
The Journal of Computing
Sciences in Colleges

Papers of the 38th Annual CCSC
Southeastern Conference

November 1st and November 2nd, 2024
Furman University

Greenville, SC

Abbas Attarwala, Editor Adam Lewis, Regional Editor
California State University, Chico Athens State University

Volume 40, Number 5 November 2024



The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2



Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 7

CCSC National Partners 9

Welcome to the 2024 CCSC Southeastern Conference 10

Regional Committees — 2024 CCSC Southeastern Region 11

A Packing List for a Trip Into Cyberspace 12
Carmen Pancerella, Sandia National Laboratories

Addressing Barriers for Transfer Into University Computer Sci-
ence Programs for Community College Students 13

Cara Tang, Portland Community College; Adam Wade Lewis, Athens
State University; Karen Works, Florida State University

Incorporating Emerging Cybersecurity Topics in Computing Courses 17
Cara Tang, Portland Community College; Sidd Kaza, Towson Univer-
sity; Blair Taylor, Towson University

Using a Distinctive Curricular Design Process for Liberal Arts
Computing Programs 19

Jakob E. Barnard, University of Jamestown; Grant Braught, Dickin-
son College; Janet Davis, Whitman College; Amanda Holland-Minkley,
Washington & Jefferson College; David Reed, Creighton University;
Karl Schmitt, Trinity Christian College; Andrea Tartaro, Furman Uni-
versity; James Teresco, Siena College

Tips and Tricks for Developing Successful Technology Projects
for Introduction to Programming and Outreach 23

Anca Doloc-Mihu, Cindy Robertson, Cengiz Gunay, Georgia Gwinnett
College

Message Passing and Shared Memory Projects 25
William Kreahling, Western Carolina University

Three Phase - Adversarial Search - Tile Games 29
Karen E. Works, Florida State University

3



Context-Driven English to Japanese Translation with Visitors 33
Johnathan Dewey, Chris Alvin, Furman University

Software Orchestration: A Paradigm for Software Development
and Security Assessment using ChatGPT Requirements 44

Joseph Elarde, Barry Bruster, Mir Hasan, Austin Peay State University

A Capstone Experience for Undergraduates in High Performance
Computing With MPI and OpenMP 54

Andrew J. Pounds, Mercer University

Impact of a Virtual Peer Mentoring Program (VPM) on Student
Retention and Performance 66

Hyesung Park, Sonal Dekhane, Wei Jin, Lorraine Jonassen, Georgia
Gwinnett College

Basic Document Retrieval With Retrieval-Augmented Genera-
tion Through UIUC.chat 77

William Paul Kelley, University of North Carolina - Wilmington

Starting a Civic Engagement Capstone: An Experience Report 84
Mark Hills, James B. Fenwick, Jr., Appalachian State University

Ungrading in Computer Science: A Case Study 96
Jean H. French, Crystal K. Cox, Michael A. Murphy, Coastal Carolina
University

Mind the Gap: Exploring Differences in Student Perceptions of
Belonging and Inclusion in Computer Science 106

Elizabeth von Briesen, Shannon Duvall, Ryan Mattfeld, Scott Spurlock,
Elon University

Evaluating the Cognitive Level of GPT Models in Mathematics 117
Jacob Evans, Cody Goldschmidt, Yilian Zhang, University of South Car-
olina Aiken

BlueAI: Designing Artificial Intelligence for Environment Science
and Climate Change Learning Experiences for K12 Students 127

Gulustan Dogan, Elif Sahin, Catherine Fay Wilkinson, Amelia K. Moody,
Yang Song, University of North Carolina at Wilmington

4



Advisor SeaHawk: An Academic Advisor Chatbot for MSCSIS
Students at UNCW 138

Bulut Tok, Gulustan Dogan, University of North Carolina Wilmington

Strategies for Recruitment and Retention in Computer Science 149
Amber Wagner, University of Alabama at Birmingham

Exploring Faculty and Student Perspectives on GenAI in Higher
Education 159

Thad Crews, John Erickson, Tong Wu, Western Kentucky University

Reviewers — 2024 CCSC Southeastern Conference 171

5



6



The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Bryan Dixon, President (2026),
bcdixon@csuchico.edu, Computer
Science Department, California State
University Chico, Chico, CA 95929.
Shereen Khoja, Vice
President/President-Elect (2026),
shereen@pacificu.edu, Computer
Science, Pacific University, Forest Grove,
OR 97116.
Abbas Attarwala, Publications Chair
(2027), aattarwala@csuchico.edu,
Department of Computer Science,
California State University Chico,
Chico, CA 95929.
Ed Lindoo, Treasurer (2026),
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, Denver, CO 80221.
Cathy Bareiss, Membership Secretary
(2025),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical &
Engineering Sciences, Bethel University,
Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2026),
mullinsj@umkc.edu, University of
Missouri-Kansas City, Kansas City, MO
(retired).
Michael Flinn, Eastern Representative
(2026), mflinn@frostburg.edu,
Department of Computer Science &
Information Technologies, Frostburg
State University, Frostburg, MD 21532.

David Naugler, Midsouth
Representative (2025),
dnaugler@semo.edu, Brownsburg, IN
46112.
David Largent, Midwest
Representative (2026),
dllargent@bsu.edu, Department of
Computer Science, Ball State University,
Muncie, IN 47306.
Mark Bailey, Northeastern
Representative (2025),
mbailey@hamilton.edu, Computer
Science Department, Hamilton College,
Clinton, NY 13323.
Ben Tribelhorn, Northwestern
Representative (2027), tribelhb@up.edu,
School of Engineering, University of
Portland, Portland, OR 97203.
Mohamed Lotfy, Rocky Mountain
Representative (2025),
mohamedl@uvu.edu, Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Mika Morgan, South Central
Representative (2027),
mikamorgan@wsu.edu, Department of
Computer Science, Washington State
University, Pullman, WA 99163.
Karen Works, Southeastern
Representative (2027), keworks@fsu.edu,
Department of Computer Science,
Florida State University - Panama City
Panama City, FL 32405
Michael Shindler, Southwestern
Representative (2026), mikes@uci.edu,
Computer Science Department, UC
Irvine, Irvine, CA 92697.

7



Serving the CCSC: These members
are serving in positions as indicated:
Bin “Crystal” Peng, Associate Editor,
bin.peng@park.edu, Department of
Computer Science and Information
Systems, Park University, Parkville, MO
64152.
Brian Hare, Associate Treasurer &
UPE Liaison, hareb@umkc.edu, School
of Computing & Engineering, University
of Missouri-Kansas City, Kansas City,
MO 64110.
George Dimitoglou, Comptroller,
dimitoglou@hood.edu, Department of
Computer Science, Hood College,
Frederick, MD 21701.

Megan Thomas, Membership System
Administrator,
mthomas@cs.csustan.edu, Department
of Computer Science, California State
University Stanislaus, Turlock, CA
95382.

Karina Assiter, National Partners
Chair, karinaassiter@landmark.edu,
Landmark College, Putney, VT 05346.

Ed Lindoo, UPE Liaison,
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, Denver, CO 80221.

Deborah Hwang, Webmaster,
hwangdjh@acm.org.

8



CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Gold Level Partner
Rephactor
ACM2Y

Code Grade
GitHub

9



Welcome to the 2024 CCSC Southeastern
Conference

Welcome to the 38th Southeastern Regional Conference of the Consortium
for Computing Sciences in Colleges. The CCSC:SE Regional Board welcomes
you to Greenville, SC, the home of Furman University, for our sixth visit to
this beautiful campus. The conference is designed to promote a productive ex-
change of information among college personnel concerned with producing qual-
ity computer-oriented curricula as well as using effective educational methods
to teach computer science. It is intended for faculty as well as administrators
of academic computing facilities, and also for students to participate in activ-
ities that promote computer science. We hope that you will find something to
challenge and engage you at the conference!

The robust conference program is highlighted by four sessions of three tracks
each, including engaging guest speakers, workshops, a panel discussion, student
posters, a nifty assignment session and three sessions of high-quality refereed
papers. We received 46 papers this year of which 14 were accepted to be
presented at the conference and included in the proceedings – an acceptance
rate of 30

Two exciting activities are designed specifically for students – a research
contest and an undergraduate programming competition, with prizes for the
top finishers in each.

We especially would like to thank the faculty, staff, and students of Fur-
man University for their help in organizing and publicizing this conference.
Many thanks also to the CCSC Board, the CCSC:SE Regional Board, and to
a wonderful Conference Committee, led by Conference Chair Dr. Kevin Treu,
programming contest coordinator Dr. Andy Digh, and research contest coor-
dinator Dr. Fahad Sultan. Thank you all so much for your time and energy.

We extend our deepest appreciation to our partners, sponsors, and ven-
dors. Please take the time to go up to them and thank them for their contri-
butions and support for computing sciences education – CCSC National Part-
ners: Rephactor, ACM2y, CodeGrade, GitHub, and Codezinger. Our thanks
as well to our Sponsoring Organizations: CCSC, ACM-SIGCSE, and Upsilon
Pi Epsilon.

We could not have done this without several excellent submissions from
authors, the insightful comments from a great team of 34 reviewers, and the
support from our editor, Dr. Adam Lewis. Thanks to all of you for helping to
create such a strong program for this year’s conference.

Karen Works
Florida State University

Chair, CCSE:SE Regional Board and Regional Representative

10



2024 CCSC Southeastern Conference Steering Committee
Stephen Carl, Publicity Chair . . . . . . . . Sewanee: The University of the South
Jonathan Cazalas, At-Large Member . . . . . . . . . . . . . . Florida Southern College
Andy Digh, Programming Contest Director, 2025 Site Chair . . . . . . . . . Mercer
University
Jean French, Local Registrar, 2023 Site Chair . . Coastal Carolina University
Kala Kennemore, Local Arrangements Chair . . . . . . . . . . . . Furman University
Adam Lewis, Program Co-Chair . . . . . . . . . . . . . . . . . . . . . . . . . Athens University
Karen Works, Chair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FSU Panama City
Tania Roy, Treasurer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .New College of Florida
Fahad Sultan, Research Contest Director . . . . . . . . . . . . . . . . Furman University
Kevin Treu, CCSC Southeastern Rep., Program Co-Chair, 2024 Site Chair
Furman University

11



A Packing List for a Trip Into Cyberspace∗

Keynote

Carmen Pancerella
Principal Member of Technical Staff Sandia National Laboratories

We live in a world that is connected 24/7. We live in a world where the
average person spends over 5 hours per day on a phone and the average teenager
spends over 8.5 hours on the phone. We live in a world where data lives in the
clouds. We live in a world where an average person may have 8 to 13 devices.

We live in a world where an automated scripts or programs can affect
millions of devices at the same time. We live in a world where these automated
scripts and programs are also used by malicious actors. We live in a world where
malicious actors are targeting government systems, critical infrastructure, and
industry networks. We live in a world where the President of the United States
is worried about Artificial Intelligence.

How do we prepare students for this world?

∗Copyright is held by the author/owner.

112



Addressing Barriers for Transfer Into University
Computer Science Programs for Community

College Students∗

Panel Discussion

Cara Tang1, Adam Wade Lewis2, Karen Works3

1Computer Information Systems
Portland Community College, Portland, OR 97219

cara.tang@pcc.edu
2Department of Mathematical, Computer, and Natural Sciences,

College of Arts and Sciences,
Athens State University, Athens, AL 35611

Adam.Lewis@athens.edu

Computer Science Department
College of Arts and Sciences

Florida State University-Panama City, FL 32405
keworks@fsu.edu

1 Summary

Transferring from a community college to a university computer science pro-
gram presents many barriers to the student. Many students face personal
barriers balancing education with family and work responsibilities. Some of
these students wait before continuing on and face challenges in the transition
back into the academic environment after many years.

Academically, students transferring from the community college face barri-
ers related to credit transfer, course equivalency, and prerequisite gaps. With-
out clear articulation agreements, students face the problem of not all credits
transferring, especially specialized or technical courses that have no matching

∗Copyright is held by the author/owner.

1 13



university courses. Students often face concerns regarding course equivalency
with perceived differences in course content and rigor.

Adult non-traditional students are an important under represented market
segment in higher education as small institutions struggle to address questions
of financial exigency and demographic changes in this population. Institutions
need to understand the demographics and needs of this group of students are
very different than the 18-22 year-old age group of traditional college students.

2 Cara Tang

Portland Community College (PCC) is the largest institution of higher educa-
tion in the state of Oregon and offers a variety of computing education pro-
grams, including both those dedicated to preparing students for transfer into a
Bachelor’s program (Computer Science), and those designed to help students
get a job (Computer Information Systems, Cybersecurity, Network Adminis-
tration, and Web Development and Design). However, even many students in
the career-oriented programs intend to transfer to a four-year institution. The
ideal transfer pathway is a 2 + 2, where a student spends two years at the
community college, likely receiving an Associate’s degree, and then two years
at a four-year college or university, receiving a Bachelor’s degree after a total
of four years. Unfortunately, a 2 + 2 is more the exception than the rule.

PCC’s Computer Science program is designed to align with Portland State
University’s Computer Science program, and theoretically it offers a smooth
transfer path. However, since many PCC students require additional math,
reading, or writing classes, the pathway may be a 3 + 2 instead of a 2 + 2.
A further stress point is that PCC’s program does not align as well with CS
programs at other Oregon institutions students may be interested in, such as
Oregon State University and the University of Oregon.

On the other hand, PCC’s career-oriented computing programs are highly
technical, with the goal of giving students enough skills in two years to get a
job in the IT industry, while at the same time, aligning with as many local and
regional four-programs as possible in order to keep the door open for students
who may choose to pursue a Bachelor’s degree. These career-oriented programs
have a higher technical component and a lower general education component
than transfer programs, and often result in a 2 + 3 model for students who
choose to transfer.

Despite many barriers, a positive trend in support of community college
transfer students in career-oriented computing programs has been the growing
number of Bachelor of Applied Science (BAS) programs in computing disci-
plines. These programs tend to accept more of the credits that students obtain
at the community college, and in some cases, even accept an Associate of Ap-

214



plied Science degree as a block of two years worth of credit, giving a transfer
student immediate junior standing.

3 Adam Wade Lewis

Athens State University is a two hundred year old institution that has been
an upper-division only university for over fifty years. So the needs of the adult
learner and transfer student are paramount to our institution. The care and
support of these students is very different than the usual population of 18-22
year-old students that form the traditional body of college students recruited
by our institutions.

For the computing disciplines, our efforts at Athens State University have
been deeply focused on the creation and tuning of articulation agreements.
This process is complicated by the focus in our community college partners
on terminal associate degrees and their pivot towards certificates and micro-
credentials. Students transferring with those credentials find themselves with
many credit hours that do not transfer and often discover the unfortunate
need for two to four additional semesters to address what we call the “general
education impedance mismatch”.

This is why the work on curriculum guidelines happening within organiza-
tions such as ACM2Y is so important. These organizations are putting great
effort into harmonizing the curriculum guidelines between the two year and
four year institutions. Understanding and aiding this effort is critical to any
pivot towards better serving adult learners.

4 Karen Works

The FSU online Computer Science program is an ABET accredited program
which accepts students who have completed a minimum of 52 hours of credit at
FSU, or an A.A degree. We serve a diverse nontraditional student population
and support students around the globe.

Beyond the traditional issues of articulation agreements between schools,
we have the additional requirement of ensuring that our transfer students are
prepared for the rigor of an ABET accredited program. We work closely with
many community colleges and universities throughout the country to ensure
that these students make successful transitions.

FSU is dedicated to our non-traditional online students and has developed
many resources to ensure that anything a face to face student can do is available
for our online students as well.

3 15



5 Biographies

Cara Tang is a faculty member in the Computer Information Systems Depart-
ment at Portland Community College in Portland, Oregon, and leads PCC’s
Cybersecurity program. She is the Chair of ACM2Y, an ACM group focus-
ing on computing education in two-year programs; Past Chair of the ACM’s
Committee for Computing Education in Community Colleges; and a Member
of the ACM Education Board.
Adam Wade Lewis is an Associate Professor of Computer Science and Pro-
gram Coordinator for Computer Science and Information Technology at Athens
State University, in Athens, Alabama. They are actively involved with transfer
advising and academic advising process working with both community college
transfer students and transfer students from other senior institutions.
Karen Works is an Assistant Teaching Professor of Computer Science in the
Computer Science Department at the Panama City campus of Florida State
University.

416



Incorporating Emerging Cybersecurity Topics
in Computing Courses∗

Conference Tutorial

Cara Tang1, Sidd Kaza2, Blair Taylor2

1 Portland Commmunity College
cara.tang@pcc.edu

2 Towson University
skaza,btaylor@towson.edu

The mission of the National Cybersecurity Curriculum Task Force (https:
//cyberedtaskforce.org/) is to catalog and create high-quality and relevant
curricula on emerging cybersecurity topics, mapping to curricular and work-
force guidelines, and make them freely available. This mission is accomplished
with the following goals: (1) Conduct a comprehensive search of available cur-
ricula in cybersecurity repositories, directories, and among the community. (2)
Perform gap analysis to identify high-need areas to create a cyber-ready work-
force. (3) Develop high-impact, high-value curricula for the community.

Completing its final year of NSA funding in 2024 through the NCAE-C pro-
gram (National Centers of Academic Excellence in Cybersecurity), this project
has iterated through the three goals in multiple cycles. This tutorial will share
the results of the project, demo some of the curriculum produced by the project,
and offer opportunities for audience members to explore the cybersecurity cur-
riculum, housed on CLARK (https://www.clark.center/), and ways it can be
used to incorporate cutting-edge cybersecurity content into their own courses.

CLARK is the largest platform that provides free cybersecurity curricu-
lum. It is home to high-value, high-impact cyber curriculum created by top
educators and reviewed for relevance and quality. This tutorial will explore
the curriculum available on CLARK, which includes materials appropriate for
cybersecurity courses, as well as materials appropriate for incorporating cyber-
security into any computing courses (IT, CS, IS, etc.). Special focus will be
given to curriculum that has been developed through the National Cybersecu-

∗Copyright is held by the author/owner.

1 17



rity Curriculum Task Force project, which covers emerging cybersecurity topics
such as zero trust security, ransomware, quantum resistant cryptography, and
software supply chain security.

218



Using a Distinctive Curricular Design Process
for Liberal Arts Computing Programs∗

Conference Tutorial

Jakob E. Barnard1, Grant Braught2, Janet Davis3,
Amanda Holland-Minkley4, David Reed5, Karl Schmitt6,

Andrea Tartaro7, James Teresco8

1University of Jamestown, Jamestown, ND 58405
Jakob.Barnard@uj.edu

2Dickinson College, Carlisle, PA 17013
braught@dickinson.edu

3Whitman College, Walla Walla, WA 99362
davisj@whitman.edu

4Washington & Jefferson College, Washington, PA 15317
ahollandminkley@washjeff.edu

5Creighton University, Omaha, NE 68178
DaveReed@creighton.edu

6Trinity Christian College, Palos Heights, IL 60463
Karl.Schmitt@trnty.edu

7Furman University, Greenville, SC 29690
andrea.tartaro@furman.edu

8Siena College, Loudonville, NY 12211
jteresco@siena.edu

As part of its forthcoming article in the Curricular Practices Volume with
the new ACM/IEEE-CS/AAAI Computer Science Curricula guidelines (CS2023)1,
the SIGCSE Committee on Computing Education in Liberal Arts Colleges
(SIGCSE-LAC Committee) has developed guidance, informed by its sessions at
recent CCSC and SIGCSE conferences, to help with the design and/or revision

∗Copyright is held by the author/owner.
1https://csed.acm.org

1 19



of CS curricula in liberal arts contexts [1]. The committee’s earlier work found
that liberal arts and small colleges approach the design of their computing cur-
ricula in unique ways driven by institutional mission or departmental identity.
This impacts how faculty at these colleges adopt curricular guidelines. Curric-
ular guidelines like CS2023 inform curriculum design but are balanced with the
vision for a program, departmental strengths, locale, student populations, and
unique academic experiences. The desire to craft distinctive curricula, com-
bined with the size of curricular recommendations, requires an assessment of
trade-offs between achieving full coverage of curricular recommendations and a
school’s other priorities. SIGCSE-LAC’s guidance encourages faculty to reflect
on their programs and the role of CS2023, beginning with their institutional
and departmental priorities, opportunities, and constraints.

This session will introduce participants to SIGCSE-LAC’s guidance to con-
sider curricular development in the context of the unique features of their pro-
grams and institutions. Following an overview and brief discussion of CS2023,
participants will be guided through an abbreviated design process using the
latest version of the committee’s reflective assessment process. This process is
framed by a series of scaffolding questions that begin from institutional and
departmental missions, identities, contexts, priorities, initiatives, opportuni-
ties, and constraints. From there, participants will be led to identify design
principles for guiding their curricular choices, including the CS2023 recommen-
dations. Examples gathered from the committee’s previous CCSC and SIGCSE
sessions will be available to help articulate identity and program design prin-
ciples, which will then be used to identify distinctive program-level learning
outcomes. A spreadsheet tool that is being developed to aid in the shaping
of curricular choices will be demonstrated. Participants will leave the session
with a better understanding of how CS2023 can impact their programs and in-
struction on how to use the SIGCSE-LACS Workbook outlining our curriculum
design process with their departments. Participant feedback will be gathered
and used to refine the committee’s guidance.

Acknowledgements

This session is supported by the National Science Foundation under Grant No.
2342587.

Presenter Biographies

One or two of this session’s eight co-authors will serve as presenter(s)/facilitator(s).
Jakob E. Barnard is an Associate Professor, Chair of the Computing,

Design, & Communications Department, and Director of Online Technology

220



Programs at the University of Jamestown. He is a facilitating member of the
SIGCSE-LAC Committee, and his research involves how curricula have been
integrated into Liberal Arts Computing programs. Grant Braught is a Pro-
fessor of Computer Science at Dickinson College. He is a facilitating member
of the SIGCSE-LAC Committee. He has organized committee events focused
on curricula and published widely on CS education issues, particularly within
the liberal arts. Janet Davis is Microsoft Chair and Professor of Computer
Science at Whitman College, where she serves as the department’s founding
chair. She co-organized SIGCSE pre-symposium events in 2020 and 2021 on
behalf of the SIGCSE-LAC Committee. Amanda Holland-Minkley is a
Professor of Computing and Information Studies at Washington & Jefferson
College. Her research explores novel applications of problem-based pedago-
gies to CS education at the course and curricular level. She is a facilitating
member of the SIGCSE-LAC Committee. David Reed is a Professor of Com-
puter Science and Chair of the Department of Computer Science, Design &
Journalism at Creighton University. He has published widely in CS education,
including the text A Balanced Introduction to Computer Science, and served
on the CS2013 Computer Science Curricula Task Force. Karl Schmitt is
Chair and Associate Professor of Computing and Data Analytics at Trinity
Christian College. He has served on the ACM Data Science Task Force and
various Computing, Technology, and Mathematics Education committees for
the MAA, ASA, and SIAM. His interests explore data science education, and
interdisciplinary education between computing, mathematics, data, and other
fields. Andrea Tartaro is a Professor of Computer Science at Furman Uni-
versity. Her computer science education research focuses on the intersections
and reciprocal contributions of computer science and the liberal arts, focusing
on broadening participation. She is a member of the SIGCSE-LAC Commit-
tee, and has published and presented in venues including the CCSC and the
SIGCSE Technical Symposium. Jim Teresco is Chair and Professor of Com-
puter Science at Siena College. He has been involved in CCSC Northeastern
for over 20 years and currently serves as board chair, and has been involved
with the SIGCSE-LAC Committee for 5 years. His research involves map-based
algorithm visualization.

References

[1] Amanda Holland-Minkley et al. “Computer Science Curriculum Guide-
lines: A New Liberal Arts Perspective”. In: Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1. SIGCSE 2023.
Toronto ON, Canada: ACM, 2023, pp. 617–623. isbn: 9781450394314. doi:

3 21



10.1145/3545945.3569793. url: https://doi.org/10.1145/3545945.
3569793.

422



Tips and Tricks for Developing Successful
Technology Projects for Introduction to

Programming and Outreach∗

Conference Workshop

Anca Doloc-Mihu, Cindy Robertson, Cengiz Gunay
Department of Information Technology

Georgia Gwinnett College, Lawrenceville, GA, 30043
{adolocmihu,crobertson2,cgunay}@ggc.edu

There is a great need for a diverse and capable workforce to maintain
our nation’s excellence in science, technology, engineering, and mathematics
(STEM). In particular, women and minorities are severely underrepresented in
the information technology (IT) fields. In addition to a standard curriculum,
outreach activities have been successfully used by many institutions to attract
more students to IT. Our Technology Ambassadors Program (TAP) at Georgia
Gwinnett College (GGC) has been a successful IT outreach program for eleven
years, training a diverse population of college-level students to develop and
conduct engaging and fun technology outreach projects to audiences ranging
from K-12 students to general education college classes at GGC.

More recently, we have found that these projects [1], originally designed as
outreach activities, are also very good resources for introducing basic program-
ming concepts in our classrooms. Our previous work has shown that when our
students use block coding as a means to slowly and easily introduce coding con-
cepts, they are more prepared for text-based programming skills. Using block
coding to program a game or activity to learn algorithmic thinking is not only
more fun, but more importantly it is a better way to develop the step-by-step
process of writing coding instructions and is more enticing to students. This
flow allows them to understand and be able to apply basic computing concepts
and enjoy the learning process.

In this workshop, we will introduce the audience to different types of en-

∗Copyright is held by the author/owner.

1 23



gaging projects that faculty and students perform at our institution and to
our TAP repository website where we host freely available projects. We aim
to spark lively discussions about how to best introduce programming skills to
engage audiences of any age and establish new collaborations with audience
members.

References
[1] Cindy Robertson and Anca Doloc-Mihu. Understanding college level student

learning of basic programming at an open access institution. In Proceedings of
the 2023 ACM Southeast Conference (ACMSE), page 26–32, NY, USA, 2023.
ACM.

224



Message Passing and Shared Memory Projects∗

Nifty Assignment

William Kreahling
Department of Mathematics and Computer Science
Western Carolina University, Cullowhee, NC 28723

wkreahling@wcu.edu

Abstract

Concurrent programming is an important topic that involves many concepts
that learners struggle to understand. In my class we go over topics, involv-
ing processes, process creation, threads, message passing, shared memory, race
conditions, deadlock and many others. Learners need practice with these con-
cepts to fully understand the issues and the synchronization primitives that
can be used to write safe concurrent programs.

Finding projects that learners can successfully complete within a small time-
frame can be difficult. Several years ago I wrote two assignments focusing on
the aforementioned topics that could be solved using a variety of synchroniza-
tion primitives. In the past learners have completed these assignments using
Java or Rust.

I created a message passing project where students simulate ‘Buffon’s nee-
dle’. In this project learners learn the basics of threads and threadpools and
use message passing techniques for process communication. I also created an-
other assignment, based on the concurrency problem first described by Suhas
Patil in 1971. In this assignment learner’s use shared data and synchronization
primitives like semaphores and condition variables.

Material

No materials are required beyond a programming/runtime environment. Many
students choose to use an integrated development environment (IDE), but it is

∗Copyright is held by the author/owner.

1 25



not required. This paper goes over details of both assignments, but more ex-
plicit details and rubrics will be provided upon request. Some of the challenges
learners will face will vary depending on the programming language used. For
example, shared memory in Java is as easy as passing references to objects
and learners can accidentally use shared memory without realizing it, while in
Rust, the Rust compiler will generate warnings and errors if shared memory is
not set up ‘safely’.

Message Passing Assignment

The first assignment is based on Buffon’s Needle. Buffon’s Needle is an experi-
ment where one drops needles onto a floor that have equally spaced lines on it,
if a needle crosses a line it is a ‘hit’ and if the needle does not cross the line it
is a ‘miss’. Using data from many independent needle drops, one can estimate
the value of PI. The learner is given an assignment handout, with a supplied
mathematical formula, to help them estimate PI from the experiment data.

One way to estimate PI is using the Formula 2N(hits + misses)
L(hits) , where N

is the number of total number of needles to drop in the experiment and L is
the distance between the lines. A ‘hit’ occurs when a dropped needle crosses
a line. To simplify this experiment, the program should ensure the size of the
needle is less than the distance between the lines.

Learners recreate this experiment utilizing multiple threads via threadpools.
Multiple ‘worker’ threads are responsible for simulating multiple needle drops
while the main thread collects all the data and estimates PI. Message passing
is used for communication between threads. For the experiment to accurately
estimate PI, learners need to perform many hundreds of thousands of needle
drops and collect data, which lends itself very well to concurrent programming.

As part of this assignment the learner’s code must demonstrate that their
experiments produce correct results and show that their solution is done cor-
rectly using message passing and not shared memory. Learners must also show
that the data from each ‘worker’ thread is gathered by the main thread as
each thread finishes and not necessarily in the order the threads were started.
Learners concurrent solutions must execute faster than a single threaded solu-
tion. As part of this assignment learners are not allowed to explicitly use any
built in constants for PI.

One weakness of this project is that is requires a shared testbed to fairly
compare solutions, so that everyone has the same resources such as CPU quan-
tity and capability, memory, process quotas, etc. This shared testbed could be
a departmental server or a virtual machine.

226



Shared Memory Assignment

For my shared memory project I created an assignment based on the concur-
rency problem first described by Suhas Patil in 1971. Learner’s are given a
scenario involving limited resources where those resources are needed by mul-
tiple consumers. In this scenario, there is a single distributor of these resources.
In the project handout, a common, flawed solution that leads to deadlock is
covered. Learners are then given a set of guidelines and restrictions for solv-
ing the problem. Correct solutions must used shared memory and prevent
deadlock and starvation. To solve this problem students need to correctly use
synchronization primitives. In the past, learners have used binary and count-
ing semaphores, binary semaphores and condition variables, or monitors and
condition variables.

In this assignment there are three resources, three consumers, one distrib-
utor, and N number of messengers. Each consumer has an unlimited supply of
one of the three resources, but needs the other two to perform work. No two
consumers can have an unlimited supply of the same resource. The consumers,
messengers, and distributor all run in their own threads. All the threads must
work together, run concurrently, and can only communicate using shared mem-
ory. When processes have no useful work to do, they should not be consuming
CPU time.

Each consumer needs all three resources to perform any work. In this
scenario, each consumer will try to acquire the two resources it lacks then
prepare them and perform work. ‘Preparing resources’ and ‘work’ are simulated
by having consumers sleep for a random amount of time. Each consumer may
only get the other resources it needs from shared memory.

The distributor has an endless supply of all three resources and its job
is to distribute supplies to a shared memory location. The distributor will
randomly choose two of the three resources and place them in a shared memory
location, the distributor will make sure that the two resources are never of the
same type. The distributor cannot distribute any more supplies until the two
resources previously delivered have been removed from the shared memory.
Each resource placed in shared memory will be guarded by a separate and
distinct lock, such as a semaphore, or mutex.

Once consumer processes have obtained a resource from shared memory,
they will never give it up, and resources are consumed during ‘work’ and con-
sumer threads will not communicate with other consumer threads. Once a
consumer has all three resources to perform work, it will signal the distributor
that it can deliver more supplies to the shared memory location.

Messenger threads are allowed to communicate with consumer threads, ac-
cess shared memory, and move the resources once the distributor has placed
them in shared memory. How many messengers are needed and their exact

3 27



role is up to the learner to determine.
For this assignment, students must ensure this program allows all consumer

processes to perform work ‘at the same time’ without deadlock, livelock, star-
vation, or explicit polling, until the program is terminated by the user.

As with the message passing assignment it is stipulated that learners must
write their code so that it demonstrates the code works correctly and that
threads run concurrently. This assignment can lead to a greater understanding
of concurrency and the topics surrounding it as well as a deeper understanding
of the tools available to implement concurrent programming, including thread-
ing, shared data, shared memory, and the synchronization primitives that are
available for use in most programming languages.

This assignment is not without weaknesses. There are artificial limits im-
posed on the assignment, so the logic of how the distributor thread and con-
sumer threads are allowed to communicate and share resources must be made
very clear in the instructions.

Anecdotally, I have had multiple learners over the years tell me how much
they have enjoyed this assignment.

428



Three Phase - Adversarial Search - Tile Games∗

A Nifty Assignment

Karen E. Works
Computer Science

Florida State University
Panama City, FL 32405

keworks@fsu.edu

Abstract

With the advent of chatGPT and Copilot I find that students are not delving
deep enough into the implementation of search approaches. To combat this, I
decided to implement a three-phase adversarial search project. After lectures
on adversarial search approaches and implementation examples, students are
given code to a user versus user basic tile game. They are informed of the three
phases of the assignment with the goal of encouraging students to understand
that they are expected to be able to read and understand an adversarial search
logic. In the first phase, all students use the user versus user basic tile game to
implement a computer versus user basic tile game app that utilizes an adver-
sarial search. In the second phase, students create and implement their own
computer versus user basic tile game app by changing the rules on how the tile
game is won and what a valid move is. In the third phase, students are given
a timed 10 minute quiz where they are given code for a tile game and the rules
for how the game is won and valid moves. The students must identify if the
adversarial search is properly implemented and if not then what logic is not
correct.

Materials

The only software requirements for this assignment is an integrated develop-
ment environment (IDE). All materials presented and coding examples are

∗Copyright is held by the author/owner.

1 29



available upon request.

Assignment

The basic tile game starts with a randomly generated three by three grid where
three tiles are marked with ’1’, three tiles are marked with ’2’, and 2 tiles are
marked with ’9’ (Figure 1).

Figure 1: Start Game

During a turn, a player may move any tile into the one blank space on the
board. The possible moves are up, down, left, and right and are bounded by
where the blank space lies on the board. For example, in the start scenario
above, a player may move a tile up (Figure 2a) or left (Figure 2b) into the
blank space on the board.

Figure 2: Example Valid Moves

(a) Up (b) Left

One player is assigned ’1’ and the other player is assigned ’2’. The goal is
to get three vertical tiles, three horizontal tiles (Figure 3b), or either diagonal
(Figure 3a) to match their assigned number.

The first two phases provide the students an opportunity to learn how to
implement an adversarial search and seek help when required. Phase 3 encour-

230



Figure 3: Example Wins

(a) 1 - Diagonal (b) 2 - Vertical

ages students to seek a deeper understanding of the material and to proactively
ask questions. After having success with this approach, in upcoming semesters
I am considering having the students do a synchronous live code review in lieu
of an online quiz.

3 31



Metadata

Summary Students are given a user versus user basic tile game.
• Phase 1: Students implement a computer versus user ba-

sic tile game app that utilizes an adversarial search.
• Phase 2: Students create and implement their own com-

puter versus user basic tile game app by changing the
rules on how the tile game is won and what a valid move
is.

• Phase 3: Students are given a timed 10 minute quiz where
they are given code for a tile game and the rules for how
the game is won and valid moves. The students must
identify if the adversarial search is properly implemented
and if not then what logic is not correct.

Topics Apply classical Artificial Intelligence techniques, such as
search algorithms, minimax algorithm, and greedy algo-
rithms to solve problems

Audience Mid CS2
Difficulty Medium: Given basic Python application that supports

tile game, implement AI search algorithms.
Strengths Allows students to learn classical Artificial Intelligence

techniques, such as search algorithms, minimax algorithm,
and greedy algorithms and understand how to use these
techniques to solve a problem.

Metadata(cont)

Weaknesses Students must read and understand the user versus user
basic tile game code. Reading code they have not written
may be a challenge for some students.

Dependencies Starting version of the user versus user basic tile game.
Variants Starting version of the goals of the tile game can be adapted

to develop different versions of the game.

432



Context-Driven English to Japanese
Translation with Visitors∗

Johnathan Dewey, Chris Alvin
Computer Science Department

Furman University
Greenville, SC 29613

{ johnathan.dewey, chris.alvin† }@furman.edu

Abstract

We present a mechanical translator that uses context to drive the
transfer of phrase representation from English to Japanese, thus effec-
tively producing a translation. Our translator consists of three distinct
steps. The first step takes raw English text, tokenizes it, and classifies
each token according to its part of speech. These tokens act as termi-
nals in a sentence tree that is constructed using a bottom-up technique.
The next step works to manipulate the internal nodes (non-leaf) nodes
of the sentence tree to reflect an ordering consistent with the sentence
structure of the Japanese language: subject-verb-object in English to
subject-object-verb in Japanese. The last step involves translating ter-
minal nodes in the sentence tree from English to Japanese, verifying
conjugation, and ensuring correct Japanese particles. We verified the
effectiveness of our proof-of-concept translator by testing for usage of
proper nouns, conjunctions, and all variations of tense features.

1 Introduction and Background

Computational translation can be inaccurate. Therefore, we propose a tech-
nique that uses context of language to aid in translation. Words of a language

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

†Corresponding author

1 33



are normally broken into distinct parts of speech (POS) which are classes of
lexical items that have a specific function within the language. Sentence formu-
lation is broken into three distinct parts which determine the sequence in which
certain words are uttered: subject, objects, and verbs. These two observations
of speech are good indicators of context that can be used by a translator to
make decisions during the translation process.

There exists a noticeable schism in schools of thought related to computa-
tional translation. On one hand, there are advocates for Statistical Machine
Translation (SMT) which employs a linguistic corpus: a large database that
contains linguistic lemmas and data such as its frequency in specific texts.
Therefore, SMT uses empirical data on the frequency and context of words
to provide a more cohesive and context-sensitive translation [3]. On the other
hand, there are advocates for Neural Machine Translation (NMT) which uses
Machine Learning (ML) techniques to train a model to learn and predict the
equivalent meaning of phrases between languages. With fervorous advance-
ments among ML, many think that it is objectively better.

SMT is useful in the scope of solving context-dependent translation prob-
lems and thus an effective method of translation. The main feature of SMT is
a linguistic corpus that organizes words of a language and relevant linguistic
information. One instance of relevant linguistic information is the POS tagging
that enables the organization of lexical items into their respective parts—such
as nouns, verbs, adjectives, etc. POS tagging provides richer contextual infor-
mation for a sentence and improves decision making in translation [4]. Addi-
tionally, POS tagging enables systems to interpret the structure of sentences
without knowing the exact translation [4]. Regularities in phrase structure
and POS can be used as context and can make decisions to attain translation
without knowing the individual words. This fact is emphasized in the trans-
lator where the meaning of words is not needed to drive translation. In fact,
translation of words after a Japanese phrase structure is derived is the only
instance where meaning of a word is needed.

However, there are some detriments to POS tags, as certain POS can often
be redundant and can hinder decision-making. POS like nouns are known to be
strong in aiding decision making, while redundant words such as determiners
impede the decision making of translation [4]. However, it is theorized in our
proposed translator that by treating certain POS as more important through a
precedence hierarchy, thus tagging can be mitigated. In such a hierarchy, POS
like verbs and conjunctions are treated as superior in contextual meaning than
that of a noun or determiner. Therefore, representations of phrases can easily
be discernible from the existing POS in the phrase.

When comparing SMT and NMT it is hard to determine if one is objectively
better than the other because they both yield accurate results. However, both

234



Figure 1: The workflow for context-based English to Japanese translation using
sentence trees.

techniques are known to have their own detriments such as NMT techniques can
have ill-defined test data of ML models while SMT has issues with management
and expansion of a corpus. As an apples-to-apples comparison, Phan and
Jannesari [7] employed the use of two SMT’s and two NMT’s to translate
source code from one programming language to another. In their experiment,
translation yielded a percent accuracy of 60-90% for SMT and 59-83% accuracy
for NMT [7]. When translating source code, it can be asserted that SMT
outperforms NMT in their current state [7]. Thus SMT is a relevant approach
to mechanical translation, and if SMT can outperform NMT for a simpler
abstraction of language, then it is theorized that a natural language translator
will yield accurate translations if it employs a SMT system.

This paper describes an SMT-based approach to translation of English to
Japanese. As shown in Figure 1, our process works in three phases: construc-
tion of a syntax tree we call a sentence tree, internal node manipulation on
the tree, and finally translation of terminal nodes. All source code is available
online1.

2 Theory: Syntax Trees and X-Bar

Syntax trees in linguistics are the hierarchical organization of lexical items
within a phrase, and a traversal of the sentence tree produces the sequential
utterance of lexical items of a phrase. Our translator is based on X-Bar Theory,

1https://github.com/john-dewey/Context-Based-Translator

3 35



Figure 2: Structure of the X-Bar phrase node [1]. X is the ‘head’ or POS
(Noun, Verb, etc.) that carries the most meaning. The X-bar (X’) establishes a
close connection between X and its complement; specifier are phrases occurring
before the head. Tense Phrase (TP) structure captures tense features and
modal auxiliaries (“can,” “should,” etc.); these features are encoded as the
Tense terminal T. T’ establishes a close connection between tense and the verb
phrase, whereas TP exhibits the placement of a subject before a Verb phrase.

a theory of syntax that creates representations of nuanced phrases; see Figure 2.
X-bar aims to make stronger predictions as to what constitutes a grammatical
sentence [1]. Their key feature, the X-bar node, is an extra node of abstraction
that permits nuanced or “non-flat” phrase structures so that phrases can be
independent of each other yet have associations [1].

Another feature of X-bar Theory is the assumption that phrase structure is
identical for all POS and all languages. While a bold assumption, it is based on
some truth. Many languages share a commonality in phrase structure where
the head (lexical item carrying meaning) of a sentence tree shares a more
intimate relationship with their complement than specifiers [1]. This fact is
reflected in the structure of an X-phrase (XP) node where the first level of the
phrase includes a specifier (“I” in “I went home”), and the second level includes a
complement (“home” in “I went home”). The complement is placed next to the
head (“went” in “I went home”) of the phrase to preserve this close relationship,
and therefore has the specifier come before the head. X-bar can be expressed
as a binary tree [5], thus resulting in efficient translation algorithms.

3 The Translation Algorithm

In this section, we consider the English sentence “She found a job last Friday”
which translates into Japanese as watashiwa saigono kinyoubini shigotowo mit-
suketa (私は最後の金曜日に仕事を見つけた). This example will serve to
communicate our translation algorithm workflow shown in Figure 1; Figure 3
depicts a more detailed sentence-tree perspective as well as the impacts of
employing several visitors over the sentence tree.

436



Figure 3: Overview of context-dependent translation: building a sentence tree,
manipulating internal nodes, and manipulating terminal nodes.

3.1 Preprocessing

Our first step identifies input words not contained in the primary corpus [2]: a
simple database of English words and their POS. One common discrepancy is
the use of contractions to exhibit tense features; e.g., “won’t” is a contraction of
the tense feature “will” and a negative “not.” Contractions do not exist in the
same capacity in the Japanese language; thus, they are split into two distinct
lexical items.

Corpus lookup. Each word is looked up in our primary corpus [2] contain-
ing only the lexical information for concrete word forms. For modified word
forms like “went” (modified from “go”) or “working” (modified from “work”)
they will fail the initial lookup and perform another search into a secondary
corpus [2]: a map from modified word forms to their unmodified word form.
If an English word exists in the corpus, then it can be represented fully in the
resulting tree; however, if lexical items like proper nouns are not in the corpus,
the translator assumes are nouns.

We observed that word encodings in the secondary corpus contained dis-
crepancies; e.g., continuous forms of verbs such as “working” would be encoded
as an adjective. To address this issue, the translator implements a context ver-
ifier that ensures that POS makes sense contextually. For example, adjectives
must reference a noun or another adjective. In cases where such requirements
are not met, nodes are re-encoded to find the correct POS that should exist.

3.2 Building the Sentence Tree

The previous steps provide a sequence of terminals in our sentence tree. That
is, we create a sentence tree using context derived from the type of nodes
present. As shown in Figure 3, a resulting sentence tree stores the subject,

5 37



verb, and objects as children of the tense features in a sentence. The structure
uses vertex nodes (NP, N’) to create hierarchical relationships between phrases,
and uses terminals to represent the lexical items of a sentence.

Building the tense phrase. Our goal in this step is to make a sentence
tree out of a list of nodes. These nodes are sent to the root node of a sentence
tree which is the TP node (see Figure 2). In X-Bar Theory, TP is a phrase
node that incorporates the requirements for a complete sentence.

A TP node has a left child that represents the subject of the sentence. The
right child is known as the T-bar (T’) node and allows for its right child to
contain a verb phrase that represents the verb and object of a sentence. The
left child is known as the tense (T) node because it stores all the tense features
such as present/past or modal auxiliaries, of the sentence. In our example
(Figure 3), the subject is a noun phrase containing the pronoun “She”; “She” is
a left-child of TP. The rest of the nodes (found, a, job, last, Friday) go to the
right child which is the T’.

In T’, the tense information of the sentence is recorded in its left child
which is the T terminal. After the recording of tense information, the same
nodes (found, a, job, last, Friday) are sent to verb phrase (VP) so that the verb
(“found”) can be separated from the objects (a, job, last, Friday) of a sentence.
We know it is a VP because the X-Bar structure of nodes states that the right
child of T’ is the VP required for a complete sentence [1]. VP then discerns
the location of the verb in relation to the remainder of the sentence. The verb
“found” does not have any specifiers, or words preceding it, so we can pass on
to the verb bar (V’) level. V’ separates the verb terminal and the remaining
sequence of nodes and encodes “found” as the V’s left child. Once the verb is
encoded at the V’ level, the remaining objects are sent to an adjunct node.

Building the adjuncts. Adjunct nodes act as a separator between sub-
phrases (left panel Figure 3). The direct object of the verb “found” is “a job,”
so this constituent phrase is the left child of the adjunct so that it is next to
the verb in the context of a sentence tree’s traversal. This position is known as
the direct object because it is the complement of the verb in the sentence. The
phrase “last Friday” is an adjunct phrase, so it goes to the right child of the
adjunct node so that it comes last in the context of a sentence tree’s traversal.

Constituent phrases that reference the adjunct node are determined through
an adjunct identifier, which breaks down individual constituent phrases. “a job”
consists of an article and a noun which is recognizable constituent phrase to the
identifier; similar for “last Friday.” These phrases are encoded as separate, so
as not to put them directly under the same hierarchy and inadvertently make
the phrases dependencies of each other.

638



3.3 Manipulating the Sentence Tree through Visitors

The remainder of the translation algorithm manipulates a sentence tree to
conform to the structure of a Japanese sentence. Each manipulation is imple-
mented as a unique visitor : an object-oriented design pattern that facilitates
flexible, easy, and abstract visitation over elements in a data structure [6]. Vis-
itors are used to traverse the sentence tree and make decisions regarding the
structure of the sentence tree and the information held in its nodes.

3.3.1 Internal Nodes

The goal of these visitors is to preprocess a sentence tree from a “Subject-Verb-
Object” (SVO) English sentence structure to a Japanese “Subject-Object-Verb”
(SOV) sentence. To do so we (1) remove unnecessary lexical items and (2)
reorder the sentence tree to achieve a Japanese word order—relying on POS
context to make decisions.

Strip. Japanese lacks a clear future tense, while in English the word “will”
is very indicative of an action happening in the future. In Japanese, future
tense is not discernible from verb conjugations and use the same conjugations
as present tense. Therefore, in terms of conforming to the Japanese sentence
structure, we remove any words that do not exist in the same context as English
words. Similarly, for articles, there is no definite (“the”) or indefinite (“a”) article
for nouns in Japanese. Therefore, these unnecessary words must be removed
from noun phrases. As shown in Figure 3, the strip visitor will result in a
sentence tree that reads “She found job last Friday.”

Reordering. Sentence phrase order is arguably the largest discrepancy
between English and Japanese translation: SVO versus SOV, respectively. This
means that the structure of nodes and their children must match the traversal of
a Japanese sentence tree. The reordering visitor acquires a SOV structure. For
example, upon visiting a verb phrase, the visitor switches the node’s children so
that the verb comes last. In some cases, a more complex approach is required:
a node’s children may be reordered based on conditionals influenced by specific
situations, instead of generalizations based on POS. For example, when a visitor
visits an adjective phrase node, and it detects a “not” phrase attached to its
specifier (left child), it reorders the node’s children so that the “not” phrase
comes after the adjective as it does in Japanese.

In panel 2 of Figure 3, “She found job last Friday,” the T’ node is reordered
so that its right child is the T terminal with tense information and should come
last. Then, both the VP and V’ node’s children need to be reordered so that
the verb comes after the objects. Finally, the objects need to be reordered so
that the direct object “job” is next to the verb “found.”

7 39



3.3.2 Translation Visitors: Terminal Nodes

We continue walking through our workflow by consider the right panel of Fig-
ure 1. The remainder of the visitors manipulate the terminals of the sentence
tree to achieve the grammatically correct representation of the Japanese syntax.
This is done through (1) transferring English text to Japanese, (2) verifying or
constructing Japanese conjugations, and (3) verifying or constructing Japanese
particles. Since particles have a post-fix position in relation to a word, they
are ordered as the last task before achieving a translation.

Translation. At each terminal in the sentence tree, a visitor accesses an
English-Japanese parallel corpus that maps English words to Japanese words.
We were unable to identify a free, or even a reasonably costed, well-formed
parallel corpus. As a result, we manually constructed a parallel corpus to
facilitate testing. This creates an imbalance when considering the primary and
secondary English corpora used in sentence tree construction.

Conjugation. In the verification or construction of Japanese conjugations,
tense features and other modifiers such as negatives are searched and used as
context to produce proper conjugations with the right tense and modality. In
the example, the verb “found” is conjugated correctly as mitsuketa (見つけた)
through using the parallel corpus.

Japanese verbs are ordered with modifiable stem, a conjugation for tense,
and a conjugation for its modality (positive or negative). We thus conjugate
verbs and adjectives in the sentence tree to include the stem and tense conju-
gation, but in the case of a negative “not” connected to its phrase, the tense
conjugation is left out and handled by the “not” terminal. For example, “did
not find” would be treated as two words “not” and “find.” After reordering,
this phrase is “find not [past],” which the translation and conjugation visitors
would translate to mitsuke naka tta (見つけなかった).

Japanese verb conjugation also has three classes of verbs that require differ-
ent conjugations. The godan (五段) verbs are the most common and has five
possible stem conjugations. The ichidan (一段) verbs are common but have ir-
regular conjugations due to an -iru/-eru (ぃる/ぇる) verb ending. Finally, the
irregular class of verbs contain the words “to do” (suru する) and “to come”
(kuruくる). Adjectives have two classes: the adjectives ending in an -i (い)
sound and adjectives ending in a -na (な) sound.

Particle population. Particle population visits each constituent phrase’s
head and decides what particle is appropriate to attach for each phrase. In
Japanese, each constituent phrase is assigned some particle which denotes its
relationship with both the verb and the sentence. However, using X-bar theory
we can discern the location of phrase specific particles. For example, the head
of the TP’s left child is the subject of the sentence [1]. Therefore, we can
recognize “she” (彼女) as the subject and add the particle wa (は) to denote

840



Table 1: Translations focusing on different tense features and their verb forms.

this function. Furthermore, the head of the right child’s phrase in a V’ is the
object of the verb [1]. Similarly, we can recognize “job” (仕事) as the object
and add the particle wo (を) to denote this function.

A final visitor outputs the translated Japanese sentence.

4 Results

The translator was able to produce Japanese translations for 60 English sen-
tences in past, present, future tense, as well as their continuous, simple, and
perfect forms. An excerpt from those test cases is provided in Table 1; we
discuss these numbered tests below. In addition to all tense features, there are
grammatical structures that are accurately represented in Japanese. For ex-
ample, in test 5, “during” follows the Japanese pattern: Noun +の間. Further-
more, conjunctions in the context of two nouns, such as in test 7, is accurately
represented in the Japanese form: Noun + to (と) + Noun.

We also observe correct, nuanced ordering of POS in sentences like test 9.
In Japanese, adverbial phrases usually come at the beginning of the phrase,
unlike English that usually introduces them after the subject. Owing to the X-
bar structure, we can effectively separate “currently” from the subject “I” and
reorder it so that genzai (現在), meaning currently, comes first in the sentence.

Our translator does have some deficiencies. Our English-Japanese parallel
corpus that stores English and corresponding equivalents in Japanese along
with parts of speech was created as a bespoke utility. While not ideal, no

9 41



other existing tool provided the nuanced information required by the context-
based translation. As with any custom tool or database, this might result in
overfitting of the parallel corpus to the test data. For example, in test 8 and 13,
the words “Rachel” and “8:00” are examples of words that are translated well
due to the overfitting of the bespoke parallel corpus. “Rachel” is a proper noun,
and if a proper noun like “John” was used, the translation visitor would encode
a null value into its terminal rather than jon (ジョン) in Japanese. Similarly,
“8:00” is a concept of time, and the Japanese represent time differently. The
parallel corpus returns “8時,” but for other cases it would need to follow the
format for Japanese time: Hour + ji (時), Minute + bun (分).

Furthermore, we observe that the accurate use of verbs is not being used
effectively. For example, in test 11, the phrase “play the piano” does not use
the correct word for “play” in Japanese. The current word it translates to
asobu (遊ぶ) does not make grammatical sense in the context of a “piano,” and
instead should be hiku (弾く). This error also occurs in test 10 where “going
out” should be the verb dekakeru (出かける) and not sotoni iku (外に行く).

Last, we observe that Japanese particles are not populated effectively. As
for translation, it is simple to translate prepositional particles due to their
words in the parallel corpus matching the prepositional particles in Japanese.
However, for other constituent phrases it was harder to discern the correct
particle. This is because Japanese particles have nuanced applications that
cannot be discerned on POS context alone. Therefore, this translator assumes
the particle ni (に) for certain noun constituent phrases, and the particle wo
(を) for objects of the verb. While this assumption accurately portrays some
particle usages, it is largely an ineffective feature that can be addressed in
future work by integrating an NMT.

5 Conclusions

We have proposed an SMT context-driven translator for translation of English
to Japanese. We leveraged X-bar theory to drive our means of representation
as sentence trees with greater nuance. X-Bar’s inclusion of a bar node helped
separate and organize unique features of a word and permitted nuanced tree
structures without compromising the sequential ordering of words. The the-
ory was able to accurately represent all the test sentences in both English and
Japanese, which is evidence of the translator’s utility and emphasizes its uni-
versality. This work is an example of the power of linguistics theory and the
visitor design pattern implemented over a tree structure. This work also repre-
sents a foundation for further exploration in translation, but may also provide
a unique opportunity for undergraduate students to employ their knowledge of
fundamental data structures and relatively straightforward algorithms.

1042



References

[1] Catherine Anderson et al. Essentials of Linguistics. 2nd ed. eCampusOn-
tario, 2022.

[2] Mark Davies. “The 385+ million word Corpus of Contemporary American
English (1990–2008+): Design, architecture, and linguistic insights”. In:
International journal of corpus linguistics 14.2 (2009), pp. 159–190.

[3] Julia Hirschberg and Christopher D. Manning. “Advances in natural lan-
guage processing”. In: Science 349.6245 (2015), pp. 261–266. doi: 10.
1126/science.aaa8685. eprint: https://www.science.org/doi/pdf/
10.1126/science.aaa8685. url: https://www.science.org/doi/abs/
10.1126/science.aaa8685.

[4] Robert M. Losee. “Natural language processing in support of decision-
making: phrases and part-of-speech tagging”. In: Information Processing
& Management 37.6 (2001), pp. 769–787. issn: 0306-4573. doi: https:
//doi.org/10.1016/S0306-4573(00)00061-3. url: https://www.
sciencedirect.com/science/article/pii/S0306457300000613.

[5] MD Nimram et al. “Exploring X- Bar Syntax as Applied to English Syntac-
tic Structures”. In: Greener Journal of Language and Literature Research
8.1 (2023), pp. 12–28.

[6] Jens Palsberg and C. Barry Jay. “The Essence of the Visitor Pattern”. In:
COMPSAC ’98 - 22nd International Computer Software and Applications
Conference, August 19-21, 1998, Vienna, Austria. IEEE Computer Soci-
ety, 1998, pp. 9–15. doi: 10.1109/CMPSAC.1998.716629. url: https:
//doi.org/10.1109/CMPSAC.1998.716629.

[7] Hung Phan and Ali Jannesari. “Statistical machine translation outper-
forms neural machine translation in software engineering: Why and how”.
In: Proceedings of the 1st ACM SIGSOFT International Workshop on Rep-
resentation Learning for Software Engineering and Program Languages.
2020, pp. 3–12.

11 43



Software Orchestration: A Paradigm for
Software Development and Security Assessment

using ChatGPT Requirements∗

Joseph Elarde, Barry Bruster, Mir Hasan
Austin Peay State

University
Clarksville, TN 37044

elardej@apsu.edu, brusterbg@apsu.edu, hasanm@apsu.edu

Abstract

Software orchestration integrates AI tools like ChatGPT into the soft-
ware development process, evolving beyond traditional methods. This
paper introduces Software Orchestration, blending the concepts of a mu-
sical symphony, where a conductor guides an orchestra, with automated
processes in computing. Here, AI Neural Networks act as the "orchestra"
and the Software Engineer as the "conductor," collaboratively crafting,
refining, and executing software. This approach combines human exper-
tise with AI capabilities, enhancing software design, development, vali-
dation, and documentation. We explore its principles and applications
in software development, supported by nine experimental case studies,
highlighting its transformative potential in the software industry.

1 Introduction

The quest for producing software that is exceptional in quality, secure, main-
tainable, and well-documented is pivotal for technological advancement. Rapidly
delivering superior software has become a critical competitive edge for busi-
nesses, turning agility in software development from aspiration to necessity.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

144



Traditional software engineering paradigms often struggle to balance rapid de-
velopment with quality assurance. The integration of Artificial Intelligence
(AI), particularly Large Language Models (LLMs) like ChatGPT [9] has intro-
duced ’software orchestration’, harmonizing rapid development with quality.
Our research explores software orchestration, focusing on prompt engineering
for optimal outcomes. We address the following questions:

1. What are the most effective prompts or prompt engineering techniques
for software orchestration in design and development phases?

2. How does software orchestration, compared to traditional methods, in-
fluence productivity?

This paper is structured as follows. Section 2 introduces our proposed software
orchestration process, detailing design, development, documentation, debug-
ging, deployment, and maintenance. Section 3 outlines our evaluation method-
ologies. Section 4 presents our assessment results. Section 5 discusses the
implications of our findings. Section 6 provides background and literature re-
view, situating our research within the broader academic discourse. Finally,
Section 7 summarizes our conclusions, contributions, and potential avenues for
future research.

2 AI Assisted Software Development

Let’s conceptualize AI-assisted software development as a hierarchical struc-
ture, comprising four distinct levels of support:

1. Code Autocompletion: Representing the foundational level of AI as-
sistance, this involves the IDE offering suggestions for code elements,
such as variables and methods, rooted in the immediate context.

2. Function Insertion (e.g., GitHub Copilot): Progressing a step fur-
ther, AI at this level can propose or generate intricate code snippets
and/or entire functions. GitHub Copilot exemplifies this tier.

3. AI Natural Language Assists (e.g., Chat GitHub Copilot): This
level allows developers to converse with AI in natural language to address
coding assistance, answer queries, or requesting high-level code genera-
tion.

4. Complete Software Lifecycle Support (Software Orchestration
Process): The pinnacle of AI integration, this level sees AI’s involvement
in every facet of the software development lifecycle. From the nascent
design phase to debugging and maintenance, AI’s holistic involvement has
the potential to redefine the paradigms of software creation and evolution.

2 45



This hierarchical framework underscores the escalating role of AI in soft-
ware development. It chronicles AI’s journey from offering rudimentary code
suggestions to its comprehensive engagement in the software lifecycle.

2.1 Software Orchestration Introduction

Software development is undergoing significant transformation with the inte-
gration of Artificial Intelligence (AI), particularly through "Software Orchestra-
tion." This paradigm likens AI Neural Networks to an "orchestra" and Software
Engineers to "conductors" who guide AI in designing, refining, and executing
projects. This collaborative synergy enhances software craftsmanship beyond
conventional automation. Traditionally, the Waterfall model [4] has dominated
software development with its linear, sequential phases: Requirements Gath-
ering, Design, Implementation, Testing, Deployment, and Maintenance. While
systematic, its rigidity has led to the adoption of dynamic methodologies like
RAD, Spiral, and Agile to meet modern development needs. Software Orches-
tration modifies this process by retaining requirements gathering and harness-
ing AI for rapid prototyping and iterative development. It encompasses stages
such as Initial Prompt, Reflection, Infrastructure Implementation, Applica-
tion Implementation, Debugging, Post-Development Review, Deployment, and
Maintenance, detailed below.

1. Initial Prompt: The initial prompt in Software Orchestration is critical
for setting the stage for the application’s design and functionality. For ex-
ample, the "Student Class Planner" application aids faculty in managing
graduate students’ study programs. The prompt includes a description of
the following: Background, Basic Application Design, Modular Design,
Database Structure, GUI Framework, Error Handling, Authentication,
Concurrency, External Libraries, Deployment, User Roles, Data Valida-
tion, Backup and Recovery, Performance Requirements, System Integra-
tion, UX/UI Design, Logging, Feedback Mechanism, Training, Documen-
tation, and Scalability. Refer to the GitHub site for a complete example
[3].

Detailed initial specifications are essential for shaping the development
process, explaining the roadmap, and addressing key application facets.
This minimizes ambiguities, streamlines development, and ensures align-
ment with the initial vision.

2. Reflection Phase: The reflection phase is crucial for refining and clar-
ifying specifications between the AI assistant and the human collabora-
tor. This phase preempts potential pitfalls and ambiguities, ensuring a
smoother development process.

346



3. Infrastructure Implementation Phase: The Infrastructure This phase
establishes the foundational environment for the application’s develop-
ment, testing, and deployment, hosted either on-premises or cloud-based.
It involves setting up the development environment and installing the op-
erating system as the base layer for subsequent software components.

4. Application Implementation Phase: In this critical stage, AI sys-
tematically develops software components, starting with foundational
utility classes like database managers. This phase includes code gen-
eration and creating Unified Modeling Language (UML) diagrams to il-
lustrate the system’s architecture and component interactions. Prompts
should guide the AI to detail both backend and frontend class structures.
Effective prompts include:

a. “Please generate an initial design for each class, outlining responsi-
bilities, attributes, and methods, including descriptions for front-end
and back-end classes.”

b. Request the AI to generate the DDL for the database: “Please gen-
erate the DDL for Database and tables.”

c. Configure the database and begin generating each class: “Please
generate the complete Database Utility class with all appropriate
methods.”

d. For DAO structures, prompt the AI to generate the DAO class,
followed by the Data Model class: “Please generate the complete X
class with all getter and setter methods, and include a main method
for testing.”

e. Conduct unit testing for each class. If errors occur, copy the error
message and prompt: “Logic Error: [error message].” ChatGPT will
typically generate a fix.

f. Repeat steps d and e for each class until all are developed.

5. Debugging: Each developed class undergoes immediate testing, ensur-
ing incremental development. This cyclical implementation and debug-
ging process ensures a robust, error-free product. After all classes are
tested, perform an integration test.

6. Post-Deployment Review: A rigorous post-development review is es-
sential to ensure the application meets requirements and adheres to in-
dustry best practices. This review focuses on security measures to iden-
tify and mitigate vulnerabilities, crucial in today’s evolving cyber threat
landscape. Prompts such as “Please review the Student Class Planner

4 47



Application code for security issues, specifically SQL injection, and rec-
ommend modifications” are useful at this stage.

7. Deployment Phase: In the deployment phase, AI-crafted prompts
streamline the process, ensuring efficient transition to the target envi-
ronment. The AI provides precise, comprehensive instructions tailored
to specific deployment needs.

8. Maintenance: Maintenance is a critical and enduring phase. The Soft-
ware Orchestration process, with its adaptability and precision, facilitates
swift and efficient system modifications.

In summary, Software Orchestration introduces a paradigm shift, leveraging
AI’s capabilities to enhance each phase of the software development lifecycle.
From the meticulous of prompts to the iterative process of implementation and
debugging, Software Orchestration epitomizes the fusion of human expertise
and AI’s computational prowess.

3 Methods

In Section 3, we present an experimental methodology to evaluate the Software
Orchestration process, focusing on the granularity of the initial prompt and
its impact on development. Our research uses a two-dimensional framework:
the first dimension assesses initial prompt granularity at three levels, and the
second dimension examines application complexity in three classes—Class A (1-
5 classes) Task Manager, Class B (5-10 classes) Club Membership, and Class C
(10-20 classes) Online Book Store. This structure results in nine experimental
scenarios, each providing distinct insights. The study aims to understand how
the orchestration process handles varying complexity and interdependencies,
and whether it scales effectively. It explores the optimal detail level in initial
prompts to balance human input with AI accuracy and efficiency, crucial for
establishing best practices in AI-assisted software engineering. Additionally,
it analyzes error propagation across different complexities and prompt details,
offering insights into potential vulnerabilities and mitigation strategies in the
orchestration process.

4 Results

This section analyzes the results from experiments evaluating Software Orches-
tration in application development across three classes (A, B, and C) of varying
complexity and size. These classifications provided a structured framework to
assess ChatGPT’s performance in orchestrating development tasks, including

548



Table 1: Experiment Results

response accuracy, error handling, and overall efficiency. Key metrics such as
reflection question count, syntax and logic errors, prompt counts, class gener-
ation, development duration, lines of code, and time efficiency per prompt and
class were recorded and analyzed.

In analyzing the data (Table 1) [3], several key trends emerge. Class A
applications, being smaller and less complex, showed a decrease in development
time as prompt detail increased from low (A1) to high (A3). The low-detail
experiment (A1) had more syntax and logic errors compared to the high-detail
experiment (A3), suggesting that more detailed initial prompts reduce errors.
In contrast, Class B and C applications displayed a different pattern. Medium-
detail prompts (B2 and C2) had the highest syntax and logic errors, indicating
that for more complex applications, medium-detail prompts might introduce
complexities that are not immediately evident.

The time efficiency metrics varied across classes, with no clear trend, high-
lighting the unique challenges of each application size and prompt detail level.
However, high-detail initial prompts generally lead to more efficient develop-
ment, potentially reducing time for clarification and error correction.

Class C applications required more development time overall but were more
efficient on a per-class basis, especially in the C1 (low detail) experiment. This
highlights the complex dynamics of software orchestration and the influence of
application size and prompt detail.

6 49



Figure 1: Development Duration (Minutes)

Figure 2: Reflection Count

The reflection count (Figure 2) decreases with increased detail in the initial
prompt for Class B and Class C. Specifically, in both Class B and Class C, the
experiments with the highest level of initial prompt detail (B3 and C3) recorded
the lowest reflection counts within their respective classes. This suggests that
more detailed prompts may lead to a clearer understanding of the task at
hand, thus reducing the need for further clarifications or additional guidance,
as indicated by the lower number of reflection questions. However, this trend
does not apply to Class A. Class A applications, being smaller and less complex,
might inherently involve fewer uncertainties or ambiguities, making the effect

750



of prompt detail less pronounced.

5 Discussion

The empirical data from our experiments with Software Orchestration, inte-
grating ChatGPT into the software development process, yields several in-
sights.

1. Detail in Prompts: Detailed design inputs consistently led to higher
quality applications, underscoring the need for well-articulated concepts
for effective AI collaboration.

2. Medium-Detail Prompts: These presented challenges, often result-
ing in gaps during implementation, indicating a critical threshold in the
granularity of information needed for optimal AI performance.

3. Efficiency: The ability to deliver a working prototype application in
(C3) 80 minutes, albeit small 1570 source lines of code (SLOC) is im-
pressive. For comparison purposes, using the Basic COCOMO model [1]
for an "organic" project (characterized by small, experienced teams with
flexible requirements), the effort to develop 1 KLOC (1000 lines of code)
is estimated at 2.4 person-months, with a development time of approxi-
mately 3.49 months. This estimate suggests that a single developer might
take about 3.5 months to complete 1000 lines of code (or 5.5 months for
1570 SLOC), though actual times can vary due to factors like code com-
plexity, developer experience, and project management practices.

4. ChatGPT’s Performance: The model managed smaller applications
well but faced limitations with extensive or complex designs, suggesting
constraints in its short-term memory or processing capabilities.

5. Low-Detail Specifications: ChatGPT tended to make assumptions,
sometimes missing specific requirements and compromising completeness.

6. Error Handling: ChatGPT efficiently identified and proposed multiple
solutions for syntax and logic errors, showcasing its utility in iterative
debugging.

7. Prompt Clarity: Clear, direct prompts resulted in more complete out-
puts, while vague prompts led to placeholders like TODOs, emphasizing
the need for unambiguous communication.

8. Structured Development: A structured process, including an initial
prompt followed by ChatGPT’s reflective questions and software architect
clarifications, proved beneficial, especially for Class A and B prompts.

9. GUI Design: Detailed UI descriptions were crucial for effective GUI
application development, highlighting the need for explicit guidance.

8 51



6 Background and Literature Review

The use of artificial intelligence (AI) in software development has been ex-
plored in various studies. AI-assisted software development has the potential
to significantly improve productivity. Moroz [7] highlights the benefits of AI in
software development, particularly in the form of neural network programmer’s
assistant Copilot. This AI tool can help with correct command formulation,
copyrighting, and safety issues, ultimately enhancing productivity. O’Connor
[8] and Mohammadian [6] both highlight the potential of AI in enhancing soft-
ware project management, with O’Connor specifically focusing on distributed
multi-platform projects. Ebbah [2] further discusses the application of AI tech-
niques in solving software engineering problems, emphasizing the complexity
of the software development process. Kulkarni [5] emphasizes the integration
of AI activities in software development processes, which can lead to improved
product quality. However, Trendowicz [10] notes that while AI tools can en-
hance productivity, the capabilities of developers and the tools and methods
they use still play a significant role.

7 Summary and Conclusion

Our findings suggest that Software Orchestration, integrating ChatGPT in
software development, holds significant promise by expediting the development
process and delivering functional applications. The correlation between prompt
detail and application quality implies that more specific prompts enhance pro-
ductivity. Additionally, ChatGPT effectively supports software design docu-
mentation, generating PlantUML and various UML diagrams, highlighting its
potential beyond code generation. However, the approach has limitations. The
complexities of software orchestration revealed areas for improvement. Future
advancements in Large Language Models are anticipated to enhance the effi-
cacy and scope of Software Orchestration. This study illustrates the current
capabilities of AI-assisted software development and opens avenues for further
research and development in this field.

References

[1] Barry Boehm. Software Engineering Economics. Prentice-Hall, 1981. isbn:
0-13-822122-7.

[2] Jonathan Ebbah. “Deploying Artificial Intelligence Techniques In Soft-
ware Engineering”. In: American Journal of Undergraduate Research (2002).
doi: 10.33697/AJUR.2002.006. url: https://doi.org/10.33697/
AJUR.2002.006.

952



[3] Joseph Elarde, Barry Bruster, and Mir Hasan. Software Orchestration:
A Paradigm for Software Development and Security Assessment using
ChatGPT resources. https://github.com/jves1/SoftwareOrchestration01.
Accessed: 2024-05-17. 2024.

[4] GeeksforGeeks. Software Engineering | Classical Waterfall Model. https:
/ / www . geeksforgeeks . org / software - engineering - classical -
waterfall-model/. Accessed: 2023-10-07. 2023.

[5] Rajesh Kulkarni and P. Padmanabham. “Integration of artificial intel-
ligence activities in software development processes and measuring ef-
fectiveness of integration”. In: IET Software (2017). doi: 10.1049/iet-
sen.2016.0095. url: https://doi.org/10.1049/iet-sen.2016.0095.

[6] Masoud Mohammadian. “Innovative Applications of Artificial Intelligence
Techniques in Software Engineering”. In: Proceedings of the AIAI Con-
ference. 2010. doi: 10.1007/978- 3- 642- 16239- 8_3. url: https:
//doi.org/10.1007/978-3-642-16239-8_3.

[7] Ekaterina A. Moroz et al. “The Potential of Artificial Intelligence as a
Method of Software Developer’s Productivity Improvement”. In: 2022
Conference of Russian Young Researchers in Electrical and Electronic
Engineering (ElConRus). 2022. doi: 10.1109/ElConRus54750.2022.
9755659. url: https://doi.org/10.1109/ElConRus54750.2022.
9755659.

[8] Rory V. O’Connor and J. Jenkins. “Using agents for distributed soft-
ware project management”. In: Proceedings of the IEEE 8th Interna-
tional Workshops on Enabling Technologies: Infrastructure for Collab-
orative Enterprises (WET ICE’99). 1999. doi: 10.1109/ENABL.1999.
805175. url: https://doi.org/10.1109/ENABL.1999.805175.

[9] OpenAI. ChatGPT: Optimizing Language Models for Dialogue. https:
//openai.com/chatgpt. Accessed: 2023-10-07. 2023.

[10] Adam Trendowicz and Jürgen Münch. “Factors Influencing Software De-
velopment Productivity - State-of-the-Art and Industrial Experiences”.
In: Advances in Computers, Vol. 77. Elsevier, 2009, pp. 185–241. doi:
10.1016/S0065-2458(09)01206-6. url: https://doi.org/10.1016/
S0065-2458(09)01206-6.

10 53



A Capstone Experience for Undergraduates in
High Performance Computing With MPI and

OpenMP ∗

Andrew J. Pounds
Department of Computer Science, Mercer University

Macon, GA, 31207
pounds_aj@mercer.edu

Abstract
The assignment described herein is intended as a capstone experience

for students in a scientific or parallel programming course in which they
have utilized shared memory symmetric multiprocessing using OpenMP
and been briefly exposed to distributed parallel processing using MPI.
Both OpenMP and MPI are established, well-documented, libraries for
doing parallel computing and students traditionally find OpenMP to be
very easy to implement. MPI is more difficult, but is necessary if one
wants to communicate between compute nodes. To fully take advantage
of a computing cluster, one can combine these technologies - utilizing
OpenMP to do shared memory programming on each system while using
MPI to do the inter-system communication. Herein we describe the hard-
ware and environment needed for the project, the base code provided to
students, the problems that students faced, the methods of performance
analysis that students used, and common errors made over numerous
offerings of the course.

1 Introduction

Over the past few decades high performance computing (HPC) has been slowly
moving into the undergraduate curriculum [1, 2] with some success. However,

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

154



teaching HPC at primarily undergraduate institutions can still be challeng-
ing due to many factors [3] including a lack of computational resources or
appropriate material targeting undergraduates. Another indicator that HPC
is becoming more important in the undergraduate curriculum is that parallel
computing is now listed as one of the ABET curriculum requirements [4] for
computer science. As such programs may introduce rudimentary parallel pro-
gramming as part of the introductory courses. However, to address many of
the concepts needed by developers of high performance computing code, ad-
ditional training is needed. For example, if one is interested in developing or
maintaining codes for scientific modeling or data analysis, students will need
to have a working knowledge of numerical analysis and linear algebra and be
conversant in one of the regarded “high performance computing” languages
(C/C++/Fortran). Thankfully developing shared memory parallel programs
in these languages has been made much simpler via the implementation of the
OpenMP library. With OpenMP one can literally add a few statements around
computationally intensive code segments to add parallelism.

OpenMP [5] is designed for parallelism on a single system with multiple cores
utilizing shared memory. The Message Passing Interface, MPI [6], can do the
same thing, but MPI is capable of communication between systems connected
via a network. Because one has to explicitly handle sending and receiving data,
MPI is significantly more difficult than OpenMP for students to implement, but
it is necessary if one wants to take advantage of multiple computers in a cluster
environment. A hybrid method of parallel programming that offers the best
of both worlds is to write code that breaks the problem across several systems
using MPI and then uses the shared memory parallel programming model of
OpenMP on each system to further enhance performance. This concept is not
new and has been widely implemented in HPC codes and is an active area of
research in the HPC community. [7–11]

The project described herein is designed for computer science and engi-
neering students that have completed a semester of numerical analysis and
are currently enrolled in a course in which they have learned about common
code optimization techniques, the use of HPC hardware, compiler based op-
timization, and OpenMP shared memory parallel programming. They have
been introduced to the fundamentals of MPI and given working matrix multi-
plication code with which to experiment and test. Matrix multiplication was
chosen for the performance testing because it is well understood, relatively easy
to code, and provides enough computational load that students can see their
performance enhancements across multiple processors and nodes. In addition,
students can easily check their work for accuracy by utilizing one of the sys-
tem linear algebra libraries. The code students received contained no OpenMP
directives.

2 55



While this submission could be considered by some to fit into the category of
“Nifty Assignments”, the fact that it is really designed for advanced students,
requires some familiarity with numerical analysis, and depends on students
having some background in concepts related to parallel computing moves it
away from that classification. In addition, completing the project can require
running hundreds of test trials that are then analyzed to make date driven
decision on how to proceed.

2 Environment

While developing HPC code traditionally involves using supercomputers and
systems located at national labs, times have changed. Many of the tools that
were once proprietary are now freely available and parallel computing can be ac-
complished at just about any undergraduate institution with an appropriately
outfitted computer lab. [12] All of the software and analysis tools mentioned
herein are either free or open source. Cloud computing has also significantly
lowered the barrier to teaching HPC courses and this project could easily be
completed on cloud resources.

2.1 Hardware and OS

Any computer lab with networked multicore computers could be used to com-
plete this project. In the present work 20 computers each with 10 core proces-
sors capable of dual hyper-threading were used. Each processor had a three
level cache structure and was connected via the bus to 16 GB of RAM. All
computers were connected via gigabit Ethernet to a high speed switch. Each
computer was running a 64bit Linux OS (CentOS 7).

2.2 Compilers

The compilers from the Linux distribution are satisfactory for this assignment,
and can be used with the corresponding OpenMP and OpenMPI libraries that
can also be downloaded from the Linux repositories. The system compilers,
however, can sometimes lag significantly behind the current compilers that have
features that the students want to use. For that reason, in the present work, the
newest Gnu Compiler Collection was downloaded and compiled from scratch
with support for POSIX threads to allow for shared memory parallelism.

2.3 Parallel Tools

The Gnu compiler suite also includes the OpenMP library and development
files. To avoid any issues with the newer compiler and the older OpenMPI, a

356



newer version of the OpenMPI source was downloaded and compiled using the
newer compiler.

2.4 Analysis

For the analysis of the results, students were provided with some Perl scripts
that would parse their result files and order the data for plotting. The gnuplot
program was used to build the 3D surface and contour graphs of performance
as a function of nodes and processors per node.

2.5 Batch Environment

While not strictly necessary, a batch system to control the flow of jobs onto
the computing cluster is extremely helpful. Depending on the size of the class
there could be thousands of benchmarking jobs waiting to execute. The use of
a batch scheduler can also help prevent students from over-subscribing nodes
and thus negatively affecting their benchmarking results. For the present work
the Torque resource manager and the Maui job scheduler were used.

3 Methods

Starting Point: Prior to this exercise student had thoroughly optimized and
parallelized with OpenMP their own linear algebra library [13] including
matrix multiplication. Matrix multiplication is a dense matrix technique
that requires 2N3 floating point operations and students had previously
used this information to build performance graphs of megaflops as a func-
tion of number of cores. For this exercise students were provided with a
working matrix multiplication program in C that utilized MPI and they
had to modify it to only time the matrix multiply function using the
MPI_Wtime function. [14] All three matrices, in their entirety, were sent
to each of the nodes. All of the message passing was done via synchronous
MPI_Send and MPI_Recv transactions. In a class demonstration is was
easily verified that the performance increased with the number of nodes
– but that this performance increase was short lived.

Proof of Concept: With performance benchmark data in hand for a single
core on each system, students were asked to implement OpenMP pragmas
in the code to see if they could improve the performance. For the vast
majority of the students this was a trivial task and thus demonstrated
that the code could be made faster by implementing OpenMP.

Test Cases: To ensure that the results were correct after their code modifi-
cations, students were instructed to build three different test cases. No

4 57



points were awarded if a program gave results outside of predetermined
tolerances.

1. Utilize three pre-built fixed-dimension matrices, Â, B̂, and Ĉ = Â·B̂
determined with a linear algebra library, and then take the difference
of the matrix product Â · B̂ and the pre-computed matrix Ĉ. Sum
up the diagonal. It should be zero.

2. Build a random matrix Â and use a linear algebra library to compute
the inverse of the matrix. With B̂ = Â−1, compute the product
Ĉ = Â · B̂ and sum up the diagonal of Ĉ. It should be equal to the
dimension of Â.

3. Construct a matrix B̂ that is row major with the first element start-
ing at 1 and each subsequent element being equal to the previous
element plus 1. For example a 4x4 matrix would have the form.




1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16




Then define matrix Â as the identity matrix. The product of Â and
B̂ should then produce a copy of B̂.

Each of these test cases can be used to test different things. For example
both test cases 2 and 3 will work if either the matrix Â or its transpose
is used; this can be useful in identifying if matrices are being sent and
received correctly. The ordered matrix in the third case can also be
helpful in determining if buffers are being filled in the correct order.
Finally, the matrices from the first test case will only give correct answers
if everything is working correctly.

Reducing Message Passing Overhead: While the code provided to stu-
dents worked, it was extremely inefficient because it sent all of the ma-
trices to each of the processes. In actuality, only matrix Â needs to be
sent to each of the processes; the appropriate columns of matrix B̂ can
be split among the nodes. This can result in a significant savings in net-
work transmission overhead. The drawback is that not sending the entire
matrix forces the students to think about how the matrices are stored in
memory and how to pack, send, and receive the correct matrix elements
needed by each process. In addition, each worker process only needs to
create arrays big enough to receive the matrix elements sent to it and the
developer needs to think how to modify the matrix multiplication process

558



in the worker code to correctly perform the multiplication task with the
smaller set of data.

In the original code provided to the students the test matrices were being
built in the main method before MPI was initialized. This meant that all
of the matrices were being built in their entirety on each of the processes.
To reduce the workload the construction of the matrices were moved to
only the master process. Moving this build process exclusively to the
master meant that the only matrices found in the worker processes were
sent to the worker by the master. Doing so, however, exposed numerous
errors generally associated with message passing parallelism. Properly
moving data between systems had to be dealt with before students could
move forward.

Implementing OpenMP: The provided code had numerous loops that were
ready for shared memory parallelization using OpenMP. Almost all of the
loops, however, contained data dependencies that hindered paralleliza-
tion. Students could still parallelize the loops using OpenMP pragmas,
but if they did not address the data dependencies they never achieved
optimal scalability and maximum performance.

Collective Communications: Since the entirety of matrix Â has to be sent
to each of the nodes, student could take advantage of MPI collective
communications. Using collective communications, matrix Â is broadcast
to the network and each of the worker nodes receives it simultaneously.

4 Results

Before doing any tests with OpenMP, students were asked to benchmark the
two pieces of MPI code provided to them that utilized a single thread on each
node. One code copies all of the matrices to the worker processes and the
second piece of code copies only the portions of matrix B needed to accomplish
the work assigned to that node. The codes were benchmarked with matrices of
dimension 2000 and 4000. The results are shown in Fig. 1. With this data in
hand, students were asked to think about how they would implement OpenMP
to get even greater performance. The obvious option was to write OpenMP
pragmas around the triply nested matrix multiplication kernels in the master
and worker processes. Almost every student immediately added the pragma
shown in Listing 1.. In Listing 1, startIndex and stopIndex are the starting
and stopping column indices of matrix B̂ assigned to the process. *(subA)
contains the entirety of Â and *(subB) ONLY contains the needed columns
of B̂. The use of bufIndex makes it very easy to put the data correctly into
the *(subC) memory location - but it has to be remembered that *(subC) is a

6 59



Figure 1: Performance results for multiplying two NxN matrices as a function
of number of nodes. Based on the results it is obvious that using partial
copies provides a significant performance enhancement and that performance
improves with larger matrix dimensions.

Listing 1: A Naive attempt to parallelize an existing loop with OpenMP. The
serialized bufIndex inhibits full parallelization.
#pragma omp p a r a l l e l for default ( shared ) p r i va t e ( i , j , k )

for ( int i =0; i<NDIM; i++)
for ( int j=s ta r t Index ; j<=stopIndex ; j++) {

for ( int k=0; k<NDIM; k++)
∗( subC+bufIndex ) += ∗(subA+i ∗NDIM+k) ∗

∗( subB+(( j −∗( s t a r t+rank ) )∗NDIM)+k ) ;
bufIndex++;

}

760



Listing 2: An improved attempt to parallelize an existing loop with OpenMP.
The formally serialized bufIndex can now be calculated independently in each
thread as a function of the index variables.
#pragma omp p a r a l l e l for default ( shared )

p r i va t e ( i i , j j , kk , bufIndex )
for ( i i =0; i i <NDIM; i i ++)

for ( j j=s ta r t Index ; j j <=stopIndex ; j j++) {
bufIndex = ( j j −s ta r t Index )∗NDIM+i i ;
for ( kk=0; kk<NDIM; kk++)

∗( subC+bufIndex ) += ∗(subA+i i ∗NDIM+kk ) ∗
∗( subB+( j j −s ta r t Index )∗NDIM+kk ) ;

linearized array the same size as *(subB) and will be passed back to the main
program.

The benchmark results for the Listing 1 are shown in Fig. 2a. While
the results do improve with the number of threads, it is far less than optimal
because the bufIndex is serialized and limits parallelization. The code has to
be re-written to remove this dependency and compute the value of bufIndex
as a function of the indexing variables. One such way to do this is shown in
Listing 2. Any student that chose to make these changes got performance
results that resembled those shown in Fig. 2b. What should be noticed in

(a) Using code from Listing 1. (b) Using code from Listing 2.

Figure 2: Performance results for 4000x4000 matrices as a function of number
of nodes and processors per node. Overall performance improved by more than
2 gigaflops and scaled to more processor cores.

Fig. 2 is that while the code is performing roughly 20% better on a smaller
number of nodes, it did not scale well across multiple nodes. Astute students

8 61



Figure 3: Performance results for 8000x8000 matrices as a function of number
of nodes and processors per node after modifying the code to eliminate loop
dependencies, parallelize the packing and unpacking of matrix buffers, and
doing all-to-all communication. The overall performance of the code doubled
from prior attempts and scaled to a maximum at 17 nodes with 18 cores per
node. The jump in performance after 15 nodes is believed to be due to the
level 3 cache once again being unsaturated since.

opened two terminals, one on the node running the master task and one on
a node running the worker task, and ran top. They noticed that, after the
workers completed the parallelized matrix multiplication kernel, the code on
the master would never use more than two cores and the worker node would
drop back down to serial, single-core performance. Students surmised that
this was due to the packing and unpacking of the array buffers before and
after the MPI_Send/MPI_Recv. They thus proceeded to rewrite all of those
sections of code, which also required removing data dependencies, in parallel
using OpenMP. This resulted in modest, but improved, scalability across nodes.
Some students spent a significant amount of time in the MPI documentation
and tried to use all-to-all MPI_Bcast collective communication methods to
minimize the time for sending matrix Â to each of the processes. The results
for those that implemented in correctly is show in Fig. 3.

5 Discussion and Conclusions

Even though writing parallel OpenMP code is relatively easy for students,
writing distributed parallel MPI code is a skill they must master if they want
to code across computing clusters. In this exercise students were eager to
enhance the MPI code with their OpenMP calls. However, to make significant

962



improvements they had to not only learn how MPI works, but they also had to
dive deeper back into their own OpenMP code to understand what aspects were
hindering parallelization and remove data dependencies. This is a common
theme in HPC coding - fixing one piece of code often breaks something else.
Each time a new piece of hardware is introduced one has to often learn how to
write code for it in order to build better-performing HPC applications. Only
through a careful analysis of the benchmarking results can one tell if their code
modifications are making a difference. This concept was reiterated numerous
times while students completed this exercise.

Normally a paper of this type would include a breakdown of learning ob-
jectives and how they were assessed in the implementation of the assignment
over a number of years to different cohorts. Since this assignment was used
in a course offered biennially to a small number of students, such a statistical
analysis is unjustified. Some qualitative observations on learning objectives,
however, are noteworthy. In the course of using this assignment four times in
the past seven years, only two students out of a total of thirty-three took the
time time to carefully investigate why the code was not scaling across mul-
tiple nodes and produced a solution that satisfactorily solved the scalability
problem. Every student, however, had to focus on data dependencies, parallel
and serial regions, memory management, data locality, thread safety, message
passing, and synchronization. These are the hallmarks of a parallel comput-
ing curriculum; this assignment demonstrates the need to consider all of these
areas when looking for performance enhancing solutions and rewards students
that take time to do so. In all of the instances where this assignment was used
students worked tirelessly to try to improve their code. They saw that their
diligence in reading documentation, critically analyzing code, using graphical
methods to visualize and analyze performance, trying new and different cod-
ing strategies, and taking a data-guided approach to code modification, gave a
marked improvement that was commensurate with their level of work.

HPC coding can be very rewarding when it is done thoughtfully and analyti-
cally. This assignment reinforces this type of code development by methodically
walking students through several levels of parallelization in a systematic and
data-driven manner to produced demonstrably faster code. The assignment
also stimulated a healthy sense of competition among the students that greatly
enhanced the level of engagement.

References

[1] Andrew Fitz Gibbon et al. “Teaching high performance computing to
undergraduate faculty and undergraduate students”. In: Proceedings of
the 2010 TeraGrid Conference. TG ’10. Pittsburgh, Pennsylvania: Asso-

10 63



ciation for Computing Machinery, 2010. isbn: 9781605588186. doi: 10.
1145/1838574.1838581. url: https://doi.org/10.1145/1838574.
1838581.

[2] B. Neelima and Jiajia Li. “Introducing high performance computing con-
cepts into engineering undergraduate curriculum: a success story”. In:
Proceedings of the Workshop on Education for High-Performance Com-
puting. EduHPC ’15. Austin, Texas: Association for Computing Machin-
ery, 2015. isbn: 9781450339612. doi: 10.1145/2831425.2831430. url:
https://doi.org/10.1145/2831425.2831430.

[3] Jordan Hebert et al. “High-performance computing in undergraduate ed-
ucation at primarily undergraduate institutions in Wisconsin: Progress,
challenges, and opportunities”. In: Education and Information Technolo-
gies (2024), pp. 1–25.

[4] ABET. Criteria for Accrediting Computing Programs, 2023 – 2024 |
ABET. 2023. url: https://www.abet.org/accreditation/accreditation-
criteria/criteria-for-accrediting-computing-programs-2023-
2024 (visited on 05/30/2024).

[5] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP:
portable shared memory parallel programming. MIT press, 2007.

[6] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard Version 4.1. Nov. 2023. url: https://www.mpi-forum.org/
docs/mpi-4.1/mpi41-report.pdf.

[7] Qinnan Qiu et al. “An efficient hybrid MPI/OpenMP parallelization of
the asynchronous ADMM algorithm”. In: 2021 IEEE Intl Conf on Paral-
lel & Distributed Processing with Applications, Big Data & Cloud Com-
puting, Sustainable Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/SocialCom/SustainCom). 2021, pp. 563–
570. doi: 10 . 1109 / ISPA - BDCloud - SocialCom - SustainCom52081 .
2021.00083.

[8] Vladimir Mironov et al. “An efficient MPI/OpenMP parallelization of the
Hartree-Fock method for the second generation of Intel® Xeon Phi™ pro-
cessor”. In: SC17: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. 2017, pp. 1–12.

[9] Pedro Valero-Lara et al. “MPI+OpenMP tasking scalability for multi-
morphology simulations of the human brain”. In: Parallel Computing 84
(2019), pp. 50–61. issn: 0167-8191.

1164



[10] Jérôme Richard et al. “Fine-Grained MPI+OpenMP Plasma Simulations:
Communication Overlap with Dependent Tasks”. In: Euro-Par 2019: Par-
allel Processing. Ed. by Ramin Yahyapour. Springer International Pub-
lishing, 2019, pp. 419–433. isbn: 978-3-030-29400-7.

[11] J. F. Stanton et al. CFOUR, Coupled-Cluster techniques for Computa-
tional Chemistry, a quantum-chemical program package.

[12] Andrew J. Pounds, Rajeev Nalluri, and Bennie L. Coleman. “The devel-
opment of a Tri-Use cluster for general computer education, high per-
formance computing education, and computationally intensive research”.
In: Proceedings of the 43nd Annual Southeast Regional Conference, 2005,
Kennesaw, Georgia, USA, March 18-20, 2005, Volume 1. Ed. by Mário
Guimarães. ACM, 2005, pp. 345–348. doi: 10.1145/1167350.1167446.

[13] Andrew J. Pounds. “The babyblas - an extended project for introducing
undergraduates to the concepts of high performance and parallel scientific
computing”. In: J. Comput. Sci. Coll. 28.2 (Dec. 2012), pp. 153–159. issn:
1937-4771.

[14] Lawrence Livermore National Labs. Workshop example. 2022. url: https:
//hpc-tutorials.llnl.gov/mpi/exercise%5C_1/ (visited on 04/30/2022).

12 65



Impact of a Virtual Peer Mentoring Program
(VPM) on Student Retention and Performance∗

Hyesung Park, Sonal Dekhane, Wei Jin, Lorraine Jonassen
1Department of Information Technology

Georgia Gwinnett College
Lawrenceville, GA 30043

hpark7@ggc.edu, sdekhane@ggc.edu, wjin@ggc.edu, ljonassen@ggc.edu

Abstract

This study examines the impact of the Virtual Peer Mentoring (VPM)
program on Information Technology (IT) students’ retention and aca-
demic performance at an open access, majority minority-serving institu-
tion. The VPM program was designed during COVID-19 for IT majors
as a small group peer mentoring initiative where junior or senior mentors
met weekly with groups of up to six freshmen or sophomore mentees vir-
tually. The program incorporated best practices from research studies
and was adapted to meet the needs of the target student population.
Data collected from Fall 2021 to Spring 2023 student participation indi-
cated higher retention rates for students attending the program. GPA
differences between completers and non-completers showed clear bene-
fits from attending the program, especially for students from underrep-
resented and underserved groups. The findings highlight the importance
of integrating peer mentoring with freshmen orientation and existing
coursework to address recruitment and retention challenges, particularly
for underrepresented and economically disadvantaged students.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

166



1 Introduction

COVID-19 had a significant impact on higher education, impacting enrollments
and learning modalities. At the authors’ public college, which is an open access
and majority minority-serving institution, small class sizes, student engage-
ment and face-to-face learning were central ideas aligned with the institution’s
mission. Before COVID-19 only one fully online course was offered, and a cou-
ple of courses were hybrid. Emphasis on out of class faculty-student engage-
ment had resulted in an active campus community with seven IT-focused stu-
dent clubs, student participation in regional competitions, hackathons, scholar-
ships, etc. Given the demographics of about 50% Pell grant recipient students
and about 25% first-generation students, building this community had taken
significant time and effort. The sudden switch to online classes and COVID-
19’s impact on student lives affected the department’s enrollment and failure
and withdrawal rates. COVID-19 also impacted faculty-student engagement
with many out-of-class activities completely canceled. For a few activities, such
as the Peer Supplemental Instruction program (PSI) that moved online, stu-
dent engagement was almost non-existent. Hence, the Virtual Peer Mentoring
(VPM) program was designed to support incoming freshmen and rising sopho-
mores to help them navigate college during this difficult time. A pilot study
was conducted based on one year’s worth of data to investigate the program’s
impact on participants’ sense of belonging. The positive findings of this study
[self-reference] resulted in this program being offered beyond one year. This
paper investigates the following research questions based on data collected from
two years of implementing the VPM program:

1. What is the impact of the VPM program on student retention at the
college and in the major?

2. How do GPA outcomes differ between completers and non-completers of
the VPM program?

3. What are the benefits of the VPM program for underrepresented and
economically disadvantaged students at the college.

4. How does participation in the VPM program affect Pell Grant recipients’
academic performance over time?

5. How do students from different demographic groups respond to the VPM
program in terms of retention and GPA?

2 Literature Review

The term mentor has been defined in the literature using various terms, such
as a coach, a tutor, and an experienced, trusted advisor who offers personalized
guidance and support to others [3, 8, 4]. Mentoring programs today appear in

2 67



many formats, including formal, informal, diverse, cultural, collaborative mul-
tilevel, and electronic. Formal mentoring is a planned and structured format,
whereas informal is a spontaneous interaction between mentor and mentee.
Diverse, cultural, collaborative, multilevel, and group mentoring focuses on
equality across genders, races, ethnicity, and levels. Electronic mentoring, also
known as e-mentoring, incorporates online platforms. Each of these mentor-
ing styles can exist in one-to-many, many-to-one, many-to-many formats, or
a combination of all three [8, 2]. Lastly, the current trend is peer mentoring,
known for its reciprocal and collaborative approach where two groups hold
each other accountable as they reach shared goals [5]. Peer mentoring has
been recognized for its potential to enhance student retention and academic
achievement, especially among underrepresented and economically disadvan-
taged groups. According to authors [4], "Self-efficacy is built as peer mentors
who serve as role models provide academic and emotional support to peers."

Literature reviews aligned explicitly with this study offer a diversified un-
derstanding of peer mentoring and its many concepts. To start, peer mentoring
in higher learning is not new; it dates back decades. For example, in 1986,
researchers [9] conducted a pilot program in which they recruited upper-level
students at the City University of New York (CUNY) to mentor first-year high-
school students. The role of the mentors was to provide mentees with academic
and social guidance. A comparison between the mentored and non-mentored
groups revealed a significant increase in mentees’ attitudes toward school, yet
it showed no significant increase in attendance and grade point average. In
support of future mentoring endeavors, the authors recommended the integra-
tion of coursework into the process along with collaboration between faculty,
mentors, and mentees.

To address enrollment challenges, Mount Holyoke, a women’s liberal arts
college, designed a Megas and Gigas Educate (MaGE) program to prepare stu-
dents to become peer mentors [7]. Topics covered in their course included: effec-
tive learning, motivation techniques, self-efficacy, and growth mindset strate-
gies emphasizing diversity, inclusion, and social identity. Following completion
of the training, peer mentors were hired to work with students in CS1 or CS2
classes. The goal was to create an inclusive and sustainable program to address
the needs of underrepresented and minority students, which it did. Following
completion of the course, mentees reported they felt like they belonged in the
computer science community and their peer mentors were knowledgeable, ap-
proachable, and creative, which helped them to succeed. Ultimately, Mount
Holyoke’s enrollment doubled; they went from a 36-seat lecture to two 36-seat
lectures after the first year.

Building upon their Megas and Gigas Educate (MaGE) program, researchers
[6] at Mount Holyoke presented a training curriculum focused "on inclusion as

368



a key tool for creating a welcoming environment that fosters a community of
learning". In collaboration, the computer science faculty designed the cur-
riculum with a psychology and education colleague. Specific teaching modules
included instruction on effective learning on various topics, such as motiva-
tion, self-efficacy, growth mindset, and technical skills. Following a mentoring
semester, mentors and mentees reported significantly increasing their abilities
and self-confidence. The researchers also noticed that the acquired skills were
transferable to future employment opportunities.

Researchers [1], in a 2016 study, examined factors that could influence first-
year college students’ intent to persist in their academic journey. A total of
172 students from diverse backgrounds completed surveys administered at the
beginning and end of their first semester. The survey questions focused on
academic variables (GPAs and ACT scores), self-efficacy beliefs, participation
in learning communities, mentorship, and socioeconomic status. A standard
multiple regression analysis revealed that college self-efficacy beliefs and men-
torship could significantly predict students’ intent; however, they cannot be
used to predict academic performance related to grades.

For this study, the authors put the institution and the student’s needs at
the forefront and used the MaGE platform as a guide to design the VPM pro-
gram. Evidence-based best practices from different peer mentoring programs
were adapted to meet the students’ needs. A detailed program description of
VPM and results of the pilot study are described in [self-reference]. The fol-
lowing sections of the paper discuss the mentoring sessions’ topic details, data
collection and analysis, and discussion and conclusions.

3 Program Description

The VPM program was designed as a small group peer mentoring program,
where each peer mentor, a junior or senior IT major met with a group of up
to six mentees who were freshmen and/or rising sophomore IT majors online
once a week for a semester.

A kick-off event at the start of the semester and an end of semester celebra-
tion event were used to bring everyone together and build a sense of community
among students. This included the mentors, mentees and faculty advisors. The
kick-off event consisted of various activities, such as an icebreaker, pre-surveys,
welcome by the Dean, introduction of the program, its goals and expecta-
tions, and a dedicated time for networking with peers. An IT faculty member
also spoke at each kick-off event and presented their undergraduate research
project(s) along with their undergraduate research students to introduce stu-
dents to undergraduate research opportunities.

The end of semester celebration was relatively informal and was used as

4 69



an opportunity to celebrate mentor and mentee accomplishments, administer
post-surveys, and share concrete steps to stay connected with the community.
A graduate student panel was conducted to increase students’ awareness about
graduate school opportunities, possibilities and benefits.

The weekly sessions were designed to be interactive and peer mentors were
trained to engage mentees in the conversation. Peer mentors were trained to
acknowledge that mentees brought life experiences and knowledge with them
and could share information from which everyone could benefit. Mentees were
also required to engage in follow-up activities that required the application of
information received at mentoring sessions. Additionally, sessions also included
group study. A typical semester-long peer mentoring program covered the
following topics:

1. The first session was focused on growth mindset to help students develop
a mindset for learning, growth and perseverance.

2. A session focused on planning for a successful semester and building
relationships with faculty and peers was included early in the semester to
provide students with the tools and information to prepare for a successful
semester.

3. Sessions introducing students to campus resources for academic support,
such as the Peer Supplemental Instruction (PSI) program for gateway
STEM courses, academic enhancement center that offers tutoring ser-
vices and various workshops, technology support, etc. were included and
representatives of these programs were invited as guest speakers for the
campus.

4. To improve students’ sense of belonging and engagement in the depart-
ment, sessions included information about IT student clubs, service-
learning opportunities, regional competitions and hackathon opportuni-
ties, etc. Students from various student clubs and other student success
initiatives were invited as guest speakers for these sessions.

5. A session focused on scholarship opportunities based on need, discipline
or academic performance introduced students to an array of programs
that offered financial scholarships or aid to continue or complete their
education. This also included programs that offered travel grants for
students to attend conferences. Programs at the college and those ex-
ternal were presented to the students. Scholarship and grant recipients
were invited as guest speakers.

6. Peer mentors also conducted a session on presentation skills that focused
on creating and delivering effective presentations. Mentees were required
to create and deliver short presentations as a follow-up to this session.

7. To help students navigate college, sessions focused on describing the dif-
ference between various IT concentrations offered at the college, and un-

570



derstanding and using academic maps and mentoring milestones were
offered.

8. Sessions focusing on professional development opportunities, such as in-
ternships, undergraduate research opportunities, and resources offered by
the career advising center on campus were offered. Guest speakers from
the career advising center and students who had participated in under-
graduate research and internships were invited to be guest speakers for
these sessions.

9. Around mid-terms and closer to the end of the semester, sessions focused
more on group study, problem-solving strategies and upcoming engage-
ment opportunities such as summer boot camp, programming refresher
session, preparing for an IT company field trip, etc.

4 Data Collection and Analysis

In this paper the authors present data collected from VPM implementation
from Fall 2021-Spring 2023 semesters. The program was not offered during
the summer semesters. A total of 123 students applied and were accepted into
VPM during these semesters. Of these 123 students 58 students (47.15%) did
not attend any sessions at all. Of the remaining 53%, 23 (35.38%) students
attended less than 50% or 8 sessions. 42 or 64.61% students attended 50% or
more sessions during the semester. Overall, more women than men sought to
participate in the program, 67 (54.44%) vs 56. This is a higher representation
as compared to women’s representation in the IT major, which ranges between
20%-25% at the college. About 57 (46%) of the students who sought to par-
ticipate in VPM were Black/African American. Their numbers in the college
and in the IT major range around 33%-36%. Data provided by the college’s
Institutional Research (IR) office in Spring 2024 shows that of the students
who were accepted into the program but did not attend any sessions, 46.55%
are no longer registered in classes at the college. Whereas 30.95% of those who
attended half or more sessions are no longer registered at the college. The data
also shows that almost 60% of students attending 50% or more sessions have
progressed in their academic journeys, thereby seeing a status change. Instead,
only 37.93% of the students who did not attend any sessions have progressed in
their academic journeys. The data shows similar change in students switching
majors. Whereas 17.24% of those who did not attend any sessions switched
their majors out of IT, only 4.76% of those who attended 50% or more ses-
sions did so. Additionally, 7.14% of those students who attended 50% or more
sessions switched their majors to IT upon completing the program.

The following figures compare the GPA of VPM participants based on their
completion or non-completion of the program. Completers and non-completers

6 71



were identified using attendance records. Completers are students who at-
tended at least 8 sessions a semester. GPA data was provided by the IR office
for semesters fall 2021 – fall 2023.

Figure 1: Retention by race/ethnicity among completers vs non-completers

Figure 1 shows that Black/African American, Hispanic and White com-
pleters retained at the college at a higher rate than non-completers.

Figure 2 shows that both men and women who completed the program
performed better than those in their group who didn’t.

Figure 3 shows that Black/African American completers had much better
GPAs than non-completers, as did White completers. Hispanic completers
also had better GPAs than non-completers. A Mann-Whitney U test (non-
parametric test) was conducted because group (incomplete vs. complete) data
are not normally distributed, violating the assumption of normality for both
groups. Therefore, an ANOVA test was not appropriate to run the significant
test. Table 1 below shows the results of the Mann-Whitney U test where all
the p-values are less than 0.05, therefore, suggesting that there is significant
difference in GPA between students who completed the VPM program and
those who did not, across all terms.

772



Figure 2: GPA differences by gender and attendance

Figure 3: GPA differences by race/ethnicity and attendance

8 73



Table 1: Mann-Whitney U Test
Fa21 Sp22 Fa22 Sp23 Fa23

Mann-Whitney U 302.50 468.50 837.00 944.50 975.50
Wilcoxon W 1248.50 2179.50 3538.00 3870.50 3901.50

Z -3.177 -3.355 -3.074 -2.824 -2.634
Asymp. Sig. (2-tailed) .001 <.001 .002 .005 .008

Figure 4: GPA trends over semesters

About 67% of the VPM participants were Pell recipients. Figure 4 shows
that among non-completers (lower two lines in the chart), both Pell recipients
and non-recipients had fairly close average GPAs in Fall 2021. However, for
those without a Pell grant, the GPA increased slightly and remained mostly
stable. In contrast, for Pell recipients, the GPA decreased and continued to
decrease over time. Similarly, among completers (top two lines in the chart)
Pell grant recipients started at a lower average GPA in Fall 2021, saw an
increase the following semester, but then continued to decrease over time. Non-
Pell recipients among the same group started at a higher overall GPA, which
increased and then decreased, still remaining much higher than Pell recipient
completers. The GPA difference between Pell recipient completers vs. non-
completers is significant. While a decrease in GPA over time among all students
could be explained by the increasingly challenging coursework in the major, the

974



differences in GPA among Pell recipients and non-recipients are significant.
Non-completer Pell recipients have the lowest average GPA and a decreasing
trend.

5 Discussion and Conclusion

The data from two years of VPM implementation during and immediately
following COVID-19 at a public, open-access, majority minority-serving in-
stitution shows that women and Black/African American students were more
likely to seek peer mentoring opportunities. Their representation in VPM was
higher than their representation in the IT major. Students who completed the
program retained at the college at a higher rate than those who were accepted
in the program but did not attend any sessions. Completers also retained at a
higher rate in the IT major as compared to those who did not attend any ses-
sions. Retention rates of Black/African American and Hispanic students who
completed the program were significantly higher than those who didn’t, estab-
lishing the need for such programs to help broaden participation in computing.
GPA differences among completers and non-completers of different genders and
race/ethnicity also show clear benefits of VPM for students from underrepre-
sented groups. Lastly, the data shows that Pell grant recipient completers
benefitted from VPM participation before their GPA decreased, indicating a
need for continued support to sustain the increased GPA trend among this
group. Pell grant recipient non-completers had the least GPA and a decreas-
ing trend, indicating a need to increase efforts for engaging them in VPM.
While completers came into VPM with a higher GPA than non-completers, it
is important to note that about 30% of completers were not retained in college
and more than 4% switched majors. While these numbers may seem small,
their existence indicates that the risk of losing students, especially those from
underrepresented and economically disadvantaged backgrounds exists. The
impact of VPM and its need for students from diverse groups (underrepre-
sented in STEM, low economic background, first generation, etc.) cannot be
dismissed. Ultimately, recruitment and retention in the program remain a chal-
lenge. Competing priorities at home and work for students could be significant
factors, along with lack of awareness about the value of programs like this,
especially for incoming freshmen. For this reason, the authors believe that
further integration with freshmen orientation and existing coursework could
help address the recruitment and retention challenges. Hence, this emerges as
a top priority for future direction. Such integration could also help address
challenges associated with resources at smaller institutions as student support
and success becomes part of existing responsibilities and curriculum, instead
of an additional burden for faculty.

10 75



Acknowledgment

This material is based upon work supported by the National Science Founda-
tion and the National Center for Women and Information Technology.

References

[1] Stefanie T Baier, Barry S Markman, and Francesca M Pernice-Duca. “In-
tent to persist in college freshmen: The role of self-efficacy and mentor-
ship”. In: Journal of College Student Development 57.5 (2016), pp. 614–
619.

[2] Nuria Gisbert-Trejo et al. “Mentoring programs implementation: differ-
ences between group and individual mentoring”. In: Development and
Learning in Organizations: An International Journal 36.4 (2022), pp. 1–4.

[3] Thomas Landefeld and Thomas Landefeld. Mentors and mentoring. Springer,
2010.

[4] Carol A Mullen and Cindy C Klimaitis. “Defining mentoring: a literature
review of issues, types, and applications”. In: Annals of the New York
Academy of Sciences 1483.1 (2021), pp. 19–35.

[5] Judy O’Neil and Victoria J Marsick. “Peer mentoring and action learning”.
In: Adult Learning 20.1-2 (2009), pp. 19–24.

[6] Heather Pon-Barry et al. “A flexible curriculum for promoting inclusion
through peer mentorship”. In: Proceedings of the 50th ACM technical sym-
posium on computer science education. 2019, pp. 1116–1122.

[7] Heather Pon-Barry et al. “Addressing the CS capacity challenge by im-
proving undergraduate peer mentoring”. In: ACM Inroads 8.3 (2017),
pp. 43–47.

[8] Heidrun Stoeger et al. “Nine years of online mentoring for secondary school
girls in STEM: An empirical comparison of three mentoring formats”. In:
Annals of the New York Academy of Sciences 1483.1 (2021), pp. 153–173.

[9] Susan B Turkel and Theodore Abramson. “Peer tutoring and mentoring
as a drop-out prevention strategy”. In: The Clearing House 60.2 (1986),
pp. 68–71.

1176



Basic Document Retrieval with
Retrieval-Augmented Generation through

UIUC.chat∗

William Paul Kelly1

1University of North Carolina Wilmington
Wilmington, North Carolina, U.S.A.

WPaulKelly271828@gmail.com

Abstract

When given a prompt containing a particular fact or statement,
UIUC.chat was able to use Retrieval-Augmented Generation (RAG) to
identify a provided document as containing the given statement. This
has obvious applications, but is not especially novel by itself. Future
efforts will focus on comparing two documents through UIUC.chat to
find similarities and discrepancies in statements made. This may be
useful towards a longer-term goal of creating a Large Language Model
(LLM) that can collate large numbers of documents to produce a broad
overview of a given field.

1 Initial Purpose and Findings

The following was obtained through UIUC.chat, an open-source, web-based
frontend preprocessor which uses ChatGPT to generate responses. One feature
of UIUC.chat is to use RAG to compare prompts given by the user to various
user-provided documents. UIUC.chat then adds relevant portions of those
documents to the original prompt before sending it to ChatGPT for a response.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 77



Figure 1: UIUC.chat produces a basic citation.

Figure 2: UIUC.chat retreives a document.

The initial goal was to find a way of generating MLA-style research citations
by passing a document and a prompt to an LLM. This project had been sug-
gested some time ago, and since then basic LLM functionality has improved to
where UIUC.chat was able to accomplish most of this goal with minimal work,
shown in Figure 1.

UIUC.chat was able to produce MLA-style citations with minimal, if any,
adjustment required. Further work could be undertaken to make the citations
produced more consistent and complete, but this was difficult to justify, as the
end result would only offer marginal benefit over simpler, preexisting citation
generating tools. Instead, work was done to determine if UIUC.chat’s RAG
functionality could retrieve a document when given a prompt containing a
statement or fact written in that document, before then creating a research
citation for that document. This was also achieved with minimal work required.

278



Figure 3: UIUC.chat creates a citation for the document.

Although the results obtained above have obvious utility - for example, to
assist and enhance research - they alone are not substantial enough to represent
a novel use of LLMs. The ability to answer questions about and generate
research citations for given documents could serve as parts of a useful tool for
collating and producing research papers. However, this would only act as a
marginal extension of the core functionality of the LLMs being used, and in
fact such tools already exist, such as Google’s NotebookLM. More ambitious
goals are necessary to create a novel application for LLMs.

2 Related Works

Moving forward, we would like to focus instead on comparing two documents
to one another to find similarities and discrepancies in the statements made by
both. Some initial research has been undertaken to assess overall feasibility,
common approaches, and potential applications.

In their work on detecting contradictions in formal engineering require-
ments, Alexander Elenga Gärtner and Dietmar Göhlich have established dif-
ferent classifications of contradiction[1]. These classifications may be useful to
our own work, particularly if contradictions between our documents can be
shown to fall within their system, as they established for their own working
domain. They also note the necessity of using a combination of formal logic
and LLMs to identify contradictions in natural language.

Adian Liusie, Potsawee Manakul, and Mark Gales showed the feasibility of
using pairwise comparison to assess NLG output, rather than a scoring sys-
tem, helping to establish the utility of document comparison[2]. Some of their
findings suggest that pairwise comparison might be surprisingly practical in
comparing large quantities of documents, a task which might intuitively ap-
pear more suited to a scoring system; this helps support a potential applications
of document comparison introduced later in this paper.

Stefan Trapp and Joachim Warschat have showcased the use of prompt
engineering alongside GPT-4 to identify contradictions within the inventive

3 79



concepts of patents[3]. Although the definitions and context are much more
formalized than in some of our cases, the underlying techniques of comparing
statements remains relevant to our work, and the prompt engineering applied
will likely also prove useful.

3 Next Steps

Even barring techniques shown above, rudimentary document comparison can
likely be achieved by a modest extension of what we’ve already accomplished,
via making more prompts regarding basic content checks of the documents
involved. Despite how feasible this goal is, it may act as a valuable step towards
creating truly novel technologies which accomplish things that haven’t been
accomplished yet.

3.1 Scope

Rather than be limited to a particular domain of inputs, it would be ideal to
attain more generalized techniques for document comparison. These techniques
might act as a rough guideline for comparing any two objects that can be
modelled as documents; these guidelines could then be tailored to better fit
the particular type of documents being compared. Two document types of
interest are research papers and nutritional information. Research papers can
be compared to identify points that the two papers might agree or disagree
on, as well as areas not covered by either paper. Nutritional information of
food products can be compared to identify common ingredients, nutrients not
covered adequately, and other useful information.

These were selected for two reasons. First, there are practical applications
to the automated comparison and analysis, discussed later in this paper. Sec-
ond - and more significantly, in the short term - these two types of documents
are heavily opposite to one another in terms of reliance on natural language
versus strict formatting rules. Research papers, while ultimately based in fact,
can be largely arbitrary in terms of how an author chooses to express their
ideas, and thus will likely need to be parsed heavily by an LLM to be analysed.
In contrast, nutritional information of a registered food product generally fol-
lows a strict template, to the point where certain logical and mathematical
constructs might be adequate to fully represent them given proper context. In
studying the comparison of both of these types of documents, not only can
we make progress towards two different useful applications, but information
can also be gained about necessary differences in approach between compar-
ing simple and complex documents. This may help to create better guidelines
on when LLM comparison is necessary, how prompts should be engineered to
account for different documents, and other similar problems.

480



In considering research papers, this project does not make special cases for
misinformation, or instances where an author deliberately seeks to mislead the
reader. We will specifically consider documents that are well-regarded, and
which are generally believed to have been written in good faith. This scope of
consideration can be changed as necessary.

3.2 Methodology

At worst, comparing any two documents should be as straightforward as listing
the statements made by both documents and then comparing all statements by
brute force. Computationally this would not be ideal, but there may be ways
of simplifying the number of comparisons required, such as through detecting
keywords between statements before comparing them fully. ChatGPT may
even have mechanisms to simplify this process which can be accessed through
good prompt engineering. Existence of such mechanisms is made more plausi-
ble by the number of projects seeking to compare documents for purposes such
as requirements engineering and legal proceedings: Because there is already
desire to compare documents in this fashion, it is also more likely that current
tools have already begun to accommodate this desire.

4 Long-Term Goals

LLMs, in their current state, are unlikely to consistently outperform a well-
trained human at comparing documents. Because of this, it would be ideal to
apply automated document comparison in a fashion that humans might strug-
gle with, such as comparing large quantities of documents with one another.
Both of our chosen types of test document might yield useful applications when
reasoned about in large numbers.

4.1 Research Papers

Even outside of large-scale comparison, a general model for comparing two
academic papers with LLMs might be directly useful as a research aid in several
ways. If a researcher sees that two papers disagree on outcomes, this model
might help them more quickly identify which sections of the papers are most
relevant. If a researcher plans to expand on findings from a specific paper,
they might compare that paper to other papers to identify which findings are
generally agreed with, and which ones are more often opposed. This might
then encourage the researcher to pursue their work to address one of these
points: If something is agreed on, the researcher might choose to take that
point as a given and use it as part of something more ambitious. If something is
disagreed on, they might choose to resolve the ambiguity with a more thorough

5 81



investigation of that particular aspect of the work. Finally, they might even
compare a rough draft of a paper they’ve written to existing papers, to confirm
that they’ve acknowledged the perspectives that they intended to, and possibly
also to identify anything they might have overlooked.

As shown above, there could be a great deal of utility in comparing a paper
to many other papers, not just for the benefit of one project, but for many
projects within the field. There may be potential for an AI which takes in
large numbers of papers and gradually analyses and collates them one-by-one,
to ultimately identify the overall shape of findings and disagreements in a field.
This might take the form of a publically available web portal, displaying some
kind of star chart of significant papers or talking points, which users could
then click to learn more about, as well as see related papers and topics. Such a
system could help both experienced researchers to see how the full breadth and
context of their field is developing, as well as helping newcomers to understand
what major talking points are well-established and which ones yet need to be
further clarified. This might lead users to more easily identify strong points to
build on or weak points to resolve within the overall body of research in a field.
There may also be potential to identify other characteristics of a collection of
research in this way, such as identifying common topics and related fields.

4.2 Nutritional Information

Comparing large quantities of nutritional information might also have signifi-
cant applications, particularly when taken alongside geolocational data. Com-
paring a large sample of food products in an area might help indicate the
presence of food deserts, or heavy reliance on crops that might be vulnerable
to conditions such as drought or extreme temperature. Inclusion of additional
data, such as the sale price at a particular location, might reveal and create
hard evidence about relations between nutritional content and price. Infor-
mation on using LLMs to compare less rigidly-defined aspects of nutritional
data might be used alongside more conventional approaches as part of a larger
system. This system, with appropriate inputs, might be able to reason about a
large number of important topics, such as food systems susceptible to climate
change; regions at risk of producing diet-related illnesses; potential nutrition-
based explanations for local epidemics; and logistics assistance in connecting
producers, processors, and wholesalers.

4.3 Closing

As with smaller-scale comparison, future research in creating these informa-
tion nexuses might be useful in an almost unforeseeable number of industries.
LLM document comparison might create extremely powerful tools for reasoning

682



about large quantities of data, particularly in cases such as published research
papers or food products, where the entire population is known and parameters
can be determined directly rather than statistically.

References

[1] Alexander Elenga Gärtner and Dietmar Göhlich. “Automated require-
ment contradiction detection through formal logic and LLMs”. In: Springer
31.49 (2024). doi: https://doi.org/10.1007/s10515-024-00452-x.

[2] Adian Liusie, Potsawee Manakul, and Mark Gales. “LLM Comparative As-
sessment: Zero-shot NLG Evaluation through Pairwise Comparisons using
Large Language Models”. In: Proceedings of the 18th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics (Volume
1: Long Papers). Ed. by Yvette Graham and Matthew Purver. St. Julian’s,
Malta: Association for Computational Linguistics, Mar. 2024, pp. 139–151.
url: https://aclanthology.org/2024.eacl-long.8.

[3] Stefan Trapp and Joachim Warschat. LLM-based Extraction of Contra-
dictions from Patents. 2024. arXiv: 2403.14258 [cs.CL]. url: https:
//arxiv.org/abs/2403.14258.

7 83



Starting a Civic Engagement Capstone: An
Experience Report∗

Mark Hills and James B. Fenwick, Jr.
Department of Computer Science

Appalachian State University
Boone, NC

{hillsma,fenwickjb}@appstate.edu

Abstract

In this paper, we reflect on the first semester of a Computer Science
capstone course focused on civic engagement projects. This was offered
as an alternate section of an existing capstone, with multiple student
teams working with a local non-profit. We describe how the student
work was structured during the semester, as well as the activities leading
up to the semester and occurring immediately after the semester. We
also reflect on what worked well, and discuss potential changes in future
semesters. We believe this will be helpful to other faculty that are either
starting a new capstone course, or modifying an existing capstone course,
that will engage community partners with student teams.

1 Introduction

Starting in Spring 2024, the Computer Science Department at Appalachian
State University introduced a special section of its capstone course focused on
civic engagement projects—projects with a client (in our case, a local non-
profit) selected from the surrounding community. Civic engagement is an
informal approach to experiential, service learning. Service learning has its
philosophical and pedagogical roots in the work of Dewey [5], Freire [6], and

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

184



Kolb [8]. A key tenet is abandoning the idea of education being a “banking pro-
cess" that fills students with knowledge and facts. Instead, education is viewed
as a reciprocal relationship where teachers also learn and learners also teach.
This approach can support deep learning as students work up Bloom’s taxon-
omy [1] synthesizing classroom knowledge in practical and local settings. Stu-
dents benefit in multiple and varied ways, including academic knowledge and
skills, interpersonal communication skills, and increased self confidence [13].

In this paper, we reflect on our initial experience in adding a civic engage-
ment section of our capstone course. Many students enter college with idealistic
ambitions of changing the world. Sometimes these ambitions can become lost
in the curricular routine of assignments and short-lived, academic projects.
Capstone courses offer students an opportunity to revisit those early ambitions
with more skill and knowledge, while adding a service-learning component af-
fords students an easy entry to working on a fulfilling project with a positive,
immediate, and direct impact on an observable community organization. We
start in Section 2 by describing the preexisting capstone course. Section 3
then provides details about the civic engagement section of the capstone, in-
cluding what was done before the semester began, student and faculty tasks
during the semester, and student reflections on their work once the semester
concluded. Section 4 summarizes the results of an informal survey sent to a CS
education mailing list to solicit information about similar capstones in other
programs, while Section 5 highlights some existing research on capstone courses
in computer science and software engineering (including some highlighted by
responses to our survey). Section 6 concludes by reflecting on what worked
well and what modifications may be made in future semesters to overcome dif-
ficulties encountered during the Spring 2024 semester. Our hope is that this
paper will be helpful to faculty in other programs that are considering starting
such a capstone or that have recently started such a capstone.

2 Background

The current capstone course, CS 4800, is generally taken by undergraduate
students in their final year in the program. The catalog description of the
course is: "The senior capstone project provides the student an independent
and collaborative software development experience with a significant project.
The course introduces aspects of project management, requirements analysis,
and the software lifecycle, but will primarily be concerned with the practical
integration of core theories, practices, and ethics of the discipline. Writing
and speaking communication skills are reinforced." Students enrolling in the
course must have senior standing, and must have already taken the Software
Engineering and Data Structures courses, the latter of which is also a gateway

2 85



to many of our upper-level electives. Typical enrollment is around 20 students
per section. The course meets for 3 hours once per week. During this time,
students generally give status updates, present the current status of their work,
and work on their projects. Although students are expected to also work on the
projects outside of class, the class session provides dedicated project time each
week, which can be especially helpful if they are stuck and need assistance from
the instructor. Having the full team together in person also helps re-center the
team as students often have challenges in aligning their out-of-class schedules.

Students in a typical section of CS 4800 work on personal, self-selected
projects. Most students work on individual projects, but occasionally students
with shared interests work on teams of 2 or (more rarely) 3 students. Early in
the term, students propose a project idea which, if approved, they work on over
the course of the semester. The technologies are up to the students, and vary
based on student interests and the type of project. Core courses in the program
use Java, C/C++ and SQL, with other common languages including Python,
JavaScript, Swift, and Kotlin (depending on which other courses students take).
While many students use these languages, and the techniques used in earlier
courses, some students use the capstone as an opportunity to learn a new
language or platform. Several checkpoints, including a final report and a final
project presentation, occur throughout the semester. Common examples of
projects from past semesters include games, personal assistants, and utilities,
with console, GUI, web, and mobile applications all being common choices. The
typical capstone project starts and ends during the academic term. In some
cases students may begin with an existing personal project, and the capstone
would continue building on what they had already developed.

3 The Civic Engagement Capstone

In this section, we provide details about the Spring 2024 civic engagement cap-
stone section. We look at activities before the start of the semester, including
the inception of the civic engagement section; describe the activities of the cap-
stone during the semester; and look at the results of the semester, including
client and student feedback.

3.1 Before the Semester

During the Fall 2023 semester, we were approached by an employee of the
non-profit that we worked with in the capstone. They had received a grant
to expand their services and wanted technology assistance to develop a client
portal. Shortly after this, the university Center for Excellence in Teaching and
Learning for Student Success sent out a Request for Proposals, focused on inte-
grating civic engagement into a course. Inspired by this RFP, we decided to add

386



a special section of our capstone course focused on civic engagement projects.
Although the immediate goal was to teach a special section in Spring 2024,
the longer-term goal was to continue this work into future semesters, providing
a mechanism for students to get involved in team projects with community
partners that often have a lifetime of more than a single semester. In contrast
to the projects described in Section 2, these projects would not be created
by the students, but would instead be based on the needs of our community
partners, and would (except in unusual circumstances) all be team projects.
We applied for the RFP and were awarded funds to help cover small stipends
for the faculty involved, to purchase technology books for the students, and to
travel to speak with other faculty working on similar capstone courses.

3.2 During the Semester

The capstone course met a total of 14 times over the course of the Spring
2024 semester. Faculty met with two possible clients before the start of the
semester: a community partner (the local nonprofit mentioned above, which is
the focus of this experience report) and a startup. During week 1, the instructor
presented initial details about the clients and their needs, then worked with
the students to develop questions for each client for a planned client visit.
This occurred during week 2, with each client visiting the course, presenting
further details about their needs, and answering questions from the authors
and the students. After the clients departed, the instructor and the students
decomposed the overall work for each client into multiple projects: five for the
community partner, and two for the startup. The projects for the nonprofit
were an API backend server, a web client, and three mobile clients: an Android
client, an iOS client, and a cross-platform client (added to explore the design
space of possible mobile solutions). Students then ranked their interest in each
project in a survey form and were assigned to teams based on their responses.

Week 3 then started the actual work on the projects. 17 students were
divided into 5 teams for the nonprofit: 3 students on each mobile project,
and 4 on the API server and web client projects. Each student project was
organized according to Scrum principles, with two week sprints, self-directed
student teams, and the instructor acting as the Scrum Master, helping students
follow best practices. During the first week, each team spend class time to
get organized for the rest of the project. The instructor created teams for
each student team on GitHub. Each team then created one or more GitHub
repositories for code collaboration, and created GitHub project boards to track
their work. They also started planning the actual work of the project, creating
initial issues to represent team tasks and making initial decisions on technology
(e.g., the technology stack they would use) and teamwork (e.g., collaboration
workflows for effectively using GitHub). This was the start of Sprint 1.

4 87



Each week, before class, each team submitted a single status report. These
reports were submitted by creating a document on a shared folder, with the
goal of providing a history for future semesters. Each class meeting started
with a Scrum standup meeting, where each team could describe what they
had accomplished over the past week and what issues were preventing them
from making progress. Class meetings then ended with details of what the team
planned to accomplish over the next week. During class time, teams could work
together on their projects and meet with the clients. Every other week, the
teams would present the current state of their project, with the goal of quickly
moving towards a minimal viable product that would provide a basis for future
work. Meetings with the community partner were either held over Zoom or were
asynchronous, with the teams coordinating to email collections of questions
instead of each emailing the client individually. Meetings with the startup
were held either in-person or over Zoom. Student teams communicated using a
Discord server created by the instructor or using other preferred communication
mediums (e.g., text messages, other Discord servers, email).

In the week before the final class meeting, the student teams focused on
ensuring the project was in a good state to be picked up by the next teams
in the fall. The semester then ended with the submission of a project report
(built over the course of the semester, with the instructor giving feedback at
multiple checkpoints) and final project presentations by all teams, which were
attended by the clients. Each student team also met individually with the
instructor for a more detailed project demonstration and in-depth discussion.
In general, students made good progress on individual projects, but work on
linking the projects (e.g., the website to the backend API server) has mainly
been deferred to Fall 2024.

3.3 After the Semester

At the end of the semester, a student survey with the following questions was
sent out to all students in the civic engagement section of the capstone:

Q1 What teamwork skills did you improve, or learn, during the project?

Q2 How effective do you believe your team was? (1 to 5 scale, 1 is dysfunc-
tional, 2 is ineffective but functional, 3 is sufficient, 4 is effective, 5 is
highly effective)

Q3 What do you believe could have been done better to help your team work
together more effectively?

Q4 What technical skills did you improve, or learn, during the project?

588



Q5 What do you believe could have been done better to help you learn new
technical skills during the project?

Q6 How much communication was there with the other teams? (1 to 5 scale,
1 is Not Enough, 3 is Just Right, 5 is Too Much)

Q7 How much communication was there with the client? (Same scale as Q6)

Q8 Did communication with the client come at the right times? (1 to 5 scale,
1 is at the wrong times, 5 is at just the right times)

Q9 How did you communicate with the client? (Email, Text, Telephone, Dis-
cord, Zoom, In Person, or Other, multiple answers allowed)

Q10 What could be done in the future to improve communication with exter-
nal clients? What worked well, and what could be done differently?

Q11 Feel free to share any other thoughts about your experience working on
your project.

Students could only respond once to the survey, but student emails were not
revealed as part of the collected data so responses were anonymous.

Of the 23 students in the class, 7 responded to the survey. Note that
some of these responses may have been from the students on the projects with
the startup—while still useful, they do not bear directly on the experience
of the students working with the community partner. The students gave their
teams an average effectiveness of 3.43 (question 2). Looking at communication,
respondents gave average ratings of 2.43 for question 6 (communication between
teams, with 3 being “just right”), 1.71 for question 7 (communication with the
client, same scale), and 2.57 for question 8. All students selected "email" as
one communication option, with all but one also selecting Zoom. One common
theme was the importance of communication with the client, and the need for
more regular, scheduled times to meet. Comments included “I think it would be
very helpful if the client worked closer with the groups”, “Meeting with them in
person more often”, and “I think having more face to face or zoom calls would
be helpful”. We discuss this further in Section 6.

We also met with the community partner for a debriefing session. In general,
they were excited about the progress the students made during the semester.
They were especially happy with the coordination of the teams around visual
elements, such as the use of the same fonts and color schemes that they use in
their materials. They had several ideas for additional features, and committed
to staying involved during the Fall 2024 semester.

6 89



4 An Informal Capstone Survey

To identify other programs that offer project-based courses with external clients,
especially those that have projects that extend across semesters, we sent a sur-
vey to the ACM SIGCSE (Special Interest Group in Computer Science Edu-
cation) mailing list. Note that the survey was intentionally kept quite short
and informal—our goal was to make it easy to respond, giving us a chance
to gather some initial information which could then be enriched with future
conversations. This survey included the following questions:

Q1 Does your undergraduate degree require students to take a capstone course
near the end of their time in your program? Note that this may be called
“Capstone”, but could also be a project-based course under another name.

Q2 If you answered “Yes” to Question 1: Do you allow your students to work on
projects with community partners and other outside individuals and/or
organizations?

Q3 If you answered “Yes” to Question 2: Do you have projects that last for
more than a single term/semester?

Q4 Would you be willing to either have a short conversation over Zoom with
us or answer additional questions about your capstone course?

Q5 Do you have any additional thoughts to share about capstone courses,
working with external partners/on external projects, or multi-term projects?

We received a total of 16 responses to the survey. Of these, 14 stated that
their programs offer some kind of capstone experience for their students, with
1 additional program offering a course that, while not a capstone, has students
work on a significant software project. Ten of the programs with a capstone
course require students to take this course. All 15 of the programs with a
capstone or capstone-like course allow engagement with community partners,
while 13 of these programs have projects which can last more than one semester,
some by design (e.g., a two-semester capstone sequence), some by choice of the
student (e.g., a student can retake the course for additional credit and can
continue the same project). Seven of the responses stated that a project may
be worked on by different student teams over time.

While we cannot generalize these results to programs outside of those of
the respondents, the results have given us more information about how the
responding programs run similar capstone courses. We plan to carry out a
more rigorous study in the future, across a broader collection of programs,
that will hopefully yield more detailed information.

790



5 Related Work

As described by Coyle et al. [3] and by Oakes et al. [12], Engineering Projects in
Community Service (EPICS) is a model for integrating community engagement
throughout the curriculum. Students participate in projects that span multi-
ple years, with project teams made up of students from multiple disciplines,
including Computer Science. Started at Purdue [16], EPICS has expanded
to multiple other universities, including Princeton, Ohio State University, and
Arizona State University [17]. Linos et al. [10] describe adapting the EPICS
model to a new Software Engineering program in a liberal arts setting, includ-
ing a discussion of ongoing challenges around topics such as the continuity of
projects and effective project management. One significant difference between
the work on EPICS and the work we describe above is that we are just focused
on the capstone course at this point, so students are all senior-level students
that are just taking the course for a semester.

Davis and Rebelsky [4] describe the design of a software design course
which includes multi-semester projects with community partners. Kurkovsky
et al. [9] introduced a service-learning framework named Scaffolded Projects
for the Social Good, or SPSG. This uses a studio-based approach for student
projects with external partners, and is similarly run during development using
agile techniques with two-week sprints. For continuity, students can work on
the same projects across an undergraduate software engineering and a senior
project or capstone class, and spend the last week of the semester focused on
knowledge transfer activities. Braught et al. [2] describe multiple models for
introducing H/FOSS (Free and Open Source, potentially with Humanitarian
goals) projects into the curriculum, with models varying on the organization
of the capstone course and related courses, such as courses in software en-
gineering. All of these models appear to have goals similar to ours, but with
potentially different course sequences, so we plan to follow up with the authors.

Dugan [7] conducted a survey of existing literature on undergraduate cap-
stone courses in Computer Science. This survey organized the literature around
both course and project goals, including topics such as which software process
models were used and which course topics were covered. Similarly, Tenhunen
et al. [14] performed a systematic literature review of software engineering cap-
stone courses, where they categorized courses on characteristics such as team
size, type of client, and duration.

6 Final Reflections and Future Work

Several important points came out during the capstone. These are described
below as communication, team support, and infrastructure.

8 91



6.1 Communication

The most important challenge in Spring 2024 was with communication, includ-
ing between teammates on a single team, between student teams, and with the
client. Anecdotally, communication on individual teams went well, especially
since students had time each week to work together in class, but there were
times during the semester when teams struggled with communication specifi-
cally about tasks to do outside of class. This seemed to get better during the
semester as students become more familiar with one another and with the task
tracking tools on GitHub. Providing online training on how to use these tools,
and introducing them in more detail in class, may help the next teams collab-
orate more effectively from the start. For communication between teams, the
students that responded to the survey though there could be more communi-
cation than there was (2.43, with 3.0 being ideal). This coming semester, class
time for these inter-team meetings will be explicitly added to the schedule.

The main communication struggles were with the community partner. Ex-
pectations with the client need to be more clearly set up front to ensure they
are available at the right times, and students need more guidance about when
to use the different communication channels they have available with the client.
Communication challenges, especially limited face to face communication op-
portunities, were the main pain point mentioned by the students. An important
goal for Fall 2024 will be to find the right balance for both the students and the
clients. We plan to coordinate with the clients before the start of the semester
to ensure regular meeting dates are already on the calendar before students
again start to work on the projects.

A related point is that non-technical clients may need additional scaffolding
around how to give effective feedback to student teams during these meetings.
It can be challenging for clients that have never been involved in a software
project to precisely formulate their needs, comment on completed work, or
select from different alternative feature options. The students found it effective
to offer options from a limited collection of alternatives, since this helped the
clients to know what was possible and what tradeoffs were available. It may
make sense to create more guidance for the clients in the future, and (an idea
from our meeting with an instructor at another university) to separate out
presentations into technical presentations (for the instructors and the other
students) and non-technical presentations (focused specifically on the clients).

6.2 Team Support

Although all the teams worked well together this past semester, we could imag-
ine conflicts arising on future teams. To help with this, we plan to use a tool
like CATME [11, 15] to allow students to give one another peer feedback dur-

992



ing the semester and to raise concerns with the instructor. Student teams may
also need more hands-on support in using Scrum, breaking down work into
reasonable pieces, and focusing on high-priority issues for the clients, although
this went reasonably well in Spring 2024.

6.3 Infrastructure

Finally, more focus needs to be placed on infrastructure requirements for stu-
dent projects. Some of this is non-technical infrastructure: although triggered
by a client approaching us, to keep this section active we will most likely also
need to recruit and manage clients from the community. Looking at technical
infrastructure, to fully deploy the software the student teams created for our
community partner, we would need servers to host the website and API server,
and would also need accounts with Google and Apple to publish apps to the
app stores. While university-provided versions of these resources work during
development, at some point client-owned versions of these resources will be
needed. If students are working on multiple teams with dependencies between
the teams (e.g., an API server with related clients, each developed by different
teams), determining where to host projects needed by other teams needs to be
done early in development to prevent problems later on, where student projects
have inter-project dependencies that block progress.

6.4 The Future

In this paper, we presented our initial experience with adding a civic engage-
ment section of our current capstone course. The student teams were able to
make good progress on their projects viewed as individual projects, but the
work of joining these projects into a single portal will mainly fall to the Fall
2024 cohort. We’ve identified communication as the most important issue to
focus on going forward, but also pointed out other potential challenges above.

All artifacts created by the student teams, such as weekly status reports,
the final project reports, and all presentations, are available to future teams
on a shared Google Drive, while all code and project boards are hosted on
GitHub. Fall 2024 will be the test of whether this is sufficient for onboarding
new student teams that will have the (to students, often quite novel) chal-
lenge of reading, understanding, and modifying code that they did not create
themselves. We look forward to seeing what challenges—hopefully foreseen,
potentially unforeseen—arise.

Acknowledgments: This work was funded in part by a Civic Engagement
Innovation Grant from the Center for Excellence in Teaching and Learning for
Student Success at Appalachian State University.

10 93



References

[1] P. Armstrong. Bloom’s Taxonomy. 2010. url: https://cft.vanderbilt.
edu/guides-sub-pages/blooms-taxonomy/.

[2] Grant Braught et al. “A Multi-Institutional Perspective on H/FOSS
Projects in the Computing Curriculum”. In: ACM Trans. Comput. Educ.
18.2 (July 2018). doi: 10.1145/3145476.

[3] Edward J. Coyle, Henry G. Dietz, and Leah H. Jamieson. “Long-Term
Community Service Projects in the Purdue Engineering Curriculum”.
In: Proceedings of the 1996 American Society for Engineering Education
Conference. 1996.

[4] Janet Davis and Samuel A. Rebelsky. “Developing Soft and Technical
Skills Through Multi-Semester, Remotely Mentored, Community-Service
Projects”. In: Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. SIGCSE ’19. Association for Computing
Machinery, 2019, pp. 29–35. doi: 10.1145/3287324.3287508.

[5] J. Dewey. Experience and Education. New York: Touchstone, 1938.

[6] P. Freire. Pedagogy of the Oppressed. New York: Continuum, 1970.

[7] Robert F. Dugan Jr. “A survey of computer science capstone course lit-
erature”. In: Computer Science Education 21.3 (2011), pp. 201–267. doi:
10.1080/08993408.2011.606118.

[8] D. A. Kolb. “Experiential Learning: Experience as the Source of Learning
and Development”. In: Journal of Business Ethics 1.15 (1984), pp. 45–57.

[9] Stan Kurkovsky et al. “Scaffolded Projects for the Social Good: A Strat-
egy for Deploying Studio Model in CS Education”. In: Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 2.
SIGCSE 2024. Association for Computing Machinery, 2024, pp. 1706–
1707. doi: 10.1145/3626253.3635487.

[10] Panagiotis K. Linos, Stephanie Herman, and Julie Lally. “A Service-
Learning Program for Computer Science and Software Engineering”. In:
SIGCSE Bull. 35.3 (June 2003), pp. 30–34. doi: 10 . 1145 / 961290 .
961523.

[11] Misty L. Loughry, Matthew W. Ohland, and D. DeWayne Moore. “Devel-
opment of a Theory-Based Assessment of Team Member Effectiveness”.
In: Educational and Psychological Measurement 67.3 (2007), pp. 505–524.
doi: 10.1177/0013164406292085.

1194



[12] William C. Oakes, Edward J. Coyle, and Leah H. Jamieson. “EPICS: A
Model of Service-Learning in an Engineering Curriculum”. In: Proceed-
ings of the 2000 American Society for Engineering Education Conference.
2000.

[13] Suzanne Savanick et al. Service Learning. url: https://serc.carleton.
edu/introgeo/service/index.html.

[14] Saara Tenhunen et al. “A systematic literature review of capstone courses
in software engineering”. In: Information and Software Technology 159
(2023), p. 107191. doi: 10.1016/j.infsof.2023.107191.

[15] Purdue University. CATME: Smarter Teamwork. https://catme.org/.

[16] Purdue University. Welcome to EPICS. https://engineering.purdue.
edu/EPICS.

[17] Wikipedia. Engineering Projects In Community Service. https://en.
wikipedia.org/wiki/Engineering_Projects_In_Community_Service.

12 95



Ungrading in Computer Science: A Case Study∗

Jean H. French, Crystal K. Cox, and Michael A. Murphy
Department of Computing Sciences

Coastal Carolina University
Conway, SC 29528

{jennis,crystal,mmurphy2}@coastal.edu

Abstract
The ungrading movement seeks to shift student focus from earning

grades to meaningful learning by replacing numerical and letter grades
with actionable feedback. In this study, three upper-level computer sci-
ence courses in system architecture, web application development, and
software engineering were modified to use ungrading strategies by replac-
ing weighted numerical grading with detailed feedback to encourage con-
tinuous improvement. The effectiveness of the selected methods showed
mixed results across the three courses. Asking students to focus on the
learning process instead of fixating on grades was found to run counter
to the ingrained educational mindset with which they are familiar. Addi-
tional research will be needed to develop techniques to support learning
for intellectual discovery and to build students’ self-regulation skills.

1 Introduction

An educational movement called ungrading seeks to realign students to focus
on learning for its own sake instead of simply churning through coursework
in order to earn a grade. Ungrading can encompass many different strategies,
but the basic idea is that instead of assigning a grade to each assignment, the
instructor provides actionable, judgment-free feedback without a grade, rating,
or ranking. The student is encouraged to incorporate the feedback and resub-
mit an improved assignment. The main characteristic of ungrading is that

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

196



nothing is graded while the student is engaged in the process of learning. Tra-
ditional numeric grading on activities throughout the semester has been shown
to contribute to inaccurate, biased grades that do not motivate or contribute
positively to the learning process. [4]

For this study, three colleagues at a public comprehensive university of
approximately 10,000 students redesigned one of their courses to incorporate
a set of ungrading strategies. Each removed the traditional grading scheme
based on weights and categories for all activities and replaced it with a sim-
pler, ungrading alternative to measure differences in student success, semester
flow, and faculty workload. While some proponents of ungrading aim to elim-
inate all ranking, rating, judgments, and final evaluation from instructors, the
scope of this study was a bit more modest in that it eliminated all numeric
grades during the semester but still assigned a final letter grade at the end of
the semester in accordance with university policy. The objective of each ap-
proach was to have students focus on the learning process itself, incorporating
instructor feedback for continuous improvement on their work throughout the
semester, until competency was achieved.

The remainder of this paper is organized as follows: related work is dis-
cussed in Section 2. Each of the three case studies, including results from each
study, follow in Sections 3, 4, and 5. These case studies describe the application
of ungrading to system architecture, web application development, and soft-
ware engineering classes, respectively. Following the case studies, conclusions
and intentions for future work are presented in Section 6.

2 Related Work

Ungrading encompasses many approaches that seek to reduce or eliminate the
use of numeric grades, such as contract grading [3] and specifications grad-
ing [6], as well as student self-assessment and peer review. Because tradi-
tional numeric grading schemes are often arbitrary, biased, inaccurate, and
de-motivating, ungrading strategies aim to prioritize judgement-free feedback
over ratings and rankings. If the goal of grades is used to provide feedback,
grades alone fail to communicate useful information, but this can be addressed
through narrative feedback. Additionally, a focus on grades can result in neg-
ative actions by students (e.g. cheating, signing others in for attendance) and
faculty (e.g. grade inflation which often incentivizes positive student evalua-
tions in ‘GPA booster’ courses) rather than a focus on learning. [2]

A number of educators have found success with ungrading policies in prior
work. Binary grading (pass/fail) has been used to reduce instructor workload
and improve student attitudes toward learning in a number of upper-level com-
puter science courses [1]. Ungrading policies have improved students’ sense

2 97



of well-being in a project-based, non-major programming course, using self-
grading (students determine their own grade) [8]. The self-directed projects
also contributed to improved student motivation. Allowing resubmissions, pro-
viding only written feedback (without numeric grades), and allowing students
to have input into their final grades resulted in significant improvements in stu-
dents’ feelings of intrinsic goal orientation, self-efficacy, and control of learning
[9]. Significant improvements in self-efficacy and learning performance, control
of learning, and task value have been observed with ungrading, but only small
improvements in intrinsic goal orientation were found [5]. Much research has
shown that both performance and quality of experience are positively impacted
when intrinsic — as opposed to extrinsic — motivation is driving the activity.
Self-determination theory suggests that the way to maintain intrinsic motiva-
tion is to support student feelings of competence, autonomy, and relatedness,
all states which ungrading seeks to encourage. [7]

3 Case Study A – System Architecture

In the fall semester of 2022, an ungrading approach was tested in a junior-
level system architecture course. Historically, this course employed a mixture
of quizzes and assignments with standard numerical grading with final grades
assigned by applying category weights to the different types of graded activities.
As shown in Figure 1, this course had high student success rates in the previous
four offerings, with 100% pass rates in Fall 2020 and Spring 2022, and a 95%
pass rate in Fall 2021.

Three ungrading principles were adopted in the system architecture course.
First, no numerical or letter grades were assigned to individual graded items
in the course. Students were instead given detailed feedback about their sub-
missions and were invited to resubmit to correct any deficiencies. Second, all
parts of the course were effectively made optional by allowing the students to
choose from a selection of topics. Finally, students were required to reflect on
their own performance on the course activities and propose a final semester
grade for themselves. To implement these principles, students were given a
selection of five possible assignments covering logical circuits, discrete mathe-
matics, central processing units, operating systems, and data centers. Students
had to complete at least four of the assignments, which required submitting a
recorded video presentation and producing artifacts to be displayed in a public
portfolio.

Compared to prior semesters, student success in terms of final grades ac-
tually decreased during the ungrading trial, as depicted in Figure 1. In prior
semesters, student success in this course (defined as passing with a grade of
C or higher) averaged 95–100%. However, during the ungrading trial, this

398



success rate dropped to 79% even after the application of a full letter grade
curve. Without the curve, the success rate would have been 43%. The fraction
of students earning excellent (A) grades also decreased significantly from prior
semesters.

Figure 1: Grade distributions for the system architecture course, which was
first offered in Fall 2020 and was not offered in Spring 2021. Ungrading was
used in Fall 2022, after which the course reverted to traditional grading from
Spring 2023 through Spring 2024, with plans to try another ungrading approach
in Fall 2024.

To spread out the professor’s workload, students were permitted to submit
at most one assignment per week using a weekly dropbox in the course learning
management system. Each week, the professor evaluated student submissions
against the published expectations and provided detailed written feedback on
both the video and portfolio artifacts for any submissions received during the
prior week. Over the course of the semester, the professor observed that the stu-
dents were largely ignoring the feedback, as few students took advantage of the
opportunity to resubmit their work when deficiencies were observed. Students
also largely ignored the instructor-provided lesson pages and recorded lectures
that were linked from each assignment option, choosing instead to search the
Internet on their own. Meanwhile, the professor’s teaching workload for this
course was significantly higher with ungrading than without, leading to a re-
turn to traditional grading during the following semester (Spring 2023). With
the resumption of quizzes to motivate the students to engage with the les-
son material, student success increased, albeit not quite to the levels observed

4 99



during the latter part of the COVID-19 pandemic.

4 Case Study B – Web Application Development

Ungrading was initiated in an upper-level web programming course starting
in the fall semester of 2022. The course requires a background in networking,
programming, and relational databases and focuses on server-side web appli-
cation development. Though the individual deliverables of the course vary
from semester-to-semester, a consistent requirement is the development of a
dynamic web application (more specifically, a Content Management System)
that covers the semester’s topics. The CMS is comprehensive and can alone be
used to assess programming skills learned during the semester.

Prior to ungrading, the assessments were assigned a numerical grade along
with descriptive feedback. Since the programming assignments built upon prior
submissions, the first task for each version was to make corrections to the prior
code so that coding errors would not propagate through each new phase of
development. When both feedback and grades were provided, students often
ignored the written feedback. Although feedback included instructions for mak-
ing corrections, students ignored the guidance and incorporated uncorrected
errors into increasingly complex programs –– including the final project. This
inattention resulted in consistently reduced grades as each new programming
assignment was evaluated.

There were two goals for implementing ungrading in this course. The first
was to minimize “punishing” students with poor grades during the learning
phase of the course. By removing an actual grade and only giving feedback,
the intent was to motivate students to focus on continuous improvement. As the
goal is for students to learn by the end of the course, the grading methods acted
counter to the intent. Poor grade marks were punitive rather than encouraging
students to make improvements since “grade damage” was permanent –– even
in the case where students mastered the material by the end of the semester.
Grading in such a way was more damaging for those students taking longer to
learn the material than others.

Another goal was to authentically evaluate mastery of programming skills
in the class. Traditional versions of the course included weighted grades for
various types of deliverables allowing multiple paths to completion. Student
choice was highly encouraged in university professional development training
programs. By following a multi-path to success version of the course, the
significance of the grade for the final project was diluted even though the final
project was the most authentic assessment of a student’s programming skills.
Students choosing low-hanging fruit accumulated points regardless of mastery
of material. Inadequate programming skills —- regardless of a passing grade

5100



— further sets students up for challenges and failures in more advanced classes.
In the ungrading version of the course, the student learning outcomes re-

mained unchanged and many of the lessons and deliverables did not change
significantly. Deliverables were marked either Complete or Not Complete and
any non-binary assessment received detailed feedback. There were two different
implementations of ungrading. In one version, students were not able to access
the main portion of the final CMS project until all prerequisite assessments
were marked complete. In the second version, students could access all mate-
rial until the last day of the semester. In both cases, students were instructed
to inform the instructor as they progressed for a review.

The final grade, required by the university, was based on the number of
milestones completed in the CMS project. Milestone 1 had to be complete and
correct for a grade of a C. Partially completed work would result in lower grades
(D+ and lower). Additional incremental functionality increased the grade up
to an A.

Figure 2: Grade distributions over time for the web application development
course. Ungrading was used from 2022 to present.

In terms of faculty effort, there was no perceived additional work to provide
only feedback since this was a regular practice. Students in the group where
there were limitations on accessing the final project without completing pre-
requisites had a more realistic understanding of their progress. There was an
opportunity to withdraw from the course if they did not make progress towards
the project. One student course evaluation stated, “Not completing practice
assignments should not hinder you from completing the project.” In the very

6 101



next semester, the project was not restricted, yet this was problematic. The
final prerequisite task was due six weeks prior to the final deadline for the
CMS. There were students still working on that final prerequisite the day the
final programming project was due. Students, just as in semesters prior to un-
grading, attempted to piece together code at the last minute without success.
This was realized in the final grades. Passing grades (C or above) dropped
from 85% to 65% (Figure 2).

5 Case Study C – Software Engineering

An ungrading approach was implemented in a software engineering course for
eight semesters, beginning fall 2020. Taught by the same professor as a hybrid
class both before and during the ungrading trial, this course had tradition-
ally used standard numerical grading on a 100-point scale for each activity,
including coding assignments, quizzes, and presentations, with final weighted
averages combined and translated into a letter grade, using a traditional scale,
where 90–100 is an A, 87–89 is B+, 80–86 is B, and so on.

For the purpose of this ungrading trial, the course was redesigned into nine
required modules and four optional challenge modules, each centered around
a program and a written reflection as the main deliverable. Three ungrading
principles were implemented. First, no numeric or letter grades were assigned
to any activities during the semester, until the final grade. Second, due dates
were as flexible as possible, up to the point where there would not be enough
time in the semester to complete the required work, which was practically
about three weeks after the original due date. Third, students demonstrated
competency in this class by completing the coding assignment and writing a
guided self-reflection for each assignment, with no partial credit options — all
required work had to be completed to minimum requirements in order to pass
the course with a grade of C. The goal of this policy was to help students de-
velop the habits and endurance required to solve hard problems without giving
up at a partial solution. Finally, while many ungrading approaches espouse
detailed, actionable feedback on submitted assignments, with encouragement
to students to incorporate the feedback in resubmissions, in this class feedback
was mostly given only before submission, not after. Students were instructed
to not submit any incomplete work, and instead ask questions and seek help as
needed in order to complete the assignments satisfactorily before submitting.
Using a flipped classroom approach allowed plenty of time in class for students
to work on assignments and ask their questions.

Since implementing the ungrading strategies, the percentage of passing
grades went up by 8% (Figure 3). Interestingly though, the percentage of
A grades declined by 16% and the percentage of C grades went up by 23%.

7102



Figure 3: Grade distributions over time for the software engineering course.
Ungrading was used from Fall 2020 to present.

Based on instructor observations and discussions with students, the authors
hypothesize that the drop in A grades and increase in C grades is due to a
couple of reasons. Firstly, the grades during ungrading are lower but more
accurately reflect student competency, as there was no extra credit, late penal-
ties, weights, or averaging that could skew grades in one direction or another.
Secondly, while students appreciated the flexibility in due dates and optional
assignments, it often caused them to spend their time working on assignments
for other classes with hard deadlines and grades, and fall too far behind in this
class to complete challenge assignments. The drop in D–F grades was likely
due to both the nature of how ungrading stops penalizing the students for early
mistakes, and the control that it gave students over their grade.

Aside from analyzing final grade outcomes, several observations were made
regarding the impact of the implemented ungrading strategies. Most students
indicated that ungrading did help to reduce their stress and anxiety, and helped
them feel more in control of their grade, but that it was hard to stay on track
without the pressure of hard deadlines. Students did seem to lose engagement
and focus as the semester went on, and most students, regardless of grade,
routinely fell behind on recommended due dates. However, because there was
no partial credit for incorrect or incomplete work, most students kept working
until they finished the assignments satisfactorily. As for the instructor experi-
ence, the no incomplete submissions allowed and early feedback strategy was
a positive, allowing the instructor to focus on spending time partnering with

8 103



students, helping them complete the work, rather than spending that time
calculating points or writing detailed feedback after submission.

6 Conclusion

The effectiveness of the selected ungrading strategies, as implemented in this
study, was limited. Some results indicated worse final grades, while others
showed mixed results. It is difficult to draw conclusions based solely on the
grades, since the “before” grades were quite possibly less accurate reflections
of student competency. It should be noted that asking students not to focus
on grades is counter to the educational structure with which they are most
familiar. The current standard university structure and policies do very little
to support ungrading at an infrastructure level, and in fact, work against it.
Even in the ungrading courses, the students still must acknowledge that there
is a final grade at the end of the course.

It remains a fact that final grades exist and matter in the current university
and societal environments. There are practical challenges to successfully imple-
menting ungrading at the course level. Ungrading requires self-paced learning
and this comes with its own set of challenges. A lack of engagement with the
material or the inability of students to keep on schedule without the pressure
of hard deadlines and grades was an issue observed in all three case studies. It
will take a more concerted effort to support learning for intellectual discovery
and build students’ self-regulation skills. In addition to student motivation and
self-regulation issues, feedback-based evaluation can have a significant impact
on how much time the instructor spends on ungrading.

While the results of this initial ungrading study were mixed, it is important
not to conclude that ungrading is inappropriate for computer science courses
based solely on these early observations. First, the sample sizes in these courses
were relatively small. Second, the COVID-19 pandemic likely inflated prior
success rates due to grading considerations that were given during the inter-
national emergency. Additional data collection will be needed to determine
if an ungrading approach can be successfully utilized in these courses with
post-COVID students.

Future work will be needed to refine the application of ungrading to com-
puting sciences courses and identify the techniques that are both effective and
practical within the constraints of university policy. The authors plan to com-
plete a more comprehensive study focusing on authenticity of learning, mo-
tivation, and workload (both for faculty and students), with more sensitive
instruments — such as surveys and cohort data — to evaluate outcomes and
address potential threats to validity. Differences in outcomes will be evaluated
over multiple course modalities, including in-person, hybrid, and asynchronous

9104



remote. Finally, techniques for adapting ungraded courses to the realities of
grade-oriented transcripts and other student records will need to be explored.

References

[1] Andrew Berns. “Scored out of 10: Experiences with Binary Grading Across
the Curriculum”. In: Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. SIGCSE ’20. New York, NY, USA: As-
sociation for Computing Machinery, Feb. 2020, pp. 1152–1157.

[2] Susan Debra Blum. Ungrading: Why Rating Students Undermines Learn-
ing (and What to Do Instead). West Virginia University Press, 2020.

[3] Elmer G. Dickson. “Contract Grading”. In: Journal of Financial Education
3 (1974), pp. 21–24.

[4] Joe Feldman. Grading for Equity: What It Is, Why It Matters, and How
It Can Transform Schools and Classrooms. Corwin Press, Aug. 2023.

[5] Ryan Stephen Mattfeld. “Improving Student Motivation through an Al-
ternative Grading System”. In: Journal of Computing Sciences in Colleges
39.5 (Nov. 2023), pp. 86–95.

[6] Linda B. Nilson. Specifications Grading: Restoring Rigor, Motivating Stu-
dents, and Saving Faculty Time. New York: Routledge, July 2023.

[7] Richard M. Ryan and Edward L. Deci. “Self-determination theory and the
facilitation of intrinsic motivation, social development, and well-being”. In:
American Psychologist 55.1 (2000), pp. 68–78.

[8] Gillian Smith. “Pairing Ungrading with Project-Based Learning in CS1
for Inherently Flexible Course Design”. In: Proceedings of the 55th ACM
Technical Symposium on Computer Science Education. Vol. 1. Portland
OR USA: Association for Computing Machinery, Mar. 2024, pp. 1265–
1271.

[9] Scott Spurlock. “Improving Student Motivation by Ungrading”. In: Pro-
ceedings of the 54th ACM Technical Symposium on Computer Science
Education. Vol. 1. SIGCSE 2023. New York, NY, USA: Association for
Computing Machinery, Mar. 2023, pp. 631–637.

10 105



Mind the Gap: Exploring Differences in
Student Perceptions of Belonging and Inclusion

in Computer Science∗

Elizabeth von Briesen, Shannon Duvall,
Ryan Mattfeld, and Scott Spurlock1

1Department of Computer Science
Elon University
Elon, NC 27244

{evonbriesen, sduvall2, rmattfeld, sspurlock}@elon.edu

Abstract

To aid in understanding the current climate of diversity and inclusion
in the Computer Science Department at our university, we developed a
survey to identify and evaluate factors related to these topics. The sur-
vey was administered before the third week of participating Spring 2024
courses, which ranged from introductory classes open to any student from
any major, to advanced classes taken as part of the computer science ma-
jor course sequence. Our findings show that students expressed feeling
more confident in their potential for success in class versus as a future
professional in the field. They reported more positive interactions with
faculty than with peers. Students also indicated a desire for more struc-
tured opportunities to connect with peers, and commented positively on
current departmental efforts to make our common areas more welcoming.
The survey results provide a baseline that we can use in the future to
evaluate the impact of curricular interventions on student perceptions of
inclusion and belonging. We also plan to evaluate how enhanced sup-
port for student well-being in the department and within student groups
impacts perceptions and retention of underrepresented groups.

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1106



1 Introduction and Related Work

The underrepresentation of female, Black, and other marginalized identities in
the field of Computer Science (CS) is a well-known, longstanding problem [4,
7]. As an example, the latest data from the National Center for Education
Statistics show that women represent only 23% of majors classified as “Com-
puter and information sciences and support services” [12, 11]. Compounding
these issues, computing graduates from underrepresented groups will enter a
workforce with continuing diversity gaps. In their 2021 report, Pew Research
found that while women hold 50% of STEM jobs, they represent only 25% of
the computing workforce and are paid less than their male counterparts across
all demographics. Black and Hispanic STEM workers also remain underrepre-
sented in the field and earn the least of all racial and ethnic groups [4].

Undergraduate computer science education is a common trajectory for in-
dividuals who wish to become professionals in the field; however, the statistics
above show that this remains a leaky pipeline for students from non-majority
identity groups. This problem and potential solutions are under active exam-
ination in computer science and other STEM disciplines [10, 2, 8]. Belonging
and inclusion are factors often examined with respect to retention. Research
has shown that a sense of belonging in introductory computer science courses
is correlated with continuation of studies in the field, particularly for “minori-
tized students” [10]. Specific pedagogical strategies like Culturally Responsive
Teaching have been shown to result in positive learning outcomes and feelings
of inclusion [1]. This pedagogy has also been studied as a tool for university
STEM departments to transform their culture such that it is more supportive
and inclusive of any interested student [6]. Peer relationships are also impor-
tant. Lehman et al. examined factors related to the “persistence” of women
and racially/ethnically minoritized groups in computing majors, as their re-
tention rates are lower than those of majority groups. Based on their findings,
they assert that “peer experiences” are strongly related to persistence, as when
these experiences are “poor,” students are more likely to leave the major [7],
thus leading to lower overall retention rates within programs.

Extensive literature details various methods for surveying students to un-
derstand how their identity, other personal factors, and their current environ-
ment influence their sense of belonging and inclusion. Research and related
survey instruments include those developed to understand first-year experi-
ences and feelings of belonging [5, 9], measure how belonging is beneficial in
online learning [3], and determine the validity of instruments measuring general
classroom community [13]. Washington et al. developed and tested a survey
instrument to measure the cultural competence of computing students, identi-
fying this as a problem requiring longitudinal study across many institutions
[15]. Preceding this work, Washington explains the importance of cultural

2 107



competence and diversity in computer science education [14], working to align
goals with ABET requirements. This rich body of prior work provides the basis
for our survey instrument, which is focused on the measurement of students’
feelings of belonging and inclusion.

In the following sections, we describe the development and details of our
survey, and present the results of administering it early in the Spring 2024
semester to students enrolled in courses across our department. We discuss
key themes in survey responses and conclude with some ideas about how this
instrument might be used in the future.

2 Methods

For this study, we compiled a survey instrument informed by related literature
to gather information on student demographics, perceptions of inclusivity in
the department and classes, and attitudes about the field of computing [5, 9,
3, 13, 15, 14]. We administered the survey at a mid-size liberal arts university
in 18 sections of 10 courses across our computer science curriculum, including
courses for non-majors. The survey was given in each class after the drop-add
period was complete and before the third week of classes.

2.1 Survey Instrument

There are three sections to our survey instrument1:

• Demographics: The first 11 questions ask for demographic information
including major, year, gender identity, race, and disability status.

• Likert Scale Ratings: The next 16 questions ask the respondent to
what extent they agree with statements about either class climate (such
as “Faculty demonstrate respect for individual difference”), personal as-
sessment (“I feel comfortable interacting with computer science profes-
sionals”), or the field of computing (“I find the field of computer sci-
ence interesting”). Respondents rated their agreement with statements
as either “Strongly agree”, “Somewhat agree”, “Neither agree nor disagre”,
“Somewhat disagree”, or “Strongly disagree”.

• Free-Response: The final 6 questions ask what factors are important
for inclusion and what things our department in particular is doing well
or could be doing better.

1Full survey: https://github.com/muniravb/CS_UndergradSurveyBelongingInclusion.

3108



2.2 Questions of Note

For the remainder of this paper, we will focus on insights derived from the
following subset of questions:

Likert Scale Rating:
1. Faculty in Elon’s Computer Science department demonstrate respect for

individual differences.
2. I feel comfortable interacting with computer science majors.
3. I feel comfortable interacting with computer science professionals.
4. I have the potential to succeed in a computer science class.
5. I expect to make important contributions in my computer science class

or classes.
6. I have what it takes to become a computer science professional.

Free-Response:
7. What, if anything, makes you feel included or excluded in your computer

science or STEM courses?

3 Results and Discussion

Figure 1 details the aggregate responses for Questions 1-6. For simplicity, we
have combined Strongly Agree and Somewhat Agree, and Somewhat Disagree
and Strongly Disagree, to “Agree” and “Disagree” respectively. This figure
shows that in general, a large majority of respondents feel that faculty in our
department are respectful of differences, and that they have the potential to
succeed in our classes. Fewer (but still a majority) feel comfortable interacting
with the student majors within our department, or are confident they have the
potential for success in the tech industry beyond college.

Table 1 details student characteristics and demographics in our responses
(n = 246).2 The majority of our respondents (67%) were computer science
majors, and all four years of study are represented. The remainder of this
section breaks down the responses to determine differences between identity
groups.

3.1 Finding 1: Confidence of Future Success

As shown in Figure 1, students from all demographics combined felt more
confident of their success in the computer science classroom than as a computer

2Note that while the demographic categories of “Diagnosed Disability” and “Cognitive
Condition” are intended to allow students to make a distinction between cognitive and phys-
ical conditions, there may be some overlap in responses.

4 109



Q6. I have what it takes to become a computer
 science professional.

Q5. I expect to make important contributions in
 my computer science class or classes.

Q4. I have the potential to succeed in a
 computer science class.

Q3. I feel comfortable interacting with computer
 science professionals.

Q2. I feel comfortable interacting with computer
 science majors.

Q1. Faculty in the Computer Science department
 demonstrate respect for individual differences.

68%

74%

89%

84%

76%

90%

Agree Neither Disagree

Figure 1: Student responses for selected Likert-scale questions.

Table 1: Summary of Survey Respondent Characteristics and Demographics
Factor Number Percent

Major CS
Non-CS

149
72

67
33

Year

First-Year
Sophomore
Junior
Senior

47
62
66
46

21
28
30
21

Course Level 1XXX and 2XXX
3XXX and 4XXX

115
106

52
48

Race

White/Caucasian
African American/Black
Hispanic/Latinx
Asian
Other, or prefer not to respond

160
17
15
13
16

72
8
7
6
7

Gender
Male
Female
Non-binary, transgender, or not listed

144
61
14

66
28
6

Diagnosed Disability No
Yes

169
42

80
20

Cognitive Condition No
Yes

172
23

88
12

5110



science professional in the future. Overall, 89% agreed that they had potential
to succeed in class, and 74% expected to make important contributions in class,
but only 68% agreed that they had “what it takes” to become a computer
science professional. Figure 2 shows that when these results are broken down
by demographic, female-identifying students have the sharpest decline, with
90% confirming their potential for classroom success, and only 59% expressing
potential for success as a professional. However, when we consider only those
with a declared major in computer science, the gender difference is negligible.
This means that females taking an introductory course in computer science are
much less likely to believe they have the potential for success in the field at
large.

All Other
Female

Male

88%
90%
88%

Q4. Class success
potential

59%
75%
75%

Q5. Class
contribution

potential

76%
59%
71%

Q6. Could become
CS professional

82%
86%
83%

Q6. Could become
CS professional
(CS Majors only)

Agree Neither Disagree

All Other
White

83%
91%

66%
77%

75%
65%

89%
81%

All Other

No Cognitive
Condition

90%
82%

72%
82%

71%
53%

84%
78%

All Other
No Disability

91%
82%

75%
69%

71%
59%

91%
62%

Figure 2: Student confidence of potential for success in a computer science
course, expectation of making a significant impact in the course, and belief
that they “have what it takes” to become a computer science professional.

Non-binary, transgender, and unlisted gendered students also showed a de-
cline in their confidence between the classroom and the workplace, but the
trend is only evident for non-majors. Compared to female students, these
respondents showed a sharper decline in their confidence to make important
contributions in class. While they agreed in their ability to generally do well in
class (88%), many fewer agreed that they could make important contributions
in the learning process (59%). This trend holds for non-white students as well.
They are more confident in their potential to succeed in the class (83%) and
in the workplace (75%) than in their classroom contributions (66%).

6 111



3.2 Finding 2: Peer Interactions

Students reported feeling that the computer science department faculty demon-
strate respect for differences (90% agreement), and that they feel comfortable
interacting with computer science professionals (84% agreement). However,
they feel less comfortable interacting with computer science majors (76% agree-
ment). As shown in Figure 3, underrepresented groups have a greater difference
in their perception between faculty/professionals and their peers. For example,
while 88% of individuals identifying as non-binary, transgender, or unlisted for
gender feel comfortable interacting with CS professionals, only 46% feel com-
fortable interacting with their peers in class. Similarly, students identifying
themselves as female, non-white, or disabled showed less comfort interacting
with other computer science students than professionals.

All Other
Female

Male

82%
87%
92%

Q1. Faculty respect
differences

47%
79%
78%

Q2. Comfortable
with peers

88%
87%
82%

Q3. Comfortable
with professionals

Agree Neither Disagree

All Other
White

84%
92%

67%
80%

86%
83%

All Other

No Cognitive
Condition

91%
82%

75%
79%

83%
85%

All Other
No Disability

92%
82%

78%
71%

84%
82%

Figure 3: Student comfort with instructors, peers, and professionals.

Further evidence of this comes from the comments in the free-response
questions. Question 7 asked students to describe what makes them feel included
or excluded, and student responses often gave examples of either positive or
negative experiences with faculty or peers in other classes. For example, one
student’s answer included “EVERYTIME I take a comp sci class there is some
guy trying to hit on me.” Another remarked that “Teachers not assuming
students already know high-level stuff makes me feel included.”

Figure 4 shows the results of tagging student free-response replies to this
question, where they expressed either feelings of inclusion or exclusion with
regards to peers, instructors, STEM or the general field of computer science,

7112



0 5 10 15 20 25 30
Number of comments

Race

Gender

STEM

Instructor

Peers

+ 0%

+ 31%

+ 42%

+ 76%

+ 58%

Negative
Positive

Figure 4: Number of tags across student responses to Question 7 relating to
factors affecting feelings of inclusion. The number of negative comments is
shown in dark gray, while positive responses are in light gray with the percent-
age of positive comments indicated.

gender, and race. Of responses about faculty, 76% were positive (“makes me
feel included”) while only 58% of responses about peers were positive. In fact,
peers were paired more often with negative experiences than for any other
topic, including race, gender, instructors, and STEM or field difficulty.

3.3 Finding 3: Craving Connection

Our survey included several free response questions asking about what things
our department does that promote feelings of inclusion, and also for recommen-
dations for changes or enhancements. We received positive feedback regarding
our courses and environment, with one student noting that “[t]he Duke building
is an awesome way to meet, hang out, and learn in. It’s nice having a building
with lots of fun activities like word problems, chess, sticker, places to draw,
and more.” Student responses also reflected the fact that they desire more
structured opportunities to connect with their peers, both inside and outside
of class. For example, students listed both clubs and events both as things that
our department is doing well, and also as recommendations for doing more.

Perhaps most surprisingly, several students asked for more group work to
be incorporated within courses. Traditionally, our students have not enjoyed
working in groups, and when given the choice to pair-program, most decline.
Other suggestions for improvement were to consistently have in-class student
introductions and to facilitate creation of study groups. The latter is a type of
peer connection historically initiated completely by students outside of class;
however, these results indicate that those connections are no longer happening
organically, and are still desired by many students.

8 113



4 Conclusions and Future Work

While the preceding discussion of findings centered on some of the surprising
results from this study, we also noticed expected trends. Students have pro-
vided very positive, yet informal, feedback on our department’s efforts to be
more inclusive, and these were affirmed in our survey results. Students indi-
cated that there are several things our department is doing well, which we can
recommend to other departments trying to create a culture of inclusion:

• Train faculty on best practices for inclusive teaching, such as determining
and using appropriate pronouns for students and using a diverse set of
examples and images.

• Facilitate student organizations and events around computing.
• Create fun and inviting common areas. Our common area includes puz-

zles, games, food, stickers, and art, all of which facilitate community
building and interaction.

• Experiment with alternative grading and classroom management strate-
gies that give choices to the students.

We were encouraged by positive student feedback on these points; however,
we are also interested in identifying areas needing improvement. When we
began this work, our fundamental aim was to increase our students’ feelings
of inclusion in our computer science classes by creating curricular materials
that are culturally relevant or showcase diversity in the field. The results of
this study suggest more focus may be needed outside of our classrooms. Most
students feel confident that they can do well in a classroom setting, but less so
in a professional one. They have positive interactions with faculty, but often
feel less accepted by their peers. The students’ responses suggest that we need
to spend more time thinking about what happens outside our classroom walls:
in internship experiences, study groups, and social gatherings.

This finding presents a difficult and unfamiliar challenge for faculty, as in-
teractions beyond our classrooms are further outside of our sphere of influence
(and, often, comfort zone). Students are asking for more structured connec-
tions with their peers, such as with more group work assignments, while also
acknowledging that these interactions are more likely to be negative. Students
show the need to be able to see themselves as potential professionals, although
encouraging internship or other “real world” experiences may backfire, since
students may be faced with existing inequities in the industry. Further, we
observed what appears to be diminished confidence and agency in establishing
and strengthening peer relationships. Many students requested faculty facili-
tation of connecting with peers, which students previously were able to create
for themselves. This does not appear to be specific to the computer science

9114



department or people of underrepresented groups. Rather, it seems to reflect
a general decline in students’ interpersonal skills.

Combined, these factors show that a larger undertaking is needed beyond
improved curricular approaches and materials. We need to contemplate how
to teach our students the non-computing skills they need to be successful in
their computing careers: to treat each other with respect, to be resilient in
handling disrespectful interactions, and to confidently create relationships with
one another. Attraction and retention of a diverse undergraduate computer
science student population is one key to repairing the leaky pipeline to our
profession. We plan to build on our successes, while simultaneously focusing
on areas of weakness, in order to make our departmental climate one in which
students from any background or identity can find success and belonging.

Acknowledgements

We thank the Center for the Advancement of Teaching and Learning at Elon
University for providing a Diversity and Inclusion grant to support this re-
search.

References

[1] Christy M Byrd. “Does culturally relevant teaching work? An examina-
tion from student perspectives”. In: Sage Open 6.3 (2016), p. 2158244016660744.

[2] Susannah C Davis et al. “Engineering climate for marginalized groups:
Connections to peer relations and engineering identity”. In: Journal of
Engineering Education 112.2 (2023), pp. 284–315.

[3] Daniela K DiGiacomo et al. “The benefits of belonging: Students’ percep-
tions of their online learning experiences”. In: Distance Education 44.1
(2023), pp. 24–39.

[4] Richard Fry, Brian Kennedy, and Cary Funk. “STEM jobs see uneven
progress in increasing gender, racial and ethnic diversity”. In: Pew Re-
search Center 1 (2021). url: https://www.pewresearch.org/social-
trends/2021/04/01/stem-jobs-see-uneven-progress-in-increasing-
gender-racial-and-ethnic-diversity/.

[5] Marybeth Hoffman et al. “Investigating “sense of belonging” in first-year
college students”. In: Journal of College Student Retention: Research,
Theory & Practice 4.3 (2002), pp. 227–256.

10 115



[6] Angela Johnson and Samantha Elliott. “Culturally relevant pedagogy:
A model to guide cultural transformation in STEM departments”. In:
Journal of microbiology & biology education 21.1 (2020), pp. 10–1128.

[7] Kathleen J. Lehman et al. “Nevertheless, They Persisted: Factors that
Promote Persistence for Women and Racially/Ethnically Minoritized Stu-
dents in Undergraduate Computing”. In: Computer Science Education
33.2 (Apr. 2023), pp. 260–285. issn: 17445175. doi: 10.1080/08993408.
2022.2086401. url: https://www.tandfonline.com/doi/abs/10.
1080/08993408.2022.2086401.

[8] Yangqiuting Li and Chandralekha Singh. “Inclusive learning environ-
ments can improve student learning and motivational beliefs”. In: Physical
Review Physics Education Research 18.2 (2022), p. 20147.

[9] Jennifer Morrow et al. Revised Sense of Belonging Scale Hoffman, M.B.,
Richmond, J.R., Morrow, J.A., & Salomone, K. (2002-2003). Investigat-
ing “sense of belonging” in First-Year college students. Journal of College
Student Retention, 4(3), 227-256. Nov. 2002.

[10] Sukanya Kannan Moudgalya et al. “Measuring students’ sense of be-
longing in introductory CS courses”. In: Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education. 2021, pp. 445–
451.

[11] National Center for Education Statistics. Bachelor’s degrees conferred
by postsecondary institutions, by field of study: Selected academic years,
1970-71 through 2021-22. url: https : / / nces . ed . gov / programs /
digest/d23/tables/dt23_322.10.asp.

[12] National Center for Education Statistics. Bachelor’s degrees conferred
to females by postsecondary institutions, by race/ethnicity and field of
study: Academic years 2020-21 and 2021-22. url: https://nces.ed.
gov/programs/digest/d23/tables/dt23_322.50.asp.

[13] Alfred P Rovai. “Development of an instrument to measure classroom
community”. In: The Internet and higher education 5.3 (2002), pp. 197–
211.

[14] Alicia Nicki Washington. “When twice as good isn’t enough: The case
for cultural competence in computing”. In: Proceedings of the 51st ACM
technical symposium on computer science education. 2020, pp. 213–219.

[15] Alicia Nicki Washington et al. “On Measuring Cultural Competence: In-
strument Design and Testing”. In: 2023 ASEE Annual Conference & Ex-
position. 2023.

11116



Evaluating the Cognitive Level of GPT Models
in Mathematics∗

Jacob Evans, Cody Goldschmidt, Yilian Zhang
Computer Science, Engineering & Mathematics

University of South Carolina Aiken
Aiken, SC 29801

{jre5, codymg, yilianz}@usca.edu

Abstract

The current trend of using AI-based applications in everyday life has gained
momentum among the general public. The GPT model has been promoted as
a math tutoring tool for K-12 students. We highly question this promotion and
believe a thorough examination of the GPT model’s capability in mathematical
cognition is necessary before it can be considered a reliable tutoring tool. In this
paper, we present our preliminary findings on the GPT model’s cognitive ability in
mathematics. The model exhibits a low level of mathematical cognition and lacks
training in important areas of trigonometry. The GPT model has not reached a
level of reliability required for tutoring tool. Guardrails must be implemented for
further use. We have developed an efficient strategy that allows the GPT model to
categorize problems based on topic, and this self-feedback can be used to guide
its problem-solving process.

1 Introduction

The recent development of LLM-based Generative AI systems has generated strong
interest from the public. LLMs offer practical applications such as a writing assis-
tant, coding pilot, and information retrieval for everyday use. OpenAI’s ChatGPT is a
widely used large language model (LLM) that has gained significant popularity. Ope-
nAI and Khan Academy have promoted GPT-4 as a math tutoring tool [6] . It has been

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to copy without
fee all or part of this material is granted provided that the copies are not made or distributed for direct
commercial advantage, the CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing Sciences in Colleges. To
copy otherwise, or to republish, requires a fee and/or specific permission.

1 117



said that GPT-4 has passed multiple AP exams and achieves high scores on SAT ex-
ams, even though LLM models usually lack math reasoning, skills, and understanding
of complex problems in mathematics. Mathematics requires accuracy, precision, and
reliability. An AI math tutor needs to present a high level of math understanding to
teach well. We are wondering whether this is the case with the current GPT model. A
thorough evaluation is necessary before using it as a reliable math tool.

In the past, researchers have noticed the non-deterministic nature of LLM mod-
els, and the reliability of their output is inconsistent. For example, a study on Chat-
GPT code generation [7] revealed a high degree of non-determinism. Similar non-
deterministic patterns were frequently observed in mathematical computation by re-
searchers. OpenAI introduced Wolfram Alpha (WA) and Code Interpreter (CI) plug-
ins to address problems in math-related tasks. However, recent research [3] found that
failure to formulate a valid question for these plugins resulted in invalid answers. Fur-
thermore, beyond accuracy issues, it is important to assess whether the model presents
a high level of mathematical cognition during the problem-solving process.

In [5], the authors state that we can consider math as pure symbolic logic, the
relationships between objects in the real world, or the culturally constructed reason-
ing systems. In most perspectives, however, mathematical knowledge is rooted in our
shared culture. Humans slowly learn math through guided practices designed by more
experienced members and interactions with the natural environment. Mathematical
cognition is a consequence of experiences; neural network models can gain this ability
from gradual connection-strengthening processes. Much research has demonstrated
GPT models’ problem-solving ability in math, yet few experiments have been done
measuring their cognition level. Our preliminary tests show the limitation of the GPT
model’s cognitive ability.

In this paper, we investigate the accuracy of the GPT models in problem-solving,
particularly in trigonometry. We also identify the topics that lack training in the GPT-
3.5 model. In addition, we test high cognitive tasks such as categorization and provide
a realistic estimate of the math cognition level of GPT. Our future research plan is to
develop efficient execution guardrails for the GPT model based on our results, thereby
achieving high reliability in specific mathematical domains.

2 Methodology

2.1 Dataset Selection and Issues

We evaluate the MATH dataset [4], a benchmark dataset used by numerous studies. It
contains 12,500 competition mathematics problems from national math competitions–
such as AMC10, AMC12, and AIME. Compared with other datasets such as Deep-
Mind Math and Khan Academy Math, the MATH dataset is much more challenging.
The accuracy of the original GPT model in precalculus is in the range of 0–10%, and

2118



Table 1: Cognitive Level
Level Bloom taxonomy Interpretation in mathematics
6 Create Create new mathematical theorem/theory

based on existing knowledge.
5 Evaluate Justify decisions, thoroughly check the pro-

cess, make judgments, and select the best
information to explore.

4 Analyze Predict the problem-solving process, iden-
tify theorems needed in the mid steps, rec-
ognize the pattern, generate the conclusion.

3 Apply Apply more than one definition or formula
appropriately to solve the problem.

2 Understand Understand the question and use appropri-
ate formulae or procedures without modifi-
cation to solve the problem.

1 Remember Apply the given formula and find the solu-
tion.

the improved model [9] is in the range of 20%; this makes it a good candidate for mea-
suring cognitive ability. We focus our tests on precalculus trigonometric questions, a
category most challenging for GPT models.

During testing, we noticed quite a few issues with this dataset. First, the difficulty
level assigned to each problem does not align with the true complexity of the problem.
The difficulty levels of the problems are determined by the level of the competition
where they are originally from. Questions from high levels of competition tend to be
more difficult, but this is not always true. The second issue is that the problem set
lacks variations in topics. The set extensively covers trigonometry while overlooking
other precalculus topics. With a limited number of problems, obtaining statistically
meaningful data on other topics would be difficult, so we decided to focus solely on
trigonometric problems.

2.2 Cognitive Complexity Level

Since the original level of the dataset reflects neither the conceptual nor cognitive dif-
ficulty, we redesigned and redefined the cognitive level of the problems we tested. We
used the cognitive levels from Bloom’s Revised Taxonomy model in [2] as our basis
for cognition level measurement and adapted it for mathematics (Table 1).

Our trial experiments quickly show that determining the cognitive level of the GPT
model based solely on its ability to answer questions correctly is inappropriate. We
found that GPT’s ability to solve math problems is linked to the specific topics and

3 119



the number of steps required to reach the solution. This led us to explore Achieve’s
framework on mathematical levels of complexity [1]. This framework establishes three
types of complexity: Procedural, Conceptual, and Application. Observations suggest
that both conceptual complexity/cognitive complexity and procedural complexity af-
fect the accuracy of the GPT model. For example, GPT-3.5 struggled with problems
that required a more lengthy procedure to solve, rather than those with a shorter solu-
tion.

3 GPT-3.5 Accuracy testing

3.1 Trial experiments

Our trial experiments were conducted through OpenAI API. The model we are using is
GPT-3.5-turbo. The observations are listed in Table 2, where n represents number of
questions. During each test, the human tester predicts whether the model can solve the
problem correctly. If the model answered incorrectly, a hint would be given to guide
the GPT model in the correct direction.

Table 2: Accuracy Results
Metric Accuracy (%)
Overall accuracy (n=44) 43.2
Prediction accuracy (n=44) 70.5
Cognitive Level Accuracy
Level 1 (n=12) 83.3
Level 2 (n=6) 50.0
Level 3 (n=11) 12.2
Level 4 (n=15) 26.7

Overall, the GPT model’s accuracy decreases as the cognitive level increases. How-
ever, our detailed problem-by-problem analysis reveals that the topics involved have a
greater impact on accuracy.

Another interesting observation in Table 2 is that our human tester can predict with
high accuracy of 70.5% whether the GPT model will correctly solve the problem, while
GPT models could not recognize whether a question is too difficult for them to solve
(in Table 6)

Recognizing and evaluating problems are among the most important mathematical
cognitive skills. The gap between human testers and GPT-3.5 raises further doubts
about the cognitive capabilities of the GPT model.

4120



3.2 GPT-3.5 Performance observations and statistic data

In trial experiments, we analyze each problem-solving process in detail and notice two
interesting facts.

GPT-3.5 demonstrates high proficiency in some topics but shows noticeable weak-
nesses in other areas:

1. Trigonometric Identities: GPT-3.5 struggles to identify and apply the correct
trigonometric identities, leading to a low success rate in problems related to
this topic, while human users can recognize the correct trigonometric identities
based on problem format and terms. GPT-3.5 fails to make these connections
between the problems and formulas. For example, in Figure 1, GPT-3.5 failed to
solve Problem 359 because it was unable to recognize the double angle identity
was necessary to solve this problem.

2. Finding Common Denominators: Even though GPT-3.5 could find the correct
common denominator, the models will cut corners or omit terms during the cal-
culation process. In the end, the GPT-3.5 model fails to perform fraction-related
operations.

3. Limited understanding of trigonometric function ranges: GPT models appear to
know the range of trigonometric functions but cannot apply the knowledge in
inequalities.

Figure 1: Double angle identity example

The accuracy table is shown in Table 3, where topics 1–8 are defined in the supple-
mentary table. Three areas, 3A: Basic Trig identity, 3B: Sum and difference identity, 6:
Manipulate algebraic expressions, have the lowest accuracy percentage. We can con-
clude that the current GPT-3.5 model needs further training in many important areas
of trigonometry.

In addition, GPT-3.5 also struggles with problems that require lengthy solutions
and problems that involve multiple topics. GPT-3.5 tends to forget previous equations
as the solution length increases. Further investigation is ongoing to measure the effect
of procedure complexity on accuracy. For questions involving multiple topics, the ac-
curacy of the GPT-3.5 models accuracy decreases as the number of the topics increases,
as indicated in Table 4, in which n is representative of the number of questions.

5 121



Table 3: Accuracy across each category.
Topic Correct Incorrect Percentage
1A 21 11 65.6%
2A 2 4 33.3%
2B 9 7 56.3%
2C 6 2 75.0%
3A 10 26 27.8%
3B 4 13 23.5%
3C 6 7 46.2%
3E 4 7 36.4%
3F 3 6 33.3%
4A 5 9 35.7%
4D 3 6 33.3%
5C 4 5 44.4%
6 6 18 25.0%
8 9 8 52.9%

Table 4: Accuracy when multiple topics are involved.
Number of Topics Accuracy (%)

1 (n=22) 63.6
2 (n=16) 25.0
3 (n=6) 16.7

3.3 Guided prompting

Due to persistent errors across various problems, we attempt to use guided prompting
techniques to help the GPT model reach the correct answer. There are several com-
mon mistakes GPT-3.5 made: going off-topic, failing to identify necessary formulas
or methods, struggling with complex terms, making symbolic errors, and forgetting
known facts. To handle off-topic responses, GPT-3.5 was given topic-related hints to
guide GPT-3.5 back in the right direction. A hint with the correct formula name was
given to help GPT-3.5 proceed to the next step, and a “simplify” hint was provided in
the case of complex terms and so on. However, the accuracy improvement with hints
is very limited. The model does not show an understanding of the question in the way
humans do.

6122



4 Categorization testing

Beyond problem-solving, the ability to predict the problem-solving process, recognize
patterns, and make judgments is important mathematical cognitive skills in levels 4 and
5. We focus our testing on categorization, where the GPT model is asked to analyze
the problem and categorize it without solving it. Our test results show that current
GPT models require extensive training to do this correctly.

4.1 GPT-3.5 Categorization on level of difficulty

Our initial motivation for categorizing problems based on their level of difficulty was
to program a guardrail to redirect some problems to different APIs. Our test was con-
ducted using all levels of problems in the Math dataset. GPT-3.5 was asked to rank
each problem on a difficulty scale of 1–5. The results in Table 5 show that the GPT-3.5
model is not capable of assigning the correct difficulty level.

Table 5: GPT-3.5s ranking of dataset problems by difficulty.
Dataset Level GPT’s Accuracy (%)

1 (n=38) 2.7%
2 (n=48) 0%
3 (n=49) 0%
4 (n=35) 0%
5 (n=45) 0%

Due to the unsatisfactory difficulty ranking accuracy of GPT-3.5, we adopted a
more direct approach. We asked GPT to judge its ability to solve a problem based solely
on analyzing it without solving it. This could potentially serve as a predictive guardrail:
a negative response will result in a warning message from the system. Preliminary
results on level 1 questions (Table 6) suggest that GPT-3.5 still needs improvement to
assess its problem-solving ability.

Table 6: GPT-3.5s predictions for solvable or unsolvable.
GPT Predictions Prediction Accuracy

Level Solvable Not Solvable Correct Incorrect Accuracy
1 13 24 17 20 45.9%

4.2 GPT-3.5 Categorization on topics

Categorization based on topics shows more promising result. We established the topic
categorization systems outlined in Table 8. Again, our initial tests on topic categoriza-

7 123



Table 7: Categorization on topics
Level Accuracy

1 84.2%
2 50%
3 55.6%
4 80%

tion did not meet expectation. After we use system prompt messages to guide the GPT
model to select the correct category, the accuracy improved. The results in Table 7
demonstrate accurate topic-based categorization for some problems. This could lead
to an efficient guardrail where GPT determine the category, and based on the accuracy
results for that category in Table 3, new procedures could be developed to handle these
challenging situations.

5 Conclusion

Our investigation into GPT model’s math problem-solving ability and mathematical
cognitive ability reveals significant limitation. Despite previous claims that GPT mod-
els could serve as excellent math tools, our findings indicates that these models strug-
gles with high cognitive level tasks, problems involving with trigonometric identities
and complex algebraic expression manipulation. The model also demonstrates diffi-
culty in categorizing problem by difficulty level and determining the solvability of the
problem.

While guided prompting in topic categorization shows a reasonable successful rate,
core issues need to be addressed. Although this paper focuses on GPT-3.5-turbo, our
trial experiments With GPT-4o revealed similar problems. Most importantly, we did
not observe any significant cognitive level improvement from GPT-3.5 to GPT-4o. It
seems that the new model has been trained with more problems and solutions but lack
further training on recognizing and evaluating problems.

Our research suggests future GPT models need focus on training on mathematical
cognition. Solving problem correctly is only one aspect of the mathematics; recogniz-
ing and evaluating problems is equally important. Our future plan is to build guardrails
based on our topic categorization strategies for current model, develop a similar sym-
bolic approach in certain categories as in [8] and ensure the model become a more
reliable tool for educational applications.

8124



6 Acknowledgement

The research is supported by the University of South Carolina Aiken (USCA) Summer
Scholars Institute (SSI) undergraduate research grant.

References

[1] Achieve. A Framework to evaluate cognitive complexity in Mathematics Assess-
ments. 2019. url: https://www.achieve.org/cognitive-complexity-
mathematics.

[2] P. Armstrong. Bloom’s Taxonomy. Vanderbilt University Center for Teaching.
2010. url: https://cft.vanderbilt.edu/guides-sub-pages/blooms-
taxonomy/.

[3] Ernest Davis and Scott Aaronson. Testing GPT-4 with Wolfram Alpha and Code
Interpreter plug-ins on math and science problems. 2023. arXiv: 2308.05713
[cs.AI].

[4] Dan Hendrycks et al. “Measuring Mathematical Problem Solving With the
MATH Dataset”. In: NeurIPS (2021).

[5] James L. McClelland et al. A Parallel-Distributed Processing Approach to Math-
ematical Cognition. Manuscript, Stanford University, February 18. 2016. url:
https://stanford.edu/~jlmcc/papers/McCEtAl16MsPDPApproach-
ToMathematicalCognition.pdf.

[6] OpenAI. Khan Academy explores the potential for GPT-4 in a limited pilot pro-
gram. 2024. url: https://openai.com/index/khan-academy/.

[7] Shuyin Ouyang et al. LLM is Like a Box of Chocolates: the Non-determinism of
ChatGPT in Code Generation. 2023. arXiv: 2308.02828 [cs.SE].

[8] Tri-Huu Trinh, Yonghui Wu, Quoc V. Le, et al. “Solving olympiad geometry
without human demonstrations”. In: Nature 625 (2024), pp. 476–482. doi: 10.
1038/s41586-023-06747-5. url: https://doi.org/10.1038/s41586-
023-06747-5.

[9] Yiran Wu et al. An Empirical Study on Challenging Math Problem Solving with
GPT-4. 2023. arXiv: 2306.01337 [cs.CL].

Appendices
7 Topics related to trigonometric question in Math Dataset

9 125



Table 8: Topics used for categorization.
Topic Description
1A Calculate trig values for special angles (30, 60, 90, 45 degrees)
1B Definition of trig functions with right triangle.
1C Definitions with unit circle, sign differences in different quadrants.
1D Radian, degree measures, and conversion.
1E Angle and rotation.
2A Domain and range of trig functions.
2B Inverse trig functions.
2C Trig function graphs with properties and translations.
2D Graph of inverse trig functions.
3A Basic trig identities like Pythagorean, Reciprocal, and Quotient.
3B Trig identities like sum and difference identities.
3C Trig identities like double angle and triple angle.
3D Trig identities like half angle.
3E Trig identities like sum to product formulas.
3F Trig identities like product to sum formulas.
4A First degree trig equations.
4B Solving trig equations by factoring.
4C Solving trig equations using the quadratic formula.
4D Equations with multiple trig functions.
4E Equations with multiple trig functions and angles.
4F Equations with multiple angles.
5A Area of triangles.
5B Law of sine.
5C Law of cosine
5D Similar triangles.
6 Manipulating algebraic expressions.

7A Geometry, coordinate conversion.
8 Inequality analysis questions.

10126



BlueAI: Designing Artificial Intelligence for
Environment Science and Climate Change

Learning Experiences for K12 Students∗

Gulustan Dogan1, Elif Sahin1, Catherine Fay Wilkinson1

1, Amelia K. Moody1

, and Yang Song1

1University of North Carolina at Wilmington
Wilmington, NC 28407

dogang@uncw.edu, es5510@uncw.edu, catfwilkinson@gmail.com,
moodya@uncw.edu, songy@uncw.edu

Abstract

The subject of teaching artificial intelligence (AI) in K–12 settings
is rapidly expanding and will significantly affect computer education.
While AI is currently a required part of computing curricula at univer-
sities, there are unique challenges in incorporating AI into K–12 educa-
tion. The goal of BlueAI is to prepare K-12 educators to use game-based
lessons to teach computational thinking, AI, and computer science skills
that will interest children while incorporating important environmental
and marine science subjects. We conducted assessments where we taught
lessons at two different schools, and presented our findings.

1 Introduction

Although AI has become an essential component of computer curriculum in
higher education, integrating AI into K–12 education presents special difficul-
ties. The purpose of BlueAI is to train K-12 teachers in utilizing game-based

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 127



lessons to teach AI, computational thinking and computer science skills that
engage students and infuse valuable environmental and marine science content
into their teaching.

University of North Carolina Wilmington, the state’s coastal university, has
a strong marine science focus. Faculty in the Watson College of Education, and
the College of Science and Engineering (Computer Science) will serve as leads
on the project and develop sample lessons aided by AI. The curriculum is geared
towards educating underrepresented populations in grades 3-8 in the coastal
plains of North Carolina. This project is a great tool to introduce students to
science, technology, engineering, and math (STEM) with fun marine science
concepts supported with computer games and hands-on activities. As well
as showing how AI can be used to address global challenges such as climate
change, food production, poverty, and various diseases when applied in an
interdisciplinary domain [3, 1, 7].

To use AI effectively in school settings, the interdisciplinary nature of AI
must be taught properly. We believe our project will be an example for other
disciplines to teach their concepts with AI too. Our proposed BlueAI Project
uses AI and evidence-based instructional practices to (a) remove the traditional
barriers (e.g., lack of resources; geographic distance; poverty; instructional
supports) that separate underserved students from participating in authentic
STEM learning opportunities; (b) spark student interest in pursuing a STEM
career in marine, environmental, climate and computer sciences; (c) provide
students and educators with tools and training to successfully use AI in the
classroom to explore marine science and climate change research questions; and
(d) educate and prepare diverse populations about STEM careers while at the
same time developing critical workforce development skills.

2 Related Work

Despite AI’s key place in contemporary computing, little research has been
done on how students can use AI systems—particularly in K–12 environments
[6].

A study done by Lee et al., used block based coding to create a virtual world
which students can explore to complete challenges, which centered around the
declining population of yellow-eyed penguins in New Zealand[5].

Similar to our study they used AI to educate students on marine life, how-
ever ours focused specifically on image recognition, supervised learning, data
collection, and how AI is currently being used to help combat the effects of
climate change. They assessed the impact the lesson had using a pre and post
assessment, however their assessment covered AI topics, while our assessment
aimed to see if there was an increase in ability to solve coding and algorithm

2128



problems.
Another study was done by Chiu et al., by collaborating with teachers to

develop a curriculum intended to train teachers to be able to teach AI concepts
in their classrooms and increase students’ interest and understanding on the
topics as well[2]. They used pre and post assessments to assess how the students
perceived AI topics before and after the lessons and found that the curriculum
was successful[2].

Although previous work has been done to introduce AI in classrooms and
incorporate interdisciplinary topics, to our knowledge, no studies have been
done which teach AI while also educating and inspiring students to make a
difference in the world. Our study is intended to show students they can create
technology to contribute to the improvement of the health of our planet.

3 Dataset

We collected data from students at two schools to determine whether or not
the lesson would improve their computational thinking skills and positively
impacted their sentiment towards AI and STEM careers. We used 3 Google
forms to collect demographic data, a computational thinking skill assessment,
and reflection questions. Each subject chose a 4 digit anonymous identification
number which they entered for each form. The demographic data was used to
see how the lesson impacted students from underrepresented populations. The
computational thinking assessment, which was used to determine whether or
not the lesson improved the students’ ability to think critically, included 25
simple coding, algorithm, and logic questions. It was taken twice per student;
once before the lesson and once after, so that we could see how their scores
changed. The reflection questions consisted of two prompts: "Do you view AI
differently than you did before this lesson? Why or why not?" and "Are you
more interested in STEM topics or careers than before this lesson? Why or
why not?". The intention of this questionnaire was to assess whether or not the
lesson had a positive impact on the students’ sentiment toward STEM careers
and topics. Written consent from students’ parents or legal guardians was
obtained before collecting any data. Students whose guardians did not consent
to their data being collected still participated in all games and activities, but
none of their data was recorded.

We split the data into two sets, one containing data collected from 49
students at the middle school, and the other from 10 students at the elementary
school. More students participated in the study, however we did not use data
from students who failed to complete all the forms, except for the reflection
questions. The first dataset contained 36 students in grade 6, and 13 in grade 8.
There were 4 students born in 2009, 9 students born in 2010, 14 students born in

3 129



2011, and 22 students born in 2012. There are 26 male and 23 female students.
None of them had a disability. All of their primary language were English, and
one students secondary language was Thai. One was a first generation student.
None of them had free lunch and their ethnicity’s were listed as ’Asian’, ’Black’,
’Multiracial’, and ’White’. The count for each were respectively 1, 1, 2, 45.
Birth year and ethnicity counts are shown in Figure 1.

Figure 1: Dataset 1 Ethnicity and Birth Year Counts.

The second dataset is from an elementary school and contains 3 students in
grade 4 and 7 in grade 5. In our second dataset there were 7 students born in
2012, 3 students born in 2013, and 2 students born in 2014. There were 6 male
and 6 female students. 2 of them had a disability. All of their primary language
were English, and none had a secondary language. None of the students were
a first generation student. For whether or not they received free lunch, 4 of
them did not and 6 were unsure. Their ethnicity’s were listed as ’White/black’,
’White’, and ’White and Hispanic’. The count for each were respectively 1, 8,
1. Birth year and ethnicity counts are shown in Figure 2. After cleaning the
data, we calculated the total scores for the computational thinking assessment
using a solution key and summed the values. We compared the scores of the
first and second attempts to get the difference, then merged that data with the
demographics by using the anonymous id number.

4 Methodology

We developed a curriculum which contains two machine learning video games
which we built using Scratch (Scratch is a project of the Scratch Foundation
which is available for free at https://scratch.org.), a block-based programming

4130



Figure 2: Dataset 2 Ethnicity and Birth Year Counts.

language, and Machine Learning for Kids, a tool made to introduce machine
learning concepts which can add functioning machine learning models to coding
platforms for kids. Information about sea turtle species, their habitats, and how
pollution impacts their populations were also covered. Instructional resources
such as slide show presentations, video tutorials for setting up the game, and
a lesson plan were included as well. We taught lessons using the two games at
one middle school and one elementary school.

The first game focuses on sea turtle endangerment levels [4], using images
of five different sea turtle species (green turtle, olive ridley turtle, hawksbill
turtle, loggerhead turtle, leatherback turtle). The game involves using image
recognition to sort (glide) images to corresponding endangerment levels (en-
dangered, critically endangered, and vulnerable). We collected images of each
sea turtle species from online sources and utilized Machine Learning for Kids
to create a machine learning model capable of predicting if a sea turtle falls
into one of the endangerment levels. The model was trained, tested, and evalu-
ated for its predictive accuracy. Afterwards we integrated the machine learning
model into code blocks in Scratch to enable the gliding of images and initiate
the prediction process for the model.

The second game trains a sea turtle character to differentiate images of
plastic bags and jellyfish. The game has 3 sections, "Training", "Testing", and
"Pollution Info". The "Training" section is a game where the player makes the
sea turtle swim to one of two images, a jellyfish or plastic bag, which is how
the model is trained. While the turtle swims, there are small pollution icons
floating in the water which the turtle must avoid, otherwise the player loses a
life. The four icons were a plastic bag, a plastic bottle, an oil can with spilt

5 131



oil, and a yellow triangle with a skull and cross bones to represent hazardous
chemicals.

The "Testing" button displays the turtle and one image of a jellyfish and
one plastic bag, both of which are not included in the training set. The turtle
automatically swims to the image it recognizes as a jellyfish and says "This is
a jellyfish!". If the model is unable to recognize either image, the turtle does
not move and says "I’m not sure".

Lastly, the "Pollution Info" section displayed the four pollution icons as
buttons, which when clicked displayed a text box containing information about
how the pollution affects the health of sea turtles and their habitats.

At the middle school, the lesson was taught to two groups of students in
grade 6 and one group of students in grade 8, lasting roughly 40 minutes for
each group. The teacher who allowed us to visit her classroom taught a lesson
on each of the five sea turtle species a week prior to us visiting.

We began the lesson with a discussion by asking the students to define
AI. After, we introduced the basic concepts of AI (such as data collection,
supervised learning, training, and testing) via a slide show presentation and
explained the difference between traditional computer programs and AI. We
covered how AI pertains to marine science and ways it is currently being used
to help with the impacts of climate change. Then demonstrated how machine
learning image recognition works through the video game activities.

For the first game, students logged into pre-made accounts at Machine
Learning for Kids to access a collaborative project. The project contained a
section with labeled boxes where training images could be placed, each labeled
as one of the three endangerment categories, endangered, critically endangered,
and vulnerable. They collected 2-3 images of an assigned sea turtle species
from online sources and added them to their respective categories. While they
collected images, we explained the concept of supervised learning and how the
machine learning model recognizes images based on the labeled training data.
After the model was trained, we displayed the game on a screen at the front of
the classroom. We demonstrated how to drag the machine learning code blocks,
which were connected to the Machine Learning for Kids project, into the correct
places in the code to implement the machine learning functionality. First we
ran the game without adding any machine learning code to demonstrate that
it was unable to recognize any images yet. Each image glided to the default
section of the screen, the endangered category. We then asked the students to
raise their hands and try to figure out where each machine learning code block
should be placed to make the game function. Once the code was completed
we ran the game again and showed how it was able to sort the images into the
correct categories.

The second game was connected to a Machine Learning for Kids project

6132



which had two training labels, "Food" for the jellyfish, and "Pollution" for the
plastic bags. We demonstrated all three sections of the game before adding
the code. When showing the "Testing" portion of the game, the turtle did
not move and only said "I’m not sure.". We explained the reason was we had
not collected any training data yet. Then we completed the code by having
students try to determine where each block should go. One set of blocks stored
and labeled the training data, another trained the model, and the last set
recognized the images.

Then we had a volunteer play the game while we explained how the per-
formance of the model depended on the data it was given. After training it
once with only 2 or 3 images, we showed how it could only correctly recognize
a few images when tested. Then it was trained again with more images. When
the sea turtle swam to a plastic bag instead of a jellyfish, we asked students
to discuss why it made the prediction incorrectly. Some conclusions were that
there wasn’t enough training data, the patterns in the two pictures were too
similar, or the image looked very different than the images in the training set.
Then we explained how each type of pollution in the game impacts sea turtle
populations.

At the elementary school, we taught the lesson to one group of students in
grade 3 (data is not available for this group), two groups of students in grade
4, and two groups of students in grade 5. This time we taught the lesson over
the course of two days, dedicating one class period to each game. The lessons
were taught the same as previously stated, except we presented a slide show
covering decision trees before teaching the second game. We conducted an
exercise with a decision tree used to determine the species of a sea turtle based
on characteristics listed at each node. Students paired up and discussed ways
to add a leatherback sea turtle to the tree by placing a question in the empty
leaf node.

Following the lessons, students formed groups to discuss how AI could be
used to help with the effects of climate change and were able to incorporate
ideas from the lesson. One example a student came up with was to "use sensors
to detect oil spills on the surface of the water". Another added the idea to "use
chat bots to write an article about climate change to spread awareness".

5 Results

We calculated the average scores of the assessments before and after the lesson
by each ethnicity. At the middle school, of the students who submitted both
two assessment forms and a demographic form, 36 were in grade 6 and 13 were
in grade 8. In grade 6, 32 students chose white as their ethnicity, 2 chose mul-
tiracial, 1 chose Asian, and 1 chose black. In grade 8, all 13 students selected

7 133



Figure 3: Average Score 5th Grade Figure 4: Average Score 6th Grade

white as their ethnicity. Figure 4 displays the average scores by ethnicity for
grade 6. For the initial test scores for this grade, white students received the
highest scores on average, 8.97, and the average score increased to 11.44 for
the post lesson test. However, multiracial students had the highest increase
in average score, going from 6.5 to 10.5. The average score for black students
went from 4.0 to 7.0, and the average scores for Asian students decreased from
5.0 to 3.0.

For grade 8, all students identified as white. The average test score had a
minor increase, with the beginning average being 12.38 and the ending average
as 12.62.

For grade 5, 5 students identified as white, 1 identified as white and His-
panic, and 1 identified as white/black. Displayed in Figure 3, for those who
identified as white, the average score increased from 8.2 to 12.2. The average
score for white and Hispanic increased from 14.0 to 15.0, and the average score
for white/black decreased from 12.0 to 8.0.

For grade 4, there were 3 white students and the average score increased
from 8.0 to 9.0.

We asked 2 reflection questions to the students after the lessons: "Do you
view AI differently than you did before this lesson? Why or why not?" (Ques-
tion 1) and "Are you more interested in STEM topics or careers than before
this lesson? Why or why not?" (Question 2). The answers have been catego-
rized to be visualized more easily and some answers fell into multiple categories.
Table 1 lists the categories and their frequencies for Question 1 and Table 2
lists them for Question 2.

6 Discussion

Overall, the data indicates that the lesson resulted in an increase in computa-
tional thinking skills and positive sentiment toward AI and STEM topics. It is
important to note that the middle school students completed the first assess-

8134



Table 1: Question 1

Response Category Count
Sees that AI is useful and can help the earth, before only saw it as a tool used to get answers from the internet 13
Was already aware of AI’s capabilities, and lesson helped be more aware of it 12
Already knew about AI and doesn’t have a different view 13
Already knew about AI but didn’t know it could be trained with data 5
Learned more about AI’s use and thinks it’s creepy 2
Now knows how smart and intelligent AI is or how it can improve the world. 40
Thinks AI is complicated 5
Doesn’t understand AI and is not interested in learning, thinks AI is a robot you tell to do stuff 2
Knows the coding part of AI better 15
Finds coding part of AI hard 3
Sees AI as a threat 2
Thinks AI is coding games 1

Table 2: Question 2

Response Category Count
Doesn’t think STEM for a career 41
Interested in STEM more after the class 31
Was interested in STEM before, nothing changed 11
Not sure 1
Doesn’t think they understand STEM fields 1

ment on a day prior to the lesson, however the elementary school students did
not get a chance to complete the initial assessment before the lesson, due to
standardized testing scheduled on the days prior. They worked on it during
the week the lessons were presented, then completed it a second time after the
lessons were done. However, their average test scores still increased.

As for the demographic data, Asian, Black, Multiracial, White/Black, and
White/Hispanic ethnicities have less samples of students that identify as such,
and we believe those test scores are not from a large enough sample size to
draw any significant conclusion about those groups (counts of ethnicities are
shown in Figure 5 and Figure 6).

Based on the data shown in Figure 4, the lesson seemed to significantly
impact the computational thinking skills for students in grade 6 the most,
with Multiracial being the most positively impacted group. The average scores
for 8th grade had a very small increase, which indicates the lesson did not have

Figure 5: Grade 6 and 8 Figure 6: Grade 4 and 5

9 135



much of an impact on their computational thinking skills. Of the students
in grade 5, white and Hispanic was the highest scoring group over any other
grade (See Figure 3). However, the category with the greatest increase for this
grade was White. Students in grade 4 scored lower than the highest scores
for the other grades but still performed better after the lesson meaning it
effectively improved their computational thinking skills. As for the answers to
the reflection question "Do you view AI differently than you did before this
lesson? Why or why not?", shown in Table 1, with "Now knows how smart
and intelligent AI is or how it can improve the world." being the most frequent
response category, it appears that the lesson did have a positive impact on
their attitude toward AI and helped them connect the topics to real world
applications. In addition, with the category "Sees that AI is useful and can help
the earth, before only saw it as a tool used to get answers from the internet"
appearing 13 times, it is evident that the students became aware of the positive
impacts AI can have on the environment. The second most frequent category,
"Knows the coding part of AI better", appeared 15 times and demonstrates
that the lesson also increased the students’ comprehension of the programming
aspect of AI. Only 3 students gave responses which fall into the "Finds coding
part of AI hard" category, and 2 students had responses categorized as "Sees
AI as a threat". Based on the frequency of each category in the responses,
the lesson gave a significant number of students a better understanding of
how AI and coding works and how it can be used to help with the effects of
climate change. Table 2 shows the frequency of each category of responses to
the question "Are you more interested in STEM topics or careers than before
this lesson? Why or why not?". With "Doesn’t think STEM for a career"
being the most frequent category, it appears that the lesson did not increase
the desire to pursue a career in any STEM fields for many students, however
the 31 occurrences of the category "Interested in STEM more after the class"
show that there was an increase in enthusiasm toward STEM topics.

7 Future Work

In the future we aim to focus on generative AI as it is a topic which is quickly
becoming integrated into our every day lives, and we believe it is important for
students to understand new and emerging technology. We also hope to have
teachers use our lesson to teach these topics themselves in their classrooms.

8 Acknowledgement

This work is supported by University of North Carolina Wilmington SURCA
Grant.

10136



References

[1] Rayda Ben Ayed and Mohsen Hanana. “Artificial intelligence to improve
the food and agriculture sector”. In: Journal of Food Quality 2021.1 (2021),
p. 5584754.

[2] Thomas K. F. Chiu et al. “Creation and Evaluation of a Pretertiary Arti-
ficial Intelligence (AI) Curriculum”. In: IEEE Transactions on Education
65.1 (2022), pp. 30–39. doi: 10.1109/TE.2021.3085878.

[3] Josh Cowls et al. “The AI gambit: leveraging artificial intelligence to com-
bat climate change—opportunities, challenges, and recommendations”. In:
Ai & Society (2023), pp. 1–25.

[4] C Josh Donlan et al. “Using expert opinion surveys to rank threats to en-
dangered species: a case study with sea turtles”. In: Conservation Biology
24.6 (2010), pp. 1586–1595.

[5] Seung Lee et al. “AI-infused collaborative inquiry in upper elementary
school: A game-based learning approach”. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 35. 17. 2021, pp. 15591–15599.

[6] Jiahong Su, Yuchun Zhong, and Davy Tsz Kit Ng. “A meta-review of liter-
ature on educational approaches for teaching AI at the K-12 levels in the
Asia-Pacific region”. In: Computers and Education: Artificial Intelligence
3 (2022), p. 100065.

[7] Aziza Usmanova et al. “Utilities of artificial intelligence in poverty predic-
tion: a review”. In: Sustainability 14.21 (2022), p. 14238.

11 137



Advisor SeaHawk: An Academic Advisor
Chatbot for MSCSIS Students at UNCW∗

Bulut Tok1 and Gulustan Dogan1

1University of North Carolina Wilmington, North Carolina,
U.S.A., bt6631@uncw.edu, dogang@uncw.edu

Abstract

This paper introduces Advisor SeaHawk, an advanced academic ad-
visor chatbot for students at the University of North Carolina Wilm-
ington (UNCW), specifically tailored for MSCSIS (Master of Science
Computer and Information Science) students. Using OpenAI’s GPT-4o
model, Advisor SeaHawk provides personalized academic advising, in-
cluding course recommendations, prerequisite checks, and detailed aca-
demic plans. The development process involves converting PDF aca-
demic records into structured JSON data, extracting student information
using regular expressions, and integrating CSV-based course information.
By leveraging natural language processing, Advisor SeaHawk interacts
with students in a friendly manner, effectively simulating a human ad-
visor. This chatbot aims to provide an accessible, efficient, and tailored
advising experience for college students. We have not tested Advisor
Seahawk yet on real student data.

1 Introduction

Transitioning into university life can make course selection and academic plan-
ning challenging, often leading to delays in traditional advising [2]. To address
this, we developed Advisor SeaHawk, an AI-driven chatbot tailored for MSCSIS

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1138



students at the University of North Carolina Wilmington (UNCW), leveraging
OpenAI’s GPT-4o model [12].

Advisor SeaHawk provides real-time course recommendations, prerequisite
verification, and academic planning. It integrates data from PDF academic
records, core course information stored in a CSV file, and advanced natural
language processing (NLP) techniques to offer personalized advice.

Using pandas, the chatbot reads course data (codes, names, credits, and
prerequisites) from the CSV file. It also converts student academic records
from PDF to structured JSON data using PyMuPDF for efficient analysis. The
chatbot tracks completed, in-progress, and planned credits to ensure students
meet prerequisite requirements.

Powered by the GPT-4o model [12], Advisor SeaHawk generates natural
language responses to academic queries, providing personalized and accurate
advice. It currently features a simple command-line interface with the potential
to expand into web or mobile platforms.

In conclusion, Advisor SeaHawk revolutionizes academic advising at UNCW
by making it more accessible and efficient, helping students make informed
decisions about their academic paths.

2 Related Work

The Advisor SeaHawk project leverages ChatGPT to enhance academic ad-
vising at UNCW. This section reviews research on generative AI in higher
education and how Advisor SeaHawk builds upon these foundations to provide
tailored advising for MSCSIS students.

2.1 ChatGPT and Generative AI in Higher Education

Generative AI like ChatGPT has transformed higher education by improv-
ing learning experiences and academic advising. Akiba and Fraboni [2] found
that ChatGPT provides accessible, efficient, and supportive responses, comple-
menting human advisors and promoting educational equity. Advisor SeaHawk
extends this by offering personalized advising for MSCSIS students at UNCW
based on academic records.

Steele [13] highlighted both the challenges and empowering potential of
ChatGPT in education, noting its capacity to enhance critical thinking and
composition skills. Advisor SeaHawk utilizes these capabilities to offer tailored
academic advice to MSCSIS students.

Chukhlomin [4] emphasized the need for human judgment when interpret-
ing AI-generated insights. Advisor SeaHawk integrates AI with human exper-
tise to provide personalized academic planning that aligns with institutional
requirements.

2 139



Dai et al. [5] viewed ChatGPT as a tool that empowers students through
personalized learning and improved analytics, which Advisor SeaHawk lever-
ages for adaptive academic advising.

Banerjee et al. [3] found that custom models outperform generic LLMs
like ChatGPT in providing context-specific advice. Advisor SeaHawk similarly
integrates dynamic course data to deliver relevant, up-to-date advice.

Labadze et al. [9] stressed the importance of ethically integrating AI chat-
bots in education. Advisor SeaHawk ensures transparency, data privacy, and
fairness in its academic advising.

2.2 Benefits of ChatGPT in Academic Advising

ChatGPT’s ability to provide personalized learning experiences is a key benefit
in academic advising. Dai et al. [5] highlighted how it can analyze educational
records and offer tailored support, enhancing engagement and outcomes. Advi-
sor SeaHawk employs these capabilities to support MSCSIS students at UNCW
in their academic planning.

ChatGPT’s role as an instructional assistant and virtual advisor is sig-
nificant. Maniar [11] noted it can generate content, assist with writing, and
provide immediate answers, reducing educators’ workload. Advisor SeaHawk
uses these capabilities to provide detailed, accurate advice to MSCSIS students,
helping them navigate course requirements.

ChatGPT facilitates ideation and creativity by generating diverse ideas and
solutions, stimulating creative thinking. However, students should critically
evaluate AI-generated content. Advisor SeaHawk encourages MSCSIS students
to use its recommendations alongside their own judgment and human advisor
guidance.

Aithal and Aithal [1] explored ChatGPT’s impact in higher education, high-
lighting its transformative potential. AI-driven agents provide immediate in-
formation and personalized feedback, enhancing learning experiences. Advisor
SeaHawk leverages this to provide immediate, personalized advice to MSCSIS
students at UNCW.

2.3 Challenges and Ethical Considerations

Integration of ChatGPT in advising raises ethical concerns. Kooli [8] examined
ethical implications and solutions, emphasizing the need to address challenges
to harness AI benefits while avoiding misuse. Advisor SeaHawk adheres to
ethical standards, ensuring fair, transparent advising for MSCSIS students,
prioritizing data privacy.

Maniar [11] discussed risks like AI-assisted cheating and over-reliance on
ChatGPT, potentially reducing critical thinking skills. Institutions must up-

3140



date policies to ensure integrity and promote responsible AI use. Advisor
SeaHawk promotes responsible AI use, supporting MSCSIS students without
undermining critical thinking.

ChatGPT raises issues of data privacy, fairness, and potential misuse. De-
veloping AI literacy among students and educators is crucial. Dai et al. [5]
emphasized collaborative efforts to address challenges and promote responsi-
ble AI use. Advisor SeaHawk commits to ethical standards and promotes AI
literacy among MSCSIS students and educators.

Gabashvili [6] reviewed ChatGPT applications, identifying the need for
interdisciplinary research to ensure responsible AI use. Advisor SeaHawk aligns
with this by continually evaluating and adapting to meet ethical and practical
needs of MSCSIS students.

2.4 Impact on Academic Advising

ChatGPT can significantly impact academic advising. Dai et al. [5] argued it
can support advisors by complementing traditional methods with AI insights.
Advisor SeaHawk leverages AI-driven insights to provide tailored advising for
MSCSIS students, complementing traditional methods.

ChatGPT can facilitate ideation, helping students generate ideas and per-
spectives. However, students should critically evaluate AI content. Advisor
SeaHawk encourages MSCSIS students to use its recommendations as a sup-
plement to human guidance and their own judgment.

Hassani and Silva [7] discussed how ChatGPT could revolutionize advising
by automating workflows, highlighting advantages and limitations. Advisor
SeaHawk balances automation with human guidance for MSCSIS students.

Lekan and Pardos [10] showed AI-augmented advising provides accurate,
personalized guidance. Advisor SeaHawk aligns with these findings, offering
accurate advice to MSCSIS students through AI-augmented advising.

OpenAI’s documentation [12] offers insights into ChatGPT’s capabilities,
instrumental in developing AI-driven advising tools. Advisor SeaHawk utilizes
these insights to offer advanced advising for MSCSIS students at UNCW.

3 Data

Advisor SeaHawk’s advising is based on comprehensive course data from a CSV
file derived from the UNCW 2024 course catalog. This file includes course
codes, names, credits, and prerequisites, organized in a structured format for
efficient access and integration with other datasets. The tabular organization
ensures quick lookups and enhances the chatbot’s functionality.

As you can see in Figure 1, the table provides a clear overview of various
courses along with their respective codes, names, credits, and prerequisites.

4 141



For example, the course "Artificial Intelligence" (CSC 515) requires CSC 331
with a minimum grade of B as a prerequisite, while "Machine Learning Fun-
damentals" (CSC 502) has no prerequisites. This structured representation of
course information allows Advisor SeaHawk to accurately recommend courses
to students based on their academic history and progress.

Figure 1: Course Information

3.1 Student Academic Records

Student academic records, typically provided in PDF format, contain detailed
information about their academic history, including completed courses, in-
progress courses, planned courses, grades, and GPA. These records are con-
verted into a structured format such as JSON, allowing for efficient parsing
and analysis. Key information such as the student’s name, department, advi-
sor, and GPA is extracted to personalize the chatbot’s responses.

3.2 Data Processing and Integration

Advisor SeaHawk processes the extracted data to calculate the student’s com-
pleted, in-progress, and planned credits. This involves categorizing courses
based on their status and maintaining a running tally of the student’s credits.
The chatbot verifies whether students meet the prerequisites for their desired
courses by cross-referencing the core course information with the student’s aca-
demic records.

By integrating these diverse data sources, Advisor SeaHawk generates accu-
rate and personalized academic advice, ensuring that students receive relevant
and timely guidance throughout their academic journey at UNCW. This com-
prehensive data processing approach enhances the chatbot’s ability to provide
effective and tailored academic advising for both undergraduate and graduate
students, ultimately contributing to their academic success.

5142



4 Methodology

Advisor SeaHawk employs several key components to ensure accurate and per-
sonalized academic advising for MSCSIS students at UNCW. The chatbot col-
lects data from two primary sources: core course information and student
academic records. Core course data is obtained from a CSV file of the UNCW
2024 course catalog, including course codes, names, credits, and prerequisites.
This data is read using the pandas library and stored in a structured dictionary
for quick access. Student academic records are provided as PDFs containing
detailed academic histories, converted into structured JSON format using the
PyMuPDF library. This allows efficient parsing and extraction of key informa-
tion such as the student’s name, department, advisor, and GPA to personalize
responses.

To calculate a student’s credits, Advisor SeaHawk categorizes courses into
completed, in-progress, and planned courses, including grades and credits earned
or expected. Prerequisites are verified by normalizing course names for accu-
rate matching and comparing completed courses with required prerequisites,
advising on eligibility or suggesting prerequisite courses when necessary. Utiliz-
ing the OpenAI GPT-4o model [12], the chatbot constructs detailed prompts
with relevant student information and generates natural language responses
tailored to the student’s needs. This methodology ensures Advisor SeaHawk
provides accurate, personalized advice, enhancing educational outcomes and
supporting academic success.

Users interact with Advisor SeaHawk by uploading a PDF of their academic
records and starting the chatbot application. The workflow involves the user
initiating the application and uploading the document, after which the chatbot
reads relevant course data from the CSV file. When the user sends a query,
the chatbot forwards it to OpenAI’s API, and the processed response is deliv-
ered back to the user. This loop continues until the user ends the session, at
which point the chatbot sends a farewell message. This streamlined workflow
ensures efficient communication, allowing Advisor SeaHawk to provide effec-
tive academic advising throughout the interaction without the need to create
additional sections.

5 User Interaction and Chatbot Workflow

Users interact with Advisor SeaHawk by uploading a PDF and starting the
chatbot application. As illustrated in Figure 2, the workflow begins with the
user opening the application and uploading the necessary document. The chat-
bot greets the user and reads relevant course data from the CSV file.

The user sends queries to the chatbot, which forwards them to OpenAI’s

6 143



API for processing. OpenAI generates responses that the chatbot relays back
to the user. This loop continues until the user decides to end the session, at
which point the chatbot sends a farewell message.

This workflow ensures smooth and efficient communication, allowing Advi-
sor SeaHawk to provide effective academic advising throughout the interaction.

Figure 2: User Interaction and Chatbot Workflow

6 Results

This section outlines courses and recommendations provided by Advisor Sea-
Hawk based on a student’s academic history, prerequisites, and credit require-
ments. For a CSC student with a 3.426 GPA, the chatbot recommended start-
ing with foundational courses without prerequisites, offering tailored academic
advice based on individual records. The chatbot suggested:

7144



Figure 3: Course Extraction

Figure 4: Prerequisites’ Information

Figure 3 demonstrates the chatbot’s capability to extract relevant course
information from academic records. The figure shows a sample interaction
where the user inquires about the prerequisites for CSC 551: Software Assur-
ance. The chatbot effectively retrieves the necessary information, confirming
that CSC 550: Software Engineering is a prerequisite and verifying the user’s
eligibility based on their academic records.

Figure 4 further illustrates how the chatbot handles detailed queries re-
garding course completion and current enrollments. The user asks about the
number of classes taken so far, and the chatbot provides a comprehensive list
of completed and in-progress courses. This ensures that the user has a clear
understanding of their academic progress and remaining requirements.

Course Code Course Name
CSC 500 Introduction to Computer Science (4 credits)
CSC 502 Machine Learning Fundamentals (3 credits)
CSC 511 Fundamentals of Internet of Things (3 credits)
CSC 517 Symbolic Artificial Intelligence (3 credits)
CSC 527 Quantum Cryptography (3 credits)

Table 1: Recommended Courses

Table 1 shows the courses recommended based on the student’s academic
history and prerequisites. For example, after completing CSC 500, advanced
courses like CSC 532, CSC 544, CSC 550, and CSC 565 were suggested. Advisor

8 145



SeaHawk also highlighted courses requiring specific prerequisites, such as CSC
533 and CSC 551, ensuring students meet the requirements before enrolling.

The chatbot efficiently parses PDF academic records to extract completed
credits, in-progress courses, and planned classes, accurately calculating total
credits and identifying required courses. This clear guidance helps students
plan their coursework and stay on track for graduation.

7 Discussion

Advisor SeaHawk showcases the potential of AI-driven academic advising by of-
fering personalized, efficient course recommendations. Using natural language
processing, it interprets student records and integrates course prerequisites and
credits. Its ability to handle diverse data formats, such as PDFs, adds to its
versatility. The chatbot’s real-time interaction makes it useful for both under-
graduate and MSCSIS students, enhancing the academic advising process with
a student-centered approach.

8 Testing and Validation

The chatbot was tested with the author’s academic records and sample records
to ensure accuracy before it’s launched for all students. This phase helped
identify and address potential issues, refining the chatbot’s performance.

9 Conclusion

Advisor SeaHawk delivers accurate and tailored academic advice while com-
plementing human advisors, who are essential for handling unique cases. It
enhances efficiency and accessibility in advising, supporting faculty in their
roles. As the chatbot evolves with dynamic data sources, its impact on aca-
demic advising at UNCW will grow.

10 Acknowledgements

I acknowledge the use of GPT-4o (OpenAI, https://platform.openai.com)
to proofread my final draft. The assistance provided by GPT-4o improved the
clarity and coherence of this manuscript.

9146



References

[1] P. S. Aithal and Shubhrajyosna Aithal. “ChatGPT for Higher Education
and Professional Development: A Guide”. In: SSRN (2024).

[2] Daisuke Akiba and Michelle C. Fraboni. “AI-Supported Academic Ad-
vising: Exploring ChatGPT’s Current State and Future Potential toward
Student Empowerment”. In: Education Sciences 13.9 (2023). issn: 2227-
7102. doi: 10.3390/educsci13090885. url: https://www.mdpi.com/
2227-7102/13/9/885.

[3] Ronit Banerjee et al. Customizing Large Language Models for Automated
Academic Advising at Universities. Tech. rep. Worcester Polytechnic In-
stitute, 2024.

[4] Valeri Chukhlomin. “Exploring the Use of Custom GPTs in Higher Edu-
cation Strategic Planning: A Preliminary Field Report”. In: SSRN (2024).
doi: 10.2139/ssrn.4793697. url: https://ssrn.com/abstract=
4793697.

[5] Yun Dai, Ang Liu, and Cher Ping Lim. “Reconceptualizing ChatGPT
and generative AI as a student-driven innovation in higher education”.
In: Procedia CIRP 119 (2023), pp. 84–90. issn: 2212-8271. doi: 10.1016/
j.procir.2023.05.002. url: https://www.sciencedirect.com/
science/article/pii/S2212827123004407.

[6] Irene S. Gabashvili. “The impact and applications of ChatGPT: a sys-
tematic review of literature reviews”. In: arXiv 2305.18086 (2023). url:
https://doi.org/10.48550/arXiv.2305.18086.

[7] Hossein Hassani and Emmanuel Sirmal Silva. “The Role of ChatGPT
in Data Science: How AI-Assisted Conversational Interfaces Are Revolu-
tionizing the Field”. In: Big Data and Cognitive Computing 7.2 (2023).
issn: 2504-2289. doi: 10.3390/bdcc7020062. url: https://www.mdpi.
com/2504-2289/7/2/62.

[8] Chokri Kooli. “Chatbots in Education and Research: A Critical Examina-
tion of Ethical Implications and Solutions”. In: Sustainability 15.7 (2023).
issn: 2071-1050. doi: 10.3390/su15075614. url: https://www.mdpi.
com/2071-1050/15/7/5614.

[9] L. Labadze, M. Grigolia, and L. Machaidze. “Role of AI chatbots in
education: systematic literature review”. In: Int J Educ Technol High
Educ 20 (2023), p. 56. doi: 10 . 1186 / s41239 - 023 - 00426 - 1. url:
https://doi.org/10.1186/s41239-023-00426-1.

10 147



[10] Kasra Lekan and Zachary Pardos. “AI-Augmented Advising: AI-Augmented
Advising: A Comparative Study of ChatGPT-4 and Advisor-based Ma-
jor Recommendations”. In: AI for Education: Bridging Innovation and
Responsibility at the 38th AAAI Annual Conference on AI. 2024. url:
https://openreview.net/forum?id=ZHidmlDWJs.

[11] Himanshu Maniar. “An Impact of Chat GPT in Higher Education”. In:
International Journal of Innovative Science, Engineering Technology 10.08
(2023). issn: 2348-7968. url: https://www.ijiset.com/vol10issue8/.

[12] OpenAI. OpenAI Documentation. https://platform.openai.com/
docs/overview. 2023.

[13] Jennifer L. Steele. “To GPT or not GPT? Empowering our students to
learn with AI”. In: Computers and Education: Artificial Intelligence 5
(2023), p. 100160. issn: 2666-920X. doi: https://doi.org/10.1016/
j . caeai . 2023 . 100160. url: https : / / www . sciencedirect . com /
science/article/pii/S2666920X23000395.

11148



Strategies for Recruitment and Retention in
Computer Science∗

Amber Wagner
Department of Computer Science

University of Alabama at Birmingham
Birmingham, Alabama 35294

awagner@uab.edu

Abstract

Once upon a time, Birmingham-Southern College (BSC), a small Lib-
eral Arts school in Birmingham, Alabama, was looking to increase the
number of underrepresented groups in Computer Science (CS), which led
to participating in a National Center for Women and Information Tech-
nology (NCWIT) Learning Circle[21]. It was the Learning Circle that
enabled BSC to learn more about the students and how to better support
them throughout their studies. To better understand why students were
taking the introductory classes and why students remained in the major
through graduation, students were given entry and exit surveys. The
entry survey results demonstrate that students predominantly enrolled
in the introductory course out of curiosity or an interest in computing.
The exit survey results show that students were most impacted by sup-
portive faculty, interesting coursework, their own future career goals, and
engaging assignments.

1 Introduction

Based on data provided by the National Center for Education Statistics[8], the
percentage of students earning a Bachelor’s in an Engineering-related discipline

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 149



is only 25% female for the 21-22 academic year, and 15% of the number of con-
ferred STEM Bachelor’s degrees were earned by Black students, and 18% of the
STEM Bachelor’s degree were earned by Hispanic students. While recruitment
of underrepresented groups remains an issue, a more pressing issue is retention.
How does a professor, department, or institution maintain a student’s interest
beyond the first class? As the “enrollment cliff” looms[18], retention is ex-
tremely important, not just within undergraduate programs, but to encourage
students to pursue graduate degrees.

Using recommendations from an NCWIT Learning Circle, Entry and Exit
Surveys were introduced to the CS program at BSC. An Exit Survey already
existed; however, it did not ask questions regarding retention as recommended
by NCWIT. The surveys, which were evaluated from Fall 2020 through Spring
2023 allowed the faculty to identify why students were enrolling in the intro-
ductory courses as well as what kept them motivated throughout the program.
While the initial focus was on underrepresented students, the strategies applied
in this study were implemented for all students due to the small numbers at
BSC, and the feedback students provided demonstrate that the implemented
interventions were helpful throughout the 20-21 to 22-23 academic years.

2 Related Work

Recruitment and retention in CS has been a long-standing issue. Prior to
2013, universities were eager to recruit and retain students[1, 7, 11, 14, 20] as
CS enrollment declined across the US. Many of the approaches used then are
still top strategies for retention such as undergraduate research[14] and peer
learning[20]. The secret got out, and CS enrollment exploded; however, re-
cruitment and retention among students from underrepresented groups is still
an issue[19]. In 2018, 15 researchers as part of the Association for Computing
Machinery’s Education Board Retention Committee made a large number of
recommendations for interventions that would positively impact retention in-
cluding some presented in this paper: groupwork, CS experiences beyond the
classroom, and sending students to conferences, particularly those targeting
specific groups[19]. Other strategies for increased retention include focusing on
career goals[16] and ensuring the classroom climate is one that allows students
to make mistakes[3]. Peteranetz et al.[15] emphasizes the importance of imple-
menting evidence-based teaching practices in the classroom as concept mastery
was found to be a heavy predictor for retention, and evidence-based teaching
practices can assist students in building the necessary skills to continue taking
CS courses.

The survey results indicate many of the same interventions used previously
to be effective regarding retention. These interventions are described in the

2150



following section with student feedback on their perceptions of the interventions
provided in Section 5.

3 Program Description

The CS program at BSC was an applied CS program (the school unfortu-
nately closed May 2024 due to financial issues). While traditional CS courses
were taught, each course attempted to be taught in an applied context ei-
ther through assignments or overarching subjects. As examples, each course
was project-based requiring final projects rather than final exams, computer
architecture was taught through robotics, and operating systems was taught
through a cybersecurity lens. Non-majors generally took either CS Principles
or Programming I (taught in Python), and majors started with Programming
I.

Over the three years of administering these surveys, 7.4% of students tak-
ing CS Principles chose to continue their CS studies by taking Programming
I. Students were highly encouraged to pursue a minor throughout their un-
dergraduate studies, which became the focus for many of their class projects
or their senior capstone project. Students were encouraged to participate in
internships as well as Research Experiences for Undergraduates through NSF
and undergraduate research at BSC.

3.1 Interventions Implemented

Several interventions were implemented throughout the program during the
20-21, 21-22, and 22-23 academic years, each of which is described below.

1. The lab space, which was dedicated to CS students and managed by
a Work Study student, was upgraded to make the space more inviting.
The purpose of this lab was for students who wanted tutoring or were
working on group projects or research projects to have a space where they
could collaborate and have access to equipment related to their projects.
The lab had a Linux computer, Windows computer, and two Apple com-
puters, allowing students to test applications in different environments.
Robotics hardware and a motion caption system were available to stu-
dents. There were fun posters, comfortable laptop chairs, a large LCD
for group discussions.

2. Engaging assignments were given throughout each course as often
as possible. Assignments were either created by the faculty member, se-
lected from online repositories (e.g., EngageCSEdu.org[9] or Nifty Assign-
ments[2]), or a BRIDGES Assignment[4]. The BRIDGES assignments
were primarily used in the data structures/algorithms and programming

3 151



language courses, allowing students to create sophisticated visualizations
despite not having significant programming experience.

3. Groupwork was used frequently. In particular, many lessons were taught
using the POGIL framework[17]. Groupwork allows students to learn
from one another as well as talk about the topic being taught. Stephen-
son et al.[19] also recommends groupwork as an effective intervention.

4. All faculty at BSC were required to have three scheduled office hours
per week; furthermore, faculty were highly encouraged to keep their doors
open when in the office, which showed students that faculty members were
present and accessible.

5. The department increased undergraduate research by offering inde-
pendent study credit or research stipends. While open to all students,
recruitment of undergraduate researchers was focused on students from
underrepresented groups as part of the NCWIT Learning Circle strate-
gic plan; however, students not from underrepresented groups were not
denied the opportunity to participate. This was one of the larger initia-
tives because evidence shows that conducting research aids in developing
one’s “sense of belonging” in STEM [5] and can aid in the persistence of
studying STEM fields [6, 10, 12, 13].

6. Tutoring and Lab Manager positions were extended to students
who demonstrated skill and responsibility. They provided students in
the positions with that “sense of belonging,” and it gave younger students
an opportunity to see what their future could hold as well as have peer
mentors.

Some of the initiatives implemented had more impact than others as indi-
cated in the survey results presented in Section 8; however, all of the initiatives
were effective in some way based on course feedback.

4 Surveys

Two surveys were administered to students during the 20-21, 21-22, and 22-23
academic years. The Entry Survey was administered to all students taking the
CS Principles and Programming I courses. The questions on the Entry Survey
predominantly came from questions NCWIT recommended during Learning
Circles meetings.

An Exit Survey was administered to graduating seniors in their final month
of classes. Many of the questions were related to how well the courses met the
stated Student Learning Outcomes along with a few others regarding course
conflicts and elective choices, which have been removed for brevity. The rele-
vant Entry and Exit Survey questions are listed Table 1; demographics ques-
tions have been removed for brevity.

4152



Table 1: Entry and Exit Survey Questions
Entry Survey Exit Survey
Which of the following experiences in
programming or computing did you
have before coming to BSC.

Did you participate in any out of class
experiences in the wider CS
community?

Why did you enroll in this course? I feel I had adequate opportunities for
out-of-class experiences in the wider
CS community.

Did you receive information about CS
at this institution from any of the
following sources?

CS faculty members were available
outside of class time.

Which of the following best describes
your current or intended major?

CS faculty members were helpful in
class and out of class.

If major is CS, please rank up to three
factors that have most strongly
influenced your decision to major in
CS.

What contributed to your completion
of the major? Check all that apply.

Did you enter BSC as a first-year
student or as a transfer student.

Did you find the space appealing?

5 Results and Discussion

The following sections describe the results of the Entry and Exit Surveys along
with their implications.

5.1 Entry Survey and Recruitment to the Major

The Entry Survey provided information regarding who took introductory courses
and why, which was used to aid in recruitment efforts for the major. There
were 116 responses during the 20-21, 21-22, and 22-23 academic years. Of those
who responded, 53% had zero previous experience before taking one of the in-
troductory courses, and 52% chose to enroll in a CS course out of curiosity or
an interest in computing. Only 26% enrolled in the course because it was a
requirement for their major. At BSC, students learned most about CS courses
through their faculty advisor (29%), and others heard about the courses from
other students (26%). Therefore, human connection was primarily responsible
for choosing to enroll in a course.

The survey results demonstrate that many students are naturally inter-
ested in CS, and they listen to advisors and fellow students regarding course
recommendations. Therefore, all advisors on campus should have information
regarding introductory CS courses for their students, or CS department web-

5 153



Figure 1: Grads by Gender Figure 2: Grads by Ethnicity/Race

sites should have a space dedicated for non-majors or undecided majors to learn
more about the introductory courses and why they should enroll in them.

An interesting result from the survey is students’ top three factors for want-
ing to major in CS: personal interest in CS, high starting salary, and tech-
nology’s potential for positive social impact. Faculty cannot control starting
salaries, and students enrolled in our courses are already there because of their
personal interest. A strategy for recruiting students from non-majors to ma-
jors might be to incorporate more assignments or news articles related to the
positive social impact of CS.

5.2 Exit Survey and Strategies for Retention in the Major

BSC was a small school with a total attendance fluctuating around 1,000 stu-
dents; therefore, there were few graduates each year. During the 20-21, 21-22,
and 22-23 academic years, there were 28 responses to the Exit Survey. Fig-
ure 1 illustrates the number of majors who graduated each year starting in
2019 by self-identified gender, and Figure 2 illustrates the number of majors
by ethnicity/race. The CS program did not begin until 2017, making the first
graduating class the class of 2019.

Students participated in many out of class experiences with guest lectures
and internships having the highest participation (Table 2). Stephenson et
al.[19] highlights the positive effects of providing CS experiences for students
outside of the classroom.

Regarding what contributed most to students’ completion of the major,
Table 3 shows that beyond their own career goals (just as [16] found), support-
ive faculty, engaging assignments, and interesting coursework had the largest
impact. The student organization was not very active, which is why it likely
did not have much impact on graduating seniors.

Based on the information provided in Table 3, what happens in the class-
room is most beneficial towards helping students make it through the major. At

6154



Table 2: Student Experiences Outside the Classroom
Out of Class Experience Count
Attended a CS talk on campus (e.g., guest lecture) 21
Attended a CS talk off campus (e.g., attending a CS conference or
colloquium at another institution)

9

Presented a CS talk or poster off campus or made a video presentation
to an industry partner

7

Submitted a paper to a conference proceedings or journal or other
outlet that was beyond course requirements

4

Participated in a CS contest (e.g., ACM programming contest) 2
Participated in summer research at this or another institution 6
Participated in a CS internship 16
Worked as a CS tutor 7
Served as a Teaching Assistant 3
Tutored CS off-campus 3

Table 3: Contributing factors to completion of the major.
Contributing Factor Count
Interesting coursework 26
Engaging assignments 20
Future career goals 23
Involved student organization 2
Tutoring opportunities 5
Supportive faculty 23

the end of the survey, students were given an opportunity to provide additional
feedback. While there were three comments suggesting additional coursework
to offer, most of the comments regarded supportive faculty. One student stated
that a faculty member in the department changed their life. Another stated
that the CS department “is the best department, with the best faculty, on cam-
pus.” Yet another stated, “The faculty were so caring and very helpful.” These
comments highlight the importance of training faculty not only what to teach,
but how to teach as well as the effectiveness of an open office door.

6 Conclusion and Future Work

The Entry and Exit Surveys administered at BSC provide some insight into re-
cruitment and retention strategies. On the recruitment side, providing informa-
tion regarding why introductory courses are beneficial to non-majors/undecided
majors to campus advisors as well as on a department website could be helpful

7 155



to entice more students to enroll in introductory courses. Furthermore, within
those introductory courses, it’s important to provide examples, through arti-
cles or assignments, of how technology can have a positive social impact. This
may lead to more students choosing to pursue a CS major.

Regarding retention, supportive faculty, engaging assignments, and interest-
ing coursework appear to have the biggest impact to students’ completion of the
degree. Steps to take may include having faculty participate in teacher training
workshops provided by the campus or POGIL workshops[17], potentially. Pro-
viding faculty with resources such as BRIDGES[4], Nifty Assignments[2], or
EngageCSEDU.org[9] among others could also benefit both faculty (by provid-
ing pre-made materials) and students (engaging assignment). Finally, ensur-
ing faculty understand the importance of being available to students is crucial.
Students’ career goals was a strong motivating factor. Perhaps, discussing the
types of careers students may pursue early on in the program or having guest
speakers could motivate students further as suggested by [16].

In the future, repeating this survey process at a larger institution may
provide different results. Areas to explore further in future students would
include the impact of student organizations and undergraduate research. One
undergraduate researcher stated that the experience increased their love for
computing.

While other factors are important: students’ career goals, participation in
internships, starting salaries, and attending tutoring sessions, these are aspects
we can discuss with students and encourage them, but they are not in our
control as faculty. Instead, we should focus on the topics we can control: being
supportive and providing interesting coursework with engaging assignments.

Acknowledgements

This work was made possible by participation in and funding provided by
NCWIT’s Extension Services Learning Circles program.

References

[1] Alex Aravind. “Students recruitment and retention in computer science:
panel discussion”. In: Proceedings of the 16th Western Canadian Con-
ference on Computing Education. WCCCE ’11. Prince George, British
Columbia, Canada: Association for Computing Machinery, 2011, pp. 43–
44. isbn: 9781450307925. doi: 10.1145/1989622.1989633. url: https:
//doi.org/10.1145/1989622.1989633.

[2] Nifty Assignments. Nifty Assignments. http://nifty.stanford.edu/.

8156



[3] Lecia J. Barker, Melissa O’Neill, and Nida Kazim. “Framing classroom
climate for student learning and retention in computer science”. In: Pro-
ceedings of the 45th ACM Technical Symposium on Computer Science
Education. SIGCSE ’14. Atlanta, Georgia, USA: Association for Comput-
ing Machinery, 2014, pp. 319–324. isbn: 9781450326056. doi: 10.1145/
2538862.2538959. url: https://doi.org/10.1145/2538862.2538959.

[4] BRIDGES. About BRIDGES. https://bridgesuncc.github.io/.

[5] Brian A. Burt et al. “STEM Validation Among Underrepresented Stu-
dents: Leveraging insights from a STEM diversity program to broaden
participation”. In: Journal of Diversity in Higher Education 16.1 (2023),
pp. 53–65. doi: https://doi.org/10.1037/dhe0000300.

[6] Anthony Carpi et al. “Cultivating minority scientists: Undergraduate re-
search increases self-efficacy and career ambitions for underrepresented
students in STEM”. In: Journal of Research in Science Teaching 54.2
(2017), pp. 169–194. doi: https://doi.org/10.1002/tea.21341.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/tea.
21341. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
tea.21341.

[7] Tim DeClue et al. “Five focused strategies for increasing retention in
Computer Science 1”. In: J. Comput. Sci. Coll. 26.5 (May 2011), pp. 252–
258. issn: 1937-4771.

[8] National Center for Education Statistics. Undergraduate Degree Fields.
https://nces.ed.gov/programs/coe/indicator/cta/undergrad-
degree-fields.

[9] EngageCSEdu.org. EngageCSEdu.org. https://www.engage- csedu.
org/.

[10] Mica Estrada et al. “Improving underrepresented minority student per-
sistence in STEM”. In: CBE—Life Sciences Education 15.3 (2016), es5.

[11] Samantha L. Finkelstein et al. “SNAG: using social networking games
to increase student retention in computer science”. In: Proceedings of the
Fifteenth Annual Conference on Innovation and Technology in Computer
Science Education. ITiCSE ’10. Bilkent, Ankara, Turkey: Association for
Computing Machinery, 2010, pp. 142–146. isbn: 9781605588209. doi: 10.
1145/1822090.1822131. url: https://doi.org/10.1145/1822090.
1822131.

[12] Anura U Goonewardene et al. “An interdisciplinary approach to success
for underrepresented students in STEM”. In: Journal of College Science
Teaching 45.4 (2016), p. 59.

9 157



[13] Paul R Hernandez et al. “Sustaining optimal motivation: A longitudinal
analysis of interventions to broaden participation of underrepresented
students in STEM.” In: Journal of educational psychology 105.1 (2013),
p. 89.

[14] Joan Peckham et al. “Increasing student retention in computer science
through research programs for undergraduates”. In: SIGCSE Bull. 39.1
(Mar. 2007), pp. 124–128. issn: 0097-8418. doi: 10 . 1145 / 1227504 .
1227354. url: https://doi.org/10.1145/1227504.1227354.

[15] Markeya S. Peteranetz and Leen-Kiat Soh. “A Multi-level Analysis of
the Relationship between Instructional Practices and Retention in Com-
puter Science”. In: Proceedings of the 51st ACM Technical Symposium on
Computer Science Education. SIGCSE ’20. Portland, OR, USA: Associ-
ation for Computing Machinery, 2020, pp. 37–43. isbn: 9781450367936.
doi: 10.1145/3328778.3366812. url: https://doi.org/10.1145/
3328778.3366812.

[16] Markeya S. Peteranetz et al. “Future-Oriented Motivation and Retention
in Computer Science”. In: Proceedings of the 49th ACM Technical Sym-
posium on Computer Science Education. SIGCSE ’18. Baltimore, Mary-
land, USA: Association for Computing Machinery, 2018, pp. 350–355.
isbn: 9781450351034. doi: 10.1145/3159450.3159513. url: https:
//doi.org/10.1145/3159450.3159513.

[17] CS-POGIL. Process Oriented Guided Inquiry Learning in Computer Sci-
ence. https://cspogil.org/Home.

[18] David Rosowsky. The Cliffs of Higher Ed: Who’s Going Over and Why.
https://www.forbes.com/sites/davidrosowsky/2024/02/03/the-
cliffs-of-higher-ed-whos-going-over-and-why/. 2024.

[19] Chris Stephenson et al. Retention in Computer Science Undergraduate
Programs in the U.S.: Data Challenges and Promising Interventions.
New York, NY, USA: Association for Computing Machinery, 2018. isbn:
9781450388320.

[20] Carolee Stewart-Gardiner. “Using peer led team learning to assist in re-
tention in computer science classes”. In: J. Comput. Sci. Coll. 25.3 (Jan.
2010), pp. 164–171. issn: 1937-4771.

[21] National Center for Women and Information Technology. Higher Ed Learn-
ing Circles. https : / / ncwit . org / program / highered - programs /
extension-services/extension-services-learning-circles/.

10158



Exploring Faculty and Student Perspectives on
GenAI in Higher Education∗

Thad Crews, John Erickson, and Tong Wu
Analytics and Information Systems Department

Western Kentucky University
Bowling Green, KY 42101

{thad.crewsii,john.erickson,tong.wu}@wku.edu

Abstract

This study explores the growing impact of GenAI tools in higher ed-
ucation. The study involves a repeated cross-sectional survey of faculty
and students to identify valuable insights into evolving patterns and pref-
erences regarding the impact of ChatGPT and other AI tools in higher
education. Results are reported with insights for faculty and policy mak-
ers.

1 Introduction

Generative AI (GenAI) [18] has become widely available and often controver-
sial tool in higher education. As a language model, ChatGPT can pass the
SATs and the bar exam [15]. And ChatGPT writes very well. One study
compared written responses from physicians and those from ChatGPT to real-
world health questions, and a panel of licensed healthcare professionals pre-
ferred ChatGPT’s responses 79% of the time, rating them higher quality and
more empathetic [3].

There is no doubt that ChatGPT and other AI tools will significantly im-
pact teaching and learning. Generative AI (GenAI) can enhance learning ex-
periences by improving academic writing, fostering creativity, and supporting

∗Copyright ©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 159



the development of innovative projects [6, 12, 21]. Additionally, GenAI has
been found to boost students’ coding abilities through quick feedback, which
also enhances problem-solving, critical thinking, and coding confidence [22].
Faculty can benefit significantly from GenAI’s ability to design and support
customized learning experiences tailored to individual student needs [4, 9].
These tools have the potential to revolutionize teaching by providing person-
alized education, robust training support, and reducing grading time [17, 13].
Furthermore, GenAI can assist faculty in research by generating ideas, analyz-
ing data, and aiding in writing, thereby increasing efficiency in the publication
process [8]. On May 30, 2024, OpenAI announced ChatGPT Edu, powered
by GPT-4o, as "a version of ChatGPT built for universities to responsibly
deploy AI to students, faculty, researchers, and campus operations."[14]

Despite its benefits, the integration of GenAI in higher education comes
with challenges. Previous studies have highlighted issues such as biases in-
herent in AI systems [23], ethical considerations [20, 24], risks of plagiarism
[10, 16], and broader concerns about academic integrity [11]. These challenges
underscore the need for responsible implementation and careful consideration
of GenAI’s limitations [6].

GenAI holds considerable potential as a valuable tool for both students
and faculty in higher education. However, addressing associated challenges is
crucial for its successful and ethical integration into educational practices. This
study aims to identify some policies and insights to help with the transition of
GenAI technology in the most beneficial manner for faculty and students.

2 Related Work

In 1984, Benjamin Bloom described the “The 2 Sigma Problem” [5] which
remains one of the most optimistic outcomes regarding the possible impact of
technology for improved teaching and learning. Figure 1 shows the two-sigma
shift from conventional instruction to expert instruction to 1-to-1 personal
instruction. Bloom’s idealistic goal was for technology to one day facilitate
that highest learning context of 1-to-1 personal instruction.

Another example of technology’s impact on teaching and learning is the
growing use of flipped classroom design, an instructional approach where stu-
dents learn new material outside of class, typically through pre-recorded videos
or other online resources, and then use class time to apply, practice, and re-
inforce that knowledge through active learning activities such as discussion,
group work, and problem-solving. This model reverses flips the classroom from
a lecture space to active learning space, allowing for personalized interactions
during class and self-paced learning at home [1, 2]

Active learning is generally understood as being the more effective than

2160



Figure 1: Bloom’s 2 Sigma Problem

passive learning. The active “role” can include the student, the teacher, or the
learning tool. Textbooks are excellent tools, but they are not active tools, they
cannot customize their interaction based on the individual student. Technology
can be used as an “Active Tool” to support 3D Active Learning [7] as shown in
Figure 2 below. Online and hybrid classes can particularly benefit from having
active technology engagement outside the classroom.

Figure 2: 3D Active Learning

There is no question that ChatGPT and other AI tools will significantly

3 161



impact our teaching and learning. This study attempts to identify some of the
best policies and insights to help with the transition of GenAI technology in
the most beneficial manner for faculty and students.

3 Methodology

For this research, we used a web-based survey to examine how higher educa-
tion is being impacted by ChatGPT and other AI tools. The survey included
determining faculty and student awareness regarding these tools, their use of
the tools, and their perceived impact (positive and negative) on teaching and
learning. The survey was administered in fall 2023 (12 months after the pub-
lic release of ChatGPT 3.5) and again in spring 2024 (18 months after the
3.5 release). The survey was administered through Qualtrics Manager services
and made available to external higher education faculty and students. Having
repeated cross-sectional data provides valuable insights into evolving patterns
and preferences.

4 Results and Discussion

In fall 2023, the authors received 216 total responses, composed of 105 faculty
and 111 students. For the spring 2024 collection, there were 207 responses with
104 faculty and 103 students.

4.1 Adoption Rate

Figure 3 below shows the fall 2023 adoption rate of 61.3% for students and
68.6% for faculty. The adoption rates were even higher for both groups in
spring 2024, 66.7% for student and 80.0% for faculty. These numbers are
already into the "Late Majority" and even "Laggards" according to the tradi-
tional technology adoption curve [19]. These individuals are traditionally not
as comfortable with rapid technology change, but the current environment may
be forcing them to respond more quickly than they prefer.

The number of hours of use also increased. In response to the question "In
the last 30 days, how many hours did you spend using GenAI tools (such as
ChatGPT, Bard, Dall-E2, etc.)?" the mean response was in 15.6 hours in F23
and 20.9 hours in S24. These adoption rate for for GenAI tools is significantly
faster than traditional technology adoptions, which is creating challenges for
faculty and administrators trying to manage the smooth transition of the tech-
nology into the teaching and learning experience.

4162



Figure 3: GenAI reported usage rates for faculty and students

4.2 Beliefs on impact on student learning

The survey results show the majority of faculty and students believe GenAI
will have a positive impact on student learning (Figure 4). Students belief in
positive impact is 55% and 57% across the to survey periods. Faculty were
even more optimistic in their belief of positive impact 65% and 67%.

"AI-users" were determined from the survey question: “Which of the fol-
lowing best describes your own use of generative AI writing tools (e.g., Chat-
GPT)?” with *AI-user defined as monthly, weekly, or daily usage of generative
AI writing tools. For faculty and students identified as AI-users, the positive
impact belief is even higher (71% for students and 78% for faculty). This is
interesting because many technology adoptions have failed to live up to the
hype. With GenAI technology, however, the users of the tools are even more
optimistic about their positive role in the teaching and learning experience.

4.3 Beliefs on student need to know for success in professional set-
tings

There is a frequent tension in higher education about providing an education
that prepares students for career success after graduation versus providing an
education valued for its intrinsic worth. Without taking a side on that debate,
we asked the question "Do students need to know how to effectively use gen-
erative AI tools to succeed in professional settings?" Once again the majority

5 163



Figure 4: Beliefs about GenAI’s impact on student learning

of both faculty and students reported that students do need to know how to
effectively use GenAI to succeed in professional environments (see Figure 5).
And once again, the AI-users were even more supportive of the technology and
its impact on students in their future professional lives.

Figure 5: Beliefs about GenAI use in professional settings

4.4 Student likelihood to use GenAI technology even if the tech-
nology is prohibited

Figure 6 shows the responses to the question asked only of students: "(Student
Only) If your instructor or institution prohibits the use of generative AI writing
tools, how likely are you to still use something like ChatGPT?"

6164



The responses were eye-opening, as most students (52% in F23, 50% in
S24) indicated they were at least somewhat likely to still use the AI tools even
if the use of those tools were prohibited. Even among non-users 1 in 5 were
still open to using AI tools in the future even if their use were prohibited. For
the students who are already AI-users, an even higher percentage (66% in F23,
62% in S24) said they were at least somewhat likely to continue using AI tools
even if the tools are prohibited.

Figure 6: Students’ likelihood of using GenAI tools even if prohibited

These student responses should be strongly considered by faculty and ad-
ministrators when making plans and policies regarding student use of AI tools.

4.5 Preferred Syllabus Policy Statement

Students and Faculty were asked about their preferred syllabus policy state-
ment regarding AI tool use. The four options were:

• Full Use of AI Permitted: In this class you are free to use artificial
intelligence (AI) tools on assignments and activities in this course. If you
chose to utilize AI, you will be expected to properly document and cite
this information. Examples of citing AI are available at
https://libguides.abc.edu/stylewrite/ai.

• Limited Use of AI Permitted: Artificial intelligence (AI) tools may
be use for (list assignments or types of activities such as brainstorming or

7 165



gathering ideas) with appropriate citation, but not for (list assignments).
If you are unsure if you are using AI tools appropriately in this course,
I encourage you to visit with me. Examples of citing AI are available at
https://libguides.abc.edu/stylewrite/ai.

• Permission Required for Use of AI: In general, I expect that the
work you submit in this class will be your own and you are not authorized
to use artificial intelligence (AI) tools. However, there may be specific
assignments or activities in which we will utilize these tools to enhance
your learning experience. In these instances, I will provide you with addi-
tional information about the assignment including instructions on how AI
will be employed and cited. Again, unless permission is granted, you are
expected to complete assignments without substantive assistance from
others, including AI tools.

• AI Tools Prohibited: Artificial intelligence (AI) tools are not permit-
ted for any type of work in this class. If you choose to use these tools,
your actions will be considered academically dishonest and a violation of
the University Student Code of Conduct.

The option “Limited Use of AI Permitted” was the most preferred option
from both groups across both samples. Over a third of all students (44%) and
all faculty (38%) selected this option in the most recent sampling (see Figure
7).

The option “Full Use of AI Permitted” took over second place in the most
recent sampling with students at 19% and faculty at 33%. The student and
faculty numbers both increased for this policy option.

The option “Permission Required for Use of AI” had a sharp 13% faculty
drop in spring 2024, the only double-digit group change from the two samples.
One possible explanation for the faculty drop is the amount of extra faculty
work required with this syllabus policy. Another factor might be an unwanted
notion that the faculty member is choosing the best of ALL relevant AI tools,
which is probably not realistic. The double-digit faculty change on this option
is significant and a stark contrast to the 1% student change for this item, the
smallest of the eight changes.

The option “AI Tools Prohibited” was the least preferred option by both
faculty and students in both fall 2023 and spring 2024. However, the responses
were non-zero and increasing, indicating there may be situations based on
design, content, or other factors where the best learning option might be a
total absence of AI tools.

8166



Figure 7: Policy Preferences

5 Discussion and Conclusion

The fall 2023 and spring 2024 national surveys of faculty and students provides
multiple insights into the adoption and attitudes of GenAI technology use in
higher education. Repeated cross-sectional data provides valuable insights into
evolving patterns and preferences, providing valuable insights for faculty and
policy makers.

One key insight is the rapid rate of adoption for GenAI technology. The
adoption curve for technology traditionally involves a much longer timeline,
allowing "late adopters" to observer the technology and its impact for a signif-
icant period of time before outside pressures force them to transition into the
new technology [19]. The rapid adoption rate of GenAI helps explain the high-
level of faculty interest (if not concern) surrounding this particular technology
and its impact.

Another key finding is the high number of students who reported they are
likely to continue to use ChatGPT even if instructors or institutions prohibited
its use. Even if these hypothetical numbers are double the actual numbers in
practice, it still should give significant pause to faculty as they make plans
regarding the use of GenAI tools in their own courses.

Additional findings regarding perceived positive impact, professional impact
and policies were also presented, with each instance suggesting that generative
AI tools are going to have a long-term impact in higher education.

9 167



References

[1] L. Abeysekera and P. Dawson. “Motivation and cognitive load in the
flipped classroom: definition, rationale and a call for research”. In: Higher
education research and development 34.1 (2015), pp. 1–14.

[2] G. Akcayir and M. Akcayir. “The flipped classroom: A review of its
advantages and challenges”. In: Computers and Education 126 (2018),
pp. 334–345.

[3] J. Ayers and D. Smith. “Comparing Physician and Artificial Intelligence
Chatbot Responses to Patient Questions Posted to a Public Social Media
Forum”. In: JAMA Internal Medicine 183.6 (2023), pp. 589–596.

[4] D. Baidoo-Anu and L. Ansah. “Education in the era of generative artifi-
cial intelligence (AI): Understanding the potential benefits of ChatGPT
in promoting teaching and learning”. In: Journal of AI 7.1 (2023), pp. 52–
62.

[5] B. Bloom. “The 2 sigma problem: The search for methods of group in-
struction as effective as one-to-one tutoring”. In: Educational researcher
13.6 (1984), pp. 4–16.

[6] C. Chan and W. Hu. “Students’ voices on generative AI: Perceptions,
benefits, and challenges in higher education”. In: International Journal
of Educational Technology in Higher Education 20.1 (2023), pp. 20–43.

[7] T. Crews. “Active Learning Across Three Dimensions: Integrating Clas-
sic Learning Theory with Modern Instructional Technology”. In: Inter-
national Journal of Learning, Teaching and Educational Research 16.1
(2017), pp. 72–83.

[8] EAM van Dis et al. “ChatGPT: five priorities for research”. In: Nature
614.7947 (2023), pp. 224–226.

[9] L. Kohnke, B. Moorhouse, and D. Zou. “Exploring generative artificial
intelligence preparedness among university language instructors: A case
study”. In: Computers and Education: Artificial Intelligence 5 (2023).
doi: 10.1016/j.caeai.2023.100156.

[10] W. Lim et al. “Generative AI and the future of education: Ragnarök
or reformation? A paradoxical perspective from management educators”.
In: The international journal of management education 21.2 (2023). doi:
10.1016/j.ijme.2023.100790.

[11] C. Lo. “What is the impact of ChatGPT on education? A rapid review
of the literature”. In: Education Sciences 13.4 (2023). doi: 10.3390/
educsci13040410.

10168



[12] A. Malik, Y. Pratiwi, and A. Darwis. “Exploring artificial intelligence
in academic essay: Higher education students perspective”. In: Interna-
tional Journal of Educational Research Open 5 (2023). doi: 10.1016/j.
ijedro.2023.100296.

[13] A. Mizumoto and M. Eguchi. “Exploring the potential of using an AI
language model for automated essay scoring”. In: Research Methods in
Applied Linguistics 2.2 (2023). doi: 10.1016/j.rmal.2023.100050.

[14] OpenAI. https://openai.com/index/introducing-chatgpt-edu/ (referenced
May 30, 2024).

[15] OpenAI. openai.com/research/gpt-4 (referenced May 3, 2023).

[16] R. Peres et al. “On ChatGPT and beyond: How generative artificial in-
telligence may affect research, teaching, and practice”. In: International
Journal of Research in Marketing 40.2 (2023), pp. 269–275.

[17] A. Stojanov. “Learning with ChatGPT 3.5 as a more knowledgeable
other: An autoethnographic study”. In: International Journal of Edu-
cational Technology in Higher Education 20.1 (2023), pp. 20–35.

[18] C. Stokel-Walker and R. Van Noorden. “What ChatGPT and generative
AI mean for science”. In: Nature 614.7947 (2023), pp. 214–216.

[19] E. Straub. “Understanding technology adoption: Theory and future di-
rections for informal learning”. In: Review of educational research 79.2
(2009), pp. 625–649.

[20] A. Tlili et al. “What if the devil is my guardian angel: ChatGPT as a case
study of using chatbots in education”. In: Smart learning environments
10.1 (2023). doi: 10.1186/s40561-023-00237-x.

[21] D. Yan. “Impact of ChatGPT on learners in a L2 writing practicum: An
exploratory investigation”. In: Education and Information Technologies
28.11 (2023), pp. 13943–13967.

[22] R. Yilmaz and F. Yilmaz. “Augmented intelligence in programming learn-
ing: Examining student views on the use of ChatGPT for program-
ming learning”. In: Computers in Human Behavior: Artificial Humans
1.100005 (2023).

[23] A. Yusuf, N. Pervin, and M. Román-González. “Generative AI and the
future of higher education: a threat to academic integrity or reformation?
Evidence from multicultural perspectives”. In: International Journal of
Educational Technology in Higher Education 21.21 (2024). doi: 10.1186/
s41239-024-00453-6.

11 169



[24] W. Zhu et al. “Could AI ethical anxiety, perceived ethical risks and eth-
ical awareness about AI influence university students’ use of generative
AI products? An ethical perspective”. In: International Journal of Hu-
man–Computer Interaction (2024), pp. 1–23. doi: 10.1080/10447318.
2024.2323277.

12170



Reviewers — 2024 CCSC Southeastern Conference

Achee, Dr. Bonnie . . . . . . . .Southeastern Louisiana University, Hammond, LA
Ali, Farha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Lander University, Greenwood, SC
Alvin, Chris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Furman University, Greenville, SC
Bennett, Brian . . . . . . . . . . East Tennessee State University, Johnson City, TN
Besmer, Andrew . . . . . . . . . . . . . . . . . . . . . . . . Winthrop University, Rock Hill, SC
Burton, Sharon . . . . . . . . . . . . . . . . . . Capitol Technology University, Laurel, MD
Crews, Thad . . . . . . . . . . . . . Western Kentucky University, Bowling Green, KY
D’Antonio, Lawrence . . . . . . . . . . . . . . . . . . . . . . . . . Ramapo College, Mahwah, NJ
Dasgupta, Anurag . . . . . . . . . . . . . . . . . . Valdosta State University, Valdosta, GA
Demirhan, Hilmi University of North Carolina - Wilmington, Wilmington, NC
Digh, Andy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mercer University, Macon, GA
Dogan, Gulustan . . .University of North Carolina - Wilmington, Wilmington,
NC
Drucker, Rebecca . . . . . . . . . . . . . . . . . . . . . . . . .Furman University, Greenville, SC
Ferreras, Jennifer . . . . . . . . . . . . . . . . . . . . .Marymount University, Arlington, VA
Gesick, Richard . . . . . . . . . . . . . . . . . .Kennesaw State University, Kennesaw, GA
Goodard, Wayne . . . . . . . . . . . . . . . . . . . . . . . . . . Clemson University, Clemson, SC
Hills, Mark Alan . . . . . . . . . . . . . . . . . . Appalachian State University, Boone, NC
Holliday, Mark . . . . . . . . . . . . . . . . . Western Carolina University, Cullowhee, NC
Hong, Gongbing . . . . Georgia College and State University, Milledgeville, GA
Hutchings, Dugald Ralph . . . . . . . . . . . . . . . . . . . . . . . . . Elon University, Elon, NC
Lewis, Adam . . . . . . . . . . . . . . . . . . . . . . . . . . .Athens State University, Athens, AL
Li, Rao . . . . . . . . . . . . . . . . . . . . .University of South Carolina - Aiken, Aiken, SC
Lindoo, Edward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regis University, Stuart, FL
Liu, Yi . . . . . . . . . . . . . . . Georgia College & State University, Milledgeville, GA
Matfield, Ryan Stephen . . . . . . . . . . . . . . . . . . . . . . . . . . .Elon University, Elon, NC
Rhujittawiawat, Theppatorn . . . . . . . . . . . . . Claflin University, Orangeburg, SC
Roach, Jeff . . . . . . . . . . . . . . East Tennessee State University, Johnson City, TN
Sadeghpour, Shadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Citadel, Charleston, SC
Shende, Anil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Roanoke College, Salem, VA
Spurlock, Scott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elon University, Elon, NC
Sriram, Ramaier . . . . . . . . . . . . . . . . . . . . . . . . . Claflin University, Orangeburg, SC
Treu, Kevin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Furman University, Greenville, SC
Verdicchio, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Citadel, Charleston, SC
Works, Karen . . . . . . . . . . . . . . . . . . . . Florida State University, Panama City, FL
Yao, JF . . . . . . . . . . . . . . .Georgia College & State University, Milledgeville, GA

171


