, vahid@cs.ucr.edu

Abstract

New program auto-graders can provide a log file having an entry for
each student code run, either during development or when submitting for
points. Using that log file as input, we introduce "code progression high-
lighting" for instructors to gain visibility into a student’s programming
process. For any student, an instructor can view the student’s program
for every run, highlighted to show changes from the previous run (the
"progression"), and with statistics per entry like time spent, characters
changed, and current score. The progression highlighter opens several
new opportunities, like aiding instructors in helping students during of-
fice hours, allowing awarding points for good process (starting early, de-
veloping incrementally, etc.), detecting some cheating not detectable by
similarity checkers, and helping discover where students are struggling.

1 Introduction

Cloud-based commercial auto-graders continue to be adopted in more college
programming classes. Previously, most instructors graded programs manu-
ally. Some schools used custom-built auto-graders, or used the freely-available
Web-CAT tool [9]. In recent years, cloud-based commercial auto-graders have
appeared, such as zyBooks [6], Gradescope [16], Mimir [2], Vocareum [5], Code-
Lab [4], and MyProgrammingLab [3]|. For example, zyBooks’ auto-grader was
released in 2016 and reports that in 2020 the tool was used in 2,000 classes

*Copyright (©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

17

H Student ID Timestamp Code Link Run Score H

102 1/1/20 9:20:03 URLL Dev
102 1/1/20 9:21:15 URL2 Sub 4
102 1/1/20 9:30:10 URL3 Sub 5
101 1/1/20 9:32:49 URL4 Dev
101 1/1/20 9:33:40 URL5 Dev

Table 1: Example log file from an auto-grader (abbreviated).

by 100,000 students, with surveys indicating most classes previously did man-
ual grading [12]. Such tools give students instant feedback to improve suc-
cess, while eliminating most manual grading and hence conserving teaching
resources.

Cloud-based auto-graders can record every program submission run, includ-
ing the program source code, the date/time, and score. In fact, some auto-
graders provide a built-in IDE (integrated development environment) where
students develop and test their programs with their own input (vs. the in-
structor’s test cases as in a submission run), and thus every development run
can also be recorded. Such recording provides new opportunities of giving in-
structors a view into how their students develop their programs. We use the
zyBooks program auto-grader (aka ‘zyLabs’), which recently began providing
instructors with a log file, as in Table 1 (abbreviated). Each entry includes
the student’s ID number, a timestamp, a URL link to the run’s source code,
the type of run (develop or submit), the score received (for submit runs), and
more (not shown). A real class’ log file may have thousands of entries.

With the new availability of such log files, this paper describes a tool to
provide instructors with insight into a student’s programming behavior.

2 Progression Highlighting

Seeing only a student’s final program submission yields no information on the
student’s programming process, such as when the student started (early or
late), whether the student develop incrementally (vs. writing the entire pro-
gram and then running it), how the student debugged (methodically or haphaz-
ardly), and more. Instructors have long wanted more insight into the student
programming process, so they can better help students, provide points for good
process, see where students are struggling, and more.

To achieve such insight, some instructors have recently begun having stu-
dents maintain their code on GitHub, so instructors can see the code history.
But this approach has the drawback of requiring use of GitHub, which can be
a bit much for introductory classes.

18

Instead, auto-grader log files provide a unique and new opportunity to
provide more insight to instructors. In our experience, one of the most desired
pieces of insight is a quick view of how the student’s program changed over
time, what we call the ‘progression’ of the program. Some tools, like that from
zyBooks, indeed make the source code for every run available to an instructor.
However, the difference between runs can be hard to see. Below, an instructor
may not notice the difference between the two program runs of a given student
(the code is abbreviated for space).

if ((x > y) && (y > z)) 1/1/20 9:20:03
cout << x;

else if ((y > x) && (y > z))
cout << y;

else
cout << z;

if ((x > y) && (x > z)) 1/1/20 9:21:15
cout << x;

else if ((y > x) && (y > z))
cout << y;

else
cout << z;

Table 2: Instructors cannot easily see differences in successive runs.

Thus, we created a tool to highlight changes between successive runs. For-
tunately, a library for highlighting text differences is available in Python lan-
guage, so we made use of that library [1]. We add key statistics next to each
entry. A simplified version of our progression highlighter appears below.

The table is for student 102 from Table 1. The first column shows each
run’s program code, with insertions/changes from the previous run highlighted
in yellow. The next column shows whether the run was a develop or submit,
followed by the score (for submits). The next indicates time in minutes since the
previous run, followed by total elapsed time (gaps of >10 minutes are assumed
breaks and ignored), and then the timestamp. The last column summarizes
differences, showing number of insertions, changes, and deletions. Not shown
is a column showing the previous run’s code with deletions highlighted in red.

Our tool takes a log file in a format similar to Table 1, which is the format
from zyBooks (and hence immediately usable by thousands of classes that
already use zyBooks), but other commercial or custom auto-grader can have
their log files auto-converted to that format for importing to our tool as well.

19

Code Run |Score| Min. |Total| Time- | Ins(+)
type since | min | stamp |Change(™)
prev Del(-)
if ((x > y) && (y > z)) Dev 0 0 | 1/1/20
cout << x; 9:20:03
else if ((y > x) && (y > z))
cout << y;
else
cout << z;
if ((x>y) && (x > z)) Sub 4 05 | 05| 1/120 Al |
cout << x; 9:21:15
else if ((y > x) && (y > z))
cout <KL y;
else
eleibhm B4
if ((x >= y) && (x > z)) Sub 5 69 [74| 1/1720 +1
cout << x; 9:30:10
else if ((y > x) && (y > z))
cout << y;
else
cout << z;

Table 3: The progression highlighter’s output (simplified).

Highlighting, and some statistics, are available from program version control
systems like Git [7], Subversion [11], CVS [13], and Mercurial [14]. Our ap-
proach doesn’t require use of such version control tools; students simply develop
and submit using their class auto-grader. Also, our statistics are specifically
intended for instructors, so include items not found in most version control sys-
tems. And, we estimate time spent, which is usually lacking in version control
systems.

3 Applications and Experiences

The progression highlighter can be applied by instructors in many ways, some
of which we have begun doing in our own classes. Note: The progression
highlighter works best if students do all development in the auto-grader’s IDE.
But, for courses that want students using an external IDE, instructors can
require frequent submissions, such as every 20 minutes or every 20 lines of
code (for example).

One application is to bring up a student’s highlighted progression for a

20

student who has come to office hours in need of help. The progression gives
the instructor a powerful view of the student’s programming process. Did the
student start early or late? Are they developing incrementally or writing large
pieces of code all at once? Are they testing their created functions first or just
using them untested in their larger code? A related application is to enable
instructors to give points for good programming process, such as for starting
early, developing incrementally, or testing thoroughly — all readily visible via
observing a student’s progression (and potentially automatable as well).

Another application is cheating detection or prevention. An instructor can
sort students by time spent, and investigate progressions for students who
spent little time, to see if they simply copy-pasted a solution. By showing
students the progression highlighter tool in class, and requiring frequent devel-
op/submits using the auto-grader, students may be less tempted to copy-paste
a solution. Also, with a MOSS-like [15] similarity checker that flags similar
code, instructors can use the progression highlighter to investigate further. We
have found some cases where for a flagged student pair, the first student has a
normal progression leading to full points, and then a second student submitted
that same code soon after — increasing confidence of cheating. But we’ve seen
cases where the flagged students had independent progressions that led to sim-
ilar code, decreasing confidence that cheating occurred (especially for smaller
programs where similar solutions may be common).

Yet another application is to help us to determine what coding mistakes
caused students to struggle. Previous research described the most common
mistakes [8, 10], but just because a mistake is common does not make the
mistake bad; much learning comes from making and then fixing mistakes. In
contrast, some mistakes cause students to struggle, which means the student
cannot find their error, resulting in numerous runs, excessive time spent, and
frustration. Frustrated students are more likely to resort to cheating, or to give
up on the assignment, which may eventually lead to failing grades or dropping
the class as well.

We experimented with detecting such struggle using the progression high-
lighter. For each of 5 selected programming assignments that we assigned in
Spring 2017, we uploaded the auto-grader’s log file into our tool. We sorted by
time, which is one measure of struggle for the students who spent more than
30 minutes. We discovered the errors in Table 4 were common logical errors
that caused struggle.

Using the tool, we only needed tens of minutes per program to find common
errors. In contrast, in the previous summer we did a similar analysis but that
took us several weeks, since we had to manually examine code without the
benefit of the progression highlighter, which not only took longer but was also
tedious.

21

Programming assignment Errors
Brute force equation solver |¢ Typos in formula
Convert to binary - functions [¢ Data type conversion

e Return value

e String indexing

e Loop counter
Palindrome e Lack of plan

e String indexing
Count characters e Lack of plan

¢ Using cin() instead of getline()

e String indexing
Leap year - functions o Ifvs. If-else

Table 4: Common logical errors among strugglers, found in just tens of minutes.

4 Conclusions

This paper introduced a tool for instructors of programming classes that takes
as input a log file from a program auto-grader, and then for any student,
provides a table showing the student’s progression through the programming
process. Each table entry shows each run’s code, with highlights showing
insertions/changes, plus statistics for that code like time spent, number of ad-
ditions/deletions, and score. The tool enables new capabilities for instructors,
like providing better help, giving points for good process, detecting (and even
better, preventing) some cheating, and determining common causes of struggle.
We look forward to seeing how instructors use this tool to improve their classes
and to conduct future research.

22

References

1

2]
3l
(4]
]
[6]
(7]

18]

9l

[10]

[11]
[12]

[13]

[14]

[15]

[16]

difflib. https://docs.python.org/3/library/difflib.html. Accessed:
12/01,/2020.

Mimir. mimirhq.com. Accessed: 12/01,/2020.

Pearson: Myprogramminglab. pearsonmylabandmastering.com. Accessed:
12/01/2020.

Turing’s craft: Codelab. turingscraft.com. Accessed: 12/01/2020.
Vocareum. vocareum.com/home/programming-lab. Accessed: 12/01/2020.
zybooks. zybooks.com. Accessed: 12/01/2020.

Version Control with Git: Powerful tools and techniques for collaborative soft-
ware development. O'Reilly Media, Inc., 2012.

R. C. Bryce, A. Cooley, A. Hansen, and N. Hayrapetyan. A one year empiri-
cal study of student programming bugs. In 2010 IEEFE Frontiers in Education
Conference (FIE), pages F1G-1-F1G-7, 2010.

Stephen H. Edwards and Manuel A. Perez-Quinones. Web-cat: Automatically
grading programming assignments. SIGCSE Bull., 40(3):328, June 2008.

Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. Common logic errors
made by novice programmers. In Proceedings of the 20th Australasian Comput-
ing Education Conference, ACE ’18, page 83-89, New York, NY, USA, 2018.
Association for Computing Machinery.

Louis Glassy. Using version control to observe student software development
processes. J. Comput. Sci. Coll., 21(3):99-106, February 2006.

Chelsea Gordon, Roman Lysecky, and Frank Vahid. The rise of the zylab pro-
gram auto-grader in introductory cs courses. Whitepaper.

Keir Mierle, Kevin Laven, Sam Roweis, and Greg Wilson. Mining student cvs
repositories for performance indicators. In Proceedings of the 2005 International
Workshop on Mining Software Repositories, MSR, ’05, page 1-5, New York, NY,
USA, 2005. Association for Computing Machinery.

Daniel Rocco and Will Lloyd. Distributed version control in the classroom.
In Proceedings of the 42nd ACM Technical Symposium on Computer Science
Education, SIGCSE 11, page 637-642, New York, NY, USA, 2011. Association
for Computing Machinery.

Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algo-
rithms for document fingerprinting. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’03, page 76-85,
New York, NY, USA, 2003. Association for Computing Machinery.

Arjun Singh, Sergey Karayev, Kevin Gutowski, and Pieter Abbeel. Gradescope:
A fast, flexible, and fair system for scalable assessment of handwritten work. In
Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale, LQS °17,
page 81-88, New York, NY, USA, 2017. Association for Computing Machinery.

23

vWaterLabs: Developing Hands-On
Laboratories for Water-focused Industrial
Control Systems Cybersecurity
Education®

Stu, Steiner!, Matthew J. Kirkland?, Daniel Conte de Leon®
IComputer Science Department
FEastern Washington University Spokane, WA 99201

“Center for Secure and Dependable Systems
University of Idaho Moscow, ID 8384/

ssteiner@ewu.edu, kirk8182C@alumni.uidaho.edu, dcontedeleon@ieee.org

Abstract

The increase in the number of cybersecurity attacks on Industrial
Control Systems (ICS) creates an increased demand for qualified cyber-
security professionals. Training qualified professionals for ICS cyberse-
curity is costly and currently not scalable. In this article, we present
vWaterLabs, an easily replicated, and pedagogically sound set of labs for
ICS cybersecurity education.

1 Introduction

The need for educational institutions to train cybersecurity professionals, in-
cluding specialized training for cybersecurity of Industrial Control Systems
(ICS), is at an all time high. A recent cybersecurity report shows an in-
crease in cyber-attacks against Ethernet enabled ICS of approximately 30%
from 2018 to 2020 [8]. This increasing growth of Ethernet enabled ICS devices
creates additional attack opportunities [2], and since educational institutions
are struggling to keep up with the demand for cybersecurity professionals a
fresh solution is needed.

*Copyright (©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

24

Currently, most educational institutions have well-defined Computer and
Network Security labs [5]; however, educational institutions typically have only
minimal instruction of ICS cybersecurity. Furthermore, a set of well-defined
ICS labs, similar to the well-defined Computer and Network Security labs, do
not exist. This proposed solution seeks to change this paradigm.

1.1 Proposed Solution

We developed vWaterLabs, a fully virtualized set of labs for ICS cybersecurity
education. vWaterLabs was implemented as effective, economical, shareable,
and widely available educational resources for hands-on ICS cybersecurity ed-
ucation and training with the following objectives: (1) Create replicable, easily
deployable, and cost-effective hands-on learning; and (2) Satisfy the Centers
for Academic Excellence in Cyber Defense Education Industrial Control Sys-
tems Knowledge Units through pedagogically current labs. The labs are found
at https://github.com/ICSSecurityLabs

1.2 Contribution

The contributions of this article are: (1) Pedagogical analysis of the knowledge
and skills needed for water-focused ICS cybersecurity practitioners; (2) Design
considerations and decisions for easily reproducible labs for water focused ICS
cybersecurity education; and (3) Introduction of Programmable Logic Con-
trollers (PLC) programming and Modbus injection and mitigation lab that
uses the vWaterLabs virtual ICS testbed.

A separate article, titled vWaterLabs: Design and Characteristics of a Vir-
tual Testbed for Water-focused ICS Cybersecurity Education, describes the fol-
lowing contributions: (1) Analysis of the characteristics of educational and
water focused ICS testbeds; (2) Design details of a virtual and cost effective
testbed for ICS cybersecurity education focused on water systems; and (3)
Introduction of an ICS vulnerability assessment lab implemented using the
vWaterLabs virtual testbed.

Our ultimate goal is that vWaterLabs will provide instructors and students
hands-on understanding of the approaches, techniques, and tools used to pro-
tect today’s ICS systems related to water processing.

1.3 Overview of this Article

The rest of this article is organized as follows: Section 2 describes the pedagog-
ical foundation required for ICS cybersecurity education. Section 3 describes
the design of the lab framework. Section 4 introduces one ICS cybersecurity
lab. Section 5 presents the conclusion and future work related to vWaterLabs.

25

2 Pedagogical Analysis of the Knowledge and Skills for
Water-Focused ICS Cybersecurity

To define the pedagogy required for vWaterLabs, a search was conducted us-
ing Google Scholar, IEEE Explore, and the ACM Digital Library, for papers
between 2010 to 2020. The search phrases included: [“ics education” “in-
dustrial control systems education” “ics labs” “industrial control sys-
tems labs”]. The search resulted in a total of 50 papers, and after review five
papers were selected.

Of the five papers selected, three primary student learning objectives were
identified. Antonioli et al., Celeda et al., Green et al., and Sitnikova et al.
[1, 9, 4, 7], discussed teaching fundamental cybersecurity concepts. Gao et al.
and Celeda et al. [3, 9] discussed teaching ICS fundamentals. The identified
learning outcomes, with corresponding concepts, include:

e Cybersecurity Fundamentals

— Confidentiality, Integrity, Availability (CIA)

— Authentication, Authorization, Accounting (AAA)

— Network traffic, monitoring tools, firewalls, malware, intrusion de-
tection, cryptography, certificates, digital signatures, threats, etc.

e ICS Hardware and Programming
— Supervisory Control and Data Acquisition (SCADA), PLCs
— Ladder Diagram (LD), Function Block Diagram (FBD)

e ICS Protocols
— Modbus, Distributed Network Protocol (DNP3), Process Field Bus
(PROFIBUS), Process Field Net (PROFINET), BACnet

3 vWaterLabs Characteristics for Virtual Labs

vWaterLabs was designed based on a real-world ICS wastewater treatment
facility using the ANSI/ISA-99 reference model. The lab exercises require:

e Zones and Network - Antonioli et al. and Celeda et al. [1, 9], discussed
integrated labs exercises containing Ethernet connected zones, including:
— Level 0: Production I/O Network;
— Level 1: Control Network of PLCs;
— Level 2: Supervisory Control Network with Human Machine Inter-
face (HMI);
— Level 3: Corporate Network.

e ICS Protocols - The labs will allow students hands-on experience with
multiple ICS protocols.

e Virtualization - The labs will be virtual, allowing for exercise replica-
tion and synchronous participation of multiple individuals.

26

e Bloom’s Taxonomy - The labs will be based on Bloom’s Taxonomy.
Plumley and Yardley et al. [6, 10] state Create, Evaluate, Analyze,
and Apply require hands-on activities, where Understand and Remember
occur via lecture-oriented teaching.

4 vWaterLabs Hands-On Lab: PLC Programming and
Modbus Injection

Multiple ICS cybersecurity labs were built to create a foundational set of labs
similar to the Syracuse SEED Labs [5]. Each lab requires approximately two
hours to complete and is a combination of lecture with hands-on application.
These labs are best completed as part of a virtual testbed.

This lab’s learning objectives include: (1) Understand PLC and HMI com-
ponents; (2) Introduce PLC programming; (3) Use Wireshark to understand
ICS traffic; (4) Understand the Modbus protocol; and (5) Perform a Modbus
injection attack.

This lab provides an introduction to ICS and PLCs. First, students learn
PLC logic and programming through a series of progressive exercises. This ex-
ercise starts with basic LD programming and progresses to controlling multiple
inputs and outputs. Figure 1 illustrates a LD challenge. The challenge states
Given all I/0 is in the ‘0’ state, except for input, what will the value of output
be after this LD is done running?
input input output

- 7O

input_2 input_2 output

[I——“H)—L
input

Il
output

EQ output
1/ out—(»— |
l —1IN2

Figure 1: Ladder Diagram Programming Example

Next, the lab focuses on understanding both ICS network traffic and the
Modbus protocol. Figure 2 illustrates the network configuration for this lab,
which contains three virtual machines configured on the same subnet, and
disconnected from the internet. The students use Wireshark to examine packets
for ICS network traffic. Based on this traffic, there are a series of progressive
questions that the students must answer to demonstrate their understanding
of the ICS network traffic and the Modbus protocol.

Once the students have demonstrated an understanding of the ICS network
traffic and the Modbus protocol, the students move on to using pyModbus and

27

OpenPLC Kali ScadaBR
192.168.5.12 192.168.5.10 192.168.5.9

Figure 2: The Virtual Machines Network Configuration

IPython to read setpoints from a provided system. Similar to previous portions
of the lab, students must demonstrate an understanding through a series of lab
questions, and a series of values that must be displayed to the HMI.

Based on the student’s understanding of pyModbus and IPython, the stu-
dents are asked to program an injection attack that turns on a tank overflow
light regardless of the tank level. Finally, the students complete the lab by
writing a summary lab report.

5 Conclusion and Future Work

This article introduced vWaterLabs: Developing Hands-On Laboratories for
Water-focused Industrial Control Systems Cybersecurity Education. We pre-
sented the design and pedagogy for a set of ICS cybersecurity educational labs.
We also introduced a single hands-on lab, to illustrate the content contained
in our foundational set of ICS cybersecurity educational labs.

Currently, the students download and configure multiple virtual machines
before the lab can be completed. Future work will include moving these virtual
machines to headless Docker containers, which should remove the configuration
problems currently experienced by some students.

Acknowledgments

This work and the used computing infrastructure were partially funded by
an Idaho IGEM grant (IGEM17-001), the U.S. National Science Foundation
(NSF) CyberCorps® award 1565572, and the M.J. Murdock Foundation. The
opinions expressed in this paper are not those of the NSF, the M.J. Murdock
Foundation, or the State of Idaho.

References

[1] Daniele Antonioli and Nils Ole Tippenhauer. Minicps: A toolkit for secu-
rity research on cps networks. In Proceedings of the First ACM Workshop
on Cyber-Physical Systems-Security and/or PrivaCy, CPS-SPC ’15, pages
91-100, New York, NY, USA, 2015. Association for Computing Machinery.

[2] Mario Ayal, Rob Cantu, Richard Holder, Jeff Huegel, Niten Malik,
Michalina M, Adrienne Raglin, Ashley Reichert, Ash M. Richter, and
Kimberley Sanders. The industrial internet of things (iiot): Opportuni-
ties, risks, and mitigation, Sept. 2020.

28

13l

4]

[5]

16]

17l

18]

19]

[10]

Haihui Gao, Yong Peng, Kebin Jia, Zhonghua Dai, and Ting Wang. The
design of ICS testbed based on emulation, physical, and simulation (EPS-
ICS Testbed). Proceedings - 2018 9th International Conference on In-
telligent Information Hiding and Multimedia Signal Processing, ITH-MSP
2013, pages 420-423, 2013.

Benjamin Green, Anhtuan Le, Rob Antrobus, Utz Roedig, David Hutchi-
son, and Awais Rashid. Pains, Gains and PLCs: Ten Lessons from Build-
ing an Industrial Control Systems Testbed for Security Research. 10th
USENIX Workshop on Cyber Security Experimentation and Test (CSET
’17), pages 1-8, 2017.

M. J. Kwon, G. Kwak, S. Jun, H. Kim, and H. Y. Lee. Enriching security
education hands-on labs with practical exercises. In 2017 International
Conference on Software Security and Assurance (ICSSA), pages 100-103,
2017.

Evan G. Plumley. A framework for categorization of industrial control sys-
tem cyber training environments. Master’s thesis, U.S. Air Force Institute
of Technology, March 2017.

Elena Sitnikova, Ernest Foo, and Rayford B. Vaughn. The power of hands-
on exercises in scada cyber security education. IFIP Advances in Infor-
mation and Communication Technology, 406:83-94, 2013.

Symantec Corporation. 2020 internet security threat report. Online,
March 2020.

Pavel Celeda, Jan Vykopal, Valdemar évébensky, and Karel Slavicek.
Kypodindustry: A testbed for teaching cybersecurity of industrial con-
trol systems. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, SIGCSE 20, pages 1026-1032, New York,
NY, USA, 2020. Association for Computing Machinery.

Tim Yardley, Suleyman Uludag, Klara Nahrstedt, and Pete Sauer. De-
veloping a smart grid cybersecurity education platform and a preliminary
assessment of its first application. In Proceedings of the Frontiers in Ed-
ucation Conference 201/, pages 1-9. IEEE, February 2014.

29

