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 The problem of determining how to allocate limited resources to complete a certain number of 

jobs is a difficult problem in computer science.  While there have been several successful solutions to this 

type of problem, they are often tailored to a very specific kind of scheduling problem each with unique 

constraints.  A constraint is any rule that a solution must meet in order to be considered valid.  For 

example, one type of scheduling problem might be assigning employees to work shifts.  A constraint for 

this problem might be a limit to the number of total shifts that an employee can work, and any schedule 

that assigns a particular employee to work more than the limit would not be considered valid.  Another 

variation of the scheduling problem might have no limit on the number of jobs a resource might be 

assigned to.  For instance, creating a schedule that assigns space shuttles to payload missions.  In this 

case, there may not be a limit to the maximum number of missions that a shuttle can be assigned.  

Algorithms that are designed to find solutions to the scheduling problem may have to be dramatically 

altered if there are slight changes to the constraints.  Thus, there is a need to create a single algorithm 

capable of solving any instance of the scheduling problem, regardless of the kinds of variations that are 

placed on its constraints or even the number or types of resources that must be assigned to jobs. 

 The goal of this project is to propose a method for efficiently computing solutions to a variety of 

these problems.  Current approaches employ the use of heuristics, techniques used to search through the 

state space of a problem [3]. Different heuristics aid in the search for a solution to a problem in a variety 

of ways. For example, a heuristic designed to solve a tile-sliding puzzle game, where tiles in a grid must 

be moved to form a picture, could be designed to take several different approaches. An algorithm 

designed to use a heuristic to solve the puzzle will do so by simulating moves, one after another, until a 

solution is found. The heuristic is the tool that is used to determine which move to simulate next. Usually, 

algorithms that employ the use of heuristics must be designed with a specific problem in mind in order to 

function properly. This means that extensive work must be done to develop a program which will solve a 

specific problem. If a new constraint is added which affects that problem, the algorithm might have to be 

drastically altered. NASA states that they are especially interested in solutions which can adapt to 

unforeseen difficulties [2]. Simple low-level heuristics are ill-suited for problems such as theirs. A better 

solution is required. 

 Instead of using specific heuristics which only work for the problems they were designed for, this 

paper will focus on hyper-heuristics. A hyper-heuristic works by trying to discover a sequence of simple 

heuristics to use rather than focus on solving the problem directly [4]. Hyper-heuristics are incredibly 

versatile as they are designed to improve the way in which a problem is solved. Because of their ability to 

use different kinds of heuristics, the hyper-heuristic is able to adapt to a multitude of problems. The way 

in which a hyper-heuristic is used to solve a problem is key. It is not the hyper-heuristic itself that solves 

the problem, instead it is used as a tool to choose a simple heuristic that modifies an existing solution. 

This makes hyper-heuristics an incredibly powerful tool, especially for problems where any improvement 

goes a long way. 

For this project, four different hyper-heuristics were developed.  The first two are unintelligent 

algorithms used as a baseline to compare the other two hyper-heuristics. One of these algorithms is the 

Random Hyper-Heuristic.  As its name implies, the algorithm will choose a random low-level heuristic at 

each stage to modify the current state.  The other unintelligent algorithm is referred to as the Exhaustive 

Hyper-Heuristic.  After every step, this hyper-heuristic will try every available low-level heuristic, 

choosing the heuristic which improved the score the most. The two methods described are naïve 
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approaches for selecting the next heuristic. In order to improve upon these methods, two algorithms were 

designed which select heuristics in a more intelligent way. The first of these methods, the Online Hyper-

Heuristic, is designed to learn about the problem as it develops a solution.  When it first begins, the online 

approach mirrors the Random Hyper-Heuristic.  It chooses a random low-level heuristic and applies it to 

the current solution.  If the solution was improved by the chosen heuristic, that heuristic is given “points” 

that make it more likely to be chosen in the future.  If the solution was not improved, the heuristic’s 

points are unaffected.  However, the program has a 50% chance of overwriting the current solution with 

the new solution, even if the new solution is worse. 

The final hyper-heuristic designed is one which uses an “offline” approach to choose the next 

heuristic.  This approach uses a data file containing information about which heuristics are most likely to 

perform well based on previously selected heuristics.  The data file records sequences of heuristic used on 

a specific problem instance and their final score.  The offline approach starts by randomly applying three 

heuristics.  It will then search through the data file for observations which used the same first three 

heuristics.  It will select the top three observations with the highest score, and will choose its next 

heuristics in the same order as the observations, exploring three separate solution paths. 

HyFlex is a Java framework that provides an environment to develop hyper-heuristic [1]. This  

software includes packages which allow for the testing of the hyper-heuristics on instances of the 

scheduling problem.  It also provides a benchmark to evaluate and compare different hyper-heuristics 

against one another by including a way to score the best solution found by the hyper-heuristic as well as 

the length of time that the algorithm ran.  To test the different methods, each hyper-heuristic was allowed 

to apply a sequence of five low-level heuristics.  The score of the best solution for each method was 

recorded, along with the total amount of time (in milliseconds) that it took for the algorithm to complete. 

Each hyper-heuristic was run on all of the 12 problem instances provided by HyFlex.  The figure displays 

the average and median scores and time for each hyper-heuristic (note that a lower score is better). 

The observed results show that both the 

online and offline learning methods 

performed better than just choosing 

heuristics at random.  The median score for 

the offline-approach is competitive with the 

exhaustive approach, despite only being 

trained on one instance.  Notice the 

significant reduction in time that the online 

and offline hyper-heuristics had compared 

to the exhaustive hyper-heuristic. The 

results confirm that there are practical 

algorithms capable of solving any type of 

scheduling problem. 


