
The Journal of Computing
Sciences in Colleges

Papers of the 26th Annual CCSC
Central Plains Conference

April 3-4, 2020
St. Charles Community College

Cottleville, MO

Baochuan Lu, Editor Bin “Crystal” Peng, Regional Editor
Southwest Baptist University Park University

Volume 35, Number 6 April 2020

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners 7

Welcome to the 2020 CCSC Central Plains Conference 8

Regional Committees — 2020 CCSC Central Plains Region 9

Reviewers — 2020 CCSC Central Plains Conference 11

Invited Talks 12
Andy Nelson, Paul Barham, Frank Alaniz

Using a Short Textbook in CS 1 to Improve Student Reading 13
David Toth, Thomas Allen, Centre College

An Alternative to Programming Contests 22
Timothy Urness, Drake University

Design of Virtual Labs for an Ethical Hacking Course 31
Xiaodong Yue, Hyungbae Park, University of Central Missouri

Discrete Math: To Blend or Not Blend 39
Charles Hoot, Northwest Missouri State University

DIVAS at Three: Image Processing Outreach 46
Mark M. Meysenburg, Tessa Durham Brooks, Erin Doyle, Doane
University, Raychelle Burks, St. Edward’s University

A Course-Based Undergraduate Research Experience (CURE) in
Computer Science: An Experience Report 56

Fahmida Hamid, Grinnell College

LAGradebook: A Tool for Course-Level Comparative Learning
Analytics 66

Chistopher Phillips, Jesse Eickholt, Central Michigan University

3

Engaging Early Programming Students with Modern Assignments
Using BRIDGES 74

Allie Beckman, Matthew Mcquaigue, Alec Goncharow, David Burlin-
son, Kalpathi Subramanian, Erik Saule, UNC Charlotte, Jamie Payton,
Temple University

Using JShell in CS1 84
Joseph Kendall-Morwick, Missouri Western State University

Is It Getting Foggy in Here? Cloud Computing in the Classroom 92
Denise M. Case, Michael P. Rogers, Northwest Missouri State
University

Effect of User Involvement in Information Systems Capstone
Course: A Case Study 107

Cindy Zhiling Tu, Joni Adkins, Northwest Missouri State University

Introduction to Alexa Programming
— Conference Tutorial/Workshop 117

Jay Canty, Edgar Cerna, Wen-Jung Hsin, Park University

Real-World Data, Games and Visualizations in Early CS Courses
Using BRIDGES — Conference Tutorial/Workshop 118

Kalpathi Subramanian, Erik Saule, UNC Charlotte, Jamie Payton, Tem-
ple University

Short Modules for Introducing Heterogeneous Parallel
Programming — Conference Tutorial/Workshop 119

David P. Bunde, Knox College

Error Detection and Correction Using Hamming Code
— Nifty Assignment 121

Rad Alrifai, Northeastern State University

Drawing With A Turtle — Nifty Assignment 122
Saty Raghavachary, University of Southern California

TwHeatmap: Visualizing Sentiment Analysis of Tweets
— Nifty Assignment 125

Evelyn Brannock, Robert Lutz, Georgia Gwinnett College

4

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing
Sciences in Colleges (along with the
years of expiration of their terms), as
well as members serving CCSC:
Jeff Lehman, President (2020),
(260)359-4209,
jlehman@huntington.edu,
Mathematics and Computer Science
Department, Huntington University,
2303 College Avenue, Huntington, IN
46750.
Karina Assiter, Vice President
(2020), (802)387-7112,
karinaassiter@landmark.edu.
Baochuan Lu, Publications Chair
(2021), (417)328-1676,
blu@sbuniv.edu, Southwest Baptist
University - Department of Computer
and Information Sciences, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill
Rd., Kansas City MO 64110.
Judy Mullins, Central Plains
Representative (2020), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, School of
Computing and Engineering, 5110
Rockhill Road, 546 Flarsheim Hall,
University of Missouri - Kansas City,
Kansas City, MO 64110.

John Wright, Eastern
Representative (2020), (814)641-3592,
wrightj@juniata.edu, Juniata College,
1700 Moore Street, Brumbaugh
Academic Center, Huntingdon, PA
16652.
David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Lawrence D’Antonio,
Northeastern Representative (2022),
(201)684-7714, ldant@ramapo.edu,
Computer Science Department,
Ramapo College of New Jersey,
Mahwah, NJ 07430.
Cathy Bareiss, Midwest
Representative (2020),
cbareiss@olivet.edu, Olivet Nazarene
University, Bourbonnais, IL 60914.
Brent Wilson, Northwestern
Representative (2021), (503)554-2722,
bwilson@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Technology Department, College of
Computer & Information Sciences,
Regis University, Denver, CO 80221.
Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308-2099.

5

Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer
Science, Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2020), (530)898-4864,
bcdixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These
members are serving in positions as
indicated:
Brian Snider, Membership
Secretary, (503)554-2778,
bsnider@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Will Mitchell, Associate Treasurer,
(317)392-3038, willmitchell@acm.org,
1455 S. Greenview Ct, Shelbyville, IN
46176-9248.
John Meinke, Associate Editor,

meinkej@acm.org, UMUC Europe
Ret, German Post: Werderstr 8,
D-68723 Oftersheim, Germany, ph
011-49-6202-5777916.
Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,
MSC 2615, Pacific University, Forest
Grove, OR 97116.
Elizabeth Adams, National
Partners Chair, adamses@jmu.edu,
James Madison University, 11520
Lockhart Place, Silver Spring, MD
20902.
Megan Thomas, Membership
System Administrator,
(209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus,
One University Circle, Turlock, CA
95382.
Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

6

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft

Google for Education
GitHub

NSF – National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology

Teradata
Mercury Learning and Information

Mercy College

7

Welcome to the 2020 CCSC Central Plains Conference

2020 ushers in the 26th year of the CCSC Central Plains Region conference
and we are proud that St. Charles Community College (SCC) has been selected
to host. Every year that we have attended the conference we have taken back
to the classrooms something new and exciting to help teach and energize out
students. Whether it is finding a new tool or technology or partnering with
one of our peers, the conference has something for everyone.

This year’s conference at SCC we will have some exciting events on the
schedule, specialty tracks for vendors, students and K-12 teachers to focus in
on what interests you most.

All professional papers, panels, tutorials, and nifty assignments go through
a double-blind review process. This year we were able to accept 53%. We
would like to extend our appreciation to the authors who submitted their work
for our consideration and to the highly talented group of reviewers that exerted
a tremendous amount of time and effort to review all the submissions. Our
conference would not be as remarkable without our National Partners, Spon-
sors, and Vendors for their continued support of our organizations. Thank you
very much, all!

Finally, this conference would be nowhere near as successful without the
dedication and support from the volunteers and committee members that help
support the CCSC efforts throughout the year to bring you this wonderful
event. Without their tireless work and dedication, we would not have been
able to plan and build a conference this great. This includes the support from
past conference chairs. Thank you all for letting us be “pests” throughout the
year of planning.

We hope you have a wonderful time at the CCSC-2020 conference, gain
some enlightenment and take back something new to enrich your classroom
and research.

Deepika Jagmohan and Dayu Wang
St. Charles Community College

Conference Chair

8

2020 CCSC Central Plains Conference Steering
Committee

Conference Chair
Dayu Wang . St. Charles Community College
Conference Co-Chair
Deepika Jagmohan . St. Charles Community College
Conference Publicity
Tom Mertz .Kansas State Polytechnic
Michael P. Rogers . Northwest Missouri State University
Keynote Speakers
Deepika Jagmohan . St. Charles Community College
Michael P. Rogers . Northwest Missouri State University
Scott Sigman . Drury University
Pre-Conference Workshop
Judy Mullins . University of Missouri Kansas City
Michael P. Rogers . Northwest Missouri State University
Dayu Wang . St. Charles Community College
Papers, Panels, Tutorials, Workshops
Scott Bell . Northwest Missouri State University
Ron McCleary . Retired
Mahmoud Yousef .University of Central Missouri
Nifty Assignments
Mahmoud Yousef .University of Central Missouri
Scott Bell . Northwest Missouri State University
Lightning Talks
Diana Linville . Northwest Missouri State University
K-12 Outreach
Nicole Nunfaren . St. Charles Community College
Mahmoud Yousef .University of Central Missouri
Scott Bell . Northwest Missouri State University
Belinda Copus .University of Central Missouri
Wen Hsin . Park University
Michael P. Rogers . Northwest Missouri State University
Student Paper Session
Scott Sigman . Drury University
Michael P. Rogers . Northwest Missouri State University
Ajay Bandi .Northwest Missouri State University
Student Poster Competition
Joseph Kendall-Morwick . Missouri Western University
Ajay Bandi .Northwest Missouri State University

9

Tim DeClue . Southwest Baptist University
Student Programming Contest
Charles Riedesel . University of Nebraska-Lincoln
Charles Hoot .Northwest Missouri State University
Two-Year College Outreach
Rex McKanry .St. Charles Community College
Belinda Copus .University of Central Missouri
Wen Hsin . Park University
Mahmoud Yousef .University of Central Missouri
Career Fair
Rex McKanry .St. Charles Community College
Submission System
Scott Bell . Northwest Missouri State University
Rex McKanry .St. Charles Community College

Regional Board — 2020 CCSC Central Plains Region

Regional Rep & Board Chair
Judy Mullins . University of Missouri Kansas City
Registrar Membership Chair
Ron McCleary . Retired
Current Conference Chair
Dayu Wang . St. Charles Community College
Deepika Jagmohan . St. Charles Community College
Next Conference Chair
Brian Hare . University of Missouri Kansas City
Past Conference Chair
Rex McKanry .St. Charles Community College
Secretary
Diana Linville . Northwest Missouri State University
Regional Treasurer
Denise Case . Northwest Missouri State University
Regional Editor
Bin “Crystal” Peng .Park University
Webmaster
Michael P. Rogers . Northwest Missouri State University

10

Reviewers — 2020 CCSC Central Plains Conference

Scott Sigman . Drury University, Springfield, MO
Brian Hare University of Missouri-Kansas City, Kansas City, MO
Wen Hsin . Park University, Parkville MO
Michael Rogers Northwest Missouri State University, Maryville, MO
Ron McCleary . (retired) Independence, MO
Richard Scott BellNorthwest Missouri State University, Maryville, MO
Henry Walker . Grinnell College, Grinnell, IA
Mahmoud Yousef University of Central Missouri, Warrensburg, MO
Judy Mullins University of Missouri-Kansas City, Kansas City, MO
Carol Spradling Northwest Missouri State University, Maryville, MO
Baochuan Lu . Southwest Baptist University, Bolivar, MO
Timothy Urness .Drake University, Des Moines, IA
William SieverWashington University in St. Louis, St. Louis, MO
Ajay BandiNorthwest Missouri State University, Maryville, MO
Denise Case Northwest Missouri State University, Maryville, MO
Jamil Saquer .Missouri State University, Springfield, MO
Rad AlrifaiNortheastern State University, Tahlequah, OK
Dabin Ding University of Central Missouri, Warrensburg, MO
Aziz Fellah Northwest Missouri State University, Maryville, MO
Charitha Hettiarachchi . Northwest Missouri State University, Maryville, MO
Beth Arrowsmith University of Missouri-St. Louis, Saint Peters, MO
Ken Vollmar . Missouri State University, Springfield, MO
Jose Metrolho Polytechnic Institute of Castelo Branco, Portugal
David Furcy University of Wisconsin Oshkosh, Oshkosh, WI
Ernest Ferguson Northwest Missouri State University, Maryville, MO
George Dimitoglou . Hood College, Frederick, MD
John Buerck . Saint Louis University, St. Louis, MO

11

Invited Talks
Friday Opening Keynote Speaker: Andy Nelson

Andy is a software engineer and manager with a strong
passion for cybersecurity. Originally from Indiana, he grad-
uated from Purdue University in 2008. He went to work
immediately at Cerner Corporation predominantly devel-
oping java applications and services for his first 8 years.
For the last 3 years he has been focused on creating tools
that identify and report on security vulnerabilities for soft-
ware at Cerner. Aside from leading a team of engineers,
he is also responsible for Cerner’s monthly cybersecurity meetup, creating in-
ternal engineering focused cybersecurity training, and creating a culture of
engineering security.

Friday Banquet Keynote Speaker: Paul Barham
Paul has been Captain of the Kansas City Brigade of

Code for America for the past five years. During that time,
he has fostered a place for people to work on civic projects
for nonprofits, city government and the UMKC School of
Law. He has been a team member of the Community KC,
Address API, and Expungement projects. In the past, he
has been involved in the leadership of other computer or-
ganizations, and he has been a software developer for over
30 years.

Saturday Keynote Speaker: Frank Alaniz
Frank Alaniz is an Air Force Veteran, Mentor and

Project Manager with over a decade of successful experi-
ence in project management, public speaking and work-
force program development. Frank specializes in workforce
programs, human resource technologies and workforce an-
alytic tools. He was recognized by the National Confer-
ence of Mayors for his development of workforce programs
for Veterans in transition and the State of Missouri for his
outreach to the business community and workforce program development for
individuals in transition. Frank regularly develops hiring campaigns to assist
employer and jobseeker interaction and is a contributor/speaker to the Mis-
souri Association for Workforce Development professionals (MAWD), Business
Persons Between Jobs (BBJ), and Beyond Networking-STL. Frank can typi-
cally be found coding in LAU and G-Code for his 3d printers or in his shop
perfecting his metalsmithing techniques.

12

Using a Short Textbook in CS 1
to Improve Student Reading ∗

David Toth, Thomas Allen
Computer Science

Centre College
Danville, KY 40422

{david.toth,thomas.allen}@centre.edu

Abstract

Over the last several years, most of our CS 1 students did not read
the textbook despite us giving reading quizzes in class. This resulted
in students not learning the material as well. In an attempt to remedy
that to try to improve student learning, we wrote a concise textbook for
our CS 1 class. We ran two sections of the course each semester for a
year, one with the traditional textbook we had been using and the other
with the concise book. We found that the students in the course with
the concise book read the assigned pages regularly and spent more time
reading the book and trying the code in it.

1 Introduction

Our institution is a small liberal arts college, near the top 50 schools in the
U.S. News Rankings. Our CS 1 course is taken not only by students who want
to major or minor in computer science, but also by many students who are just
using the course to fill a general education requirement. Our course is taught
in two-hour blocks Monday, Wednesday, and Friday, giving us 6 contact hours
per week. The first hour each day is nominally for lecture and the second hour
is for lab activities. Most of the students in our CS course in the last several
years had not been reading the assigned pages before class, even though we
gave reading quizzes in class on the assigned sections. Because of this, most

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

13

of the students didn’t learn any of the material before coming to class, which
resulted in us having to lecture more and teach even the simpler topics the
students could have picked up from the reading. The lecturing took more than
the desired hour, which meant students had less time lab time to engage with
the material. This resulted in students not learning the material as well as we
wanted, taking longer to finish labs and almost always having to finish them
at home, which resulted in student dissatisfaction.

We believed that part of the reason students didn’t do the reading was
because they felt it took too long, as readings were typically about 20 pages
per class. Recognizing the short attention span and over-scheduling of today’s
students, we thought that if we could condense the material we wanted students
to learn before class into 3-5 pages, we might be able to persuade them to do the
reading. We hoped this would result in students learning the easier material
on their own, so we could cover the more challenging topics with them in
class, freeing up more of the two-hour block for lab time. Although we looked
through many textbooks and trade books, we could not find one we liked where
the material was organized in such a way that we could easily make reading
assignments without students needing to jump around in the book much, and
thus we wrote our own 63-page book for the course [1]. Our book presents
only the basic concepts and syntax, leaving more challenging concepts out of
the book, so they must be covered in class. The book also only has a subset
of the Python 3 syntax, in an attempt to pull the focus of the course back to
the problem-solving aspect and not sidetrack students with lots of unnecessary
syntax and portions of the language they do not need.

2 Related Work

Others have tried using different minimalist approaches to teaching. Edgcomb,
Vahid, and Lysecky studied the effect of using less text to teach the same
concept and found that resulted in better learning [2]. Nasrawt and Lam used
a custom-built procedural language that has less syntax than a full language like
Java or C++ [3]. Although they did not do a formal study, their observations
showed that students without prior knowledge of their language were able to
solve problems using it with only limited assistance.

3 How the Course with the Concise Book Was Run

We set the expectations for the section of the course that used the concise book
on the first day of class with the students, explaining that every day at the end
of class, if there was a reading assignment for the next class, it would be posted
on Moodle and announced in class. Students were told they were expected to

14

do the reading before class and that the lecture and lab topics in class would
build off the reading, so if the students did not do the reading they would not
understand the material in class. In addition to doing the 3-5 pages of reading
before class, the students were to do the small number of graded homework
problems at the end of the reading, and turn them in electronically before the
upcoming class. At the beginning of the upcoming class, there would be a
quiz on the reading and homework. However, the professor would not answer
questions at the beginning of class, so students were expected to do the reading
and come ask questions in the professor’s office hours before the class period.
This was to ensure students read the material and assimilated it before class.
Because the students were not going to be able to ask questions in class before
the quiz, the professor made sure the students knew that he was available not
only during his 6 scheduled office hours per week with some every day, but
he would make extra time for students if they could not make it to the office
hours.

4 Our Study

In order to determine if using the concise book was more effective at getting
the students to do the reading, we created a survey for students and had it
approved by our institutional review board (IRB). The survey was given to the
students near the middle of the semester and then again near the end of the
semester in both the fall and the spring semesters. We did this in case reflection
at the end of the semester changed students’ perceptions of the effectiveness of
the textbooks. The survey questions were:

1. Name (this will be removed before the instructors are given the survey).

2. Please select the option below that most accurately reflects how fre-
quently you read the assigned chapters in the book thoroughly and carefully.

• Never or almost never
• Infrequently
• About half the time
• Most of the time
• Always or almost always

3. Please select the option below that most accurately reflects how fre-
quently you type in the sample code from the book and run it.

• Never or almost never
• Infrequently

15

• About half the time
• Most of the time
• Always or almost always

4. Approximately how much time do you spend working with the book
(reading and trying code samples in the assigned reading) each week. hours

5. How effective do you think the textbook has been in helping you learn
the concepts in the course?

• Extremely ineffective
• Somewhat ineffective
• Neither effective or ineffective
• Somewhat effective
• Extremely effective

6. What changes would make the book better?

Questions 7 and 8 were based on the book the students used for their course.
Students who were in the course using the concise book were given these ques-
tions:

7. Do you think a longer, more comprehensive book would have been no-
ticeably more useful? Why or why not?

8. If you had a more comprehensive book with longer readings (about 20
pages each time instead of 3-5 pages) how likely would you have been to read
the assigned readings thoroughly and try the code examples?

• Extremely unlikely
• Somewhat unlikely
• Neither unlikely or likely
• Somewhat likely
• Extremely likely

Students who were in the course using the regular book were given these
questions:

7. Do you think a shorter, less comprehensive book would have been no-
ticeably less useful? Why or why not?

8. If you had a shorter and less comprehensive book with shorter readings
(about 3-5 pages each time instead of 20 pages) how likely would you have
been to read the assigned readings thoroughly and try the code examples?

16

• Extremely unlikely
• Somewhat unlikely
• Neither unlikely or likely
• Somewhat likely
• Extremely likely

The survey was administered by the professor teaching the other section of
the course, so section A’s professor gave the survey to section B’s students and
vise-versa. The survey was given during the middle of the two-hour class period.
Students were informed that the professor teaching their section would not see
the results until (1) after grades were submitted and (2) until the names had
been removed from the data. The professor teaching a section left the classroom
while the other professor administered the survey. We asked for names on the
surveys so we could correlate the answers from the midterm survey with the
answers from the end of semester survey to see if a given student’s opinion had
changed. However, once the surveys were done, we stapled the two surveys
from each student together and removed the names to anonymize the data. The
surveys were optional for the students and they didn’t receive any compensation
for participating. They were conducted during class time so as not to require
students to give up time outside of class to participate. All 56 students in the
courses participated. They were split between the sections of the course as
shown in Table 1. However, 5 students did not fill out the second survey in a
semester due to absences or choosing not to do so.

Table 1: Student Participation in the Study
Class Number of Participating Students

Fall Class Short Book 10
Spring Class Short Book 7
Fall Class Normal Book 24

Spring Class Normal Book 15

5 Results

The results of the surveys are shown in Tables 2-7. We did not include the
answers to questions 6 and 7 from the survey, as these was intended to get
feedback on the book to improve it over the upcoming year, but is not relevant
to this study. We converted the answers the students gave to numerical values
so we could take the average of them to get an average response.

17

The values for questions 2 and 3 were:

• 0: Never or almost never
• 1: Infrequently
• 2: About half the time
• 3: Most of the time
• 4: Always or almost always

The values for question 5 were:

• 0: Extremely ineffective
• 1: Somewhat ineffective
• 2: Neither effective or ineffective
• 3: Somewhat effective
• 4: Extremely effective

The values for question 8 were:

• 0: Extremely unlikely
• 1: Somewhat unlikely
• 2: Neither unlikely or likely
• 3: Somewhat likely
• 4: Extremely likely

Table 2 shows that the students in the sections of the course that used the
concise book read the book thoroughly and carefully more frequently than the
students in the other sections of the course.

Table 2: Frequency of Reading the Book Thoroughly and Carefully
Class Mid-Semester Survey End-of-Semester Survey

Fall Class Short Book 3.5 3.6
Spring Class Short Book 3.9 3.9
Fall Class Normal Book 1.6 1.3

Spring Class Normal Book 2.1 2.2

Table 3 shows that the students in the sections of the course that used the
concise book typed in and ran the code in the book more frequently than the
students in the other sections of the course.

Table 4 shows the number of hours students in both sections of the course
spent working with the book. We note that the students in the course sections

18

Table 3: Frequency of Typing in and Running the Code
Class Mid-Semester Survey End-of-Semester Survey

Fall Class Short Book 2.9 2.8
Spring Class Short Book 3.6 3.7
Fall Class Normal Book 0.6 0.5

Spring Class Normal Book 1.2 1.0

Table 4: Hours Spent Working with the Book
Class Mid-Semester Survey End-of-Semester Survey

Fall Class Short Book 3.5 4.0
Spring Class Short Book 4.8 3.9
Fall Class Normal Book 1.5 1.7

Spring Class Normal Book 2.3 3.3

that used the concise book spent more time than the students in the sections
that used the longer book.

Table 5 shows that the students in the sections of the course that used the
concise book felt the book was more effective than the students in the other
sections of the course felt their book was.

Table 5: Effectiveness of the Book
Class Mid-Semester Survey End-of-Semester Survey

Fall Class Short Book 3.5 3.4
Spring Class Short Book 3.7 3.6
Fall Class Normal Book 2.8 2.4

Spring Class Normal Book 2.5 2.3

Table 6 shows the likelihood of students of students in the class with the
concise book doing the readings and trying the code if the readings had been
20 pages from a longer book instead of 3-5 pages. Students indicated that they
were neither unlikely or likely to do the readings and try the code examples.
This is in contrast to them actually doing the 3-5 page readings most of the
time for the course.

Table 7 shows the likelihood of students of students in the class with the
normal book doing the readings and trying the code if the readings had been
3-5 pages from a shorter book instead of 20 pages. Students indicated that
they were somewhat likely to do the readings and try the code examples. This

19

Table 6: Likelihood of Doing the Readings and Trying the Code with Longer
Readings

Class Mid-Semester Survey End-of-Semester Survey
Fall Class Short Book 1.9 2.1

Spring Class Short Book 1.0 1.2

is in contrast to them actually doing the 20 page readings only about half the
time and trying the code examples infrequently for the course.

Table 7: Likelihood of Doing the Readings and Trying the Code with Shorter
Readings

Class Mid-Semester Survey End-of-Semester Survey
Fall Class Normal Book 3.3 3.0

Spring Class Normal Book 3.3 3.3

6 Observations and Conclusions

From a data-driven perspective, the students using the concise book felt the
book was effective more than the students using the normal book felt the book
was effective. The students using the concise book did the readings and worked
with the code samples in the book at a significantly higher frequency than the
students using the normal book. The students using the concise book also
spent more time working with it than the students using the normal book.
Students with the concise book said they were less likely to do the readings
and work with the sample code if they had the normal book with longer read-
ing assignments. Students with the normal book indicated they were likely to
do the readings and work with the code if they had shorter readings, whereas
they did the readings in the normal book about half the time or less.

Anecdotally, the author who taught the sections using the concise book has
taught it a number of times using the normal book, and he observed that stu-
dents seemed more prepared for class in general when using the concise book.
He did not have to teach everything from scratch, but was able to skip right
to the more challenging topics for the day, since the students had learned the
basics before coming to class. In that sense, the concise book was definitely
a success. Given our data and observations, we have begun using the concise
book in all of the sections of the course.

20

References

[1] David Toth. Programming and Problem-Solving with A Subset of Python
3, Beta Edition. Linus Learning, Ronkonkoma, NY, 2018.

[2] Alex Edgcomb, Frank Vahid, and Roman Lysecky. Students learn more
with less text that covers the same core topics. In Proceedings of the 2015
IEEE Frontiers in Education Conference, FIE ’15, pages 1–5, 2015.

[3] Zamua O. Nasrawt and Michael O. Lam. Less-Java, more learning:
Language design for introductory programming. J. Comput. Sci. Coll.,
34(3):64–72, 2019. http://dl.acm.org/citation.cfm?id=3306465.3306476.

21

An Alternative to Programming Contests∗

Timothy Urness
Department of Mathematics and Computer Science

Drake University
Des Moines, IA 50311
timothy.urness@drake.edu

Abstract

Programming contests, such as the International Collegiate Program-
ming Contest (ICPC) have many benefits for undergraduate students
studying computer science. These include encouraging collaboration
amongst teammates and providing an incentive to study of algorithms
and data structures. However, these multi-hour, time-pressured contests
also have the potential to discourage students and promote bad habits in
software development (e.g. rushed development, non-reusable code, and
the lack of documentation). In this paper, we describe an alternative
to traditional programming contests that involve student-led projects
that span an entire semester. These projects, which include long-term
data science competitions and student-led research projects, have the
benefit of exploring the cutting-edge of technology while giving students
the opportunity to collaborate, learn from mistakes, and develop robust
software that incorporates aspects of software engineering.

1 Introduction

Programming contests, such as the International Collegiate Programming Con-
test (ICPC) have been a popular activity amongst undergraduate computer
science programs. The contests can benefit students in many ways. The ICPC
website (https://icpc.baylor.edu/regionals/abouticpc) states:

“The contest fosters creativity, teamwork, and innovation in build-
ing new software programs, and enables students to test their ability

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

22

to perform under pressure. The contest has raised aspirations and
performance of generations of the world’s problem solvers in the
computing sciences and engineering.”

We have seen, firsthand, many of these benefits described above. The con-
test provides an atmosphere where students are excited to compete and debrief
after the contest has concluded. The contest itself can motivate students to
join a club to develop skills and deepen their knowledge of computer science
algorithms and data structures in order to be more successful in future com-
petitions.

However, we have also witnessed situations where students leave the contest
dejected for a number of reasons. Primarily, students can be frustrated that
code would pass all of the examples provided, but not pass all of the hidden
testing examples. The contest rules stipulate the ranges of boundary cases
that are not thoroughly supplied in the testing examples provided. While this
is an important component of the contest, the feedback given to the students
is limited. This black-box testing leaves little room for constructive feedback
and has caused students to leave the contest feeling frustrated, inadequate,
and under-educated. Instead, a more important skill that we would like to
encourage is the dedication to utilize available resources to find a solution
after a problem is encountered. The short-term nature of the competition has
the potential to discourage students that would otherwise thrive if time and
resources were available.

Another practice that is unintentionally encouraged by time-pressured pro-
gramming contests is the development of hastily-developed code designed to
run only once. Much of the code that is constructed in programming contests
does not adhere to well-accepted software engineering practices (e.g. documen-
tation, object-oriented programming, reusable code). Short-term contests do
not necessarily promote the skills of software developers that computer science
professors are often encouraging thorough the curriculum.

Lastly, IBM has recently discontinued as the ICPC corporate sponsor. At
the 2018 and 2019 North Central North America Regional contest, participa-
tion required a $25 fee per participant. The fees may prove to be a burden to
departments wishing to open the contests to all interested students.

2 Related Work

There have been other alternatives to programming contests proposed. Many
of these references make a point that the ICPC stresses skills that are not
always in line with modern computer science and software engineering degree
programs. Competitions can play a productive role in education and competi-
tive desires can be utilized for educational motivation [4], though competition

23

in education can be good or bad [3]. The best results are often obtained when
competition is combined with cooperation. Furthermore, competitions should
not be the only factor in assessment and is best utilized as a complement to
standard teaching [3].

The College of Charleston student chapter of the ACM hosted a contest in
which the judging criteria included both technical and artistic merit[1]. The
contest consisted of problems that included some working scaffolding code and
a syntax master expert, who could answer any student question about syntax.
Furthermore, the problem statements encourage a design phase, an implemen-
tation phase, a testing phase, and a final submission. In addition to technical
correctness, the judging rubric included several sections that evaluated the
quality of the submitted code, testing cases, and results.

Constantinescu et. al describes a contest that contains a component aimed
at boosting students’ creativity and involves a presentation of a finished project
to the judges [2]. A high-scoring balanced solution considers multiple facets of
the contestants’ talent, effort, and results.

In this paper, we provide another alternative to a multi-hour, time-pressured
programming contest.

3 An Alternative to the Programming Contest

As an alternative to the programming contest, we’ve developed semester-long,
student-led research groups that have faculty mentors. The groups are designed
to be a place where students can explore exciting and cutting-edge aspects of
computer science and develop skills over the course of several months. The
groups are student-led where faculty involvement can be minimal and is more
akin to a mentor or coach than a research director.

The groups are not associated with any credit-bearing course or internship.
Instead, we incentivize students by stressing the fun nature of exploring the
cutting-edge of technology, the collegiality of being involved with a group, and
the potential to contribute to a published research paper. In addition, we
stress that participation in a group has the strong potential to increase the
strength and warmth of a recommendation letter that a professor could write
for a student.

3.1 Forming Groups

During the first week of the semester, we invite all students studying computer
science, mathematics, or data analytics to an informative meeting to introduce
the idea of student-led research groups. We present many possible ideas for
areas of study. In the past, project ideas have included: virtual reality, game
development, robotics, mathematical modeling, machine learning, computer

24

science theory, hardware, 3D printing, data science competitions, and data
mining. These topics align roughly with faculty interests, but also include
topics at the suggestions of students. After the initial meeting, we have students
separate into smaller groups of common interests.

3.2 Student-Led Projects

As part of smaller groups, students are tasked with developing concrete goals
for the semester. This critical juncture of the projects may require the most
professor guidance as the specific goals will determine the long-term success
of a project. For example, the transition to a vague interest in a topic such
as virtual reality to a specific project (e.g. creating a VR museum) has the
potential to cause students to sustain interest or dissuade involvement based
on the individual preferences. Students in the smaller groups also determine
the best time to meet and accomplish short-term goals. The short-term goals
often times include identifying tutorials, development environments, and small
tasks to bring to the larger group.

3.3 Online Competitions

Another option for the research groups is to work on an online data science
competition. Table 1 shows several examples of data science competitions
from kaggle.com that were open in fall of 2019. The prize money is likely out
of range for an undergraduate team, particularly with little experience, but the
potential of competing for prizes may be the positive motivation that drives
students to learn more [4].

Table 1: Fall 2019 kaggle.com Contest Examples
Title Description Prize

Money
NFL Big Data Bowl How many yards will an NFL player

gain after receiving a handoff?
$75,000

ASHRAE - Great En-
ergy Predictor III

How much energy will a building
consume?

$25,000

Understanding Clouds
from Satellite Images

Can you classify cloud structures
from satellites?

$10,000

House Prices: Ad-
vanced Regression
Techniques

Predict sales prices and practice fea-
ture engineering, RFs, and gradient
boosting

Training
Set Only

The learning curve for these competitions is rather gradual as most com-

25

petitions on kaggle.com also come with introductory tutorials. A group of
students can follow a tutorial that will allow them to make a submission to
the competition. Then, they can continue to work, refine the algorithm, learn
new techniques and re-submit and see if they are able to climb the leaderboard.
This long-term learning process rewards collaboration, elaborate solutions, and
the exploration of current technology.

There are many other online competitions that groups of students or in-
dividuals can utilize to the same effect as kaggle.com. For example, Hacker
Rank (https://www.hackerrank.com) provides competitive programming chal-
lenges. Programmers are ranked on a leaderboard and can earn badges based
on accomplishments. Another online site that provides interesting problems
that could be solved in a similar fashion to a programming contest is Project
Euler (https://projecteuler.net).

3.4 Goals

The goals for the computer science department at Drake University include
providing opportunities for students to participate in beyond-the-classroom
projects. We feel that this provides learning opportunities that can complement
the traditional curriculum and develops recognition for the program. Concepts
such as team-programming, self-motivated learners, code repositories, using
code libraries, and learning new concepts by exploring and synthesizing online
content are skills that students will need to develop as part of today’s techno-
logical industry. We feel that students’ educations can be enhanced with more
dedicated practice with these important skills and concepts, both in and out
of the classroom.

Furthermore, if the department can establish an environment where out-
of-classroom learning becomes the norm, the research groups can be self-
sustaining and produce outcomes after the students that started a particular
group have graduated.

3.5 The Role of the Professor

One of the main motivating factors for starting student-led projects is to allow
any student, regardless of their experience, to contribute to a research project.
In the past, professors would typically select the top few students from a class
to join a research project which they directed. If a student was not fortunate
enough to get the attention of a professor, his or her education might lack
this enrichment opportunity. To give all students an opportunity, we wanted
to provide an experience that we could honestly market to all prospective
students and not just the students with the potential to be amongst the top
few percent.

26

However, opening up research opportunities to all students has the potential
to monopolize a willing professor’s time and resources. In order to mitigate
this, we set up the initial meetings and opportunities to take place within an
hour on Friday afternoons. This is when willing professors will make themselves
available for consultation on various projects.

We intentionally have named the projects “student-led” projects and remind
students that the main thrust of motivation must come from the students, and
not the professor. In this context, professors are seen as coaches and mentors,
and not the driving force of motivation behind the projects [5].

4 A Case Study

4.1 Semester-Long Research Group and a Programming Contest
Group

During the academic year of 2018-2019, a group of students at Drake University
participated in both the student-led research groups. A different group of
students participated in the ICPC programming contest in the fall.

The research group met approximately one to two hours a week either
independently or with a faculty member over the course of both semesters. The
programming contest team only met once or twice prior to the programming
contest event held in the fall.

We had over 40 students participate in student research groups and 9 stu-
dents participate in the programming contest. At the end of the academic year,
we asked both groups to anonymously answer two questions on a Likert-like
scale from 1 to 5 to assess the student satisfaction with the experience as well
as the student’s likelihood to participate against next year. The survey also
allowed for students to give optional written feedback. The questions posed to
the students were as follows:

• How satisfied were you in participating in the event (programming contest
or the research group)?

• If you are able, how likely are you to participate next year?

• (optional) Do you have any additional comments?

Twelve students responded for the research group survey, and five students
responded for the programming contest survey. Valuable insights into the
effectiveness of both groups is available. The results of the satisfaction question
are shown in Table 2 and Figure 1. The results of the likelihood of participating
in the next year are shown in Table 3 and Figure 2.

27

Table 2: Satisfaction Survey Results
Group 1 2 3 4 5

(not satisfied) (very satisfied)
Research Projects 0% 0% 33% 33% 33%
Programming Contest 0% 0% 20% 40% 40%

Figure 1: Visualization of the data displayed in Table 2. Answers to the
question, "How satisfied were you in participating in the event?"

4.2 Observations and Insights

In aggregate, both groups of students had positive experiences. Each student
that completed the survey indicated that there were satisfied with the expe-
rience, indicating their satisfaction at a level of 3 (satisfied), 4, or 5 (very
satisfied) out of a 5-point scale. A vast majority of the students also indicated
that they were likely or very likely (5 out of 5) to participate in a group again
in the next academic year. The survey also allowed for a few deeper insights.

The student-led research groups had a higher percentage (66.7% vs 40%) of
students rate their likelihood of participating again next year as "very likely"
(5 out of 5). However, there were also a few students that rated their likelihood
in participating in the research experience next year as "not likely" (1 out of
5) and another student rate their satisfaction as 2 out of 5. The open-ended
comments in the survey indicated that at least one student felt that the research
experience could be improved by better articulating short, medium, and long-

28

Table 3: Likelihood of Returning Survey Results
Group 1 2 3 4 5

(not likely) (very likely)
Research Projects 8.3% 8.3% 8.3% 8.3% 66.7%
Programming Contest 0% 0% 0% 60% 40%

Figure 2: Likelihood of Returning Survey. Visualization of the data displayed
in Table 3. Answers to the question, "If you are able, how likely are you to
participate next year?"

range goals for each of the students. As the participation in these projects does
not hold external incentives in the form of college credit or grades, making the
other incentives (e.g. student camaraderie, future letters of recommendation,
exploring the cutting-edge of a discipline) may need to be emphasized.

The results from the programming contest survey were surprisingly positive.
After the contest, students’ reactions were initially mixed. On the ride home,
student verbally commented about their frustration with the level of feedback
allowed, the length of the multi-hour contest, and the contest structure itself.
However, those that responded to the survey indicated they were largely sat-
isfied and likely to participate again next year. We feel that the programming
contest team experience could also be improved by treating the group as a
club, with regularly-scheduled meetings, practice sessions, and mentoring op-
portunities designed to mitigate the potentially negative characteristics of a
programming contest identified in section 1.

29

5 Conclusion

In this paper, we’ve described an alternative to multi-hour, time-pressured pro-
gramming contests by providing students with opportunities to get involved in
semester-long student-led research groups. These groups have advantages over
programming contests as they can promote the skills of software developers,
facilitate discovery of new concepts not introduced in standard courses, and
still provide a competition that can motivate students. A survey of students
that participated in either the research groups or the programming contest at
Drake University in 2018-2019 found that students found both kinds of extra-
curricular involvement satisfying, and a vast majority of those that responded
will plan to do the events in the future. The student-led research groups had a
higher percentage of students rate their likelihood of participating again next
year as "very likely" (5 out of 5), but also had a few students that will likely
not participate in the future.

Overall, the student-led research groups provide an alternative, and not
necessarily a replacement, to the traditional programming contest for some
students. These projects, which include long-term data science competitions
and student-led research projects, have the benefit of exploring the cutting-edge
of technology while giving students the opportunity to collaborate, learn from
mistakes, and develop robust software that incorporates aspects of software
engineering.

References

[1] James F. Bowring. A new paradigm for programming competitions. In Proceed-
ings of the 39th SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’08, pages 87–91, New York, NY, USA, 2008. ACM.

[2] Zoran Constantinescu, Simona Nicoara, Monica Vladoiu, and Gabriela Moise.
Computer science student contests: individuals or teams. In Proceedings of the
16th RoEduNet International Conference: Networking in Education and Research,
Petru-Maior University of Targu Mures, Romania, 2017.

[3] Fredrik Kristensen, Olof Troeng, Mohammadhassan Safavi, and Prakash
Narayanan. Competition in higher education–good or bad? Lund University,
2016.

[4] Tom Verhoeff. The role of competitions in education. Future world: Educating
for the 21st century, pages 1–10, 1997.

[5] Matthew Zwier and Timothy Urness. Just in time research: The advantages and
pitfalls of a student-led interdisciplinary undergraduate research experience. J.
Comput. Sci. Coll., 33(5):179–185, May 2018.

30

Design of Virtual Labs for an Ethical
Hacking Course∗

Xiaodong Yue and Hyungbae Park
Department of Computer Science
University of Central Missouri

Warrensburg, MO 64093
{yue,park}@ucmo.edu

Abstract

The cybersecurity job is booming in many regions of the country.
According to the Department of Labor Bureau of Lab Statistics, employ-
ment of information security analysts is projected to grow 32% from 2018
to 2028, much faster than the average for all occupations. In response to
the high demand of cybersecurity professionals, many higher education
institutions are adding Cybersecurity programs and/or courses. In this
paper, a case study is presented based on the lessons learned and experi-
ences gained from the design of virtual labs for an ethical hacking course.
The findings and recommendations summarized in this paper could be
adopted in a similar setting by other institutions, especially those with
limited resources.

1 Introduction

Demand for information security analysts is expected to be very high, as these
analysts will be needed to create innovative solutions to prevent hackers from
stealing critical information or causing problems for computer networks/in-
frastructures. To help higher education institutions to develop cybersecurity
curriculum, the Association for Computing Machinery (ACM) released the
Curriculum Guidelines for Post-Secondary Degree Programs in Cybersecurity
in 2017. In 2018, the Accreditation Board for Engineering and Technology

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

31

(ABET) also developed accreditation criteria for undergraduate Cybersecurity
programs.

The National Security Agency (NSA) and the Department of Homeland
Security (DHS) co-sponsored the National Centers of Academic Excellence in
Cyber Defense (CAE-CDE) Program which provides a guideline for institutions
to prepare a workforce to defend the Nation’s information infrastructures. NSA
defined a set of Knowledge Units (KUs) as the criteria to evaluate the CAEs. A
class that focuses on teaching ethical hacking concepts and techniques is usually
required to be incorporated into the core of the cybersecurity curriculum in
order to prepare the future cybersecurity professionals. In this paper, we will
discuss the design of 16 virtual labs used in our ethical hacking class. We hope
that other programs will benefit from the experiences and findings discussed
in this paper.

2 Background

In recent years, ethical hacking began appearing in the cybersecurity curric-
ula at higher education institutions. In a typical ethical hacking (penetration
testing) course, the students are exposed to a plethora of open-source and
commercial security tools that are used by both security professionals and
the “black hat” hackers. In order to help students to understand the concepts
learned from the class and help them to practice hacking skills, labs are usually
included in the course. Since many of the hacking lab exercises are danger-
ous to perform on a production network and could pose a security risk to the
institutional or home networks, they are usually conducted in a virtual envi-
ronment. Currently, there are several solutions to provide the virtual hacking
lab environment.

Virtual labs Developed by Third Party Companies

Recently, a few companies such as Infosec Learning, etc. provide online, cloud
based remote accessible laboratory environment. Internet access and a browser
are all you need to access these labs. The pro for such solution is that the insti-
tution is not responsible to purchase, install, update or upgrade the hardware
and software associated with the virtual labs. As a result, there is no invest-
ment from the institution side. In addition, the institution does not need to
provide technical supports to the virtual environment. The con is that al-
though the access is typically free for instructors, students do need to pay a fee
to access the labs which is not cheap. In addition, the access is usually limited
to one semester. After semester ends, the access expires and students have to
pay the fee again in order to access the labs in case they’d like to continue to

32

practice their hacking skills. It also worth mentioning that those labs are pre-
canned which are extremely difficult to be tailored to meet individual course’s
need. In addition, the lab materials are often not aligned well with topics to
be covered in an ethical hacking class.

A few professional training companies such as SANS and EC-Council, etc.
also developed curriculum and associated labs for ethical hacking (penetration
testing). For example, SANS offers a comprehensive penetration testing cur-
riculum that consists of 10 courses and associated certificate exams. These
curricula have excellent contents with most recent technologies and lab ex-
ercises. Furthermore, the SANS’s labs are closely aligned with the current
industry practice in penetration testing. However, they were created for short-
term intensive training for the field professionals, usually in a one-week boot
camp format. In addition, the curriculum and labs created by SANS are propri-
etary which cannot be duplicated for classroom use. EC-Council has a popular
certificate exam and training curriculum for Certified Ethical Hacker (CEH).
Although EC-Council has a version of its ethical hacking curriculum that could
be adopted by academia, its virtual lab environment - iLabs requires a fee to
access.

Virtual labs Developed by Textbook Authors and Other Researchers

Over the past several years, researchers developed various security labs for ed-
ucation purpose. For example, SEED labs developed by Du [2] include over
30 labs for various security topics. However, those labs are very general which
do not target the ethical hacking concepts. In addition, the lab environment
is purely Linux based which does not include the Windows operating system.
ITSEED is a similar project by Wang [4]. Unlike the SEED labs, the ITSEED
project is not actively developed and maintained by its developer. [1, 3] de-
signed virtual labs used for teaching offensive security in a higher education
setting. The tools used in those labs are somewhat limited. Instead of design-
ing comprehensive security labs, some researchers [6, 5] focused on designing
specialized labs for a particular topic. Since those labs are very limited in
topics, it is difficult to meet the whole course need. Since offering offensive
security course is fairly recent in higher education, there are not many suitable
ethical hacking textbooks available for a higher learning setting. The author’s
ethical hacking class adopts Georgia Weidman’s book tilted Penetration Test-
ing A Hands-On Introduction to Hacking. The textbook author did provide a
virtual lab environment for the book. However, since the book was published
in 2014, some of the lab contents and tools are outdated.

33

3 Design of the Virtual Hacking Labs

Based on the discussions from the previous section, it is difficult to find one
fit for all solution from the current available options. As a result, we decided
to build a customized virtual hacking lab environment to closely follow the
industry trend in penetration testing while minimizing the costs for the insti-
tution. Those labs train students with practical hands-on skills while helping to
prepare them for industry penetration testing certificates. Students have free
access to the labs and they can continue to access those labs after semester
ends as long as they are still a major in the department. The designed labs
follow the work flow of a penetration tester as defined in the Penetration Test-
ing Execution Standard (PTES). We divide our 16 labs into four phases of
the penetration testing: 1. Reconnaissance, 2. Scanning, 3. Exploitation, and
4. Post-Exploitation. Those labs align well with a 15-week semester which
provide students with one lab per week on average.

Lab manuals with detailed step-by-step instructions with screenshots which
highlight important steps and commands are provided for the students to com-
plete each lab. Students are required to write a report of each lab by completing
the required tasks and answering questions related to the topics covered in each
lab.

3.1 Lab Settings

A pod of six virtual machines (VMs) are used in our lab environment. They
are: 1. Kali Linux by Offensive Security, 2. Ubuntu Linux by the textbook
author, 3. Metasploitable 2 Linux by Rapid7, 4. Customized Windows XP, 5.
Customized Windows 7, and 6. Customized Windows 10. Kali Linux serves as
the attacker machine which the other five VMs serve as victim machines.

The virtualization product used to host the pod of VMs in our labs are
VMware Workstation Pro. Although license is required for using this product,
VMware provides significant discounts to academic institutions through the
VMware Academic Software Licensing Program. It also worth noting that our
VMs can be run from other free virtualization products such as VirtualBox, etc.
if such subscription is not available. The three Linux VMs free software while
the three Windows VMs are licensed. Once again, academic institutions receive
significant discounts throughout Microsoft academic license subscription.

Most of our labs employ open source tools and systems developed and
distributed by the security communities. We use additional commercial tools
such as Nessus, etc. provided by security vendors free-of-charge for educational
purposes.

34

3.2 Lab Overviews

Module 1: Reconnaissance
Lab 1: NetCat Relay
Objectives: 1. Use iptables to configure firewall rules on the Linux machine, 2.
Use Netcat to relay network traffic, 3. Pivot through a system to get access to
a service listening on another system that is firewalled and unavailable to the
attacker.
Lab 2: Recon-ng for Reconnaissance
Objectives: 1. Perform DNS recon using commands such as host, dig and
nslookup, 2. Use Recon-ng to perform DNS reverse lookup, 3. Use Recon-ng
to perform DNS cache snooping to identify antivirus tools used by the target
organizations, 4. Use Recon-ng to perform other reconnaissance activities.
Module 2: Scanning
Lab 3: Scanning using Nmap
Objectives: 1. Use Nmap to perform various scans such as TCP, UDP, version
and OS fingerprinting, 2. Use Nmap Scripting Engine (NSE), 3. Compare how
Nmap behaves when NSE scripts are run with and without version scanning.
Lab 4: Scapy for Pentest
Objectives: 1. Use Tcpdump to sniff and analyze packets, 2. Use Scapy to
craft packets in scenarios that are highly useful in penetration testing, 3. Use
the Scapy module to write Python scripts to perform various pentest activities.
Lab 5: Ettercap for the Man-in-the middle Attack
Objective: 1. Use Wireshark to sniff and analyze packets, 2. Use Ettercap
to perform ARP cache poisoning and DNS cache poisoning, 3. Use the Scapy
module to write Python scripts to perform TCP RESET attack on FTP and
SSH.
Lab 6: Nessus and Metasploit Database
Objectives: 1. To run vulnerability scan using Nessus, 2. To use Metasploit
database and analyze its contents for future penetration testing needs, 3. To
run a Metasploit module from a script.
Module 3: Exploitation
Lab 7: Metasploit Pivoting
Objectives: 1. Use Metasploit psexec module, 2. Pivot using Metasploit route,
3. Use Metasploit auxiliary modules for port scan and proxy.
Lab 8: Service Side Exploitation, Meterpreter and Port Forwarding
Objectives: 1. To use Metasploit to perform a service side attack, 2. To use
Meterpreter to perform various penetration testing tasks, 3. To use Meterpreter
port forward feature to pivot through a compromised system to get access to
a listening service on another system.
Lab 9: Client Side Exploitation and Antivirus Evasion

35

Objectives: 1. Use msfvenom to create a stand-alone payload, 2. Use the
exploit/multi/handler module in Metasploit, 3. Use Veil Evasion to create
payload to evade antivirus tools, 4. Use different ways to deliver payload to
the target systems.
Module 4: Post Exploitation
Lab 10: PowerShell Empire Framework for Post Exploitation
Objectives: 1. Use the PowerShell Empire framework for various post exploita-
tion activities, 2. Search and use various Empire modules, 3. Perform local
privilege escalation.
Lab 11: Windows Command Line for Post Exploitation
Objectives: Use Windows command lines to perform tasks which are common
in penetration testing
Lab 12: Running Commands on Remote Machines
Objectives: 1. Use Microsoft Sysinternals psexec to run commands on a re-
mote machine, 2. Use different approaches to setup monitor to monitor port
activities, 3. Use sc to run commands on a remote machine, 4. Use wmic to
run commands on a remote machine and manipulate processes.
Lab 13: PowerShell in Post Exploitation
Objectives: Use PowerShell to perform tasks that are highly useful in pene-
tration testing such as file searching, ping sweep, port scanning, DNS reverse
lookup, running commands remotely and downloading files, etc.
Lab 14: Hydra Password Guessing
Objectives: Use hydra to conduct password guessing attack on SSH and SMB.
Lab 15: Password Cracking Using John the Ripper and Hashcat
Objectives: 1. Learn how to benchmark each hash algorithm supported by
John and Hashcat, 2. Use John and Hashcat to crack LANMAN and NT
hashes from Windows, 3. Use John and Hashcat to crack Linux hashes.
Lab 16: NTLM Sniffing, Cracking and Pass the Hash Attack
Objectives: 1. Use Tcpdump to sniff the NTLM packets, 2. Use Netcat to
transfer files between two systems, 3. Use Cain to crack passwords, 4. Perform
the pass the hash attack, 5. Use mimikatz Kiwi to dump hashes and cleartext
password.

4 Preliminary Assessment Results

The above mentioned labs were first used in our Ethical Hacking class in Spring
2019. 16 students were enrolled in the class. At the end of the semester, an
anonymous assessment survey with six questions was administered during the
class to seek students’ feedback on the labs. Students were required to rate
each question with a scale 1 to 5 with 1 indicating strongly disagree while 5

36

indicating strongly agree. 16 surveys were received. Table 1 is the result for
the survey.

Table 1: Result for the Assessment Survey
Question Score
1. The virtual testing environment is easy to build and use 4.25
2. Each lab’s learning objectives are well defined and closely
match the topics covered in the class 4.69

3. The lab instructions (including screenshots) are clear and easy to follow 4.44
4. Each lab’s length is appropriate and I can finish it within
a reasonable time frame 4.75

5. The labs help me to better understand Ethical Hacking
topics covered in the class 4.81

6. The questions in each lab help me to reinforce the knowledge
learned in the class 4.88

This preliminary result shows very positive feedback from the students.
The author is teaching the same class in Fall 2019. Based on the results from
Spring 2019, the author revised some of the lab components. A survey will be
administered at the end of Fall 2019 semester. Results will be compared to
analyzed to verify the effectiveness of those changes.

5 Conclusion

Hands-on lab exercises are a critical component of cybersecurity education. In
this paper, we discussed the hacking labs developed at our institution which are
designed to fit in a 15-week academic semester. These labs provide students
with a free environment to practice hands-on skills at any time, any place
with or without Internet access. The preliminary results from the students’
feedback are very positive. Amid with the rapid evolvement of penetration
testing technologies and tools, we will continue to refine our labs to align with
the industry trend.

References

[1] Yu Cai. Using case studies to teach cybersecurity courses. Journal of
Cybersecurity Education, Research and Practice, 2018(2).

[2] Wenliang Du. SEED: Hands-on lab exercises for computer security educa-
tion. IEEE Security & Privacy, 9(05):70–73, September 2011.

37

[3] Chengcheng Li. Penetration testing curriculum development in practice.
Journal of Information Technology Education: Innovations in Practice,
14:85–99, 2015.

[4] Xinli Wang. ITSEED: Development of instructional laboratories for IT se-
curity education. Washington, D.C., November 2013. USENIX Association.

[5] Yien Wang and Jianhua Yang. Ethical hacking and network defense:
Choose your best network vulnerability scanning tool. In 2017 31st Interna-
tional Conference on Advanced Information Networking and Applications
Workshops (WAINA), pages 110–113, March 2017.

[6] Jianhua Yang, Yien Wang, and Thomas Reddington. Integrate hacking
technique into information assurance education. In 2016 30th International
Conference on Advanced Information Networking and Applications Work-
shops (WAINA), pages 381–387, March 2016.

38

Discrete Math: To Blend or Not Blend∗

Charles Hoot
School of Computer Science and Information Systems

Northwest Missouri State University
Maryville, MO 64468

hoot@nwmissouri.edu

Abstract

This paper describes the experience of simultaneously teaching a
blended section and a traditional face-to-face section of a Discrete Math
course. Significant portions of the course materials were identical be-
tween the two versions, including the major assessments of student work,
leading to an ability to more directly compare and discuss the outcomes
in the two sections. In this comparison, the blended section typically
lagged their counterparts in the traditional section. While the blended
students were able to overcome their deficits in a majority of topics by
the final exam, they still lagged on proofs.

1 Introduction

As the internet has become a pervasive presence in our lives, it was inevitable
that it would be used to provide materials for traditional and non-traditional
students. Non-traditional distance learners may take a course and rarely, if ever
visit the campus that they are taking courses from. Introduced in 2006, Massive
Open Online Courses (MOOC) have been an additional spur to traditional
colleges to offer more content online [1]. Unfortunately, trying to integrate
MOOCs into traditional courses has led to student dissatisfaction with the
online portion of the content [5]. Students desire face-to-face interactions. To
address issues of both accessibility and interactivity, courses that are a blend of
online material paired with reduced hours in a face-to-face environment have
been developed [3].

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

39

In the Fall of 2019, I took my traditional Discrete Math class and used
it as a base to develop a blended (1 hour online 2 hours in class) version of
the course. The intent was to determine the feasibility of offering a blended
Discrete Math class and and look for any pitfalls along the way. The following
is a description of what was found.

2 The Course

The Discrete Math course is 200 level undergraduate class. Students in the
course are typically either Computer Science or Math majors and are usually
in their freshman or sophomore year. Topics include basic functions, sequences
and summations, intuitive big-O, logic, sets, countability, recursive definitions,
basic proofs, proofs by contradiction and induction, asymptotic analysis, and
counting. Where possible, topics that are covered earlier in the course are
revisited later to help reinforce the material. Thematically, the big topics are
recursion and asymptotic analysis. As with any course, choices had to be made
and some topics where left out.

1. While modular arithmetic is covered, there is not full coverage of number
theory.

2. The notion of probability in terms of counting equal probability events
is introduced, but not covered in depth.

3. Basic graph terminology, Euler circuits and graph colorings are intro-
duced in the last week of class, but are not part of the material that is
covered by the homework or exams.

4. Trees, relations, grammars, and automaton are not covered at all.

In most of these cases, the decision to leave out material relates to the fact
that the Discrete Math class is being taught out of the Math department and
there are Math courses that cover the material. As an example, there are full
courses in the Math department on Probability and Statistics, Number Theory,
and Graph Theory. Additionally, the Computer Science course on Algorithms
covers graphs and trees in some detail.

3 Course Layout

In this section, the sequencing of the material and assessments in the tradi-
tional version of the course is laid out. This is followed by a discussion of the
differences for the blended course.

40

3.1 Traditional

The traditional version of the course meets 3 times a week on Monday, Wednes-
day and Friday for 50 minutes and follows a regular pattern. Nearly every week
there is a homework assignment that is due at the beginning of class. The
homework is scanned and then returned immediately to the students. After
class is over, a solution is published which leads into a quiz at the beginning
of the next class period. This gives students a chance to review their work
and refine their understanding of the material without having to wait for their
homework to be graded. The quiz prompts them to take it seriously. The quiz
starts at the beginning of the class period and lasts for 10 minutes. Once the
quizzes have been collected, a solution is written and discussed. The intention
is that the quiz question is comparable to one of the questions on the upcoming
midterm exams. After 4 weeks of homework and quizzes, there is a 50 minute
midterm exam with ten questions addressing those 4 weeks of material. There
are 13 homework assignments over the course of the semester, so there are 3
midterms with an extra bit that ends up on the final. At the end of the course
there is a comprehensive final exam.

The goal of this layout is to provide the student with prompts to take the
material in small chunks and build on previous learning. Students first see the
material in class and then have a homework that structures their reading in
order to solve the problems. Help sessions are provided to help students over
major hurdles in understanding. Once their homework has been submitted,
they have an opportunity to study and compare their solution with the model
solution provided by the instructor. Hopefully, any remaining large misun-
derstandings are addressed and students are refining their understanding in
preparation for the quiz. At this point, students should have seen the material
three times. The quiz provides another targeted feedback loop. The midterm
then is over a digestible group of topics. Hopefully, the students are not learn-
ing the material at this point, but are reviewing it (leading to reinforcement
and better retention over time.) Of course the final exam provides one more
opportunity to revisit the material.

3.2 Blended differences

The blended class met every Wednesday and Friday with Monday considered as
their flexible out of class study time. On Saturday, a reading assignment from
Rosen’s book on Discrete Math [6] would be posted along with the following
study materials.

• Worksheet: The material was broken up into manageable sections with
targeted questions that the student would complete as they read the
material.

41

• Solution: All questions from the worksheet were answered.
• Selected Videos: Appropriate pre-existing videos over tougher topics

were provided as a reference.
• Online Quiz: Students took an online quiz with approximately 10 mul-

tiple choice questions. There was no limit to the number of times that a
student could take the quiz up until Tuesday evening. If they hit 80% on
the quiz, the score would be upgraded to 100%. The goal was that stu-
dents could take the quiz multiple times to help understand the material,
but need not feel like they had to get a perfect score. After a student
took the quiz, they could review their answers along with commentaries.

3.3 Assessments

Aside from the online quiz provided to the students of the blended section, the
students in both courses had the same assessments. The homework sets and
the associated paper based quizzes were shared. The midterm exams and the
final were shared. As the instructor and grading policies were also the same,
the ability to compare results between the sections was enhanced.

4 Results For the Final (Where we ended up.)

In all cases, to determine if there was a statistically significant difference in
averages an unpaired t-test was performed. Since the number of students was
small (21 in the blended section and 23 in the traditional section) the use of a
t-test was appropriate [2]. While the scores were associated with individuals,
the analysis only looks at group assessments, so pairing was not appropriate.
Finally, as is often the case, a p-value of 0.05 or less was considered to be
statistically significant. [2][4]

Table 1 shows the average score (out of 10) for each of the question on the
final exam in the order that they were covered in the course. As can be seen,
both sections performed comparably on the early material, with the blended
section doing better on two questions. This indicates that for those topics the
students in the blended section were able to overcome any setbacks due to the
nature of the blended course. (See next section.)

It is the material on proofs where we see a difference 1 that rose to the level
of statistical significance with the students in the blended section performing
poorly. Both groups performed equally poorly on structural induction, which
is a subject that prior students have also struggled over. The remaining topics

1Proof by contradiction has a p-value of 0.0407 and proof by induction has a p-value of
0.0411.

42

again show comparable results, but with a slight edge for the students in the
traditional section.

I offer the following explanation for the difference in performance on the
proofs material. The proof materials require significant use of non-intuitive
logic and reasoning. While there are some patterns that students can use, it is
harder to push that material off onto the students to learn by themselves. An
interactive presentation of a proof beats reading about the proof and answering
questions. On top of those issues, it is also more difficult to come up with
good online multiple choice quizzes that illustrate proofs. The students in the
blended section got behind on this material and never caught up. If I were to
do a blended version of Discrete Math again, I would consider reorganizing the
material so that proof by induction was in class only.

Table 1: Final Exam Results by Question Topic
Blended Traditional

Topic average standard average standard
deviation deviation

Summation 8.95 1.28 8.48 2.13
Predicate Logic 8.38 1.02 8.09 1.88
Logical Equivalence 9.19 0.98 9.48 0.95
Sets 8.81 1.75 9.30 1.11
Proof by Contradiction 7.71 2.74 9.04 1.22
Proof by Induction 6.48 3.23 8.39 2.79
Big-O Proof 6.62 2.76 7.43 2.98
Structural Induction 6.60 2.48 6.30 3.05
Counting and Recurrences 9.40 0.74 9.61 0.81
Counting 7.76 1.26 8.39 1.76

5 Results on Course Aggregates (How we got there.)

Table 2 shows the performance as a percentage on each of the assessments
along with a p-value. Overall, the aggregate results show only one statistically
significant difference between the two sections. The collection of twelve quizzes
has a p-value of 0.0063. It is hard to make strong conclusions as only three
of the individual quizzes (Logical Equivalence, Predicate Logic, and Sets) ex-
hibited a statistically significant difference. On the other hand, for every quiz
but one, the average over the blended section was lower than that of the tra-
ditional section. It is not unreasonable to propose that the online materials
did not prepare the students in the blended section as well as the face-to-face
presentation. This led to a 10% deficit on the homework (which was not quite
significant) that carried over into the quizzes. The students in the blended

43

section were able to reduce the deficit to around 5% for the midterms, but did
not fully catch up. While close to parity was achieved for most of the topics
on the final, there were still areas where the deficit remained.

Table 2: Course Results by Assessment Type in Percent
Assessment Blended Traditional P-value
type average standard average standard

deviation deviation
Homework (13) 68.94 13.27 78.29 17.11 0.0507
Quizzes (12) 66.63 10.61 76.02 11.01 0.0063
Midterm 1 79.73 8.67 83.28 13.65 0.3139
Midterm 2 81.71 9.92 86.85 11.02 0.1128
Midterm 3 78.93 10.38 82.98 11.70 0.2331
Final Exam 79.91 9.87 84.52 10.28 0.1373

6 Caveats

As with any work that is based on small numbers, it is hard to get statistically
significant results. In this particular case, the differences in scores between
the two sections could merely be due to chance in the distribution of students
across the two sections. Another possibility that could not be accounted for
was that there was an element of self selection when students signed up for the
sections. Regrettably, it was not possible to do random or matched assignment
of students to the two sections.

Another issue that could have affected the results is that the exams were
administered sequentially for the two sections. The traditional section took the
quizzes and midterm exams at 10am and the blended section followed at 11am.
There was potentially information about the exam conveyed from one section to
the next. The affect of this is mitigated since the exams are about application
of knowledge/techniques rather than memorization. Knowing that there was
going to be a certain kind of problem would not be as helpful. Especially, as
students can make well informed guesses as to the kinds of problems that will
be on the exam. If this did have an effect on the results, the expectation is
that it would improve the scores on the blended section (which in general were
lower.)

For the final exam, the order of administration was switched with the
blended section taking the final two days before the traditional section. Aside
from two of the proof questions, the results on the rest of the exam were com-
parable and did not indicate a large effect due to order.

44

7 Student Reactions

Some of the students in the blended section did not realize that is was blended
until after classes started or did not understand what that entailed until later
in the course. A few students expressed dissatisfaction with not getting the
teaching time they paid for. Getting the right kind of students and managing
their expectations is an important part of creating a blended course. One thing
that the students really liked were the online quizzes with unlimited attempts
and full credit at 80%.

8 Conclusions

The results of this experiment are mixed. The data suggest that the students
in the blended section did not grasp the material as well as their counterparts
in the traditional section. In particular, some topics did not fit as well in a
“learn on your own” model as compared to an interactive approach. Proofs are
complicated and benefit from the additional time spent in a classroom.

On the other hand, most of the results did not reach the level of statistical
significance, though some were close. The results on the final exam could
be considered encouraging (aside from the two proofs questions). There were
topics where the students in the blended section caught up with their peers in
the traditional section. With careful organization and monitoring, a blended
Discrete Math course could provide similar outcomes as a traditional course.

References

[1] Josh Bersin. Use of moocs and online education is exploding: Here’s why. Forbes,
July 6, 2016.

[2] R.C. Blair and J. J. Higgins. A comparison of the power of wilcoxon’s rank-sum
statistic to that of student’s t statistic under various non normal distributions.
Journal of Educational Statistics, (5):309—-334, 1980.

[3] Clement C. Chen and Keith T. Jones. Blended learning vs. traditional classroom
settings: Assessing effectiveness and student perceptions in an mba accounting
course. Journal of Educators Online, 4(1), Jan 2007.

[4] Michael P. Fay and Michael A. Proschan. Wilcoxon-mann-whitney or t-test? on
assumptions for hypothesis tests and multiple interpretations of decision rules.
Statist. Surv., (4):1–39, 2010.

[5] MJ Israel. Effectiveness of integrating moocs in traditional classrooms for un-
dergraduate students. International Review of Research in Open and Distributed
Learning, 16(5), 2015.

[6] Kenneth Rosen. Discrete Mathematics and its Applications. McGraw Hill, 7th
edition, 2012.

45

DIVAS at Three: Image Processing
Outreach∗

Mark M. Meysenburg1, Tessa Durham Brooks2,
Erin Doyle2, Raychelle Burks3

1 Department of Computer Science
2 Department of Biology

Doane University
Crete, NE 68333

{mark.meysenburg,tessa.durhambrooks,erin.doyle}@doane.edu
3 Department of Chemistry
St. Edward’s University

Austin, TX 78704
rburks@stedwards.edu

Abstract

The DIVAS (Digital Imaging and Vision Applications in Science)
project addresses workforce challenges in science, technology, engineer-
ing, and mathematics by creating a pedagogical and programmatic “on-
ramp” that empowers natural science majors to engage in authentic com-
putational problems as members of skilled, professional teams. We sum-
marize our findings of the program’s effectiveness after three years of
implementation.

1 Introduction

Computation is an increasingly necessary skill in the workforce for students
studying biology and chemistry, and it has been shown that early introduction
to computational applications with frequent practice makes graduates better

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

46

able to take advantage of training resources and collaborate with computer
scientists and mathematicians; see, for example Christensen, et al. [2]

Motivated by these realities, in the Doane DIVAS (Digital Imaging and Vi-
sion Applications in Science) project [6], we are developing, using, and testing
instructional practices and curricular innovations to engage and train science,
technology, engineering, and mathematics (STEM) undergraduate students
and Doane University and St. Edward’s University in computing, related to im-
age processing, to benefit the STEM workforce of tomorrow. In the project, we
address STEM workforce challenges with our pedagogical and programmatic
“on-ramp” that empowers natural science majors to engage in computational
problems as members of skilled, professional teams. We have developed and
are testing institutional practices and curricular innovations that are engaging
and training STEM undergraduate students in Python programming, through
computer vision and image processing, to address relevant scientific questions.

The objectives of the DIVAS project are 1) explore the effectiveness of image
capture and analysis as a computational application, utilized in introductory
biology and chemistry courses, to increase self-efficacy in utilizing computers
to solve a problem; 2) explore the effectiveness of coding workshops on DI-
VAS Scholar attitudes toward computation, career path, and their ability to
demonstrate effective computational thinking; 3) measure impacts of pair pro-
gramming projects and code reviews, and professional development seminars
on students’ self-efficacy and ability to apply computational skills; and 4) inves-
tigate the impact of curricular and co-curricular interventions in computation
on student preferred and actual career path.

We recruit primarily first-year students by visiting introductory natural sci-
ence courses in the fall semester. Once accepted, DIVAS scholars enter the pro-
gram with a one-credit seminar (DIVAS Seminar I) in which they learn coding
basics, conduct an image exploration, and gain professional exposure. Then,
in the early summer, the scholars participate in a week-long coding workshop.
The workshop includes two days of elementary bash, git, and Python program-
ming instruction, and three days of image processing instruction. Scholars then
complete two pair programming projects over four weeks and conduct an op-
tional three weeks of summer research. scholars mentor the next cohort and
learn code repository maintenance as well as the basics of grid computing in the
DIVAS Seminar II course in the spring of the next year. Students enrolled in
biology and chemistry courses may also be exposed to one or two class session
image processing modules.

47

2 Interventions

The various interventions of the DIVAS project are described in more detail
below.

Beginning DIVAS scholars participate in a professional development sem-
inar (DIVAS Seminar I) during the spring of their first year in the program.
Taught by DIVAS faculty, the class meets once each week for fifty minutes
and serves as an introduction to the DIVAS project. This seminar includes an
introduction to images and images as data, professional explorations designed
to showcase careers that use computation and computational thinking, and a
brief introduction to coding in Python, through an online platform for learning
bioinformatics and programming through problem solving, Rosalind [8].

Two course modules, of one to two class sessions each, were designed for in-
troductory chemistry (CHM 126) and an upper-level human physiology course
(BIO 356). Both modules asked students to collect and analyze image data
relevant to the course learning objectives. These interventions may or may not
be experienced by the DIVAS scholars cohort, as they take place in general
audience courses.

In the introductory chemistry module, students placed droplets of water
on to various surfaces. They took a picture of a droplet on each surface and
analyzed the angle between the surface and the water droplet to measure the
surface’s hydrophilicity.

In the human physiology course, students took pictures of a subject’s eye
before and after a flash of light (delivered by the camera). The change in pupil
diameter was used as a measure of autonomic nervous system function.

Following the end of the spring semester, DIVAS faculty teach an inten-
sive, five-day “bootcamp” workshop to introduce the DIVAS scholars and other
interested undergraduate students, graduate students, faculty, and other pro-
fessionals to the basic tools required to use simple image processing / computer
vision in scientific research. To date, we have taught the workshop twice at
Doane University and once at St. Edward’s University in conjunction with the
DIVAS project, and once at the University of Nebraska-Lincoln as an alpha
Data Carpentry workshop.

The first two days of the workshop focus on basic computing and program-
ming skills: an introduction to the bash shell, an introduction to git, and an
introduction to Python programming. The last three days of the workshop
cover how to use the OpenCV library to perform image processing tasks. This
portion of the workshop currently covers image basics, image representation
in OpenCV, drawing on images and bitwise operations, creating histograms,
blurring images, thresholding, edge detection, and finding and manipulating
contours.

The first two days of the workshop are modeled after the existing bash

48

/ git / Python workshops authored by Software Carpentry [4], and is freely
available online [3]. The Image Processing portion is also written as a Carpen-
tries lesson, and is currently available in beta format worldwide via the Data
Carpentry site [1]. The Image Processing workshop is undergoing a revision
to use the easier-to-install Scikit-Learn computer vision libraries rather than
OpenCV; after these revisions are complete, the workshop will be taught by
Data Carpentry instructors as an official Data Carpentry beta workshop for
the first time at the University of Arizona, in January 2020.

At the end of the coding workshops, scholars were presented with two
projects, one with a colorimetric focus and one with a morphometric focus.For
each project, the group was divided into pairs. After discussing the questions
that the images presented could address, pairs split out to develop code to
extract relevant data from the images to address those questions. At the end
of the first week of the project, teams converged for a code review. Each team
presented the code they had developed while the rest of the group read and
annotated the code so they could ask questions and help work through issues.
Teams identified their goals for the next week and then split off again to further
develop their code. A code review at the end of the second week was utilized to
share progress and determine additional steps to improve or finish the project.
This process was repeated with a different project in the following two weeks.

Following the pair programming project, the DIVAS scholars had the option
of completing three or more weeks of independent research in years two and
three; the research component was required in year one. Research projects were
either selected from those available in faculty laboratories or were designed by
the scholar.

As of this writing, the DIVAS Seminar II course has been taught two times,
once each for the first and second cohorts of DIVAS scholars. In the first Sem-
inar II course, the scholars cleaned up and organized their summer research
project code, developed online portfolio entries regarding their DIVAS experi-
ences, prepared and presented local conference presentations on the program,
and helped improve the coding workshop for its second use. Based primarily on
student feedback, the second Seminar II course was modified to include more
challenging academic content. In this course, additional material included an
introduction to parallel programming using Python and OpenMPI, including
a final project to create a “Burning Ship” fractal image using the Doane Uni-
versity supercomputer, Onyx.

3 Measurements

During the DIVAS project, we measured the effectiveness of the various inter-
ventions with several established and newly developed instruments, described

49

in more detail below.
We measured participating students’ perceived self-efficacy in computing

and their intention to pursue a career path involving computing via on-line
Qualtrics surveys using questions developed by Shell, et al. [9] and Peteranetz,
et al. [7] Questions in the survey asked how much students know about ca-
reers involving computer science applications, programming, or computational
thinking; where to find information about such careers; their general knowledge
of computational thinking; their perceived ability to use computational algo-
rithms to solve problems in their scientific domain; and more. The questions
related to career paths required answers on a four- or five-point Likert scale.
The questions related to self-efficacy required answers on a 100-point scale,
with higher values representing more confidence in self-efficacy for a particular
item. Participants took the survey before and after the major interventions in
the project.

We measured participating students’ computational thinking skills using a
rubric of our own design, based on definitions from the ISTE and CSTA [5],
among others. To attempt to evaluate their thinking in a larger context than
simply in programming, we organized our rubric around the first four phases of
the RADIS (Recognize / Analyze / Design / Implement / Support) framework.

4 Results

Based on data gathered from the instruments described above, our three year
results show that multiple interventions have had significant positive impact
on students self-efficacy and interest in using computing in their future careers,
and a positive impact on certain computational thinking skills. These results
are presented below, organized by the intervention type.

Self-efficacy and career path surveys were delivered pre- and post-
intervention for each of the three years. Since survey completion was voluntary,
not all students who completed the course modules completed surveys. The
chemistry module results are shown in Table 1. Self-efficacy gains were strong
for both modules in year 1, but were not seen in years 2 and 3. Career path
gains were apparent in the chemistry module for both years 1 and 2, but not
year 3.

Table 1: Self-efficacy and career path gains the CHM 126 module. Effect sizes
(Cohen’s-D) for each year shown; *, p < 0.05, **, p < 0.01.

Year 1 Year 2 Year 3
Self-efficacy 1.27∗∗ ns ns
Career path 1.09∗∗ 0.52∗ ns

50

Results for the BIO 356 module (Table 2) show that there were significant
gains for self-efficacy in year one and significant gains for career path in year
two, while the other gains were not significant.

Table 2: Self-efficacy and career path gains the BIO 356 module. Effect sizes
(Cohen’s-D) for each year shown; *, p < 0.05, **, p < 0.01.

Year 1 Year 2 Year 3
Self-efficacy 1.91∗∗ ns ns
Career path ns 0.33∗ ns

Self-efficacy and career path data were gathered pre- and post-seminar.
Computational thinking skills were assessed using our CT rubric to score re-
sponses to problems in which scholars were asked to ‘program’ a cup-stacking
robot to build a particular cup arrangement.

We saw significant gains in self-efficacy or career path each year of the
program (Table 3). Combining the three years, we found significant positive
effects of the intervention on both self-efficacy and career path. We did not
find significant gains in computational thinking in any year of the program,
nor did we find effects in the aggregate data.

Table 3: Self-efficacy and career path gains in DIVAS Seminar I. Effect sizes
(Cohen’s-D) for each year of the program and the three years combined (Cum.)
shown; *, p < 0.05.

Year 1 Year 2 Year 3 Cum.
Self-efficacy 2.38∗ ns 0.74∗ 0.35∗

Career path ns 1.38∗ ns 0.63∗

Another measure of the effectiveness of the DIVAS Seminar I course can be
found in the results of the Doane course evaluations, which are administered
using the IDEA survey form. Scholar perceptions of learning gains as reflected
in IDEA survey data were analyzed for the three years of the program. The
objective “Acquiring skills in working with others as a member of a team”
was among the highest rated, with an average score of 4.45 ± 0.68 out of a
possible high of 5. The other learning objective with this same high score
was “Learning appropriate methods for collecting, analyzing, and interpreting
numerical information.”

Overall, DIVAS Seminar I was found to be effective in improving the self-
efficacy of scholars toward computing as well as positively influencing their
intended career path. We also found that it impacted the way scholars viewed

51

how computational work is done as shown in IDEA survey responses.
Self-efficacy and career path data were gathered pre- and post-workshop,

and computational thinking skills were measured at the end of the workshop us-
ing our CT rubric, as applied to the code students wrote for the final workshop
challenge problems. At the end of each workshop day, we surveyed participants,
asking them to rate the degree of the day’s materials they felt they mastered.
We saw a significant improvement in self-efficacy in years one through three
combined (Cohen’s-D = 0.57, p < 0.01). There were no significant changes
in intended career path. In year 1, we saw a significant improvement in the
‘Implementation’ criteria for CT skills (Cohen’s-D = 0.96, p < 0.05). As of
this writing CT results for years two and three are still being calculated.

In the end-of-day surveys, we found a high average degree of perceived
mastery for the Python / Bash / git portion of the workshop, and then a drop
for the first two days of the computer vision portion (Table 4). We believe this
is due to the increased complexity in the subject matter. By the third day,
the perceived degree of mastery grew, as participants were able to use their
newfound skills to successfully complete the challenge questions.

Table 4: Participant responses to the question “What percentage of the day’s
material do you feel you have mastered?” for each day of the Coding Work-
shops.

Day 1 Day 2 Day 3
Python Intro 75.9% 76.3% -
Image Processing 63.3% 63.0% 72.2%

Self-efficacy and career path data were collected at the end of the summer
(after pair programming and summer research, if the scholar participated).
The code generated in the pair programming projects and summer research
were also scored using our CT rubric.

We did not see any significant gains in self efficacy or career path at the
end of the summer. We are not surprised by this result. Coming in to the
summer, student self-efficacy was already high compared to where they were
at the beginning of the program. At the beginning of the program, the av-
erage baseline self-efficacy score across the three years was 655 ± 217 out of
a total possible 1000 points. By the end of the coding workshop (before pair
programming), average self-efficacy had grown to 837 and the standard devi-
ation had narrowed to 178. At the end of the pair programming projects and
summer research, self-efficacy had increased on average to 881± 176. Overall,
self-efficacy moved in a positive direction over these interventions, though not
significantly. This may be expected since students were already close to the

52

ceiling of the instrument at the end of the coding workshop. In other words,
it is expected that we will see diminishing returns in self-efficacy with each
subsequent intervention tested.

We saw significant gains in self-efficacy in both years of DIVAS II, and
a significant gain in career path scores in year two (Table 5). Responses on
the IDEA course surveys showed, similar to DIVAS Seminar I, that students
perceived the largest gains in “Learning appropriate methods for collecting,
analyzing, and interpreting numerical information” (4.33±0.52). Interestingly,
scholars responded equally positively to the statement “My background pre-
pared me well for this course’s requirements” (4.5± 0.55), reflecting the gains
in self-efficacy we saw in the previous survey data.

Table 5: Self-efficacy and career path gains in DIVAS Seminar II. Effect sizes
(Cohen’s-D) for years one and two shown; *, p < 0.05; **, p < 0.005.

Year 1 Year 2
Self-efficacy 1.2∗

Career path 1.5∗ 3.93∗∗

Thirteen of the 17 DIVAS scholars from the three years of the project (76%)
were female, a significantly higher percentage than the total percentage of fe-
males in the majors represented in the project or in STEM overall. A strong
testament to the success of the program can be seen in how DIVAS scholars
have persisted in coding in various ways, incorporating skills gained in the DI-
VAS project into their academic careers, extracurricular activities, and career
planning. One Scholar majoring in Biology declared a Software Development
Minor, a second Biology major switched to a Bioinformatics major, and two
scholars have taken non-required electives that emphasize computational skills.
One Scholar participated in an external REU program in Computational and
Systems Biology, and several DIVAS scholars have continued research projects
that incorporate coding or computational thinking. Three DIVAS scholars have
gone on to work as peer tutors for Doane’s Center for Computing in the Liberal
Arts. One additional student who participated in both the coding workshop
and paired programming is pursuing a Ph.D. in Complex Biosystems.

5 Discussion

Overall, DIVAS scholars showed significant increases in self-efficacy towards
computing when comparing self-efficacy scores for scholars across all three co-
horts at the end of the summer research experience with initial pre-test scores
(Cohen’s D-effect size= 1.05, p = 0.001). Gains occurred primarily through

53

Seminar I (pre-post Cohen’s D-effect size = 0.35, p < 0.05) and the coding
workshop (pre-post Cohen’s D-effect size = 0.57, p < 0.01). An additional
increase in self-efficacy of 44 points was observed when comparing scores at
the end of the coding workshop to scores at the end of the summer research
experience, although not significant (p = 0.167). Average self-efficacy scores
prior to beginning the DIVAS program and at the end of each intervention are
shown in Figure 1.

Figure 1: Average self-efficacy scores over three years of DIVAS scholars.

The impact of the DIVAS program on scholars’ intended career paths was
more difficult to quantify. Although the career path survey did not show sig-
nificant gains when comparing scores from the end of summer research to the
initial pre-test (p = 0.120), significant gains were observed between the pre-test
and the end of Seminar I (Cohen’s D effect size = 0.63, p = 0.020). This result
is not surprising, as Seminar I directly addresses potential careers that use im-
ages and coding, whereas the other interventions do not. Additionally, scholars
were observed to become ‘warmer’ or ‘colder’ to a career utilizing computing.
This effect is apparent in the increased standard deviation in career interest
scores post intervention which start at ±2.3 after Seminar I and grow to ±3.02,
then ±3.46 after coding workshops and pair programming/summer research.
We see this as a healthy progression, especially because scholar self-efficacy
grows throughout the program.

6 Conclusion

The use of images in the project seems to be a very effective “hook” to encour-
age natural science students to become interested in using computation in their
research. Our results support our intention to continue to use all of our inter-

54

ventions in the next phase of the project. In this next phase, we intend to test
the impact of our interventions on students at a wider selection of universities.

7 Acknowledgments

The work is supported by the National Science Foundation IUSE Exploration
& Design: Engaged Student Learning program, under Grant No.: 1608754.

References

[1] Data Carpentry. Image processing with Python, 2019. https://datacarpentry.
org/image-processing/.

[2] Ken Christensen, Dewey Rundus, Hiroshi Fujinoki, and Darrel Davis. A crash
course for preparing students for a first course in computing: Did it work? Journal
of Engineering Education, 91(4):409–413, 2002.

[3] Erin Doyle. Python Intro, 2019. https://eldoyle.github.io/PythonIntro/.

[4] The Software Carpentry Foundation. Our lessons, 2019. https://software-
carpentry.org/lessons/.

[5] CSTA / ISTE. Operational definition of computational thinking, August
2011. http://www.iste.org/docs/ct-documents/computational-thinking-
operational-definition-flyer.pdf.

[6] Mark Meysenburg, Tessa Durham Brooks, Raychelle Burks, Erin Doyle, and Tim-
othy Frey. DIVAS: Outreach to the natural sciences through image processing.
In Proceedings of the 49th ACM Technical Symposium on Computer Science Ed-
ucation, SIGCSE ’18, pages 777–782, New York, NY, USA, 2018. ACM.

[7] Markeya S. Peteranetz, Abraham E. Flanigan, Duane F. Shell, and Leen-Kiat
Soh. Perceived instrumentality and career aspirations in CS1 courses: Change
and relationships with achievement. In Proceedings of the 2016 ACM Conference
on International Computing Education Research, ICER ’16, pages 13–21, New
York, NY, USA, 2016. ACM.

[8] Rosalind. Rosalind | problems, 2019. http://rosalind.info/problems/list-
view/?location=python-village.

[9] D. F. Shell, M. P. Hazley, L. K. Soh, L. Dee Miller, V. Chiriacescu, and E. In-
graham. Improving learning of computational thinking using computational cre-
ativity exercises in a college CSI computer science course for engineers. In 2014
IEEE Frontiers in Education Conference (FIE) Proceedings, pages 1–7, Oct 2014.

55

A Course-Based Undergraduate Research
Experience (CURE) in Computer
Science: An Experience Report∗

Fahmida Hamid
Computer Science
Grinnell College

Grinnell, IA 50112
fahmida.hamid@gmail.com

Abstract

This article demonstrates a pedagogy of a research-focused Computer
Science course for undergraduates in a liberal arts environment. The
long term benefits of Course-based Undergraduate Research Experiences
(CUREs) in different STEM fields are the driving forces for modeling
such a course. The course balances a research-focused, semi-supervised,
active learning experience and a traditional lecture-focused, supervised
classroom-environment. This article summarizes the current semester’s
student experiences and suggests possible scope for improvements.

1 Introduction

Course-based undergraduate research experiences (CUREs) offer an effective
way of integrating research into an undergraduate science curriculum and
extending research experiences to a large, diverse group of early-career stu-
dents [2, 5]. Students who participate in CUREs develop content knowledge
and technical skills specific to the area of research [8]. An increasing number
of well-designed and well-controlled studies show that CUREs can influence
students learning, development, and educational and career trajectory[3, 4, 7].
Several studies [2, 5] discuss about research-focused courses in different STEM

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

56

fields: Biology, Chemistry, Medicine, etc. In the Computer Science (CS) disci-
pline, though there have been some practice already in different organizations,
a model for such course has not yet been reported to the academic commu-
nity. This article details a model of a CS course following the principles of
course-based undergraduate research experience.

In this paper, section 2 describes the course structure and activities, sec-
tion 3 states student experiences and outcomes, section 4 makes suggestions
about extending the goals and involvements beyond the classroom, and sec-
tion 5 draws conclusion. Due to the page-limit constraints, detail definition
and logical structure of CURE, short and long term benefits of such courses
are omitted. Interested readers might find relevant information in article [2].

2 CURE in Practice for CS Students

In Computer Science, research areas such as Natural Language Processing, In-
formation Retrieval, Machine Learning, Artificial Intelligence, Data Science,
etc. do not always need specialized equipments/hardwares other than a mod-
ern computer-equipped lab space (teaching-lab) for deploying a full research-
focused course. The experience report is based on such course in Information
Retrieval(IR) track. The next couple of sections outline the structure and
activities of the course.

2.1 Course Layout

The course objective is to provide hands-on experiences with several existing
software tools through the programming assignments and to train them to
develop critical thinking and analytical skills through written assignments. In
order to offer a balanced way of learning new techniques and applying them
for conducting research, the course is divided into two main phases:

• Supervised Learning Phase

• Semi-supervised Learning (Research) Phase

The next two sections introduce the major activities during these phases.

2.2 Supervised Learning Phase (Week 1 ∼ Week 7)

The activities of this phase are mostly lectures highlighting and demonstrat-
ing important concepts from textbook readings. When appropriate, external
readings can be used. Students are asked to complete written assignments (in-
dividual works), in-class tasks and programming assignments (group works).

57

Figure 1: A revised Bloom’s Taxonomy [1] for a research-focused course.

2.2.1 In-Class Tasks

Providing students with models and worked examples can help them learn
to solve problems faster [6]. During the second hour of every class, students
either run/test small experiments (with code provided by the instructor) or
implement/modify a partially solved model to get a better understanding.

2.2.2 Programming Assignment

The programming assignments are designed with the following goals in mind:
• Students should have a lot of freedom in choosing the layout and the

techniques while implementing the solution.
• Students should know about the standard evaluation techniques and be

able to design new scales of measures.
• Students should write detailed reports for the experiments.
• Students should be comfortable using different standard datasets so that

they can test their work with larger collections.

2.2.3 Written Assignment

Students are asked to submit written reports (summarize the concepts and an-
swer few related questions) about published articles (chosen by the instructor)
during the first and the fourth week. The goal is to improve their analytical
and writing skills on technical matters.

58

Figure 2: Major Student Activities during the Research Phase

Programming assignments and the template for written assignments can be
found in appendix A.

2.2.4 Term Exam

The supervised learning phase ends with an open-book, two-hour long exam
where students are asked to solve analytical questions on covered topics.

The covered topics on this phase can be found in appendix B.

2.3 Research Phase (Week 8 ∼ Week 14)

The first day of this phase is a full lecture led by the instructor introducing
the students to different research sub-areas and possible research problems in
each of those areas. At the end of the session, students form groups on their
own and start talking about possible research problems that sound interesting
to them.

59

The instructor takes a passive role (monitor and guide) from now on. Dur-
ing the eighth week, students spend their time on writing research proposals
which are approved after two trials of presentation (one informal and one for-
mal) in front of the class.

As literature reviewing is an important part of research, each student-
group presents two articles (relevant to their research idea) as a basis of their
work. They also submit a weekly plan: approximate amount of spent time
per week and tentative weekly goal. Asking them to budget time is impor-
tant as this helps them find a balance between their ambitions and achievable
goals within time and other constraints. Based on the demand of the research
project, students may need to find relevant datasets or state a plan for creating
datasets.

Template/Guideline for Writing A Research Proposal
Title: Find an interesting and representative title.
Abstract: Highlight the basic idea and its importance.
Project Description: With few literature reviews, explain your idea, the

scope, the broader impact of your project.
Datasets: Cite proper existing datasets (if required) that you plan to use or

explain how you plan to construct one for your work.
Preparation: Report the skills and knowledge that you think will be useful.
Outcomes & Timeline: Highlight some final expected outcomes (a paper,

poster, software, API, etc.)
References: Cite relevant research works (at least 5 to begin with).

To make the students accountable for maintaining the quality of their work,
every student also work as anonymous reviewer for other students’ projects.
The final work is submitted as a paper following standard formats commonly
found in most technical IR articles: title, abstract, introduction, related work,
dataset, methodology, result analysis, and conclusion/future directions.

Review Template

1. Summarize the project-idea in your own words.
2. Rate at the scale of 1 to 10 (1 being the worst and 10 being the best):

• Is the research question clearly stated?
• Have they explained clearly why their idea is interesting and im-
pactful to some parties?

3. State some strengths and some weaknesses of the project idea.
4. Have they clearly talked about the evaluation mechanism and datasets

(if needed) for their project?
5. (Optional) Provide some suggestions to the team.

60

Careful attention is paid on their writing quality: explaining the method-
ology and contribution, citing relevant works, acknowledging peers for their
comments and suggestions, etc. The 14-week long activity ends with formal
20-min presentation by each group in a seminar hall where students from the
school will be invited to attend.

2.4 Time Commitment

The students meet twice a week for 2 hours in a teaching lab. It is expected
from the students that they would complete assigned readings (approximately
1∼2 hours) for the class and complete the assignments outside of class-meetings
(approximately 4∼6 hours). Overall, students are expected to spend approxi-
mately 7∼10 hours per week for the course.

2.5 Grading/Assessment

50% of the course grade is allocated for the research phase. Clarity of thinking,
efficiency of implementation, depth of analysis, structure and readability of the
project report, and final presentations are the determining factors for achiev-
ing that 50% score. The rest of the course-grade is distributed on regular
programming assignments, written assignments, class participation, and one
term exam. A complete course syllabus and related materials can be found at
authors github repository: https://github.com/FahmidaHamid/CCSC2020CP

3 Students Experiences

Given the research sub-areas as {Keyphrase extraction and Summarization,
Learning to rank, Question-Answering, Recommender Systems}, the running
student projects are the followings:

Student Projects

Information Desk: to create a powerful Question-Answering system, lever-
aging the power of Generative Adversarial Networks (GAN) and the
World Wide Web (WWW).

Teaching Machines: to Reason on texts, to build a Question-Answering
model with complex questions (how or why) and eventually understand
the sequential facts embedded in the documents to produce the answer.

Keyphrase Extraction of YouTube Video Transcripts: to outline the
contents and to create tags to improve search results.

61

A Study of Keyphrase Extraction on Celebrity Tweets: to create a
celebrity-tweet dataset and apply unsupervised keyphrase extraction
techniques on it.

The first two groups are studying several Machine Learning techniques
for implementing automatic answer generation in different situations. The
third group is using YouTube’s API for building their own “transcript dataset”
and applying meta-information to build a Naive-Bayes Classifier for extract-
ing meaningful phrases. The fourth group has manually created a dataset of
“Monthly Celebrity-tweets” and will be using an unsupervised technique to au-
tomatically extract keywords. The first and the third group will use human
annotators to help create gold-standards for evaluating their system’s perfor-
mances. The second group uses a dataset published by Facebook that comes
with standard answers. The group plans to extend the model from producing
short phrased answers to a complete sentence.

The major outcomes of the course from the student perspectives are:
(a) To be able to write a research proposal and a technical paper.
(b) To be able to think independently and discover a problem (area of con-

cern)
(c) To be able to write constructive criticisms of other’s work.
(d) To plan for publishing the work as a student paper/poster to a proper

venue.

4 Extending the Scope and Possibilities

If planned with enough time and resources, several other possibilities can be
included to add more value and learning experience:

Invited talks: Scholars in similar research tracks can occasionally give
invited-talks. In some cases, students can remotely join at different events (e.g.
ACM TechTalk) and thus flip a lecture on similar/same topic.

Student talks: Offering bonus-points for actively participating in some
student clubs and presenting the research will help students build confidence
and acquire more knowledge. This can motivate the students in audience seats
for conducting research as well.

Workshop/Poster presentations: Students should aim for presenting
their work to external events. Regional or national undergraduate research
symposiums are possible suits for their work.“What will be the impact of my
research?”, “Why is this problem still unsolved?” – these questions lead students
into determining the scale of their work and not limit their achievements only
to a good letter grade.

62

5 Conclusion

The goal of the course is to lead the students to the process of scientific dis-
covery in a small scale. The first round of experiment at Grinnell College with
eight senior students has been successful in several ways. Given more time
and scope, in next trial, several modifications can be done: having an over-
lapping research and supervised learning phase, offering student-stipends for
teams that can participate at poster/workshop events outside of the college,
etc. In short, research-focused courses create a trend of involving undergradu-
ates into research in an effective way. Faculties with different research interests
should offer research-focused courses by rotation to engage larger and diverse
set of students.

References

[1] Nancy E Adams. Bloom’s taxonomy of cognitive learning objectives. Jour-
nal of the Medical Library Association: JMLA, 103(3):152, 2015.

[2] Lisa Corwin Auchincloss, Sandra L. Laursen, Janet L. Branchaw, Kevin
Eagan, Mark Graham, David I. Hanauer, Gwendolyn Lawrie, Colleen M.
McLinn, Nancy Pelaez, Susan Rowland, Marcy Towns, Nancy M. Traut-
mann, Pratibha Varma-Nelson, Timothy J. Weston, and Erin L. Dolan.
Assessment of course-based undergraduate research experiences: A meet-
ing report. CBE: Life Sciences Education, 13(1):29–40, 2014.

[3] M Kevin Eagan Jr, Sylvia Hurtado, Mitchell J Chang, Gina A Garcia,
Felisha A Herrera, and Juan C Garibay. Making a difference in science
education: the impact of undergraduate research programs. American ed-
ucational research journal, 50(4):683–713, 2013.

[4] Sylvia Hurtado, Nolan L Cabrera, Monica H Lin, Lucy Arellano, and
Lorelle L Espinosa. Diversifying science: Underrepresented student ex-
periences in structured research programs. Research in Higher Education,
50(2):189–214, 2009.

[5] Jane L. Indorf, Joanna Weremijewicz, David P. Janos, and Michael S.
Gaines. Adding authenticity to inquiry in a first-year, research-based, biol-
ogy laboratory course. CBE: Life Sciences Education, 18(3), 2019. PMID:
31418655.

[6] Barak Rosenshine. Principles of instruction: Research-based strategies that
all teachers should know. American educator, 36(1):12, 2012.

63

[7] P Wesley Schultz, Paul R Hernandez, Anna Woodcock, Mica Estrada,
Randie C Chance, Maria Aguilar, and Richard T Serpe. Patching the
pipeline: Reducing educational disparities in the sciences through minority
training programs. Educational evaluation and policy analysis, 33(1):95–
114, 2011.

[8] Jack T. H. Wang. Course-based undergraduate research experiences in
molecular biosciences-patterns, trends, and faculty support. FEMS Micro-
biology Letters, 364(15), 07 2017.

A Sample Assignments

Programming Assignment 01
Allocated Time: 2 weeks
Goal: To implement one of the most common applications in IR
Problem Statement:
Build a search engine using your preferred programming language. Your code should
be well documented. While implementing your engine, follow the basic building
blocks of a standard search engine. Report the strengths and weaknesses of your
model.

Server Side should do the followings: crawl at least 100 unique pages, parse them,
create index, build web-graph by analyzing the links, and rank them (you may want
to implement the page-rank algorithm). It is a good idea to design a topical search
engine, like, crawl pages whose title contains a particular topic (e.g. sports). That
way, your web-graph will be well-connected. Client Side should have a very simple
interface to take input (text query) from the user, search in the index, and print
the related web-links in some order. Bonus points will be allocated for designing
interactive user-interfaces.

Programming Assignment 02
Allocated Time: 2 weeks
Goal: To find the latent features from the so-called unstructured and abnormally
large collection of data.
Problem Statement:
The spam filtering problem is one kind of text categorization problem with the cat-
egories being spam and ham. The structure of email is richer than that of flat text,
with meta-level features such as the fields found in MIME compliant messages. Re-
searchers have recently acknowledged this, setting the problem in a semi-structured
document classification framework. Several solutions have been proposed to over-
come the spam problem. Among the proposed methods, much interest has focused
on the machine learning techniques in spam filtering. They include rule learning,
Naive Bayes, decision trees, support vector machines, or combinations of different
learners. The basic and common concept of these inductive approaches is that using
a classifier to filter out spam and the classifier is learned from training data rather
than constructed by hand.

64

Your job is to choose two possible machine learning approaches to solve the prob-
lem and analyze their performances. Then you will report possible mechanisms to
improve the current models you implemented.

Written Assignment
Allocated Time: 1 week
Study a given article “ABC" and answer the following questions:

• Summarize the article. (State the overall contribution of the article within 500
words.)

• Explain their hypothesis using the following structure: (assume a relevant
structure M is given.)

• The authors used mechanism P and Q for evaluation. Suggest another relevant
evaluation mechanism.

• State at least two cases where the stated hypothesis will fail (or, State some
weaknesses).

• Find another problem where you think the hypothesis (solution) can be applied
equally effectively.

B Covered Topics

Topics Covered
Boolean Retrieval Model
Search Engine Architecture
Web Crawler & Basic Text Processing Technique
Inverted Index & Query Processing
Search Result Interface & Link Analysis
Vector Space model
Probabilistic Information Retrieval
Language Models
Evaluation in IR
Discussion on possible Research Tracks
- Question-Answering
- Recommender Systems
- Keyphrase Extraction
- Learning to Rank

65

LAGradebook: A Tool for Course-Level
Comparative Learning Analytics∗

Chistopher Phillips and Jesse Eickholt
Department of Computer Science

Central Michigan University
Mt. Pleasant, MI 48859

{phill1cp,eickh1jl}@cmich.edu

Abstract
Learning analytics aims to collect and analyze data to improve learn-

ing outcomes. Several tools for learning analytics exist and have been
successfully used in the context of higher education but their cost and
related institutional challenges can be limiting factors. To complement
larger, institutional efforts for learning analytics adoption, we have de-
veloped a tool to support smaller scale applications. The tool ingests
raw, student assessment data and produces a rich, learning analytics en-
abled spreadsheet. The spreadsheet calculates descriptive statistics and
relative performance and contains pair-wise correlation metrics of assess-
ment items and individual student reports. The reports and comparative
performance measures help students monitor their relative performance.
The low-cost and course-specific nature of the tool supports increased
access to learning analytics in more classrooms.

1 Introduction

Learning analytics (LA) centers on the idea that it is possible to use data, a
focal point of our modern society, to help inform the decision-making process
as it relates to the field of academia. More specifically, learning analytics makes
“use of analytic techniques to help target instructional, curricular, and support
resources to support the achievement of specific learning goals” [14]. The par-
ticular techniques used include summarizing, modeling and pattern recognition

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

66

and the applications of learning analytics can be descriptive, predictive, or pre-
scriptive in nature. These efforts can take place at an institutional level (e.g.,
using assessment data from several courses, advising reports, entrance exams)
or on a smaller scale (e.g., using data from a specific course of an instructor). A
number of tools have been developed and evaluated to support learning analyt-
ics at the institutional level. Such tools provide a way for an interested party to
engage with data and extract useful data regarding student success, academic
efficiency, and student engagement with course materials. Some of the more
prominent examples of LA tools include Check My Activity [6], Course Signals
[2], ECoach [11] and Degree Compass [4]. The Check My Activity tool helps
students keep track of how engaged they are with their learning management
system (LMS) [6]. Students are then able to compare their use of the LMS
to their peers’ use of the LMS. This tool allows a student to recognize where
they are fully engaged and where their engagement might be lacking. Purdue’s
Course Signals software is designed to help with student engagement and suc-
cess and will alert instructors of at-risk students and allows the instructor to
assign a green, yellow, or red light in the LMS [2]. At the University of Michi-
gan, a tool called ECoach has been used to recognize when students perform
better than expected in a course and then interviews them for tips, tricks, and
advice [11]. The system will then provide this tailored advice to any future
student that is struggling in the course. Degree Compass has been used by
Austin Peay State School [4]. Rather than focusing on any specific course, De-
gree Compass evaluates and analyzes the whole degree program. By looking
at statistics like course registration efficiency and time-to-degree completion
this software aims to create the perfect course schedule for each student that is
optimized for success. In addition to these research oriented tools, commercial
products are also available and directly tie into learning management platforms
such as Blackboard [3].

While many successful applications of LA systems have been documented
in higher education, their adoption has been challenged by institutional fac-
tors and faculty reception. The size of institutional systems, the breadth of
involvement of personnel across the institution and privacy concerns are often
noted as challenges to institutional adoption of learning analytics [5, 9, 13]. Ad-
ditionally, cost is arguably a concern when considering commercial products.
Smaller scale institutional efforts to support learning analytics have focused on
faculty. Common professional development paradigms such as workshops and
faculty learning communities have been used to educate faculty on learning
analytics [12, 10]. Such efforts may provide faculty with knowledge of learning
analytics but not provide the needed tools.

It has been posited that the intention of learning analytics is transferability
and that “analytic and predictive models need to be reliable and valid at the

67

scale beyond the individual course or cohort" [5]. Arguably, there are advan-
tages to larger, more generalizable learning analytics tools (e.g., ECoach or
Degree Compass) but cost or institutional adoption can be limiting factors.
As a concurrent pathway for wider adoption of learning analytics, we propose
techniques and tools that can be adopted and used at a smaller scale (e.g.,
instructor level). In line with this call, we have developed and present LA-
gradebook. It is a tool that can be adopted at the instructor level to support
descriptive and comparative learning analytics for instructors and students.

2 Design Considerations

In designing a tool to support instructor-based learning analytics, it was de-
cided that the tool should be open source, community licensed and decoupled
from any particular learning management system. An additional constraint
imposed was that it should take as input raw assessment data from a text
file. These choices eliminated cost concerns and the need for institutional IT
support. Again, the aim of this work was to create an alternative to institu-
tional adoption of learning analytics and so it was important that the adoption
requirements and costs of our approach were as low as possible to support
individual instructor adoption.

Of initial interest and inspiration was the Gradebook Calculator. This is
a web-based tool provided by the DataLab at Carnegie Mellon University. It
ingests raw gradebook data and identifies struggling students, finds unreliable
assessment items and discovers challenging concepts for students [1]. We chose
to avoid a web-based tool due to privacy concerns that instructors might have
in uploading student data. We also wanted to help instructors relay the in-
sights gleaned by learning analytics back to the students which was not directly
supported by the Gradebook Cacluator.

Generally speaking, what was desired was a means to ingest raw assessment
data, perform learning analytics and generate student reports. Processing of
the data needed to be preformed locally and any required tools needed to be
community licensed or commonly available in an academic setting. This led
to the selection of Python and Microsoft Excel. A Python program would
ingest raw assessment data from a text file and create a rich, learning analytics
enabled Excel spreadsheet. This would allow the data to remain local and
leverage tools that most have at their disposal (i.e., Python and Microsoft
Office suite). The Excel spreadsheet would support the generation of reports
and produce summary data that could be imported into a LMS, and as a result
help instructors share insights with students.

The aforementioned design requirements (e.g., instructor level, local pro-
cessing, platform independence) restricted the type of learning analytics that

68

could be performed. When data collection is restricted to one course or one
instructor, the options for predictive analytics are limited and as a result a
number of descriptive analytics were selected to support student comparisons.
As an example of what is possible with descriptive analytics, consider the
Check My Activity tool that allowed students check their LMS activity with
those that performed above, below or at their performance category [6]. This
type of information can be used to "nudge" students into action [7].

3 Implementation

A LAGradebook is constructed using an application written in Python and
making use of the openpyxl module [8]. The application reads in a tsv or
xls file containing assessment data and produces a Microsoft Excel compatible
spreadsheet. The primary purpose of the Python application is to produce an
interactive LAGradebook (i.e., the Python program builds and embeds into
the spreadsheet the logic needed to perform calculations rather than perform
the calculations and produce a static document).

Using the data provided, the Python application will create several sheets in
the newly created workbook. The first sheet is an copy of the initial data used
for creation of the workbook. The second sheet is the control sheet. This sheet
allows for some customization, such as which assignments to include in future
calculations. This sheet also provides baseline descriptive statistics, average
and standard deviation. The average and standard deviation are calculated
with Excel functions that have been custom configured in the Python source.
The control sheet allows the user to choose whether a column (i.e., an assess-
ment item) should be used in calculations for top performance and relative
performance through the use of a drop-down selector in the sheet. The sheet
initially checks “No” unless the column has previously been selected. This can
be modified by the user at any time. The "Top Performance" sheet is where
the user will see the top performers on the chosen columns. The user may alter
the z-score used in this calculation to have a broad or narrow criteria. This
sheet also provides information on how often each individual student has been
identified as a top performer on all assignments to-date. The "Relative Perfor-
mance" sheet provides information about each student’s relative performance
on the selected assignments. Instructors will be able to see whether a student is
performing at, above, or below average, compared to their peers. The "Corre-
lations" sheet calculates and displays the correlation coefficient for each pairing
of assessments scored numerically. The final sheet is a "Student Report" sheet
that contains summary information for each student. Page breaks are au-
tomatically inserted between students to facilitate distribution when printed.
Again, it is important to note that these sheets are dynamic. As the user

69

makes changes on the control sheet (e.g., selecting or deselecting assessment
items for top performance and/or relative performance), the respective sheets
in the LAGradebook will automatically update. Figures 1 and 2 illustrate the
Control Sheet and Relative Performance Sheet, respectively.

Figure 1: Sample Control Sheet generated by LAGradebook.

Figure 2: Sample Relative Performance sheet generated by LAGradebook.

70

Given that the Python program embeds needed logic and calculations in-
side the spreadsheet, new assessment data cannot be added directly to the
LAGradebook. A typical use case would involve regenerating the LAGrade-
book periodically throughout a course. After each use, the original sheet could
be imported into a LMS or other gradebook. Configuration data from the con-
trol page (e.g., selections for top and relative performance) is persisted across
regenerations by embedding some metadata in the title of each column.

4 Discussion

The LAGradebook can be utilized in many ways by instructors to intervene on
their behalf and to provide students with timely feedback. Presented here are
a few sample use cases.

4.1 Relative Performance

LAGradebook allows instructors to select assessment items and determine a
student’s relative performance (e.g., above average, average or below average).
This is done by determining a z-score for each assessment item. An overall
measure of relative performance is calculated as the average z-score of selected
assessment items for relative performance. Similarly, assessment items can
be selected and top performers are identified on a per assessment item basis.
Overall counts for top performance are calculated on a per student basis. Rel-
ative performance and top performance counts are reported on an individual
student report that can be printed and given to the student. It is also possible
to export the relative performance measures to a learning management system.
At present, the only system supported is Blackboard.

4.2 Reporting

As the LAGradebook was designed to be agnostic with regards to the learning
management system, it does not rely on the learning management system to
relay information back to the student. To facilitate reporting, the LAGrade-
book generates a worksheet of student reports. Each report will print on a
separate page and contains overall relative performance, relative performance
by selected assessment items, a graph of selected assessment items, top per-
formance count, performance on a selected assessment item and a customized
message. Preceding the reports is a control panel that determines which fields
should be populated. At certain checkpoints during the course, assessment
data could be processed into a LAGradebook. The reports could be printed
and distributed to students.

71

4.3 Identification of At-Risk Students

At the end of a course offering, an instructor can use a LAGradebook to calcu-
late pairwise correlation metrics between the final grade and assessment items
collected throughout the delivery of the course. These correlation values ap-
pear on a separate worksheet and color coded to indicate the strength of the
relationship. Assessment items that are highly correlated with the final grade
can be used as prognosticators of a future student’s final performance provided
that a similar assessment item is administered in a later offering of the same
course. To be of value, the assessment item used should be one that occurs
early in the course to allow time for corrective action or remediation.

5 Conclusion

There are many ways in which learning analytics helps students and instructors
in promoting student success. In spite of the benefits, institutional efforts to
implement learning analytics have been met with some resistance due to the
size of institutional systems, the breadth of involvement of personnel across the
institution and privacy concerns. To complement larger, institutional efforts
for learning analytics adoption, we have developed a tool to support smaller
scale applications. The tool ingests raw, student assessment data and produces
a rich, learning analytics enabled spreadsheet. The spreadsheet calculates de-
scriptive statistics and relative performance and contains pair-wise correlation
metrics of assessment items and individual student reports. The reports and
comparative performance measures help students monitor their relative perfor-
mance. By using similar assessments and historical course data, instructors can
identify students at-risk of failing a course. The low-cost and course-specific
nature of the tool supports an increase in access to learning analytics, making
it available to more classrooms.

References

[1] Datalab tools + resources. https://www.cmu.edu/datalab/tools/.
[2] Kimberly E Arnold and Matthew D Pistilli. Course signals at purdue: Using

learning analytics to increase student success. In Proceedings of the 2nd Interna-
tional Conference on Learning Analytics and Knowledge, pages 267–270. ACM,
2012.

[3] Blackboard. Blackboard analytics. https://www.blackboard.com/education-
analytics/index.html.

[4] Tristan Denley. Austin peay state university: degree compass, 2012. EDU-
CAUSE Review Online. https://er.educause.edu/articles/2012/9/austin-
peay-state-university-degree-compass.

72

[5] Rebecca Ferguson, Leah P. Macfadyen, Doug Clow, Belinda Tynan, Shirley
Alexander, and Shane Dawson. Setting learning analytics in context: Overcom-
ing the barriers to large-scale adoption. Journal of Learning Analytics, 1(3):120–
144, 2014.

[6] John Fritz. Classroom walls that talk: Using online course activity data of
successful students to raise self-awareness of underperforming peers. The Internet
and Higher Education, 14(2):89–97, 2011.

[7] John Fritz. Using analytics to nudge student responsibility for learning. New
Directions for Higher Education, 2017(179):65–75, September 2017.

[8] Eric Gazoni and Charlie Clark. https://openpyxl.readthedocs.io/en/
stable/index.html.

[9] Steven Lonn, Timothy A. McKay, and Stephanie D. Teasley. Cultivating insti-
tutional capacities for learning analytics. New Directions for Higher Education,
2017(179):53–63, 2017.

[10] Leah P. Macfadyen, Dennis Groth, George Rehrey, Linda Shepard, Jim Greer,
Douglas Ward, Caroline Bennett, Jake Kaupp, Marco Molinaro, and Matt
Steinwachs. Developing institutional learning analytics ’communities of trans-
formation’ to support student success. In Proceedings of the Seventh Interna-
tional Learning Analytics & Knowledge Conference, LAK ’17, pages 498–499,
New York, NY, USA, 2017. ACM. Event-place: Vancouver, British Columbia,
Canada.

[11] Tim McKay, Kate Miller, and Jared Tritz. What to do with actionable intel-
ligence: E2Coach as an intervention engine. In Proceedings of the 2nd Inter-
national Conference on Learning Analytics and Knowledge, pages 88–91. ACM,
2012.

[12] George Rehrey, Linda Shepard, Carol Hostetter, Amberly Maurine Reynolds,
and Dennis Groth. Engaging faculty in learning analytics: Agents of institutional
culture change. Journal of Learning Analytics, 6(2):86–94, July 2019.

[13] Kaiwen Sun, Abraham H. Mhaidli, Sonakshi Watel, Christopher A. Brooks,
and Florian Schaub. It’s my data! Tensions among stakeholders of a learning
analytics dashboard. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI ’19, pages 594:1–594:14, New York, NY,
USA, 2019. ACM.

[14] Angela Van Barneveld, Kimberly E Arnold, and John P Campbell. Analytics
in higher education: Establishing a common language. EDUCAUSE Learning
Initiative, pages l–ll, January 2012.

73

Engaging Early Programming Students
with Modern Assignments Using

BRIDGES∗

Allie Beckman1, Matthew Mcquaigue1, Alec Goncharow1

David Burlinson1, Kalpathi Subramanian1

Erik Saule1, Jamie Payton2

1Computer Science, UNC Charlotte
{abeckma2, mmcquaig, agoncha1, dburlins, krs, esaule}@uncc.edu
2Computer and Information Sciences, Temple University

payton@temple.edu

Abstract
Early programming courses, such as CS1, are an important time to

capture the interest of the students while imparting important technical
knowledge. Yet many CS1 sections use contrived assignments and activ-
ities that tend to make students uninterested and doubt the usefulness
of the content. We demonstrate that one can make an interesting CS1
experience for students by coupling interesting datasets with visual rep-
resentations and interactive applications. Our approach enables teaching
an engaging early programming course without changing the content of
that course. This approach relies on the BRIDGES system that has been
under development for the past 5 years; BRIDGES provides easy access
to datasets and interactive applications. The assignments we present
are all scaffolded to be directly integrated into most early programming
courses to make routine topics more compelling and exciting.

1 Introduction

Computational literacy and problem-solving skills are crucial facets of an in-
creasingly tech-driven economy and world. While enrollments in computing

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

74

majors have grown in recent years, particularly high attrition rates in these
degree programs hamper the rate at which colleges and universities contribute
to the modern workforce. Students in introductory and second-year courses
are most susceptible, and much work has been done to investigate and address
the factors contributing to the erosion of this student population [2].

One of the primary factors in maintaining interest among computing majors
is their level of engagement with the course material. The perceived relevance
of the material to the students’ own lives and careers is crucial for kindling a
desire to learn how to solve more complex problems down the road. Unfortu-
nately, this is an area of weakness in many computing programs: the introduc-
tory courses are packed full of students, and it is enticing for universities to
prioritize scalability over quality and rigor by relying on graduate students or
more automated tools and paradigms to teach and evaluate the basic content.

Programming assignments in introductory courses have traditionally been
contrived to teach basic structures like logical branching and loops using toy
datasets, with basic command line input and output comprising students’ in-
teraction with the program. More engaging, modern approaches generally in-
volve socially or culturally relevant data, simple graphical libraries, and more
gamification of the material. All these features are prioritized in our work.

We present in this paper a lean educational framework that makes student
engagement central to the content of introductory programming courses, with-
out changing or compromising the rigor, content, and learning goals of these
courses. Our BRIDGES framework uses a mix of real-world datasets from
different domains, simple games and interactive applications as engagement
tools to emphasize and reinforce core concepts in introductory programming.
We present a set of assignments and their relationships to programming con-
cepts, and we show how they were deployed in introductory CS courses and
perceived by students of these classes. The framework and assignments are
available online (https://bridgesuncc.github.io/).

2 Related Works

What CS1 typically look like. The typical first course in computer science,
or CS1, introduces students to programming using a high level programming
language such as Java or Python. The course goal is to introduce the basic
constructs of the programming language, such as variables and expressions,
control structures, functions and simple data structures like lists and strings.
These courses train students to solve nontrivial problems using these constructs
(e.g., see classic CS1 exemplar [11]).

There are wide variations in how the basic concepts are taught, in terms of
the learning environments, tools, pedagogical approaches, and the student pop-

75

ulation (majors, non-majors) and demographics. Many introductory courses
have begun to incorporate graphics, GUIs, and visualizations, as a creative
output produced in projects [8, 4] or to illustrate key aspects of the underlying
objects or algorithms [7, 3]. Furthermore, a rising awareness of the multi-
disciplinary value of computing literacy has encouraged some institutions to
experiment with different flavors of introductory programming courses based
on game development [1], robotics [6], and data science [5].

What Makes Students Engaged. Ultimately, the goal of courses and cur-
riculum is the overall education and academic success of the learners. To that
end, materials that capture the imagination of incoming students and reinforce
their interest and motivation in computing are particularly valuable. Popular
assignment repositories (Nifty Assignments [14], EngageCSEdu [13], etc.) tend
to include the ‘fun’ factor, as do game-themed assignments [16]. Usage of real-
world and large datasets in course projects have also proven successful [12, 4],
in contrast to using tiny, contrived or toy examples that fail to engage students.

In recent years, active learning techniques have been implemented in class-
rooms to promote student engagement, and include any combination of lab-
based instruction, flipped classroom settings, gamification, peer-learning, and
use of multimedia content [15, 9, 10].

3 The BRIDGES System

The BRIDGES system [4] is relevant to the goals of introductory CS courses
such as CS1 and CS2. It has the capability to provide easy access to external
datasets that can be readily used in course assignments. Secondly, it provides a
2D abstraction of a grid that can be used for games and image processing. The
system provides bindings for the commonly used languages in early CS courses
(Java, C++, and Python). Finally, results from assignments are highly visual
and can be shared with friends and family, thanks to web-based rendering.

Dataset Access. BRIDGES provides simple APIs to access external data
sources such as USGS Earthquake data, Wikidata, IMDB actor/movies, Ge-
nius’ Song Lyrics, and OpenStreet Maps. A single function call returns data
from a specific source, typically a list of objects, that can then be directly used.
By using interesting datasets from different domains, assignments can be made
more real and relevant to students.

Visualizing Bitmap Images. BRIDGES supports bitmap images through
a 2D grid abstraction which can be the basis for assignments on images and

76

image processing. This also directly relates to 2D arrays and array addressing,
which are central to CS1 and CS2.

Game API. BRIDGES supports a simple Game API that forms the basis
for a number of 2D games that are readily usable and aligned with the goals
of early CS courses. The game API has 4 core functions, (1) Reading Inputs,
(2) Updating the game state using customized game mechanics, (3) Rendering
to screen, and, (4) Maintaining a frame rate of 30 frames per second. In order
to maintain simplicity of the API for new programmers and ensure smooth
rendering, 2D games are implemented as 2D grids with a maximum of 1024
cells where each can be assigned a color and one of 256 predefined sprites, and
10 input keys for interaction. These constraints still enable the construction
of many games and applications, and the (student) programmer can focus on
implementing the game logic and updates to the game state, while the display
output and graphics are the responsibility of the system. This lets the student
focus on the course-level goals and not on the tool-level details. The user is
responsible for implementing two functions: (1) initialize(), which is run once
at the beginning of the game, and (2) gameLoop(), which contains all of the
game logic and is called for each frame of the game.

This API is simple yet expressive enough to enable the implementation
of a number of 2D games such as Bugstomp, Snake, 2048, Infinite Runner,
Minesweeper, and Racing Car; as well as many of the Nifty [14] assignments
such as Falling Sand, Spreading of Fire, and Hurricane Tracker. Each of these
can be scaffolded to align with the learning outcomes of an early CS courses.

Students will typically run the code in their IDE and interact with the game
through a web browser. However, our system also supports exporting games
as standalone Android applications.

4 A Set of Engaging CS1 Assignments

We now describe a sequence of engaging assignments using BRIDGES that
can be the basis for a CS1 curriculum. Table 1 illustrates the assignments
and topics these assignments are aligned with. Assignments are scaffolded
(available on our website) so that the students will see the specific functions
that are to be implemented, in line with the objectives of the assignment.
Instructors may request solutions for planning their course.

Etch a Smile. The student is given the task of drawing a smiley face. There
are two versions of this assignment, Students write single lines of code which
fill specific cells on a 2D grid using x and y values with a color of their choice.
Students can also draw symbols on a cell. Alternately, they can use loops to

77

Table 1: Example CS1 Projects, Topic Mappings and engagement factors

fill areas of the 2D grid with specific colors to create a face.
Where does it fit? Students will gain experience with generating a visually
pleasing output using code that is more interesting than vanilla “hello world"
function. They will also gain an understanding of coordinate grids from a
programmers perspective. Familiarity with loops can be used to augment this
assignment. Fig. 1 illustrates some examples.

Figure 1: Etch A Smile Face Example

Bugstomp. The game involves moving a sprite around a 2D grid to step on
randomly generated bug sprites. The assignment involves moving around a 2D
grid, generate random positions to place bugs in the grid and ensure that the
player and bug are always within the grid.
Where does it fit? Moving a sprite within a 2D grid requires using input
keys, updating the game board, and using conditional statements to ensure all
positions stay within the grid, and checking if the character stepped on a bug.

Tic Tac Toe. An old assignment with a new look: students create a 3 x 3
board where they take turns placing their symbol and trying to get three in
a row, column, or diagonal. Students can play against friends or develop a
human vs computer experience. The board displays user chosen symbols for
the players, and arrow keys are used to select a move.
Where does it fit? Tic-Tac-Toe is an excellent assignment for learning condi-
tional statements, loops, and data management. Students can compare strings
or values in an array to update the board. The game grid object of BRIDGES
also provides options for students who have not seen arrays yet.

78

Analyzing Repetition in Song Lyrics. The student selects a song from
an external data source (supported by BRIDGES) and parses each word. A
2D matrix is created using the words of the song that records whether the i-th
word of a song is the same as the j-th word and creates unique patterns on
a grid depending on the words repetitions of the selected song. See a highly
repetitive song in Fig. 2c and one with little repetition in Fig. 2b.
Where does it fit? Students will have gained experience parsing and com-
paring strings using tokens. They will also have an improved understanding of
loops, 2D array processing, conditional statements.

Figure 2: Song Lyrics: Repetition Pattern for different songs

Image Processing. The student reads images given in some text format
(e.g., PPM RGB images) into a 2D array and performs simple image processing
operations such as image flipping, color flipping, removing a color primary.
Students learn to work with images and how to manipulate colors.
Where does it fit? This is an excellent assignment for 2D array processing,
understanding image structures: storage of the array data in a linear sequence,
relationship between 1D and 2D addresses, and exercising loops and conditions.

Mountain Paths. This is an adaptation of a Nifty assignment [14] but it
uses BRIDGES’s visualization capabilities for displaying outputs. Students are
provided with an elevation image of a mountain as a text file. Starting from
a random pixel on the left edge of the image, the goal is to find a path that
takes the least amount of effort to get to the right edge of the image. A simple
greedy algorithm is used to make a local decision to move from one pixel to
the next, such that the pixel with the least difference in elevation between the
current position and the next position is chosen. The selected set of pixels are
drawn in color to illustrate the path, as can be seen in Fig. 3.
Where does it fit? This assignment is a very nice introduction to greedy

79

algorithms using a simple and highly engaging real world dataset. Students
learn file I/O, implement a greedy algorithm, practice using conditionals, loops
and 2D array processing.

Figure 3: Path of Least Elevation Example

5 Student Feedback

The projects detailed in Section 4 have been deployed in sophomore and junior
level CS courses. These projects have been used often to introduce a new
programming language (C++), or more frequently, as early ’warm-up’ projects
early in the course, or to illustrate a specific concept, such as object design.
Table 2 illustrates the deployment of several of these projects over the past 3
years. We conducted project surveys and student reflections on the assignment
that included the following questions:

1. What are the essential concepts that were learned by completing the
assignment? [Short Answer]

2. Why is this important? [Short Answer]
3. How does the concept contribute to understanding how to program?

[Short Answer]
4. The assignment was relevant to my career goals [5 point Likert scale].
5. The assignment increased my interest in computing [5 point Likert scale]

The reflection survey asked students the following questions:

1. Rate the difficulty of the module (5 point scale)
2. Roughly what percent of the module did you complete [25, 50, 75, 100]
3. Did you find the tasks engaging and meaningful? (4 point scale)
4. What did you like and not like about the assignment? [Short Answer]

The class enrollment varied, ranging from 30-50 students across the differ-
ent semesters. Participation was high (a small amount of credit was assigned
for completing the surveys); however, only students who completed a substan-
tial portion of the project were counted towards the survey participation.

80

Table 2: Student Feedback - Data Collection

Etch a Smile. Nearly all students found the project easy and completed it.
The themes that emerged from the student reflections included the freedom to
create a shape of their own choosing and play around with the color grid in
creating a face. Examples of student quotes included ‘...allows creativity in a
new way!’, ‘experiment and mess around with the coding’, ‘enjoyed the module
and ... eager to learn more’, ‘enjoyed the assignment, it was engaging’.
Tic Tac Toe. This familiar game was also well received with over 80% com-
pleting the assignment and found it engaging. Student reflections were overall
very positive, appreciated the moderate challenge, though several found it diffi-
cult as they were new to C++. Example free form responses included ‘enjoyed
making tic tac toe ... later plan to modify it to run on an arduino’, ‘game is
a good way to demonstrate understanding of programming’, ‘liked the assign-
ment, enjoyed creating the game’.

Figure 4: Project Surveys (Fall 18 and Spring 19): Mountain Paths Assignment

Mountain Paths. This was a harder assignment, with 65-80% of the class
completing 75% or more of the assignment. Almost all found the assignment
engaging. The major themes from the reflection surveys were on the challenge
of the assignment (‘very challenging and I learned quite a bit’, ‘feel challenged,
but also feel satisfied’, ‘was not prepared’), appreciation of the flexibility in
the assignment (’loved the assignment allowed for different inputs’, ‘make a

81

color object and amend it on each loop - it worked’), choice of the assignment
(‘excellent practical example of greedy algorithm’) and the visualizations (‘liked
seeing the visualizations’, ‘enjoyable to finally see the best path line’).

Fig. 4 shows the results of a survey of student’s attitude towards comput-
ing. The results from two semesters show that the student were engaged by an
assignment they perceived as relevant.
Image Processing This assignment continued from the Mountain Paths as-
signment. Students overall found the assignment challenging (roughly half in
Fall 2018, 70% in Spring 19 found it difficult), and about 60-70% completed
75% or more of the assignment. Over 90% found the assignment engaging. Stu-
dents appreciated the similarity of this assignment to the previous assignment
(‘last assignment was necessary to prepare me’), appreciation for the assign-
ment (‘good assignment with fairly clear instructions’), enjoyment (‘liked the
image processing portion’, ‘really liked seeing how easily implement some sim-
ple image processing with this assignment’, ’liked manipulation of the image’),
assessing success/failure (‘my procrastination bit me...’)

6 Conclusions

We have presented a set of highly engaging assignments that meet the princi-
pal goals of a typical introductory programming course like CS1. The assign-
ments contain important elements of engagement, such as the use of real-world
data, visualizations to see the final outputs, and interactive games and ap-
plications. We deployed and tested these assignments and collected student
feedback. Overall, the student responses have been very positive: They find
the assignments interesting, fun, and yet challenging.

Although these assignments have not yet been deployed in CS1, the topics
and the assignments are at the level of a CS1. We have begun working with
CS1/CS2 instructors using BRIDGES as part of their course. It would be
interesting to do a comparison of the student responses with those deployed in
a dedicated CS1 course using these engagement principles.

Acknowledgment

This material is based upon work supported by the National Science Founda-
tion under grant no. DUE-1726809 and CCF-1652442.

References

[1] Jessica D Bayliss and Sean Strout. Games as a flavor of CS1. In ACM SIGCSE
Bulletin, volume 38, pages 500–504, 2006.

82

[2] Theresa Beaubouef and John Mason. Why the high attrition rate for com-
puter science students: some thoughts and observations. ACM SIGCSE Bulletin,
37(2):103–106, 2005.

[3] Sarah Buchanan, Brandon Ochs, and Joseph J LaViola Jr. CSTutor: a pen-based
tutor for data structure visualization. In Proc. ACM SIGCSE, pages 565–570,
2012.

[4] David Burlinson, Mihai Mehedint, Chris Grafer, Kalpathi Subramanian, Jamie
Payton, Paula Goolkasian, Michael Youngblood, and Robert Kosara. Bridges:
A system to enable creation of engaging data structures assignments with real-
world data and visualizations. In Proc. ACM SIGCSE, pages 18–23, 2016.

[5] Sarah Dahlby Albright, Titus H Klinge, and Samuel A Rebelsky. A functional
approach to data science in CS1. In Proc. ACM SIGCSE, pages 1035–1040,
2018.

[6] Amy Delman, Adiba Ishak, Lawrence Goetz, Mikhail Kunin, Yedidyah Langsam,
and Theodore Raphan. Development of a system for teaching CS1 in C/C++
with lego NXT robots. In FECS, pages 396–400, 2010.

[7] Prasun Dewan. How a language-based GUI generator can influence the teaching
of object-oriented programming. In Proc. ACM SIGCSE, pages 69–74, 2012.

[8] Ira Greenberg, Deepak Kumar, and Dianna Xu. Creative coding and visual
portfolios for CS1. In Proc. ACM SIGCSE, pages 247–252, 2012.

[9] Mark Guzdial. A media computation course for non-majors. In Proc. ITICSE,
pages 104–108, 2003.

[10] Diane Horton, Michelle Craig, Jennifer Campbell, Paul Gries, and Daniel Zin-
garo. Comparing outcomes in inverted and traditional CS1. In Proc. ITICSE,
pages 261–266, 2014.

[11] Joint Taskforce on ACM Curricula. Computer Science Curricula 2013: Cur-
riculum Guidelines for Undergraduate Degree Programs in Computer Science.
ACM/IEEE Computer Society, 2013.

[12] Lucas Layman, Laurie Williams, and Kelli Slaten. Note to self: Make assign-
ments meaningful. In Proc. ACM SIGCSE, SIGCSE ’07, pages 459–463, 2007.

[13] Alvaro Monge, Beth A. Quinn, and Cameron L. Fadjo. EngageCSEdu: CS1 and
CS2 materials for engaging and retaining undergraduate CS students. In Proc.
ACM SIGCSE, pages 271–271, 2015.

[14] Nick Parlante. Nifty assignments, 2018.

[15] Johanna Pirker, Maria Riffnaller-Schiefer, and Christian Gütl. Motivational
active learning: Engaging university students in computer science education. In
Proc. ITICSE, pages 297–302, 2014.

[16] Kelvin Sung, Rebecca Rosenberg, Michael Panitz, and Ruth Anderson. Assessing
game-themed programming assignments for CS1/2 courses. In Proc. of GDCSE,
GDCSE ’08, pages 51–55, 2008.

83

Using JShell in CS1∗

Joseph Kendall-Morwick1

1Department of Computer Science, Mathematics, and Physics
Missouri Western State University

St. Joseph, MO 64507
jkendallmorwick@missouriwestern.edu

Abstract

A recent update to the Java Language and Java Development Kit
(JDK), version 9, has added an official REPL (JShell). JShell allows
instructors to introduce Java programming concepts more selectively and
to develop exercises free of distractions from verbose syntax relating to
programming concepts beyond the scope of the lesson. This paper will
relate experience integrating JShell in to a CS1 course and show how it
provides for an increased focus on crucial topics, rather than boilerplate,
in the early weeks of a course.

1 Introduction

Introductory Java programming (CS1) students are frequently asked to ignore
a considerable amount of code when they read their first “Hello World” program
in Java. Consider this implementation:

public class Hello {
public static void main(String[] args) {

System.out.println("Hello World!");
}

}

The Java programming concepts inherent in the code in this example include: ac-
cess modifiers, class definition, naming conventions, method definitions (particularly,
a static method and also a void return type), statically typed parameters, array types,

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

84

command-line arguments, the System class, static references (to a field, specifically),
the PrintWriter class, statements, method calls, and literal strings. The student is
intended to soon understand the final three concepts from the “Hello World” example
and expected to ignore the code pertaining to the other concepts as boilerplate re-
quired to execute the statement. At best, the student will simply be briefly distracted
by the presence of this code, and at worst, may form false assumptions about what
the code is intended for.

Recent updates to the Java language and Java Development Kit (JDK), specifi-
cally versions 9 and 10, have added an official REPL and local variable type inference.
These updates allow instructors to introduce many important Java programming con-
cepts at the time that students are expected to learn them, particularly those within
the crucial early weeks of the class. For example, consider the contrast in a “Hello
World” implementation using JShell:

print("Hello World!");

This paper will argue for the adoption of JShell in CS1 courses using Java and
relate experience of its use through three semesters of CS1 at Missouri Western State
University. Further, it will make recommendations for topic ordering within the initial
weeks of CS1 focusing on the most simple Java concepts first, in a logical order, and
without broaching more advanced concepts before they’re needed or before they can
be properly introduced.

2 Justification and Related Work

Although “Hello World” is a rather extreme example, Java presents many other similar
challenges to novice programmers. Such concerns have been recognized by other
instructors and have led some to adopt or develop software tools in teaching Java in
CS1 (all predating JShell). Kölling developed BlueJ, an educational IDE with a built
in REPL (called the “code pad”) designed to focus early on object-oriented concepts
[10]. DrJava is another educational IDE that includes a REPL-like component (the
interactions pane) [1]. Rather than a REPL or IDE, Nasrawt et al. developed Less-
Java, a concise and simple language that is very similar to Java but focuses on the
basics of procedural programming [16]. Many web-based applications that provide
exercises where students develop methods or other small snippets of Java have been
produced, such as codingbat, CodeLab, Problets, and others [3]. Although these
tools are not all REPL’s, they all allow students and instructors to work with smaller
snippets of Java programs and provide a more interactive programming environment.

Many papers have been published discussing topic order for teaching Java. The
primary debate is over “Objects First” or “Objects Late” [4]. While using JShell can
help address objects early, it does not provide visualizations popular with many who
advocate this route [6]. To a lesser extent, focusing on either functional or imperative
topics first is also a relevant debate [15, 2]. Both approaches can be better supported
by JShell. In particular, we share the same concerns about topic order with Java

85

Figure 1: Evaluation of a simple expression in JShell

that led Barland to adopt a “Functions First” approach, but we instead use JShell to
mitigate these concerns while introducing imperative concepts first.

Concerns about Java’s learning curve have also been a motivation for many uni-
versities to choose a different language, such as Python, for CS1 [12]. Many other
languages include official support for REPL environments and the debate over lan-
guage choice for a CS1 class continues to be a popular topic for publishing in CS
education, yet Java remains as a very popular choice for CS1 [4]. There are many
considerations for choosing a language for CS1, pedagogical and otherwise, and lan-
guage choice (beyond Java) will be considered beyond the scope of this paper.

3 JShell

In Fall of 2017, Java 9 was released, along with a new official REPL (Read Evaluate
Print Loop) called “JShell”. JShell provides a text-based user interface (TUI) that
allows programmers of all skill levels to quickly evaluate small “snippets” of Java
code (isolated expressions, statements, and declarations) [7]. The programmer simply
enters the snippet at the prompt and the snippet is immediately parsed and evaluated.
JShell then prints out the result, which may be a syntax error message, run-time error,
or in the case of an expression, the value resulting from evaluation. Standard I/O is
also handled through the TUI.

JShell eliminates several cumbersome requirements on executing arbitrary Java
snippets. There is no requirement of a public class or a main method. Import
statements can be issued at any time. In fact, any type of snippet can be evaluated
in any order. This can be helpful for expert programmers who wish to quickly test
segments of their code or experiment with API’s. However, it is also of significant
utility to novice programmers who aim to experiment with fundamental Java language
features and attain quick feedback in a controlled environment. Small snippets of Java
code relating only to the concepts an instructor desires to teach can be experimented
with in a meaningful way without the need for the typical Java boilerplate.

Although similar tools were referenced in the related work section, there are com-
pelling reasons to choose JShell. JShell is an official part of the Java JDK and consists
of two components: the JShell tool and the JShell API. The tool (the application
the user interacts with directly) is robust and intended to be used by professional
programmers. Thus it has desirable features such as tab auto-completion and a com-
plete collection of error messages. The API provides some opportunity for extension

86

of the JShell system and inclusion of JShell in to other tools. Because the JShell API
is maintained by Oracle on the same schedule as the rest of the JDK, JShell can be
relied upon to be current with any updates to the Java language or API in the future.

This assurance paid immediate dividends with the release of Java 10 and JEP 286:
Local-Variable Type Inference and its simultaneous support in JShell [8]. One reason
some universities may choose Python over Java for CS1 is Java’s static types for
variable definitions. JShell variable definitions are treated similarly to local variable
definitions and can take advantage of type inference. Thus, students learning variable
definition and assignment during the early weeks of CS1 can use the var keyword
to define variables rather than being forced to supply a type, mitigating two of the
three principle concerns that motivated Nasrawt et al. [16].

JShell also has its limitations for classroom use. The API allows JShell to be
used as a component in other software, but it does not easily afford changes to the
functionality of the JShell tool. However, this hasn’t stopped some from extending
the capabilities of the JShell tool [19]. Furthermore, JEP 222 explicitly states that
“a new interactive language is not the goal” [7]. Executing a JShell “script” without
the interactive TUI can lead to unexpected behavior, particularly with standard I/O.
Some libraries, such as JavaFX, may also not function as expected within JShell.
However, there are workarounds for both of these example limitations [11, 5]).

4 Redesigning a CS1 Course with JShell

At Missouri Western State University, Java has been the primary language used for
the introductory sequence in computer science comprised of CS1 (CSC 184 - Com-
puting Concepts I), CS2 (CSC 254 - Computing Concepts II), and Data Structures
(CSC 285). For many years, the popular “Introduction to Java Programming” text
has been used in all three courses [14]. CS1 courses were taught following the initial
sequence of topics in this book. Early examples and exercises utilized a common IDE
(typically IntelliJ) and later also utilized codingbat – an online tool for unit-tested
method development exercises [18].

In the past two years, CSC 184 was redesigned around the use of JShell. New
course materials (a set of notes that has become a quasi-textbook and a library
of demonstration videos) utilizing JShell were developed. These materials followed
a new topic ordering that fully explains concepts as they are introduced syntacti-
cally. The most significant changes to the topic ordering were in the early weeks.
These, specifically, are outlined in the next subsection. The section following that
one describes how JShell was incorporated in to new tools to facilitate the new topic
ordering.

4.1 Topic Ordering

The first concepts covered, in order, were: numeric literals, arithmetic operators and
expressions, function calls, the int and double types, and casting. Students were
tasked with developing simple and complex arithmetic expressions parameterized by
variables defined earlier (for example, the Gaussian PDF formula) in an attempt

87

to bridge their knowledge of algebra to computer programming (a goal shared in
approaches taken by Laengrich et al. [13] and Barland [2]). Static imports were used
to avoid the need for static references to methods in the java.lang.Math class.

Method definitions could be introduced next, but a more imperative approach
was chosen to leverage JShell’s interactive interface towards teaching the algorithm
concept. JShell allows hassle-free variable definitions and assignment and allows
programmers to use these statements interactively (essentially using JShell as a cal-
culator with a sophisticated memory function), making the interactive execution of a
pseudo-code algorithm (such as the Euclidean algorithm) possible before conditional
and loop structures are introduced.

At this point new control abstractions could be introduced, but we opted to
expand the available use-cases for JShell beyond calculation to help motivate the stu-
dents, introducing them instead to objects (but not class definitions), basic graphics,
strings, I/O, and the concept of a script (even though JShell can’t be officially consid-
ered a scripting language). Graphics and I/O are used to reinforce basic procedural
programming concepts and help students understand more complex data types and
basic collections.

After this, students were introduced to method definitions. The methods students
were tasked to define in JShell were not instance methods but essentially “functions”
with some number of parameters and a return type. This builds on the early work
with expressions and opens the door to more of the ideas in the “Functions First”
approach [2].

4.2 Tools

JShell itself was the primary tool for most coding exercises. JShell tracks each snippet
executed during an interactive session and allows the saving of these snippets to a file.
In most exercises, students were asked to complete a number of tasks using JShell
(trace an algorithm, develop an expression, develop a method, etc) and save their
snippet history to a file. JShell can also load these files, re-evaluating each snippet.

Introductory students were not expected to be well acquainted with command-
line interfaces and thus it was desirable to use startup-scripts with JShell. One script
used simply starts JShell with the printing functions available (avoiding the need for
System.out.println), and another incorporates a modification that allows independent
execution of JShell “scripts” [11]. This approach could also be extended to include
other useful functions, libraries, or imports and help the instructor hide other details
of working with and executing Java programs that make it difficult to focus on just
a few programming topics. For example, a small startup script utilizing some static
imports was used to postpone coverage of packages, classes, and import statements
while covering static method calls from the Math class in the first week:

import static java.lang.Math.*;

Codingbat was again used for some unit-tested method development exercises,
but a new tool currently under development, “Code Cafe”, that utilizes JShell as an
execution kernel has also been used [9]. Code Cafe exercise definitions allow inclusion

88

of startup scripts (such as the example above), code transformations, and arbitrary
goal definitions (generalizations of unit tests) that provide more flexibility in exer-
cise structure and specificity in feedback. For example, in the previously mentioned
Gaussian PDF exercise, a transformation from a Java expression to a Java method
definition with a single return statement was used so that the student’s expression
could be easily unit-tested. As another example, all method development exercises in
Code Cafe use two custom goals that indicate whether the student correctly specified
the return type or the parameter types, respectively, in their method definition.

5 Evaluation

In two sections of CS1 in Fall 2017, the Liang textbook and the classic “Hello World”
application approach was used. In subsequent semesters, the same instructor (the
author) used the new JShell based curriculum in three sections of CSC 184. It should
be noted that the JShell cohort includes students taking CS1 in both Spring and
Fall, whereas the “Hello World” cohort only includes students taking CS1 in Fall.
These cohorts consisted of 38 and 36 students respectively. The proportion of all of
these students who went on to attempt CS2 was determined. These figures include
students enrolled in CS2 during the Fall 2019 semester who had not yet completed
the course at the time data was collected.

Next, the mean change in grade between CS1 and CS2 was determined for each
cohort. For each student who completed one of these CS1 sections and a section of
CS2, their CS1 grade was compared to their grade in CS2. All grades were issued
on an A (4.0), B (3.0), C (2.0), D (1.0), and F (0.0) scale, and only students who
completed both sections were included in the mean (students who officially withdrew
or who received an F due to non-attendance were excluded). These figures also do
not include students enrolled in CS2 during Fall 2019 since they had not completed
the course at the time data was collected.

6 Results

attempted CS1 attempted CS2
Hello World 38 19 (50%)
JShell 36 21 (58%)

Table 1: Students attempting CS2 after taking CS1

The results are available in Table 1 and Table 2. Overall, students received lower
grades in CS2 than in CS1, but when comparing the drop in GPA among students
who took a “Hello World” section of CS1 to those who took a JShell section, it should
be noted that the GPA of the JShell students dropped less. Students who took a
JShell section also attempted CS2 with greater frequency. However, the differences
in the results in both cases are not statistically significant.

89

completed CS2 GPA change
Hello World 15 -0.47
JShell 10 -0.20

Table 2: GPA change for students after completing CS2

7 Conclusions and Future Work

Although there was not enough data to provide statistical significance in the results,
the favorable result from the JShell cohort coupled with the instructor’s perception
of this cohort’s improved understanding through the first four weeks is encouraging
and motivates further study.

We advise consideration of JShell in several contexts for improving student learn-
ing in CS1 courses using Java and the consideration of topic orderings that JShell
helps facilitate. REPL’s are popular teaching tools for CS1 and JShell has shown
promise as a means of making it easier to teach Java to novice programmers. Exten-
sion of JShell provides opportunity for enhancing this benefit through development of
start-up scripts or loading libraries that could provide automated grading and other
features of tutoring software. Additionally, it is warranted that teaching with JShell
be further studied in the context of teaching Java in CS1, but also in comparison to
teaching other REPL-based languages in CS1.

Lastly, the JShell API, being an official JDK component, also offers a means of
keeping other pedagogical tools current with Oracle’s more rapid update cycle for
Java. We hope to further explore the use of JShell as a component in the “Code
Cafe” tool to develop original exercise types with new types of goals [9], and hope
that others developing pedagogical software will take notice of JShell and consider
its use to enhance their own product. We also see value in using new types of tools
utilizing the JShell API (such as Jupyter notebooks [17]) and further studying the
impact of these tools in the CS1 classroom.

References

[1] Eric Allen, Robert Cartwright, and Brian Stoler. DrJava: A lightweight ped-
agogic environment for Java. In SIGCSE, volume 2, pages 137–141. Citeseer,
2002.

[2] Ian Barland. Some methods for teaching functions first using Java. In Proceedings
of the 46th Annual Southeast Regional Conference on XX, ACM-SE 46, pages
256–259, New York, NY, USA, 2008. ACM.

[3] Valerie Barr and Deborah Trytten. Using Turing’s Craft Codelab to support
CS1 students as they learn to program. ACM Inroads, 7(2):67–75, May 2016.

[4] Brett A. Becker and Keith Quille. 50 years of CS1 at SIGCSE: A review of the
evolution of introductory programming education research. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education, SIGCSE ’19,
pages 338–344, New York, NY, USA, 2019. ACM.

90

[5] bitterfox. JavaFX Supports For JShell. https://github.com/bitterfox/
JavaFXSupportsForJShell. Accessed 2019-11-09.

[6] Stephen Cooper, Wanda Dann, Randy Pausch, and Randy Pausch. Teach-
ing objects-first in introductory computer science. In Proceedings of the 34th
SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’03,
pages 191–195, New York, NY, USA, 2003. ACM.

[7] Robert Field. JEP 222: jshell: The Java Shell (Read-Eval-Print Loop).
/received/addedtojournal. Accessed 2019-11-09.

[8] Brian Goetz. JEP 286: Local-Variable Type Inference. http://openjdk.java.
net/jeps/222. Accessed 2019-11-09.

[9] Joseph Kendall-Morwick. Code Cafe: A Web Application and Framework
for Teaching Programming Fundamentals. https://github.com/jmorwick/
codecafe. Accessed 2019-11-09.

[10] Michael Kölling. In Jens Bennedsen, Michael E. Caspersen, and Michael Kölling,
editors, Reflections on the Teaching of Programming, chapter Using BlueJ to In-
troduce Programming, pages 98–115. Springer-Verlag, Berlin, Heidelberg, 2008.

[11] kotari4u. JShell Script Executor. https://github.com/kotari4u/jshell_
script_executor. Accessed 2019-11-09.

[12] Theodora Koulouri, Stanislao Lauria, and Robert D. Macredie. Teaching intro-
ductory programming: A quantitative evaluation of different approaches. Trans.
Comput. Educ., 14(4):26:1–26:28, December 2014.

[13] Matthias Laengrich, Joerg Schulze, and Amruth N Kumar. Expression tasks
for novice programmers: Turning the attention to objectivity, reliability and
validity. In 2015 IEEE Frontiers in Education Conference (FIE), pages 1–8.
IEEE, 2015.

[14] Y. Daniel Liang. Introduction to Java Programming, Brief Version, Student
Value Edition (11th Edition). Pearson, 11th edition, 2017.

[15] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. Introductory programming: A systematic lit-
erature review. In Proceedings Companion of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education, ITiCSE 2018
Companion, pages 55–106, New York, NY, USA, 2018. ACM.

[16] Zamua O. Nasrawt and Michael O. Lam. Less-Java, More Learning: Language
design for introductory programming. J. Comput. Sci. Coll., 34(3):64–72, Jan-
uary 2019.

[17] Spencer Park. IJava: A Jupyter kernel for executing Java code. https://
github.com/SpencerPark/IJava. Accessed 2019-11-09.

[18] Nick Parlante. CodingBat: Code Practice. http://codingbat.com. Accessed
2019-11-09.

[19] John Poth. JShell Maven Plugin. https://github.com/johnpoth/jshell-
maven-plugin. Accessed 2019-11-09.

91

Is It Getting Foggy in Here?
Cloud Computing in the Classroom∗

Denise M. Case and Michael P. Rogers
School of Computer Science and Information Systems

Northwest Missouri State University
Maryville, MO 64468

dcase@nwmissouri.edu, mprogers@mac.com

Abstract

Cloud computing is now an integral, essential business tool. The same
advantages it brings to business apply to academia, and in computer sci-
ence education in particular it offers the ability to transform how and
what we teach in many applied courses. This experience paper examines
the history of cloud computing to provide context, offers concrete exam-
ples of how cloud computing can be used in the classroom, and provides
tips for faculty wishing to explore this technology.

1 Introduction and Motivation

In just a few years, cloud computing has evolved from marketing-speak to
a compelling business tool for two main reasons. First, it provides a dizzying
array of computing services, relieving businesses of the need to install, manage,
and secure software. Secondly, it entirely eliminates the need to purchase and
maintain hardware while delivering scalability, the ability to adjust the number
of deployed servers to meet fluctuating demand.

Those reasons are also, unsurprisingly, precisely why cloud computing is
becoming more prevalent in computer science education. In a wide variety of
applied courses that require significant computing resources — including, but
not limited to, mobile computing, web services, databases, internet of things,
big data, and machine learning — cloud computing spares woefully overworked

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

92

and underpaid faculty [18, 10, 21] the heartache of having to set up and run
these services. As a bonus, use of cloud computing in these classes prepares
students for a workplace in which cloud computing plays an increasingly large
role [9].

In this paper, we briefly discuss the history of cloud computing, the charac-
teristics of modern cloud computing systems, evaluate the major cloud service
providers (CSPs) vis-à-vis computer science education, identify courses where
cloud computing can be beneficial, and conclude with tips for integrating cloud
computing into the classroom.

2 History

Cloud computing — utilizing computing services and resources from a remote
location — is a relatively old idea. As early as 1940, at a computing conference
at Dartmouth College, George Stibitz used a teletypewriter to control a “Com-
plex Number Computer” housed at Bell Labs, in New York City [16].However,
the Complex Number Computer was not programmable, only capable of per-
forming a set of fixed complex number calculations. The first recognizable
cloud computing systems appeared in the 1960s, with the rise of time-sharing
operating systems that service bureaus ran on mainframes, and made available
to businesses via modem. The term ”cloud” was used in the early 1990s by
telecommunications companies to indicate where their responsibilities began.
The earliest use of the phrase “cloud computing”, and a prescient description
of its potential, can be found in a 1996 presentation by executives at Compaq
[5, 20]. Attention to cloud computing grew after a 2006 conference in which
Eric Schmidt distinguished between the established paradigm – client/server,
where proprietary protocols and software were used to connect the two – and
an emergent paradigm, cloud computing, where any computer or mobile phone
could gain access to data services and hardware, provided that the device came
with a standard web browser [22]. The major cloud platform providers (Ama-
zon, Google and Microsoft) began cloud computing operations in 2006, 2008
and 2010), respectively.

Around that time, academics began looking at adding cloud computing
to the curriculum [3, 17]. By 2014, demand was high enough and the sub-
ject broad and complex enough that a comprehensive course with multiple
knowledge areas was proposed [2]. By 2015, a comprehensive literature review
summarized the results of various empirical studies related to the application
of cloud computing in higher education [14]. Specific cloud computing compe-
tencies, called knowledge units, began to be specified for a variety of curricula,
and the National Information Assurance Education and Training Program (NI-
ETP) suggested an optional Cloud Computing Knowledge Unit when awarding

93

the NSA/DHS National Centers of Academic Excellence in Cyber Defense Ed-
ucation (CAE-CDE) [8].

3 Characteristics of Modern Cloud Computing Systems

To understand how cloud computing can be used in the classroom, it is im-
perative to understand how modern cloud computing systems are structured
and what they offer. Cloud computing can be broadly classified into these
categories:

• Infrastructure-as-a-Service (IaaS) offers hardware: servers, storage
and networking. Everything else, from operating system up — must be
installed by users. Fortunately, CSPs make OS installation straightfor-
ward. Using a web-based interface, users specify an operating system
(from multiple flavors of Linux and Windows), machine type (with the
option to specify CPU, GPU, and RAM), firewall options (http, https
or none), and location. Then, with a click of a button, the user has a
virtual machine (VM) at their disposal. Users interact with the VM ei-
ther through the command line over ssh, or graphically, using VNC or
Remote Desktop client (Desktop-as-a-Service).

• Platform-as-a-Service (PaaS) provides a complete working environ-
ment, with a pre-configured operating system, database access and as-
sorted runtime environments ready to use. While the focus is on the
platform, paradoxically developers do not in fact spend any time on
it: they develop web apps on their local machines, using familiar tools.
Command-line utilities, provided as part of the cloud provider’s software
developer kit, are used to upload code to be deployed on the cloud. A
signature feature of cloud computing is the ability to scale the number
of servers on which the applications run, to meet demand. Our students
need to be aware of this capability, although the applications that they
create in class will likely not require it.

• In Software-as-a-Service (SaaS), a web browser provides access to
applications, such as mail (Gmail, Outlook 365); productivity applica-
tions (Office 365, G Suite), etc. In some courses, such as web apps and
services, our students may develop applications that fall in the SaaS cat-
egory, using PaaS or IaaS as a mechanism for doing so.

• In Functions-as-a-Service (FaaS), the developer deploys a function to
be executed when triggered by some event, in a stateless fashion (although
the function can communicate with databases to preserve state [11].
Serverless functions can act as a gateway to a cloud computing system,
taking in data delivered over HTTP, and act as pipes, connecting one
part of a cloud computing system to another. So, for instance, data

94

from a mobile phone could be sent to a serverless function, filtered and
processed, then sent to storage, then on to a query service and then on
to a visualization tool, all automatically. The CSPs permit serverless
functions to be written on a local machine and then deployed using a
command-line utility, but unlike with PaaS, they also offer the ability to
write the entire function in a web browser window. As such serverless
functions are by far the easiest of the service categories to get started
with, and lend themselves well to quick but impressive demos in almost
any CS class.

• Backend-as-a-Service (BaaS) encompasses a suite of services that mo-
bile and web apps often need: data storage, data analytics, and push noti-
fications. CSPs provide APIs to interact with SQL and NoSQL databases
as well as query and data-visualization tools specifically engineered for the
large amounts of data that CSP customers might generate. To demon-
strate the power of their systems, and give customers something to prac-
tice on, CSPs provide very large, interesting data sets to explore. For
educators, these collections are a real boon, and could find application in
any number of courses.

Services offered by CSPs can be used individually, but in many cases, they
are connected via a pipeline, based on publish-subscribe paradigm. For ex-
ample, an iOS app might publish a topic (which includes data) to a pub-sub
service which would trigger a serverless function subscribed to that topic to
write data to a database and/or trigger a subsequent query.

4 Evaluating Cloud Service Providers from a Pedagogic
Perspective

The three largest CSPs are Amazon Web Services (AWS), Google Cloud Plat-
form (GCP), and Microsoft Azure (AZR). Which to choose? In a class focused
on cloud computing it would be appropriate and educational to examine all
three. However, familiarizing students with even one of these is no trivial
undertaking, and managing student accounts is cumbersome, so it is best to
choose one to get started. Academic research offers comparisons of CSPs in
terms of performance [1], advice on how to select CSPs [15] , and how to in-
tegrate CSPs into the classroom [4]; and discussions have carried over into
industry [12, 6, 7, 13], but there has been little discussion from a computer
science education perspective.

In terms of market share, AWS predominates, so AWS experience might
make graduates more attractive to more employers. However, with the dearth
of cloud computing courses in CS, most employers would be satisfied with
experience with any CSP.

95

Apart from marketshare, the strongest argument in favor of AWS is its ed-
ucation program, AWS Educate (aws.amazon.com /education/awseducate). It
allows students to sign up for one of two accounts - one that requires a credit
card, the other that does not (but caps access to some services). AWS’s train-
ing resources are all housed here: this includes open source and AWS-developed
courses, as well as certification opportunities. Students can also be grouped
into virtual classrooms: the instructor must specify how many credits they wish
to allocate each student, and can choose a template (Cloud Basics, Big Data,
Machine Learning and AI, Building Scalable Websites, Serverless Computing,
etc.), that restricts the services on offer, to avoid overwhelming students with
choices. AWSEducate also integrates with popular learning management sys-
tems.

Google has a somewhat similar program, Google For Education (edu.
google.com/programs). It too provides a mechanism to apply for credits
and houses numerous teaching resources, but Amazon’s product, based on the
third-party site Vocareum, appears more comprehensive and is better inte-
grated. Whereas setting up courses and a cloud-sandbox within AWS Educate
just requires one application, Google For Education, based on the third-party
site Qwiklabs, only allow "trainers" to set up classrooms, and becoming a
trainer is an onerous process.

Google’s greatest strength, from an academic perspective, comes from its
ease-of-use and supporting documentation. Having compared platforms side-
by-side, we find that GCP’s user interface is particularly easy to navigate,
uncluttered, and designed for efficiency. For instance, when displaying services,
GCP’s hamburger menu neatly organizes services hierarchically; AWS shows
all of its services at once, daunting and not as easy to navigate. AZR is
somewhere in between, with a smaller number of services displayed by default,
but no discernable order to them.

When creating a virtual machine, AWS’s EC2 (Elastic Computing 2, a
name which does not reflect its purpose), presents the user with some arcane
choices (perhaps relevant to a professional, not necessary for a student). GCP,
whose Virtual Machine service is hard to mistake for anything else, provides
just three buttons - Create, Import, or Take the QuickStart - and the ensuing
screen when the user clicks Create is a paragon of good design. [[AZR VM]]

In many cases, AWS forces the user to make a choice, whereas GCP provides
reasonable default values. As a concrete example, AWS requires the user choose
a name and pick a permissions role (that may take several minutes to generate)
when creating a serverless function. GCP provides a default name (function-
1) and permissions are predetermined, making for a smoother, more efficient
workflow. Lastly, GCP’s documentation is particularly clearly written, and, as
befitting a search engine giant, well organized.

96

Beyond materials provided on site, Google Engineers star in numerous
YouTube videos that walk users through GCP’s features; and its Qwiklabs,
apart from the difficulty in setting up classrooms, are an excellent hands-on
starting point.

A final issue involves billing. Both AWS and GCP offer students a maximum
of 50 credits, capped but credit-card-free, an absolute necessity in an academic
setting.

5 Applications in the Classroom

There is a fair degree of complexity associated with integrating cloud computing
exercises into a course. In general, early programming courses and foundational
math and theory courses are not typically target classes. Instead, the most
suitable areas of the curriculum for engaging cloud computing are likely to be
mid-to-upper level elective or application-focused courses. Theses may include
higher-level undergraduate courses as well as core and elective courses in a
graduate program. We have identified specific lesson topics for a variety of
courses.

5.1 Internet of Things

Internet of Things (IoT) applications have the potential to generate massive
amounts of sensor data, known as telemetry. Cloud computing, with services
that can ingest, store, and query petabytes of data, is a perfect fit. Typically,
IoT access to the cloud involves a CSP service, called an IoT hub/bridge/core
(the name is CSP-dependent). Once an IoT device is registered, it can send
telemetry to the hub/bridge/core, which uses a pub-sub strategy to shunt it to
where it is needed. Some of the CSPs allow users to construct virtual pipelines:
the IoT hub/bridge/core publishes telemetry; the pipeline, as a subscriber, is
alerted that data is available; it then delivers it to data storage or data analytics
services for further processing. For finer control (e.g., to monitor telemetry and
discard outliers), it is possible to publish to a serverless function, which then
delivers it to other parts of the cloud system.

In our classes, we use an IoT prototyping system made by Particle [19] ,
the Photon. It abstracts away many messy and potentially insecure connec-
tion details. Users connect to the Particle Cloud over HTTPS, can retrieve the
values of firmware variables from the device using GET requests, and invoke
firmware functions using POST requests. Device management can be done us-
ing a web-based console. The Particle Cloud offers no storage / data analytics
capabilities. Fortunately, it is integrated with AZR and GCP, offering web-
hooks to connect to those services. The user publishes an event to the Particle

97

Figure 1: Adding cloud computing to an IoT project.

Cloud, embedding a JSON object, triggering a webhook, called an integration
in Particle’s parlance.

For AZR, telemetry enters "through the front door", triggering devices in

98

Microsoft’s IoT hub. With GCP, Particle bypasses Google’s IoT Core service,
and instead uses pub-sub. In both cases, IoT management is still primarily
done on the Particle cloud, thus melding the simplicity of a vendor-supplied
IoT management system with the computing power of a CSP.

Figure 1 shows the steps in the process: firmware triggers a Particle inte-
gration; the Particle integration triggers a GCP Pub/Sub topic; the Google
Pub/Sub topic triggers a Cloud Function; and from that function it is possible
to send data to any GCP service (in our case, Google Datastore). The path is
admittedly serpentine, and it takes an entire class period (80 minutes) to get
everyone through the initial setup. But once that has been accomplished, the
students can generally repeat the process on their own without difficulty.

Students find IoT challenging because they must deal with both hardware
and software, and without specialized hardware must rely on print statements
to debug firmware. However by the time that we have introduced cloud com-
puting into the IoT course, just over halfway through the semester, students
have already more or less mastered the basics, and have already worked with
some IoT-specific cloud systems (e.g., Ubidots and ThingSpeak). These offer
nowhere near the power of AWS, GCP, or AZR, but are significantly less com-
plex. Once we turn to a CSP, students again must resort to print statements
to debug serverless functions and web apps by scanning through logs. This is
done twice, on the Particle Cloud to ensure that the data is being sent, and
on the CSP to see if the incoming telemetry is being properly parsed and sent
on. We walk through several worked examples in class, and trace the path of
the telemetry from start to finish, before we make assignments, which typically
involve the same data flow, but different sensor data and different analytical
requirements.

5.2 Big Data

The cloud offers a perfect place for students to explore big data processing,
architectures, and technologies. Massive amounts of information are being
ingested from IoT devices (as noted above), as well as on-line information
systems, point-of-sale applications, social media, public data, historical data,
government and research sources and more. These massive amounts of highly
valuable and varied information are referred to as ’big data’, and present a
unique set of challenges for data engineers that need a place to hold and process
this information. In general, data can be characterized as:

• data at rest. This includes data lakes, which hold raw information in
native format using a flat architecture, and data warehouses, which hold
cleaned, processed, filtered information using a hierarchical or organized
format, in a centralized, scalable location.

99

• data in motion. This refers to data moving across a network, often
processed and piped in real-time as the information is generated.

• data in use refers to data held in memory. This enables faster processing
and minimizes the amount of time spent reading and writing data.

Standard big data technologies, familiar to practitioners in the field, in-
clude Apache Hadoop (with the Hadoop Distributed File System, HDFS, and
MapReduce and its resource manager YARN), for batch processing; Apache
Flink, for processing streaming data; Apache Spark, for processing both data
in motion and data at rest, using just one code base.; and finally Apache Kafka,
for piping and processing data.

Each CSP offers its own unique solutions and technologies to host these
tools and services, in combination with their own proprietary offerings.

For illustration (all the CSPs have similar offerings), we will consider GCP.
GCP offers DataProc clusters, a custom Hadoop-like service. DataProc of-
fers big data students a chance to design solutions that separate redundant,
fault-tolerant storage with distributed computing processes running in paral-
lel. Students can fire up a DataProc cluster, configuring the mode with master
and worker nodes. The master node includes YARN, the HDFS NameNode,
and job drivers. Each worker node includes a YARN NodeManager and HDFS
DataNode. Students can configure replication factors, number of cores per
machine, disk size, and more. Students can then use their clusters to submit
Spark jobs. Spark jobs can be connected to Google’s BigQuery or used with
traditional Hadoop tools such as Hive and Pig for extract, transform, and load
(ETL) processing. BigQuery offers an extremely fast processing engine with
usage costs based on storage, rather than CPU cycles.

Huge public datasets, some over a billion records, are available in the GCP
Public Dataset Program. Students can explore the data with the web UI
(as shown in Figure 2), via REST APIs, the command line, or via Python,
Java, and .NET client libraries. The first terabyte of data is free each month,
offering a chance to explore exciting data sets that include genomics, weather,
cryptocurrency, demographics, and more.

5.3 Machine Learning (ML)

Processing cloud-scale big data requires advanced techniques to gain timely,
useful insights. Cloud providers offer a variety of tools to explore machine
learning on small or massive datasets. Machine learning (ML), a subset of
the field of artificial intelligence (AI), is increasingly being covered in business
courses, information systems courses, advanced Excel classes, programming
classes, and more. ML has application in chemistry, physics, biology, finance,
economics, healthcare, agriculture, energy production and distribution, risk

100

Figure 2: Using cloud computing to query big data.

management and more. The availability of open-source libraries for Python,
R, Excel, Java, .NET, and many other languages makes the introduction of
this key technique a powerful addition to many courses.

Machine learning applies to a wide variety of approaches for gaining insights
from information when processing instructions are not provided explicitly, and
we instead provide patterns, models, rules, or other general approaches which
are then applied using a variety of methods. There are a variety of approaches
to ML including supervised, unsupervised, reinforcement, self-learning and
more. Modeling techniques include statistically-based regression analysis, rule-
based decision trees, supervised support vector machines for classification and
regression based on training examples, artificial neural networks, Bayesian net-
works or influence diagrams based on directed acyclic graphs, genetic algo-
rithms employing mutation and crossover, and more.

GCP provides tools for ML developers and data scientists to implement
ML techniques and explore the results. For example, GCP offers Cloud ML
Engine as part of its AI Platform. Pre-trained models are available as building
blocks, accessible through APIs from most popular programming languages,

101

making it easy for students to get started using ML. GCP’s AutoML enables
training even without ML expertise and Deep Learning VM Images are already
set up with the most popular tools, including PyTorch for computer vision and
natural language processing applications, TensorFlow, the open source library
that uses data flow graphs to create deep neural networks, and scikit-learn for
Python machine learning projects for classification, regression, and clustering.

5.4 Mobile Computing

BaaS is also known as Mobile Backend-as-a-Service (MBaaS), underlining the
importance of cloud computing to mobile applications: most mobile apps have
at least some cloud requirement, if only to backup data. Compared to the
challenges of IoT, MBaaS is straightforward: all the CSPs provide direct access
to their major services via platform-specific APIs. This contrasts favorably
with the circuitous route that we must use in IoT (cf. 5.1). Rather than
trigger a pub-sub event that in turn triggers a pipeline or serverless function,
which in turn interacts with a service, we can make a native API call in Swift
(iOS), or Java or Kotlin (Android) to deliver data directly to a service. As
expected, the APIs differ among the CSPs. In a comparison of the CSPs
various “Getting Started” code samples for writing to a NoSQL database in
iOS, GCP requires by far the least amount of code: 4 statements, excluding
error handling (as shown in the following code). As is common with NoSQL
databases, it is not necessary to create collections ahead of time, nor specify a
schema for the documents: it can all be done dynamically when the app first
connects.

FirebaseApp.configure()
// an in-app representation of Firestore DB
let db = Firestore.firestore()
// a collection of documents, equivalent to SQL records
var ref: DocumentReference? = nil
ref = db.collection("users")

.addDocument(data:
["first": "Grace","last": "Hopper","born": 1906])
{ err in
if let err = err {

print("Error adding document: \(err)")
} else {

print("Document added with ID: \(ref!.documentID)")
}

}

102

5.5 Developing Web Apps and Services

All major CSPs offer options for hosting server-side and full-stack applications on
the web. GCP for example, offers App Engine, which hosts applications written in
Python, Node.js (server-side JavaScript), PHP, Java, C#, Go, Ruby, and more. The
AZR equivalent of App Engine is, appropriately, Web Apps; AWS offers the more
cryptically named Elastic Beanstalk.

Most full-stack apps also require a central data store that the CSPs can also
provide. For example, GCP offers MongoDB Atlas hosting as well as Cloud SQL.
MongoDB is a popular NoSQL document data store and the GCP option offers a free
3-node replica set. Cloud SQL options include low-priced MySQL, PostgreSQL, and
SQL Server options.

This example assumes students have a cloud repository with a web app project to
be deployed. After enabling their billing account as described above, have students
google "Installing Google Cloud SDK" and choose an installation option appropriate
for their operating system. Download and run the SDK installer. Add an app.yaml
file to the root project folder:

runtime: nodejs10
env: standard
basic_scaling:

idle_timeout: 600s
max_instances: 1

resources:
cpu: 1
memory_gb: 0.5
disk_size_gb: 10

The suggested settings help keep costs low. If deploying a Node project, you might
need to set the Node version to "ˆ10" so it can run version 10 or higher. We added
one dependency so we could create log files in the cloud: "@google-cloud/logging-
winston": "ˆ3.0.0".

The three commands below create a deployment site in the cloud by perform-
ing three key tasks: (1) creating a cloud project (2) verifying the cloud project (3)
initializing an App Engine app in the project. Choose a unique project name using
kabob case (lowercase with hyphens) to use in the following commands.

gcloud projects create project-name --set-as-default
gcloud projects describe project-name
gcloud app create --project=project-name

When initializing the app, you will get asked to choose a region. Choose a nearby
region with a free option. The following commands will deploy/push your project
code up to the cloud, then open a browser to your running app. During the deploy
command, when you get an error about enabling billing, just follow the URL provided
to enable billing for the project.

gcloud app deploy
gcloud app browse

103

6 A Guide to Getting Started

Working with the major CSPs in courses typically involves requesting an educational
account with credits that allow students to practice with a set of services that nor-
mally must be backed by a credit card. Beyond these, users interested in higher-end
services will need to provide a credit card, and can expect to incur some charges.
Educational accounts provide enough of a credit buffer to get started. Students must
remember to shutdown and/or delete configured resources after use to avoid prema-
turely draining their accounts.

Each CSP, as noted earlier, has an education portal (Google Cloud For Educa-
tion, AWSEducate and Azure For Education), where the instructor must apply for
credits by providing such information as the course title, number, description, dates,
numbers of students and staff, etc. Responses are typically returned in a couple of
business days. Forward the link to students (or, in the case of AWS Educate, upload
a spreadsheet containing email addresses). Once students provide information and
accept terms, they will get an email confirmation with a link to get started.

All the CSPs provide numerous tutorials to help users get oriented to the user
interface and acquainted with various services and APIs. We recommend assigning
these tutorials as assignments, with students turning in links to their created projects.
If these are due before the CSPs are to be introduced in lecture, it frees up class time
for more important and interesting topics.

As mentioned previously, another highly recommended resource is Qwiklabs.
Both GCP and AWS (but not AZR) have partnered with this company to produce a
series of no-cost labs that lead viewers through services on their respective platforms.
Participants are provided with temporary accounts in which to do their work, so it
has no impact on usage. The labs are updated regularly, so what the student sees in
the lab video matches what they see in the browser.

7 Conclusions

From its beginnings in the 20th century, cloud computing has emerged to be a major
force in business and academia. This paper has provided a concise guide with specific
recommendations for introducing cloud computing elements into several key areas of
the curriculum.

References

[1] Srikanth Kandula Ang Li, Xiaowei Yang and Ming Zhang. Cloudcmp: comparing
public cloud providers. Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement (IMC ’10), pages 1–14, 2010.

[2] Hongyu Pei Breivold and Ivica Crnkovic. Cloud computing education strategies.
In 2014 IEEE 27th Conference on Software Engineering Education and Training
(CSEE&T), pages 29–38. IEEE, 2014.

104

[3] Justin Cappos, Ivan Beschastnikh, Arvind Krishnamurthy, and Tom Anderson.
Seattle: a platform for educational cloud computing. In Acm sigcse bulletin,
volume 41, pages 111–115. ACM, 2009.

[4] Singha Chaveesuk, Phayat Wutthirong, and Wornchanok Chaiyasoonthorn.
Cloud computing classroom acceptance model in thailand higher education’s
institutes: A conceptual framework. In Proc of 2018 10th Intl Conf on Info
Mgmt and Engg, pages 141–145. ACM, 2018.

[5] Compaq. Internet Solutions Division Strategy for Cloud Computing. Available
at https://s3.amazonaws.com/files.technologyreview.com/p/pub/legacy/
compaq_cst_1996_0.pdf, Retrieved 17-Nov-2019.

[6] Larry Dignan. op cloud providers 2019: AWS, Microsoft Azure, Google
Cloud; IBM makes hybrid move; Salesforce dominates SaaS. Available at
zdnet.com/article/top-cloud-providers-2019-aws-microsoft-azure-
google-cloud-ibm-makes-hybrid-move-salesforce-dominates-saas/, Re-
trieved 10 November 2019.

[7] Brian Turner Drake, Nate. https://www.techradar.com/news/best-cloud-
computing-service. Available at https://www.techradar.com/news/best-
cloud-computing-service, Retrieved 2-Nov-2019.

[8] National IA Education and Training programs (NIETP). 2019 Knowledge Units.
NSA Cybersecurity, 2019.

[9] Flexera. Cloud Computing Trends: 2019 State of the Cloud Survey. Available
at flexera.com/blog/cloud/2019/02/cloud-computing-trends-2019-state-
of-the-cloud-survey/, Retrieved 16-Nov-2019.

[10] Alice Fothergill and Kathryn Feltey. " i’ve worked very hard and slept very lit-
tle": Mothers on tenure track in academia. Journal of the Motherhood Initiative
for Research and Community Involvement, 5(2), 2003.

[11] Martin Fowler. Serverless Architectures. Available at martinfowler.com/
articles/serverless.html, Retrieved 17-Nov-2019.

[12] Cynthia Harvey and Andy Patrizio. Aws vs. azure vs. google: Cloud comparison.
Datamation, 2017.

[13] Cynthia Harvey and Andy Patrizio. AWS vs. Azure vs. Google: Cloud Compar-
ison, 2017.

[14] Mohamud Sheikh Ibrahim, Norsaremah Salleh, and Sanjay Misra. Empirical
studies of cloud computing in education: a systematic literature review. In
International Conference on Computational Science and Its Applications, pages
725–737. Springer, 2015.

[15] Farookh Khadeer Hussain Omar Khadeer Hussain Le Sun, Hai Dong and Eliza-
beth Chang. Cloud service selection: State-of-the-art and future research direc-
tions. In Journal of Network and Computer Applications, pages 134–150. ACM,
2014.

[16] Math and Denison University CS Dept. George Stibitz. Available at http:
//stibitz.denison.edu/, Retrieved 17-Nov-2019.

105

[17] Saju Mathew. Implementation of cloud computing in education-a revolution.
International Journal of Computer Theory and Engineering, 4(3):473, 2012.

[18] Davison M Mupinga and George R Maughan. Web-based instruction and com-
munity college faculty workload. College Teaching, 56(1):17–21, 2008.

[19] Particle. particle.io. Available at https://www.particle.io/, Retrieved 17-
Nov-2019.

[20] Antonio Regaldo. Who Coined ’Cloud Computing’? Available at https:
//www.technologyreview.com/s/425970/who-coined-cloud-computing/, Re-
trieved 17-Nov-2019.

[21] Eric Roberts. Computing education and the information technology workforce.
ACM SIGCSE Bulletin, 32(2):83–90, 2000.

[22] Eric Schmidt. Search Engine Strategies Conference: Conversation with Eric
Schmidt hosted by Danny Sullivan. Available at https://www.google.com/
press/podium/ses2006.html, Retrieved 17-Nov-2019.

106

Effect of User Involvement in Information
Systems Capstone Course: A Case Study∗

Cindy Zhiling Tu and Joni Adkins
School of Computer Science and Information Systems

Northwest Missouri State University
Maryville, MO 64468

{cindytu,jadkins}@nwmissouri.edu

Abstract

This paper conducts a case study in a Master of Information Systems
capstone course context to investigate how user involvement affects the
performance of the capstone projects. After investigating user involve-
ment in the IS capstone course, we find there are different forms of user
involvement and different factors decide the degree of user involvement.
Continuous user involvement throughout the capstone project life cycle
benefits the capstone projects.

1 Introduction

Many information systems (IS) degree programs culminate in functional skills
in a capstone course to integrate the concepts [15]. Placed at the end of the
curriculum, a capstone course allows students to assess and share their achieve-
ment of the program’s outcomes [8, 19]. IS capstone course can facilitate a
student-executed IS project where teams would work for a real industry client
to address a real business problem. Through the capstone projects, IS program
goals are reviewed and students communicate their academic accomplishment
to professional peers [4].

IS capstone course covers the full spectrum of information systems develop-
ment from conceptualization, analysis and design, to prototyping and/or im-
plementation. In a capstone course, students usually work in small teams and

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

107

finish one independent project within one semester. Students are compelled
to become self-directed learners through a structured reflection [22]. Due to
the nature of small-group student projects and the short time period, many
instructors have incorporated agile methodologies into their capstone courses
[14, 20].

Agile method advocates adaptive planning, evolutionary development, early
delivery, and continual improvement, and it encourages rapid and flexible re-
sponse to change [3]. Studies revealed that Agile approaches were more appeal-
ing to student teams and customer expectations were better met by the final
software product in capstone projects [21]. Customer collaboration is one of
the core values of the Manifesto for Agile Software Development. Intense com-
munication between different stakeholders and rapid feedback based on regular
delivery of products are the main features of Agile processes [3]. Therefore,
how to collaborate with the customer is critical for the success of capstone
projects using Agile methods.

User involvement is beneficial in information system development. User
involvement provides useful information about users’ needs and increases the
understanding of users’ values [12]. Students in IS capstone projects work
with real-world clients who are their product users. However, in most cases,
IS capstone projects may not cover the full system development processes.
Instead, the final product of capstone projects is a prototype without actual
implementation. Different from the real system product context, does user
involvement provide the same benefits to the Agile capstone project? How
will user involvement affect students’ satisfaction? Little research has been
done on the relationship between user involvement and the IS capstone course.
This research focuses on the effect of user involvement on students executed
capstone projects by conducting a case study.

The rest of the paper is organized as follows. In the next section, the
conceptual background is given. Then, a case study is presented, followed by
the results and discussion. Finally, the conclusion section is provided.

2 Conceptual Background

User involvement is a widely accepted principle in the development of useful
and usable software systems [12]. Traditional IS participation theory states a
positive link between user involvement and system success which is defined in
terms of system quality, user information satisfaction, user acceptance, and sys-
tem use [16]. User knowledge and involvement are identified as key elements
of product quality [11]. User involvement improves quality through precise
requirements, enhancing alignment between developers and users, creating a
positive attitude toward the system among users, and enabling effective use of

108

the system [1]. Depending on the level of task complexity and system com-
plexity, user involvement can result in improved user satisfaction [17]. A lack
of user involvement is found to be associated with failed software projects [13].

User involvement may have different forms, which are characterized as infor-
mative, through consultative, to participative [12]. Informative users provide
information, consultative users comment on a predefined service or range of
facilities, while participative users influence decisions relating to the whole sys-
tem [5]. Thus Users can be involved as information providers, commentators,
or objects for observations, depending on whether they influence decisions, or
whether they participate in development [12].

Empirical studies find that user involvement is decided by the following
factors: communication and relationship, professional and technical compe-
tence, users’ IT skills and awareness, user organization’s technical infrastruc-
ture and working environment, expertise in the user problem domain, and
contract awarding procedure [2]. Because developers and users have different
vocabularies, interests, and values, their communication and interplay are com-
plicated [12]. The developers and users may have conflict perceptions regarding
user involvement in system development. Impediments to user involvement in
system development are identified as: user’s busy schedule, lack of user confi-
dence and motivation, lack of understanding of the task mode and implemen-
tation constraints, user’s lack of education and knowledge on systems issues,
and excessive time spent by the developer in contacting users regarding the
problem domain [23]. Besides, two contextual factors, task complexity and
system complexity, determine the need for user involvement [17].

Regarding the timing of when users should participate throughout the
project life cycle, many studies find that continuous user involvement bene-
fits system development [6, 7, 9, 10]. It is found that user involvement is most
efficient and influential in the early stages of system development because more
accurate user requirements were gathered and user needs were better reported
[12].

In summary, user involvement has different forms and different factors de-
cide the degree of user involvement. Continuous user involvement throughout
the development life cycle leads to improved product quality and user satisfac-
tion.

3 Case Study

User involvement was investigated in a real capstone course context utilizing
a case study to assess the effect of user involvement on the student-executed
capstone projects. A regional public state university in the Midwest created a
Master of Science degree in Information Systems (MSIS) and included a one-

109

semester capstone project course. This case study was conducted in spring
2019, from January to May 2019.

This capstone course is designed to help students integrating the knowl-
edge gained during the MSIS program. Ten students were assigned to two
project teams. Two on-campus departments served as clients of two real-world
projects. One client was the Human Resource (HR) department, considering
to replace the current HR management information systems. The other client
was the Career Center, trying to rebuild the university’s online recruitment
system. Both clients had realized the ineffectiveness and inefficiency of cur-
rent information systems and decided to rebuild or purchase a new system.
The student project teams would need to provide necessary decision tools to
help their clients determine whether to buy or build. To accomplish this goal,
both teams went through the information systems development processes in-
cluding user requirement collection, analysis and design, documentation, and
prototyping.

Students applied Scrum methodology to complete their projects. Scrum is
a popular Agile software development process for small teams [18]. Scrum is
made up of 4 sprints which are 3 weeks of duration. Teams must complete
a set of project tasks during every sprint. At the end of each sprint, the
sprint outcomes or potentially deployable prototypes were demonstrated to the
clients. The clients were able to give direct feedback to the sprint outcomes
thus students could improve in the following sprint. The project teams made a
formal presentation that showcased the final products to the clients, along with
a final report that included the documents prepared during the development
processes.

The capstone projects were managed through on-going consultation with
the instructor. Students had daily scrum meetings and regular class meetings.
Clients were expected to be committed to communicating with the students
promptly. Clients were involved in the capstone projects through interviews,
sprint review meetings, and email communications. The two projects were
similar in the development processes but were completed differently. For Team
1, the HR department delegated an IT specialist in the IT department to be
the contact. The IT specialist initiated the students’ capstone project but she
did not work in the HR department thus she had limited knowledge about HR
management processes. For Team 2, the Director and Associate Director of the
Career Center were the main contacts. They knew exactly what they wanted
for the new system. We observed the client involvement situations in the whole
process and summarized them in Table 1 and Table 2.

At the end of the semester, all students took a survey about the capstone
course. There were 3 questions about the client. The two teams had a signifi-
cant difference in their perceptions of client involvement. The questions used a

110

T
able

1:
T
eam

1
–
H
um

an
R
esources

M
anagem

ent
Inform

ation
System

P
roject

111

T
able

2:
T
eam

2
–
O
nline

R
ecruitm

ent
System

P
roject

112

5-point scale with 5 being strongly agreed and 1 being strongly disagreed. The
mean scores of Team 1 for all questions were lower than Team 2. The results
are listed in Figure 1.

Figure 1: Mean Scores from Survey

4 Discussion

After studying the above case, we can see how user involvement affected the
performance of capstone projects. First, students in Team 1 felt their client
was not effectively involved in their project. Team 1 did not complete their
system prototype mainly because they did not have enough time to do it.
Their client was not available for most scheduled meetings and thus delayed
the whole project’s progress. The team could not get the necessary information
for many tasks. The final product of their project was incomplete. Students in
Team 2 were very satisfied with their client involvement. Team 2 finished all
product backlogs as planned. In addition to the system prototype, this team
also provide their client with a vendor analysis which helped their client make
the make-or-buy decision. Therefore, user involvement is associated with the
performance of the capstone project.

Second, there were different user involvement forms in this case. The client
of Team 1 should be HR staff, but only the IT specialist was involved. She did
not know the HR business process very well and could not influence the HR
department’s decisions. She could provide some information about the system
but not enough. She could not provide any consultation on the system. Team 1
had partially informative user involvement. The client of Team 2 includes the
two Directors of the Career Center, who knew their business processes very
well and could make decisions in the department. They provided the team
with all the needed information, commented on their analysis report and pro-
totypes, and gave consultation in different ways to the team. Since the project
was not implemented, the team did not need participative user involvement.
The client’s informative and consultative user involvement promoted project
success.

113

Third, different factors influenced user involvement. The HR staff always
had very busy schedules and it was hard to meet all of them together. The IT
specialist had little expertise in the HR domain even though she tried to be
involved actively. The HR staff was reluctant to spend excessive time in con-
tacting the project team regarding their HR problems. Furthermore, compared
to the online recruitment system, the HR system was much more complicated
and the project tasks were more complex. All these factors impeded the client’s
involvement in Team 1.

Finally, continuous user involvement is necessary for capstone projects. In
the Team 1 project, the HR staff was involved in the early stage with plans in
the kick-off meeting. However, they did not continue the active involvement
in the following stages. The client of Team 2 kept participating in all sprint
review meetings and provided the team with prompt support during the whole
project duration. Continuous involvement guaranteed the quality of the project
products.

5 Conclusion

A case study was conducted in a Master Capstone course context to investigate
how user involvement affects the performance of the Capstone projects. To
conclude, user involvement has the same effect on capstone projects as on
information system development. When we investigate user involvement in
the IS capstone course, we find there are different forms of involvement and
different factors decide the degree of involvement. Continuous user involvement
throughout the capstone project life cycle benefits the capstone projects. These
findings are consistent with prior literature.

References

[1] Ulrike Abelein. User-Developer Communication in Large-Scale IT Projects (Doc-
toral dissertation). PhD thesis, University of Heidelberg, 2015.

[2] Boluwaji Akinnuwesi, Faith-Michael Uzoka, Stephen Olabiyisi, Elijah Omidiora,
and Paula Fiddi. An empirical analysis of end-user participation in software
development projects in a developing country context. The Electronic Journal
of Information Systems in Developing Countries (EJISDC), 58:1–25, 07 2013.

[3] Agile Alliance. Agile 101. https://www.agilealliance.org/agile101. Ac-
cessed November 2019.

[4] Joseph B. Cuseo. Objectives and benefits of senior year programs. In John N.
Gardner and Gretchen Van der Veer, editors, The Senior Year Experience: Fa-
cilitating Reflection, Integration, Closure and Transition. Jossey-Bass Inc., San
Francisco, CA, 1998.

114

[5] Leela Damodaran. User involvement in the systems design process – a practical
guide for users. Behaviour & Information Technology, 15(6):363–377, 1996.

[6] Katrien De Moor, Katrien Berte, Lieven De Marez, Wout Joseph, Tom
Deryckere, and Luc Martens. User-driven innovation? challenges of user in-
volvement in future technology analysis. Science and Public Policy, 37(1):51–61,
2010.

[7] Joyce Fortune and Diana White. Framing of project critical success factors by
a systems model. International Journal of Project Management, 24(1):53–65,
2006.

[8] Eric H. Hobson, Philip E. Johnston, and Alisa J. Spinelli. Staging a reflective
capstone course to transition pharmd graduates to professional life. American
Journal of Pharmaceutical Education, 79(1):1–10, 2015.

[9] Rashina Hoda, James Noble, and Stuart Marshall. The impact of inadequate
customer collaboration on self-organizing agile teams. Information and Software
Technology, 53(5):521–534, may 2011.

[10] Jack Shih-Chieh Hsu, Tung-Ching Lin, Guang-Ting Zheng, and Yu-Wen Hung.
Users as knowledge co-producers in the information system development project.
International Journal of Project Management, 30(1):27–36, 2012.

[11] James J Jiang, Gary Klein, Hong-Gee Chen, and Laura Lin. Reducing user-
related risks during and prior to system development. International Journal of
Project Management, 20(7):507–515, 2002.

[12] S. Kujala. Effective user involvement in product development by improving the
analysis of user needs. Behaviour & Information Technology, 27(6):457–473,
2008.

[13] S. Kujala, M. Kauppinen, L. Lehtola, and T. Kojo. The role of user involvement
in requirements quality and project success. In Proceedings of IEEE international
requirements engineering conference, RE’05, pages 75–84. IEEE, 2005.

[14] Alejandra Magana, Ying Ying Seah, and Paul Thomas. Fostering cooperative
learning with scrum in a semi-capstone systems analysis and design course. Jour-
nal of Information Systems Education, 29(2):75–91, 2018.

[15] Michael Maloni, Pamila Dembla, and J. Anthony Swaim. A cross-functional sys-
tems project in an is capstone course. Journal of Information Systems Education,
23(3):283–296, 2012.

[16] M. Lynne Markus and Ji-Ye Mao. Participation in development and implemen-
tation - updating an old, tired concept for today’s is contexts. Journal of the
Association for Information systems, 5(11):514–544, 2004.

[17] James D. McKeen and Tor Guimaraes. Successful strategies for user partici-
pation in systems development. Journal of Management Information Systems,
14(2):133–150, 1997.

[18] Linda Rising and Norman S. Janoff. The scrum software development process
for small teams. IEEE Software, 17(4):26–32, 2000.

115

[19] Randolph E. Schwering. Optimizing learning in project-based capstone courses.
Academy of Educational Leadership Journal, 19(1):90–104, 2015.

[20] Toni Taipalus, Ville Seppänen, and Maritta Pirhonen. Coping with uncertainty
in an agile systems development course. Journal of Information Systems Edu-
cation, 29(2):117–126, 2018.

[21] David Umphress, T. Dean Hendrix, and James H. Cross. Software process in
the classroom: The capstone project experience. IEEE Software, 19(5):78–81,
2002.

[22] Sarah E Wallace. Team-based learning in a capstone course in speech-language
pathology: Learning outcomes and student perceptions. Communication Disor-
ders Quarterly, 37(1):44–52, 2015.

[23] Stephanie Wilson, Mathilde Bekker, Peter Johnson, and Hilary Johnson. Helping
and hindering user involvement - a tale of everyday design. In Proceedings of
the ACM SIGCHI Conference on Human factors in computing systems, CHI ’97,
pages 178–185, 1997.

116

Introduction to Alexa Programming∗

Conference Tutorial

Jay Canty, Edgar Cerna, and Wen-Jung Hsin
Department of Computer Science and Information Systems

Park University
Parkville, MO 64152

{jay.canty, edgar.cerna, wen.hsin}@park.edu

In this one-hour tutorial, the participants will be introduced to the Alexa
programming environment, and learn how to create an Alexa skill. Specifically,
this tutorial is designed for the participants who have never programmed any
Alexa skills before. The outline of the tutorial is as follows:
(0) Prior to coming to the tutorial, the participants are encouraged to sign
up for an account in Amazon Developer Services [1], and another account
in Amazon Web Services [2] so that the tutorial is primarily designated for
learning the actual content.
(1) General introduction to Alexa programming environment.
(2) General introduction to Alexa related devices.
(3) Demonstration of Alexa skills.
(4) Build an Alexa skill.
(5) Demonstration of additional Alexa skills.
(6) Discussion on Alexa programming resources, experience sharing, and Q&A.

Acknowledgements

This project is made possible through the funding provided by the Park Uni-
versity Faculty Development Endowed Funds.

References

[1] Amazon Developer Services and Technologies. https://developer.amazon.com/.
Retrieved January 12, 2020.

[2] Amazon Web Services. https://aws.amazon.com/. Retrieved January 12, 2020.

∗Copyright is held by the author/owner.

117

Real-World Data, Games and
Visualizations in Early CS Courses Using

BRIDGES∗

Conference Tutorial

Kalpathi Subramanian1, Erik Saule1, Jamie Payton2

1Computer Science
The University of North Carolina at Charlotte

{krs,esaule}@uncc.edu
2Computer and Information Sciences

Temple University
payton@temple.edu

Despite the huge explosion in CS enrollments in the past few years, re-
tention of CS majors remains a serious concern. Grounding Computer Sci-
ence concepts in reality by solving important real-world problems or fun prob-
lems are key to increasing students’ motivation and engagement in comput-
ing, which may provide a path to improving retention in CS degree programs.
This workshop provides instructors with a hands-on introduction to BRIDGES
(http://bridgesuncc.github.io), a software infrastructure for programming
assignments in early computer science courses (CS1, CS2, data structures, and
algorithms). BRIDGES provides capabilities for creating more engaging pro-
gramming assignments, including (1) easy access to real-world data, spanning
domains such as social networks, science, government, movie, music, and lit-
erature, (2) visualizations of the data or data structures, (3) an easy to use
API for creation of games that leverage real-world data, and (4) algorithm
benchmarking. Using BRIDGES in data structures, algorithms, and other
courses have shown better student outcomes in follow-on courses, when com-
pared to students from other sections of the same course. BRIDGES has im-
pacted over 1500 students across 10 institutions since its inception 5 years
ago. A repository of BRIDGES assignments (http://bridgesuncc.github.
io/newassignments.html) is now maintained for BRIDGES users. Workshop
attendees will engage in hands-on experience with BRIDGES, play with exam-
ple datasets and will have the opportunity to discuss how BRIDGES can be
used in their own courses.

∗Copyright is held by the author/owner.

118

Short Modules for Introducing
Heterogeneous Parallel Programming∗

Conference Tutorial

David P. Bunde
Department of Computer Science

Knox College
Galesburg, IL 61401

dbunde@knox.edu

CS faculty have spent the last several years adding content on parallel
computing to their curricula, following the technology since essentially all pro-
cessors sold today have multiple cores. A typical setting in which to teach
parallel computing is on a multicore processor with identical cores and this is
currently the main configuration for desktop and laptop systems. As the tech-
nology continues to evolve, however, systems have been incorporating several
kinds of heterogeneity [2]. Many phone processors include cores of different
sizes, with high-performance “fat cores” and lower-performance “thin cores”,
allowing them to vary their power and performance profile over time. Other
processors incorporate low-power modes or special instructions for specialized
computations. Meanwhile, high-end systems make heavy use of accelerators
(e.g. GPGPU).

This tutorial presents three modules that introduce heterogeneity in differ-
ent ways. Each can be done in only a few days of class time and fits within a
standard course. Here are the modules:

1. The first module is a lecture that presents the performance benefits of sys-
tems with fat and thin cores for workloads containing varying amounts
of parallelism; serial computation is more efficient on a fat core while
highly-parallel computation benefits from the increased number of cores
made possible by including thin cores. This conclusion is first demon-
strated theoretically using Pollack’s rule, an empirical observation that
the performance of a core is proportional to the square root of its area.
It is then supported with benchmark results from smartphone processors
that use a heterogeneous core arrangement.

∗Copyright is held by the author/owner.

119

2. The second module is aimed at a course where MIPS assembly language
is taught. The module introduces ARM assembly, particularly Thumb
mode, which runs with greater power efficiency but requires additional
instructions. This allows for an exploration of a tradeoff between power
on one hand and performance and code size on the other. It is based on
the Raspberry Pi, a low-cost system aimed at hobbyists.

3. The final module again uses the Raspberry Pi, this time as an example of
an embedded system with a parallel processor. The camera sensor is used
to take an image and processes it using an object recognition algorithm
called Local Binary Patterns. This is an embedded system variation on
a recent Peachy Parallel Assignment [1].

Materials for these modules are available at http://faculty.knox.edu/
dbunde/teaching/hetero/CCSC-CP20.html.

Acknowledgements

This tutorial is partially supported by the National Science Foundation under
grant OAC-1829554 and the Paul K. & Evalyn Elizabeth Cook Richter Memo-
rial Fund. The modules being presented are joint work with Apan Qasem,
Phillip Schielke, Arsalan Najeeb, Shebaz Chowdhury, and Annie Song. A pre-
liminary version of this tutorial was presented at CCSC-MW 2019.

Biography

Dr. Bunde is the William & Marilyn Ingersoll Professor of Computer Science
at Knox College. He joined Knox College in Fall 2006. His research interests
include parallel computing education, High-Performance Computing (HPC),
and the propagation of educational innovations.

References

[1] O. Ozturk, B. Glick, J. Mache, and D.P. Bunde. Peachy parallel assign-
ments (EduPar 2019). In Proc. 9th NSF/TCPP workshop on parallel and
distributed computing education (EduPar), 2019.

[2] M. Zahran. Heterogeneous computing: Here to stay. CACM, 60(3):42–45,
2017.

120

Error Detection and Correction Using
Hamming Code ∗

Nifty Assignment

Rad Alrifai
Mathematics and Computer Science

Northeastern State University
Tahlequah, OK 74464

alrifai@nsuok.edu

Hamming code is a popular algorithm used in several applications including
communication networks, DRAM, and external storage to detect up to two-bit
errors and correct one-bit-errors. In this assignment, students write a pro-
gram consisting of several functions needed to implement hamming code. The
students work independently to write an original code in any programming lan-
guage and they have two weeks to complete the assignment. The assignment is
given to students enrolled in introduction to computer architecture, which has
two prerequisite courses: discrete mathematics and CSII. The submitted code
is required to perform the following tasks: accept a binary number as input or
convert a non-binary input to a binary number, calculate the position of the
parity bits for a given input, calculate the value of the parity bits, evaluate
the value of the parity bits to determine if there is any error, perform error
correction as needed, output the correct data bits after correcting any input
errors. This assignment teaches several skills including: applying memory er-
ror detection and correction principles covered in basic computer architecture,
using knowledge and skills gained from discrete mathematics, and coding in a
high-level programming language.

∗Copyright is held by the author/owner.

121

Drawing With A Turtle ∗

Nifty Assignment

Saty Raghavachary
Department of Computer Science
University of Southern California

Los Angeles, CA 90089
{saty}@usc.edu

1 Description

The goal of the assignment is to get students to try out simple, interactive
commands to plot interesting figures (with varying colors and line thicknesses).
There is no software to install, nothing to compile - students can immediately
start creating shapes. eg. by entering each line below one at a time in the
textbox, the figure that follows is interactively and incrementally generated.

forward(100)
right(90)
forward(90)
right(90)
forward(80)
right(90)
forward(70)
right(90)
forward(60)
right(90)
forward(50)
right(90)
forward(40)
right(90)

∗Copyright is held by the author/owner.

122

After using step by step constructions as the starting point, motivated
students can advance to using functions to encapsulate code - this introduces
them to the notion of abstraction, task composition (complex drawings can be
constructed using simpler ones, which are themselves abstracted away using
function names and parameters), and code reuse. An example is shown below
- typing sqSp() into the command textbox calls ‘sqSp’, which in turns calls
‘square’:

Compared to a more conventional turtle implementation based on LOGO
or Python, this JavaScript-based one has a huge benefit - it can be run off
a standard web page, on any platform, even or a phone or tablet. This lets
students ‘jump in’ right away, without having to install LOGO, or Python or
its turtle module (library).

The assignment appears to satisfy the various items in the ‘niftyness’ check-
list that is on the Nifty Assignments site http://nifty.stanford.edu/ -
specifically, the assignment is:

• ‘fun’, visual
• doable by a variety of students
• extensible by students in multiple ways
• easily adoptable by instructors
• modifiable by instructors

123

2 Metadata

124

TwHeatmap:
Visualizing Sentiment Analysis of Tweets∗

Nifty Assignment

Evelyn Brannock and Robert Lutz
Georgia Gwinnett College
Lawrenceville, GA 30043
{ebrannoc, rlutz}@ggc.edu

1 About

Sentiment Analysis is a popular application of Natural Language Processing
(NLP). This exercise offers the capability to perform opinion mining in the
political arena by feeding data into a cloud natural language processor, without
in-depth proficiency in machine learning (ML) algorithms. It is an engaging
mechanism for interesting students in using ML to extract information from
voluminous amounts of text found on Twitter to understand the structure and
meaning of text.

2 Materials

• Educational codes for access to Google Cloud Platform (GCP)
• Credentials to access APIs
• Jupyter Notebook

∗Copyright is held by the author/owner.

125

3 Process

126

4 Metadata

127

