
An XML-Based Automation Framework For Benchmarking Multiple Virtual Machines

Travis Finch, St. Edward’s University

Abstract
 Server virtualization provides a mechanism to use system resources more

efficiently by executing multiple, separate instances of operating systems on virtual

hardware simultaneously. As more organizations shift toward a virtualized infrastructure,

tools are needed that accurately measures the system performance and overhead

requirements demanded by it. The purpose of this research was to introduce the Message-

Passing Interface Automation Framework (MAF) as a lightweight, yet flexible

framework for simultaneously executing a diverse sequence of applications on discrete

virtual machines to test system capacity. MAF proved to provide an excellent mechanism

for VM communication and synchronization.

Introduction

As Moore’s Law continues to hold, causing system performance to roughly

double every 24 months, the core functionality of applications running on enterprise

servers has not changed as drastically. Although hardware improvements, such as

multiple cores in CPUs, have become commonplace and inexpensive, traditional

operating systems and software applications have not changed much to take full

advantage of these abundant resources. Indeed a primary goal in most Information

Technology organizations is how to best utilize the available computing resources and

reduce overall costs [1]. Server virtualization provides a mechanism to use system

resources more efficiently by executing multiple, separate instances of operating systems

on virtual hardware. The container, called a virtual machine monitor (VMM),

accomplishes this by multiplexing the physical hardware, to simulate the execution of

multiple operating systems at the same time [2]. Virtualization also provides a way to

separate logical server roles into discrete parts. With proper planning this practice can

ease the duties of system administration and maintenance.

As more organizations shift toward a virtualized infrastructure, utilities are

needed to stress and accurately measure the overall system performance and overhead

requirements so end-user expectations remain realistic. The majority of benchmarks are

not designed to quantify performance measures in server consolidation because they

primarily focus on measuring a well-defined target component of the system [3]. To

harness the capability of these pre-existing benchmarks in an environment consisting of

multiple virtual machines, a mechanism is needed that allows execution of them, and

communication between each virtual node without continuous user intervention.

The purpose of this research is to introduce the Message-Passing Interface

Automation Framework (MAF) as a lightweight, yet flexible framework for

simultaneously executing a diverse sequence of applications on discrete virtual machines

to test system capacity. The Message-Passing Interface (MPI) will be used as a

synchronization mechanism that allows discrete virtual machines to communicate. MPI is

a portable, language-independent application-programming interface used to allow a

group of computers to transfer data over a network [4]. This research will use MAF and

the benchmark environment to answer two questions: 1.) Does the presented framework

provide an adequate mechanism for virtual machine setup and synchronization; 2.) What

is a reasonable limit for the number of virtual machines executing simultaneously without

causing severe performance penalties?

Related Work

Padala et. al [1] evaluated two VMMs, Xen and OpenVZ, by consolidating multi-

tiered systems. They compared application performance, resource consumption,

scalability, and low-level system metrics to the original system configuration. The

experimental results indicated that Xen incurred higher virtualization overhead across the

board with an average response time increase of over 400%. OpenVZ measured an

increase of 100% in average response time. The work also showed that virtualization

performance degradation increased as application workload became more CPU intensive.

 A performance evaluation of storage sub-systems on the VMware ESX VMM

was conducted by Ahmad et. al [5], which used microbenchmarks (Iometer) to measure

virtual machine behavior on several different storage sub-systems (direct-attached disk,

RAID array, SAN). Iometer is an I/O subsystem measurement and characterization tool

for single and clustered systems. It can be configured to emulate the I/O load of any

program or generate synthetic load [6]. Results showed that I/O behavior of virtual

machines closely matched that of the native server, but the effects of simultaneous virtual

machine instances were not measured.

 The majority of benchmarks are not designed to quantify performance measures

in multiple virtual machines and server consolidation. Makhija et. al [3] have worked to

develop VMmark, a benchmark application that measures the capability of a virtual

server environment consisting of many virtual machines and a diverse work load that

targets various physical hardware components. The unit of work for a benchmark of

virtualized consolidation environments, referred to as a tile, is defined as a collection of

virtual machines executing a set of diverse workloads. The total number of tiles running

or a higher score for a single tile provides an estimate of the physical system’s capacity.

Although VMmark provides accurate and consistent results over many runs, deployment

of a test environment can take more than a week. Future work includes the capability to

measure the performance of larger systems.

To communicate between each virtual node VMmark uses the Software Test

Automation Framework (STAF), an open source, multi-platform, multi-language

framework designed around the idea of reusable components [7]. STAF automates the

distribution, execution, and results analysis of the test cases. While this may sound like a

useable solution, it was designed only with software testing in mind. Its extensive

capability could create a footprint that interferes with the system benchmark results. Also,

initial configuration and functionality can be an obstacle for achieving fast deployment.

Setup & Configuration

The first task before a user can benchmark a virtual machine system is to

configure a test environment. A problem with performance analysis of virtualization

software is that the cost of initial test environment setup can be extraordinarily high. A

primary goal of this research was to create a method that allowed deployment of a test

environment within a matter of a few hours. The host operating system (OS) being used

is a minimum Debian 4.0 distribution (Linux 2.6 kernel) and OpenVZ [8] as the VMM.

The host physical system consists of an AMD Athlon 2500+ w/NVIDIA nForce2 chipset,

Kingston 1 GB DDR400 RAM, and a Maxtor 200 GB ATA100 7200 RPM HDD with a

transfer speed rated up to 100 MB/sec.

The initial step in configuration after installation of the host OS is to install the

OpenVZ kernel. This can be done with either precompiled packages or compiling your

own kernel. Next, a template cache of a guest OS must be created and exported. Again, a

minimum Debian 4.0 package was used. To install the software on the guest system

(SSH, GNU GCC, MPICH, MAF, benchmarks), the user can enter the VM and install the

necessary tools as if he were on any traditional command line interface. After this is

accomplished, the framework source code must be copied into the VM file system and

compiled using mpicc.

Now, a tar ball can be created from the private VM file system, usually located in

the /var/lib/vz/private/<VM ID> directory, and must be copied into the

/var/lib/vz/template/cache directory. Then, a custom shell script is used on the host OS

to start multiple guest OS instances using the template cache created above. The script

configures network settings and also creates and deploys custom machines.LINUX and

DNS hosts files to each operating system instance to ensure proper network

communication. Another shell script is used to shutdown and destroy the VMs. Once the

host OS and OpenVZ is installed, this process can be replicated in less than an hour on a

different physical machine.

Design & Implementation

The design for MAF extends the principle that the actual benchmark application

and the automation framework are totally separate entities [9]. The framework does not

concern itself with the results of the benchmark, but only initializes the execution of it

and checks for completion. Benchmark utilities should only detail how the particular

target component should be stressed, while the framework is only the execution

environment. The development of each component requires completely different

technical skills and design considerations. The design is also based on the principle that

the automation framework should be application-independent [9]. Many different

benchmarks already exist that test different aspects of a computer system’s performance.

This software is written in many different programming languages, and MAF’s design

will allow them to be fully utilized.

MAF uses MPI as a synchronization mechanism that allowed discrete virtual

machines to communicate. Each virtual node will receive an XML data file with various

instructions to perform. The instructions will include:

invoke: The virtual node will invoke a shell command using the system function and

wait for its completion

invoke_nonblock: The virtual node will invoke a shell command using the system

function in a separate thread and immediately continue its instruction sequence

timeout: The virtual node will block for the amount of time specified in seconds in the

XML data

synchronize: All of the virtual nodes in the communication group will block until they

reach a barrier. This enables them to begin execution again at the same time.

 The rules for deploying different XML files to each virtual node are contained in

another XML configuration file. It specifies an XML instruction set for a particular host

name. When the framework is initialized, each virtual node passes its unique host name

to the master node. The master node then responds with the instruction set for that

particular virtual machine. Each node blocks until the entire cluster has received its

execution directions, and then begins concurrently.

 A major obstacle encountered with the design and development of this framework

is that the implementation needs to be lightweight and developed with cross-platform

compatibility in mind. Organizations have the capability of virtualizing different

operating systems, so it seems logical that they would also want to capture the

performance aspects of them all. Rather than developing an XML parser from scratch,

Simple XML Parser [10], an open source OS independent parsing engine designed for

devices with limited resources was used. To invoke a process, the system function from

the C Standard Library was used due to predictable behavior across multiple platforms.

POSIX thread libraries are also used to invoke a process without blocking.

Benchmarks

 In order to test various aspects of the system, three diverse benchmark utilities

were chosen. The first test, Super PI [11], calculates pi up to 32 million digits to test the

performance and stability of the target system. It uses the Gauss-Legendre algorithm,

which is very memory-intensive. The second benchmark, SciMark [12], is a composite

Java benchmark measuring the performance of numerical codes occurring in scientific

and engineering applications. It consists of five computational kernels: Fast Fournier

Transformation, Gauss-Seidel relaxation, Sparse matrix-multiply, Monte Carlo

integration, and dense LU factorization. The final benchmark is a custom C program

written to test hard disk drive (HDD) bandwidth. The read and write system calls are

used to read and write one kilobyte blocks of data to and from the HDD. In a single

iteration of the benchmark, each node writes and reads one gigabyte of data.

Results

 In order to properly analyze the virtual machine performance, baseline results

were calculated on the host hardware for comparison. The disk bandwidth measured

59.192 MB/sec for reading, and 53.065 MB/sec for writing. Super PI completed in 3

minutes 53 seconds, and SciMark in 35.67 seconds. After, a single VM was launched and

the benchmarks were executed again on the host OS and VM simultaneously. As

expected, aggregate completion time for Super PI roughly doubled to 7 minutes 52

seconds. Read disk bandwidth also had comparable performance to the baseline results at

58.58 MB/sec, but write speeds had a steep decay to 47.51 MB/sec, a 10.46% decrease.

The results for SciMark were an aggregate completion time of 3 minutes 30.96 seconds,

an increase of 491%.

Next, VMs were added one at a time until ten were running the benchmarks

simultaneously, and the performance results remained comparable throughout. Super PI

scaled linearly as more virtual machines were added. Performance degradation of HDD

bandwidth stayed consistent, with write bandwidth decaying at a higher rate than read

bandwidth. With SciMark performance continued to worsen, although it was not as

severe as the level seen during the initial VM addition. The sharp performance

degradation may have been caused by poor memory swapping performance caused by

context switches of VMs performing large matrix calculations. While this result was

unexpected, investigation of the true cause of this phenomenon is not within the scope of

this paper.

Conclusion

To answer the questions stated above, MAF proved to be an excellent mechanism

for virtual machine communication and synchronization. The test environment was very

stable throughout the benchmarking process with no system crashes or node

communication exceptions. At this point in time to answer the second question from

above, it is difficult to quantify an encompassing limit of virtual machines executing

simultaneously. Different organizations will require different hardware demands with

variation in system load levels. Currently, the framework and benchmarks can help

organizations quantify hardware sharing expectations, but future work including more

thorough analysis is required in choosing benchmarks that mimic runtime behavior of

real-world software applications.

The design and development of the VM environment and MAF successfully met

the goal of rapidly deploying a test environment of multiple virtual machines, and

utilizing the framework to gather accurate performance data on a specific hardware

component. This work represents a beginning in the development of tools designed to test

various components multiplexed and stressed by multiple virtual machines concurrently.

More accessible tools will allow Information Technology organizations to configure their

environment to best utilize the available computing resources and reduce overall costs.

Cited References

1. Padala, P., Zhu, X., Wang, Z., Singhal, S., Shin, K., Performance Evaulation of Virtual

Technologies for Server Consolidation. Available:

http://www.hpl.hp.com/techreports/2007/HPL-2007-59.pdf. Accessed June 1, 2007.

2. Smith, J., Nair, R., Virtual Machines: Versatile Platforms for Systems and Processes.

San Francisco: Morgan Kaufmann; 2005.

3. Makhija, V., Herndon, B., Smith, P., Roderick, L., Zamost, E., Anderson, J., VMmark:

a Scalable Benchmark for Virtualized Systems. Available:

http://www.vmware.com/pdf/vmmark_intro.pdf. Accessed May 19, 2007.

4. Gropp, W., Lusk, E., Doss, N., Skjellum A., A High-Performance, Portable

Implementation of the MPI Message Passing Interface Standard, Parallel Computing,

1996; 22: 789-828.

5. Ahmad, I., Anderson, J., Holler, A., Kambo R., Makhija, V., An Analysis of Disk

Performance in VMware ESX Server Virtual Machines. Available:

http://www.vmware.com/pdf/wwc_performance.pdf. Accessed June 1, 2007.

6. Intel, Iometer project [Internet]. 1998; Available from: www.iometer.org.

7. Rankin, C., The Software Testing Automation Framework [Internet]. IBM Research;

2002; Available from: www.research.ibm.com/journal/sj/411/rankin.html.

8. OpenVZ, Server Virtualization Open Source Project [Internet]. 2007; Available from:

openvz.org.

9. Nagle, C., Data Driven Test Automation Frameworks [Internet]. 2002; Available from:

safsdev.sourceforge.net/FRAMESDataDrivenTestAutomationFrameworks.htm.

10. Essman, B., Simple XML Parser [Internet]. 2002; Available from:

sourceforge.net/projects/simplexml.

11. Super PI [Internet]. 2005; Available from: www.xtremesystems.com/pi.

12. Java SciMark 2.0 [Internet]. 2004; Available from: math.nist.gov/scimark2.

