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CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Gold Level Partner
Rephactor
ACM2Y

Code Grade
GitHub
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Welcome to the 2025 CCSC Midsouth Conference
After a brief hiatus, 2025 marks the return of the CCSC: Midsouth Con-

ference. The 2025 Midsouth Conference Committee is pleased to welcome
everyone to our 18th annual conference in Clarksville, Arkansas hosted by
the University of the Ozarks. This year’s conference includes research papers
on a variety of CS education topics, tutorials and workshops on classroom
techniques. The conference also features faculty posters, student posters, and
student papers.

We are especially excited to have as our keynote speaker, Dr. Michael Flinn,
Chair and Distrupter-in-residence of the Department of Computer Science and
Information Technologies at Frostburg State University. Dr. Flinn will be
speaking to us about "nudging faculty, students, and institutions to rethink
what’s possible when curiosity meets action."

This conference would not be possible without the effort of many people.
We extend our gratitude to the authors who submitted their work, the review-
ers who ensured a high-quality program with a 58% paper acceptance rate,
the committee members who planned and organized the conference, and to the
session moderators. The CCSC Board of Directors also deserves acknowledge-
ment for their support of the conference. Without their financial support, the
conference would not have been possible. Special thanks also goes to CCSC
Board Members Michael Flinn, Eastern Region Representative, Ed Lindoo,
CCSC Treasurer, and Cathy Bareiss, CCSC Membership Director, for their
efforts organizing the conference within a short timeframe. Finally, we extend
our gratitude to the the administration and staff of the University of the Ozarks
and to the CCSC National Partners for their support.

We extend a very warm and delightful welcome to all presenters and atten-
dees and encourage everyone to enjoy our program and the University of the
Ozarks. Thank you again to all members of the 2025 Conference Committee
who provide the necessary time and dedication to the conference with grace
and commitment.

Scott Sigman
Drury University
Conference Chair
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Michael Flinn, Publicity Chair . . . . . . . . . . . . . . Frostburg State University, MD
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Ctrl+Alt+Engage: Teaching in a World Where
Everything Competes for your Students’

Attention∗

Keynote

Dr. Michael B. Flinn,
Frostburg State University

Dr. Michael B. Flinn is Professor, Chair, and
Disrupter-in-Residence (unofficial title, very offi-
cial energy) in the Department of Computer Sci-
ence and Information Technologies at Frostburg
State University, where he also coordinates the
Master of Applied Computer Science program.
With nearly 25 years in computing education,
Dr. Flinn challenges the status quo by asking
one big question: How do we truly engage stu-
dents in a world flooded with AI agents, infinite
scroll, and attention-hacking algorithms?

His answer? Disrupt the system — with pur-
pose. Whether it’s creating the Bobcat Innovation Launch Pad, standing up
a low-cost eSports arena, launching mandatory programming competitions, or
empowering undergrads to host high school students for student-led CTF cy-
bersecurity events, Dr. Flinn finds ways to make learning meaningful, social,
and energizing.

In this interactive keynote, Dr. Flinn brings a growth mindset lens to
the conversation—nudging faculty, students, and institutions to rethink what’s
possible when curiosity meets action. Expect challenged assumptions, fresh
ideas, and a few ready-to-deploy hacks to make your teaching hit different.
Be ready to discuss, interact, and pose questions—not just to Dr. Flinn, but
to each other. This session is about building shared momentum, not just
consuming content.

∗Copyright is held by the author/owner.
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Autograding Techniques∗

Conference Tutorial

Dwayne Towell
Computer Science

Lipscomb University
Nashville, TN 37204

dwayne.towell@lipscomb.edu

Abstract

Autograders excel at providing immediate feedback, but are tradi-
tionally limited to input-processing-output type programs, limiting their
use to introductory classes or unrealistic contexts. In addition, they lack
the ability to differentiate between good solutions and mediocre ones,
thus potentially reenforcing student misperceptions about code quality.
In this workshop, you will learn tricks, existing tools, and scoring tech-
niques, developed over twenty years, to allow you to expand the types
and goals of automated feedback you provide your students.

Description

Autograders excel at providing immediate feedback to students, yet they lack
the ability to differentiate between good solutions and mediocre ones. For
example, it is not uncommon for a data-structures student’s solution to be
overly complex or involve convoluted logic. However, if the correct output
is generated the typical autograder will indicate the student’s work is just as
good as a student whose work is simple and elegant. This missing, yet crucial,
feedback potentially reenforces the student’s misperceptions about their code
quality. It would be better if we could indicate to the student that while their
solution technically works, it could be much better.

Similarly, autograders are traditionally limited to input-processing-output
(IPO) type programs, like traditional programming contests. Unlike contests,

∗Copyright is held by the author/owner.
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autograders usually provide students with a complete failing test case, which
can be used to reproduce the deficiency. However, because of their IPO archi-
tecture, their use is usually limited to introductory classes. This is particularly
troubling since introductory students may not have mastered I/O operations
yet. When an IPO architecture is used in more advanced classes, for example
an OS scheduler, the autograded solution looks nothing like the "in situ" ver-
sion. It would be nice to provide feedback on "real" solutions, but this requires
a change to our overall architecture.

In addition to the two scenarios noted above, there are many other desir-
able types of testing and feedback. For example, it may be desirable to limit
available "solutions" when the goal of the assignment is to learn a particular
coding technique (like recursion) or tool (like C++ STL). Sometimes it is use-
ful to verify a fundamental component, such as a base class or utility function,
is working correctly. Occasionally it is useful to test for the presence of error
recovery paths. It would be beneficial if our autograding toolkit had more than
one tool, ’cause not everything is a "nail".

Autograders have become much more capable but many instructors still
rely on IPO-style feedback. Many of the autograders available today allow
problem authors to utilize almost any existing tool as part of the scoring pro-
cess. In this workshop, we will explore the tricks and techniques, discovered
over twenty years of developing an autograder that has provided millions of
results to thousands of students in dozens of different classes. By using these
techniques, you not only expand the types of technical feedback provided, you
also expand the kinds of assignments that can be automatically scored.

Biography

As an undergraduate, Dwayne placed sixth in the International Computer Pro-
gramming Contest team. After graduating, he led teams developing CD-ROM
titles, for companies such as Hasbro, Matel, Intel, and Disney. At Texas Tech
University, he obtained a MS in Software Engineering and a PhD in Computer
Science, before creating Athene, an autograder used by several private universi-
ties. Later, he helped found Docket Navigator, the premiere research tool that
monitors, reports, and analyzes every daily action in every US patent case. He
currently teaches Computer Science at Lipscomb University and continues to
develop new autograder techniques.
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A Gentle Introduction to LR Parsing∗

Conference Tutorial

David Middleton
Department of Computer Sciences

Arkansas Tech University
Russellville, AR 72801

dmiddle@cs.atu.edu

Yacc and Lex provide a powerful tool to automate finding implicit structure
hidden within a flat sequence of symbols. However, Yacc is fragile in that it
can easily fail with obscure messages. We learn LR Parsing to fix these.

In a module taking six to eight hours, students will understand how these
tools work, which serves two purposes. First, it expands the toolbox students
take with them. Second, introduced in courses such as Graph Algorithms,
Theory of Programming Languages, and Theory of Computation among others,
students come to appreciate the power that theory brings to practice.

The ultimate purpose is to enable a computer to find implicit hierarchical
structure hidden within an explicit, flat, sequence of symbols. For this, an algo-
rithm must be provided, meaning we must know how to find implicit structure
in a flat sequence. The structure being sought is described with grammars,
introducing terminals and non-terminals, rules, derivations and parse trees.

A slight but useful detour at this point explores finite automata (FA) and
their equivalence to non-deterministic FA, and regular expressions.

Parsing is viewed as using a particular sequence of symbols to direct a
careful attempt at constructing a matching parse tree, the hidden structure of
that sequence.

Top-down parsing keeps a stack of structures still to be found, even while
terminal symbols are consumed from the input. The evolving concatenation of
the found terminals and the remaining structures form a leftmost derivation.

Bottom-up parsing keeps a stack of structures already found. The evolving
concatenation of structures found and terminals still to be used form a right-
most derivation (in reverse). Grammar rules, viewed as finite automata, are

∗Copyright is held by the author/owner.
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overlapped to create the Characteristic Finite State Machine underlying LR
parsing.
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CS2Mulch: Physical Manipulatives for
Teaching Advanced Data Structures∗

Conference Workshop

Mark Goadrich and Gabriel Ferrer
Mathematics and Computer Science
Hendrix College, Conway, AR 72032

{goadrich,ferrer}@hendrix.edu

This workshop will guide participants on how to use the CS2Mulch project,
which provides engaging manipulatives specifically developed to physically
demonstrate concepts in advanced data structures. Instructors can use these
tools to support lessons on sorting algorithms, binary search trees, red-black
trees, heaps, sets, and hash tables, including cuckoo hashing and bloom filters.

Two original decks of cards have been designed and tested that can form
the basis for interactive classroom games and collaborative peer exercises in
CS2. The Acorns deck is primarily useful for sorted data structures. This deck
consists of 70 cards, numbered with integers from 00-69. The Menagerie deck
facilitates hashed data structures. This deck consists of 110 cards. 64 of these
cards display an animal, along with two integers that are the result of passing
the name through two simple hash functions, Murmur3 and FNV, modulo 8.
Twenty-six circular chits are also available, red on one side and black on the
other, labeled with each letter of the alphabet. The CS2Mulch decks, along
with lesson plans and supporting materials, are publicly available1, either for
PDF download, purchase through on-demand printing at The Game Crafter,
or virtually through the online board game sandbox software Tabletopia.

In this workshop, the presenters will demonstrate the use of each deck by
guiding attendees through specific exercises in sorting algorithms, insertion and
deletion in binary trees, and multiple implementations of hash tables. Following
these demonstrations, there will be time to ask for feedback and brainstorm
new uses of these tools.

∗Copyright is held by the author/owner.
1https://mgoadric.github.io/cs2mulch/
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Explainable Artificial Intelligence (XAI) for
Better Healthcare Decisions: A Review of XAI

Methods in Cardiology and Neuroscience∗

Robin Ghosh1, Sailaja Pidugu2, Angelina Das3, Hayin Tamut4
1,3,4Department of Computer and Information Science

2Department of Health Information Management
Arkansas Tech University

Russellville, AR 72801
{rghosh, spidugu, adas, htamut}@atu.edu

Abstract
Artificial intelligence (AI) is a technology intended to imitate human

intelligence, enabling effective problem-solving abilities, and it has been
recognized as a key area of computer science. AI-based applications
have grown exponentially across various everyday domains over the last
ten years, encompassing medicine and healthcare. The initial release of
ChatGPT in the latter half of 2022 propelled AI to the center of public
attention, leading to widespread recognition of its capabilities. The rapid
integration of AI in healthcare applications has sparked major concerns
regarding their ability to generate an interpretable and accurate model
for clinical decisions. This requirement for transparency and trust in
healthcare AI-based applications has led to the development of Explain-
able AI (XAI). XAI refers to a collection of techniques and approaches
employed by AI applications to transparently explain how they arrived
at their decisions and understand why they made that specific prognosis.
Though there are numerous surveys conducted for the XAI applications
in the healthcare field, the main aim of this study is to present a survey
that summarizes various XAI methodologies and illustrates the tech-
niques employed to enhance interpretability in machine learning (ML)
models that apply to the disciplines of neuroscience and cardiology, with
the intent of enhancing decision-making in clinical AI-based models. Fol-
lowing a comprehensive research study, we carefully filtered and reviewed

∗Copyright is held by the author/owner.
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25 research articles that cover several XAI techniques that are applied in
cardiology and neuroscience applications to enhance their interpretabil-
ity. According to our analysis, the SHAP method appears to be the most
popular method of explainability among the reviewed studies. In addi-
tion, we provide future research initiatives to tackle the major challenges
and limitations of XAI applications.

2 19



An Algorithm for the Heaviest Common
Subsequence and Substring Problem∗

Rao Li1, Jyotishmoy Deka2, Kaushik Deka3,
Vibhoo Srivastava4, and Madhuryya Bhattacharyya5

1Dept. of Computer Science, Engineering, and Mathematics
University of South Carolina Aiken, Aiken, SC 29801

raol@usca.edu
2Dept. of Electrical Engineering

Tezpur University, Tezpur, Assam 784028
India

jyotishmoydeka62@gmail.com
3Dept. of Computer Science and Engineering

National Institute of Technology Silchar, Cachar, Assam 788010
India

jagatdeka20@gmail.com
4Dept. of Computer Science and Engineering

Indian Institute of Information Technology Kalyani
Kalyani, Nadia, West Bengal 741235

India
vibhoosrivastava24@gmail.com

5Dept. of Electronics and Telecommunication Engineering
Assam Engineering College
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India
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∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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Abstract

Let Σ be an alphabet. For each letter in Σ a positive weight is assigned
to it. The weight of a string S over Σ is defined as the sum of the weights
of the letters in S. Let X and Y be two strings over an alphabet Σ. The
heaviest common subsequence and substring problem for two strings X
and Y is to find a string Z such that Z is a subsequence of X, a substring
of Y , and the weight of it as large as possible. In this note, we propose
an algorithm to solve the heaviest common subsequence and substring
problem for two strings.

1 Introduction

Let Σ be an alphabet and S a string over Σ. For each letter α in Σ, a positive
weight, denoted W (α), is assigned to it. The weight of a string S, denoted
W (S), is defined as the sum of the weights of the letters in S. A subsequence
of a string S is obtained by deleting zero or more letters of S. A substring of a
string S is a subsequence of S consists of consecutive letters in S. Let X and Y
be two strings over an alphabet Σ. The longest common subsequence problem
for X and Y is to find the longest string which is a subsequence of both X
and Y . The longest common substring problem for X and Y is to find the
longest string which is a substring of both X and Y . Both the longest common
subsequence problem and the longest common substring problem have been
well-studied in last several decades. They have applications in different fields,
for example, in molecular biology, the lengths of the longest common subse-
quence and the longest common substring are the suitable measurements for
the similarity between two biological sequences. More details on the algorithms
for the first problem can be found in [2], [3], [4], [5], [6], [11], [13], [14], and [15]
and the second problem can be found in [1], [7], [9] and [16]. Motivated by the
two problems above, Li et al. [12] introduced the longest common subsequence
and substring problem for two strings. The longest common subsequence and
substring problem for two strings X and Y is to find the longest string which
is a subsequence of X and a substring of Y . Li et al. [12] proposed an algo-
rithm to solve the longest common subsequence and substring problem for two
strings.

To further generalize all the problems above, we in this note introduce the
heaviest common subsequence and substring problem. Let X and Y be two
strings over an alphabet Σ such that each letter in Σ is assigned a positive
weight. The heaviest common subsequence and substring problem for X and
Y is to find a string Z such that Z is a subsequence of X, a substring of Y ,
and the weight of it as large as possible. If the weight of each letter in Σ is
equal to 1, then the heaviest common subsequence and substring problem for
X and Y becomes the longest common subsequence and substring problem for
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X and Y . Thus the heaviest common subsequence and substring problem for
X and Y is a generalization of the longest common subsequence and substring
problem for X and Y . We propose an algorithm to solve the heaviest common
subsequence and substring problem for two strings.

2 The Recursive Structures of the Algorithm

In order to present our algorithm, we need to prove some facts which are the
recursive structures for our algorithm. Before proving the facts, we need some
notations as follows. Let S = s1s2...sl be a string over an alphabet Σ The ith
prefix of S is defined as Si = s1s2...si, where 1 ≤ i ≤ l. Conventionally, S0

is defined as the empty string. The l suffixes of S are the strings of s1s2...sl,
s2s3...sl, ..., sl−1sl, and sl. Let X = x1x2...xm and Y = y1y2...yn be two
strings. We define Z[i, j] as a string satisfying the following conditions, where
1 ≤ i ≤ m and 1 ≤ j ≤ n.

(1) It is a subsequence of Xi.
(2) It is a suffix of Yj .
(3) Under (1) and (2), its weight is as large as possible.

Fact 1. Let U = u1u2...ur be a heaviest string which is a subsequence of X
and substring of Y . Then W (U) = max{W (Z[i, j]) : 1 ≤ i ≤ m, 1 ≤ j ≤ n }.
Proof of Fact 1. For each i with 1 ≤ i ≤ m and each j with 1 ≤ j ≤ n,
we, from the definition of Z[i, j], have that Z[i, j] is a subsequence of X and
substring of Y . By the definition of U , we have that W (Z[i, j]) ≤W (U). Thus
max{W (Z[i, j]) : 1 ≤ i ≤ m, 1 ≤ j ≤ n } ≤W (U).

Since U = u1u2...ur is a heaviest string which is a subsequence of X and
substring of Y . There is an index s and an index t such that ur = xs and ur = yt
such that U = u1u2...ur is a subsequence of Xs and a suffix of Yt. From the
definition of Z[i, j], we have that W (U) ≤ W (Z[s, t]) ≤ max{W (Z[i, j]) : 1 ≤
i ≤ m, 1 ≤ j ≤ n }.

Hence W (U) = max{W (Z[i, j]) : 1 ≤ i ≤ m, 1 ≤ j ≤ n } and the proof of
Fact 1 is complete.

Fact 2. Suppose that Xi = x1x2...xi and Yj = y1y2...yj , where 1 ≤ i ≤ m and
1 ≤ j ≤ n. If Z[i, j] = z1z2...za is a string satisfying conditions (1), (2), and
(3) above. Then we have
[1]. If xi = yj , then W (Z[i, j]) = W (P ) +W (yj), where P is a heaviest string
which is a subsequence of Xi−1 and a suffix of Yj−1.
[2]. If xi ̸= yj , then W (Z[i, j]) = W (Q), where Q is the heaviest string which
is a subsequence of Xi−1 and a suffix of Yj
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Proof of [1] in Fact 2. Suppose P = p1p2...pb is a string satisfying the fol-
lowing conditions.

(4) It is a subsequence of Xi−1.
(5) It is a suffix of Yj−1.
(6) Under (4) and (5), its weight is as large as possible.

Since P = p1p2...pb is a subsequence of Xi−1, a suffix of Yj−1, and xi = yj ,
P1 = p1p2...pbyj is a subsequence of Xi and a suffix of Yj . From the definition
of Z[i, j], we have W (P ) +W (yj) ≤W (Z[i, j]).

Notice that za = yj = xi and Z[i, j] = z1z2...za is a string satisfying
conditions (1), (2), and (3) above. We have that z1z2...za−1 is a string which
is a subsequence of Xi−1 and a suffix of Yj−1. From the definition of P =
p1p2...pb, we have that W (Z[i, j]) − W (za) = W (Z[i, j]) − W (yj) ≤ W (P ).
Thus W (Z[i, j]) = W (P ) + W (yj), where P is a heaviest string which is a
subsequence of Xi−1 and a suffix of Yj−1.
Proof of [2] in Fact 2. Suppose Q = q1q2...qc is a string satisfying the fol-
lowing conditions.

(7) It is a subsequence of Xi−1.
(8) It is a suffix of Yj .
(9) Under (7) and (8), its weight is as large as possible.

Since Q = q1q2...qc is a subsequence of Xi−1 and a suffix of Yj , Q = q1q2...qc is
a subsequence of Xi and a suffix of Yj . From the definition of Z[i, j], we have
W (Q) ≤W (Z[i, j]).

Since Z[i, j] = z1z2...za is a string satisfying conditions (1), (2), and (3)
above, za = yj ̸= xi. Thus z1z2...za is a string which is a subsequence of
Xi−1 and a suffix of Yj . From the definition of Q = q1q2...qc, we have that
W (Z[i, j]) ≤ W (Q). Thus W (Z[i, j]) = W (Q), where Q is a heaviest string
which is a subsequence of Xi−1 and a suffix of Yj .

Hence the proof of Fact 2 is complete.

3 An Algorithm for the Heaviest Common Subsequence
and Substring Problem

Based on the Fact 1 and Fact 2 in Section 2, we can design an algorithm for the
heaviest common subsequence and substring problem. Once again, we assume
that X = x1x2...xm and Y = y1y2...yn are two strings over an alphabet Σ.
In the following Algorithm A, W is an (m + 1) × (n + 1) array and the cells
W (i, j), where 1 ≤ i ≤ m and 1 ≤ j ≤ n, store the weights of the strings such
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that each of them satisfies the following conditions.

(1) It is a subsequence of Xi.
(2) It is a suffix of Yj .
(3) Under (1) and (2), its weight is as large as possible.

ALGA(X,Y,m, n,W )
1. Initialization: W (i, 0)← 0, where i = 0, 1, ...,m

W (0, j)← 0, where j = 0, 1, ..., n
maxWeight = −1
xIndexAtMaxWeight = −10
yIndexAtMaxWeight = −10

2. for i← 1 to m
3. for j ← 1 to n

if xi = yj W (i, j)←W (i− 1, j − 1) +W (yj)
else W (i, j)←W (i− 1, j)
maxWeight = max{maxWeight,W (i, j)}
xIndexAtMaxWeight = i
yIndexAtMaxWeight = j

4. u = xIndexAtMaxWeight
v = yIndexAtMaxWeight
String S = an empty string

while (u > 0 and v > 0)
if (xu−1 = yv−1)

S = S + yv−1

u = u− 1
v = v − 1

else
u = u− 1

5. return S and its weight which is maxWeight

Because of the Fact 1 and Fact 2 in Section 2, it is clear that Algorithm A
is correct. Since filling each entry in the array W of size (m+1)(n+1) needs a
constant time, the time complexity of Algorithm A is O(mn). Obviously, the
space complexity of Algorithm A is also O(mn). We implemented Algorithm
A in Java and the program can be found at https://sciences.usca.edu/math/
~mathdept/rli/HCSS/HCSubseqSubstr.pdf.
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4 Conclusion

In this paper, we introduce the heaviest common subsequence and substring
problem for two strings which generalizes the the longest common subsequence
and substring problem for two strings in [12]. We also propose an algorithm
for solving the heaviest common subsequence and substring problem for two
strings. In the future, we will design new algorithms for the heaviest com-
mon subsequence and substring problem for two strings with improved time
complexity and/or space complexity.
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Abstract

Teaching large classes, particularly in computer science (CS), presents
notable challenges that can hinder student learning. Common issues in-
clude low student participation, often due to students feeling hesitant or
uncomfortable speaking up in large groups, and difficulties in providing
timely feedback. To address these challenges, this study introduces a
straightforward and practical solution: a dual-component quiz system
integrated into laboratory sessions. In this approach, students first com-
plete a quiz individually, followed by a collaborative phase where they
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retake the same quiz in small groups. This structure promotes peer feed-
back and reinforces understanding. The grading scheme allocates 60% of
the total score to individual performance and 40% to group performance,
encouraging both personal accountability and collaborative engagement.
To assess the effectiveness of this method, a comparative analysis was
performed using course evaluations from five sections of CS 132 at Boston
University. Two sections, serving as the baseline, did not include the quiz
component, while three sections implemented the new system. The re-
sults of the Welch Statistical Test (WST) revealed that the collaborative
quiz system significantly improved student participation, promptness of
feedback, and quality of feedback to students.

1 Introduction

Teaching large classes, such as those with more than 100 students, presents
notable challenges that can hinder student learning. A major issue is the
reluctance of many students to participate in such environments, often due
to feelings of shyness or intimidation [7]. As a result, only a small fraction of
students actively engage, while the majority remain passive. In addition, timely
and constructive feedback is crucial for effective learning [14], but delivering
it in large classes is difficult, even with the support of teaching assistants.
The sheer volume of grading leads to delays, and by the time students receive
feedback, they may have already moved on from the material, diminishing its
impact on their learning.

Williams [17] emphasized that active participation and timely feedback are
critical to effective learning. He found that students who actively participate
in class are more likely to retain information, develop critical thinking skills,
and achieve stronger academic performance. Timely feedback enables students
to identify and correct mistakes, reinforce their understanding of key concepts,
and apply improvements while the material remains fresh. In contrast, delayed
feedback reduces its effectiveness, potentially creating comprehension gaps that
can hinder future learning. Inspired by the findings of Williams [17], we revis-
ited student course evaluation data collected at Boston University. The eval-
uation data specifically measured instructor performance on eight attributes:
(1) Effectiveness in explaining concepts, (2) Ability to stimulate interest in
the subject, (3) Encouragement of class participation, (4) Fairness in grading,
(5) Promptness in returning assignments, (6) Quality of feedback provided to
students, (7) Availability outside of class, and (8) Overall instructor rating.
Our analysis specifically focused on the attributes of Encouragement of class
participation, Promptness in returning assignments, and Quality of feedback
provided to students. Our goal was to determine whether the incorporation of
a collaborative quiz component into lab sessions significantly impacted these
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targeted attributes based on student teaching course evaluation data.
Based on prior research [7, 13], we hypothesized that a collaborative quiz

approach would encourage students to reflect on their individual efforts, pro-
mote peer learning, and facilitate immediate feedback from classmates, teach-
ing assistants, and instructors. Our quiz system was thus designed with two
parts: an individual component, where students first attempted the quiz on
their own, and a collaborative component, where they retook the same quiz
in small groups. Subsequent studies have since reinforced the value of quizzes,
frequent formative assessments, and immediate feedback in enhancing learn-
ing outcomes and student engagement [8, 9, 11, 17], indirectly supporting the
effectiveness of our collaborative design choices.

The grading scheme was also adjusted to incentivize participation and col-
laboration, with 60% of the quiz grade based on individual performance and
40% on group performance. The goal is to ensure that by the end of the lab
session, student concerns are addressed through group discussions, enhancing
their understanding and retention of the material. More formally, the research
question is stated as, How does the implementation of a collaborative quiz com-
ponent in large class-size courses impact student engagement, participation,
and the effectiveness of feedback compared to without such a component?

In this study, we compare student course evaluation data from five differ-
ent sections of CS 132. Two sections of CS 132, taught in Fall 2017 and Fall
2018, did not include any quiz component. Three other sections i.e., Spring
2019 Section A, Spring 2019 Section B, and Fall 2019 incorporated the collabo-
rative quiz component. A WST test was used to determine whether differences
in course evaluations between sections without quizzes and sections with the
collaborative quiz component were statistically significant.

By assessing the effectiveness of this approach, the goal is to provide insight
into how structured peer collaboration and timely feedback can enhance learn-
ing experiences in large classroom settings. The findings may have broader
implications for educational practices and policies in higher education, partic-
ularly within STEM disciplines.

2 Literature Review

Chen and Liu [3] identified flipped learning, and classroom approaches as par-
ticularly well-suited for STEM courses, noting their frequent application in
these disciplines. They explained that flipped learning shifts direct instruc-
tion from the group setting to the individual learning space (or vice versa),
transforming the group space into a dynamic, interactive environment.

Samaila and Al-Samarraie [11] pointed out that a major issue in teaching
with a flipped classroom model in CS is that many students avoid watching
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pre-class videos or watch them right before the lectures, which can negatively
impact learning. They suggest adopting a quiz-based flipped classroom, where
quizzes within the videos increase student interaction with the pre-class con-
tent, thereby promoting greater engagement in the classroom as well. Unlike
the approach of embedding quizzes within pre-class videos, our method inte-
grates a collaborative quiz component directly into the classroom setting. This
allows students to engage with the material both individually and in groups,
facilitating immediate feedback and peer learning, which can enhance under-
standing and retention of the subject matter.

Group quizzes, where students collaborate, are supported by social interde-
pendence theory [7] and social constructivism [15, 6], both of which highlight
the role of student dialogue in improving the learning experience. Research
by [10] indicates that students perform significantly better on final exams and
projects when quizzes are open-book and allow for collaboration, such as dis-
cussing questions in pairs. Similarly, [9] found that students who participated
in frequent quiz-based assessments achieved higher final exam grades compared
to those who only took the final exam. Furthermore, [13] reported that collab-
orative learning groups not only improve student learning outcomes but also
create positive attitudes toward both subject matter and peers. Their study on
collaborative testing in an introductory Sociology course revealed that, com-
pared to a control group, students involved in collaborative testing completed
more assigned readings and demonstrated improved attitudes toward learning
and the testing process.

Bandura contends that self-efficacy plays a crucial role in learning environ-
ments, directly supporting our collaborative quiz approach [1]. As students col-
laborate on quizzes, they observe peers successfully applying concepts, which
enhances their own self-efficacy and willingness to participate in subsequent
learning activities. This theoretical perspective is consistent with our finding
that students who initially provided incorrect responses demonstrated better
comprehension after engaging in peer discussions.

Wenger’s communities of practice framework [16] provides additional the-
oretical grounding for our findings. Collaborative quizzes create temporary
micro-communities in which students develop shared understanding through
negotiation of meaning. This social learning process facilitates deeper concep-
tual engagement than individual study alone. Similarly, Boud et al. describe
a “multiplier effect” in which students simultaneously give and receive feed-
back, addressing the delayed feedback limitations that Williams [17] identified
as problematic in large classes. The peer learning framework of Boud et al. [2]
sheds light on how peer feedback often proves more accessible and actionable
than instructor feedback alone.

Simsek [12] found that a five-point Likert scale is the most preferred re-
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sponse format for measuring individual characteristics in self-report instru-
ments such as questionnaires and surveys. They further noted that both para-
metric and non-parametric analyses using this item type have been widely
reported in previous research. In their study, [12] analyzed the suitability
of the Wilcoxon-Mann-Whitney test, Welch’s t-test, and Student’s t-test for
Likert-type data. The results indicated that the Wilcoxon-Mann-Whitney test
is more effective for analyzing smaller datasets, whereas WST performs better
with larger datasets, particularly when the variances between the two groups
are unequal.

3 Methodology

Williams [17] made a key observation that inspired this study: students struggle
to learn effectively when feedback is delayed or when they lack engagement
during class. Based on this insight, the hypothesis is that incorporating a
collaborative quiz component, which requires small group interactions, will
enhance students’ understanding of the material through peer discussions. This
approach allows students who initially answer quiz questions incorrectly to
learn from their peers and address gaps in their understanding during the lab
session. In support of this, [12] reported that students who initially provided
incorrect responses demonstrated better comprehension after participating in
peer discussions. As detailed in Section 6, the results show a statistically
significant improvement in both class participation and the quality of feedback
provided to students.

This study analyzed end-of-semester course evaluations to compare semesters
in which the collaborative quiz component was implemented with those in
which it was not. The objective was to determine whether the inclusion of
the collaborative quiz led to statistically significant improvements in student
engagement, the quality of feedback received, and the promptness of feedback
delivery. Although [9] did not specify whether a collaborative quiz component
was introduced, the focus of this study is to evaluate whether such a component
enhances student participation, improves the quality of feedback, and ensures
timely feedback delivery.

For this study a statistical analysis was performed to evaluate the effec-
tiveness of the collaborative group quiz component introduced in CS 132. Two
sections of CS 132 from Fall 2017 and Fall 2018, were compared, with no col-
laborative quiz component, against three sections of CS 132, specifically two
sections of Spring 2019 and one section from Fall 2019, where the collaborative
quiz component was implemented. The null hypothesis (H0) and alternative
hypothesis (H1) were established as follows:

• H0: There are no differences in the mean ratings of each of the eight
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evaluation questions between sections with and without the collaborative
quiz component.

• H1: There is a significant difference in the mean ratings for each of
the eight evaluation questions between sections with and without the
collaborative quiz component, which could be positive or negative.

Although we conducted our statistical tests for completeness across all eight
evaluation attributes, the primary focus of this study is specifically on the three
attributes identified earlier: Encouragement of class participation, Promptness
in returning assignments, and Quality of feedback provided to students. The
inclusion of all eight attributes in the hypothesis testing serves to provide
a comprehensive perspective, but we emphasize these three attributes due to
their particular relevance to assessing the impact of the collaborative quiz com-
ponent. To evaluate these hypotheses, a two-tailed WST was used for each of
the eight evaluation questions. Before performing statistical tests, the alpha
level was set at 10%. The analysis was performed in six pairs of sections, com-
paring each of the two sections without the collaborative quiz component to
each of the three sections that incorporated the collaborative quiz component.
A two-tailed test is selected because it enables the detection of increases and
decreases in teaching effectiveness, irrespective of the direction. The Student
t-test presumes equal variances between the compared groups. According to
the data presented in Section 5, this assumption does not hold. Therefore,
Student’s t-test might result in misleading conclusions. In contrast, WST does
not require the assumption of equal variances, which makes it more suitable
for the course evaluation data [4, 5] in this paper. This test provides a more
reliable assessment by adjusting the degrees of freedom according to the sample
sizes and variances of each group. The t_statistic and Degree of Freedom
are calculated for the WST:

t_statistic =
µ1 − µ2√
σ2
1

n1
+

σ2
2

n2

Deg of Freedom =

(
σ2
1

n1
+

σ2
2

n2

)2

(σ2
1/n1)2

n1−1 +
(σ2

2/n2)2

n2−1

µ1, µ2 are the means of the two groups, σ2
1 , σ

2
2 are their variances, and n1, n2

are the sample sizes. In our analysis, subscript 1 refers to the “No Quiz” group
and subscript 2 refers to the “With Quiz” group. Using WST allows us to more
accurately determine whether the observed differences in teaching effectiveness
are statistically significant, thus providing a better foundation for potential
pedagogical adjustments based on empirical evidence.
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4 Quiz Structure

Quizzes were administered every two to three weeks during the 15-week semester
during scheduled lab sessions. In the first phase, students completed the quiz
individually within 25 minutes, under closed-book conditions, without any aids,
and using pen and paper. After collecting individual quizzes, students were or-
ganized into groups of three or four, with the teaching assistant or instructor
facilitating group formation to ensure balanced teams. The students were then
allowed to rearrange the furniture so that they could sit together and engage
in collaborative discussions.

After forming the groups, the same quiz printed on a new sheet is dis-
tributed to each team. Students are given 20 minutes to complete the quiz
collaboratively. The initial individual attempt allows students to identify areas
of difficulty which they can address during the group discussion. Throughout
this phase, students are encouraged to communicate within their groups and
may also seek guidance from the instructor or teaching assistant. In addi-
tion, students are encouraged to reference the textbook as needed. This setup
transforms the classroom into a dynamic and interactive environment in which
students actively engage with one another. A notable dynamic emerges as stu-
dents who performed well on the individual quiz often take on a teaching role
explaining concepts and answers to their peers. This peer teaching is further
incentivized by the grading structure which allocates a portion of the overall
grade to the collaborative component.

5 Data

The course evaluations from CS 132 were collected at the end of each semester,
specifically during the last week, at Boston University. These evaluations were
conducted online, allowing students to complete them on their phones or com-
puters. Table 1 presents data from course evaluations for the Fall 2017 and Fall
2018 semesters during which no collaborative quiz component was involved. In
contrast, Table 2 includes data from course evaluations for Spring 2019 Section
A, Spring 2019 Section B, and Fall 2019 where a collaborative quiz component
was integrated into the course.

During the evaluations, students rated the instructor performance on a
five-point Likert scale from 1 (poor) to 5 (excellent) in eight questions. For
Question #3, “Encouragement of Class Participation,” the highest mean rating
of 4.25 was achieved in Spring 2019 Section B with the collaborative group
component, and the lowest rating of 3.93 in Fall 2018 without the collaborative
quiz. In Question #5, “Promptness in returning assignments,” the highest
mean rating was 4.03 in Spring 2019 Section A, and the lowest was 3.2 in Fall
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Table 1: Teaching course evaluations of CS 132 from Fall 2017 and Fall 2018 for
classes taught without the collaborative quiz component.

Fall 2017 Fall 2018
N SD M N SD M

Effectiveness in explaining concepts 62 1.08 4.03 95 1.18 3.72
Ability to stimulate interest in subject 62 1.02 4.08 95 1.05 4.09
Encouragement of class participation 62 1.03 4.1 95 1.14 3.93
Fairness in grading 62 1 4.35 95 0.95 4.18
Promptness in returning assignments 62 1.06 4 95 1.16 3.2
Quality of feedback to students 62 1.08 4.11 95 1.07 3.84
Availability outside of class 62 1 4.32 95 0.89 4.14
Overall rating of instructor 62 0.98 4.31 95 1.02 4.02

Table 2: Teaching course evaluations of CS 132 from Spring 2019 Section A,
Spring 2019 Section B and Fall 2019 for classes taught with the collaborative
quiz component.

Spring 2019 A Spring 2019 B Fall 2019
N SD M N SD M N SD M

Effectiveness in explaining concepts 53 1.12 4.02 60 1.18 3.82 99 1.01 4.14
Ability to stimulate interest in subject 53 1.19 3.85 60 1.09 4.15 99 1.06 4.06
Encouragement of class participation 53 0.91 4.13 60 1.04 4.25 99 1.11 4.1
Fairness in grading 52 0.93 4.15 60 1.12 4.25 98 0.89 4.32
Promptness in returning assignments 53 1.02 3.72 60 1.12 4.03 98 1.13 3.71
Quality of feedback to students 53 1.05 4.04 60 1.13 4.17 99 0.94 4.2
Availability outside of class 53 1 4.17 60 0.92 4.42 99 0.83 4.49
Overall rating of instructor 53 0.92 4.23 60 1.1 4.22 99 0.85 4.42

2018. For Question #6, “Quality of feedback to students,” the highest mean
rating was 4.2 in Fall 2019 and the lowest was 3.84 in Fall 2018.

An important question arises from this observation: Are the differences in
average ratings across these three questions statistically significant when com-
paring semesters with the collaborative group quiz component to those without
it? Understanding whether these differences are statistically significant is cru-
cial. It allows us to determine whether the observed differences are the result
of the collaborative quiz component or are simply random occurrences. How-
ever, it is important to acknowledge that other factors could have influenced
the ratings between semesters, including variations in class size and differences
in student cohorts. Aside from these factors, the course material, assignments,
and delivery methods remained consistent across all sections.

Student course evaluation data across all eight questions (Tables 1 and 2)
were analyzed using a two-tailed WST with hypotheses described in Section 3.
While statistical analysis results for all attributes are presented in Section 6
for completeness, this study specifically emphasizes three evaluation questions
aligned with the research question in Section 1: (1) Encouragement of class
participation, (2) Promptness in returning assignments, and (3) Quality of
feedback provided to students.
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6 Results and Discussion

The results of this study as seen in Table 3 demonstrate the impact of in-
tegrating a collaborative quiz component in CS 132 on 1) Encouragement of
Class participation, 2) Promptness in returning assignments, and 3) Quality
of feedback to students. In Table 3, row 3, there is one statistically significant
result indicating that the collaborative quiz component improved class partic-
ipation. Even in instances where the results were not statistically significant,
the trend in all six pairs consistently showed an improvement in participation.
This suggests that the collaborative component positively influences students’
willingness to engage during class.

Timely feedback is essential for students to understand their mistakes and
improve their learning strategies. The results for promptness in returning as-
signments, shown in row 5, reveal three statistically significant improvements in
sections with the collaborative quiz component. This finding indicates that the
immediate feedback provided during collaborative sessions is highly valued by
the students. Although the overall assignment feedback, which includes grad-
ing outside the lab time, might still experience delays, the instantaneous peer
and instructor feedback during the quizzes significantly enhances the students’
perception of prompt feedback.

As discussed by [14] and [17] high-quality feedback is vital for students to
grasp complex concepts and correct their misunderstandings. In row 6, two
statistically significant improvements were observed in the quality of feedback
for sections that included the collaborative quiz component. Additionally, al-
though the remaining pairs did not show statistically significant differences, all
(except for one) indicated an improvement in feedback quality for the collabo-
rative sections. This consistent trend underscores the importance of immediate
and constructive feedback provided during collaborative activities which plays
a crucial role in reinforcing students’ learning.

These results are significant for several reasons. Firstly, they demonstrate
that incorporating collaborative components in quizzes can enhance student
participation, ensure timely feedback, and improve the overall quality of feed-
back. This approach effectively addresses common challenges in large classroom
settings such as student shyness and delays in receiving meaningful feedback.
Additionally, the findings indicate that students value and benefit from im-
mediate feedback which collaborative activities can provide efficiently. These
findings carry significant implications for educational strategies, indicating that
collaborative quizzes can be utilized by educators to create a more dynamic
and interactive learning atmosphere.
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Table 3: Statistical Analysis of all eight questions. DF is Degree of Freedom,
tStat is t statistic, and CI is the 90% confidence interval. Statistical significant
results are bolded.
Evaluation Question Spring 2019 Section A with Quiz Spring 2019 Section B with Quiz Fall 2019 with Quiz

Fall 2017 with No Quiz Fall 2018 with No Quiz Fall 2017 with No Quiz Fall 2018 with No Quiz Fall 2017 with No Quiz Fall 2018 with No Quiz

Effectiveness in explaining concepts

DF = 108.88 DF = 112.48 DF = 118.26 DF = 125.61 DF = 123.13 DF = 184.95
tStat = 0.049 tStat = -1.532 tStat = 1.024 tStat = -0.514 tStat = -0.645 tStat = -2.658

pValue = 0.961 pValue = 0.128 pValue = 0.308 pValue = 0.608 pValue = 0.520 pValue = 0.009
CI = [-0.332, 0.352] CI = [-0.625, 0.025] CI = [-0.130, 0.550] CI = [-0.422, 0.222] CI = [-0.393, 0.173] CI = [-0.681, -0.159]

Ability to stimulate interest in subject

DF = 103.15 DF = 96.87 DF = 118.83 DF = 122.10 DF = 133.43 DF = 191.80
tStat = 1.103 tStat = 1.226 tStat = -0.366 tStat = -0.339 tStat = 0.119 tStat = 0.198

pValue = 0.273 pValue = 0.223 pValue = 0.715 pValue = 0.736 pValue = 0.905 pValue = 0.843
CI = [-0.116, 0.576] CI = [-0.085, 0.565] CI = [-0.387, 0.247] CI = [-0.354, 0.234] CI = [-0.258, 0.298] CI = [-0.220, 0.280]

Encouragement of class participation

DF = 112.87 DF = 128.45 DF = 119.78 DF = 134.07 DF = 136.92 DF = 191.11
tStat = -0.166 tStat = -1.168 tStat = -0.800 tStat = -1.797 tStat = 0.000 tStat = -1.052
pValue = 0.869 pValue = 0.245 pValue = 0.425 pValue = 0.075 pValue = 1.000 pValue = 0.294

CI = [-0.330, 0.270] CI = [-0.484, 0.084] CI = [-0.461, 0.161] CI = [-0.615, -0.025] CI = [-0.285, 0.285] CI = [-0.437, 0.097]

Fairness in grading

DF = 112.17 DF = 109.62 DF = 117.51 DF = 110.48 DF = 118.71 DF = 189.24
tStat = 1.110 tStat = 0.187 tStat = 0.520 tStat = -0.401 tStat = 0.193 tStat = -1.056

pValue = 0.269 pValue = 0.852 pValue = 0.604 pValue = 0.689 pValue = 0.847 pValue = 0.292
CI = [-0.099, 0.499] CI = [-0.237, 0.297] CI = [-0.219, 0.419] CI = [-0.359, 0.219] CI = [-0.228, 0.288] CI = [-0.359, 0.079]

Promptness in returning assignments

DF = 111.40 DF = 119.65 DF = 119.08 DF = 128.89 DF = 136.03 DF = 190.37
tStat = 1.441 tStat = -2.829 tStat = -0.152 tStat = -4.432 tStat = 1.643 tStat = -3.093

pValue = 0.152 pValue = 0.005 pValue = 0.880 pValue = 0.000 pValue = 0.103 pValue = 0.002
CI = [-0.042, 0.602] CI = [-0.825, -0.215] CI = [-0.358, 0.298] CI = [-1.140, -0.520] CI = [-0.002, 0.582] CI = [-0.783, -0.237]

Quality of feedback to students

DF = 111.11 DF = 109.39 DF = 119.27 DF = 120.49 DF = 116.31 DF = 186.61
tStat = 0.352 tStat = -1.103 tStat = -0.300 tStat = -1.807 tStat = -0.540 tStat = -2.486

pValue = 0.726 pValue = 0.272 pValue = 0.765 pValue = 0.073 pValue = 0.590 pValue = 0.014
CI = [-0.260, 0.400] CI = [-0.501, 0.101] CI = [-0.392, 0.272] CI = [-0.633, -0.027] CI = [-0.366, 0.186] CI = [-0.599, -0.121]

Availability outside of class

DF = 110.23 DF = 97.57 DF = 119.70 DF = 122.50 DF = 112.01 DF = 189.66
tStat = 0.802 tStat = -0.182 tStat = -0.575 tStat = -1.869 tStat = -1.119 tStat = -2.830

pValue = 0.424 pValue = 0.856 pValue = 0.566 pValue = 0.064 pValue = 0.266 pValue = 0.005
CI = [-0.160, 0.460] CI = [-0.304, 0.244] CI = [-0.388, 0.188] CI = [-0.528, -0.032] CI = [-0.422, 0.082] CI = [-0.554, -0.146]

Overall rating of instructor

DF = 111.99 DF = 117.27 DF = 117.43 DF = 118.54 DF = 115.99 DF = 183.05
tStat = 0.451 tStat = -1.280 tStat = 0.477 tStat = -1.134 tStat = -0.729 tStat = -2.961

pValue = 0.653 pValue = 0.203 pValue = 0.635 pValue = 0.259 pValue = 0.468 pValue = 0.003
CI = [-0.214, 0.374] CI = [-0.482, 0.062] CI = [-0.223, 0.403] CI = [-0.492, 0.092] CI = [-0.360, 0.140] CI = [-0.623, -0.177]

7 Conclusion

This study highlights the potential of structured peer collaboration to mitigate
common instructional challenges in large classroom settings, offering a scalable
solution to improve educational experiences in higher education. The study
demonstrated that integrating a collaborative quiz component into a large CS
course can significantly enhance student engagement as well as the quality and
timeliness of feedback. The analysis focused on three key areas: encouraging
class participation, ensuring prompt return of assignments, and improving the
quality of feedback provided to students. The results revealed that the col-
laborative quiz component positively influenced class participation with one
statistically significant result and consistent improvements observed across all
section comparisons. Regarding the promptness of returning assignments, three
statistically significant results indicated that students benefited from the im-
mediate feedback facilitated by the collaborative quizzes. Similarly, the quality
of feedback showed two statistically significant improvements. These findings
emphasize the value of interactive and real-time feedback systems in improving
the learning experience, especially in large classroom environments.

The collaborative quiz component attempts to address common challenges
such as student shyness and delayed feedback by having students work together
in small groups on a collaborative quiz. This study revealed the potential of
collaborative learning techniques to create a more engaging educational envi-
ronment. Although the results of this study are encouraging, further research
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is suggested to determine the general applicability of these conclusions. Fu-
ture investigations should examine the implementation of collaborative quiz
elements in diverse courses and educational environments. Through expanding
this research, we can further understand the extensive effects of collabora-
tive learning strategies on student performance. Although this study provides
strong evidence that the incorporation of collaborative quizzes can significantly
enhance various aspects of the learning experience in large CS classrooms, these
findings also have the potential to improve teaching methods and educational
practices in a variety of disciplines.
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Abstract

This study presents a one-day outreach workshop designed for middle
school students, where the focus was on teaching block-based program-
ming using Scratch alongside LEGO® Education SPIKE™ kits. Using
the inherent appeal of LEGO® construction, the workshop aimed to
make programming fun and exciting through a hands-on project: build-
ing and programming a motorized LEGO® car. A key component of
the session involved having students articulate, in their own words, how
the car should move in a square—for example, describing that “the car
moves 15 cm in the north direction, then makes a 90-degree turn to
the east, followed by another 15 cm movement, a 90-degree turn to the
south, and finally moves 15 cm before a 90-degree turn to the west.” This
verbal algorithm was then collaboratively translated into Scratch code
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that controlled sensor inputs, motor outputs, and sound effects. The ex-
perience provided valuable observations on the strengths and challenges
of short-duration programming workshops and laid the foundation for
future, more extensive outreach initiatives.

1 Introduction

Introducing programming to young learners is most effective when the learning
process is engaging and relatable [6]. Middle school students in particular,
benefit from methods that combine hands-on activities with abstract thinking.
Understanding that LEGO® captivates many students, this study’s workshop
was designed around this familiar and enjoyable medium. The session started
with students describing, in plain language, how a LEGO® car should move in a
square. In the workshop, a group of six students initially reached a consensus
on a rough description of the car’s movement. One student demonstrated
the motion visually by holding the car and using hand gestures to show how
it would move straight, then turn, then move straight again, and continue
in this pattern until it returned to its starting point. To further clarify the
motion, the car’s movement was traced on a piece of paper marked with the
cardinal directions, offering students a concrete visual reference. Building on
this demonstration, the group refined their description to a more precise set
of instructions: “move 15 cm in the north direction, then make a 90-degree
turn to the east, followed by another 15 cm movement, a 90-degree turn to the
south, and finally move 15 cm before making a 90-degree turn to the west.”

This natural language description served as a foundation for developing
algorithmic thinking. Students collaborated to translate their verbal instruc-
tions into Scratch code, enabling them to control the car’s motors and sensors.
They also incorporated sound effects to enhance the overall experience and
engagement. The workshop, held over a three-hour session at California State
University, Chico, successfully combined LEGO® construction with computa-
tional thinking, demonstrating that programming concepts can be introduced
in a fun, interactive, and collaborative environment.

2 Literature Review

Research on programming education for middle school students has explored
various approaches, including LEGO®-based robotics, Scratch programming,
and tangible computing tools. De Lira [2] found that project-based program-
ming camps improve computational thinking, while [11] demonstrated how in-
tegrating Scratch with physical computing improved engagement. Paparo [12]
analyzed how middle school students engaged in advanced Scratch concepts,
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such as variables and procedures, through structured challenges.
Jormanainen [5] highlighted the motivational impact of educational robotics.

Their large-scale empirical study (n=1440) showed that students at the age
of 9-10 years (Grades 3-4) are significantly more motivated towards such a
learning tool than the students of age 11-12 years (Grades 5-6). Furthermore,
they proved that young girls in particular find robotic programming motivat-
ing and they are eager to learn more. This indicates that appealing tools
play a key role when teaching programming concepts to young school children.
Sung [14] introduced Concrete Computational Concepts Programming Envi-
ronments (3CPEs), using metaphors to simplify computational concepts. Their
findings indicate that 3CPEs have the potential to offer elementary students
a suitable environment to learn computational concepts. This is accomplished
by offering a low entry point, making it easy for students to begin, while also
providing a high ceiling that encourages them to take on progressively more
challenging projects.

Waldhor [15] developed BrickMusicTable, a LEGO® based music sequencer
for creative coding. Their resulting musical instrument is a sequencer that pro-
duces sound based on visually tracked bricks placed on a LEGO® ground plate.
The prototype recognizes different sizes and colors of bricks and their position
on the sequencer as notes. This proved to be an exceptional motivator in stu-
dent attention to detail and learning. Lott [10] explored LEGO® as a hands-on
learning tool, leading to a LEGO® based creative learning space at Rutgers
University. Lott’s goal was to create an affordable, compact, and easy-to-install
space within the Rutgers library that would engage students. The initiative
was influenced by the research by Lotts on LEGO®, which showed that hands-
on, mind-on learning leads to deeper and more meaningful engagement with
concepts and their possibilities. Lotts also believed that active learning work-
shops could help individuals discover how hands-on experiences, community
building, and play can positively impact their organizations.

Korei [8] demonstrated how LEGO® robots promote STEM engagement
and interdisciplinary learning. Their findings emphasized how robotic activ-
ities in education spark interest in STEM and motivate students to engage
with technology. They concluded that Robotics in Education (RiE) serves as a
valuable tool to involve students in scientific and technological creativity while
creating the development of technological knowledge. Beyond technical skills,
RiE also promotes soft skills such as communication and teamwork. Within
RiE, educational robotics focuses on improving learning experiences by creat-
ing, implementing, refining, and validating pedagogical activities, tools, and
technologies in which robots play an integral role. Kolne [7] studied LEGO®

robotics for children with disabilities, showing its role in STEM learning, ther-
apy goals, and the development of social skills. The study focused on the
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activity settings of the HB FIRST® Robotics program; a group-based initia-
tive tailored to meet the needs of children with disabilities. The program aimed
to provide opportunities for participants to develop STEM skills while simul-
taneously working on therapy goals, creating self-confidence, independence,
communication, and teamwork, all within a play-centered environment. In
general, [7] found that the robotics program facilitated extensive interaction
between children and adults, as well as meaningful social engagement with
peers in all activity settings. These observations aligned with the program’s
objective of integrating the teaching of STEM and robotics principles into a
social environment that nurtured critical thinking, problem-solving, and team-
work skills.

Likewise, [3] introduced LEGO® Kintsugi, a teaching method that com-
bines LEGO® robotics with emotional intelligence, promoting resilience and
creativity. In their study, they explored the impact of the LEGO® Educa-
tion SPIKE™ environment on children with autism and disabilities. Their re-
sults showed that using LEGO® Education SPIKE™ Prime and its structured
lesson plans significantly improved students’ digital skills, particularly benefit-
ing those with special educational needs. The LEGO® Kintsugi methodology
integrates LEGO® robotics with the Japanese art of Kintsugi, emphasizing
resilience and the beauty of imperfection in the learning process. By encour-
aging students to reflect on and rework their robotic creations, the approach
positively impacted the development of life skills, especially in managing and
coping with emotions. [3] concluded that LEGO® Kintsugi could serve as
an innovative teaching method for STEAM disciplines—Science, Technology,
Engineering, Art, and Mathematics—which emphasize interdisciplinary learn-
ing through creativity, problem-solving, and critical thinking. This approach
blends emotional intelligence with technical skills, supporting students in de-
veloping competencies relevant to fields such as artificial intelligence.

Korkmaz [9] assessed educational robots’ technological integration, identi-
fying LEGO® kits as highly adaptable and user-friendly. Danahy [1] reviewed
how universities have integrated LEGO® robotics into engineering curricula,
demonstrating its effectiveness in teaching sensor accuracy, motor control, and
rapid prototyping. Specifically, [1] highlighted Tufts University, The Univer-
sity of Nevada, Reno, the Arizona State University Polytechnic Campus and
The University of Notre Dame which have incorporated LEGO® products into
their curricula for over 15 years. The researchers noted the enthusiasm with
which students engaged in complex robotics challenges early in their engineer-
ing education. They emphasized that LEGO® Mindstorms products enable
engineers and nonengineers to explore critical concepts such as sensor accu-
racy, motor latency, response times, and task prioritization without requiring
extensive knowledge of circuit design, assembly-level programming, or artificial
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intelligence. In addition, these tools provide students with accessible opportu-
nities to investigate product design and prototyping.

Shang [13] found that STEM robotics camps significantly enhanced com-
putational thinking and self-efficacy among rural students. The study also
revealed gender differences in participation: girls tended to favor creative ac-
tivities, while boys preferred structured and competitive tasks. Although boys
and girls exhibited similar self-ratings for their ability to learn and their expec-
tations of success in mathematics, girls who participated in the camp expressed
a strong interest in pursuing future careers in STEM fields. Francis [4] showed
that programming robots to navigate polygons reinforced geometric concepts,
incorporating measurement, proportional reasoning, and hands-on role play to
strengthen understanding. Notably, [4] creatively engaged students by having
them act out and identify the steps needed before beginning programming on
the computer.

In contrast to previous work, our study differs in several significant ways.
First, it focuses on a short, one-day workshop rather than multi-week programs.
Second, it uniquely integrates LEGO® construction and Scratch coding in a
single session, bridging physical computing with block-based programming.
Unlike [5], who studied long-term robotics education, this approach priori-
tizes immediate engagement through an interactive LEGO® car project. Al-
though [14] used predefined metaphors, this study relies on student-generated
verbal instructions to develop algorithmic thinking before coding. Waldhor [15]
explored LEGO® for music-based programming, whereas this research empha-
sizes robotic movement, sensor integration, and engineering concepts. Inspired
by [10], this study highlights the role of LEGO® in promoting creativity and
active learning. Unlike [8], who used robotics for mathematical visualization,
this approach focuses on real-world movement and problem solving.

Kolne [7] emphasized social engagement and therapy goals, while this study
focuses on computational thinking and algorithmic problem solving. Filip-
pone [3] linked LEGO® robotics to emotional intelligence and resilience build-
ing, whereas this work emphasizes STEM learning through interactive pro-
gramming activities. While [9] assessed the suitability of robots for preschool
learners, this study explores how LEGO® and Scratch can introduce computa-
tional thinking into middle school education. Unlike [1], which investigated the
role of LEGO® in university engineering programs, this research focuses on ini-
tial STEM education. Shang [13] examined gender differences in robotic STEM
camps, while this study emphasizes cooperative, practical problem-solving in-
dependent of gender. Finally, while [4] focused on polygon navigation and
geometric learning, in contrast, this study highlights algorithmic problem solv-
ing through real-world robotics applications.

Future work will expand the workshop to five days, incorporate pre- and
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post-assessments with statistical analysis, and refine the curriculum to enhance
student learning. By integrating hands-on building, computational thinking,
and collaborative problem solving, our study provides a novel perspective on
how short-term workshops can effectively introduce programming to middle
school students.

3 Day of Workshop

During the workshop, a single LEGO® Education SPIKE™ kit was shared
among six students. The instructor closely monitored their progress and facil-
itated the turn-taking as they collaboratively built the LEGO® car equipped
with sensors. The initial assembly phase was straightforward as the students
were already familiar with reading the instruction manual and following step-
by-step instructions. However, occasional guidance was provided to explain
unfamiliar components. For instance, when the students connected the wire
to the LEGO® motor, the instructor paused to demonstrate its functionality
by assembling a simple piece of code. This demonstration helped the stu-
dents recognize that certain LEGO® components were not merely static but
could perform various actions based on programmed instructions. Through
this hands-on learning experience, they began to grasp the fundamental con-
cept that connecting wheels to the motor enabled movement. When the motor
was activated, it set the wheels in motion, ultimately propelling the car for-
ward.

Following construction, the instructor led an interactive activity to further
explore the concept of movement. By manually pushing the car across a sheet
of paper, a pen traced its path. The paper had been premarked with the car-
dinal directions: north, south, east, and west to facilitate the exercise. As the
car moved, students were encouraged to describe its motion in their own words,
providing directions such as moving a certain distance north, turning 90 de-
grees east, and continuing with additional movements and turns. This exercise
served as the foundation for the next phase of the workshop. Although most
of the students had limited prior exposure to programming, they engaged in
trial and error, experimenting with various programming constructs in Scratch.
Through collaborative problem solving, they successfully matched the appro-
priate constructs to their verbal instructions. Ultimately, the group developed
a program that directed the car’s movement as described, effectively transform-
ing everyday language into a functional piece of code. Figure 1 presents the
SCRATCH code that was developed collaboratively with the students during
the workshop, while Figure 2 shows the LEGO® car they built.
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Figure 1: SCRATCH code de-
veloped in the workshop to
make the LEGO® car move in
a square shape.

Figure 2: Actual LEGO® car built in
the workshop using LEGO® Education
SPIKE™ Kit.

4 Lessons Learned

One key observation from the workshop was that using LEGO® as the primary
medium provided significant motivation. The students were excited about
the opportunity to build a tangible object that they could relate to, which
made the subsequent introduction of programming concepts feel natural and
engaging. Another highlight was the development of algorithmic thinking. By
asking students to describe the movement of a car in a square using everyday
language, for example “moving 15 cm north, then making a 90-degree turn to
the east, etc.”, the workshop provided a concrete basis for translating these
ideas into Scratch code. This exercise underscored the value of starting with
natural language descriptions to bridge the gap between real-world instructions
and computational logic.

Through a collaborative process to encode the motion of the car, the stu-
dents shared and experimented with different features of Scratch programming
to make the car move. By choosing suitable Scratch programming constructs
that reflected their verbal directives, they not only improved their coding abil-
ities, but also promoted teamwork and critical thinking. In addition, incorpo-
rating the audio feature of the LEGO® Education SPIKE™ kit, having students
record and play back sound effects during specific movements, added an element
of fun and creativity to the workshop, further deepening their participation.

Despite these successes, the three-hour session presented some challenges.
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Sharing one computer among several students occasionally limited individual
participation, particularly for those who were less assertive. This experience
has important implications for the design of future workshops, suggesting that
adjustments in equipment allocation and session structure might be necessary
to ensure that every student has ample hands-on time.

5 Future Work

Building on this experience, several enhancements are envisioned for future it-
erations of the workshop. Instead of a single-day session, a five-day workshop
and each day allocating three hours to the workshop are planned to allow for a
more gradual introduction of concepts, with each day dedicated to construct-
ing and programming a new LEGO® artifact that increases in complexity.
Furthermore, investing in more LEGO® Education SPIKE™ kits will reduce
the student-to-kit ratio, ensuring that each participant enjoys ample hands-on
time, a change that will particularly benefit shy or less vocal students by al-
lowing them to engage more fully with the project. Future sessions will also
incorporate pre- and post-workshop surveys to collect quantitative data on
students’ programming knowledge and interest in computer science (CS). The
data collected will be analyzed using statistical tests, such as a Welch test, to
objectively assess the impact of the workshop. Finally, the curriculum will be
refined iteratively based on ongoing feedback and observations, with potential
integration of additional multimedia elements and more challenging program-
ming tasks to further enhance student engagement and learning outcomes.

6 Conclusion

This one-day outreach workshop demonstrated that integrating LEGO® con-
struction with block-based programming can serve as an effective and engaging
introduction to CS for middle school students. By first inviting students to de-
scribe, in their own words, how a LEGO® car should move in a square, the
session successfully bridged the gap between natural language and algorithmic
thinking. The subsequent translation of these descriptions into Scratch code,
complete with sensor inputs, motor outputs, and sound effects, provided a
memorable and tangible demonstration of how programming works. Although
time constraints and equipment sharing presented challenges, the experience
offers valuable insights that will inform future more extensive iterations of the
workshop. With extended duration, improved access to equipment, and a focus
on empirical assessment, future sessions have the potential to further enhance
student engagement and create a sustained interest in CS.
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Abstract

Teaching students to build automated data pipelines at the graduate
level is becoming increasingly important for educators in preparing them
for data engineering positions. Almost every data-driven organization
needs software engineers with experience building data platforms in the
cloud, such as Google Cloud Platform (GCP). As part of a graduate-level
course, this paper illustrates how students apply the concepts from the
course to build an automated data pipeline using a workflow manager like
Apache Airflow and MongoDB within a cloud computing environment
like GCP. The students demonstrate the use of minimal cloud resources
to build a small end-to-end data pipeline that automatically pulls fresh
data from different sources and feeds it to machine learning models. Such
a data ingestion and integration pipeline enables students to continuously
train their models with newer data and improve model efficiency. The
sample data pipeline in this paper integrates movie-themed datasets to
train and deploy a multiclass classification model based on RoBERTa.
The project illustrates how continuously bringing in fresh data results in
better recommendations for the latest movies, enhancing user selection

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
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and overall recommendation quality. This type of course-wide project
allows students to apply and consolidate the skills they have learned
across multiple data science and data engineering courses to solve real-
world problems.

1 Introduction

As organizations increasingly rely on data-driven decision-making, the ability
to design and manage scalable data pipelines has become a critical skill for data
professionals. These data pipelines bring data from various sources together
to provide unified access to the data within the organization. Deploying such
data pipelines in Cloud environments such as Google Cloud Platform (GCP)
or Amazon Web Services (AWS) helps in scaling the pipeline infrastructure
whenever the data volume increases. This data is then leveraged by various
teams such as data scientists, business analysts, and others. Thus, prepar-
ing graduate students in the field of cloud computing and data engineering is
becoming important so that these students are prepared for such jobs. The
Master of Science in Data Science (MSDS) is a graduate program at the Uni-
versity of San Francisco that focuses on a curriculum around data science and
data engineering principles [11].

It is important to design projects that keep course materials as the main
focus but also encourage students to apply techniques from previous courses.
By building end-to-end projects, students can gain a more holistic perspective
of various data engineering concepts and become more well-rounded engineers.
Through these group projects, the students learn to collaborate and commu-
nicate effectively with their team members and also collectively solve an inter-
esting problem using various concepts and systems they have studied as part
of the course.

In this paper, we present a graduate-level project where students apply
cloud computing skills and their knowledge of various distributed data systems
from a graduate-level course at the university that teaches data science and
data engineering courses as part of the curriculum. The students have already
gained prior knowledge in model training and validation, data warehousing,
etc., from previous courses offered as part of the graduate program. This
course has a component of a group-project to build an end-to-end autonomous
pipeline using different systems the students have studied as part of the course.
In this paper, we explain the architecture and execution of the ETL (Extract,
Transform, Load) pipeline, tailored for processing a comprehensive preexisting
dataset of movie summaries combined with a second ETL pipeline that is
triggered weekly to fetch fresh data from the Web. In the end, the datasets are
fed into a RoBERTa-based classification model [8]) that labels each new data
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point (newly released movies) with its predicted classification label (movie
genre). To process the large volume of data in the starter dataset, we use
Apache Spark [5] which provides a distributed framework to process data faster
using a multi-node cluster. For the orchestration and automation of the routine
data ingestion and subsequent jobs, we use Apache Airflow [4]. Data ingested
through the pipeline is indexed and stored in MongoDB, a document storage
database [9], so that it can be repurposed to retrain the model and improve
the efficiency and the accuracy of the model.

2 Data Ingestion

2.1 Training Dataset

As a jumping point, we make use of CMU Movie Summary Corpus dataset.
The dataset includes movie plot summaries and other movie-associated meta-
data collected by David Bamman, Brendan O’Connor, and Noah Smith at
Carnegie Mellon University [1]. The dataset contains 42,306 movie plot sum-
maries extracted from Wikipedia as well as the aligned metadata extracted
from Freebase. The data model of the dataset can be observed in Figure 1.

Figure 1: Source data model and transformed JSON document.

To prepare the dataset for model training, we perform the following trans-
formations through PySpark User Defined Functions (UDFs):

1. Each movie can have more than one genre assigned. Thus, every movie
record is expanded so that each combination of the movie and the genre
appears separately in the MongoDB collection. Each combination is
uniquely identified in the collection for faster lookup.

2. The dataset contains a wide array of genres, many of which are subtypes
of another genre (e.g. “Mockumentary” is a type of “Comedy”) or are
combinations of two or more genres (e.g. “Action Comedy” is expanded
into “Action” and “Comedy”). Genres with commonalities are grouped
together to simplify the classification problem, and genres without a sig-
nificant enough presence in the dataset (e.g. “Beach Film” or “Airplanes
and Airports”) are deleted.
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3. The plot summaries are also stripped of HTML content, links, and spe-
cial characters. We also corrected common misspellings, ensuring the
summaries are clean and conducive to text analysis.

The end result of this PySpark ETL is remotely uploaded to a new Mon-
goDB collection through a MongoDBClient connection.

2.2 Testing Dataset

The testing data is produced by the main ETL pipeline of the project. This
pipeline is responsible for scraping the test data for our model and will be
eventually used in production to get the latest data on a weekly basis. This
pipeline does not handle a high data volume, however, it is much more complex
than our training ETL. The main ETL is explained in detail in Section 3,
whereas, more information about the training ETL is provided in Section 4.

The purpose of the model is to classify newly released movies, so the new
data is used to answer two questions: “What are the newly released movies?”
and “What are their plots?”. Following are the two sources from where the
data is obtained:

1. Box Office website by IMDB [7]: To capture the latest movie releases, we
look for the names of the movies that appear highlighted as “New This
Week” (HTML class “mojo-annotation-isNewThisWeek”). The extracted
data from the targeted object is then formatted using XPath and scanned
to get the URL of the individual movie web page. The data from that
web page is also scraped to retrieve the IMDb ID of the movie. The
IMDb ID of the movie can be found as part of the hyperlinks in the
movie profile web page, as shown in Figure 2.

2. OMDb API [6]: Through GET requests to the OMDb API using the
IMDb ID we have scraped, we retrieve the official genres and plot sum-
mary of each movie. The extracted data is cleaned and transformed
to match the schema of the training dataset to ensure consistency with
the schema. These official genres will be used in the tests to assess the
accuracy of the model.

Similar to the training dataset, the newly acquired data is loaded into
another MongoDB collection.

3 Airflow Orchestration

The Airflow workload consists of 3 directed acyclic graphs (DAG) that inter-
connect with each other, as seen in Figure 3:
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Figure 2: Targeted HTML objects as seen in web browser

1. API Call DAG (ACD): This is the main DAG. It is triggered weekly, and
it drives the whole data pipeline. After being activated, it triggers the
Web Scraping DAG (WSD) and passes the necessary information to find
the correct web page to scrape. After the WSD returns a list of IMDb IDs,
the ACD dynamically creates tasks to make API calls to the OMDb API.
This is done through Airflow’s SimpleHttpOperators. Once the data is
retrieved, formatted, and successfully stored, the ACD triggers the Genre
Classification DAG (GCD). Once the GCD is completed successfully, the
Airflow scheduler marks the job as finished with the status of “success”.

2. Web Scraping DAG (WSD): This DAG is triggered by the ACD. The
goal of this DAG is to fetch the HTML text from the web through a Sim-
pleHttpOperator and dynamically create the necessary tasks to extract
the IMDb ID of each movie (Figure 2). On completion of all the tasks
inside this DAG, it returns the final list of IMDb IDs to the ACD.

3. Genre Classification DAG (GCD): The GCD DAG is the last step in
the pipeline. The purpose of this DAG is to load the pretrained model
artifact from Google Cloud Storage [10], and generate classifications for
the new movies. The results are stored in a collection in the MongoDB
database.

4 Model Training

As mentioned in the introduction, we are tackling a Multiclass Logistic Classi-
fication (MLC) problem. In order to simplify the complexity of assigning the
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Figure 3: Airflow orchestration workflow

correct label from a potentially large dataset, we decompose our MLC task into
a series of binary classification problems. In this approach, a separate logistic
regression model is trained for each label, independently making the decision
of whether that genre label applies to a given movie.

Using this methodology for MLC problems allows us to simplify the de-
cision boundaries of the model, making training and optimization easier. It
scales better when the number of possible labels increases. The smaller binary
classification models can be trained or run in parallel allowing for modularity,
parallelization, and easier integration of new labels, while maintaining both
flexibility and computational efficiency. Finally, this technique helps us with
interpretability, as each classifier focuses on a single label, making debugging
and feature influence analysis more straightforward.

4.1 Model Choice

For the model, we employ a transformer-based neural network architecture [2],
specifically using the RoBERTa model from Hugging Face transformers library
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[3]. We chose the RoBERTa model because it has a proven track record of
success in natural language processing tasks. Although it is not the focus of
this paper, it is worth mentioning that its effectiveness comes from its advanced
attention mechanism and its pretraining done on extensive and diverse text
corpora.

4.2 Training Pipeline

After creating the training dataset with our ingestion pipeline (Section 2.1),
we use it to fine-tune the RoBERTa model, using binary cross entropy (BCE)
as the loss function. This is standard practice for MLC tasks that have been
broken down into binary classification problems, as we explained. BCE op-
timizes each label independently, producing individual probabilities for each
class, which is useful when labels are not mutually exclusive (e.g., drama and
romance).

Multiple iterations of the model were cross-validated against a validation
set to assess performance. The final model was selected based on their F1
score, precision, and recall. These metrics are crucial because MLC tasks often
involve imbalanced data, where accuracy alone can be misleading. Precision
ensures that assigned labels are correct, recall captures how many relevant
labels are identified, and the F1 score balances both.

The selected model from our training workflow is saved as a model artifact
in Google Cloud Storage. This artifact will be loaded when it is time to make
predictions on new data.

4.3 Testing Pipeline

At the end of Airflow Orchestrating (Figure 3), the Genre Classification DAG
will load the model artifact and use it to make predictions on the new movie
data acquired (Section 2.2). Because the official genre has also been extracted
from the OMDb API, we can check the performance of our model in real time.

5 Conclusion

In this paper, we have demonstrated how students can build an automated
data pipeline using minimum resources in GCP to ingest and integrate various
datasets that can be used to train and test different data science models. This
type of group project work enhances communication and collaboration between
students and also helps them reinforce their learning by applying their skills
to solving interesting and practical problems. As part of the graduate-level
course focusing on distributed data systems, the students were able to build
a complete Machine Learning pipeline that requires no human intervention
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by integrating MongoDB and Google Cloud services for storage and Apache
Airflow for orchestration of various tasks. The paper illustrated how all the
data used in the project is indexed and stored in MongoDB and is used to train
and test a fine-tuned RoBERTa multiclass classification model.

Because of limited time during the course (7-week course) and limited GCP
cloud credits ($50 per person), there is room for future improvements in the
automated data pipeline. For example, we could improve the architecture of the
pipeline by closing the machine learning loop to allow for retraining the model
using the new data, thus continuously improving the model. Furthermore, we
could containerize our application using Docker and implement a fully cloud-
based deployed web-application that can be accessed by the public. This was
not done because of time restrictions and not enough Google Cloud credits.
Leveraging unused metadata in the original dataset is another idea that could
potentially improve the efficiency of the model. Finally, some work can be done
to analyze the cost of maintaining such pipelines in production. Incorporating
building even a small automated end-to-end pipeline into the course curriculum
helps students to be prepared for related jobs in the industry by showcasing
the work through their resumes and interviews.

856



References

[1] David Bamman, Brendan T. O’Connor, and Noah A. Smith. “Learn-
ing Latent Personas of Film Characters”. In: Annual Meeting of the
Association for Computational Linguistics. 2013. url: https://api.
semanticscholar.org/CorpusID:4986998.

[2] Judith E. Dayhoff. Neural network architectures: an introduction. USA:
Van Nostrand Reinhold Co., 1990. isbn: 0442207441.

[3] Hugging Face. Hugging Face’s Transformer Library. 2024. url: https:
//huggingface.co/docs/transformers/en/index.

[4] The Apache Software Foundation. Airflow: Workflows as code. 2024. url:
https : / / airflow . apache . org / docs / apache - airflow / stable /
index.html.

[5] The Apache Software Foundation. PySpark: Python API for Apache Spark.
2024. url: https://spark.apache.org/docs/latest/api/python/
index.html.

[6] Brian Fritz. The Open Movie Database. 2024. url: https : / / www .
omdbapi.com/ (visited on 11/15/2024).

[7] IMDbPro. Box Office Mojo by IMDbPro. 2024. url: https : / / www .
boxofficemojo.com/weekly/2024W08/?ref_=bo_wly_table_2 (visited
on 11/15/2024).

[8] Yinhan Liu et al. “RoBERTa: A Robustly Optimized BERT Pretraining
Approach”. In: CoRR abs/1907.11692 (2019). arXiv: 1907.11692. url:
http://arxiv.org/abs/1907.11692.

[9] MongoDB. MongoDB Inc. 2024. url: https://www.mongodb.com.

[10] Google Cloud Platform. Google Inc. 2024. url: https://cloud.google.
com.

[11] University of San Francisco. Data Science, MS | University of San Fran-
cisco. 2025. url: https://www.usfca.edu/arts-sciences/programs/
graduate/data-science.

9 57



Interactive Tool for Quantum Cryptography
BB84 Algorithm Demonstration∗

Olivera Grujic
Computer Science

California State University, Stanislaus
Turlock, CA 95382
ogrujic@csustan.edu

Abstract

Quantum cryptography could be a solution to a challenge of a quan-
tum computer being able to break RSA encryption potentially very soon.
The BB84 protocol is elegant and simple, and yet not easy to grasp by
students who lack background in probability, statistics or physics. In an
undergraduate Fundamentals of Cybersecurity class, we provided stu-
dents with hands-on practice of BB84 using the 3D printed laboratory
kit that illustrates the algorithm in action. The exercise enabled students
to roll binary dice and run their own experiments using lasers, light fil-
ters, and detectors, so they get empirical understanding how and why the
stats work that make the encryption reliable. It also enabled students to
work in pairs and exchange secret messages which contributed to active
learning teaching practice. We collected students’ self-reported learning
benefits via survey. Most responded positively to the tool being useful,
engaging, and increasing their understanding of the algorithm.

1 Introduction

A student asked what would happen if a quantum computer broke RSA en-
cryption[7], which lead me, the author of this paper, to investigate. The BB84
quantum key distribution (QKD) scheme[1] was introduced a long time ago

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
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or distributed for direct commercial advantage, the CCSC copyright notice and the title of
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and yet it isn’t explained in several cybersecurity textbooks. Recent advances
in artificial intelligence (AI) and quantum computing make RSA encryption
more likely to be broken. Many universities are starting to offer courses on
quantum computing[6] and post quantum cryptography[3]. I decided to fill in
the gap in cybersecurity curriculum and teach quantum cryptography in my
undergraduate level introductory cybersecurity class offered to CS majors who
completed data structures, but not probability and physics.

Several freely available videos exist that explain the BB84 algorithm, even
using animation or props such as candy to illustrate it. However, they do not
provide the resulting outcome of an actual run. I introduced a hands-on lab
assignment using the physical lab apparatus. I believe that when students com-
plete their runs, they will get better understanding why and how the stats used
by the algorithm work (with some risk involved). They also learn some con-
cepts from wave physics by combining several different light filters. I surveyed
students for their views. Most of them have responded very positively overall,
considering the tool useful, engaging, and increasing their understanding of the
algorithm. The student feedback is discussed in detail in section 3.

2 Materials and Methods

I briefly describe the algorithm, the toolkit and the assignment here.
The BB84[1], protocol is based on quantum mechanics, specifically on the

difficulty in measuring photons, which is based on Heisenberg’s uncertainty
principle[5]. The only way to find out about the polarization of a photon is by
using a polarizing light filter. For example, if the photon is vertically polarized,
it’ll pass through a vertical filter, but it will not pass through the horizontal
filter. However, if it is diagonally polarized, it might or might not pass through
the filter.

The initial version of the protocol is related to the counterfeiter’s prob-
lem[4]: the counterfeiter must use the correct orientation of the Polaroid filter
to identify a photon’s polarization, but she does not know which orientation to
use because she doesn’t know the polarization of the photon. Benett and Bras-
sard (BB) applied this idea to cryptography in 1984, hence the name BB84[2].
Quantum key distribution allows Alice (the sender) and Bob (the receiver) to
agree on a key and Eve (the eavesdropper) cannot intercept it without making
errors.

Alice uses rectilinear and diagonal filters (encoded as 0 or 1) to send photons
(binary message) to Bob. She switches between these two filters in an unpre-
dictable way. Since Bob cannot know which filter Alice chooses, he chooses
his own (rectilinear or diagonal), and his choice of a filter will be wrong ap-
proximately half the time. He only gets to measure the photon once because
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a photon is indivisible and receives either 0 or 1. Therefore, Alice then talks
to Bob (for example, over the telephone) and tells him which polarization she
used for each photon, but not how she polarized each photon. They ignore the
photons for which Bob used a different filter than Alice.

The sequence of bits for which Alice and Bob used the same filter is random,
because it was derived from Alice’s original sequence which was also random.
Therefore, it is the secret symmetric key exchanged between Alice and Bob,
which they can use to encrypt and decrypt their messages. If Eve were to
intercept and measure the photons, she would’ve measured some using the
incorrect detector and would’ve misinterpreted some of the bits that make up
the sifted key.

The quantum cryptography toolkit was 3D printed and assembled locally
by students, according to the guidelines provided by the Scientific Outreach
team at the Institute for Quantum Computing at the University of Waterloo.
There is a similar professional kit that can be purchased, but it costs almost
ten times more. The idea behind this assignment wasn’t so much to build it
(though we did!), but to borrow it from physics and implement it in computer
science and cybersecurity. The kit uses a laser to send photons (light), and
a microcontroller (Arduino) based detector to receive them. The photons are
sent and received through rectilinear and diagonal polarizing light filters.

The lab assignment is done in pairs. One student is a sender (Alice) and
another one is a receiver (Bob). The coin toss decides which string of bits Alice
is going to send, which filter she is going to use for each bit, rectilinear (+)
or diagonal (x), and which filter Bob is going to use to receive it. Alice flips
a coin 50 times to send each binary digit (0 or 1) and 50 times to use + or x
filter. Bob flips a coin 50 times to decide whether he is receiving with + or x
filter. Alice sends what she planned, Bob records what he received (0 or 1).
The quantum key gets derived after Alice and Bob compare the filters used for
each bit. They only keep the bits where they both used the same basis to form
the cryptographic key.

All 21 students enrolled in class (undergraduates in their third and fourth
year of study), submitted their lab reports with worksheets and their answers
to seven lab questions and six questions from the questionnaire.

3 Results

Here, I show information on the participant’s profile, their prior knowledge of
the topic, and the effect of the assignment on their learning.
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3.1 Participants Profile

The first two questions were intended to verify the expectation that students
who completed the assignment are majoring in computer science and are not
already familiar with quantum cryptography. All 21 students indicated they
were computer science majors. 18 (86%) indicated they were unfamiliar with
the concept (BB84 protocol or the lab kit). Only one student (<5%) indicated
they were moderately familiar, and couple of students (<10%) indicated they
were somewhat familiar. No student (0%) indicated they were very familiar
with this topic.

3.2 Learning Preferences

The third question asked for learning preferences and allowed for multiple an-
swers. The methodologies available for selection were: watching videos, inter-
active examples, building projects, reading text, quizzes, and group discussion.

All 21 students submitted their answers to this question. Each student
selected three out of six methodologies (on average). There were 66 total
responses. The top two categories combined include more than half of total
responses 36 out of 63 (56%). Those are: interactive examples (selected by
20 out of 21 students or >95%) and watching videos (selected by 17 out of
21 students or >80%). The remaining categories received small percentage of
all responses compared to the top two: reading text (14%), building projects
(14%), group discussions (11%), and quizzes (6%). It is not surprising to see
the quizzes ranked on the bottom. Figure 1 shows the distribution of students’
responses to this question.

Figure 1: Preferred learning strategies when learning new concepts.
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3.3 Effectiveness of the Tool

The fourth question asked to what extent a student felt their understanding of
the subject improved after using the tool. The responses vary across the scale
(extremely, very, moderately, slightly, and not at all), which is to be expected,
as this is subjective. Most students, 18 out of 21 (>85%), thought the tool was
helpful to some extent, while only three students ( 14%) didn’t find it helpful
at all. Among students who found the tool helpful, 10 (>47%) thought it was
only moderately helpful, while two found it extremely helpful ( 10%) and three
found it very helpful ( 15%). Figure 2 shows this distribution.

The fifth question inquired about the overall sentiment. Out of 21 students
who responded, one of them indicated they didn’t complete the assignment
(4.76%). The responses of the remaining 20 students vary among all four
options. Most, eight out of 20 (40%) found the lab fun, but not easy, six out of
20 (30%) found the lab fun and easy, four (20%) found it neither easy nor fun,
and two (10%) found it easy, but not fun. Figure 3 shows the distribution.

3.4 Qualitative Results

The last question asked students to comment on the lab. All (21) students
provided detailed responses. I highlight some to illustrate the themes that
emerged.

Feedback on the assignment: “I enjoy how it allowed me to better under-
stand the process of creating the key”; “Seeing how quantum encryption works
firsthand was neat”; “Since I am a tactile as well as visual learner, seeing things
and being able to work with my hands did wonders for my understanding”; “I
do enjoy a lab with physical aspects to it, I learn better when working with

Figure 2: Improvement of BB84 understanding after completing the lab.
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Figure 3: Student evaluation of the lab assignment.

concepts than simply reading about them”; “Did not do the lab. The in-person
aspect of the lab was a huge turn off”.

Feedback on groupwork: “Questions were a lot easier to work through as
a group, especially when having the physical equipment there as a tool”; “I
enjoyed working in a group since I can enjoy the experience of learning with
someone else and I love doing lab as that is when I learn best”; “I also thought
having a partner for a lab made things far more enjoyable than working solo”;
“I like working with other students, it’s easier to solve problems and share
ideas”; “I really liked working with some of my classmates for this lab rather
than doing it by myself. Overall, the lab was a great experience”.

Feedback on hardware: “It was fun messing with the wires, trying to fix the
BB84 machine. The light sensors were very sensitive, so the room had to be
dark”; “If it weren’t for the fact that we went through a debugging process of the
lasers, light filters, and Arduino microcontroller, it would’ve been moderately
fun”; “Overall, I didn’t care too much for this lab, maybe it was due to the
issues with the testing kit, or simple lack of interest”; “I honestly couldn’t get
the laser to behave the way we needed it to behave. So, after myself and
a few other students attempted it, I just cut my losses”; “We ended up just
completing what we could and leaving the rest because the results were not
consistent”.

3.5 Discussion

The data confirms the expectation that the assignment had the potential for
teaching this increasingly important and relevant concept. The preferred learn-
ing method of the students were the interactive examples, which is what the lab
kit and the assignment were intended to provide. The second preferred learn-
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ing method was watching videos, which is what the video tutorial I provided
was intended to address.

This data suggests that almost a quarter of the students (23.8%) rated the
toolkit above average (very and extremely useful), and almost three quarters
of them (71.42%) rated it average or above (very, extremely and moderately
useful). One of the three students who indicated they didn’t find it helpful at
all didn’t complete the lab but filled out the survey. This suggests that exactly
three quarters of the students who completed the lab rated it useful or above
(15 out of 20, 75%). More than half of students, 13 out of 20 (65%), thought
the assignment was fun. Perhaps engaging would’ve been a better choice of
words to make it more in line with the principles of active learning.

The highest rated response is the one that matches my intentions and ex-
pectations, to make it fun, but not too easy so that learning takes place. I think
the lab was doable, but not easy. The underlying physics and math concepts
are difficult. My intention in that regard can be compared to teaching a per-
son how to drive without teaching them how the engine works. And just like
learning how to drive takes practice, getting the experiment to run in practice
requires patience and persistence.

On the flip side, there were several students who encountered issues with the
lab kit. While physics professors are likely used to dealing with malfunctioning
lab kits, some CS faculty are not. Interestingly, there were some students
who simply resisted having to use the apparatus located in the physical world,
expecting all their assignments could be completed online.

4 Summary and Conclusions

I presented a hands-on lab assignment using the 3D printed laboratory kit
that demonstrates the quantum cryptography protocol (BB84) in action. This
algorithm is based on the principles of quantum mechanics and wave physics,
and therefore difficult to understand by computer science majors.

The lab assignment enabled computer science students to run physics ex-
periments using lasers, light filters, and detectors, so they gain empirical un-
derstanding of the reliability of the encryption produced by this algorithm.
The toolkit also illustrated the quantum cryptography’s main limitation: the
protocol doesn’t work for long distances (yet).

The assigned exercises implemented active learning teaching practice. Stu-
dents worked in pairs. They were able to correctly answer several questions
after observing the outcome of the experiments. They exchanged encrypted
messages using the resulting key. Additionally, I demonstrated that a single
toolkit (3D printed and assembled by the students for approximately 10% of
the price of the original kit) could serve 21 college students within a week.
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The survey results showed most students thought the tool was useful, engag-
ing, and increased their understanding of the algorithm. They also indicated
students preferred to learn using interactive tools. Next, I plan to test its limits
on high-school and potentially middle schools’ students.

5 Acknowledgements

I thank Michael Shindler for reading the manuscript, Jake Weigel and his
student assistants for 3D printing and assembling the kit, and my students for
providing valuable and detailed feedback.

As the surveys are anonymized, and the activity was part of classroom lab
evaluation, this study falls outside of the purview of the Institutional Review
Board protocol.

References

[1] C. H. Bennett and G. Brassard. “Quantum cryptography: Public key dis-
tribution and coin tossing”. In: Theoretical Computer Science 560 (2014).
Theoretical Aspects of Quantum Cryptography – celebrating 30 years of
BB84, pp. 7–11. issn: 0304-3975. doi: 10.1016/j.tcs.2014.05.025.

[2] C. Bernhardt. “Alice, Bob, Eve, and the BB84 Protocol”. In: Quantum
Computing for Everyone. The MIT Press, 2019. Chap. 3, pp. 53–55.

[3] T. J. Borrelli, M. Polak, and S.ław Radziszowski. “Designing and De-
livering a Post-Quantum Cryptography Course”. In: Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1.
SIGCSE 2024. Portland, OR, USA: Association for Computing Machin-
ery, 2024, pp. 137–143. doi: 10.1145/3626252.3630823.

[4] E. A. Cohen and S. Singh. “The Code Book: The Evolution of Secrecy from
Mary, Queen of Scots to Quantum Cryptography”. In: Foreign Affairs 78.6
(1999). issn: 0015-7120. doi: 2307/20049567.

[5] B. Ishak. “Quantum physics: what everybody needs to know, by M. G.
Raymer”. In: Contemporary Physics 59.1 (2018), pp. 87–88. doi: 10.1080/
00107514.2017.1403467.

[6] J. Liu and D. Franklin. “Introduction to Quantum Computing for Ev-
eryone: Experience Report”. In: Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1. SIGCSE 2023. Toronto
ON, Canada: Association for Computing Machinery, 2023, pp. 1157–1163.
doi: 10.1145/3545945.3569836.

8 65



[7] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital
signatures and public-key cryptosystems”. In: Commun. ACM 26.1 (Jan.
1983), pp. 96–99. issn: 0001-0782. doi: 10.1145/357980.358017.

966



Teaching Pointers through Visualizing∗

Gongbing Hong, Yi Liu, and Frank Richardson
Information Systems and Computer Science

Georgia College and State University
Milledgeville, GA 31061

{gongbing.hong,yi.liu,frank.richardson}@gcsu.edu

Abstract

Pointers, a way for indirect data addressing, can be a very challenging
topic for programming students, especially for those who are in the begin-
ning stage of their studies. Very often, students maintain misconceptions
about pointer/reference variables regarding what information they hold
and how that information is used. As a result, they often struggle to pro-
duce working code for various programming projects that require the use
of pointers. It is the authors’ belief that ad hoc drawings, as often used
in our classrooms, are not adequate. Professors should adopt a standard-
ized set of drawing symbols in the teaching of this topic and use more
drawings in their instruction to provide a visual representation of the re-
lationship between pointer/reference variables and the referenced data.
These visual representations will help negate common misconceptions
students develop regarding the data access through pointers. We pro-
pose a standard set of drawing symbols to be used in textbooks, videos,
and classroom instruction. Through case studies, we will illustrate the
use of these drawing symbols.

1 Introduction

As a teaching topic, pointers (C/C++) and references (Java/C#) for indirect
data access are known to be some of the hardest topics for beginning program-
ming students. A survey with 37 respondents listed the topic of pointers at

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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a difficulty level of 6.054 out of 7 among the 28 programming topics surveyed
[10]. Even students beyond entry-level can still struggle with pointer handling.
Therefore, helping students better understand the concepts of pointers and the
effects of pointer operations has always been of great importance and interest
among instructors.

From our experience, the main reason why students often have difficulty
in handling pointers is due to their misconceptions about pointer/reference
variables, specifically, what information is stored in the variable and how that
information is used to access the desired data. Teaching students at their
early stage of learning to correctly visualize various attributes possessed by a
variable is critical and will assist in rectifying theforementioned misconceptions.
Additionally, the proper visual representation of these attributes will help in
clarifying the effects of pointer operations. To achieve this, it is critical to
develop a proper and standard set of drawing symbols for use in educational
materials for the students.

Below is a piece of Java code showing a simple pointer assignment:

String first = new String("Hello"); // line 1
String second = first; // line 2

After learning that Java object reference variables behave like pointers,
students usually have no problem visualizing the effect of line 1 in the above
code. In one class setting, 14 out of 19 students were able to visualize it
correctly. However, when it comes to line 2, many students are often confused
about the effect of the pointer assignment. When students were presented
with two choices shown in Figure 1 and asked which one correctly illustrates
the effect of the code on line 2, 12 out of 18 students responded with incorrect
answer (Choice 2). If such misconceptions are allowed to continue, it is not
hard to imagine that these students will have trouble in writing working code
for projects that involve the use of pointers/references.

“Hello”

first

second “Hello”

first

second

Choice 1 Choice 2

Figure 1: Which is the correct drawing for the pointer assignment?

We hypothesize that, due to the lack of a set of “standardized” drawing
symbols for the teaching of indirect data addressing, students have not been
adequately taught to handle pointers/references correctly and effectively. It is
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our belief that a standardized set of drawing symbols for the learning of indirect
data addressing is required to offer a clearer and more effective tool for teaching
the usage and workings of pointer/reference variables. This set of symbols must
provide a simple and easily understandable visual representation of pointer
attributes with sufficient details to eliminate any ambiguities. Also, the set
will need to be easily applicable to all aspects of pointer-related programming
activities ranging from simple assignment to dynamic object allocation to the
building of large data structures.

In this paper, we take an initial step in proposing a set of drawing symbols
to be standardized and adopted by the computer science education community.
We further present case studies to illustrate the use of these drawing symbols
and their advantages in the teaching of pointers. We hope that this set of
drawing symbols will be adopted and extended by the community for wider
use.

2 Pointer Drawing Symbols

In this section, we introduce various drawing symbols for the illustration of
pointers and their operations. Other drawing symbols that may not be directly
related to pointers but are considered essential are also introduced.

2.1 Variables and Values Stored in Variables

A variable represents a named piece of memory (at a particular address). De-
pending on specific programming languages, the types of values that can be
stored in a variable may be restricted. In Java, a variable can only store either
a primitive value or a reference value. A Java variable cannot store an object
directly. Instead, a Java variable can store a reference value to indirectly ad-
dress an object. On the contrary, C++ does not have this restriction. C++
variables can store an object either directly or indirectly through a pointer.
While the internal mechanics of pointers and references are different, concep-
tually they are the same. The information stored within a pointer/reference
variable provides an indirect path to the desired data.

In our drawing, a variable is represented by a rectangular box (Figure 2)
with the variable name above it. Optionally, an address or reference location
can be supplied above the box following an @ symbol.

Representing variables with a rectangular box has its issues. It is important
to stress to the students that such a box:

• can never be empty or emptied (the box always contains a value; it can
be a random garbage value initially)
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xyz @5786

A rectangular box representing some amount of 
space allocated to a variable

Variable name 
placed at the top

Optionally, the address of 
the variable marked by @

Figure 2: Variable drawing symbol.

• cannot hold a new value while preserving the old one (the old value gets
erased when a new value is assigned)

Care needs to be taken when using a box analogy. To beginning programming
students, the box analogy is not always clear [3, 11]. This is because, in real
life, a box can be empty and can hold multiple items.

To illustrate that a variable contains a garbage value when it is first created,
we represent the initial garbage value as “??” in the rectangular box for the
variable in the drawing (Figure 3).

??

xyz

Figure 3: Symbol of a variable containing an initial garbage value.
 

235 235.8 ‘c’

an int 
value

a float 
value

a char 
value primitive 

values are not 
decorated

235 235.8 ‘c’

x y z primitive 
values are 
directly placed 
in the boxes

x = 235; y = 235.8; z = ‘c’;
assignment 
statements

Figure 4: Symbols for primitive values and their placement in a variable

Primitive values are not “decorated” in the drawing and are directly placed
into the rectangular box representing a variable (Figure 4). On the other hand,
objects (and struct values) are “decorated” with a round-cornered rectangle
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because they are composite (Figure 5) before they are placed in the rectan-
gular box of an object/struct variable (Figure 6). Java does not support
object variables while C++ does. In Java, all objects are stored in anonymous
memory.

12345678
id .0

lastName .4

18
age .20

“Smith”

“John”

A student 
object

(optional) field address offset

field name

string object 
embedded inside 
of student object

firstName .12

“Smith”“John”

String class 
implementations vary; we 
represent string objects 
in this way

Figure 5: Symbols for objects/struct values

stu

12345678
id

lastName

firstName

18
age

“Smith”

“John”

Student stu(...); // C++

(anonymous) @6789

12345678
id

lastName

firstName

18
age

“Smith”

“John”

new Student(...); // C++ or Java

(optional) 
memory 
address of 
the object

Figure 6: Symbols for objects/struct values placed in a variable

Depending on specific programming languages such as Java, embedding an
object within another object may not be possible. However, this system allows
users to informally draw objects as embedded within another object. If this
informal drawing causes confusion, a formal drawing must be used (we will
cover this later).
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2.2 Pointer Variables and Pointer Values

There have been various efforts to hide the details of pointers from beginning
programming students or even mature programmers for safety. However, to
demystify pointers, students should be taught that pointer/reference variables
are no different from primitive value variables except that they only store
memory addresses (numbers) of other objects. In other words, pointers use
addresses to indirectly reference objects stored elsewhere, locatable through
those addresses. Students should be taught that handling addresses directly is
rarely a good idea. In addition, addresses are not always known a priori, which
is why arrows are used in the drawing to visualize pointers (values) (Figure 7).

str

“Hello”

String str = new String(“Hello”); // Java
std::string *str = new std::string(“Hello”); // C++

6789
str

“Hello”

@6789

an arrow is used to 
represent the pointer value 
that is the address of an 
object being referenced

if the address is known, we 
will be able to clearly see 
the linkage through the 
address information

Figure 7: Symbol of a pointer referencing an object

When a programming language such as Java does not support object em-
bedding, every field of the object will be either a primitive variable or a refer-
ence variable represented by a rectangular box in the drawing. One example
of the drawing is given in Figure 8 where an object references other objects,
creating the illusion of object embedding. Students should be taught to visu-
alize this scenario, through which the difference between a shallow copy and a
deep copy can be readily explained.

When a pointer variable contains a null value or contains a garbage value
initially, it is drawn as shown in Figure 9. In the drawing, we depict an
uninitialized pointer pointing to an “explosion” object to show the danger of
using such a pointer. An informal drawing of a pointer, as indicated and widely
used, should never be used in front of a student.
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12345678
id

lastName

18
age

“Smith”

“John”
firstName

stu

object embedding other 
objects such as in C++

12345678
id

lastName

18
age

firstName

stu

object referencing other objects such as in 
Java, creating an illusion of embedding

“Smith”

“John”

Figure 8: Object embedding vs object referencing other objects.

0
nptr

a null pointer value represented by 
a dot with a circle; optionally, also 
put a zero in the rectangular box 
representing the pointer variable

??
uptr

a pointer contains garbage value; 
optionally, also put a “??” in the 
rectangular box representing the 
pointer variable

ptr

“Hello”

informally, people draw pointer 
variable without a box; this 
shouldn’t be used because it 
often leads to misconception

Figure 9: Symbols for null pointer and uninitialized pointer.

3 Case Studies

In this section, we present several case studies to illustrate the use of the
drawing symbols we proposed and the advantages of these symbols.

3.1 Case Study 1: The Effect of Pointer Assignment

Pointer assignment has always been a mystery to beginning programming stu-
dents. On one hand, students have been taught that pointer assignment makes
a pointer point to an object. On the other hand, some students are surprised
to learn that the correct choice is Choice 1 instead of Choice 2 in Figure 1,
which shows that the net effect of assigning one pointer to another is really
just to make two pointer variables point to the same object.

Since students already understand that an assignment statement is essen-
tially a copy operation that transfers the value from the right-hand side to the
left-hand side, the correctness of Choice 1 in Figure 1 can be clearly explained
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19

first

@5589

second

String first = new String("Hello");  // line 1
String second = first;               // line 2

5589

“Hello”

5589

Line 1: Students understand that the assignment 
makes the pointer point to the object. Using a 
made-up address, students learn it is the address 
info that establishes the linkage, which is visualized 
by an arrow from the pointer variable to the object.

Line 2: Pointer assignment simply copies the 
address info (not any different from other types of 
assignments). Therefore, line 2 makes the two 
pointers point to the same object because they 
have identical pointer value (address).

Figure 10: Effect of pointer assignment.

with a drawing like Figure 10, which uses a made-up address.

3.2 Case Study 2: What does this code do?

// Java code
class Node {
   int id;
   Node next;
}

Node head = new Node(); // (1)
head.id = 66;

Node ptr = new Node();  // (2)
ptr.id = 23;

head.next = ptr;        // (3)

ptr = head;             // (4)

head = ptr.next;        // (5)

66

0

id

next

head ptr

(1) (2)

head ptr

(3)

head ptr

(4)

23

0

id

next

66
id

next
23

0

id

next

66
id

next
23

0

id

next

head ptr

(5)

66
id

next
23

0

id

next

Figure 11: What does the code do?

Once students have been taught the meanings of various symbols, as an
exercise, students can be given a piece of code to figure out what the code
exactly does through drawing. We found such exercises to be extremely helpful.

One example is the code given in Figure 11 along with the expected student
response. As a result, students learn that the code links two nodes and then
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hptr

66
id

next

current head node

nptr

23

0

id

next

new node

…

Given the new node, make it the new 
head node for the linked list

(1)

Through drawing, it is not difficult for students 
to figure out two steps A and B are needed

hptr

66
id

nextnptr

23
id

next

new node

…

(2)

A

B

hptr

66
id

nextnptr

23

0

id

next

new node

…

Wrong order: A first, B second. 
Through drawing, students learn that 
if A goes first, current head node is 
lost forever because of no more 
reference to it. B cannot be done.

(3)

A  ①

    node lost
(step B cannot proceed)

hptr

66
id

nextnptr

23
id

next

new node

…

Right order: B first, A second. Through 
drawing, students learn that, when dealing 
with pointers that requires multiple steps, the 
order of the steps is critical. Whenever in 
doubt, always visualize it through drawing.

(4)

A  ②

B ①

Figure 12: The order of pointer operations.

makes the two pointers exchange their nodes.

3.3 Case Study 3: This Order or That Order?

Take the example of adding a node as the new head of a linked list. Through
drawing, students can often quickly figure out which individual operations are
needed but are not always clear on which order of operations is the correct one.
Students find a drawing, as shown in Figure 12, to be extremely helpful. The
next natural step is to encourage students to come up with the code following
the correct order of operations.

4 Related Work

Teaching pointers through drawings is not a new idea. Programming textbooks
have used drawings to explain pointers, but no standardized set of drawing
symbols has been adopted. The lack of a standardized set of drawing symbols
for teaching pointers is the issue we are concerned with. We believe that the
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computer science education community needs to come together and adopt a
standardized set of drawing symbols for this challenging teaching topic.

In the classic K&R C programming book [6], the authors used simple draw-
ings to explain how C pointers work in a way that is fully consistent with the
actual memory model. A pointer variable is represented by a rectangular box
labeled with the variable name. The box contains a solid circle-headed arrow
pointing to another box representing another variable, an array, or a structure.
To handle modern objects, reference types, which are reference-counted smart
pointers, were invented. A more sophisticated set of drawing symbols is needed
to deal with the complexity of reference types and objects. To some degree,
the drawing symbols we propose can be seen as an extension of the drawing
symbols used in the K&R book.

When it comes to explaining reference types, introductory programming
textbooks (e.g., [4, 8]) use drawings sparingly, perhaps due to the fact that
these modern languages try to hide the details of pointers. When variables and
the objects they reference are drawn, they are often drawn indistinguishably:
both variables and objects are drawn as rectangles, for example. In [4], the
drawings of objects are not even consistent. Sometimes objects are drawn as
rectangles and sometimes as round-cornered rectangles. The drawing symbols
we propose clearly distinguish between a variable and an object.

To explain pointers in the context of certain data structures such as linked
lists and binary trees, drawings are indispensable. Textbooks (e.g., [7, 1])
use drawings extensively. However, to communicate the same concept/idea,
each book uses its own different set of drawing symbols. For example, [7]
uses a UML-like rectangle to represent objects, while [1] uses a round-cornered
rectangle. The UML standard was developed for software design. Its use
of a rectangle to represent an object is not necessarily adequate for teaching
purposes, with one criticism given in [5]. In addition, [7] labels a reference
variable with x = , where x is the variable name. This is quite unconventional.

Teaching pointers is hard. It appears that no single strategy is effective
for all students, and visualization through drawings remains a common strat-
egy. Researchers have tried other methods to help teach pointers with varying
degrees of success. For example, Yamashita et al. [12] developed a visualiza-
tion tool that can visualize C pointers in simple running programs. jGRASP,
a lightweight IDE for novice Java programmers, supports visualization [2] of
Java programs including Java reference variables. Others have resorted to using
computer games to teach C/C++ pointers [9].
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5 Conclusion and Future Work

Beginning programming students (and even some students beyond entry-level)
often have various misconceptions about pointers. As a result, they often
struggle to write working code involving pointers.

In this paper, we argue that such a problem can be remedied from the
start if professors use a right set of drawings to clearly visualize the meaning of
pointers and the effect of pointer operations without ambiguity. One issue here
is that we have not adopted a standardized set of drawing symbols with clear
definitions. To this end, we took an initial step to propose a set of drawing
symbols in the hope of being adopted and extended for wider use. We further
presented case studies to demonstrate the use and advantages of this set of
drawing symbols for the teaching of pointers.

Our initial experimental work in the classroom indicates that this set of
drawing symbols is quite effective in illuminating the pointer concepts to the
students. From a Data Structures course taught by the same instructor, we
collected some data on the students’ performance before and after the intro-
duction of the drawing symbols. These students had an equivalent of one year
of Java programming lessons before taking the course. For a pointer assign-
ment problem slightly more complicated than the one shown in Figure 1, only
25% of the 16 students in Fall 2023 were able to answer it correctly before
the introduction of the drawing symbols. After the introduction, the number
of students who were able to answer it correctly increased dramatically (77%
of the 18 students in Fall 2024 and 70% of the 24 students in Spring 2025).
Similarly, before the introduction of the drawing symbols, less than 25% of the
students in Fall 2023 were able to tell the difference between the == operator
and the equals() method in Java. After the introduction of the drawing sym-
bols, in a recent exam, for a question on this topic, the average grade for a
class of 24 students was 84% correct. There do not appear to be any other
factors that could have caused the improvement in the students’ performance.

Future work will include the design and implementation of more in-class
experiments to test the effectiveness of the drawing symbols. We would also
like to involve other community members in the design and implementation of
such experiments. We would also welcome feedback from the community on
the proposed drawing symbols and their usage.

Acknowledgments

The authors would like to acknowledge the anonymous reviewers of the CCSC
Midsouth Conference for their invaluable feedback and constructive sugges-
tions, which helped enhance the quality of this paper.

11 77



References

[1] Frank M. Carrano and Timonthy M. Henry. Data Structures and Ab-
stractions with Java. Fifth Edition. Pearson, 2019.

[2] James H Cross. “Using the new jGRASP canvas of dynamic viewers for
program understanding and debugging in Java courses”. In: Journal of
Computing Sciences in Colleges 29.1 (2013), pp. 37–39.

[3] Benedict Du Boulay. “Some difficulties of learning to program”. In: Jour-
nal of Educational Computing Research 2.1 (1986), pp. 57–73.

[4] Tony Gaddis and Godfrey Muganda. Starting Out with Java: From Con-
trol Structures through Objects. Fourth Edition. Pearson, 2019.

[5] David Gries. “A principled approach to teaching OO first”. In: Proceedings
of the 39th SIGCSE technical symposium on Computer science education.
2008, pp. 31–35.

[6] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage. Second Edition. Upper Saddle River, New Jersey: Prentice Hall P
T R, 1988.

[7] Elliot B. Koffman and Paul A. T. Wolfgang. Data Structures: Abstract
and Design Using Java. Fourth Edition. Hoboken, New Jersey: John Wi-
ley and Sons, 2021.

[8] Y. Daniel Liang. Introduction to Java Programming. Tenth Edition. Pear-
son, 2015.

[9] Monica M McGill et al. “If memory serves: Towards designing and eval-
uating a game for teaching pointers to undergraduate students”. In: Pro-
ceedings of the 2017 ITiCSE Conference on Working Group Reports.
2018, pp. 25–46.

[10] Iain Milne and Glenn Rowe. “Difficulties in learning and teaching pro-
gramming – views of students and tutors”. In: Education and Information
technologies 7 (2002), pp. 55–66.

[11] Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. “Program-
ming misconceptions for school students”. In: Proceedings of the 2018
ACM Conference on International Computing Education Research. 2018,
pp. 151–159.

[12] Koichi YAMASHITA et al. “Learning support system for understanding
pointers based on pair of program visualizations and classroom practices”.
In: International Conference on Computers in Education. 2020, pp. 658–
663.

1278



Scaffolding Mobile Programming with a

Student-Centered and Asset-Based Framework∗

Bilal Shebaro
Department of Computer Sciences

St. Edward’s University
Austin, TX 78704

bshebaro@stedwards.edu

Abstract

This paper discusses the redesign of the Mobile Programming course
with the goal of fostering a student-centered, inclusive learning envi-
ronment. This redesign emphasizes asset-based teaching and integrates
generative AI tools to align with modern technological advancements. By
encouraging students to propose and develop mobile applications inspired
by their personal interests, cultural backgrounds, and societal concerns,
the course seeks to enhance engagement, creativity, and innovation while
fostering a sense of ownership and meaningful connection to the learning
process. This approach not only aligns with our university’s mission to
promote inclusive education but also leverages the diversity of the stu-
dent body to create a dynamic and transformative learning experience.

1 Introduction

Over the past decade, universities worldwide have incorporated mobile pro-
gramming courses into their curricula, enabling students to develop applica-
tions for the two dominant platforms: Apple and Android devices. These
courses typically rely on traditional teaching methods, such as project-based or

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
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application-based approaches, that focus heavily on platform features and ca-
pabilities. Students are often tasked with creating either one large application
over the semester or multiple mini-apps, each showcasing a specific concept,
skill, or feature [8] . These projects are commonly sourced from textbooks,
online resources, or instructor-designed templates, leaving limited room for
students to explore their unique interests or address societal concerns through
their work.

Recognizing the limitations of traditional approaches, this paper introduces
a redesign of our Mobile Programming course that centers on inclusivity and
student learning. This reimagined course leverages asset-based teaching and
integrates generative AI tools to empower students to propose and develop mo-
bile applications that reflect their personal interests, diverse backgrounds, and
societal issues they are passionate about addressing [3]. By allowing students
to drive the content of the course applications and projects, the course not only
enhances engagement and motivation, but also fosters a sense of ownership and
personal connection to the learning process [5].

Another key limitation of traditional teaching approaches in mobile pro-
gramming is the uniformity of the implemented applications: all students typ-
ically work on the same applications, whether through a single semester-long
application or smaller, predefined assignments. While this method can effec-
tively teach technical concepts, it often fails to engage students on a deeper
level, as it does not account for their individual interests or experiences. In con-
trast, our redesigned course allows each student to work on their own unique
mobile application projects, tailored to their personal assets, while applying
the same core concepts taught in class. This approach not only fosters creativ-
ity and innovation, but also enhances motivation and engagement, as students
see their ideas come to life in meaningful ways [1].

The remainder of this paper is organized as follows: Section 2 outlines
the course redesign and structure of the Mobile Programming course, provid-
ing examples of its building blocks. Section 3 details the design of homework
assignments and the strategies employed to ensure the appropriate use of gen-
erative AI. Section 4 focuses on the components of the course project, and the
paper concludes with final remarks in Section 5.

2 Course Design and Structure

The redesigned Mobile Programming course focuses on developing applications
for Apple’s iPhone and iPad devices, guiding students through the entire pro-
cess of designing and building a mobile app from start to finish. The course is
structured as a hands-on, lab-style experience, where students learn to code in
Swift, Apple’s versatile and high-level programming language, and adopt the
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Model-View-Controller (MVC) architecture to write clean, maintainable code
using the Xcode Integrated Development Environment (IDE). The course is
implemented in a 16-week, three-credit undergraduate college course. Classes
are held twice a week, with each session lasting 75 minutes.

2.1 Student Asset Maps

To support this vision of a student-centered learning environment, our course
redesign begins by tasking students with developing their own asset maps,
which highlight the unique strengths, interests, and experiences they bring to
the class as shown in Figure 1. The process of constructing asset maps begins
with the instructor modeling the practice, explaining their purpose, demon-
strating how they are built, and sharing their own asset map. This approach
not only helps students understand how to create their own maps but also offers
a glimpse into the instructor’s personal assets, fostering connection and mutual
understanding within the classroom. After that student are asked to construct
their own asset maps that will later serve as a foundation to identify topics
that resonate with the students’ passions and backgrounds, ultimately driving
their choice of mobile applications to develop throughout the course [9, 7].

Figure 1: Asset Map example.

2.2 Structure: Foundations and Building Blocks

The course structure is divided into two key components: foundational concepts
and building blocks. Drawing inspiration from architectural principles, where
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a solid foundation must be laid before constructing the rest of the structure,
this course applies a similar approach to mobile app development. In this con-
text, the foundational concepts refer to the core methods for building a mobile
application’s graphical user interface. In iOS programming, this is primarily
achieved using either the UIKit or SwiftUI frameworks. These foundational
elements equip students with a strong technical base by introducing them to
both tools, which are essential for effective app design and development.

The building blocks represent the additional structures built upon that
foundation. In our course, these building blocks represent individual course
concepts that students progressively learn and apply. Each building block is
demonstrated through mini-apps that are directly inspired by the classroom
asset maps. Each building block that can be built using either one of the two
building foundations (UIKit or SwiftUI) will result in a mini-app. With stu-
dents bringing diverse assets from each other into the classroom, the completion
of each building block will lead to a variety of different mini-apps, showcasing
students’ assets while all utilizing the same concepts dedicated to the building
block.

While teaching the foundational concepts in our current course design takes
approximately two weeks, each mini-app resulting from each building block is
usually completed over at most a two-week period, comprising four 75-minute
sessions.

Once the foundations are set, the rest of the course is designed as building
blocks. Figures 2 and 3 display two examples of building blocks that show
how the course is designed to scaffold learning through a structured sequence
of steps, ensuring students grasp foundational concepts before applying them
to their individual mini-apps and projects [4, 10]. Below is a step-by-step
breakdown of how each this building block is taught:

Learning Objectives: The block begins with clearly defined learning
objectives that focus on critical technical skills.

Check-in: For approximately three minutes, students have the opportunity
to connect with each other, fostering a collaborative and friendly atmosphere.
This time is often used to share updates on their progress in their courses or
casual conversations about activities from the past weekend. Following this,
the instructor opens the floor for any questions about prior lectures or assigned
homework, ensuring that any concerns are addressed before moving forward
with new material.

Next, the instructor employs the “Five E’s” framework: Explore (I do),
Engage (we do), Experience and Expand (they do), and finally Evaluate (in
an assessment form).

Explore: The instructor introduces new concepts and demonstrates an
example application.
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Figure 2: Building block for Camera and Photo Album.

Figure 3: Building block for Maps and Location Services.
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Engage: The instructor encourages the students to apply the new concepts
in a meaningful way that aligns with their personal interests and their asset
maps. This ensures their mini-apps are personally relevant. During discus-
sions, both the instructor and students work together on the mini-apps story
design and user interface before students could apply the concepts taught in
the corresponding building block.

Experience: This provides students with a hands-on practice with coding
and debugging their mini-apps, and collaborating together through the Think-
Pair-Share method, encouraging peer interaction and idea exchange.

Expand: This step encourages students to extend their learning beyond
the core concepts of the building block by exploring advanced or extended
functionalities. Students may work individually or in teams to challenge them-
selves by implementing additional app capabilities or more sophisticated fea-
tures. This phase is a crucial component of the course, as the field of mobile
programming is vast and continually evolving, making self-learning an essential
skill for mastering the domain.

During the Experience and Expand phases, where students primarily
work independently, the instructor occasionally plays a classroom music playlist
curated from students’ favorite songs, collected through a survey conducted at
the beginning of the semester. This adds a personal touch to the course,
fostering a sense of belonging and showing students that they are valued and
cared for, enhancing their excitement and connection to the class.

Evaluate: The instructor assigns homework or mini-projects with clearly
defined milestones and an accompanying rubric. Students select topics aligned
with their personal assets, ensuring the work is both meaningful and relevant.
This step emphasizes meeting the instructor-defined milestones, providing a
structured framework for students to demonstrate their understanding and
progress.

Check-out: Upon the completion of this building block mini-app, students
show off their running version of the completed mini-app on a device or the
Xcode simulator to evaluate its functionality.

3 Homework Assignments and Generative AI

The homework assignments in this course are carefully designed to reinforce
the concepts taught during each building block, ensuring students gain a solid
understanding of the material. Following the completion of one or two building
blocks, students are given a homework assignment that evaluates their compre-
hension and ability to apply the building block(s) concepts independently. Each
assignment includes clearly defined milestones to guide progress, but students
have complete freedom to choose the topic and content of their applications.
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This flexibility allows students to tailor their work to align with their interests,
backgrounds, and asset maps, fostering a deeper personal connection to the
learning process.

Figure 4: Homework tasks breakdown between student and AI (framework
inspired from Dave Birss).

Generative AI plays a crucial role in supporting students throughout their
homework and projects. As shown in Figure 4, each homework assignment
is broken down into tasks that specify the extent to which AI can be used:
AI-Generated Tasks, Student Collaboration with AI, and Student-Only Work.
This structured approach aims for students to use AI responsibly while main-
taining a strong foundation in programming and problem-solving skills.

4 Student Course Projects

A major focus of the course is the end-of-semester project, where students im-
plement their best work in a comprehensive application. The course project
requires each student to design a mobile application that incorporates one of
the foundational concepts (UIKit or SwiftUI), utilizes at least four building
blocks covered in class, and includes data persistence. The app should address
a specific need or solve a meaningful problem for the student or a targeted
user group, demonstrating greater complexity and originality than the in-class
examples or homework assignments.

Students are asked to:

1. Propose an App Idea: Students select a topic that resonates with
their personal experiences, cultural background, or asset map. The app idea
must address a real-world problem or fulfill a specific need and is subject to
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instructor approval.

2. Prototype the App: Using industry-standard prototyping tools, such
as Figma [6] or Marvel [2], students create a detailed blueprint of their app,
focusing on user experience and interface design.

3. Implement the App: Students bring their app to life by coding it
using one of the foundational frameworks (UIKit or SwiftUI) and incorporating
their chosen set of building blocks and data persistence method.

The flexibility of the app topic encourages students to create applications
that are personally meaningful. For many, this project represents an opportu-
nity to develop an application they have always wanted to create but lacked
the necessary skills prior to the course. At the end of the semester, students
present their projects, demonstrating their technical achievements, creativity,
and problem-solving abilities.

5 Conclusion

The redesigned Mobile Programming course transforms traditional teaching
by fostering a student-centered, inclusive learning environment where students
create apps inspired by their unique assets, such as about their pets, hobbies,
favorite music and celebrities, hometowns, or places they were born or pre-
viously visited. By integrating asset-based teaching and generative AI tools,
the course empowers students to develop applications that reflect their per-
sonal experiences and interests while mastering essential technical skills, and
to thrive in the rapidly evolving mobile technology industry. Aligned with the
university’s mission to promote inclusive education and its strategic goals of
courageous teaching and transformative learning, this course cultivates socially
conscious, technically proficient graduates ready to make meaningful contribu-
tions to society.
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Abstract

Computer science students face numerous challenges during the ini-
tial stages of their academic journey, particularly those from underrep-
resented groups. Establishing a sense of belonging and developing a
computing identity are crucial factors in student retention and success.
This study investigates how participation in the Early Research Scholar
Program (ERSP), a year-long research apprenticeship for early under-
graduate students, influences these critical aspects of student develop-
ment. Through a qualitative thematic analysis of bi-weekly reflective
surveys collected over one semester from 24 first-year computer science
students, we examined the evolution of students’ identity as computing
researchers and their emotional responses to the research process. Our
findings reveal that creating a supportive and inclusive environment led
to transformative experiences that significantly impacted students’ sense
of belonging and identity formation as researchers. Specifically, early
exposure to computer science research, dual-mentoring from faculty and
graduate students, and peer support emerged as key factors positively

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
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a fee and/or specific permission.

188



influencing these transformations. By the program’s conclusion, 85% of
participants reported positive changes in their identity and confidence as
computer scientists, while 87% indicated an increased sense of belonging
in the field. This study contributes valuable insights into effective prac-
tices for fostering diversity, inclusion, and student success in computer
science education through early undergraduate research experiences.

1 Introduction

The increasing enrollment in Computer Science (CS) programs ([8],[9]) has led
to a growing interest in providing early research experiences for undergraduate
students. These experiences have been shown to offer numerous benefits, such
as improved retention rates and course performance ([3],[2],[1]), and promoting
greater diversity in computing in the long term ([4],[10],[12],[1]). Our institu-
tion participates in the Early Research Scholar Program (ERSP), a structured
program designed to provide a diverse group of undergraduate CS students with
a year-long, group-based research apprenticeship under the guidance of both
faculty and graduate student mentors. While prior work by ERSP partners
has examined the role of mentoring, the scalability of group-based undergrad-
uate research models for underrepresented groups, and the long-term impact
on diversity in computing ([3],[2][12]), there is a lack of research on the factors
contributing to the transformative experiences of undergraduate students in
the program. This study aims to bridge this gap by investigating the impact
of early undergraduate research participation on CS students’ identity as com-
puter scientists and their sense of belonging in the field. We conducted a qual-
itative thematic analysis of students’ open-ended reflections on their evolving
identity as computing researchers and their emotional responses to the research
process. Our findings provide reliable insights into the experiences of ERSP
students, highlighting the program’s benefits in fostering high confidence levels
and a sense of belonging within the CS discipline. The results also corroborate
earlier findings on the effectiveness of a dual-mentoring approach, with fac-
ulty and graduate student mentors playing complementary roles in supporting
undergraduate researchers. By examining the factors that contribute to trans-
formative experiences in early undergraduate research, this study contributes
to the growing body of knowledge on best practices for promoting diversity,
inclusion, and success in CS education.

2 Related Work

In 2014, the University of California San Diego’s Department of Computer
Science and Engineering created the ERSP to offer early research opportunities
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to computer science students ([4]). The program mainly admits students from
underrepresented groups in CS, including women. The Center for Evaluating
the Research Pipeline (CERP) conducted a yearly survey from 2014 to 2016 to
assess the lasting effects of early formal research experiences on undergraduate
computing students ([1]). The studies found that the experiences positively
impacted students’ understanding of mentor support, retention in the major,
sense of belonging, and identity change as researchers.

There is evidence that undergraduate research experiences contribute to
developing students’ science identity in STEM disciplines, with students re-
porting being more confident, less intimidated, and leaving the program with
a sense of accomplishment ([11]). Such experiences can be considered transfor-
mational, as they often lead to persistence in STEM disciplines and interest and
enrollment in doctoral programs. In ERSP, the group-based model with dual
mentoring has proved successful in showing that students in the program have
more confidence and interest in a computing research career ([1]). In particu-
lar, women and minorities who are given opportunities for early research show
an increased interest in continuing in the discipline and engaging in research
([3],[2],[4]).

A sense of belonging motivates undergraduates to thrive in their learning
environments ([7],[14]). A long-term study with a larger sample size investigat-
ing the research experiences of first-year CS undergraduates ([12]) found that
perceived mentor support predicted a sense of belonging for underrepresented
students. Similar to other REU programs, ERSP has helped boost the partic-
ipants’ self-efficacy and sense of belonging in CS, motivating them to pursue
advanced degrees in the field and correlating with better grades for women
and racially minority students ([1]). Undergraduate research experiences that
include faculty-student interactions and mentoring have also proved beneficial
for women and other underrepresented students in many disciplines, as well
as in STEM and CS ([4]), ([5], [11]). A qualitative study of the mentoring
practices in ERSP ([3]) showed that strong mentorship that provided project
guidance and technical support was beneficial for a successful undergraduate
research experience. The high retention rates in the program (98% for the
cohort reported in their study) showed that early undergraduates benefit from
project-related and emotional support.

3 Research Methodology

3.1 Study Context and Participant Selection

The Early Research Scholars Program (ERSP), launched at our institution
in Fall 2021, provided first-year Computer Science (CS) students with valu-
able early research experiences. Following an open call for applications sent
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to all incoming first-year students, we selected 28 participants using the es-
tablished selection procedure ([4]) that looked at their motivation to do CS
research, academic performance, and thoughts on how their participation con-
tributed to diversity in CS. These students engaged in seven diverse research
projects spanning key CS domains, including mobile app development, machine
learning, human-computer interaction, blockchain, natural language process-
ing, robotics, and cybersecurity. Each project offered participants hands-on
experience developing essential technical, problem-solving, and collaboration
skills in authentic research environments. The intentional diversity of projects
enabled students to explore various CS specializations while gaining practical
experience aligned with their specific interests. This early exposure to research
methodologies has helped participants develop a deeper understanding of com-
puter science beyond traditional coursework.

3.2 Research Design and Data Collection

To gain an understanding of the transformative experiences facilitated by
ERSP, we conducted a qualitative study guided by the following research ques-
tions: RQ1: How does students’ identity and confidence as computer scientists
and researchers evolve throughout the program? RQ2: How does students’
sense of belonging in CS evolve throughout the program? After obtaining
ethics approval, we invited all 28 students enrolled in the Fall 2021 ERSP
cohort to participate in the study. Twenty-four students provided informed
consent and were subsequently included in the research. To minimize poten-
tial biases and power dynamics between researchers and student participants,
we assigned specific roles to the research team members. The first author,
a doctoral student in education, had no direct contact with the participants
and was responsible for administering bi-weekly online surveys, analyzing the
collected data, and collaborating on the writing of this report. The second au-
thor, a professor of computer science, introduced the students to the research
process, served as the central faculty mentor, and assisted with weekly student
meetings. To maintain confidentiality, the second author did not have access
to the survey data until an anonymized dataset was provided a year later for
analysis. Furthermore, the study design deliberately excluded demographic
and identifying information, such as race and gender, from data collection to
ensure participant confidentiality. Throughout the Fall 2021 semester, seven
bi-weekly surveys were administered, each consisting of five open-ended ques-
tions framed as "reflections." The specific questions, which form the corpus of
our data, were drawn from the following reflections:

• Reflection 1: Your identity as a researcher (Week 1)

• Reflection 2: Emotional responses to research (Week 3)
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• Reflection 6: Emotional responses to research (Week 11)

• Reflection 7: End of Program Reflection (Week 14)

Each reflection prompt was designed to capture how participation in ERSP
influenced students’ identity as computer scientists and their sense of belonging
in CS. The "Emotional response to research" reflection was administered at
the beginning (Week 3) and towards the end of the semester (Week 11) to
track the evolution of students’ perceptions of the research process. These four
selected bi-weekly surveys were chosen because they specifically focused on
students’ emotional experiences and identity-related perceptions in computer
science. While all seven surveys provided useful data, these particular four
surveys contained prompts that directly explored students’ sense of belonging,
emotional responses to programming challenges, and their evolving identities as
computer scientists. This aligns with our paper’s primary research questions
on understanding the affective and identity-related dimensions of students’
experiences in computer science. The other three surveys, while significant
for the broader research project, focused on different aspects that fell outside
the scope of this paper’s specific investigation of emotional experiences and
identity development.

3.3 Data Analysis

We employed an inductive thematic analysis approach, using participants’ sur-
vey responses as our primary data source. Rather than relying on agreement
metrics such as inter-rater reliability, we resolved uncertainties through discus-
sion and consensus-building among the authors.

The analysis process followed a systematic approach to thematic analysis.
Initially, the authors independently reviewed the survey responses using open
coding ([6]), assigning descriptive codes to specific segments of text (e.g., "pro-
gramming frustration," "peer support," "classroom participation"). Through
weekly meetings, we discussed and refined these initial codes, ensuring con-
sistency in our coding approach. As patterns emerged, we grouped related
codes into broader categories, which then evolved into preliminary themes.
For example, multiple codes related to students’ changing perceptions of their
programming abilities were grouped under the broader theme "Evolution of
Identity and Confidence." Similarly, codes capturing students’ interactions and
feelings of inclusion formed the theme "Development of Sense of Belonging."
After reaching consensus on these themes, we individually reanalyzed the data
to ensure that the themes accurately represented the coded content. Finally,
we examined how these themes aligned with our research questions, focusing
on those most relevant to understanding students’ identity development and
sense of belonging in computer science.
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4 Findings of the Study

This section presents findings of our study, addressing how students’ identity
and confidence as computer scientists and researchers (RQ1) and their sense
of belonging in CS (RQ2) evolved throughout the ERSP program. To main-
tain confidentiality, all quotations are cited anonymously, with participants
identified as S#.

4.1 Evolution of Identity and Confidence

Our analysis of the coded responses revealed that 85% of participants (19 out
of 23) reported positive changes in their identity and confidence as computer
scientists by the end of the program, while the remaining 15% (4 students)
indicated neutral experiences. These changes manifested in three primary ar-
eas: identity as researcher, skill development, and self-efficacy. In terms of
research identity development, 78% of participants demonstrated significant
growth. Initial survey responses showed that only 13% of students had prior
research experience or understanding. By the program’s end, 78% of partic-
ipants reported feeling more confident about pursuing research careers. This
transformation is exemplified by S09’s journey, whose perspective shifted from
"ERSP... has not yet impacted this aspect of my identity" to recognizing re-
search possibilities: "ERSP has made me feel more like I can pursue a career
in Computer Science".

Regarding technical skill development, 91% of students reported acquiring
new technical skills such as Android development, research communication,
and problem-solving abilities. Analysis of pre- and post-program reflections
revealed that initial apprehension about technical challenges, reported by 87%
of students, transformed into confidence in specific areas. Students particularly
noted growth in Android development (65%), research communication (82%),
and problem-solving abilities (73%). Additionally, analysis of longitudinal re-
sponses showed that 83% of students developed stronger self-efficacy beliefs,
as exemplified by S06’s reflection: “I am capable of working in the real world.”
This transformation was similarly expressed by S09, whose perspective shifted
from “ERSP... has not yet impacted this aspect of my identity" to recognizing
research possibilities: “ERSP has made me feel more like I can pursue a career
in Computer Science”. The development of these self-efficacy beliefs appeared
closely connected to students’ increasing technical competence and growing
sense of belonging within the computer science community.
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4.2 Development of Sense of Belonging

Our analysis of survey responses revealed significant changes in students’ sense
of belonging throughout the program. Initially, 74% of participants reported
experiencing imposter syndrome, 65% expressed anxiety about their technical
abilities, and 48% worried about course load management. However, by the
program’s end, 87% of participants reported an increased sense of belonging,
with 91% citing peer support as crucial to their experience. Our pre- and
post-program reflections on emotional surveys 2 and 6 revealed that 83% (23
out of 28 students) positively viewed the program and felt it helped them be-
long to the CS community. The impact of faculty and mentor interactions
was noted by 83% of participants, while 78% specifically highlighted the value
of team-based research work. The program’s emphasis on diversity and in-
clusion showed particular impact, with all women participants (14 students)
highlighting the importance of gender representation. Overall, 91% of all par-
ticipants positively commented on the program’s inclusive environment. These
findings align with reflections, such as S04’s evolution from experiencing "sense
of imposter syndrome" to finding "great friends" and building "rapport with
professors."

5 Discussion

Our study yielded valuable insights into the experiences of undergraduate stu-
dents participating in the Early Research Scholar Program (ERSP), an early
research program designed to foster a sense of belonging and identity among
underrepresented groups in computer science (CS). The findings reveal that
students’ identity and confidence as computer scientists and researchers (RQ1)
and their sense of belonging in CS (RQ2) underwent significant transforma-
tions during the first semester of the program. Consistent with prior research
on undergraduate research experiences ([1],[13]), we observed a growing sense
of accomplishment among students and an increased interest in pursuing re-
search careers. As students gained confidence, they became more willing to
engage with challenges and developed stronger communication skills, motiva-
tion, and persistence—all crucial factors for success in research and academic
programs. However, it is important to recognize that confidence alone does
not guarantee success; the transformation of students’ identity into that of
computer scientists and their integration into the CS community played a vital
role in their development. For many participants, pursuing a degree in com-
puter science influenced their career opportunities, expanded their knowledge
and skills, and deepened their understanding of the world around them. The
cultivation of a sense of belonging emerged as a critical aspect of creating a
safe and inclusive learning environment, particularly for marginalized individ-

794



uals. Our results highlighted the value students placed on peer support and
the positive impact of an increasing sense of belonging on collaboration and
inclusivity, especially for women-identified participants. These findings align
with previous research emphasizing the importance of peer support in enhanc-
ing motivation, persistence, and emotional well-being among students ([7],[14])
Moreover, our study underscores the crucial role of mentorship in undergradu-
ate research experiences. Participants reported that mentors provided invalu-
able technical and social support, guiding them through the research process
and contributing to their overall success. The survey results demonstrate the
unique and complementary roles played by faculty and graduate student men-
tors in supporting student researchers. The effectiveness of the dual-mentoring
approach in our program highlights the importance of mentorship by both
professors and graduate students in creating a supportive academic environ-
ment, corroborating earlier findings on the benefits of strong mentorship in
undergraduate research ([3],[4],[5],[11]) This study contributes to the growing
body of literature aimed at promoting undergraduate research experiences and
fostering supportive, inclusive educational environments for all students. Our
findings have significant implications for universities and colleges seeking to
provide early research opportunities and promote diversity, equity, and inclu-
sion in CS education. To facilitate transformative experiences for students on
their path to becoming CS researchers, institutions should actively encourage
peer support and graduate student mentorship. Peer support has been shown
to enhance learning through collaboration and knowledge-sharing while build-
ing student confidence and self-esteem ([7], [14]) Furthermore, peer support
can provide emotional support, which is particularly crucial for students grap-
pling with stress or anxiety related to their academic workload. Mentors, in
turn, offer knowledge, expertise, and guidance to help students navigate the
challenges of their studies, develop essential skills, and build their confidence
([3],[4],[5],[11]) While this qualitative study offers valuable insights, it is essen-
tial to acknowledge its limitations. As with any qualitative research, the study
is susceptible to validity threats related to subjective experiences. To mitigate
these threats, we employed member checking and joint review to enhance the
validity of our findings. Although the study’s sample size is limited and the
research was conducted in specific contexts, which may limit the generalizabil-
ity of the findings to other populations or settings, it does not diminish the
value of our results. Qualitative research often seeks to gain a deep under-
standing of complex phenomena that quantitative approaches may not fully
capture. In conclusion, our study provides crucial insights into the experi-
ences of undergraduate students participating in an early research experience
program. The findings suggest that early research experiences contributed to
students’ career planning and confidence in their abilities while emphasizing
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the importance of peer and mentor support in promoting a sense of belonging
in their chosen field. Future research should consider conducting longitudinal
studies with larger sample sizes.to examine how students’ identity and confi-
dence as computer scientists and researchers evolve over successive semesters
and among different cohorts participating in early research programs. By fur-
ther investigating the factors that contribute to transformative experiences in
early undergraduate research, we can continue to refine and improve programs
designed to support and empower the next generation of diverse, confident,
and successful computer science researchers.
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Abstract
Gamification is a process of applying game-design elements (e.g., puz-

zle, storytelling, point scoring) into non-game areas such as education
and health care, and several research projects utilized it to engage K-12
students in computing education where they can have playful experience
while learning concepts regarding computer science. However, there was
no report yet that summarized previous research projects to see what ar-
eas of computer science have been taught for K-12 students specifically
via gamification, which can provide clear insight into what topics were
less focused so far and need to be considered in the future. Therefore,
in this paper, we review 23 published research articles and show which
concepts and topics have been covered and how successfully they were
taught through gamification. This report will help to see the trends of
research in gamification for K-12 computing education and the possible
future directions that can be pursued in this research field.

1 Introduction

Today, we can meet computer science techniques everywhere in the real world,
such as artificial intelligence. And, as the computer science job market is grow-
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ing, the demand for a workforce in computer science careers is higher than ever
before. So, the importance of computer science education (computing educa-
tion) is more demanding than before to prepare students for computer science
careers. But since computer science can be perceived as a boring and less
interesting subject among K-12 students [20], an effective setup of computing
education is necessary to lower barriers to the field and to experience computer
science topics.

For K-12 students (especially for students who do not have coding experi-
ence), the important thing in computing education is giving them an interest in
computer science and helping them continue studying the area. One effective
pedagogical tool is called gamification. Gamification is a process of gamify-
ing non-game contexts such as education and health care with game-design
elements like puzzles, storytelling, and point scoring [1]. Via gamification, K-
12 students can have a playful experience while learning corresponding topics
in computing education. Many research projects have helped K-12 students
experience computer science topics using gamification. For example, Parham-
Mocello et al. [22] used tic-tac-toe board games to teach abstraction/represen-
tation, and Wang et al. [28] developed a digital game in which students can
learn about the inner workings of artificial intelligence.

Although various computer science topics have been covered for K-12 stu-
dents via gamification, there is still no report that clearly shows what topics
have been handled so far and how effectively they were taught via gamification.
Such a report can help researchers, especially researchers who start research in
this gamification area, to see which areas were less focused in K-12 comput-
ing education, and if areas were covered, how they were gamified and whether
they were successful to provide a playful experience while students learn the
corresponding concepts.

Therefore, in this paper, we selected and analyzed 23 research papers to
see which computer science topics they covered and how they were taught via
gamification. Furthermore, the effectiveness of each approach was investigated.
This paper will show an analysis of these papers based on topics, gamification
approaches, and effectiveness and give a sense of trends in this research area.
It will also provide several suggestions regarding future directions in this K-12
computing education field.

2 Paper Selection

We mainly used four research databases, ACM Digital Library, IEEE Xplore,
ScienceDirect, and ResearchGate. When we were searching for research papers,
we narrowed the search topic to ‘K-12 computing education via gamification’.
Although it is worth looking at papers that used gamification for college CS0,
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we only included papers targeting K-12 students. We excluded papers that
study game-design elements themselves in the gamification process even though
they targeted K-12 students. For example, the paper [14] was not included
because the purpose was to figure out how to make students focus more on
gameplay not providing teaching via gamification. From the search, we selected
23 research articles.

3 Paper Organization

After selecting papers from research databases, to see clearly what and how
they taught using gamification, we organized the papers based on which topic
they taught. Then, we labeled each paper according to its gamification ap-
proach. In this section, we provide details of these categories: topic and gami-
fication approach, used to organize the selected papers for our analysis.

3.1 Topic

The topic category is used to categorize papers based on which topic they
covered via gamification. After reviewing the papers, we could find three top-
ics ‘Computational Thinking’, ‘Basic Programming’, and ‘Computer Science
Topic’, which were commonly covered by gamification for K-12 students. Thus,
for the topic category, we sorted the papers based on these topics. The fol-
lowing sections explain about these topics to give a better understanding of
them.

3.1.1 Computational Thinking

Computational thinking is a thinking skill that can break down a big problem
into smaller parts and design algorithmic solutions for them. This is for train-
ing students to have an effective thinking process when pursuing a computer
science field in the future. Computational thinking was highlighted by Wing
[29] and is now known as an important skill not only in the computer science
field but also in non-computer science fields such as English literature [24].
Research papers that developed the computational thinking of K-12 students
in computing education were included in this category.

3.1.2 Basic Programming

Basic programming refers to programming in general, not a specific program-
ming topic (ex. conditionals) or specific computer science topic (ex. machine
learning). For example, Kelleher et al. [13] utilized the storytelling element
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to engage more female students in studying programming. However, the pa-
per did not mention specific programming concept they tried to teach so we
included this paper in this basic programming category. But we excluded the
paper like [2] as it covers a specific computer science concept, machine learning.

3.1.3 Computer Science Topics

This category is for papers that teach specific computer science topics to K-12
students using gamification. For example, the paper that taught about how
logic gates work based on given values [7] and the paper that taught about
computer memory model [21] belong to this category.

3.2 Gamification Approach

After sorting the papers based on three topic categories: computational think-
ing, basic programming, and computer science topics, we labeled them based
on gamification approaches (plugged, unplugged, and hybrid) which are de-
scribed in [4]. This section will explain each of the gamification approaches so
that we can understand the label of a paper in our analysis later.

Plugged: This approach fully utilizes a technology like a computer. Papers
in this category usually use digital games as a tool. Research projects in
which students play digital games developed by research groups or from online
resources like Code.org were included. But we also included the research works
in which students develop their digital games to learn concepts.

Unplugged: This approach is opposite to the plugged one. It does not use
technology at all and includes physical activities like playing board games with
friends and building a structure using household materials like cardboard.

Hybrid: This is a mixed version of the previous two approaches. In this
approach, unplugged and plugged can be combined sequentially. For exam-
ple, Tsarava et al. [27] used unplugged treasure hunt activity and plugged
programmable game (e.g., filling a glass with raindrops) in series to train com-
putational thinking. But they can also be combined simultaneously. Kahila
et al. [10] gave a classroom environment where students play plugged digital
data profiling games while having unplugged collaboration with classmates.

4 Result

4.1 Topic and Approach

For this literature review, we selected 23 research articles published since 2007,
and we organized them according to the topics they taught and the gamification
approaches they used. Table 1 shows the papers organized according to these
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categories and which gamification approach each paper used. Please note that
for the computer science topic category (CS Topic in Table 1), we additionally
provided which topics of the computer science field the papers taught.

Table 1: Paper organization according to categories of topic and gamification
approach. The ‘Gamification Approach’ category is written as the ‘Approach’
category in the table.

Topic Paper Year Approach

Computational Thinking

Kalelioğlu [11] 2015 Plugged
Moreno-León [19] 2016 Plugged
Denner et al. [6] 2012 Plugged
Lee et al. [15] 2014 Plugged
Kazimoglu et al. [12] 2012 Plugged
Tsarava et al. [26] 2018 Unplugged
Del Olmo-Muñoz et al. [5] 2020 Hybrid

Basic Programming
Kelleher et al. [13] 2007 Plugged
Tsarava et al. [27] 2017 Hybrid
Parham-Mocello et al. [22] 2023 Unplugged

CS
Topic

Computer Memory Papastergiou [21] 2009 Plugged
Game Development Holly et al. [8] 2024 Plugged
Introduction to Artificial Intelligence Wang et al. [28] 2024 Plugged
Cryptography and Secure Hashing Algorithm Rayavaram et al. [23] 2024 Plugged
Message Routing over Internet Mano et al. [16] 2010 Unplugged
Binary Number, Binary search, Sorting algorithm Thies and Vahrenhold [25] 2013 Unplugged
Loop and Conditional Logics Merino-Armero et al. [17] 2022 Unplugged
Logic Gates Fees et al. [7] 2018 Unplugged
Mechanism of Social Media Kahila et al. [10] 2024 Hybrid
Human Computer Interaction Bollin et al. [3] 2021 Hybrid

Introduction to Machine Learning Adisa et al. [2] 2023 Plugged
Hunter et al. [9] 2023 Hybrid

Bubble Sorting Algorithm Mladenović et al. [18] 2025 Unplugged

In Table 1, we can see that 7 papers out of 23 papers (32%) taught com-
putational thinking. This skill has a larger number of papers compared to
other topics which have at most 3 papers published (we are not considering
CS Topic as one topic but as 12 individual topics). This is possible because
computational thinking is an important skill for K-12 students which can help
them be ready for studying computer science field. What we can also see in
Table 1 is that less number of papers used a hybrid gamification approach. 11
papers used a plugged approach, 7 papers used an unplugged approach, and 5
papers used a hybrid approach. As described in [5] and [25], since the approach
has the potential to provide better learning performance than the case of using
only plugged or unplugged approaches, we hope to see more research projects
exploring the potential in the future.

We also analyzed how many papers were published in which year (between
2007 and 2025) as shown in Figure 1 to see whether this research area is being
conducted actively.

As seen in Figure 1, for most of the years, an average of 1 to 2 papers were
published which can conclude that they are consistently researching gamifica-
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Figure 1: Chart showing how many papers were published in which year.

tion in K-12 computing education.
Figure 2 divided data of Figure 1 based on the topic category. In the table,

CT, BP, and CS refer to Computational Thinking, Basic Programming, and
Computer Science Topic categories, respectively.

Figure 2: Chart showing how many papers were published for each topic cat-
egory in which year. CT, BP, and CS refer to Computational Thinking, Basic
Programming, and Computer Science Topic categories, respectively.

When we divided the data of Figure 1 in Figure 2, we could see one inter-
esting point regarding papers of computer science topic category. 7 papers out
of 13 papers (54%) of this category were published very recently (2023, 2024,
and 2025). And the list of topics that they try to teach using gamification is:

• Social Media
• Game Development
• Artificial Intelligence
• Machine Learning
• Cryptography (Cybersecurity)
• Bubble Sorting Algorithm

It reveals that except for the sorting algorithm topic, researchers chose top-
ics that became popular recently, which are also closely related to our real life
(e.g., artificial intelligence [28]). Then, when the topic is introduced to stu-
dents via gamification because they are already familiar with the topic, they
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can understand its importance easily. Also, it will help them to see how com-
puter science knowledge is related to their life and have more interest in the
computer science field. Although it is still important to teach foundations of
computer science such as computer memory model [21] and sorting algorithm
[18], we need to note that teaching popular computer science topics via gami-
fication is also important as it can help students to see that computer science
field and their lives are closely related.

4.2 Effectiveness

In addition to analyzing papers based on topic and approach, we investigated
how effective each approach was in teaching the corresponding topic. Table
2 gives a brief description of the gamification approach and its effectiveness
with the target group level information. Please note that when we provided
the targeting group level in Table 2, we followed the description given in the
corresponding paper; some entries have specific age information, and other
entries have school-level information like middle and high school. Also note
that the mark section in Table 2 shows a level of effectiveness of each approach
(S: Significant, M: Moderate, N: Not applicable).

9 papers that did not evaluate the learning outcomes of their approaches
are marked as N in Table 2. They usually proved that their approaches were
appropriate for their educational objectives. For example, Tsarava et al. [26]
conducted a pilot evaluation of adult participants, not their target age group
to check whether their approach provides any tension and negative emotions
which can give high barriers to students to experience corresponding topic.
Also, Mano et al. [16] surveyed middle school teachers and undergraduate
students to see whether their approach is enjoyable.

5 papers (marked as M in Table 2) had moderate effectiveness. For example,
in [22], students succeeded in understanding concepts regarding algorithms,
but when they were given advanced practices like organizing instructions to
complete an algorithm, they struggled to find the correct order. In [11], partic-
ipants had no significant improvement in developing reflective thinking skills.
But, they reported that students still enjoyed the gamification approach and
were motivated to keep studying.

The papers marked as S in Table 2 demonstrated significant improvement in
learning outcomes. For example, in [8], even students without prior knowledge
could learn about the game development process by their gamified application.
In [5], using the series of unplugged and plugged gamification approaches, par-
ticipants could have the skills achievement and high motivation to continue
learning. In [13], in addition to having successful learning outcomes, students
were also motivated to spend extra spare time on programming. In [18], stu-
dents had a significant retention rate in which they improved their knowledge
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more in a test taken two weeks after the gamified activity.
In addition to evaluating learning outcomes, some papers provided extra

interesting findings that we did not put on the table. Papers such as [11],
[21], and [5] analyzed the difference in learning performance between male and
female students with gamification and reported that there was no noticeable
difference even though boys usually have more contact and interest in comput-
ing techniques. Moreover, Kalelioğlu [11] showed that female students com-
pleted programming activities more quickly and accurately than male students.
Other papers such as [19] and [23] investigated whether there is a difference in
learning performance between grade levels when they use a gamification tool.
For example, Rayavaram et al. [23] saw that high school students were much
better than middle school students in learning asymmetric cryptography and
concluded that the topic is better suited to high school students. Moreno-León
et al. [19] compared 6th grade and 2nd grade students and saw that 6th grade
had more improvement in a survey. But since 2nd grade did not show a de-
crease in learning outcomes, the research group mentioned that it is still OK
to introduce a gamified environment to lower grade level students.

We investigated the effectiveness of each approach in Table 2, but it is hard
to say which approach is better as they have different topics to teach with
different target groups. We hope that Table 2 can be used as a useful reference
when researchers need to know what kind of approach was effective to teach
which topic.

5 Limitation and Future Work

The literature review was based on restricted search criteria in which we se-
lected gamification papers aimed only at K-12 computing education. Thus,
it analyzed a relatively small number of papers in which our analysis result
is hard to generalize. Our future research work will try to expand the search
criteria, such as including other educational environments like higher educa-
tion, and investigate whether gamification approaches and their effectiveness
become different depending on educational levels. With the expanded search
of papers, we look forward to seeing a more generalized picture of gamification
tools in computer science education.

6 Conclusion

In this report, we selected 23 research articles searched from several research
databases such as ACM Digital Library, IEEE Xplore, and ScienceDirect and
analyzed which topics were covered and how they were taught by gamification
to K-12 students. By analyzing the papers, we discovered several findings: 1)
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Many papers in our selection used gamification to train students’ computational
thinking, as it is important not only for computer science but also for other non-
computer science areas. 2) Most of the papers utilized plugged and unplugged
gamification approaches, but fewer papers applied a hybrid approach (plugged
+ unplugged). 3) Recently, research projects have focused on topics that are
closely related to our daily lives, such as cybersecurity and artificial intelligence.
From the analysis result, we expect to see more research works that explore
applying a hybrid gamification approach for K-12 computing education as the
approach can utilize the benefits of both plugged and unplugged approaches.
Also, we look forward to seeing more various projects that cover fast-growing
computer science areas such as cloud computing so that K-12 students do not
think of it as a mysterious magic box and have a better understanding to equip
them with valuable knowledge and skills for their future careers.

Furthermore, we investigated the effectiveness of each gamification ap-
proach to better understand which approach was successful in teaching which
topic. Some papers did not evaluate their learning outcomes and some papers
made moderate effectiveness with their gamification approaches. Also, some
papers made significant effectiveness in which students not only enjoyed the
gamified activities but also had improvements in learning outcomes. Although
not all gamification approaches provided remarkable effectiveness, it is not ap-
propriate to say which approach is better than which approach, as they have
different learning environments and different experiment settings. Hopefully,
this report can be used as a useful reference for researchers who want to conduct
research projects regarding gamification in K-12 computer science education.
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Abstract

In this paper, some common difficulties that students experience with
proofs by induction are discussed. These are used to form design goals
for a WebApp to help students understand induction better. A WebApp
implementing those goals is presented. Finally, results from a self re-
flection survey of students rating their understanding of induction are
presented.

1 Introduction

Early on, proof by mathematical induction was identified as one of the harder
concepts in mathematics. Some of the issues were not intrinsic to proof by in-
duction but involved poor understanding of basic mathematic concepts such as
exponentiation as mentioned by Baker in 1996.[1] Ernest in 1984 laid out three
general categories of difficulties experienced by learners more directly related
to the structure of a proof by induction.[2] To address these issues, researchers
have proposed different theoretical approaches to understand induction. Ron
and Dreyfuss, in 2004 proposed using visual/physical models to explain the re-
cursion.[4] More recently based on literature reviews, Stylianides et al in 2017,
concluded that there was a significant lack of intervention oriented studies on

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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proof by induction.[6] Most recently, in 2023, we see an intervention based on
Parsons Problems (selecting and swapping the order of code fragments to ac-
complish a task) applied to induction with mathematical proof fragments.[3]
Even with these new approaches, there are very few mentions at all of strong
induction. My aim is to introduce a tool that will have objectives that will
help students understand both weak and strong induction.

You can find the WebApp at the following URL: https://charles-hoot.
github.io/Induction/induction_app.html

2 Specific Issues and Goals

As have been identified [4], there are three basic parts of an inductive proof
that students struggle to understand:

1. The structure of the inductive proof
2. The induction basis
3. The inductive step

Within these general areas we will tease out some more specific concerns and
transform those into goals that the WebApp will address.

2.1 Proof Structure

While proofs by induction from experienced mathematicians can be free form,
students can struggle to complete all of the proof. For example, students may
view the base case as an unimportant part of the proof and leave it out.[2]
Another example is confusion between P(n) and P(n+1) and understanding
that one does not need to prove P(n) and that this is not a circular proof. It is
expected that student proofs will relax over time as students get more familiar
with inductive proofs, but initially more structure helps. Goal: Provide strong
sequencing through the proof. Clearly identify the induction hypothesis and
what needs to be shown.

2.2 Logical Dependency

A standard analogy for weak induction as presented in texts such as Rosen’s
book on discrete mathematics[5] is that induction is similar to a line of domi-
noes on edge. The first domino corresponds to the base case P(0), the next is
P(1), and so forth. The proof of the base case is equivalent to knocking over the
first domino. The inductive part of the proof shows that P(k) implies P(k+1)
or equivalently knocking over a domino will knock down the next one. While
this analogy will work for weak induction, it is not adequate for strong induc-
tion. We can still, however, express a dependence between various versions
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of the predicate. Even for weak induction, giving a dependence provides an
alternative view that can help students understanding. Goal: Give students a
tool that for a given integer value a, will show what it depends on by displaying
one of three things: 1) P(a) is outside the domain of values, 2) P(a) must be
shown directly, or 3) P(a) depends on some set of values less than a.

2.3 Application of the predicate

When constructing their proof, students will confuse the predicate with parts of
the predicate. For example if the predicate is P (n) is 1+2+3+· · ·+n = n(n+1)

2 ,
students may misstate what P (n0), P (k), and P (k + 1) are. They may loose
terms from the sum, or drop the entire right or left hand side not realizing
that what is left no longer has a truth value. Goal: Automatically apply the
predicate for the base case, induction hypothesis and inductive goal.

2.4 Base case Identification

With weak induction, we need to identify a single base case. This is usually
straightforward. For strong induction, we still need to identify a smallest base
case, but there may be additional base cases that require a direct proof. This is
further complicated because the number of extra base cases can change based
on the inductive argument used. Goal: Identify and report to the user any
extra base cases automatically.

3 Constructing the WebApp

The WebApp guides users to complete an inductive proof (weak or strong) in
a series of well defined steps. There are some natural groupings of input and
text widgets that users can interact with as seen in Figure 1 and Figure 2..
This addresses the goal of Proof Structure.

3.1 Step controls, Highlighting

As we go through the inductive proof the next step is highlighted and there is
a text box on the upper right describing what the current step is. For steps
with an input, if you change the value, updates will occur automatically. If
you don’t want to change the current value, there is a button at the bottom of
the step description that will trigger any automatic updates and move you to
the next step.
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Figure 1: Upper half of the WebApp showing the predicate and base case for
the multi-chain sample along with basic controls.

Figure 2: Lower half of the WebApp showing the Induction and extra base
cases for multi-chain sample with dependencies display.
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3.2 Predicate, Base Case Value, Base Case Statement, Proof

This is the initial grouping for the WebApp shown in Figure 1. In this section,
students will enter the predicate and the integer value n0 of the base case. The
WebApp then automatically generates the statement for the base case P (n0)
addressing the goal of Application of the Predicate. The user is then directed
to complete the proof which is inset to make it stand out and emphasize its
importance. It is also reactive, in that if the user changes the predicate or
base case value, the base case will be rewritten and the proof step will be
highlighted.

3.3 Strategy, Inductive Hypothesis, Goal, Proof

In this section of the WebApp shown in Figure 2, we continue on to the Induc-
tive portion of the proof. To start, the user needs to select the proof strategy
they are going to use. The selections here are Single Chain (weak induction),
Multi Chain (strong induction with a fixed step size back to the induction
hypothesis) or General Tree (strong induction depending on two induction hy-
potheses). Once that decision has been made, for weak induction the WebApp
will automatically generate the statement for the induction hypothesis P (k)
and the goal P (k + 1).

For strong induction, we don’t generate each of the statements that can be
used as an induction hypothesis, but instead list the predicates with ellipses.
(For example: P (1)...P (k)) In both cases, the user is directed to finish the
inductive proof. This addresses the goal of Application of the Predicate.

3.4 Extra base cases

Depending on the strategy and values chosen, we may have extra bases cases
that need to be completed. While all the base cases were listed before, we
explicitly list out the extras in this section and have a space to list out the
proofs. If there are no extra bases cases, this section will not appear. This
addresses the goal of Base Case Identification.

3.5 Dependancies

In this section, the user has an input element where they can enter an integer
value. The WebApp will then display the previous instances it depends on
addressing the goal of Logical Dependancy.
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3.6 Sample Proofs

The piece of the WebApp are sample proofs that can be loaded into the app.
There is one sample for each of the three proof strategies. Students can use
the samples as a handy reference or as a basis for modifcation.

4 Survey

The following survey was given to 18 students in our Discrete Math course.
The students had completed the unit on induction including a homework set
and an assessment. For this survey, students were first asked to rate themselves
on a scale from 0 to 10 with respect to the following seven statements.

Q1 I understand weak induction.
Q2 I understand strong induction.
Q3 I understand the basic proof pattern for weak induction.
Q4 I understand the proof patterns for strong induction.
Q5 I understand the dependence between different versions of P(n) in an

inductive proof.
Q6 I understand how to find base cases.
Q7 I understand how to use P(n) to find P(k) and P(k+1)

The students were then given the following directions for activities to use
with the WebApp

1. Load the single chain (weak induction) sample and try different values
for the dependency. You can enter a value directly. After that you can
use the arrows to quickly move up and down.

2. Load the multi chain sample and try different values for the dependency.
Make the skip value 5 and look at the chain of dependencies. How would
you need to change the proof? What are the base cases needed in the
proof?

3. Load the tree sample and again try different values for the dependency.
Try changing the size of the left split. How small can it be? How large
can it be? Did we need an extra base case?

4. Load the single chain and change the statement to 0 + 1 + 2 + · · ·+ n =
n(n+ 1)/2

5. Enter a value for n.
6. Fill in base case proof.
7. Select single chain
8. Fill in inductive case proof.

.
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After completing the activities, students were asked to do a post evaluation
using the same seven questions as before. They were also given an open ended
question soliciting advice and criticism on the functioning of the WebApp.

4.1 Numerical results

Of the 18 students, 14 responded to the survey. While this is a good response
rate, the n value is too small to make strong conclusions. The following Table
1 gives the average and standard deviation for each of the questions.

Looking at the general understanding questions (Q1 and Q2), it is not
surprising that students were more comfortable with weak induction (average
6.3) than strong induction (average 5.5). The average improvement for both
was about the same with weak induction improvement (average 1.1) being
slightly better than strong induction (average 0.9). On an individual basis, the
amount of improvement reported was one of the values 0, 1, or 2. With weak
induction only two students reported no improvement of their understanding.
In contrast, five students reported no improvement of their understanding of
strong induction.

The two pattern questions (Q3 and Q4) had basically the same values as
for the first two questions. (The values are slightly higher as we might expect
there to be more potential areas of misunderstanding besides the proof pat-
tern. The final three questions (Q5, Q6, and Q7), are respectively looking at
dependencies, finding bases cases, and use of P(n) in a proof. The values are
close to but a little smaller than those for the weak induction questions (Q1
and Q3). We do, however, see our largest pre to post average increases, with
dependencies (average 1.1), base cases (average 1.2), and use of P(n) (average
1.4)

Overall, the results from Q1 and Q2 show a modest improvement on the
understanding of both weak and strong induction addressing the goal Proof
Structure. The results from Q5 show a similarly modest improvement ad-
dressing the goal Logical Dependency. The results from Q6 show a modest
improvement addressing the goal Base Case Identification. And finally, the
results from Q7 show the best improvement addressing the goal Application of
the Predicate. It is not surprising that this would be the easiest of the goals to
improve on since it is mainly mechanistic.

4.2 Open ended responses

Almost all of the students responded with good, thoughtful feedback on what
could make the WebApp better. Most of the students thought the WebApp
was helpful and some reported that they would have liked for the WebApp to
have been available during the unit on induction. The main suggestions for
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Table 1: Pre and Post averages and StDev
Statement Pre Average/StDev Post Average/StDev

Q1 Weak induction 6.3 / 1.86 7.4 / 1.91
Q2 Strong induction 5.5 / 1.95 6.4 / 2.17
Q3 Weak pattern 6.6 / 1.65 7.7 / 1.94
Q4 Strong pattern 5.7 / 1.86 6.8 / 1.37
Q5 Dependencies 6.1 / 2.25 7.3 / 1.14
Q6 Base cases 6.4 / 2.37 7.6 / 2.10
Q7 Using P(n) 6.4 / 2.31 7.7 / 1.98

improvement where more about the user interface as opposed to the content
of the WebApp.

5 Future improvements

Aside from addressing the UI suggestions from the students, there are a number
of things that could improve the WebApp. It would be useful to combine the
pieces of the proof together into a single text output showing the complete
proof. Incorporating LaTex into the final proof construction would be a long
range goal, especially as getting the predicate and proof pieces to comply with
LaTex could be tricky. Adding a link to the instructions from the WebApp to a
page with suggested things to try would be helpful for anyone outside the course
who does not have the survey available. More sample proofs would useful as
well. Expanding the WebApps capabilities to include structural inductions and
recursive definitions would be similar topics that might not fit in the current
framework, but might be added as a side page. One other line of inquiry, would
be to see if it is better to have students use the WebApp from the start of the
unit on induction or wait until later as presented in this paper.

6 Conclusions

A WebApp was constructed to meet goals addressing students understanding
of proof by induction, both weak and strong. After doing a self assessment
students were asked to perform some activities with the WebApp and then
asked to reassess their understanding. The students also provided valuable
feedback for incorporation in future versions of the WebApp. For a relatively
modest investment in time, students reported modest improvements in the
goals set for the WebApp.
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Abstract

The field of Edge Intelligence has arisen to address latency and data
security issues inherent to the older paradigm of deploying machine learn-
ing algorithms via cloud computing. However, the most-used machine
learning algorithms are ill-suited to computationally-constrained Edge
devices. Weightless Neural Networks are a lesser-known type of Neural
Network that shows great promise for Edge Intelligence applications.

One particular recent Weightless Neural Network architecture,
BTHOWeN, has open-source code, allowing for a deep analysis of their
results. We report on our experiments conducted to replicate the origi-
nal accuracy metrics for BTHOWeN’s software implementation, as well
as an extension where we performed an ablation study to determine the
impact of several of the technical innovations used in the BTHOWeN
architecture. Both were generally successful in confirming the original
results presented, while revealing some deeper insights.
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1 Introduction

Under a Cloud Computing paradigm, networked “terminal” devices send data
to centralized data centers, where computation occurs, after which the results
are sent back to the device. Edge Computing, as a concept, has emerged
to deal with weaknesses inherent to Cloud Computing, such as unavoidable
latency and potential for data privacy violations. Under this model, data
from terminal devices is processed in auxiliary devices closer to the terminal
devices (i.e. the “edge” of a network), such as a smartphone within a smart
home. However, edge devices face limitations on computational power and
energy usage, and any applications designed for the edge must take these into
account [3]. Edge Intelligence is the application of artificial intelligence or
machine learning within the edge, and has seen growth in recent years. However
general machine learning algorithms are not designed for edge devices and their
limitations [4].

An FPGA, or Field-Programmable Gate Array, is a device that consists of a
mixture of hardware logic and configuration memory elements, that, together
can be programmed or re-programmed into an arbitrary digital circuit [10].
For Edge Intelligence purposes, FPGAs provide significant advantages over
the GPUs traditionally used as hardware accelerators: they’re more energy
efficient, have lower latency, and better support concurrent processing for ser-
vicing multiple terminal devices [11].

In this paper, we review published work on a specific machine learning al-
gorithm, the Weightless Neural Network (WNN), in relation to its relevance
to Edge Intelligence, and discuss BTHOWeN [9], one particular WNN archi-
tecture intended for implementation on FPGAs. The paper that presents
BTHOWeN, published in the proceedings of PACT ’22, has been given the
“Artifacts Available” stamp by the ACM, as the authors (Susskind, Arora, Mi-
randa, Villon, Katopodis, Araújo, Dutra, Lima, França, Breternitz, and John)
have made their code for BTHOWeN publicly available, greatly increasing the
reproducibility of their results, and enabling us to conduct our study. Specifi-
cally, we conducted first a replication experiment, in which we to trained our
own BTHOWeN models with the aim of matching the metrics Susskind et al.
originally reported [9], and then extended our research with an ablation experi-
ment, in which we disabled some of the technical innovations in the BTHOWeN
model architecture in order to observe the impacts on accuracy and model size.

2 Background

Although few particulars of FPGAs or Edge Intelligence as a whole are neces-
sary to sufficiently understand BTHOWeN, a solid grasp on Weightless Neural
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Networks is ideal.

2.1 Weightless Neural Networks

A neural network consists of a sequence of layers; one way to think of each layer
of a simple, feed-forward neural network is as a set of neurons, each taking a
vector as input and computing a single scalar output value. The scalars pro-
duced by the set of neurons form the output vector [2]. In a Weightless Neural
Network, each neuron is called a RAM Node, and each RAM Node operates
like a truth table: n binary inputs are mapped to 2n binary outputs, one for
each combination of the inputs [9]. In other words, the inputs are mapped to
outputs via an arbitrary boolean function. This mirrors the functionality of a
core component of FPGAs: the Lookup Table (LUT), which can be used to
perform an arbitrary boolean function on a number of inputs [6], which creates
much simpler (and thus faster and less energy intensive) circuitry than what’s
needed for a standard neural network.

WNNs are also — in addition to being generally faster and more energy
efficient — easier to train than other deep neural networks, as each entry in
the training data only needs to be presented once to be fully learned, and as
such training of WNNs can be up to 4 orders of magnitude faster than that of
a standard neural network. However, they have two significant disadvantages:
RAM nodes have no ability to generalize, and their size grows exponentially
with the number of inputs. Nevertheless, with optimizations, WNNs can be
well suited to Edge Intelligence applications [9].

2.2 Bleaching

RAM nodes learn entries in the training data after being presented with each
only once. This allows for faster training than with regular neurons, but results
in a greater tendency to overfit the training data, especially when the dataset
is large. Bleaching is a technique that mitigates this. With bleaching, each
RAM node has a counter associated with each bit input. During training,
when an input is given to a RAM node, instead of setting it to evaluate to 1
for the pattern immediately, the counter is incremented. Then, after training,
all bit patterns given to a RAM node a number of times greater than or equal
to an arbitrary threshold are written to it, with the others discarded. The
threshold can be decided after training, so that the best option may be selected
empirically. Bleaching requires more memory during training, but inference
works the same way as for a non-bleached model, so there’s no additional
memory use during inference, i.e. when implemented on an edge device [9].
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2.3 Bloom Filters

Bloom filters provide a method of combining the accuracy of larger-input RAM
nodes while maintaining the (much) lower memory requirements of smaller
RAM nodes. A bloom filter is based on a hash table, and cannot confirm the
absence of an element: the result 0 indicates the key is not a member, and
1 indicates it possibly is a member. The chance that a non-member element
is reported as possibly a member increases as the bloom filter approaches its
maximum capacity.

Bloom filters can be used in the place of RAM nodes to reduce memory
usage. This is viable because larger RAM nodes are normally very sparse, so
the probability of a bloom filter used as a substitute incorrectly returning a 1
for a non-member is low enough that accuracy is not significantly impacted [9].

3 BTHOWeN

BTHOWeN is a WNN architecture designed for Edge Intelligence purposes by
Susskind et al [9]. It’s similar to a previous WNN architecture, Bloom WiS-
ARD, but iterates on previous improvements to WNNs via bleaching, bloom
filters, hash function selection, and thermometer encoding. Their method of
bleaching is standard, but there is no standard method to choose the counter
thresholds. Susskind et al. chose one presented by Carvalho et al., which
optimizes for minimizing runtime and memory usage [1].

Another small change involves the thresholds used in the architecture’s
thermometer encodings. In a standard (i.e. linear) thermometer encoding, ev-
ery extra bit represents a fixed and equal integer increment over the previous
number, e.g. 1111 would be twice as large as 0011. This is flexible, but the pres-
ence of outliers in the data will cause large numbers of bits to be allocated to
represent very few values. BTHOWeN instead uses Gaussian thermometer en-
coding, in which each extra bit represents a variable increase in the underlying
and approximated value dependent on the likelihood of the new value occur-
ing within an assumed Gaussian, i.e. normal, distribution calculated from the
inputs within the training data. The inputs are encoded so that, if a random
input were chosen from the training data, it is equally likely to be 1111 or 0011
(or 0001, etc...), although 1111 would be larger. If the data presented during
inference actually follows a normal distribution, small differences around the
mean of the data are better accounted for than under linear encoding, at the
cost of lower precision for values farther from the mean. Susskind et al. state
that, during later testing, the normal distribution thresholds decreased mean
error by about 13% [9].

More substantial is the choice to change the bloom filters used in prior
work to instead use counting bloom filters. Just as bleaching adds a counter
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Figure 1: Table of the 12 selected BTHOWeN models and related information.
From Susskind et al., Table 3 [9]

for each RAM node input, a counting bloom filter has a counter for each of
its inputs. During training, when a new bit pattern is presented to a counting
bloom filter, it increments only the input(s) with the lowest counter value. For
inference, the counting bloom filters are replaced with regular bloom filters,
which are configured to return 0 instead of 1 for bit patterns previously seen
too few times. This allows the accuracy increases of bloom filters and bleaching
to be combined, whereas previous applications of bleaching could only apply
to traditional RAM nodes.

Other innovations are also presented, but they are not directly relevant to
our experimental results and are not described here; see the original BTHOWeN
paper [9] or the author’s thesis [5].

3.1 Prior Experimental Results

Susskind et al. [9] created BTHOWeN models for nine datasets; they are listed
in Figure 1, alongside the precision and composition of their architectural ele-
ments, memory usage, and accuracy. For most datasets, there was one model
that clearly optimized memory usage while retaining high accuracy. The excep-
tion was MNIST, for which Susskind et al. selected three models with varying
size to accuracy ratios, ideal for different use cases.

When compared to more typical quantized neural network models, specif-
ically Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons
(MLPs), BTHOWeN models maintain similar accuracy while consistently be-
ing much faster (66.7% to 90.0% latency reduction) and requiring less power
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(56.2% to 90.7% total energy consumption reduction).
Compared to other WNN implementations, BTHOWeN also clearly shows

improvements. On average, BTHOWeN models have 41% less error and are
51% smaller than Bloom WiSARD equivalents. For a previous WNN acceler-
ator for MNIST models, the speed and energy efficiency is comparible, but is
about 3% less accurate than the small BTHOWeN MNIST model and 5% less
than the large [9].

4 Replication of Prior Experimental Results

Susskind et al. [9] provide both a software and hardware implementation
of the BTHOWeN architecture – here we concern ourselves with the software
implementation. Pre-trained “selected” models are provided in the BTHOWeN
repository [8], and reproducing accuracy for these was trivial, as the related
instructions in the repository README were simple and clear.

Reproducing the training procedure was slightly more complex, since, as
noted in the BTHOWeN repository documentation, significant run-to-run vari-
ation in model accuracy is expected for the smaller datasets [8]. We briefly ex-
plored the possibility of eliminating this variation by ensuring that all our test
runs were performed with the same versions of relevant libraries, and giving
fixed seeds to all random number generators.

However, we still experienced run-to-run variation, and abandoned this at-
tempt without an intensive search for the source of the variance, instead run-
ning the experiment repeatedly in hopes of replicating the published results.
We trained models for each dataset a minimum of 5 times and added additional
groups of 5 trainings until we reached either 30 trainings or got within a per-
centage point of the equivalent pre-selected model’s accuracy. (For simplicity,
we simply ran 30 trainings for the especially small datasets.)

We additionally collected latency and power metrics for both our replica-
tion and extension experiments, and attempted replication of the BTHOWeN
hardware implementation. However, due to space constraints, they have been
omitted from this paper; they can be found in the (first) author’s undergrad-
uate thesis for those interested [5].

5 Experiments to Add New Detail

As an extension to our replication experiments, we conducted an ablation study,
where we “rolled back” some of the innovations Susskind et al. presented, via
selectively disabling the code that provided functionality for them, in order to
measure their impact on model accuracy and model size.
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As mentioned previously, the advantage of Gaussian Encoding is that out-
liers in the training data do not skew the results as much. Testing to see
how much this improvement actually affects the accuracy of the models was
relatively easy: functionality for linear encoding is already present within the
original BTHOWeN code, it just needs to be re-enabled. Results for Linear En-
coding with MNIST are briefly mentioned in the original paper, but we extend
to the other datasets and combine with disabled bleaching.

As also mentioned previously, bleaching prevents oversaturation by requir-
ing an example to be seen more than once before it is learned. We measured
the impact of their innovation of combining bleaching and bloom filters by
forcing all of the thresholds for the RAM nodes to 1, which is equivalent to
their original behavior of learning after one example.

The procedure for training models without Gaussian encoding, without
bleaching, and with neither, closely resembles that of training the unmodified
models. However, since there is no longer an original metric to replicate, we
mirrored the number of training iterations needed to achieve near-maximum
accuracy with a regular model.

As a final experiment, because the hyperparameters chosen for all the mod-
els were those selected to optimize their original (non-ablated) version, a hyper-
parameter sweep was done for a no-Bleaching model with the MNIST dataset,
aiming to meet or exceed the accuracy of the original MNIST-Small model. We
chose MNIST because it’s the dataset Susskind et al. generally use for non-
comprehensive experimentation (e.g. for Gaussian encoding), and because the
variation in run-to-run accuracy common in other datasets would greatly hin-
der accurately choosing hyperparameters that maximized accuracy relative to
model size, especially because variation increases substantially without Bleach-
ing.

6 Results

The accuracy results of the replicated software inference runs, with the pre-
selected models, are 1:1 with the those of the original paper’s, with the odd
exception of MNIST-Medium, which sees a slight decrease in accuracy. These
results are constant across several inference runs.

The accuracy results of our software inference runs with custom-trained
models (with identical hyperparameters to the pre-selected models) are detailed
in Figure 2. Of note is that even with many runs, the models trained from
scratch couldn’t achieve accuracy within a percentage point of the pre-selected
models for the Ecoli, Vehicle, and Wine datasets. More surprisingly, for Letter
and Vowel, models were created that performed significantly better, with one
of the Vowel models being almost 2% more accurate than the original!
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Figure 2: Accuracy results of BTHOWeN software inference with custom-
trained models.

Figure 3: Most Accurate Replicated Regular model versus Most Accurate
Replicated model without Gaussian Encoding.

6.1 Novel Software Experiments

For the software extension with original hyperparameters, results are shown in
Figures 3 through 6. Results are highly variable across datasets, and may not
be easily generalizable. For instance, Ecoli without bleaching reaches a higher
accuracy than the pre-trained “best” model provided by Susskind et al., while
MNIST-Small without bleaching has its accuracy severely dented, and likewise
for Letter without Gaussian encoding. Interestingly, Susskind et al. state in
their paper that with Gaussian encoding, the mean error of the MNIST models
is reduced by 12.9%, but the MNIST models are among the least affected by
its removal, and the reduction in accuracy does not seem that steep. Training
with neither Gaussian encoding nor Bleaching unsurprisingly results in the
greatest decreases in accuracy, and is the only variation to not show increases
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Figure 4: Most Accurate Replicated Regular model versus Most Accurate
Replicated model without Bleaching.

Figure 5: Most Accurate Replicated Regular model versus Most Accurate
Replicated model without Gaussian Encoding or Bleaching.

in accuracy for any datasets over regular replication.
The results of the software extension to do a hyperparameter sweep on

MNIST with a no-Bleaching model are shown in Figure 7. Our main point
of reference was MNIST-Small, but the hyperparameters for MNIST-Medium
and MNIST-Large are also shown for convenient comparison.

7 Reflections on Pedagogy and Education

This work informs our understanding of and computer science pedagogy as well
as the field of weightless neural networks. Below, we offer reflections about the
educational value of this work, providing thoughts of both the primary author,
who was an undergraduate when the work was done, and the faculty advisor.
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Figure 6: Software accuracy for all datasets, with the published results, repli-
cated regular results, and results with the stripped-down models.
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Figure 7: Results of MNIST hyperparameter sweep.

7.1 Student Reflections

From my perspective, the most pedagogically interesting aspect of this work is
that the faculty advisor did not have advanced knowledge of either of the fields
this work is generally concerned with on a technical level, which are neural
networks and FPGAs. This limited the amount of help available to me while
performing the experiments — this is not to say there was none, however, for
instance the idea to fix the RNG seeds to reduce run-to-run variation came
from my advisor.

Said limited support probably made the experiments and the subsequent
results less robust than they could have been. However, it may have made
completing this work a more valuable learning experience for me. The large
degree of independence meant that I had to come up with the design of the
experiments myself, as well as gain the requisite depth of understanding of
the subject material necessary to design meaningful experiments, which might
have not been the case with an advisor who was involved with the work at at
a greater level.

The help the advisor gave in regards to the writing of the paper, the pre-
liminary research done for it, getting it published, and wrangling the LaTeX
for it were absolutely invaluable, however. Given the limited availability of
research opportunities during a usual computer science undergraduate experi-
ence [7], research-focused skills such as these are not always developed during
such an experience. I believe I have had greater opportunity than many to de-
velop some of these skills, but I highly doubt this paper would be publishable
without my advisor’s assistance.

7.2 Faculty Reflections on Teaching Experimental CS

This project arose from a combination of enthusiasm from a talented student
and absence of faculty expertise. In retrospect, its structure could potentially
address a number of issues in the undergraduate curriculum’s coverage of ex-
perimental techniques for computer science.

While undergraduate CS work often centers programming and some amount
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of mathematical deduction (e.g., complexity proofs), simple experiments are
within reach for even a first-year class. For example, students can time the
execution of codes for algorithms of complexity O(n2), O(n3), and O(2n) and
measure the degree to which the classic complexity analysis actually describes
execution time. When small compute-bound codes are run on an idle machine,
we’ve found the results to be quite accurate.

However, simple experiments can provide a false sense that experimental
work is straightforward and works as expected. This is far from the truth,
at the research level, where numerous challenges beset the would-be creator
of a reproducible experiment on a cutting-edge system. Resource-intensive
computations can expose performance dependencies on computer architecture,
programming-language infrastructure, operating-system implementation, etc.,
especially for multi-core codes.

Complex codes that combine multiple libraries can also lead to challenges of
reproducibility, e.g., due to library implementations that vary from machine to
machine. Large code bases can even make it hard to be sure one has achieved
a conceptually-simple goal like “make sure all random sequence generators can
be started from standard seeds, to provide repeatable runs”.

Thus, when a result cannot be replicated for identical code and input, one
is left to wonder which of many factors may be at play — an experience that’s
quite distinct from an experiment on a small-scale system.

Teachers who focus on a deep introduction to experimental work could do
so in a full-semester course that leads students through all phases of experi-
mental work. But, if one wishes to shed light on this interesting topic with
a smaller commitment of time and energy, we suggest replication of a result
from the research literature. Even a paper bearing the “artifacts available”
seal of approval can provide significant challenges. Design can be engaged on
a smaller scope via the design of an extension, such as that discussed in our
Section 5. If the lab comes pre-configured with all relevant tools, and students
need only download the “artifact” and build and run it, interesting challenges
can be explored within weeks rather than semesters.

8 Conclusion

Generally, replication for the selected models and for the training of new mod-
els were successful. In some cases, we did notice a few discrepancies that we
are unable to explain, leading us to wonder about mistakes in the original pa-
per. Specifically, the failure to replicate the accuracy result for the pre-selected
MNIST-Medium was quite surprising. Additionally, it was surprising to see the
variance between the original paper’s results and ours when running unaltered
software models — getting within a percentage of the originally stated accura-
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cies could not be achieved for some datasets, even with many training runs; for
a couple of others, the stated accuracies were easily surpassed by wide margins.
However, none of the possible mistakes we found undercut the core conclusions
of the work to any significant degree.

The extension of the software experiments to selectively remove some of
the innovations has revealed that both Gaussian encoding and Bleaching gen-
erally result in improvements, sometimes steep improvements, to WNN models.
However, for some datasets, their improvements can be only mild, or they can
even hurt accuracy to a degree that can be significant. The fact that the Ecoli
model improved by close to 3% without bleaching from our replication of the
original model, or 1% from the authors’ original stated accuracy, raised con-
cerns about the binary search algorithm to find the ideal bleaching threshold,
as since removing bleaching amounts to forcing the bleaching threshold to 1,
the algorithm should have chosen bleaching 1 even when bleaching was on. In
the instances where removing bleaching appears to not significantly impact the
accuracy of a model, this indicates that the binary search selected bleaching 1
as the ideal threshold already.

Our experiment with a hyperparameter sweep with a stripped-down archi-
tecture on MNIST shows that it is, in fact, possible to meet the accuracy of
the original MNIST-Small model from Susskind et al. [9] even without one of
their improvements. However, this comes at the cost of a much larger model
size.

Overall, we feel our attempt at replication supports the core conclusions
of Susskind et al.. BTHOWeN provides valuable innovations in the field of
Weightless Neural Networks, making strides towards their practical implemen-
tation on FPGA. Our replication of their software implementation results con-
firms the overall accuracy of the design of BTHOWeN. Our experiments in iso-
lation of individual improvements show the importance of Gaussian encoding
(e.g., for Letter) and bleaching (e.g., for MNIST-Small and MNIST-Medium),
and our attempt to increase model accuracy without bleaching shows its im-
portance in creating accurate and practically-sized models.
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Abstract

The dominance of English-based syntax and documentation of pro-
gramming languages presents an additional challenge for non-native En-
glish speakers learning programming. Due to the lack of multilingual
resources available, non-native English speakers must often learn English
in tandem with the programming language to be able to effectively uti-
lize instructional materials, documentation, and support forums [5]. To
address this issue, we have created Esquemático, a collection in the func-
tional programming language Racket, a dialect of Scheme, which enables
the use of Spanish keywords and syntax within the DrRacket IDE. The
collection utilizes Racket’s advanced macro system to modify its under-
lying syntactic structure, directly enabling functional programming with
Racket in Spanish. Through the use of this macro system, our collection
generates detailed error messages in Spanish which directly point to er-
rors in syntax and logic. To aid students who are interested in learning
Scheme through our collection, we have deployed a documentation site
which provides a tutorial to begin your first program as well as detailed
examples, definitions, and syntax patterns of all Spanish procedures pro-
vided in the collection.
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copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
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1 Introduction

Computer programming is a skill in high demand across nearly every industry
around the world. Despite this, the overwhelming majority of documentation,
programming language syntax, instructional materials, and Q&A support fo-
rums are in English [17]. It has become commonly accepted that proficiency in
English is necessary in order to learn computer programming; however, accord-
ing to [5], nearly 95% of the world does not natively speak English. Thus, an
unlevel playing field clearly exists in computer science education where the ma-
jority of students looking to learn programming face obstacles that can hinder
learning and success — challenges not experienced by native English speakers.
Recognizing these struggles is often difficult for native English-speaking pro-
grammers as it is uncommon for native English-speaking programmers to be
put in a situation where they have to interpret code with non-English keywords
and comments.

To understand the perspective of a non-native English speaker learning
programming, consider the standard Hello World program in Java as an English
speaker:

Figure 1: The Hello World Program in English

This is the most basic introductory program used in almost every introduc-
tion to programming. Even without understanding the technicalities of pro-
gramming, keywords like “class”, “main”, and “print" give insight and meaning
into what the programming is doing: printing “Hello, World!” to the console
window. Using an idea from Becker [1] who did a Hello World program in
Irish (Figure 2), Figure 3 shows how that same program would look if all key-
words were in Spanish. To a non-native Spanish speaker, it is much harder to
understand the meaning of the program.

This is the core advantage English speakers have: the familiarity of the
keywords (since they are English words) makes learning programming easier
and more intuitive [10]. A non-Spanish speaker has to spend more time in-
terpreting the keywords of the program in Figure 2 before they can begin to
understand the functionality of the program. This time would be drastically
increased in order to learn an entire framework of a programming language like
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Java in Spanish. It is clear that learners who do not have an understanding of
the natural language behind the keywords in a programming language are at
a disadvantage when it comes to learning programming.

Figure 2: The Hello World Program in Irish

Figure 3: The Hello World Program in Spanish

This need to be conversant in a non-native language is also seen in the lack
of comprehensive documentation and relevant forum discussions in languages
other than English. For example, the community-driven Q&A forum Stack
Overflow is one of the largest and most reputable platforms for troubleshoot-
ing and resolving challenges encountered when programming [12]. Stack Over-
flow’s official policy on non-English questions instructs users not to submit
non-English questions and directs non-English users to refer instead to alter-
native resources in their native language [15]. However, Stack Overflow in
English has over 24 million questions answered, whereas Stack Overflow en
Español has answered less than 1% of that amount [13, 14]. Similarly, text-
books and instructional materials have limited availability in languages other
than English [5]. When instructional materials are available in another natural
language, they often still include the use of English comments, identifiers, and
function names. For example, the chapter "Bugs Y Errores" in the Eloquent
JavaScript Español Textbook contains examples like the one in Figure 4 where
despite the instructional descriptions being in Spanish, meaningful variable
names and keywords are all written in English [6].
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Figure 4: A function with an error in Eloquent Java Español

In this example, the name of the function is “canYouSpotTheProblem”, and
the name of the counter variable is “counter”. The purpose of the function is
to create an intentional error in the code (using an identifier “counter” without
first defining the identifier), and the name of the function reflects that purpose;
however, without a knowledge of the meanings of the English words in the
names of the identifiers, the purpose of the example becomes more difficult to
deduce. Thus, we believe that non-native English speakers would benefit from
a programming environment where the keywords, documentation, and error
messages all were in the native language of the speaker.

2 Related Work

There are not many existing projects in the area of translating programming
languages into a natural language other than English. Latino is a program-
ming language influenced by Python and Lua which includes only Spanish
keywords and built-in functions [16]. While there is some Spanish documenta-
tion for Latino, and while some error messages are in Spanish, other errors are
reported in English. This may be a result of the difficulty of translating the
entirety of a complex programming language like Python. Tango is a prototype
language with syntactic constraints similar to Java which includes its own com-
piler to interpret Spanish keywords, however Tango is not a “fully functional
and bug-free programming language” [18]. EsJS is a language closely modeled
after JavaScript which provides an interface for JavaScript programming using
Spanish keywords and syntax, yet error messages are still prompted to the user
in English [9].
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There is not a Racket collection or language which currently exists besides
Esquemático which provides support for Racket programming in Spanish, how-
ever there is a project which provides support for Racket programming using
Chinese characters called ming-lang [11]. Ming-lang is similar to Esquemático
as its purpose is to provide an interface which allows users to program in Racket
through procedures and keywords not in English. ming-lang provides exten-
sive documentation in Chinese to aid users in learning how to use ming-lang
and how to program using functional programming concepts, however, several
examples in the ming-lang documentation show instances in which ming-lang
procedures still display error messages in English. Similarly, Deinprogramm
is a teaching language of Racket whose goal is to educate users on how to
use Racket in German [2]. Deinprogramm provides detailed documentation in
German on functional programming and using Racket, however it does not ap-
pear to provide support for Racket programming in German; its main focus is
on documentation and education in using the built-in English procedures and
keywords. International Scheme is a project which seeks to allow the trans-
lation of general Scheme into any natural language by providing macros like
translate-procedure-name and translate-syntax-name, which users can use to
define translation bindings for built-in Scheme procedures and keywords, how-
ever there does not currently exist an implementation of International Scheme
which provides support for Spanish [7].

3 Design of Esquemático

We have created Esquemático to address both the disadvantage of program-
ming keywords, identifiers, and errors being in English as well as the issue of
the lack of available documentation. Esquemático not only provides support
for Scheme syntax and error handling in Spanish, but comprehensive documen-
tation and instructional materials in Spanish including a tutorial to starting
your first program. We hope that after learning functional programming con-
cepts using Esquemático, native Spanish speaking programmers may go on to
apply their knowledge to more intuitively learn English-based programming
languages.

3.1 Choice of Language

Racket is an ideal language for the implementation of Esquemático for two
main reasons. Firstly, Racket is a functional programming language, which en-
ables a modular approach to programming by focusing on functions and their
composition. This was particularly appealing to us during the planning of
Esquemático as we wanted our project to directly call the underlying English
procedures rather than relying on simple text replacement. As programming
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languages rely on strict syntax, an imprecise approach like text-replacement
would likely lead to inconsistencies and ungrammatical phrases in the pro-
gramming language which would lead to unpredictable errors at compile time.
Additionally, text-replacement does not effectively address the issue of English
error messages, as it does not interpret the given parameters or syntax. More-
over, functional programming is equipped with less complicated syntax, mak-
ing it ideal for learning programming concepts without having to understand
a more complicated syntax.

The second reason pertains to Racket’s advanced macro system. Macros al-
low the syntax of a programming language to be altered by adding custom rules
to the underlying implementation of the language. Racket’s macros are more
powerful than macros in other programming languages like C++ as Racket’s
macros can perform pattern matching, where syntactic expressions can be ex-
panded uniquely based on different conditions [8]. Because of its macro capa-
bilities, Racket is sometimes referred to as a ‘language-oriented’ programming
language, as it is an ideal language for creating new programming languages
[4]. For this reason, Racket is an ideal language for implementing a translation-
focused project like Esquemático.

3.2 Interpreting a Spanish function call

Esquemático is a collection of Racket macros which collaborate in order to pro-
vide the overall functionality of a Spanish-language version of Scheme. Figures
5 and 6 give an example of this functionality for the procedure longitud, which
is the length procedure for lists in standard English Racket. For each English
Racket procedure for which an equivalent Spanish procedure is provided in
Esquemático, there exists a macro wrapper (Figure 5) and an inner procedure
(Figure 6) which work together to call the underlying English Racket procedure
as well as catch any possible errors in the user’s input.

When a user invokes a Spanish procedure provided in Esquemático such
as longitud, it is passed to the macro wrapper, which performs a few prelim-
inary checks. Firstly, the wrapper asks if the user passed a keyword followed
by a series of arguments, in which case that procedure appears to be a legal
call, and so it is passed to the inner procedure. If the user just passed a key-
word with no arguments and no parenthesis, the macro affirms to the user
that keyword is indeed bound to a valid procedure in Esquemático by print-
ing out #<procedimiento:procedure-name>- the equivalent of English Racket’s
#<procedure:procedure-name>. Finally, if the user passed the keyword with
some unrecognized syntax pattern, the user is informed in Spanish that they
have made a syntax error.
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Figure 5: Macro wrapper for longitud procedure

If the keyword was passed with a series of arguments, the macro passes
those arguments along to the inner procedure (called inner-longitud in Fig-
ure 6). The inner procedure then checks those arguments for errors in type
and quantity according to the legal contract for that procedure. To facilitate
this error-checking, we have defined a set of error-checking functions which is
accompanied by a series of helper functions. One of these error-checking func-
tions called in almost every procedure in Esquemático is arity-check, which
takes a number of given arguments and a number of desired arguments (or a
range for the number of desired arguments) for a procedure and returns true
if the given arguments satisfy the conditions of the desired arguments. If the
given arguments do not satisfy the conditions of the desired arguments, an
error is generated which describes the location and cause of the error in Span-
ish and stops the program. Similarly, the procedure contract-viol-check calls
upon helper functions match-contract and get-contract in order to determine
whether or not the given arguments for a procedure are of the correct type
or not. Get-contract maps every procedure in Esquemático to a legal contract
(for example, “string, [integer]”) while match-contract determines whether a
set of given arguments satisfies all of the requirements of the legal contract for
the intended procedure. Depending on the procedure, the arguments will be
assessed to look for relevant types of error in input (for example, the procedure
for division div has a divide-by-zero-check which other procedures do not). In
the case of the longitud procedure, the arguments are being checked for arity
(calling the arity-check procedure and telling it that longitud can only accept
one argument) as well as for contract violation (calling contract-viol-check and
telling it that longitud must accept a list with any contents inside). If the ar-
guments passed by the user pass all error checks, the underlying English length
procedure is called with the arguments passed by the user to longitud.

7 141



Figure 6: Inner procedure for the longitud procedure

Because the inner procedures directly call upon the underlying English
Racket procedures, if Esquemático didn’t check for errors in user code, errors
would be raised in English. Because Esquemático contains its own system for
checking errors in user input, not only can errors be raised in Spanish, but the
specific location of the error can be displayed to the user, aiding in usability
and making Esquemático learner-friendly. For example, Figure 7 shows an
error which has been thrown because the argument passed to longitud violated
the legal contract for longitud ; i.e. a non-list was passed to the procedure. The
error message tells the user that the legal contract has been violated, that a
list was expected but instead 7 was given, and that the error happened at 7,
where a list was expected to be rather than an integer.

Figure 7: An error generated by Esquemático

3.3 Non-function keywords

Esquemático also provides functionality for keywords provided by Racket which
are not procedures: for example, the keyword define, which is the keyword
used to bind values to identifiers, or the keyword cond which signals to the
compiler that a series of conditions are to be interpreted. For these keywords,
Esquemático provides functionality through macros, but not through the inner-
outer method described above. Instead, the calls to the underlying Racket
keywords (typically done by the inner procedure) are just made inside of the
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macro itself. This is because there are multiple distinct patterns for which legal
calls to these types of keywords can be made. For example, the keyword define
can be invoked legally in several different forms. One form is to use define to
bind a single value to an identifier, for example:

( d e f i n e counter 1)

This line binds the value of 1 to the identifier “counter”. Additionally, de-
fine can be used to define a procedure, in which an expression is bound to an
identifier, where the value of that identifier is the value determined by evalu-
ating the bound expression given some parameter values. For this operation,
there are several different legal calls to define, for example using the lambda
keyword:

Figure 8: An example of a Scheme procedure bound using define

The define keyword can also be used to bind identifiers to expressions with-
out the lambda expression. Because of all of these different legal forms, the
macro for define in Esquemático, “definir ”, must first decipher which form the
user is trying to use, and then determine if the input provided by the user (syn-
tax, parameter quantity, parameter type, . . . ) constitutes a legal call to define
or not. For each different legal pattern for definir, there are different ways to
raise errors because of incorrect input, and so the macro must check specif-
ically for these errors and raise them appropriately in Spanish. If all checks
for incorrect input are passed, a call to define is made, and the appropriate
values are bound to the requested identifiers using Racket’s value binding sys-
tem induced by define. In order to use our Spanish-language error checking
procedures, definir generates a modified expression that wraps an arity-check
around the user-provided expression. This ensures that our Spanish-language
errors are also given on user-defined functions.
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4 Results

This project has produced a fully functional interface for functional program-
ming with Scheme in Spanish. To demonstrate the functionality of this inter-
face, we provide Figure 9 and Figure 10. Figure 9 is an example of a function
in standard English Scheme and Figure 10 is the Spanish equivalent of the
procedure produced using Esquemático:

Figure 9: A procedure in standard Scheme which compares two lists for equality

Figure 10: The Spanish equivalent of the procedure in Figure 9 using Es-
quemático

In Figure 11, we see a few calls to the Spanish procedure ¿lista-igual? which
demonstrates its capabilities in both functionality as well as error handling
(‘verdadero’ in Spanish meaning true and ‘falso’ in Spanish meaning false).
When passed a single argument instead of two arguments, we get an arity
mismatch, where Esquemático tells the user that two arguments were expected,
but only one was provided.
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Figure 11: A series of calls to ¿lista-igual?

As the purpose of Esquemático is to teach and to make learning about
functional programming more widely accessible, Esquemático is accompanied
by an extensive documentation site which includes descriptions, examples, and
all legal syntax patterns of all of the Spanish procedures and keywords in-
cluded in Esquemático [3]. Also included in the documentation is a tutorial
which serves to instruct first-time users on how to begin their first program
using Esquemático as well as instructions for installation and configuration
of DrRacket to utilize Esquemático. Combined with the functionality of the
interface provided by Esquemático for DrRacket, we have created a learning en-
vironment which allows Spanish-speaking programming students to learn how
to program in Racket/Scheme as well as continue on in their work and develop
comprehensive projects of their own.

5 Future Work

An important direction for future work involves distributing Esquemático to
Spanish-speaking communities to evaluate its effectiveness in enhancing pro-
gramming education. This would allow us to better understand the impacts of
engaging with programming concepts in one’s native language as well as po-
tentially identify areas for improvement with Esquemático. Additionally, while
this paper focuses on providing support for Racket/Scheme programming in
Spanish, future work in the area of programming language translation could
include the modifying of Esquemático’s macro model to provide support for
Scheme programming in other natural languages. Esquemático’s underlying
structure is modular, making it easily ported into other natural languages only
with the translation of the keywords and a handful of error messages. As
each keyword in Esquemático is provided through an inner procedure and a
macro wrapper, a search and replacement of a Spanish keyword with a trans-
lation of that keyword into another natural language would produce a callable
procedure using that new keyword. Upon translating the error messages and
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replacing all of the Spanish procedures with translated keywords, Esquemático
would provide full support for that other language of translation. Included on
the documentation site is a guide which provides instructions on how to port
Esquemático to another natural language in this manner [3].

6 Conclusion

We have presented Esquemático: a Spanish-language programming environ-
ment designed to make Scheme programming more accessible to Spanish-speaking
users. Our design includes a comprehensive implementation of 71 standard
Scheme functions, accessible entirely in Spanish. To provide this functionality,
user code is interpreted by our wrappers and then passed on to the native En-
glish Racket functionality. The macros we have written to interpret the Spanish
keywords and procedures perform error checking, giving context-relevant error
messages in Spanish to the user for both native Racket procedures as well as
user-defined procedures. As such, the programming environment can be en-
tirely conducted in Spanish, without the need to understand English keywords
or identifiers.

Additionally, we have created a documentation website to support Spanish
speakers in learning to use Esquemático and write programs using it. We hope
that these contributions will reduce the barriers to learning programming that
they currently face, making computer science education more inclusive and
accessible.
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Abstract

Role-playing has been utilized as a teaching method for introductory
object-oriented programming for decades. In one instance, an instruc-
tor removed role-playing activities from an in-person second-level un-
dergraduate introductory Java programming course due to a shortened
lecture schedule caused by winter weather. Following a decline in average
midterm performance, the instructor reinstated the activities. A com-
parison of midterm and final exam results with those from the previous
year’s course, taught by the same instructor, revealed that role-playing
activities positively impacted student learning, particularly among low-
performing students, while having a minimal effect on high-performing
students.

1 Introduction

Computer programming pedagogy employs a wide array of techniques to fa-
cilitate student learning. These methods range from traditional approaches,
such as chalkboard-based lectures and PowerPoint presentations, to more ac-
tive learning techniques like live coding (where instructors write and explain

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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code in real-time), in-class coding activities (encouraging students to code dur-
ing lessons), gamification, pair programming, and code tracing, among others
[1, 2, 3].

One commonly used active learning technique specific to object-oriented
programming is role-playing, where students enact the roles of objects in a
program [4]. This approach helps students conceptualize the idea that objects
store data and are responsible for behavior. It provides a better understanding
of classes and objects while increasing student interaction and engagement,
leading to improved learning outcomes.

However, there is scant empirical evidence of the effectiveness of role-play
techniques in teaching computer programming. Does incorporating role play in
in-person lectures actually improve student learning? Under what conditions
is it helpful, and when might it fall short? This paper aims to answer these
questions through a case study involving two batches of students. For the first
batch, role-playing activities were integrated throughout the semester, whereas
for the second batch, these activities were introduced only after the midterm.

For an in-person undergraduate class titled Introduction to Programming
II, which is the second part of a two-course sequence to introduce object-
oriented programming in Java at a mid-south university in the USA, winter
weather closure and absenteeism at the start of the semester required covering
the same topics with less time. The instructor chose not to include role-playing
activities that were conducted when they taught this class for the first time at
this university, in the previous year.

While general feedback and a decade of prior teaching experience suggest
that role-play activities are beneficial to students, anonymous end-of-term feed-
back from a separate programming class at this university indicated that stu-
dents here might perceive these activities as overly simplistic or childish. In
light of this feedback, the instructor assumed that students at this university
might not benefit from the activities and chose to proceed with the course using
all other instructional techniques unchanged. These techniques included live
coding, walkthroughs of code, and drawing memory diagrams on the white-
board [5, 6].

Additionally, the instructor recorded all in-person lectures and posted them
on the online Learning Management System (LMS) for students to refer to af-
ter class. Recordings were made by starting a Zoom session during each class,
sharing the instructor’s screen, and recording the session. Although the record-
ings could not capture what was written or drawn on the physical whiteboard,
they did include the code written on the instructor’s computer. The textbook,
the code written and explained, and the slides used were consistent across both
batches of students.

The second cohort midterm exam scores were noticeably lower than the
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first cohort. This could have been due to various factors, such as missed lecture
time, removal of role-playing activities, unintentional differences in instruction,
individual differences among the cohorts, external factors such as events on
campus, tutor availability or other year-specific conditions. The low midterm
scores prompted the instructor to incorporate numerous role-playing exercises
in the second half of the semester, aiming to help students grasp concepts more
effectively.

This study conducts a post-hoc analysis of the improvement in final exam
scores relative to midterm scores for the second cohort, comparing it to the
improvement observed in the first cohort. For the first cohort, role-playing
activities were incorporated throughout the semester, while the second cohort
had them only after the midterm. The analysis finds considerably more im-
provement in the second cohort’s final exam over midterm, compared to the
first cohort, especially for low and moderate performing students, but not for
the high performing students.

As such, instructors should carefully consider the trade-offs between incor-
porating more active learning exercises, providing additional coding examples,
or covering more advanced concepts in their lesson plans. It is crucial to take
into account the varying performance levels and capabilities of students when
making these choices. It is hoped that this case study can guide instructors
to make better-informed decisions when teaching introductory programming
classes.

2 Background

2.1 Live Coding in Programming Pedagogy

Live coding, the practice of writing and explaining code in real-time during
lectures, has become an increasingly popular pedagogical approach in pro-
gramming education. By allowing students to observe the thought processes
of an experienced programmer, live coding provides a dynamic and engaging
way to teach coding concepts. Research has shown that live coding helps stu-
dents develop problem-solving skills and encourages active participation in the
learning process [2].

Effective live coding requires careful preparation and adaptability on the
part of the instructor, to type and debug code in front of students. In intro-
ductory courses, some students may find the pace of live coding intimidating
or overwhelming. To address this, live coding should be supplemented with
additional instructional methods, to enhance student engagement and ensure
comprehensive coverage of course material.
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2.2 Memory Diagrams in Programming Pedagogy

Memory diagrams are a widely recognized pedagogical tool for teaching pro-
gramming concepts, offering a visual representation of how memory is allocated
and manipulated during code execution. By mapping variables, objects, ref-
erences, and function calls to a memory model, these diagrams make abstract
concepts tangible and comprehensible. Research has shown that memory di-
agrams effectively aid in teaching challenging topics such as object-oriented
programming and recursion by enhancing mental models of programming [5,
6].

In addition to illustrating key concepts such as scope, object instantiation,
and references in OOP, memory diagrams also help develop students’ critical
thinking and debugging skills. By bridging the gap between abstract program-
ming concepts and their practical implications in memory, they serve as an
essential tool in programming education. By fostering more accurate mental
models, memory diagrams significantly enhance comprehension and retention
in foundational programming courses.

2.3 Role-Playing in Object-Oriented Programming Pedagogy

Role-playing has long been recognized as a valuable pedagogical technique in
computer science education, particularly in teaching Object-Oriented Program-
ming (OOP). The shift to OOP languages in the late 1990s, coupled with the
growing need for effective teaching strategies, brought role-playing into promi-
nence as an innovative method.

Role-playing in programming education involves using human beings as
metaphors for objects, allowing students to better understand concepts through
physical enactment [4, 7]. It often includes activities such as "be the compiler,"
popularized by resources like Head First Java [8]. These activities encourage
students to actively engage with programming concepts by stepping into the
roles of components within a system.

Role-playing also connects with active learning principles by fostering par-
ticipation, engagement, and motivation. However, it should not be conflated
with learning styles theories, which have been critiqued as neuromyths [9]. In-
stead, role-playing is an inclusive and effective active learning approach that
can enhance comprehension and retention for a wide range of students.

It is important to distinguish role-playing from other participatory teaching
methods. Unlike methods where students take on roles such as designers, users,
or administrators [10], role-playing in programming focuses more on embodying
the behavior of computer objects or systems rather than person-based roles.
Furthermore, it differs significantly from gamification, which uses game-like
elements such as points, levels, badges, and rankings to motivate students.
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While gamification introduces challenges and tasks for participants [11], role-
playing emphasizes the simulation of programming concepts without relying
on extrinsic rewards.

3 Integrating role play activities into programming in-
struction

Role-playing exercises, where students act as programming components, are an
effective supplement for teaching introductory object-oriented programming.
These activities are incorporated alongside live coding and memory diagram
walkthroughs to enhance engagement and understanding. Two types of role-
playing exercises exist: experiential, where actions are vaguely defined, and
scripted, where actions are explicitly outlined [4]. Due to the complexity of
OOP concepts, scripted role-playing is preferred, as it provides clear guidance,
helping students distinguish between classes and objects and visualizing the
behaviors and data unique to each object.

3.1 Conducting Role-Playing in Classroom

A program is written by the instructor that includes a class with instance
variables and methods and creates multiple objects. During the walkthrough,
students are assigned roles to act as the objects. When an object is instantiated,
the instructor hands a notecard (representing memory allocation) to a student
and explains that they are now responsible for the object’s data and behavior.
The notecard contains names of instance variables of the object and space for
each value, along with names of all the methods of that object.

When a method is called on an object, the student representing the object
receives a marker/pen, signifying control flow, and updates their variables or
outputs as instructed. The marker is then returned to the instructor, who
represents the main() method, to show return of control. Once the role-play
concludes, the program is executed once again to verify behavior, since the
program is usually edited as the roleplay progresses, using input from the
students as to what values to assign to variables, what methods to call, etc.

The metaphor is explicitly stated, and memory diagrams are maintained
throughout to visually illustrate variable changes and differences between ob-
jects for all students to observe.

3.2 Extending Role-Playing to Other Concepts

Role-playing can be adapted to teach various programming concepts, including
branching, exception handling, and data passing. Below are examples with
additional details on how each adaptation works.
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3.2.1 Branching (If-Else Statements)

To demonstrate branching, two students represent the if and else blocks in a
program. The instructor, acting as main(), evaluates a Boolean condition and
decides which block executes. The student corresponding to the chosen block
receives the marker, representing control flow. The activity demonstrates that
only one block executes during a program’s run. The class observes the flow,
which emphasizes how conditional decisions are made and how control always
returns to main() after execution.

3.2.2 Exception Handling

In this adaptation, one student acts as the try block, and another as the
catch block. If no exception occurs, control flows directly from the try block
back to the instructor acting as main(). If an exception is raised, the marker
(control flow) moves from the try block to the catch block, responsible for
error handling. This visual and physical representation helps students see how
exception handling redirects control flow.

3.2.3 Primitive vs. Reference Data Passing

Students representing methods can illustrate how data is passed to functions.
For primitive data types, the student playing the method receives a value
verbally, writes it on their notecard, and updates it. Changes are local to
the method and do not affect the original variable. For reference data types
(objects), the name of the student playing an object is told to the student
playing the method and receiving the argument. The student playing the
method interacts with the student playing the object by directly modifying
the data on the object’s notecard. This demonstrates how passing an object
allows changes to persist beyond the method’s scope.

3.2.4 Arrays

To demonstrate arrays, three or more students stand in a line, each representing
an element in the array. The position of each student corresponds to their index
number, while their name or assigned value represents the array element. The
students are handed notecards to signify memory allocation, if demonstrating
array of objects. The instructor can "read" or "write" values or call object
methods for the object at specific indices, interacting with the student at that
position. This activity helps students visualize how arrays store data and the
difference between indices and contents. It is recommended to conduct the
exercise with an array of primitive data types or String first, and afterwards
conduct the exercise demonstrating an array of objects.
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Adaptation for two-dimensional arrays uses the seating arrangement in the
classroom to represent a grid. Rows and columns are treated as indices, and
students identify their positions in the grid, connecting array indices to stored
data (their names).

3.2.5 Method Overloading

Each student represents a method with the same name, but different numbers
or types of arguments. Different-colored notecards are used to represent differ-
ent argument data types, and students hold notecards corresponding to their
method’s parameters. When a method is called, the argument configuration
(colors and number of notecards) determines which student "executes." This
clearly demonstrates the concept of method overloading and how the compiler
differentiates methods based on signatures.

3.2.6 Recursion

To teach recursion, students play multiple calls to a recursive method. Each
recursive call is represented by a new student receiving a notecard (memory
allocation) and the marker (control flow). The process continues until the base
case is reached. The student representing the base case returns a value to the
previous student, and this continues back through the chain until control re-
turns to main(). This physical representation demystifies recursion by showing
how each method call has its own memory space and how the base case resolves
the recursion.

3.2.7 Linked Lists

For linked lists, three to five students play node objects, while one student plays
the linked list object, which includes a variable for the head node. The linked
list student’s notecard contains the name of the first node, and each subsequent
node student stores the name of the next node. Linked list traversal can be
demonstrated by interacting with each of the nodes sequentially. Adding or
removing nodes from the linked list can also be demonstrated.

3.3 Best Practices and Considerations

Almost any program can be converted into a role-playing exercise. But not all
of them need to be conducted in the classroom. Activities should be selected
based on the students’ level of understanding and interest. To maximize en-
gagement in a large class, each student may participate in only one role-playing
activity per semester, allowing more students the opportunity to take part.
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Two key elements are essential for an effective classroom role-playing ex-
ercise. First, it is important to clarify the metaphor of what each student
represents (e.g., a method, object, processor, block of code or data) before,
during, and after the role play. Second, maintaining memory diagrams along-
side role-playing is crucial for all students to be able to see the changes in state
of variables and objects.

4 Data analysis

4.1 Overview and initial analysis

Data from two on-ground cohorts from different years, of a second-level in-
troduction to object-oriented programming class using Java, at a mid-south
university in USA, are compared. Year 1 cohort had role-playing exercises
throughout the semester. Year 2 cohort had role-playing exercises incorpo-
rated after the midterm exam. The two cohorts were taught by the same
instructor. Students who dropped the class are not included in the analysis,
as their data is not available. Students who did not take the final exam, one
in each of the cohorts, are also excluded from the analysis.

The arithmetic means, standard deviations, t-statistics, degrees of freedom
and p-values for midterm exam scores, final exam scores, overall assignment
scores, overall quiz scores and overall final grades are summarized in Table
1. All p-values for t-tests are greater than 0.05, which indicates that the two
cohorts are not statistically significantly different on any of these parameters.
This is not surprising, given that both cohorts are students at the same uni-
versity, within the same program, taking the same exams, assignments, and
quizzes, being taught by the same instructor, with only one instructional tech-
nique differing between the two cohorts.

Assignment scores varied considerably between the cohorts. Year 2 stu-
dents performed much better on the early assignments compared to Year 1.
While exams depend solely on the student, since they are taken in a proctored
environment, with no notes, completion of assignments is not the same. In
fact, students are encouraged to get tutoring help on assignments. It is also
possible that the difference is due to the fact that different teaching assistants
graded the assignments in both years. Another possibility is that since Year
2 students had an extended deadline for the initial assignments, due to winter
weather closures, that could also have resulted in higher scores. A myriad of
factors could be responsible for these differences. Hence this difference is not
a focus of this study.

Quiz scores are similar for both cohorts. There is less than one point of
difference between the average quiz scores of the two cohorts. The same quizzes
were assigned to both cohorts, with the Year 2 cohort completing one additional
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quiz compared to Year 1, which is not included in the analysis. All quizzes were
open notes, allowing students to refer to their textbook or personal notes. Of
the overall grade, midterm exam, final exam, and quizzes are weighed 20%
each, while assignments are 40%.

The focus of this study is primarily on exam scores, as the same exams were
administered to both cohorts and graded by the same instructor. The Year 2
average midterm score is 5.61 points lower than that of Year 1, translating to
a letter grade of D, while the Year 1 midterm average corresponds to a low
C. The Year 2 average final exam score is 3.53 points lower than that of Year
1, with both Year 1 and Year 2 final exam averages corresponding to a letter
grade of C. The average final exam score for Year 1 students is 6.98 points
higher than their average midterm score, while average final exam score for
Year 2 students is 9.06 points higher than their average midterm score. Since
role-playing activities were the only major instructional difference, introduced
after the midterm for Year 2 students, this data suggests that these activities
may have contributed to a greater increase in final exam scores for Year 2.

Category Year 1
mean

Year 2
mean

Year 1
s.d.

Year 2
s.d.

p-value
(two-tailed

t-test)
Midterm exam 70.20 64.59 18.84 21.50 0.31
Final exam 77.18 73.65 20.43 19.23 0.51
Assignments 87.59 92.20 23.91 10.94 0.36
Quizzes* 88.70 89.51 8.78 6.71 0.70
Overall grade 82.31 82.45 14.61 10.61 0.97
Year 1 n = 28; Year 2 n = 27; Degrees of freedom, df = 53.
*Year 2 had an extra quiz, not included in this analysis.

Table 1: Arithmetic means, standard deviations, and p-values for midterm
exam scores, final exam scores, overall assignment scores, overall quiz scores,
and overall final grades for Year 1 and Year 2 cohorts. Students who dropped
and students with no final exam are excluded from analysis.

4.2 Trend analysis

Figure 1 shows midterm exam scores and final exam scores for each of the 28
students in Year 1, on the left, and each of the 27 students in Year 2 on the
right. A visual review of the scores shows that while a lot of students scored
higher on the final than the midterm, more students in Year 1 did worse on
the final, than in Year 2.

In general, students scored higher on the final exam than the midterm in
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Figure 1: Midterm and Final exam scores for each student in Year 1, left, and
for each student in Year 2, right.

Figure 2: Plot of final exam scores over midterm exam scores of Year 1, left,
and of Year 2, right, with trendline.

both cohorts. Comparing regression of final exam scores on midterm exam
scores for Year 1 and Year 2 cohorts (Figure 2), while the average scores on
both exams are lower for Year 2 students, the y-intercept for Year 2 is more than
9 points higher than that of Year 1. This indicates higher baseline performance
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on the final exam, given the midterm grades.
Moreover, the rate of change of the regression line for Year 2 is lower, with

a slope of 0.7 compared to slope of 0.82 for Year 1. This means that if two
students have a difference of ten points on the midterm, they are likely to
have a difference of 8.2 points on the final if they are in Year 1 cohort, and a
difference of 7 points if they are Year 2 cohort. This suggests that students on
the lower end of the regression line were able to close the gap with those on
the higher end to a greater extent in Year 2 compared to Year 1.

4.3 Analysis of subgroups

The regression lines for Year 1 and Year 2 final exam scores over midterm
scores intersect at (76.17, 82.05), with the first element being midterm score,
and the second element being final exam score, in the ordered pair. Table
2 summarizes the average midterm and final exam scores for each subgroup,
dividing the cohorts into three groups based on midterm scores: those below
60 (pass/fail threshold), those between 60 and 76, and those above 76.

In the low performance category, among students who scored less than 60
on the midterm exam, Year 1 students scored 8.8 points higher than Year 2
students on the midterm, but only 4.49 points higher on the final. In other
words, Year 2 students in this category improved their score by 15.2 points,
whereas Year 1 students in this category improved their scores by 10.89 points
from midterm to final. This is a substantial improvement on the final, over the
midterm, for Year 2 students. It is also 4.3 points higher than the corresponding
Year 1 cohort’s improvement.

In the moderate performance category, among students who scored 60 or
more, but less than 76 points on the midterm, Year 2 students actually scored
higher midterm average, than Year 1 students in this category, by 2.07 points.
In this category, Year 2 students improved their score on the final by 7.79
points, whereas the Year 1 students had an improvement of 6.25 points over
their midterm scores. The improvement in Year 2 students is 1.54 points higher
than the Year 1 cohort.

In the high performance category, among students who scored 76 or more
points on the midterm, Year 1 students midterm average was 4.03 points higher
than Year 2 students. Year 1 students in this category scored 4.32 points higher
on the final, on average. While Year 2 students in this category improved their
final exam score by 3.8 points, lagging behind by 0.52 points, for a lower
improvement on the final exam score, compared to Year 1 cohort.

These results suggest that role-playing activities were highly effective for low
performers at midterm, moderately effective for moderate performers, and not
effective, possibly even counterproductive, for high performers. However, this
conclusion is drawn from a case study comparing two cohorts taught in differ-
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Category Year Count Avg
ME

Avg
FE

Avg FE -
Avg ME

<60 ME Year 1 9 49.05 59.94 10.89
Year 2 10 40.25 55.45 15.20 (4.31)

>=60 && <76 ME Year 1 8 66.50 72.75 6.25
Year 2 7 68.57 76.36 7.79 (1.54)

>=76 ME Year 1 11 90.18 94.50 4.32
Year 2 10 86.15 89.95 3.80 (-0.52)

Table 2: Average midterm (ME) and final exam (FE) scores by subgroup cate-
gory for Year 1 and Year 2 cohorts. Year 2’s difference of FE over ME, relative
to Year 1’s difference, is shown in parentheses.

ent years. While the timing of role-playing activities was the only instructional
technique that differed, other factors may have contributed to these outcomes.
No two classes are the same, even with the same instructor. The two cohorts
consist of distinct groups of students, and differences in outcomes could be a
reflection of variations in their abilities and motivations. Additionally, exter-
nal factors, such as events on campus, tutor availability or other year-specific
conditions, may have played a role. These findings should be interpreted with
caution, as causation cannot be definitively established.

5 Conclusion

For teaching introductory object-oriented programming, role play activities
provide a unique viewpoint of understanding for students, and can improve
engagement and understanding. The case study presented here provides evi-
dence that role-playing has a positive impact on student learning, particularly
for low and moderate performing students, when used as a supplementary tool
alongside live coding and memory diagrams. However, for high-performing
students, incorporating additional role-playing activities may be ineffective or
even counterproductive.

Therefore, instructors must carefully weigh the trade-offs between incorpo-
rating more active learning exercises, reviewing additional coding examples,
or covering more advanced concepts in their lesson plans. It is essential to
consider the performance levels and capabilities of their students when making
these decisions.

12 159



References

[1] D.-M. Cordova-Esparza, J.-A. Romero-Gonzalez, K.-E. Cordova-Esparza,
J. Terven, and R.-E. Lopez-Martinez. “Active learning strategies in com-
puter science education: A systematic review”. In: Multimodal Technol.
Interact. 8.6 (2024), p. 50. doi: 10.3390/mti8060050.

[2] A. G. S. Raj, J. M. Patel, R. Halverson, and E. R. Halverson. “Role of
live coding in learning introductory programming”. In: Proc. 18th Koli
Calling Int. Conf. Computing Education Research. Koli, Finland, Nov.
2018, pp. 1–8. doi: 10.1145/3279720.3279725.

[3] J. Waite and S. Sentance. Teaching Programming in Schools: A Re-
view of Approaches and Strategies. Online. Raspberry Pi Foundation,
2021, pp. 1–53. url: https://www.raspberrypi.org/app/uploads/
2021/11/Teaching- programming- in- schools- pedagogy- review-
Raspberry-Pi-Foundation.pdf.

[4] S. K. Andrianoff and D. B. Levine. “Role playing in an object-oriented
world”. In: Proc. 33rd SIGCSE Tech. Symp. Computer Science Education.
2002, pp. 121–125. doi: 10.1145/563340.563405.

[5] M. Holliday and D. Luginbuhl. “Using memory diagrams when teaching
a Java-based CS1”. In: Proc. 41st Annu. ACM Southeast Conf. 2003,
pp. 376–381. doi: 10.1145/1073368.1073453.

[6] T. Dragon and P. E. Dickson. “Memory diagrams: A consistent approach
across concepts and languages”. In: Proc. 47th ACM Tech. Symp. Com-
puting Science Education. 2016, pp. 546–551. doi: 10.1145/2839509.
2844587.

[7] J. Börstler and C. Schulte. “Teaching object-oriented modelling with
CRC cards and roleplaying games”. In: Proc. WCCE. 2005, pp. 1–5.

[8] K. Sierra and B. Bates. Head First Java. 2nd. Sebastopol, CA: O’Reilly
Media, 2005.

[9] P. M. Newton. “The learning styles myth is thriving in higher education”.
In: Front. Psychol. 6 (2015), p. 1908. doi: 10.3389/fpsyg.2015.01908.

[10] J. S. Jones. “Participatory teaching methods in computer science”. In:
ACM SIGCSE Bull. 19.1 (1987), pp. 155–160.

[11] M. R. N. Gari, G. S. Walia, and A. D. Radermacher. “Gamification in
computer science education: A systematic literature review”. In: Proc.
ASEE Annu. Conf. Expo. 2018, pp. 1–10. doi: 10.18260/1-2--30596.

13160



Design Guidelines for a Rigorous Deep
Learning Course∗

Mukulika Ghosh, Jamil Saquer
Computer Science Department

Missouri State University
Springfield, MO 65697

mghosh, jsaquer@missouristate.edu

Abstract

This paper presents the design and implementation of a rigorous un-
dergraduate Deep Learning (aka Deep Neural Networks) course, devel-
oped as part of a newly approved interdisciplinary Data Science major
jointly offered by the Computer Science and Mathematics departments
at Missouri State University. The course is designed to provide students
with a comprehensive understanding of deep learning models, their math-
ematical foundations, and their practical applications to real-world prob-
lems across diverse domains. Unlike approaches that either focus heav-
ily on theoretical rigor or prioritize applied problem-solving, this course
adopts a blended pedagogy that emphasizes both the mathematical in-
tuition behind deep learning operations and the practical skills needed
to select, implement, and optimize models for various applications.

1 Introduction

Inspired by the high demand for students trained in data science [1, 10], many
universities are offering undergraduate majors in data science. Such a major
was recently approved by Missouri State University as an interdisciplinary pro-
gram between the computer science and mathematics departments. Students

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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complete foundational mathematics courses such as calculus, discrete mathe-
matics, linear algebra, and statistics, alongside core computer science courses
including programming and data structures. Deep learning (DL), given its
significance in modern data analysis, is a required course for this major.

Despite the growing number of DL courses in higher education, few target
undergraduate students specifically. Existing offerings typically either empha-
size mathematical theory at the expense of application or focus on tool imple-
mentation without developing fundamental conceptual understanding. This
division presents a significant teaching challenge, especially in interdisciplinary
fields where both theoretical knowledge and practical skills are necessary.

To address these limitations, we present the design and implementation of
a rigorous undergraduate DL course that combines theoretical principles with
practical application. The course builds upon students’ existing mathematical
and programming knowledge while introducing them to real-world applica-
tions. While primarily designed for data science majors who have completed
the prerequisite coursework, the content remains approachable for students
from related STEM disciplines such as physics and engineering, with similar
foundational preparation.

The main contribution of this paper is an undergraduate course design that
balances mathematical intuition with practical application, preparing students
for both academic and industry careers in AI and data science. By implement-
ing a blended pedagogy that integrates project-based learning with theoretical
foundations, the course empowers students to understand the mathematical
underpinnings of deep learning models and apply them effectively across vari-
ous domains. This approach supports the interdisciplinary nature of the data
science program at Missouri State University.

2 Literature Review

Deep learning courses have been increasingly offered at universities worldwide,
though primarily at the graduate level. Tirkeş et al. [9] developed undergrad-
uate AI courses to address workforce needs in Turkey, proposing a two-course
structure: Fundamentals of Machine Learning followed by Applications of Deep
Learning. Their curriculum combines theoretical lectures with laboratory ses-
sions using tools like TensorFlow to apply concepts to practical problems.

Similarly, Zhang et al. [13] noted that China’s rapidly growing AI industry
requires an educational approach beyond traditional theory-focused teaching.
They advocate for an integrated model that combines theoretical foundations
with hands-on practice to better prepare students for industry demands.

In the United States, while several universities offer deep learning courses
[6, 8, 11], undergraduate offerings remain limited at institutions outside Ivy
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League and top-tier research universities [4, 7]. Johnson [7] described an un-
dergraduate deep learning course taught at the University of New Hampshire
that introduced backpropagation, gradient descent, CNNs, RNNs, and briefly
covered generative modeling through a project-based approach. Our course
differs from Johnson’s by covering a broader range of deep learning architec-
tures and providing more mathematical depth while maintaining the balance
between theory and application.

3 Course Description and Outcomes

In the design of the course, we identified the following detailed learning out-
comes for this course:

1. Fundamentals of deep learning models

L1: Develop a strong understanding of data representation and interpre-
tation for machine learning and deep learning tasks, incorporating
fundamental concepts from linear algebra and probability.

L2: Understand the fundamental operations in neural network including
behavior of activation functions and interpretation of loss functions.

L3: Implement and analyze algorithms such as gradient descent and back
propagation on simple networks.

2. Comparative analysis of existing models

L4: Understand the core operations of widely used neural networks, in-
cluding convolution in Convolutional Neural Networks (CNNs), re-
current connections in Recurrent Neural Networks (RNNs), atten-
tion mechanisms in Transformers, and adversarial training in Gen-
erative Adversarial Networks (GANs).

L5: Implement and analyze various neural network architectures, includ-
ing Visual Geometry Group Network (VGGNet), Residual Network
(ResNet), Long Short Term Memory (LSTM), and Gated Recurrent
Unit (GRU). Gain a comparative understanding of selecting the ap-
propriate architecture for specific tasks while balancing performance
and computational efficiency.

L6: Understand design principles behind popular network architectures,
such as selecting the number of channels and filters across layers,
utilizing residual connections in CNNs, implementing gating mech-
anisms in LSTMs and GRUs, and leveraging self-attention and bidi-
rectional context in Transformers.
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3. Essentials in training deep learning models

L7: Understand the cause behind common issues found in training deep
learning models such as exploding and vanishing gradients, overfit-
ting, slow convergence, and computational complexity.

L8: Learn common techniques for addressing these challenges, including
regularization, initialization, and optimization methods. Develop a
comparative understanding of selecting the appropriate technique
for different task scenarios.

L9: Optimize and fine-tune neural network performance by applying hy-
perparameter tuning techniques, such as learning rate adjustment,
batch size selection, and regularization strategies. Develop a com-
parative understanding of choosing the right hyperparameters for
different tasks while balancing accuracy and efficiency.

This course provides students with practical proficiency in deep learn-
ing by introducing essential Python libraries such as NumPy, PyTorch, and
TensorFlow. Students develop foundational skills in data generation, load-
ing, augmentation, custom neural network construction, and training loop
optimization. They also gain expertise in using pre-trained networks (e.g.,
ResNet, VGGNet) as backbones for fine-tuning or feature extraction within
meta-architectures like U-Net and R-CNN, for real-world applications.

Prerequisite: The course requires students to have basic programming
skills especially in Python, a course in data structures, and recommended math-
ematical skills including discrete structures, calculus, and a course in statistics.
Knowledge in linear algebra is recommended, as our students learn the basics
of matrices such as matrix multiplication in the discrete structures course.

4 Course Content

Table 1 provides the schedule and topics covered in the course. The details of
the content for each topics are described below.

Preliminaries: This section reviews fundamental concepts in linear algebra
and probability necessary for understanding advanced topics in deep learn-
ing. It covers linear representations like scalars, vectors, matrices, and tensors,
along with operations such as addition and multiplication. The probability
component includes marginal, joint, and conditional probabilities, as well as
the sum rule, product rule, and Bayes’ rule. Beyond basic definitions, the
course emphasizes interpretation to help students connect these concepts when
revisiting them in the context of neural network design. For instance, students
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Table 1: Tentative schedule and topics covered in the course

Week Topics
1 Preliminaries
2-3 Linear Neural Networks
3-4 Multi-layer Perceptron
5-6 Principles in training
7-9 Convolution Neural Networks
9-10 Recurrent Neural Networks
11-12 Attention and Transformers
13-14 Generative Modeling

will later explore how probability is applied in multi-class classification tasks.
Given the possibility of a diverse backgrounds of students, this foundational
topic ensures they can develop a deeper understanding of deep neural networks.

Linear Network Networks: This topic covers the fundamental building
blocks of neural networks, focusing on the neuron and its application in tasks
such as linear regression, logistic regression, and softmax regression. It also
introduces the basics of the gradient descent algorithm, explaining its role in
optimization tasks, along with the loss functions used in training these simple
networks. The interpretation of the update step in the gradient descent algo-
rithm is explored, as well as the effect of the learning rate hyperparameter on
convergence. This topic provides the foundational knowledge needed to under-
stand the selection of loss functions and the basic optimization techniques used
in training deep learning models.

Multi-Linear Perceptrons: This topic explains what "deep" means in deep
learning models and the implications of increasing the number of layers in
networks, from handling simple tasks with linearly separable data to modeling
more complex functions. It also covers the details of the backpropagation
algorithm, including how errors are calculated and the impact of choosing
different activation functions. This topic provides an in-depth understanding
of the backpropagation process, introducing students to the challenges faced
in deep learning models and key design decisions.

Principles in training: This topic explores common challenges encountered
when training neural network models, including the underlying causes such as
artifacts in the topology of the loss function landscape and non-uniform scal-
ing of parameters. It also covers issues like vanishing and exploding gradients,
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as well as overfitting. The second part of the topic introduces techniques to
address these challenges, such as batch normalization, regularization, and op-
timization methods. This topic provides a comprehensive understanding of the
design principles behind various initialization, regularization, and optimization
techniques, along with practical guidance on tuning hyperparameters.

Convolution Neural Networks (CNNs): This topic introduces the ratio-
nale behind using CNNs for image analysis tasks, where they are commonly
applied, and covers basic operations such as convolution, padding, and pooling.
It also explains how the shape of feature maps changes across layers in tradi-
tional CNNs, the number of parameters, and their impact on computational
complexity. This foundational knowledge leads into the second part of the
topic, which reviews and compares existing CNN models, including AlexNet,
VGGNet, InceptionNet, ResNet, and SENet. The topic provides students with
a comprehensive understanding of popular architectures used for common prob-
lems, as well as a performance analysis of the operations involved and their
impact on the results achieved.

Recurrent Neural Networks(RNNs): This topic introduces “deep” neural
networks in the temporal dimension through the use of recurrent connections,
explaining their usefulness for text-based data. It revisits the issues of vanishing
and exploding gradients, providing an interpretation of these problems in the
context of memory in text data analysis. Within this framework, different types
of recurrent networks, such as GRU and LSTM, along with their respective
gates, are discussed. This provides the students a deep understanding of how
RNNs handle temporal data in real world applications.

Attention and Transformers: This topic introduces the concept of atten-
tion mechanisms and their role in enhancing neural networks, particularly in
handling sequential data in natural language processing (NLP) tasks. The
topic covers the mechanics of self-attention and multi-head attention, which
allow models to focus on different parts of the input sequence simultaneously.
It also introduces the various Transformer architectures such as BERT, which
leverages attention mechanisms to achieve high performance. The students
are provided with a clear understanding of the attention mechanisms and the
reasons for their success in Transformers.

Generative Modeling: This topic covers generative modeling in the context
of Generative Adversarial Networks (GANs), autoencoders, and variational au-
toencoders (VAEs), including key concepts such as loss functions, ELBO (Ev-
idence Lower Bound), latent space representation, and the reparameterization
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trick. It also includes a comparative study of various GAN architectures and
their applications in solving different generative tasks. The students are pro-
vided with comprehensive understanding of generative modeling techniques and
insights into the role of latent space representation and the reparameterization
trick in improving model performance.

Readings The textbooks [12] (primary), [2], [3] and [5] provide students with
foundational knowledge and practical skills needed for the course. Most of the
textbooks are available online for free and serve as additional resources for the
students. Specific page and section references are provided on the Learning
Management System for easy access to the relevant material.

5 Course Deliverables and Grading

The final grade is computed based on the following components:

1. Quizzes 20% and Exam 15% There are at least eleven in-class quizzes
and one midterm, given midway, during the semester. We chose not to
give a final exam so that students can concentrate on working on their
projects. The lowest quiz grade is dropped from consideration. The
quizzes and exam are included in the course deliverables to reinforce
and assess students’ understanding of fundamental concepts involved in
the deep learning model design. Example questions include determining
the output or behavior of a network with a given set of weights, find-
ing the appropriate weights to model specific behavior, calculating the
total number of parameters and the shape of feature tensors, and com-
puting attention for a given set of inputs. Questions are designed to
provide students with hands-on experience in understanding the func-
tioning of various components and operations in neural networks before
implementing them in software, thereby enhancing their ability to debug
and optimize novel network designs.

2. Homework Assignments 35% Assignments consist primarily of pro-
gramming tasks, text-based question-and-answer exercises and essay-
based questions. Programming assignments evaluate the implementation
of techniques learned in the class. Deliverables include report and code
implementation. Text-based assignments include problems and exercises
that are designed to reinforce the understanding of the concepts taught
in the class. They also include reading, reviewing and critically analyzing
blogs and/or a conference paper.
The homework assignments serve as a foundation for completing the final
project. These assignments include tasks with straightforward objectives,
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such as implementing gradient descent, the backpropagation algorithm,
comparing two convolutional networks, and performing the forward and
backward passes of an LSTM model. The implementation exercises offer
students hands-on experience with popular libraries like PyTorch, guiding
them through model creation and training from scratch.
Each assignment also includes a report section that involves experimental
analysis of the software developed. A series of questions are designed
around the problem, such as examining how performance (in terms of
loss and accuracy) changes with different learning rates, initialization
methods, and the presence or absence of regularization. This provides
students with experience in hyperparameter tuning and teaches them
how to design experiments for their final project.

3. Final Project 30% The final project is a major component of the
course. Teams of 2-3 students work on a deep learning application, ei-
ther from a pre-determined list of topics and datasets provided by the
instructor or through an approved student proposal. Examples from
this semester include “Fault Detection in Wireless Sensor Networks” and
“Vegetation Classification to Prevent Robot Entanglement.”
To ensure steady progress throughout the semester, students submit a
mid-term report outlining the problem statement, proposed method, im-
plementation progress, and evaluation plan. At the end of the semester,
teams deliver a final project report, their software implementation, and
an oral presentation. The presentation is evaluated based on clarity,
depth of background knowledge, and the overall quality of the work.

6 Observations and Recommendations

This course is being offered to undergraduate students for the first time in the
Spring 2025 semester, so complete data on the effectiveness of its design is not
yet available. However, we have collected data through Week 9, including stu-
dents’ performance on the midterm exam, quizzes, and homework assignments.
Based on this preliminary data, students demonstrate better performance on
programming and homework assignments compared to their performance on
exams and quizzes. This is similar to students’ performance in other courses
in the program.

6.1 Discussion and recommendations

We believe that offerings of this course for undergraduate students should aim
to balance foundational knowledge with reduced mathematical complexity. To
achieve this, we recommend and apply the following:
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• We recommend that project deliverables, such as the project proposal,
be presented as an informal proof-of-concept in slide format rather than
a written paper, aligning with industry expectations where most stu-
dents aspire to build their careers. However, the final project report and
presentation should be retained to provide research experience.

• We suggest maintaining the current assignment structure, which includes
objective experimental questions, enabling students to apply these meth-
ods in their project evaluations. Including guest lecture from industry or
research conducted by graduate students or faculty is also recommended.

• Many undergraduate students, particularly outside R1 universities, have
little to no experience in reading technical papers from journals and con-
ferences. To ease them into this process, we recommend reading assign-
ments that focus on blog reports or comparative analyses of two to three
papers that are less technically dense. Selecting papers from OpenRe-
view is also encouraged, as students can access publicly available review
comments, helping them better understand and analyze research work.

• We recommend inclusion of in-class practice sessions for math-based
problems, such as determining weights for specific behaviors and calcu-
lating attention values for given weights in a network. Additionally, for
quiz-based assessments, a review session focusing on the quiz questions
is preferred. The frequency of quizzes could be reduced while increasing
the number of midterm exams to provide regular checkpoints. However,
we still recommend not having a final exam, allowing students to in-
tegrate their knowledge from the latter part of the semester into their
projects. The percentage of final grade in quizzes and exams in consid-
eration should be kept lower than project and homework.

7 Conclusion

In this paper, we present a comprehensive deep learning course designed for un-
dergraduate students in an interdisciplinary data science program. The course
balances theoretical foundations and practical applications to address the grow-
ing demand for skilled data science professionals. Initial performance data indi-
cates that students perform better in programming and homework assignments
compared to exams and quizzes. For future work, we plan to collect additional
data to evaluate the effectiveness of this course design for undergraduate stu-
dents.
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Abstract

Computational thinking (CT) is a necessary skill that must be learned
in today’s tech-focused world, especially within K-12 education, where
early learning of problem-solving skills and algorithmic thinking is benefi-
cial in everyday life. Various ways have been used to cultivate this skill in
these early education phases [6]. Our approach was to use an unplugged
gamified coding activity that involved creating a learning environment
that required hands-on participation and critical computational think-
ing. This study examines the impact of a gamified coding activity on
computational thinking (CT) skills of K-12 students in a public stem
event setting where each student has around 30 minutes of solving time.
This study also observes the influence of the short-term intervention on
algorithmic thinking and problem solving abilities by incorporating a
before-and-after survey, in which students were asked to write down the
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steps to brush their teeth before and after the activity. This data was
used to evaluate improvements in student procedural thinking and log-
ical structure. The findings suggest that gamification enhances engage-
ment and helps students develop clearer and more structured algorithms.
These results contribute to research on effective teaching strategies for
CT in K-12 education and to improving the learning environment.

1 Introduction

Computational thinking (CT) has become a fundamental skill for students in
the 21st century, with education systems worldwide integrating programming
and problem solving into the K-12 curriculum [4]. Moreover, as computational
literacy expands, innovative teaching methods, such as interactive coding plat-
forms and especially gamification, have gained attention for their potential to
enhance learning engagement [5]. Gamification in education has been shown
to increase student participation, improve motivation, and provide immedi-
ate feedback loops that reinforce learning [7]. Unlike traditional lecture-based
methods, gamification encourages students alone or in a group to actively
engage with computational concepts through problem solving, experimenta-
tion, and interactive challenges. With this knowledge, this study introduces
a gamified coding activity using P5.js, a JavaScript library designed for cre-
ative coding, which allows students to explore visual programming concepts
interactively. The activity incorporates Optical Character Recognition (OCR)
technology, allowing students to scan physical code blocks and immediately see
their code results. This integration provides a tangible, hands-on coding expe-
rience, reinforcing algorithmic thinking and problem decomposition. Moreover,
this project explores the effectiveness of a short-term, engaging activity where
students interact with computational concepts in an informal setting. Beyond
coding, this study also examines the impact of gamification on students’ pro-
cedural thinking skills. To measure this, students were asked to write down
the steps for brushing their teeth before and after participating in the P5.js
coding activity. This comparison before and after allows us to analyze whether
exposure to gamified computational exercises improves a student’s ability to
think algorithmically in everyday scenarios.

2 Related Works

2.1 Computational Thinking in K-12

Computational thinking (CT) has been widely recognized as an essential skill
for students, encompassing problem decomposition, abstraction, algorithmic
design, and debugging [8]. The integration of CT in K-12 curricula has been
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widely recognized as an effective strategy to prepare students for the digital
economy [7]. Research categorizes CT learning into plugged (digital) and un-
plugged (physical, non-digital) environments, both of which contribute to skill
development [6]. Studies have found that unplugged approaches can serve as
a ’priming’ step, helping students grasp algorithmic concepts before engaging
in coding [3]. Studies have emphasized algorithmic thinking as a core compo-
nent of CT, highlighting the importance of step-by-step problem solving and
the ability to build effective algorithms [1]. This study builds on this research
by incorporating OCR technology to facilitate a unique gamified approach to
algorithmic thinking.

2.2 Gamification in Computational Thinking Education

Gamification is increasingly used as an effective teaching strategy in computer
science education. Studies have shown that interactive and game-based activi-
ties improve motivation, engagement, and retention rates among K-12 students
[2]. Unplugged approaches have also been found to be effective in teaching algo-
rithmic thinking by using hands-on and tangible experiences [9]. Incorporating
gamification into CT education improves participation and engagement, which
are often limited in traditional computer science classrooms [7]. This study
extends this research by applying gamification to a short-term coding activity
and evaluating its impact compared to traditional teaching methods.

2.3 Assessment of Computational Thinking

Assessing computational thinking remains a challenge due to the various avail-
able methods, including quizzes, hands-on projects, debugging exercises, and
algorithm development [1]. Although digital tools offer automated assessments,
unplugged activities often require manual evaluation through observation and
student reflection [6]. This study uses a mixed-method approach, including:

• Pre- and post-activity surveys to assess the self-perceived learning out-
comes of students.

• Observation of student engagement and participation during the session.
• An analysis of OCR-executed code outputs to measure the accuracy and

correctness of student-constructed algorithms.

By combining qualitative and quantitative data, we aim to provide a compre-
hensive evaluation of the effectiveness of gamification in CT learning.
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(a) Starting question for survey. (b) Ending question for Survey.

Figure 1: Survey Sheet used by K-12 student for data collection.

3 Methodology

3.1 Setting and Participants

This study was conducted in an open classroom environment, where K-12 stu-
dents and their families participated in an interactive coding activity using
puzzle blocks of code. Students with diverse levels of prior coding experience
engaged in hands-on programming. The participants’ age ranged from 8 to
15, with varying levels of computational exposure. Each participant was given
approximately 30 minutes to complete the activity. In Figure 1 shows the
question used to test the improvement in CT of the students.

3.2 Activity Design

The study consisted of three sequential tasks:

1. Pre-Activity Task: Writing Procedural Steps to Brush Your Teeth.
Before engaging in the coding activity, students were asked to write down
step-by-step instructions for brushing their teeth, as shown in Figure 1a.
This served as a baseline measure of their ability to break down a familiar
task into discrete logical steps.
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2. P5.js Gamified Coding Activity.
The students were introduced to a Turtle Puzzle game in which they used
puzzle block codes made from paper to create structured commands. The
puzzle activity required students to use two primary commands:

• Line(): Move forward while drawing a line.
• Rotate(): Turn left 90 degrees.

The students had to join a sequence of these commands to create shapes
such as squares. Once their puzzle was assembled, they scanned it using
the OCR program, which converted their sequence into actual P5.js code
that was executed visually, as shown in Figure 2.

Figure 2: picture of the OCR program running the puzzle block.

3. Post-Activity Task: Rewrite the Procedural Steps.
After completing the P5.js activity, students were asked to write down
the brushing steps again as shown in Figure 1b. This helped measure
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any improvements in their ability to structure procedural instructions, a
key aspect of computational thinking.

3.3 Data Collection and Analysis

The study collected both qualitative and quantitative data: Survey Data (Be-
fore and After Writing Tasks) Student responses were categorized into "Im-
proved" and "No Improvement" groups based on clarity, detail, and logical
structure. Examples of responses were analyzed for patterns in procedural
thinking.

4 Results

4.1 Engagement and Motivation

Students showed high levels of engagement, particularly due to the immediate
feedback loop from the OCR-based execution system. Gamification elements
(e.g. progressive challenges and visual rewards) kept students motivated and
persistent in problem solving.

4.2 Computational Thinking Gains (Measured via Procedural Writ-
ing Task)

Out of 17 students, 11 demonstrated improvement in their ability to structure
procedural instructions, while 6 students did not show any change. Figures 3
and Figure 4 show the difference between the students who improved and the
students who did not.
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4.3 Challenges and Limitations

Some younger students struggled with reading and understanding code snip-
pets, requiring more scaffolding and guided assistance. Furthermore, time con-
straints in a short-term intervention limited the depth of exploration of ad-
vanced CT concepts along with the completion of more shapes. Moreover, the
program would sometimes not correctly output the code results due to oddly
placed code blocks.

5 Discussion

5.1 Key Findings

This study aligns with previous research suggesting that gamification and
hands-on activities can improve algorithmic thinking [2] [7]. Key takeaways
include

• Students who improved in procedural writing showed greater clarity and
logical structure in their responses.

• The gamified approach using P5.js encouraged sequential problem solv-
ing, leading to improvements in step-by-step thinking.

5.2 Limitations and Future Work

• Short-term intervention: A 30-minute session may not be sufficient for
all students to show measurable gains.

• Varying levels of cognitive development: Younger students (ages 8-10)
needed more help and were less likely to show improvement compared to
older participants (ages 12-15).

6 Conclusion

This study highlights the potential of gamification and OCR-based execution
in short-term computational learning environments. The integration of P5.js
puzzle-based learning demonstrated that students could improve their ability to
structure procedural instructions after a short intervention. However, longer-
term participation may be required for younger students to develop sustained
improvements in computational thinking.
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