
The Journal of Computing
Sciences in Colleges

Papers of the 28th Annual CCSC
Central Plains Conference

April 1st-2nd, 2022
Drury University
Springfield, MO

Baochuan Lu, Editor Bin Peng, Associate Editor
Southwest Baptist University Park University

Joseph Kendall-Morwick, Regional Editor
Park University

Volume 37, Number 6 April 2022

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners 7

Welcome to the 2022 CCSC Central Plains Conference 8

Regional Committees — 2022 CCSC Central Plains Region 9

Reviewers — 2022 CCSC Central Plains Conference 11

A Software Engineering Career from the Perspective of
Availability, Reliability and Maintainability
— Opening Keynote 12

Michael Newton

How the Pandemic Has Change Talent Management
— Banquet Keynote 14

Mark Garton

How To Secure ABET Accreditation for a Cybersecurity
Program: A Case Study 15

Xiaodong Yue, Belinda Copus, and Hyungbae Park, University of
Central Missouri

A Literature Review on User Acceptance of AI-Enabled
Application 25

Gary Yu Zhao, Dakota State University; Cindy Zhiling Tu, Northwest
Missouri State University

A Functional Programming Course in Remote Learning Model:
An Experience Report 36

Fahmida Hamid, New College of Florida

Web Accessibility: An Evaluation of CCSC Central Plains
Participants’ University Home Pages 46

Michael Whitney, Stephen Dannelly, Winthrop University

3

A Snapshot of Current and Trending Practices in
Mobile Application Development 54

Michael P. Rogers, University of Wisconsin Oshkosh; Jonathan Gratch,
Texas Woman’s University

Flutter: n Platforms, 1 Codebase, 0 Problems — Workshop 67
Michael P. Rogers, University of Wisconsin Oshkosh; Bill Siever,
Washington University in St. Louis

A Way to Visualize Higher Dimensional Arrays, Matrices, and
Spaces — Nifty Assignment 68

Cong-Cong Xing, Nicholls State University; Jun Huang, Baylor
University

Challenges Developing and Teaching Online Professional Courses
for Technical Graduate Programs — Panel Discussion 71

Ajay Bandi, Denise Case, Nathan Eloe, Aziz Fellah, Charles Hoot,
Northwest Missouri State University

Teaching Multiple Graduate Sections with Large Class Sizes
— Panel Discussion 73

Ajay Bandi, Denise Case, Nathan Eloe, Aziz Fellah, Charles Hoot,
Northwest Missouri State University

4

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Karina Assiter, President (2022),
(802)387-7112,
karinaassiter@landmark.edu.
Chris Healy, Vice President (2022),
chris.healy@furman.edu, Computer
Science Department, 3300 Poinsett
Highway Greenville, SC 29613.
Baochuan Lu, Publications Chair
(2024), (417)328-1676, blu@sbuniv.edu,
Southwest Baptist University - Division
of Computing & Mathematics, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2023),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill Rd.,
Kansas City MO 64110.
Cathy Bareiss, Membership Secretary
(2022),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical
Engineering Sciences, 1001 Bethel
Circle, Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2023), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, UMKC, Retired.
Michael Flinn, Eastern Representative
(2023), mflinn@frostburg.edu,
Department of Computer Science
Information Technologies, Frostburg
State University, 101 Braddock Road,

Frostburg, MD 21532.
David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Grace Mirsky, Midwest
Representative(2023), gmirsky@ben.edu,
Mathematical and Computational
Sciences, 5700 College Rd. Lisle, IL
60532.
Lawrence D’Antonio, Northeastern
Representative (2022), (201)684-7714,
ldant@ramapo.edu, Computer Science
Department, Ramapo College of New
Jersey, Mahwah, NJ 07430.
Shereen Khoja, Northwestern
Representative(2024),
shereen@pacificu.edu, Computer
Science, 2043 College Way, Forest
Grove, OR 97116.
Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Tina Johnson, South Central
Representative (2024), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308.
Kevin Treu, Southeastern
Representative (2024), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer Science,
Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2023), (530)898-4864,
bcdixon@csuchico.edu, Computer

5

Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor,
(816)584-6884, bin.peng@park.edu, Park
University - Department of Computer
Science and Information Systems, 8700
NW River Park Drive, Parkville, MO
64152.
George Dimitoglou, Comptroller,
(301)696-3980, dimitoglou@hood.edu,
Dept. of Computer Science, Hood
college, 401 Rosemont Ave. Frederick,

MD 21701.
Carol Spradling, National Partners
Chair, (660)863-9481,
carol.spradling@gmail.com, 760 W 46th
St, Apt 208, Kansas City, MO 64112.
Megan Thomas, Membership System
Administrator, (209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus, One
University Circle, Turlock, CA 95382.
Ed Lindoo, Associate Treasurer &
UPE Liaison, (303)964-6385,
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, 3333 Regis Boulevard,
Denver, CO 80221.

6

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Level Partner
Google Cloud

GitHub
NSF – National Science Foundation

Gold Level Partner
zyBooks
Rephactor

Associate Level Partners
Mercury Learning and Information

Mercy College

7

Welcome to the 2022 CCSC Central Plains Conference

Welcome to Springfield, Missouri and Drury University for the Twenty-
Eight Annual Consortium for Computing Sciences in Colleges Central Plains
Conference. The conference is held in cooperation with the ACM SIGCSE.

Our program features two distinguished speakers, Michael Newton, Soft-
ware Scientist/Chief Engineer at L3Harris Technologies and Mark Garton, Se-
nior Director of IT Governance and Data Strategy at O’Reilly Auto Parts. The
conference has an engaging program featuring paper presentations, tutorials,
panels, “Nifty Assignments”, Lightning Talks, student poster presentations, stu-
dent papers, and a student programming contest. The conference starts with
a pre-conference workshop on Friday morning. Plenary sessions, paper ses-
sions, panels, and tutorials follow on Friday afternoon and Saturday morning.
The program closes with our annual student programming contest on Saturday
afternoon.

Many hands are required to organize a conference and I am indebted to
many. The conference would not have been possible without the work of an
invested conference committee. Holding an in-person conference, after being
forced to cancel the conference in 2020 and offering a virtual conference in 2022,
would not have been possible without the help of my colleagues, the staff, and
the student volunteers at Drury University who have taken care of many of
the local details of hosting a conference. Finally, the dedicated work of our
reviewers made it possible to select papers using a double-blind process. We
accepted 6 of 10 papers submitted for an acceptance rate of 60%.

On behalf of the conference committee I hope you find the conference in-
formative and engaging, meet new colleagues, and take home new ideas to use
in your classroom. If you are interested in volunteering for our conference,
I encourage you to attend the CCSC:CP Business Meeting Saturday. I look
forward to seeing you in 2023 at the University of Central Missouri.

Scott Sigman
Drury University
Conference Chair

8

2022 CCSC Central Plains Conference Steering
Committee

Conference Chair
Scott Sigman . Drury University
Conference Co-Chair
Mahmoud Yousef .University of Central Missouri
Conference Publicity
Michael P. Rogers .University of Wisconsin Oshkosh
Charles Riedesel . University of Nebraska-Lincoln
Deepika Jagmohan . St. Charles Community College
Farid Nait-Abdesselam University of Missouri Kansas City
Keynote Speakers
Scott Sigman . Drury University
Pre-Conference Workshop
Wen Hsin . Park University
Michael P. Rogers .University of Wisconsin Oshkosh
Judy Mullins .Retired
Papers
Mahmoud Yousef .University of Central Missouri
Ron McCleary . Retired
Panels, Tutorials, Workshops
Bin Peng . Park University
Ron McCleary . Retired
Nifty Assignments
Mahmoud Yousef .University of Central Missouri
Michael P. Rogers .University of Wisconsin Oshkosh
Lightning Talks
Diana Linville . Northwest Missouri State University
K-12 Outreach, Nifty Assignments & Lightning Talks
Mahmoud Yousef .University of Central Missouri
Belinda Copus .University of Central Missouri
Shannon McMurtrey .Drury University
Student Paper Session
Ajay Bandi .Northwest Missouri State University
Scott Sigman . Drury University
Student Poster Competition
Joseph Kendall-Morwick . Park University
Dayu Wang . St. Charles Community College
Student Programming Contest
Charles Riedesel . University of Nebraska-Lincoln
Dayu Wang . St. Charles Community College

9

Chris Branton . Drury University
Amos Gichamba .Southwest Baptist University
Two-Year College Outreach
Rex McKanry .St. Charles Community College
Belinda Copus .University of Central Missouri
Local Arrangement (Career Fair/Local Vendors)
Carol Browning .Drury University
Chris Branton . Drury University
Shannon McMurtrey .Drury University
Scott Sigman . Drury University
Zoom Committee
Brian Hare . University of Missouri Kansas City
Scott Sigman . Drury University

Regional Board — 2022 CCSC Central Plains Region

Regional Rep & Board Chair
Judy Mullins .Retired
Registrar & Membership Chair
Ron McCleary . Retired
Current Conference Chair
Scott Sigman . Drury University
Next Conference Chair
Mahmoud Yousef .University of Central Missouri
Past Conference Chair
Brian Hare . University of Missouri Kansas City
Secretary
Diana Linville . Northwest Missouri State University
Regional Treasurer
Denise Case . Northwest Missouri State University
Regional Editor
Joseph Kendall-Morwick . Park University
Webmaster
Michael P. Rogers .University of Wisconsin Oshkosh

10

Reviewers — 2022 CCSC Central Plains Conference

Rad AlrifaiNortheastern State University, Tahlequah, OK
Beth Arrowsmith University of Missouri - St. Louis, Saint Peters, MO
Ajay BandiNorthwest Missouri State University, Maryville, MO
Chris Branton . Drury University, Springfield, MO
Kevin Brunner .Graceland University, Lamoni, IA
John Buerck . Saint Louis University, St. Louis, MO
David Bunde .Knox College, Galesburg, IL
Chia-Chu Chiang University of Arkansas at Little Rock, Little Rock, AR
Chris Cox .Westminster College, Fulton, MO
Anurag Dasgupta . Valdosta State University, Hahira, GA
George Dimitoglou . Hood College, Frederick, MD
Russell Feldhausen Kansas State University, Shawnee, KS
Ernest Ferguson Northwest Missouri State University, Maryville, MO
David Furcy University of Wisconsin - Oshkosh Oshkosh, WI
Suvineetha Herath . Carl Sandburg College, Galesburg, IL
James Jones . Graceland University, Lamoni, IA
Brian Kokensparger .Creighton University, Omaha, NE
Eric Manley .Drake University, Des Moines, IA
Chris MayfieldJames Madison University, Harrisonburg, VA
Thomas Mertz . Kansas State Polytechnic, Salina, KS
Jose MetrolhoPolytechnic Institute of Castelo Branco, Castelo Branco,
Portugal
Muath Obaidat LaGuardia Community College, Long Island City, NY
Kian Pokorny .McKendree University, Lebanon, IL
Hassan Pournaghshband Kennesaw State University, Kennesaw, GA
Charles Riedesel University of Nebraska - Lincoln, Beatrice, NE
Jamil Saquer .Missouri State University, Springfield, MO
Cecil Schmidt .Washburn University, Topeka, KS
William Siever . Washington University, St. Louis, MO
Timothy Urness .Drake University, Des Moines, IA
Henry Walker . Grinnell College (retired), Napa, CA
Maria Weber . Saint Louis University, St. Louis, MO
Linda Webster . Westminster College, Fulton, MO
Cong-Cong Xing Nicholls State University, Thibodaux, LA
Baoqiang Yan Missouri Western State University, Saint Joseph, MO

11

A Software Engineering Career from the
Perspective of Availability, Reliability

and Maintainability∗

Friday Opening Keynote

Michael Newton
Software Scientist/Chief Engineer, L3Harris Technologies

Abstract

Many software engineering students graduate
from college prepared to develop software, but,
unfortunately, they lack many fundamental ca-
reer skills necessary to function on a software en-
gineering team. Writing code is just one small
aspect of a software engineering career. Many
foundational work skills and habits are necessary
to be a productive software engineer, and these
skills and habits can be loosely categorized into
one of the following system design attributes of
Reliability, Availability, and Maintainability:

• Reliability as it equates to career maturation, teamwork, and work ethic

• Availability as being pro-active with task completion and time manage-
ment behavior

• Maintainability for keeping communication, software, and career skills
relevant

The goal of this presentation is to provide computer science instructors and
students real life examples and guidance on these three attributes.

∗Copyright is held by the author/owner.

12

Bio

Michael Newton is a Software Scientist at L3Harris Technologies leading sys-
tem engineering and software engineering teams in the development of mission
system software. He is a graduate of Southwest Baptist University with a B.S.
in Computer Science/Mathematics and a M.S in Software Engineering from
Texas Christian University. His career includes technically leading geographic
disparate, embedded software engineering teams at Motorola Solutions for 28
years. In addition, he taught Computer Science courses from a practitioners
perspective at Southwest Baptist University during the 2002-2003 school year.

13

How the Pandemic Has Change Talent
Management∗

Banquet Keynote

Mark Garton
Senior Director of IT Governance and Data Strategy,

O’Reilly Auto Parts Stores, Inc

Abstract

Hiring and retaining talent is more challenging
than ever before. The Pandemic has changed
team dynamics and interactions with team mem-
bers for many companies. These new realities
have forced managers to adjust how they engage
with their teams. It has also changed the skills
needed to succeed in a complex corporate envi-
ronment. It takes more than technical skills to
be successful. The goal of the presentation is
to share strategies used to find, develop, man-
age and retain talent in today’s ever-changing job
market.

Bio

Mark Garton is the Senior Director of IT Governance and Data Strategy at
O’Reilly Auto Parts Stores, Inc. He leads teams responsible for information
security, software quality assurance, and data strategy. With over 24 years of
experience as an IT professional, he has worked in information technology from
software development to establishing a cyber security program. He is passion-
ate about developing leaders and created a leadership development program
for new technology managers. He holds a BA in Mathematics from Drury Uni-
versity and a Master’s Degree in Computer Information Systems from Missouri
State University.

∗Copyright is held by the author/owner.

14

How To Secure ABET Accreditation for
a Cybersecurity Program: A Case Study∗

Xiaodong Yue, Belinda Copus, and Hyungbae Park
Department of Computer Science
University of Central Missouri

Warrensburg, MO 64093
{yue, copus, park}@ucmo.edu

Abstract

In response to the shortage of a qualified cybersecurity workforce,
many new cybersecurity programs were implemented recently across the
country. Since it is a new discipline, curriculum guidelines and ABET
accreditation criteria for Cybersecurity program had to be developed[2].
As of October 2021, there were only 13 ABET accredited baccalaureate
Cybersecurity programs worldwide[1]. In this paper, a case study is
presented based on the lessons and experiences learned from the most
recent successful ABET accreditation preparations for our undergraduate
Cybersecurity program. Some of the best practices summarized in this
paper are proven to be useful and practical, and can be adopted in a
similar setting by other institutions especially those with no or little
ABET accreditation experience.

1 Introduction

The US Commission on Enhancing National Cybersecurity-a non-partisan com-
mission charged with developing recommendations to ensure the digital econ-
omy’s growth and security released the “Report on Securing and Growing the
Digital Economy” in 2016[6]. The report presents data on the US’s and global
economy’s shortage of cybersecurity professionals and practitioners and recom-
mends efforts be expanded to attract and train more workers.

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

15

Colleges and universities across the country are launching initiatives to
establish new cybersecurity programs or courses of study within existing com-
puting programs. In Missouri alone, there have been 7 new undergraduate and
6 new graduate Cybersecurity programs started since 2010.

With the creation of new degree programs in Cybersecurity, there is an
ever increasing demand for curricular guidance in cybersecurity education and
accreditation criteria to facilitate programs to delivery contents not only to
meet the workforce needs but also to maintain the quality and rigor. In re-
sponse to such demand, the Cyber Education Project (CEP) a consortium of
institutions with interests in improving cybersecurity education was formed
in 2014[4]. Computing Accreditation Commission of (CAC) ABET developed
the accreditation criteria for cybersecurity program based on the final report
from CEP. Further refinement of Cybersecurity curriculum was introduced in
2017[5]. At the time of this writing, Engineering Accreditation Commission
(EAC) of ABET also has developed accreditation criteria for cybersecurity en-
gineering programs. This paper will focus on the CAC accreditation criteria
under which our program is currently accredited.

The rest of the paper is organized as follows. Section II provides background
information for our work. Detailed information concerning how to meet eight
ABET accreditation criterions are described in Section III. Conclusions are
presented in Section IV.

2 Background

The University of Central Missouri (UCM) is a public comprehensive regional
university with enrollment of over 10,000 students. The Cybersecurity pro-
gram is housed in the School of Computer Science and Mathematics. Besides
the ABET accredited Cybersecurity program, the school also offers an ABET
accredited Computer Science program and an ABET accredited baccalaure-
ate degree program in Software Engineering. Master’s degree programs are
also offered in Computer Science, as well as in Cybersecurity and Information
Assurance.

As of Fall 2021, there are 21 full time computer science faculty and two
full time staff in the School of Computer Science and Mathematics. Out of
the 21 full time faculty, 13 are tenured or tenure track faculty, the rest are
non-tenure track faculty. There are 160 students enrolled in the undergraduate
Cybersecurity in Fall 2021. The ABET accreditation timeline for the UCM
Cybersecurity program is listed below.

• Program started in Fall 2014
• Request for Evaluation (RFE) sent to ABET in January 2017
• First graduate from the program in May 2017

16

• Self-study report submitted to ABET in June 2017
• CAC site visit in October 2017
• CAC draft statement received in January 2018
• Official accreditation decision received in August 2018
• CAC re-accreditation site visit in October 2019 (to synchronize accredi-
tation visits with other CAC accredited programs on campus)

• Official re-accreditation decision received in August 2020

It is also worth mentioning that our cybersecurity program self-study report
was selected by ABET as an example of well-written and well-organized reports
to be displayed at the 2018 ABET Symposium.

3 Meeting the Criteria

Any program accredited by CAC of ABET need to meet the 8 general criteria
and the program criteria if applicable[3]. Next, we will go through each of the
criteria one by one to provide a synopsis on our understanding of the key issues
to be addressed and areas needing special attention.

3.1 Criterion 1: Students

This criterion focuses on how students are to be evaluated, monitored, and
advised by the program. The program must define and enforce policies on
student admission, transfer credits and graduation requirements.

The first key issue in this criterion is student advising. Our university
adopts a dual advising model. Each student has a designated academic advi-
sor and a faculty advisory. Students will voluntarily receive advising from the
College Advising Center from an academic advisor. Since the criterion man-
dates that “students must be advised regarding curriculum and career matters”,
our program fulfills this requirement by requiring each cybersecurity major to
meet their faculty advisor at least once per semester usually before the reg-
istration starts for next semester. A school advising hold is placed on the
student account one month prior to the opening of course registration and is
removed after the student meets with their advisor. School advising begins
during the first semester of attendance for students in the Cybersecurity pro-
gram. The advising focuses on courses in the area of Cybersecurity/Computer
Science, Mathematics, and Networking. During this advising period, in addi-
tion to course planning questions, students are able to request general advice
regarding internships and future job opportunities in their chosen area.

The second key issue in Criterion 1 is how to evaluate and award transfer
credits. The program must define and enforce policies for awarding appropriate
academic credit for courses taken at other institutions. At UCM, upon transfer,

17

a student’s transcript(s) of prior coursework is evaluated. An official transfer
table is referenced to determine if a student’s completed course will transfer.
Occasionally, a student will have taken a course at their previous institution
that is not listed in the transfer table. In Cybersecurity, courses that do not
appear in the transfer table, and are requested for review by the student,
are evaluated by a member of the Cybersecurity/Computer Science faculty
as directed by the School Chair. This faculty member will have expertise in
the respective technical area and will examine the syllabus and grade received
for the course. A recommendation is made to the chair to accept or deny
the course credit. Transfer courses are accepted if they substantially meet
the requirements of the corresponding UCM Cybersecurity/Computer Science
course. A similar policy is also in place to evaluate and award transfer credits
from a foreign institution.

The third key issue in this criterion is that the program must define and
use a policy to document any exceptions made to a student’s program of study
and graduation requirements. It is highly recommended that exceptions are
approved only in special circumstances. Frequent exceptions without proper
documentation could be a major concern if the program evaluators identify
issues during the transcript analysis. Finally, the program must make sure
that the degree name displayed on the official transcript matches the degree
name seeking ABET accreditation. This is especially important for programs
which only seek accreditation for one of its options.

3.2 Criterion 2: Program Educational Objectives

This criterion requires a program to have a documented, systematically utilized,
and effective process for the periodic review of program educational objectives
(PEOs).

The first key issue in Criterion 2 is that it requires that the program’s
constituents be involved in the review and revision of the PEOs. Each pro-
gram has the freedom to determine who the constituents are. Our program’s
constituents are employers, current program students, program alumni and
program faculty, which also form the membership of the program’s Advisory
Board.

The second key issue in this criterion is that a program must have a process
to periodically and systematically review PEOs. Although ABET does not
specify how frequent a program’s PEOs need to be reviewed, it is a good
practice to review them on a regular basis to ensure they remain consistent
with the institutional mission and the program’s constituents’ needs. Our
program’s process is that faculty review the PEOs annually the semester before
the advisory board meeting. Any proposed changes to PEOs are voted by all
the faculty. The advisory board meets a semester later to review and discuss

18

the proposed revisions to PEOs and present any recommendations that they
might have.

Third, a program must ensure its PEOs are consistent with the mission
of the institution. We’d suggest using a table to map each of the program
PEOs to the corresponding mission statement. In addition, PEOs are broad
statements that describe what graduates are expected to attain within a few
years of graduation and are distinguishable from Student Outcomes. PEOs
which could be interpreted as student attainment by graduation should be
avoided. PEOs that do not meet this requirement will be considered a Criterion
2 shortcoming.

Finally, if the cybersecurity program is housed within a department con-
taining multiple programs, engaging constituencies at a department level or
using department-level processes can result in overlooking the needs of the cy-
bersecurity program, especially if that department is dominated by another
program or has programs accredited by another commission. For our case,
our cybersecurity program has a completely different constituent and process
from computer science and software engineering programs. In addition, the
PEOs must be published in a manner that makes them available to the pro-
gram’s constituencies. Our cybersecurity program’s PEOs are published in the
university catalog and publicly accessible program website.

3.3 Criterion 3: Student Outcomes

The most recent ABET accreditation criteria for Cybersecurity has 6 required
student outcomes. A program may define additional outcomes. Since the
ABET student outcomes are fairly comprehensive, the faculty decided that no
additional outcome was needed for our program. Since all the student outcomes
are required, ABET no longer requires periodic review of student outcomes.
Finally, it is worth mentioning that the number of student outcomes correlates
the amount of assessment efforts in the next criterion. A program is highly
recommended to use its best judgement on adding additional outcomes. Similar
to PEOs, student outcomes must be published on university catalog and/or
program website.

3.4 Criterion 4: Continuous Improvement

This criterion, in our opinion, is the center piece for the whole ABET ac-
creditation process. It focuses on the processes for assessing and evaluating
attainment of student outcomes as well as the continuous improvement of the
program.

Our assessment process starts with the mapping of courses in the program
to the 6 student outcomes. Faculty then determine which courses are most

19

appropriate to assess each outcome. In order to provide a reliable evaluation
on the extent to which the student outcomes are being attained, our program
assesses each outcome in at least two courses preferably at the upper level.
Each of the student outcomes have been defined by a few (typically 2-4) high-
level performance indicators so that they can be integrated into the curriculum
and measured in a consistent and reliable manner. The performance indicators
allow instructor discretion in selecting particular assignments, test questions,
and other metrics to quantify assessment of the outcome. In addition, rubrics
have been created for each performance indicator to measure the attainment
level of an outcome. Student artifacts (student work) are given a ranking
of “does not meet the expectation”, “meets the expectation” or “exceeds the
expectation” according to the rubrics. The rankings of the work produced by
the students are then totaled to determine what level of attainment is being
made toward a student outcome. A goal of 75% or higher was established
by the faculty to determine if attainment of a student outcome is being met
at the course level. The goal attainment metric is calculated by summing the
percentages in the “meets” and “exceeds” categories. Attainment of an outcome
can be further analyzed by reviewing all of the performance indicators for an
outcome across courses in which the outcome is assessed and determining the
level of attainment for the outcome. Indirect assessment instruments such as
senior exit surveys are also used by the program to assessment the attainment
of student outcomes.

The continuous improvement process for the cybersecurity program involves
assessing the degree of attainment of the student outcomes; evaluating the as-
sessment results; identifying improvement needs and opportunities; and imple-
menting the indicated program improvements. It is highly recommended that a
mechanism to keep track of all issues identified in the continuous improvement
process to be utilized ensure that they are ultimately resolved. In our program
a master spreadsheet is used to track open issues.

It is worth noting that when collecting data from a course for assessing a
student outcome it is expected that the data will be separated by program,
as our focus is about the performance of students enrolled in the cybersecu-
rity program. Combining data from students in different majors would mask
potential issues related specifically to the Cybersecurity program.

The “Definitions” section of the Criteria makes a distinction between “as-
sessment” and “evaluation.” These are separate processes. The Criteria calls
for using “appropriate” processes, not the “most efficient,” nor the “most effec-
tive,” for assessing and evaluating the extent to which the student outcomes
are being attained. The test here should be whether the process (1) is sufficient
to allow the program to make informed judgments, and (2) is sustainable by,
and appropriate to the needs of, the program.

20

3.5 Criterion 5: Curriculum (including program criteria for cyber-
security)

This criterion, along with the cybersecurity program criteria, details the CAC
cybersecurity curriculum requirements. ABET cybersecurity curriculum re-
quires at least 45 semester credit hours of computing and cybersecurity course
work and at least 6 semester credit hours of mathematics that must include
discrete mathematics and statistics. Our program offers two concentration ar-
eas which both meet all the specific curriculum requirements. Particularly, 42
credits in cybersecurity course work and 12-18 credits in computing. It is worth
noting that, unlike computer science, the cybersecurity curriculum criteria do
not specify that the mathematics component must have mathematical rigor at
least equivalent to introductory calculus.

It is worth noting that this criterion has an explicit statement that curricu-
lum requirements do not prescribe specific courses. Programs need to show
where the coverage is, but this portion of the criterion can be satisfied by in-
dicating in what course(s) each topic is covered. Table 1 shows the required
courses from the UCM’s cybersecurity program which provide coverage on var-
ious required cybersecurity topics.

Table 1: UCM’s Required Cybersecurity Courses

Course Title Credits

CS 1030 Intro. to Computer Programming 3
CYBR 1500 Command Line Environments 3
CYBR 1800 Intro. to Cybersecurity 3
CYBR 2500 Computer Systems Administration 3
CYBR 3130 Secure Programming 3
CYBR 3300 Intro. to Cryptography 3
CYBR 3510 Systems Security 3
CYBR 3520 Intro. to Cyber-Physical Systems Security 3
CYBR 3820 Usable Privacy and Security 3
CYBR 3830 Economics of Cybersecurity 3
CS 3840 Computer Networking 3
CYBR 4820 Intro. to Information Assurance 3
CYBR 4840 Ethical Hacking 3
CYBR 4850 Computer and Network Forensics 3
Additional Electives 10-24
in Computing
Course
Total 52-66

21

3.6 Criterion 6: Faculty

One of the main focuses on this criterion is faculty competency. Our program
strives to provide plenty of professional development opportunities to the fac-
ulty. Funds are allocated to support faculty travel for conferences/workshops,
etc. Furthermore, all UCM faculty who are primarily responsible for cyberse-
curity instruction have at least one industrial cybersecurity certificate such as
GPEN, GCFE, GNFA, etc. Faculty are also encouraged to participate in train-
ing through UCM Center of Teaching and Learning, webinars and/or other free
professional development opportunities.

A program must have sufficient number of faculty to provide instruction,
student advising and program management. It is highly recommended that at
least two faculty members are available to teach each course in the entire cur-
riculum and faculty are given sufficient training to enable effective and efficient
student advising.

There are no specific guidelines for faculty teaching loads in cybersecurity
and many factors influence what is a reasonable teaching/research load for fac-
ulty. Since there are requirements in the Faculty Criteria that the faculty must
be engaged in professional development, student advising and other standard
faculty activities, the general rule is that teaching more than 12 credit hours
per semester sometimes have issues appropriately engaging in all of those re-
quired faculty activities. At UCM, all tenured/tenure track faculty have a 9
credit hours teaching load per semester while non-tenure track faculty’s load
is 12 credit hours per semester.

3.7 Criterion 7: Facilities

This criterion is mostly resources related. With the budget cut in public higher
education recently, it is a challenge for many programs to systematically main-
tain and upgrade labs, classrooms, and other critical instructional resources. At
UCM, this problem is diminished by including a student tech fee and through
revenue sharing generated through course offerings at extended campuses. Fac-
ulty are also encouraged to use open source software for instruction as long as
it does not compromise the quality of the knowledge content. In addition, the
School has worked closely with the University Foundation to seek private do-
nations. A major gift was received several years ago to renovate our student
study area and a computer lab. Nevertheless, a program still needs to have
other innovative approaches and/or work closely with the administration to
secure funds to maintain and upgrade its facilities and resources.

22

3.8 Criterion 8: Institutional Support

This criterion emphasizes on adequate institutional support and leadership
to ensure the quality and continuity of the program. We are very fortunate
to have an immensely supportive administration regarding our endeavors for
ABET accreditation. It is infeasible for a program to secure and/or maintain
ABET accreditation without support from the administration. Finally, it is
worth noting that a common misunderstanding is that a program must have
its own dedicated IT tech staff. In fact, it is unnecessary as long as adequate
IT support is provided at the college and/or university level.

It is also worth noting that a program should carefully review the extent to
which faculty needs are met by the institution’s computer procurement policy.
For example, a centralized, “one-size-fits-all” approach or a “one computer per
faculty member” limit might not provide sufficient computational resources for
one’s continued professional development.

4 Conclusions

In summary, our ABET accreditation efforts have been very rewarding. It has
not only added the value to the degrees our students receive but also aids in
student recruitment. We hope that other cybersecurity programs considering
ABET accreditation will benefit from the experiences discussed in this paper.

References

[1] ABET accredited programs inventory. https://amspub.abet.org/aps/
category-search. Accessed October 2021.

[2] ABET approves accreditation criteria for undergraduate cybersecurity pro-
grams, 2018. https://www.abet.org/abet-approves-accreditation-
criteria-for-undergraduate-cybersecurity-programs/.

[3] Criteria for accrediting computing programs, 2021. https://www.abet.
org/wp-content/uploads/2021/01/C001-21-22-CAC-Criteria.pdf.

[4] Final Report of the Cyber Education Project (CEP) Accreditation Com-
mittee. Cyber education project. pages 1–16, 2016.

[5] Joint Task Force on Cybersecurity Education. Cybersecurity curricula 2017:
Curriculum guidelines for post-secondary degree programs in cybersecurity.
New York, NY, USA, 2018. ACM.

23

[6] The US Commission on Enhancing National Cybersecurity. Report on
securing and growing the digital economy. 2016.

24

A Literature Review on User Acceptance
of AI-Enabled Application∗

Gary Yu Zhao1 and Cindy Zhiling Tu2

1College of Business & Information Systems
Dakota State University

Madison, SD 57042
Gary.Zhao@trojans.dsu.edu

2School of Computer Science and Information Systems
Northwest Missouri State University

Maryville, MO 64468
cindytu@nwmissouri.edu

Abstract

This study focuses on individuals’ acceptance of AI-enabled applica-
tions. Through a thorough literature review, this study proposes a theo-
retical model to identify factors affecting individual users’ acceptance of
AI applications

1 Introduction

Artificial intelligence (AI) is commonly defined as the information technology
(IT) capabilities that can perform tasks that possibly require intelligence [21].
Prevailing AI technologies, including machine learning, speech recognition, fa-
cial recognition, robots, self-drive vehicles, natural language processing (NLP),
and virtual agents, are being deployed to a huge variety of existing systems and
new applications. In addition, the increasing availability of big data, growing
computing power, and advanced machine learning (ML) algorithms have led to
an astounding development of AI-enabled applications (AIapps). As a result,
people’s lives in different areas, including their homes, education, healthcare,

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

25

employment, entertainment, safety, and transportation, are re-shaped dramat-
ically by AI applications [2].

When AIapps are combined with personal devices such as smartphones,
tablets, smartwatches, and the IoTs, people’s daily lives have been transformed
even without realizing it. Today, AIapp via emotion-sensing facial recognition
can detect if a person is upset, sad, annoyed, or happy, and it is used for
improving customer satisfaction [12]. AIapps with voice queries and NLP like
Amzaon Alexa (on Amazon Echo), Siri (iPhone, iPad, iOS laptop), Google
Assistant (Google phone, Google Home, Hyundai car), Cortana (Microsoft
phone, Windows platform) can help people make calls, send messages, answer
questions, provide recommendations, set the alarm, make a to-do list, play
music and provide real-time information on weather, traffic, news, sports and
more. AIapps with NLP like Replika (smartphone app) and Wysa (a chatbot)
can talk with people like a friend. AIapps with image recognition like FaceApp
(a smartphone/tablet app) can help people convert an actual picture into an
amazing one. ELSA Speak with NLP can help people learn to speak English.
Socratic with image recognition can assist students with their homework just
by submitting a picture of the tasks. In addition, many AIapps are running at
the backend, which the users do not perceive. Netflix movie recommendation
system is a typical example of this kind of AIapp. Many AIapps that were
thought impossible before are now becoming true.

The market of AIapps is growing fast. Nonetheless, even the AIapps are
conveniently accessed from personal devices and are free to use, and most
people do not use them regularly. For example, a recent survey showed that
98% of iPhone users had used Siri in the past. However, only 30% used it
regularly, with 70% rarely or only occasionally using it [5]. How attractive is
AI to individual users? Why do people tend to or refuse to use AI-enabled
applications? These are interesting research topics. However, AI researches
have been conducted on the technology, advantages, side effects, limitations,
and its forthcoming impact on society. Very little research has focused on
individuals’ acceptance of AI technology. Due to its unique characteristics, AI
has introduced new features to the traditional technology acceptance model.
Therefore, it is valuable to understand individual users’ adoption behavior in
the new AI context. Through a thorough literature review, this study proposes
a theoretical model to identify factors affecting individual users’ acceptance of
AIapps, which has seldom been empirically studied in the literature.

2 Literature Review

To locate relevant literature, we conducted keyword and abstract searches from
four prominent online databases EBSCOhost, ProQuest (ABI/INFORM), Sci-

26

enceDirect (Elsevier), and ACM Digital Library. We created three groups of
keywords: #1, (“AI-enabled application” OR “AI-powered application” OR “AI-
based application” OR “AI application”); #2, (“adoption” OR “acceptance”);
#3, ("consumer" OR "individual users" OR "personal devices" OR “mobile
devices”). For each database, we conducted three rounds of searches, i.e.,
first round (using only #1 keywords), second round (using #1 and #2 key-
words), and third round (using #1 and #2 and #3 keywords). The filters for
three rounds were the same, “year, 2017-2022”, “research articles”, “subject area,
Computer Science, Business, Management and Accounting, Social Science”. In
total, 242 articles were extracted from the online database. Then, we manu-
ally scanned abstracts and filtered out those less relevant articles focusing on
AI application development, AI algorithm, gov/industry usage, patent-related,
enterprise usage, user usability related, etc. Finally, twenty-one peer-reviewed
academic articles were selected for the literature review.

2.1 Common features of AI-enabled applications

AIapps have been deployed in most aspects of people’s daily lives. So what are
the common features of AIapps, and how do they attract people to use them?
Five general attributes are brought out from the collected academic articles.

First, machine learning capability. Scholars acknowledge that machine
learning (ML) ability is one of the most outstanding features of AIapps [1,
3, 9, 14, 15]. AIapps must have the ability to continuously learn through data
and experience to adapt to their environment [2]. Ruiz-Real et al. (2021) argue
that AI-enabled systems with ML ability have a common application in the big
data analyzing field, such as a complicated recommender system based on an
enormous volume of inputs [20].

Second, human-like interactivity. AIapps must have the ability to interact
with people in a natural way [1]. Recent developed Natural language processing
and understanding (NLP/NLU) has already been deployed to a vast majority
of daily applications such as service chatbots, Siri, Google Assistant, Amazon
Alexa, etc. These AIapps can interact with the user as a human [9, 10, 15].
A human-like chatbot with the anthropomorphic quality should be able to
respond to the user based on the keywords, determine what type of problem is
faced by the customer, understand the user’s attitude and emotion, predict the
feedback of the user, and try to pacify a frustrated user [3, 4, 7, 16, 22]. Also,
a human-like voice AI assistant can be perceived as a friend. This relationship
between the user and an AI assistant brings a sense of social presence to user’s
mind, following building a rapport with the AI agent [4, 16].

Third, knowledge representation and reasoning. Reasoning is always asso-
ciated with human intelligence. Previous efforts in AI were focused on creat-
ing an application that could reason by itself, making conclusions from some

27

premises [15]. Many AIapps such as digital assistants or chatbots are a kind
of knowledge-based application, and they can search, extract, analyze, and
represent the knowledge [9, 10, 20]. An AIapp must be able to absorb, store,
transform, process the data from both new and existing sources and represent
that into the system using effective models and schemas [3, 17]. Moreover, an
AIapp should have abilities to draw inferences from provided data [1, 4].

Forth, Intelligent algorithm. AIapps are based on rules and algorithms that
can be applied to variant areas and outperform human-level intelligence [9].
An AIapp must have the capability of computation and pattern recognition
using provided data [15]. Canhoto & Clear (2020) state that one of the AI
characteristics is its cognitive capacity that use ML algorithm to detect patterns
in the input data, learn from mistakes, and self-correct [3]. An AIapp must
be associated with human-level intelligence such as statistical analysis, ML,
classification, optimization, ranking/sorting, generating hypotheses based on
confidence interval [14].

Fifth, Autonomy. Contemporary forms of AIapps keep increasing their abil-
ity to act independently without human intervention [2, 15]. AIapps eliminate
the human emotional component and the flexibility of thought and actions not
following the strict rules. This autonomy attribute of AIapps allows them to
process difficult problems beating humans by miles [20]. Many AIapps (Ad
pusher scripts) run unnoticed by the end-users to help them improve their
performance even change their lives [3].

These five characteristics are common features of AIapps. However, many
scholars claim that some other unique or more advanced AIapps or platforms
could have more features such as big data processing ability, pattern recogni-
tion, relationship perceiving, etc. Furthermore, all these natural features of
AIapps bring practical functions and valuable benefits and attract people to
use them.

2.2 Technology Acceptance Model

The Technology Acceptance Model (TAM) is proposed by Davis (1989) based
on the Rational Action Theory (TRA). TAM has been used to explain the
users’ adoption of new technology or services in many fields, especially in the
information system discipline. Davis (1989) provides a theoretical framework
for researchers to understand what external factors affect users’ intention to
accept the new technology. TAM originally summarizes the variant factors into
two: perceived usefulness (PU) and perceived ease of use (PEU) [6]. Although
it continues to be extended to upgraded models with later research such as TAM
2, TAM3, UTAUT, etc., TAM is more popular than the others and focuses on
the major determinants of user acceptance. In addition, Davis (1989) possesses
consistent measurement tools and explains the significant variance in adoption

28

intentions [6]. Moreover, TAM has been used by many scholars and it provides a
big volume of questions for each factor, increasing reliability to the relevance of
the measurement. In this research, TAM is used as a core model to understand
the users’ adoption of AIapps. Though TAM is an efficient tool to explain the
acceptance of new technology, the extended variables related to AIapps must
be considered to understand the acceptance distinctly [13].

2.2.1 Perceived usefulness (PU)

Davis (1989) defined perceived usefulness as “the degree to which a person be-
lieves that using a particular system would enhance their job performance” [6].
PU affects users’ acceptance positively. Machine learning capability, knowledge
reasoning ability, and intelligent algorithms enable AIapps to meet people’s ex-
pectations and satisfy people’s demands. In other words, AIapps are useful and
bring benefits to humans.

Nearly all scholars acknowledge that AIapps bring enhancement in people’s
lives profoundly and increase the satisfaction and efficiency or fun in a variety
of people’s social activities [1, 2, 8, 9, 10, 15, 17, 20]. For example, a movie
recommender based on machine learning technology can provide users with
new movies by learning users’ preferences and other people’s reviews, which
makes people feel satisfied with saving time of choosing movies from thousands
of items in the pool. If people believe they can gain from AIapps, they are
more likely to use them. These gains include improving the users’ social inter-
action, personal identity, the extension of conformity, saving time, improving
life efficiency [4, 24]. Also, McLean et al. (2020) demonstrate that Alexa can
help people complete tasks more efficiently and quicker than make people’s
lives easier, more convenient, providing social presence and enjoyment [16].

Providing high-quality information and services based on an intelligent al-
gorithm and machine learning is important perceived usefulness of AIapps for
users [7, 11, 13]. Knowledge reasoning ability enables AIapps to provide people
with causation analysis, predictions, and summary information, outperforming
people’s information processing capabilities [9]. Also, AIapps can handle big
data to provide users with personalized and customized information [9].

2.2.2 Perceived ease of use (PEU)

Davis (1989) defined perceived ease of use as “the degree to which a person
believes that using a particular system would be free from effort” [6]. PEU
affects users’ acceptance positively.

AIapps change traditional human-machine interaction with no need for
physical input, i.e., hands-free instead of typing, clicking, and navigation inter-
face [16]. Furthermore, the human-like interaction makes people believe that

29

AIapps is easy to learn and easy to use. People tell a voice assistant like Siri,
Google Assistant, and Alexa what they want to do and use natural language
to communicate with a text-based service chatbot. These usages do not need
people’s extra efforts to learn how to use AIapps [7, 11, 18]. In addition, peo-
ple prefer using the technology if the devices or systems already exist, e.g.,
an AI-enabled shopping chatbot has been added to Facebook, WhatsApp, or
WeChat, quickly start to use without hassle [13].

The characteristic of autonomy enables AIapps to serve people indepen-
dently even without people’s perceptions, which reduces the effort of use to a
huge extension. When AIapps are easier to use, people will have more self-
efficacy, self-control, and the positive intention to accept them [24].

2.2.3 Extended variables

Perceived trust risks. People always view AIapps as black-boxes and hardly
trust them [9]. There are two reasons mainly. First, it is hard to understand
the technology of machine learning, and how it works in AIapps. Second,
AIapps have the autonomy that they can run by themselves or even are invisible
for most people. Trust issues include users’ concerns over algorithmic non-
transparency, online vulnerabilities, immature technology, bias and uniqueness
neglect, social classification, delegation, the privacy of their interactivities, and
the potential for private information to be uncovered to third parties [9, 10,
16, 17, 18, 19]. About 80% of researchers claim that the number one perceived
issue is trust risk that plays a negative role in the adoption of AIapps. Further,
Causable explainable AIapps can help users understand how AI algorithms
work and increase users’ trust, which leads to more usage [23].

Perceived enjoyment or hedonic value. AIapps with high intelligence can
help people complete complicated tasks by simplifying, optimizing, and cus-
tomizing the processes, which makes people relax, feel happy and avoid frustra-
tion [8]. Users intend to use an AIapp if they get enjoyment or hedonic value
from it [8, 14, 16, 18]. According to Choi & Drumwright, Fernandes & Oliveira,
and Kasilingam, perceived enjoyment is one of the most critical factors to affect
the acceptance of AI-enabled voice assistants and chatbots [4, 7, 13].

Subjective Social norms. TAM 2 includes social norms as an important
construct that determine the adoption of new technology. People always feel
social pressure from their friends, parents, spouses, classmates, etc., when they
decide to use an AIapp or not. Stronger positive social norms increase people’s
intention of using a new AIapp [7, 24].

Perceived behavioral control or self-efficacy. People usually intend to adopt
a new AIapp if they feel comfortable controlling the required resources such as
time, money, personal capabilities [24]. The users’ self-efficacy is the perceived
ability to control the environment to achieve a particular goal, and it is an

30

important factor that positively affects the adoption of AIapps [17].

3 Theoretical Development

We developed our research framework by integrating the main concepts re-
flected in the literature (see Figure 1).

Figure 1: Proposed Research Model

First, we extend the TAM model by adding a new construct that is per-
ceived trust risk. Three independent variables affect the intention to use AIapp,
and the intention leads to the actual use of AIapp. Then, we examine and map
the relationships between four unique features of AIapp and perceived useful-
ness, perceived ease of use, and perceived trust risk. As most of the researchers
agreed, the machine learning capability is the most important characteristic of
AIapp, and it allows AIapp to provide useful services by continuously learn-
ing new knowledge and adapting itself to the new environment [2]. However,
it is the learning skill of a computer that brings people beyond understand-
ing that leads to the trust problem [9]. The ability of knowledge representing
and reasoning allows AIapp to provide users high-quality services such as data
summary, analysis, and prediction, which brings high-level effectiveness and
efficiency to people’s tasks [7, 11, 13]. AIapp with human-like interactivity al-
lows users to communicate with the machine using natural languages in voice
or typing as well as body gestures, which reduces the effort of learning and us-
ing the application. Current AIapps run without human intervention or even
without people’s perceptions [2, 15]. This autonomy feature allows users to
use the application easily but simultaneously leads to the trust issue. There-
fore, based on the relationships between unique features of AIapp and three

31

constructs of the TAM model, we propose that:

P1: The feature of human-like interactivity positively influences users’ per-
ceived ease of use.

P2: The feature of autonomy positively influences users’ perceived ease of use.

P3: The feature of autonomy positively influences users’ perceived trust risk.

P4: The feature of machine learning capability positively influences users’
perceived usefulness.

P5: The feature of machine learning capability negatively influences users’
perceived trust risk.

P6: The feature of knowledge representing and reasoning positively influences
users’ perceived usefulness.

P7: Perceived ease of use positively influences user’s intention to use AIapps.

P8: Perceived usefulness positively influences user’s intention to use AIapps.

P9: Perceived trust risk negatively influences user’s intention to use AIapps.

P10: User’s intention to use AIapps positively influences user’s actual use.

User demographic characteristics such as age, gender, location, and educa-
tion may be used as control variables when testing the research model.

4 Discussion and Conclusion

This study focuses on what factors determined by the common features affect
individual users’ intention to use AIapps. First, limited literature summarized
the common features of AIapps, which are the root causes of the factors affect-
ing the adoption of AIapps. We summarized five characteristics of AIapp, i.e.,
machine learning capability, human-like interactivity, knowledge representing
and reasoning, intelligent algorithms, and autonomy. A map between the fac-
tors and the features helps better understand how attractive the AIapps are
and determine new factors in the later study. It brings implications both on
theoretical and practical aspects to tease out relationships between features of
AIapps and the factors that affect the adoption of AIapps.

Second, TAM is the core model for studies of the acceptance of AIapps.
Based on TAM, we categorize the factors discussed in previous literature into
three: the factor of perceived usefulness, the factor of perceived ease of use,
and the others. Other than these two original TAM factors, perceived trust
risk is the most proposed factor negatively affecting acceptance. We integrated
these factors into our proposed research model.

32

Third, only a few researchers demonstrate the relationships between natural
features of AIapps and the factors affecting the acceptance. Some of them
argue that machine learning ability is the principal characteristic to determine
usefulness. Some others argue that human-like activity is the first attribute
to affect perceived ease of use. It would be interesting to explore more new
features associated with the rapid emergence of AI technology and how these
features affect the factors or generate new factors. Future researches can fill
this gap by providing a systematic and completed study on these relationships.

This study is expected to contribute to both academics and practice. The-
oretically, this study proposes a model to identify factors affecting individual
users’ acceptance behavior of AI-enabled applications, which so far has seldom
been empirically studied in the literature. This model also enriches general
TAM by investigating how unique AI features may affect and mediate users’
acceptance intention and behavior. Practically, the results of this research will
help AI-enabled application developers or vendors better understand individual
users’ behavior regarding the use of their applications.

References

[1] Steven Alter. Understanding artificial intelligence in the context of usage:
Contributions and smartness of algorithmic capabilities in work systems.
International Journal of Information Management, page 102392, 2021.

[2] Nicholas Berente, Bin Gu, Jan Recker, and Radhika Santhanam. Manag-
ing artificial intelligence. MIS Quarterly, 45(3):1433–1450, 2021.

[3] Ana Isabel Canhoto and Fintan Clear. Artificial intelligence and machine
learning as business tools: A framework for diagnosing value destruction
potential. Business Horizons, 63(2):183–193, 2020.

[4] Tae Rang Choi and Minette E. Drumwright. “OK, Google, why do I
use you?” motivations, post-consumption evaluations, and perceptions of
voice AI assistants. Telematics and Informatics, 62:101628, 2021.

[5] Benjamin R. Cowan, Nadia Pantidi, David Coyle, Kellie Morrissey, Peter
Clarke, Sara Al-Shehri, David Earley, and Natasha Bandeira. “What can
I help you with?”: Infrequent users’ experiences of intelligent personal
assistants. MobileHCI ’17, New York, NY, USA, 2017. Association for
Computing Machinery.

[6] Fred D. Davis. Perceived usefulness, perceived ease of use, and user ac-
ceptance of information technology. MIS Quarterly, 13(3):319–340, 1989.

33

[7] Teresa Fernandes and Elisabete Oliveira. Understanding consumers’ ac-
ceptance of automated technologies in service encounters: Drivers of digi-
tal voice assistants adoption. Journal of Business Research, 122:180–191,
2021.

[8] Björn Frank, Boris Herbas-Torrico, and Shane J. Schvaneveldt. The AI-
extended consumer: Technology, consumer, country differences in the for-
mation of demand for AI-empowered consumer products. Technological
Forecasting and Social Change, 172:121018, 2021.

[9] Dhruv Grewal, Abhijit Guha, Cinthia B. Satornino, and Elisa B.
Schweiger. Artificial intelligence: The light and the darkness. Journal
of Business Research, 136:229–236, 2021.

[10] Lukas Grundner and Barbara Neuhofer. The bright and dark sides of arti-
ficial intelligence: A futures perspective on tourist destination experiences.
Journal of Destination Marketing & Management, 19:100511, 2021.

[11] Dogan Gursoy, Oscar Hengxuan Chi, Lu Lu, and Robin Nunkoo. Con-
sumers acceptance of artificially intelligent (AI) device use in service deliv-
ery. International Journal of Information Management, 49:157–169, 2019.

[12] Michael Haenlein and Andreas Kaplan. Artificial intelligence and robotics:
Shaking up the business world and society at large. Journal of Business
Research, 124:405–407, 2021.

[13] Dharun Lingam Kasilingam. Understanding the attitude and intention to
use smartphone chatbots for shopping. Technology in Society, 62:101280,
2020.

[14] Amit Kumar Kushwaha, Prashant Kumar, and Arpan Kumar Kar. What
impacts customer experience for B2B enterprises on using AI-enabled chat-
bots? insights from big data analytics. Industrial Marketing Management,
98:207–221, 2021.

[15] Fernando Martínez-Plumed, Emilia Gómez, and José Hernández-Orallo.
Futures of artificial intelligence through technology readiness levels.
Telematics and Informatics, 58:101525, 2021.

[16] Graeme McLean, Kofi Osei-Frimpong, and Jennifer Barhorst. Alexa, do
voice assistants influence consumer brand engagement? – examining the
role of AI powered voice assistants in influencing consumer brand engage-
ment. Journal of Business Research, 124:312–328, 2021.

34

[17] Stefano Puntoni, Rebecca Walker Reczek, Markus Giesler, and Simona
Botti. Consumers and artificial intelligence: An experiential perspective.
Journal of Marketing, 85(1):131–151, 2021.

[18] Alexandra Rese, Lena Ganster, and Daniel Baier. Chatbots in retailers’
customer communication: How to measure their acceptance? Journal of
Retailing and Consumer Services, 56:102176, 2020.

[19] Rowena Rodrigues. Legal and human rights issues of AI: Gaps, challenges
and vulnerabilities. Journal of Responsible Technology, 4:100005, 2020.

[20] José Luis Ruiz-Real, Juan Uribe-Toril, José Antonio Torres, and Jaime De
Pablo. Artificial intelligence in business and economics research: Trends
and future. Journal of Business Economics and Management, 22(1):98–
117, 2021.

[21] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, third edition, 2010.

[22] Ben Sheehan, Hyun Seung Jin, and Udo Gottlieb. Customer service chat-
bots: Anthropomorphism and adoption. Journal of Business Research,
115:14–24, 2020.

[23] Donghee Shin. The effects of explainability and causability on percep-
tion, trust, and acceptance: Implications for explainable AI. International
Journal of Human-Computer Studies, 146:102551, 2021.

[24] Shu-Mei Wang, Yu-Kai Huang, and Chi-Cheng Wang. A model of con-
sumer perception and behavioral intention for AI service. In Proceedings
of the 2020 2nd International Conference on Management Science and
Industrial Engineering, MSIE 2020, page 196–201, New York, NY, USA,
2020. Association for Computing Machinery.

35

A Functional Programming Course in
Remote Learning Model: An Experience

Report∗

Fahmida Hamid
Computer Science

New College of Florida
Sarasota, FL 34243

fhamid@ncf.edu

Abstract

This experience report shares the teaching methodology of a Func-
tional Programming course (in Haskell) offered amid the Covid-19 pan-
demic. In addition to highlighting problem-solving and programming
from a functional perspective, the course provides a solid example of mod-
ern pedagogical elements, including team-based programming, computa-
tional thinking, presentation skills, participation and discussion skills,
and a sense of accountability. This report presents the methodologies
applied to achieve the objectives in a liberal arts setup and discusses
the learned lessons that may help an early-career faculty model an intro-
programming course.

1 Introduction

Computer Science students should gain experience with multiple programming
languages, tools, paradigms, and technologies and study the fundamental un-
derlying principles throughout their education to develop the adaptation skills
on new languages and technologies [3, p. 25]. In addition, modern pedagogy

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

36

highlights student engagement in order to promote student learning and to help
outreach to diverse populations. This experience report describes an intro-
ductory course in functional problem solving that integrates such pedagogical
elements as team-based programming, computational thinking, presentation
skills, participation and discussion skills, and a sense of accountability.

Motivated by the multiline programming paradigm, our institution follows
the imperative-first, object-oriented later policy. CS majors at our institution
need to take an elective course in Programming Languages (such as Func-
tional Programming (FP)). The FP course offered here expects a mixed bag of
students: a group with no prior programming experiences and another group
with modest to an exhaustive level of programming experiences (C, Python,
Java, Web-programming). It is challenging yet enjoyable to create an evenly
playable ground for everyone in such a setup. In the Spring of 2021, we offered
the FP course for our students in a remote model. The course objectives are
to teach the central ideas of functional programming: abstraction, recursion,
higher-order functions, lazy evaluation, program specification and verification,
immutable data types, type inference, currying, and programming with combi-
nators. The class practiced active learning [2] strategy: short lecture sessions,
intermittent breaks with brain-storming questions, discussions, and dedicated
lab hours. The teaching methodology is similar to the Human-Centered Learn-
ing (HCL) [6] model. While an HCL model uses section leaders for teaching
small interactive learning sessions, this course had the instructor playing multi-
ple roles: instructor while delivering lectures, section leader while working with
small groups in labs (virtually), a critique while engaging them in discussions.

The upcoming sections present the overall experiences of handling the re-
lated issues in the following order: language and topic selection, mechanics and
teaching challenges, students’ observations, and a summary of self-reflections.

2 Course Design

A large body of research on teaching introductory programming courses agrees
that the primary focus should be on elementary programming concepts, empha-
sizing developing problem-solving skills [5]. Keeping this in mind, we divided
the entire semester into three segments, each focusing on one theme: building
basics, introducing advanced topics, and exploring algorithms (figure 1).

Considering Haskell’s wide acceptance and applicability, we chose Haskell
as the official programming language. However, any other functional program-
ming language such as Scheme or Scala would work. Next, we picked the
topics that seem the most appropriate for a novice. One of the most valuable
resources for students of the course was the “Learn You a Haskell for Great
Good!: A Beginner’s Guide” [4] book.

37

Figure 1: Topics Covered in 14-weeks

We had a 90 minutes class and a 90 minutes lab every week; the lab worked
as a platform for practicing what we learned in lecture sessions. To fit the
packed schedule, we sometimes overtook some lab hours for discussions and
sometimes gave exercises on multiple topics in one lab. Each lecture had two
10-minute group discussion problems. Budgeting the preparation time ahead
helped us in running this course smoothly. We spent roughly 14 hours per week
on the course-preparation (lecture design, discussion problems, lab designing,
grading, etc.).

3 Mechanics and Teaching Challenges

We started every class with this slogan: “complete the reading before class,
submit the labs on time (even partially complete), reach out for help if you
are stuck, maximize the discussion time.” since we believe that computing
professionals are required to leverage self-direction in their life-long learning
to adapt to new emerging technologies [1]. In the next set of sections we
demonstrate how we addressed some skills through different activities.

38

3.1 Embedding Inquiry and Analysis with Problem Solving

Out of several effective techniques for teaching programming, we followed the
approach called PRIMM [7] (Predict, Run, Investigate, Modify, Make) for the
labs. Figure 2 shows the steps and addressed objectives at each stage in the
labs.

Figure 2: PRIMM approach for running the labs

Appendix A shows one sample lab problem. Considering task 1 through
task 5 (each task addressing one phase from PRIMM) as a complete problem
set, we wrote two to three such problem sets for each lab. While writing the
lab exercises, we were mindful of the student’s time, and, during lab hours, we
put them in small groups of two/three to work together. We hopped into each
group’s discussion room from time to time to see how they approached the
solutions. Had there been any joint issues, we recalled them to the lab-room
and cleared the confusions.

3.2 Enhancing Critical Thinking, Teamwork, and Oral Communi-
cations

A great programmer (or a problem solver) is not necessarily always an effective
communicator even though communication is one of the most crucial keys to

39

success. So, instead of only focusing on the syntax of the language and the
functional problem solving styles, we incorporated ways to enhance critical
thinking and enforce oral communication in every class. During each lecture,
once we made enough progress on a new idea/topic, we assigned discussion
based questions and divided students into different teams playing different
roles. Students received credits for their responses by participating in two
discussion questions per class. Table 1 shows a sample discussion problem.

Table 1: Sample Discussion Problem

• Given the following problem, team A will share their solution and team B will
generate/provide test cases. Both team should consider boundary cases carefully.

• Team C will verify if the provided solution(s) passes all the test cases.

• If needed, Team A and B can switch their roles. If the solutions fail any test case or any test case
is invalid, corresponding team will explain the issue and try to fix it. Team C may help both
Team A and Team B.

Sample problem Function ‘gcd’ takes 2 integers as input and finds the greatest common divisors
between them.

1. Write an expression that finds the gcd(ai, bi),∀i=[1...n]{ai ∈ A, bi ∈ B} where A and B are two
lists, each with n integers.

2. Use the following algorithm to define another function (let’s call it gcdnew) that does the same
work as gcd.
gcdnew(a, b) :

if b = 0 then
return a

else
return gcdnew(b, a mod b)

end if

3. Write an expression that finds the gcdnew(ai, bi),∀i=[1...n]{ai ∈ A, bi ∈ B}.
4. Write an expression that finds the least common multiple of two numbers by using the gcd (or

gcdnew) function.

3.3 Applying Creative Thinking in Leading to a Purposeful Project

The final class project was one of the last activities to practice the learned
skills thoroughly, especially team work and defining a purposeful project and
make it work up to a certain standard. A successful project is the outcome of
many qualities and efforts: students’ personal goals and expectations, group
work, professor’s expectations, and demands. Students completed the following
significant activities for the project:

• Step 1: Writing a proposal

– Forming Groups of 2/3
– Brain-storming ideas

40

– Sharing thoughts with the faculty and finalizing the goals of the
project

– Writing down the project proposal following the given template

• Step 2: Implementation

– Creating a weekly plan to save a solid amount of time for the project
– Meeting with project partners, discussing the next steps, and dis-

tributing the tasks among the group members
– Following the plan and completing the individually assigned tasks
– If any issue arises, reaching out for help

• Step 3: Creating the Presentation

– Developing some test cases
– Creating the presentation (slides/audio, video, images)
– Writing the project report
– Practicing the talk before formal/final presentation

• Step 4: Presenting the final work in front of the class

Table 2: Some Projects Developed by Students
Category Dataset analysis Game design Algorithmic Problem Solving
Student
projects Stroke prediction Guess the word Graph-based greedy algorithms

Water quality detection 2-player battle-game

Mushroom identification
(edible or not),

Video-game recommendations
based on user preferences

Breast cancer prediction Automatic farm drop rates for
Minecraft

We provided them a proposal template (Appendix B) and a model project
(designed and solved by ourselves in seven days); the model project (a simple
2-player game) helped students understand the baseline expectations and was
used as a clear standard to compare their work. Table 2 lists some students-led
projects. The learning outcomes of the project were the following:

1. Define a clear goal-based problem
2. Create new user-defined data types (if required)
3. Read from and write to different types of files
4. Identify the areas that need more attention (future directions)
5. Use some new Haskell packages that were not introduced in the class
6. Find and relate old lab exercises to their projects
7. Present clearly and concisely

41

Students were not very clear about how to -
• predict/plan the timeline of the project ahead of time,
• define the scope of the project at the beginning.
One weakness (concern) of our policy was that majority of the students

followed the style of the faculty shown for project development and presenta-
tions and relied less on their creativities. Overall, students reported that they
roughly spent 20 to 27 hours completing the project.

3.4 Building Accountability, Stress and Time Management Habits

We gave three take-home exams with three to four problem sets per exam
and students had five working days to complete each exam without any late
submissions (unless there is a medical emergency). During exams, students got
the chance to practice the sense of accountability, stress and time management
as it was a multi-day exam, and they were solving the problems all on their
own, allowed to discuss the issues with no one other than the instructor.

4 Student Evaluations

Students unanimously appreciated learning many new ideas and adjusting well
to the FP programming style. A small group of the students found some
instructions ambiguous or not specific at the beginning. They resolved the
issues by coming to the dedicated office hours. Another striking comment was
that they liked the project and wanted to solve more similar problems. We took
it as a very positive note and may add one/two mini-project(s) by replacing
some labs in the future. Due to page limit constraints, we are unable to add
the comments here.

5 Self-reflection and Conclusion

Ideally, we wanted to practice peer programming in labs, which we couldn’t
due to the remote model, so we ended up applying team-based programming.
We divided them into small groups (2 ∼ 3 students per group) for working
together in each lab/discussion. We assigned at least two discussion problems
in each class (approximately 20 discussion problems in 14 weeks). The labs
and discussions were primarily guided works, but students could apply the
integrative knowledge and creativity in the class projects. Through the class
project, we made them practice formal presentation and essay writing skills.
Had it been an in-class experience, we would have practiced leadership-building
skills by letting students discuss their solutions/ideas on the board regularly.

42

Our takeaways from teaching this course are: a) set the standards at the
beginning, b) have a clear template for labs, c) make a strategic plan for the
semester and break it down to weekly tasks, d) save a modest amount of time
per week for the course (lecture prep, lab design, grading, helping students),
e) start writing the labs and exams early, f) provide a model project; it will be
a guide for the novices to set their standards, g) write moderate exams, keep
the students’ expertise and expectations in mind, and provide hints for each
exam question. i) be mindful of the students’ time and do not write lengthy
labs/exercises.

Finally, the audience being characterized and the topics selected based on
the demands, any programming course may follow a similar structure (PRIMM-
style labs, multiple group discussions per class, team projects, and take-home
exams) to practice the pedagogical elements we mentioned.

References

[1] Naomi R Boyer, Sara Langevin, and Alessio Gaspar. Self direction & con-
structivism in programming education. In Proceedings of the 9th ACM
SIGITE Conference on Information Technology Education, pages 89–94,
2008.

[2] Center for Teaching Innovation. Active learning. https://teaching.
cornell.edu/teaching-resources/engaging-students/active-
learning.

[3] Association for Computing Machinery (ACM) Joint Task Force on Com-
puting Curricula and IEEE Computer Society. Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate Degree Programs in Com-
puter Science. Association for Computing Machinery, New York, NY, USA,
2013.

[4] Miran Lipovaca. Learn You a Haskell for Great Good! A Beginner’s Guide.
No Starch Press, USA, 1st edition, 2011.

[5] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth
Adams, Jens Bennedsen, Marie Devlin, and James Paterson. A survey of
literature on the teaching of introductory programming. Working group
reports on ITiCSE on Innovation and Technology in Computer Science
Education, pages 204–223, 2007.

[6] Christopher Piech, Ali Malik, Kylie Jue, and Mehran Sahami. Code in
place: Online section leading for scalable human-centered learning. In Pro-
ceedings of the 52nd ACM Technical Symposium on Computer Science Ed-
ucation, pages 973–979, 2021.

43

[7] Sue Sentance and Jane Waite. Primm: Exploring pedagogical approaches
for teaching text-based programming in school. In Proceedings of the 12th
Workshop on Primary and Secondary Computing Education, WiPSCE ’17,
page 113–114, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

Appendices

A A Sample Lab Problem

{- Lab 07: Recursion and Higher Order Function
Solved by: <your name goes here> -}
{- "stage: predict"
task 1a: predict what function01 does and write a brief answer. [2

points]
answer 1a: <your answer goes here>
task 1b: predict what data types function01 can deal with and write a

brief answer. [2 points]
answer 1b: <your answer goes here>-}
function01 [] _ = 0
function01 (x:xs) t

| (t == x) = 1 + function01 xs t
| otherwise = function01 xs t

{- stage: "run"
task 2: run the code for at least three times with different inputs and

record your test runs with corresponding outputs. [3 points]
answer 2: <your answer goes here>-}
{- stage: "investigate"
task 3: test function01 with ["goal", "go", "Go", "going", "got"] as

the first parameter and "go" as the second parameter. record the
test output, and explain how the output is computed by the
function01.[2 points]

answer 3: <your answer goes here>-}
{- stage: "modify"
task 4:
Say, function01 does X operation.
a) Modify function01 such that it only works for integers.
b) Write an expression that uses function01 to do X operation on a

particular value (say 3) from a list of lists.
c) Write an expression that uses function01 to do X operation on a

particular list (say [1, 1, 1]) from a list of lists.
Add/modify new pieces of code in the given source file. [3 points] -}

44

-- Note: This is an example of blending recursion with higher-order
functions, lambda expressions, and type declaration.

{- stage: "make"
task 5: [9 points]
a) Write a new function (call it `countOdds`) that takes a list of

integers as input and returns the total number of odd values found
in the input list.

b) Add at least three test cases (as multiline comments after the
function definition).

c) Write an expression that uses countOdds to count the frequency of
odd values from different lists of integers (a list of lists).

Add/modify new pieces of code in the given source file.-}

B Project Proposal Template

45

Web Accessibility: An Evaluation of
CCSC Central Plains Participants’

University Home Pages∗

Michael Whitney, Stephen Dannelly
Department of Computer Science

Winthrop University
Rock Hill, SC 29733

Awhitneym@winthrop.edu, dannellys@winthrop.edu

Abstract

COVID-19 required students, faculty, and staff to move quickly into
the digital world. While the legal requirements for equal access to the
digital world have existed for years, the rapid transition might have in-
troduced some unexpected barriers. For persons with disabilities, these
barriers can be the deciding factor as to whether or not participation
occurs. Like many universities, we offer a degree program that concen-
trates on web development. One of the many topics that students learn
is how to develop websites that conform to international standards for
accessibility. But do our universities practice what we teach? This paper
presents an analysis of how well the home pages of universities that par-
ticipated in the 2019, 2020, and 2021 CCSC Central Plains Conference
comply with accessibility standards.

1 Background

Universities’ attention to web accessibility standards serves two purposes. First,
our graduating students need to be proficient in the practices and procedures
needed to develop and maintain online resources that align with industry stan-
dards and abide by government regulations for online accessibility. Second, it

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

46

is important that all abled and disabled students have equal access to online
college and university offerings. Because of the 2017 changes to legislation,
reviewed below, and the rapid expansion into the digital world due to COVID-
19, we have modified how we teach digital accessibility. During this time, we
became interested in how institutions are complying with the new standards
during COVID. We intend to share with our fellow professors an overview
of the web accessibility standards and examine how well our institutions are
complying with these standards.

Congress enacted Section 504 of the 1973 Rehabilitation Act [10] and Title
II of the Americans with Disabilities Act [8] to ensure persons with disabilities
have equal opportunities to participate in the post-secondary education expe-
rience. Because both statutes pre-dated our digital world, Congress moved to
address digital accessibility barriers by passing the Section 508 Rehabilitation
Act Amendment in 1998 [11] for which web accessibility standards were en-
acted by the U.S. Access Board in 2000 [5]. Section 508’s web accessibility
standards consisted of 16 guidelines. These guidelines included guidelines for
issues such as captions for videos, descriptions for pictures, and avoiding the
use of seizure-inducing flicker elements. As there are only 16 accessibility ar-
eas to address, compliance does not necessarily constitute functionality for a
person with a disability.

During the same time, the World Wide Web Consortium created the Web
Content Accessibility Guidelines 1.0 which were then updated in 2008 (WCAG
2.0). These guidelines go into much greater depth than Section 508. With a
focus on usability, WCAG 2.0 [7] organizes its guidelines into four principles
of accessibility: perceivable, operable, understandable, and robust. For exam-
ple, alternative text makes an image perceivable to those who are blind. An
example of operability might be providing multiple means to activate buttons.
To expand, if a button could only be activated with a click, then the button
would not be operable to persons who do not use a mouse such as someone who
is blind. The last two guideline categories are related to understandable and
robust. Directions on how to use controls make them understandable and an in-
terface is robust when it works on many devices. The 61 WCAG 2.0 guidelines
include 3 levels of compliance: A (lowest - 25 guidelines), AA (13 guidelines),
and AAA (highest - 23 guidelines). Each level requires conformance to the
previous level.

In January 2017, the U.S. Access Board [4] modified Section 508 by replac-
ing the previous guidelines with WCAG 2.0 Level A and Level AA. By doing
so, U.S. digital accessibility standards became better aligned with international
standards. Concerning WCAG 2.0, the World Wide Web Consortium contin-
ues to evolve WCAG and at the time of this research, newer versions were
available. However, WCAG 2.0 is the standard supported by the U.S. Access

47

Board at this time.
Because the U.S. has required WCAG 2.0 for a few years, educators should

(if they have not already done so) examine their instructional practice and
modify/update as needed. Appropriately, this would include an update on
assessment tools and their usage, accessible design practices, and usability
testing. In addition, universities should review their policies and practices to
stay in compliance. To this end, understanding the current state of university
web site accessibility will assist both instructors and administrators.

2 Methodology

Our sample of college and university web sites is based on participants in the
2019, 2020, and 2021 CCSC Central conference. The conference participants
included the Regional Board, the Conference Steering Committee, reviewers,
and authors from 19 colleges and universities in the Iowa, Kansas, Nebraska,
and Missouri region. We examined the home pages of those 19 institutions
using three accessibility evaluation tools.

To assist developers in complying with standards, W3C provides a list of
159 Web accessibility evaluation tools that “help you determine if web content
meets accessibility guidelines” [6]. Some assessment tools are free to use, while
some charge a fee. Some require registration and some do not. Different
tools check a variety of different standards, from US government Section 508
compliance to German government requirements. The majority of the tools
check for WCAG 2.0 compliance.

Automated tools are not capable of checking all compliance requirements.
Therefore, a human must manually ascertain the accessibility of multiple ele-
ments. For example, WCAG 2.0 standard 1.2.2 (level A) specifies audio and
video media should have captions. That check requires a human to watch the
video or listen to the audio to determine if captions exist and match the audio.
There are more manual checks in WCAG 2.0 than in the first version of Section
508. Thus, institutions, instructors, and students should plan to spend more
time manually checking their web pages.

Our criteria when selecting an automated tool from W3C’s list included free
use, easy to use, check against the WCAG 2.0 standard, provide a breakdown
report of significant accessibility issues, map issues to the WCAG 2.0 standard,
provide an accessibility score, and require no registration. We found no single
tool provided us with everything we sought.

We used the AInspector WCAG Firefox Browser add-on from the University
of Illinois at Urbana-Champaign [9] to assess websites against a set of WCAG
2.0 accessibility tests. This add-on is based on the Functional Accessibility
Evaluator (FAE) 2.2 [2] which also analyzes web pages for requirements defined

48

by the W3C Web Content Accessibility Guidelines 2.0 Level A and AA Success
Criteria [7]. Once installed, the AInspector runs alongside the visited web page
and provides a summary report that allows users to explore violations and the
recommended resolutions. Results are categorized as “Violations”, “Warnings”,
“Manual Checks”, and “Passed”.

For a second opinion, we used A-Checker [1]. We found A-Checker’s output
to be user friendly, particularly in identifying specific standards that were not
met. At achecker.ca/checker/, the user enters a URL to analyze, and the
system provides separate tabs for “Known Problems”, “Likely Problems”, and
“Potential Problems”. We based our results on the types of Known Problems
for WCAG 2.0 levels A and AA.

For a third opinion, we used TAW [3], from the Information and Commu-
nication Technology Centre Foundation (CTIC) in Spain, also applies a set of
WCAG 2.0 accessibility tests to websites. At the page https://www.tawdis.net
the user enters the URL of the page to be checked. Results are categorized
as “Problems” (corrections are needed), “Warnings” (a human review is neces-
sary), and “Not Viewed” (Full manual review). We based our results on TAW
“Problems”.

3 Scoring

Our evaluation looked at three factors. First, we used AInspector to determine
how many WCAG 2.0 Level AA areas a website failed to meet. Second, we used
AInspector results to build a score based on the total amount of automated
results that were found to either be “Pass” or “Violation” (fail). The score is
calculated as follows: pass / (pass+violation) * 100. For example: passing 59
tests and failing 16 tests = 59 / (59+16)*100 = 78.66%. This score would
include multiple violations in the same category (e.g., 12 different pictures
without alt tags counted as one violation).

These scores are a bit deceiving as the scoring system does not include
manual checks, some involving human judgement. For example, a human is
required to determine if an image needs a long description (typically no). In
addition, failing an automated check might not constitute the loss of page
functionality. For example, an image that does not express any meaning, such
as a decorative list marker, might not have an alt tag (in this case the alt tag
should be alt=“”). Users with visual impairments can still interact with that
page.

We tested AInspector, A-Checker, and TAW on an old web page built by
paper author Anonymous that was never written without any consideration
to accessibility. Our score using AInspector data for the course web page was
30.76%. The page failed 9 tests, had 2 warnings, needed 20 manual checks, and

49

passed 4 tests. One test found multiple instances of outdated HTML tags e.g.,
using for bolding instead of . AInspector found the course page
violated multiple WCAG 2.0 standards. Some of which include: missing alt
text for an image (1.1.1 - A), a navy blue text on a tan background (standard
1.4.3 - level AA), incorrectly nested section headings (3.2.3 - AA), and the page
does not indicate its language (3.1.1 - A) to name a few.

AInspector, A-Checker, and TAW do not always agree on what constitutes
a problem. Take the following HTML as an example (non-nested heading):

<body>
<h4>Non-nested heading </h4>

A-Checker is okay with that heading. But AInspector reports:
Violation - 1.3.1 - Adjust the level of the h4 element or other heading

elements so that the headings are properly nested on the page.
TAW reports:
Problem – 1.3.1 - No h1 element in the document
AInspector and TAW are more strictly interpreting Adaptable Guideline

1.3.1 - “Info and Relationships: Information, structure, and relationships con-
veyed through presentation can be programmatically determined or are avail-
able in text. (Level A)”. TAW indicates the need for an h1 but this would not
solve the nesting problem. AInspector’s recommendation is more specific and
the problem would be resolved if the recommendation was applied.

4 Results

Table 1 shows the results from analyzing the home pages of the 19 colleges
and universities in our testbed. The table lists the name of each institution,
AInspector results, A-Checker results, and TAW results.

Manual checks are part of every accessibility evaluation process. As indi-
cated previously, the new guidelines are more comprehensive and thusly require
more manual checking. To this end, Table 2 contains an average of identified
manual assessments needed for WCAG 2.0 level AA as identified by AInspec-
tor, A-Checker, and TAW. The average of manual checks was based on the
number of “Warnings” and “Manual Checks” for all schools. These averages do
vary because each tool counts manual checks differently. On one end, AInspec-
tor groups similar checks into a single manual check, and on the other end,
A-Checker lists all the checks individually. TAW does a little of both.

Table 1 shows the results from analyzing the home pages of the 19 colleges
and universities in our testbed. The table lists the name of each institution,
AInspector results, A-Checker results, and TAW results.

50

Manual checks are part of every accessibility evaluation process. As indi-
cated previously, the new guidelines are more comprehensive and thusly require
more manual checking. To this end, Table 2 contains an average of identified
manual assessments needed for WCAG 2.0 level AA as identified by AInspec-
tor, A-Checker, and TAW. The average of manual checks was based on the
number of “Warnings” and “Manual Checks” for all schools. These averages do
vary because each tool counts manual checks differently. On one end, AInspec-
tor groups similar checks into a single manual check, and on the other end,
A-Checker lists all the checks individually. TAW does a little of both.

Table 1: 2021 CCSC Central Plains Website Assessment Results

AInspector A-Checker TAW
Pass Fail Score Fail Fail

Drury University 20 9 68.9% 49 26
Fayetteville State University 24 11 68.5% 3 53
Fort Hays State University 28 6 82.3% 2 26
Grinnell College 33 6 84.3% 8 15
Kansas State Polytechnic 26 5 83.8% 8 25
Lincoln University 18 7 72.0% 48 48
Missouri State University 30 4 88.2% 1 26
Missouri Western State University 29 5 85.2% 16 26
Northwest Missouri State University 28 6 82.3% 9 6
Park University 20 6 76.9% 0 32
Saint Louis University 26 3 89.6% 0 32
St. Charles Community College 7 5 58.3% 0 16
Truman State University 16 8 66.6% 28 24
University of Missouri – St. Louis 25 11 69.4% 46 228
University of Missouri Kansas City 26 5 83.8% 6 32
University of Nebraska-Lincoln 26 6 81.2% 1 26
Washburn University 33 5 86.8% 4 33
Washington University 26 2 92.8% 2 25

Table 2: Average of Manual Checks and Warnings based WCAG 2.0

AInspector
Warnings and Manual

Checks

TAW
Warnings and Manual

Review

A-Checker
Likely Problems and Potential

Problems
16.53 55.26 142.08

51

5 Discussion

Of the home pages we evaluated, many schools obtained scores above 80%. Of
this group, the top four were Washington University, St. Louis University, Mis-
souri State University, and Washburn University. While their pages contained
violations, many of the violations can be easily remedied. For example, using
the HTML tag for bold instead of the more recent tag . Further
inspection of home pages with lower AInspector scores and higher numbers of
failed WCAG 2.0 standards revealed a few significant accessibility problems.
Examples include images without alt tags, forms without labels, and buttons
that require the use of a mouse, therefore excluding persons with visual dis-
abilities from fully interacting with the home page.

When assessing and updating a page for accessibility, manual checks do
consume time but reveal barriers that were not found with an automated tool.
As shown in Table 2, the average number of warnings and potential problems
varies depending on the tool. As mentioned previously, this can be deceiving
as one tool lumps issues into a single category while another tool counts all
of the issues. Upon closer examination, the total amount of potential issues
found is pretty close across the board. When considering the amount of time
needed to perform the manual checks, many of the checks can be completed in
a quick fashion (e.g. image might contain text that is not in alt text or link
may not be meaningful), but the time needed to assess a webpage is going to
be increased.

We also found differences in the way different tools judge accessibility.
While we focused on three tools, other tools gave slightly different results.
The WCAG 2.0 standard leaves room for interpretation. It is easy to imagine
students or accessibility officials at any institution testing a variety of tools to
find the tool that gives their work the best review.

Any instructor that has used a rubric knows that sometimes the rubric
fails. Occasionally a project from one student might check more boxes on the
rubric than a more impressive project from another student. Does having a
simpler, more generic home page help a university’s accessibility score for their
homepage? In short, no. In fact, the three best performers’ homepages are (in
the opinion of the authors) more engaging and more attractive than the three
lowest-rated homepages. Accessibility does not require sacrifices in design.

Creating a score for accessibility was difficult as, admittedly, our formula
does not include manual checks. As instructors, we feel compelled to provide a
score to something we have assessed. When assessing any given work, instruc-
tors typically appreciate a scoring rubric. To this end, we intend on developing
a rubric to help with the assessment of websites. When considering how to
score pass and fail findings, we intend to weigh WCAG 2.0 Level A guidelines
more than Level AA guidelines. But how to factor in manual check issues is not

52

yet determined. Beyond developing a rubric, we also plan to develop our assess-
ment tool aimed at student users. Future work also includes the development
of a paper describing how we integrate accessibility into the curriculum.

References

[1] A-checker web accessibility checker. https://achecker.achecks.ca/
checker/index.php/. Accessed 2021-11-29.

[2] Functional accessibility evaluator (FAE) 2.2. https://fae.disability.
illinois.edu/. Accessed 2021-11-29.

[3] TAW. https://www.tawdis.net/. Accessed 2021-11-29.

[4] United states access board: About the update of the section 508 standards
and section 255 guidelines for information and communication technology.
https://www.access-board.gov/ict.html. Accessed 2021-11-29.

[5] United states access board: Electronic and information technology ac-
cessibility standards. https://www.federalregister.gov/documents/
2000/12/21/00-32017/electronic-and-information-technology-
accessibility-standards. Accessed 2021-11-29.

[6] World wide web consortium: Web accessibility evaluation tools list. http:
//www.w3.org/WAI/ER/tools/. Accessed 2021-11-29.

[7] World wide web consortium: Web content accessibility guidelines (wcag)
2.0. https://www.w3.org/TR/WCAG20/. Accessed 2021-11-29.

[8] Americans with Disabilities Act of 1990. 42 U.S.C. § 12101 et seq. (2009).

[9] J. Gunderson and N. Hoyt. AInspector WCAG. https:
//addons.mozilla.org/en-US/firefox/addon/ainspector-wcag/.
Accessed 2021-11-29.

[10] Section 504 of the Rehabilitation Act of 1973. 29 U.S.C. § 794 (2009).

[11] Section 508 of the Rehabilitation Act of 1973. 29 U.S.C. § 794 (2009).

53

A Snapshot of Current and Trending
Practices in Mobile Application

Development∗

Michael P. Rogers1, Jonathan Gratch2

1Computer Science Department
University of Wisconsin Oshkosh

Oshkosh, WI 54901
mprogers@mac.com

2Computer Science and Informatics
Texas Woman’s University

Denton, TX 76204
jgratch@twu.edu

Abstract

Mobile application development is a rapidly and continually evolv-
ing field. There have been dramatic changes, in some case complete
paradigm shifts, in the underlying technologies. But what about mo-
bile application development courses? Have they kept pace with those
changes? In the summer of 2021, mobile application development in-
structors were surveyed to examine what content is being taught, what
technologies are being used, and what pedagogies have been selected.
This paper provides a description of how mobile application develop-
ment technologies have evolved since the last major survey on the subject
nearly a decade ago, then describes the findings of our survey. Results of
this research will be of particular benefit to instructors who are a) tasked
with designing a course on mobile application development; b) currently
teaching a course and interested in ensuring that their curricula remain
relevant/appropriate, and c) making an argument for resources to im-
prove the classroom experience.

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

54

1 Introduction

It is no exaggeration to say that mobile devices have become ubiquitous in re-
cent years, with the number of smartphones worldwide surpassing 6 billion and
predicted to increase by several hundred million more in the next few years [9].
This growth has been fueled by the apps on those devices, and in industry there
has consequently been a commensurate rise in the demand for sophisticated,
polished mobile apps that can be rapidly developed and modified. Meeting
this demand has become possible largely due to dramatic changes, in some
case complete paradigm shifts, in the underlying technologies used to develop
apps. But what about mobile application development courses? Have they
kept up with these changes, i.e., are we meeting the needs of our students’
future employers, and how is the pedagogy evolving? There are no good recent
surveys to address these questions, the answers to which are absolutely vital
for those teaching the subject. Faced with these questions, we created a new
survey aimed at capturing a snapshot of the current curricular, technological
and pedagogical practices in use within mobile app development classes.

1.1 Terminology

Throughout this paper, we follow convention and broadly categorize mobile
apps as native, cross-platform, or web-based. Native apps are developed using
the Software Development Kit (SDK) and tools provided by the maker of the
operating system, and the binaries that result run only on that specific plat-
form. Cross-platform apps, in contrast, use a single codebase to create binaries
that will run, and provide the same user experience, on multiple platforms. Fi-
nally, web-based apps run within the confines of a web browser: because their
development is quite distinct, however, and is typically taught in a separate
course, they were omitted from the survey.

1.2 Background

One way to grasp the Darwinian nature of the mobile landscape is to look
back at a comprehensive review of mobile application development and its
integration into computer science courses [4] in 2012. Then, native apps could
be developed for iOS, Android, Windows Phone and Blackberry (the latter
two have been discontinued). SDKs for both iOS and Android were available,
based on the programming languages Objective-C and Java (the SDKs have
grown considerably, and their respective preferred development languages are
now Swift and Kotlin). In 2012, cross-platform apps could be created using
Apache Cordova (PhoneGap) and TouchDevelop (the former was abandoned
by its original champion, Adobe [1], although it lives on as an open source

55

project; the latter is defunct). Web apps, common in 2012, continue to be so
today.

Burd et. al. [4] further found that in 2012, mobile computing had been
incorporated into computer science programs in many ways - from inclusion
as units within courses all the way to standalone courses. One of the primary
challenges in standalone mobile app development courses was that they were
typically upper level courses and were introduced late in a student’s course
of study [10, 6]. Their late appearance in the curricular sequence in many
programs was indicative of the constant change in content and requirements
that students be knowledgeable in many areas, including database, network-
ing, and HCI concepts. The timing of the course, the choice of platform(s)
and the content selected for the course (e.g., native versus cross-platform) all
presented challenges for instructors. The importance of all these considerations
was highlighted by the creation of a separate knowledge area on Platform-Based
Computing in the ACM/IEEE Curriculum 2013 report [11].

Since 2012, we have witnessed a proliferation and maturation of cross-
platform tools used in mobile app development [3]. Flutter (from Google,
programmed in Dart), Xamarin Forms (Microsoft, C#), React Native (Face-
book, JavaScript) and NativeScript (OpenJS Foundation, JavaScript) are the
most popular general-purpose examples [7], but the two most prevalent major
game engines (Unity, Unreal Engine) are also cross platform.

Previous common objections to cross-platform SDKs, primarily a) their in-
ability to access on- device sensors and databases, and b) deviations from the
canonical user interface standard produced by the native SDKS, have been
largely dealt with. Modern cross-platform apps can access sensors (GPS, ac-
celerometer, compass, gyroscope, camera) and tap into the encrypted key-
chain/keystore services provided on their respective systems. In addition,
cross-platform apps can be developed that are visually and functionally vir-
tually indistinguishable from their native counterparts.

1.3 User Interface Paradigms

One of the most challenging aspects of app development is managing and main-
taining an app’s data or state. Native apps have traditionally been based on
imperative frameworks, meaning that when the state of the app changes, the
developer is responsible for explicitly changing the User Interface (UI) to re-
flect that; and conversely, if a user manipulates a control, the developer must
then use its value to update the state. Implementing the methods to accom-
plish this is relatively straightforward, and students grasp the concepts readily.
However, as apps increase in size, keeping the UI in sync with its state becomes
increasingly problematic.

The cross-platform SDKs have championed an alternative declarative ap-

56

proach. In this style of app development, the developer creates the UI, and
declares in code how the UI should look for a given value of state. When
the state changes, the UI is updated automatically. This eliminates an entire
category of bugs in which the UI fails to properly reflect state (or conversely,
when the UI is manipulated, state is not properly updated). This approach
has turned out to be so successful that both of the major native SDKs are now
transitioning towards this declarative UI style: Apple’s SwiftUI and Google’s
Jetpack Compose.

2 Survey Results

In the summer of 2021, we sent out a call to various mailing lists (includ-
ing SIGCSE, CCSC, CSTA, and EDUTECH), asking for instructors teaching
courses in mobile application development to complete a survey. We offered one
minor enticement, the option of being entered into a drawing for an Amazon
Gift Card, and one major one: the ability to contribute to our understanding
of the current state of mobile application development courses. We did not
specify a deadline. The survey covered course structure, content, tools, hard-
ware, and pedagogy, in a survey instrument consisting of 67 multiple choice
and multiple answer questions. The results were analyzed using SAS.

A total of 90 people responded to our request. Of those, 81 respondents
indicated that they delivered a full course (or module covering mobile appli-
cation development), and went on to complete the survey, thus providing a
valuable snapshot as to what is currently being taught in the classroom, and
how it is being taught. Respondents were primarily from the United States,
but responses were received from all over the world including Europe, Canada,
and Australia. Participants were mostly of instructors at the undergraduate
level, several high school and middle school educators participated. 97% of the
responses indicated that the educator was faculty at that institution.

2.1 Courses Overview

Most (90.1%) of our respondents taught mobile app development as a full
course; only 9.9% taught it as a component within another course. The courses
were typically 3 (56.3%) or 4 (27.5%) credit hours (or the equivalent in other
parts of the world); most (83.9%) were electives. They were mainly taught to
undergraduates (76.5%), or undergraduates and graduates (12.3%). The ma-
jority were structured as lecture and lab (56.8%), a significant number (40.7%)
were lecture only, and 2.5% were lab-only.

Nearly half (48.0%) of the courses were offered just once per year; 35.6%
were offered less frequently and the remainder, 16.4%, were offered every
semester. Considering the speed with which mobile app development changes,

57

the implication is that committing to the course is, for many, a commitment
to continual course revision.

Instructors were almost exclusively full-time faculty (86.4%). The majority
of classes were between 1-25 students (65.0%), with an approximately equal
number of respondents teaching classes of 26-50 students (16.3%) and 50-100
students (17.5%).

Reflecting the influence of COVID-19, 63.0% of courses were exclusively
face-to-face. Just under one-fifth (19.8%) were hybrid, a mixture of online and
in-person meetings; and 17.3% were completely online. Most (68.1%) of the
online courses were taught synchronously, with 21.3% asynchronous and the
remainder a combination of the two.

At first glance this area seems as well-suited as any in computer science
for hybrid or online delivery. However, as we will see in the pedagogy section,
many of the courses also involved a significant final project in which students
were organized in teams: and there are logistical advantages to having students
and instructors all in one room.

2.2 Native App Development versus Cross Platform Development

Table 1 shows what percentage of instructors taught native app development
in Android, iOS, or both, and what percentages were used by students devel-
oping apps. These numbers reflect the relative popularity of the two operating
systems [8] and also the more inclusive nature of Android development, which
can be conducted on Linux, macOS, and Windows computers: native iOS de-
velopment requires a macOS computer. There are cloud solutions to the latter
that we discuss later in this paper.

Table 1: Native App Development

Operating Taught/ Developed in Worldwide
System Discussed by Students Marketshare

Android 53.3% 56.4% 72.8%
iOS 13.05% 11.5% 26.3%
Both 27.3% 26.9% -
Neither 1.3% 1.3% -

Cross-platform app development was much less likely to be taught or dis-
cussed: only 40% of respondents indicated that they taught or discussed cross-
platform in their classes. Among industry developers the number is slightly
higher, approximately 50% use cross-platform technologies or frameworks, ac-
cording to a survey conducted by JetBrains in 2020 [5]. Our respondents roles

58

as early adopters is unsurprising given the natural curiosity, the academic free-
dom, imperative to keep up with new trends, and the clear advantages of
cross-platform in a resource-scarce environment such as academia.

Table 2 shows the most commonly taught or discussed cross-platform frame-
works, sorted in decreasing order of popularity. Also mentioned were App
Inventor 2, Codename One and Progressive Web Apps. It is interesting to
compare these numbers to the results on the industry usage of cross-platform
technologies from [5]. While only one of our respondents mentioned Ionic,
among developers 18% mentioned using it. None of our respondents taught
Apache Cordova, but 18% of industry developers had used it in 2020.

Table 2: Cross Platform App Development

Cross-platform Taught/ Industry
Framework Discussed Usage

React Native 30.6% 42%
Flutter 27.8% 39%
Xamarin Forms 22.2% 14%
Native Script 16.7% 5%
Ionic 2.8% 18%
Apache Cordova 0.0% 18%

2.3 Hardware

The iOS and Android simulators included with the SDKs are convenient, en-
abling students to run their apps on a wide range of virtual devices. However,
the interactions typically take place with a mouse or trackpad: to properly
evaluate an app requires testing on physical devices. The logistics involved in
ensuring that every student has access to a device are daunting and among
our respondents, only 59.0% mandated their use. When asked about pro-
vided hardware (Table 3), almost half (49.3%) provided none: among those
that did, more provided Android devices (the more predominant device) and
macOS computers (essential for iOS development, but the less common plat-
form among students). Another potentially less expensive way to gain access
to macOS hardware is via infrastructure-as-a-service providers, such as Mac
Stadium. A significant number (8.8%) of instructors indicated that they did
subscribe to such a service.

59

Table 3: Hardware Types Supported by Institution

Hardware Provided by Institution

Android 35.8%
iOS 9.9%
Computers (macOS) 9.9%
Computers (Windows) 4.9%
Computers (Chromebooks) 1.2%

2.4 Development Tools

Mobile app development courses can be an appropriate place in the curriculum
for providing exposure to a variety of development tools. Among the reported
Integrated Development Environments (IDEs), the most common were Android
Studio (77.2%), Visual Studio (10.1%), Visual Studio Code (17.7%) and Xcode
(31.6%).

Apart from IDEs and collaboration software, version control is one of the
most important software development tools, but if not properly used can lead to
disastrous results. This may explain why only 57.0% of respondents indicated
that their students use Git or other version control software. With its ubiquity
in industry as a fundamental tool in software development, our result suggests
the need for more instructors to teach and incorporate it in course assignments.

Among other development tools, collaboration tools were used by 17.7% of
students, issue management software by 6.3%; and prototyping tools by 11.4%.

2.5 Course Assignments

The majority of instructors favored project-based learning with an internal
or no client (67.5%), 28.8% characterized their classes as lecture-only and a
very few made use of an external client (3.8%). Smaller assignments tended
to be completed individually (76.2%), with 23.8% having their students work
in teams. Nearly all instructors had their students develop a significant final
project (95.0%). Of those, 66.2% had students work in groups, but more than
one-third (33.8%) had their students work individually.

Creating mobile apps requires in-depth knowledge of a broad range of top-
ics, and fitting all that into a single course can be challenging. Our respondents
appear to do a good job covering the mechanics: UI layout, storage (on de-
vice, and backend), and major APIs were all covered extensively (see Table
4). Topics that did not advance the immediate goal of app creation - notably
data privacy, data ethics, and mobile security, received little attention. Their
low representation in curriculum appear to be opportunities lost for growing

60

students in other aspects of software development for mobile application, es-
pecially mobile security and data privacy which are increasing concerns for
developers, users, and industry alike.

Deployment to an app store can be an rewarding experience for students,
and a positive way to end the semester, when their app is at last ready for
use by a client or the public. However, there are obstacles to this: a student
is required to pay a one-time fee for access to the store ($25 for Google Play,
$99 annually for Apple’s App Store), the deployment is a multi-step, somewhat
arcane process, and there is an expectation of quality among the submissions
that student projects may not rise to. Understandably, then, instructors in
the survey either just lectured/discussed it (45.1%), or did not cover it at all
(52.9%); only one respondent included it as part of a major assignment.

Table 4: Topic Coverage

Topic Lecture/ Major Minor Not
Discussion Assignment Assignment covered

Storage (on device) 71.8% 46.5% 56.3% 5.6%
Testing 66.7% 22.7% 28.8% 12.1%
Accessibility 63.3% 5.0% 23.3% 25.0%
Storage (backend) 60.9% 36.6% 35.9% 23.4%
Data Privacy 50.9% 1.7% 5.1% 42.4%
Security 48.2% 3.6% 1.8% 44.6%
Audio 47.1% 3.9% 29.4% 43.1%
Networking 46.6% 27.6% 24.1% 34.5%
Drawing 46.3% 11.1% 29.6% 44.4%
Data Ethics 46.3% 1.9% 13.0% 48.2%
Deployment to app store 45.6% 3.5% 0.0% 50.9%
Video 34.7% 2.0% 10.2% 53.1%
Bluetooth 23.5% 2.0% 5.9% 68.6%
VR/AR 19.6% 0.0% 2.0% 78.4%
Machine Learning 16.4% 1.8% 7.3% 78.2%

2.6 Declarative Frameworks

In the cross-platform realm, creating declarative UIs is the norm, but the ability
to do so using native SDKs is a relatively recent phenomenon. Considering the
amount of time required to retool a course, it is impressive that 17.6% of
instructors said that they taught SwiftUI (approximately 50% of those who
said that they taught iOS). A significantly smaller fraction, 10.0%, reported

61

that they taught the Android equivalent, Jetpack Compose. Table 5 indicates
the three primary reasons provided for avoiding SwiftUI (among those who
already teach native iOS) and Jetpack Compose (among those who teach native
Android). In the comments, instructors expressed concerns about the relative
complexity of the topic for students, the fact that the products are beta and “too
niche”. The reasons are certainly valid, but the trends suggest that instructors
need to be looking at this carefully.

Table 5: Reasons for not Teaching SwiftUI / Jetpack Compose

Reason for not teaching... SwiftUI Jetpack Compose

Unfamiliarity 48.18% 71.4%
Lack of time 29.6% 8.9%
Insufficient resources 14.8% 1.8%

3 Discussion

From our survey conducted in 2021, we found that current mobile app devel-
opment courses fell heavily in line with previous research conducted in 2012,
with the majority of courses being taught as an upper-level elective at the un-
dergraduate level. The placement of these courses toward the end of many CS
programs underscores the complex nature of mobile app development and the
wide knowledge base needed by students. Such placement means that the edu-
cator has more technological and pedagogical choices, and therefore decisions,
that must be made prior to teaching it.

The first technology decision involves the choice of mobile platform OS:
Android, iOS or both. The OS-agnostic nature of the Android SDK enables
development on Linux, macOS and Windows machines. In contrast, the iOS
SDK requires a macOS, Xcode-equipped machine. Therefore, the financial
barriers to using Android for development are generally lower than for iOS,
as educators and students can utilize almost any existing computing system.
Choosing iOS could require additional expenditures by the institution, or re-
quire students to acquire their own Apple Mac computers. Between this, and
the fact that Android has more marketshare, it was not surprising that the
educators responded with a large majority choosing the Android platform as
their development platform.

When it came to the decision of teaching native or cross-platform technolo-
gies, the former was clearly the preferred choice, as native technologies are far
more established, more familiar to educators, and appeal to potential indus-
try employers who can afford two specialized development teams. However,

62

cross-platform is gaining popularity in industry and in the classroom, being
heavily promoted by Facebook (React Native), Google (Flutter) and Microsoft
(Xamarin Forms and its successor, MAUI). Also, opting for the cross-platform
approach makes the first technology decision mentioned above moot: any de-
vice will do which is a huge benefit in resource-strapped academic environ-
ments. This is supported by our findings that while most of the respondents
preferred the more established native approach, a healthy 40% did teach or
discuss cross-platform in the classroom and represents a change from a decade
ago.

Declarative frameworks are being taught by relatively few instructors, with
the usual suspects - unfamiliarity, lack of time, and insufficient resources - be-
ing the major hurdles. Over time, however, the trend is clear: cross-platform
frameworks rely on declarative frameworks, and the native SDKs are gravitat-
ing towards them, so that at some point in the next few years courses will have
to evolve to teach this.

Accessible computing is not a new concept in computer science education
[2]. With people relying more and more on their mobile devices, the need to
bring awareness of accessibility in mobile app development classes is high. Our
result shows that accessibility was taught or discussed by 63.3% of respondents
while 25% responded with not covering this topic. We hope that the number
teaching this essential topic continues to trend upwards throughout mobile
application courses and CS education as whole so that we may close the gap
and design and develop apps that are accessible to all.

The technology that we teach is ephemeral, but the ability to learn, and
to work on teams, will always be critical to our students’ success in the work-
force. Our respondents understand that, as most have their students working in
groups to develop a significant final project, applying at least some of the tools
and practices that employers look for in graduates. Almost all have sidestepped
the perils involved in client-directed projects which are appropriate in a soft-
ware engineering course, but difficult to manage in a course that represents a
deep-dive into a specific technology.

4 Conclusions

Overall our survey of teachers of mobile app courses suggests that instructors
are teaching and students are learning most of the skills and concepts they
need to know to succeed in industry. Whereas some aspects of the mobile
app development course have remained the same for the past decade - partic-
ularly in the course’s placement in students’ program of study and the use of
native technologies, educators have transitioned to newer native development
technologies, such as Objective-C to Swift. Significantly more instructors are

63

focused on Android, in keeping with its share of the market and typically lower
barrier to entry, but iOS is not being ignored. The tools that employers expect
their developers to use are largely being taught, although not necessarily to the
extent that they could be. The vital experience that students need, such as
working in teams, is being provided in the majority. A substantial number of
instructors are tackling cross-platform frameworks, and even though natively
implemented declarative UIs are quite new, they too are getting significant
attention in the classroom.

All of these results will offer guidance to instructors who are:

1. tasked with designing a course on mobile application development;
2. currently teaching a course and interested in ensuring that their curricula

remain relevant/appropriate;
3. making an argument for resources to improve the classroom experience.

4.1 Future Work

This paper represents a snapshot of current mobile app development courses
based on survey results provided by educators who are currently teaching those
courses. It is an attempt to capture the curricula, pedagogical approach, and
technologies used by mobile app development instructors since the 2012 survey
[4]. We live in a world in which mobile is dominant, therefore it is crucial for
us to continue monitoring trends in mobile application development in both
the classroom and industry. To this end, we plan to periodically revise and
re-administer this survey in order to meet the needs of a global audience;
increase response rate through its distribution during the academic semester
(rather than the summer); and reduce survey fatigue by shortening the survey
and removing redundant items. To gather contextual information on course
design and practices we plan to interview a select number of participants. It
is our hope that instructors will take the results of this survey, compare it to
what they are doing, and on that basis make adjustments, if needed, to their
curricula.

5 Acknowledgements

We would like to thank the instructors who volunteered to beta test our survey,
and to those who took the time to complete the final version.

64

References

[1] Adobe. Update for customers using PhoneGap and PhoneGap build, Aug
2021. https://blog.phonegap.com/update-for-customers-using-
phonegap-and-phonegap-build-cc701c77502c.

[2] Catherine M. Baker, Yasmine N. El-Glaly, and Kristen Shinohara. A
systematic analysis of accessibility in computing education research. In
Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, SIGCSE ’20, page 107–113, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery.

[3] Andreas Biørn-Hansen, Tor-Morten Grønli, Gheorghita Ghinea, and Sahel
Alouneh. An empirical study of cross-platform mobile development in
industry. Wireless Communications and Mobile Computing, 2019, 2019.

[4] Barry Burd, João Paulo Barros, Chris Johnson, Stan Kurkovsky, Arnold
Rosenbloom, and Nikolai Tillman. Educating for mobile computing: Ad-
dressing the new challenges. In Proceedings of the Final Reports on In-
novation and Technology in Computer Science Education 2012 Working
Groups, ITiCSE-WGR ’12, page 51–63, New York, NY, USA, 2012. Asso-
ciation for Computing Machinery.

[5] JetBrains. The state of developer ecosystem 2020, Aug 2021. https:
//www.jetbrains.com/lp/devecosystem-2020.

[6] Amruth N. Kumar. Collateral learning of mobile computing: An experi-
ence report. In Proceedings of the 23rd Annual ACM Conference on Inno-
vation and Technology in Computer Science Education, ITiCSE 2018, page
27–32, New York, NY, USA, 2018. Association for Computing Machinery.

[7] Shanhong Liu. Cross-platform mobile frameworks used by
software developers worldwide from 2019 to 2021, Aug 2021.
https://www.statista.com/statistics/869224/worldwide-
software-developer-working-hours/.

[8] S. O’Dea. Mobile operating systems’ market share world-
wide from January 2012 to June 2021, June 2021. https:
//www.statista.com/statistics/272698/global-market-share-
held-by-mobile-operating-systems-since-2009/.

[9] S. O’Dea. Smartphone subscriptions worldwide 2016-2021, Aug
2021. https://www.statista.com/statistics/330695/number-of-
smartphone-users-worldwide/.

65

[10] Roy P. Pargas, Punit Kulkarni, Greg Edison, and Barbara J. Speziale.
Teaching mobile app software development is a challenge! (abstract only).
In Proceedings of the 45th ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’14, page 721, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery.

[11] M Sahami and S Roach. ACM/IEEE-CS joint task force on computing
curricula (2013). Computer science curricula, 2013.

66

Flutter: n Platforms, 1 Codebase, 0
Problems∗

Workshop

Michael P. Rogers1, Bill Siever2

1Computer Science Department
University of Wisconsin Oshkosh

Oshkosh, WI 54901
mprogers@mac.com

2McKelvey School of Engineering
Washington University in St. Louis

St. Louis, MO 63130
bsiever@wustl.edu

Flutter is an open-source, cross-platform development kit from Google that
allows developers to create apps for iOS, Android, web, and desktop, from a
single codebase.

Flutter takes a modern approach to app development. The SDK is based
on a declarative UI paradigm that is widely used in the workforce. Apps
are written in Dart, a modern, strongly typed, easy-to-learn language that
reinforces good coding habits. Development can be done in Visual Studio
Code, which students appreciate for its flexibility and simple interface.

Flutter allows instructors to sidestep the issue of what platform to target:
students with any smart phone and operating system can now participate,
sparing the university from having to provide a development environment. It
provides a vehicle and means for introducing declarative UI design into the
curriculum, so that when students do see this in industry, they will be prepared
for it.

This technology could be used in a mobile computing class, a software
engineering / capstone class, or any other situation where students need to
develop for multiple platforms.

In this workshop, participants will be introduced to the language, tools, and
paradigms that drive Flutter, and provided with tips, based on the presenters’
experience, on how best to incorporate this SDK into the curriculum.

∗Copyright is held by the author/owner.

67

A Way to Visualize Higher Dimensional
Arrays, Matrices, and Spaces∗

Nifty Assignment

Cong-Cong Xing1, Jun Huang2

1Department of Mathematics-Computer Science
Nicholls State University

Thibodaux, LA 70310
cong-cong.xing@nicholls.edu

2Department of Computer Science
Baylor University
Waco, TX 76798
huangj@ieee.org

Students deal with multi-dimensional arrays/matrices/spaces (AMSs) rou-
tinely in computer science and math courses. Generally speaking, students
have a clear image in their minds about lower dimensional (1-d to 3-d) AMSs,
but they have trouble in visualizing what a higher dimensional (and thus ab-
stract) AMS may look like. The purpose of this nifty assignment is to provide a
way for students to “see” the higher dimensional AMSs or make these abstract
entities concrete.

The connection between arrays in computer science and matrices in math
is obvious: an n-d array can be equivalently viewed as an n-d matrix, which,
in turn, can be viewed as sitting in an n-d space (e.g., Rn or Nn). While
students have no problem of picturing a lower dimensional AMS — a 1-d AMS
is a line of numbers, a 2-d AMS is a table of numbers, and a 3-d AMS is a
cube of numbers — they do have difficulties in doing so for a higher (> 3-d)
dimensional AMS, and textbooks typically do not address this issue (as far
as we know). However, being able to visualize higher dimensional AMSs is
important in terms of learning and understanding anything related to these
abstract entities in both computer science and math. Toward providing such
a visualizing tool, we propose the following conceptual viewpoint of 2-d arrays
and devise a related programming assignment in Java to let students “verify”

∗Copyright is held by the author/owner.

68

the correctness of this viewpoint by completing the assignment: a 2-d array is
a 1-d array of 1-d arrays. For example, the following 3×4 2-d array x[][] on
the left can be viewed as a 1-d array in the middle which consists of 3 elements
a,b,c, where each of the 3 elements itself is a 1-d array of 4 elements as shown
on the right.

x[][]: 3 4 5 4 x[0] = a a = 3 4 5 4
1 2 9 8 x[1] = b b = 1 2 9 8
3 1 7 6 x[2] = c c = 3 1 7 6

The related programming assignment asks students to pass one of the 3 ele-
ments in the middle array (say, x[1]), as an argument to a method that takes a
1-d array as parameter and and performs some actions on this array parameter
(e.g., reverse the order of its elements), to see that x[1] indeed can be treated
as a 1-d array. Once students are convinced that a 2-d array can be thought of
as a 1-d array of 1-d arrays, this idea is extended to 3-d arrays. That is, a 3-d
array can be regarded as a 1-d array of 2-d arrays, as shown below where the
3×3×4 3-d array x[][][] on the left can be viewed as a 1-d array of 3 elements
a, b, and c, and each of them is a 3×4 2-d array.

2 4
1

9 4 26
813

73

3 6
5

3 4 26
813

92

2 4
1

2 4 26
817

70 2 4
1

9 4 26
813

73 3 6
5

3 4 26
813

92 2 4
1

2 4 26
817

70

x[0] = a x[1] = b x[2] = c

a

b

c

x[][][]

a 3-d array

Along the same line, this idea is expanded to higher dimensional arrays.
Specifically, a 4-d array is a 1-d array of 3-d arrays. An example of a 4×3×3×4
4-d array is given below which shows that the 4-d array x[][][][] is a 1-d array
of 4 elements a, b, c, and d, where each of them is a 3×3×4 3-d array. In
particular, the element specified by x[2][0][1][3] (boldfaced in the array) can
be found in the following way: the first index [2] indicates that the element
being sought is in the third element x[2] of the 1-d array represented by x, the
next three indexes [0][1][3] tell us how to pinpoint the element in the 3-d array
represented by x[2] (which is easy to do since we are in a 3-d array now).

2 4
1

9 4 26
313

73

3 6
5

3 4 26
813

92

2 4
1

2 4 26
817

70

x[][][][] a 4-d array

2 2
1

9 4 26
715

53

2 6
5

3 4 24
873

92

2 5
1

3 4 16
819

70

2 4
7

9 4 26
816

78

3 6
5

3 4 26
857

98

2 4
1

2 4 50
819

70

1 4
0

9 4 26
016

70

3 9
5

3 4 26
011

92

2 4
1

2 3 27
896

77

x[1] = bx[0] = a x[2] = c x[3] = d

As the final example, a 3×4×3×3×4 5-d array is given below illustrating
the notion that a 5-d array is a 1-d array of 4-d arrays.

69

2 4
1

9 4 26
813

73

3 6
5

3 4 26
813

92

2 4
1

2 4 26
817

70

x[][][][][] a 5-d array

2 2
1

9 4 26
815

53

2 6
5

3 4 24
873

92

2 5
1

3 4 16
819

70

2 4
1

9 4 26
814

78

3 6
5

3 4 26
857

98

2 4
1

2 4 50
819

70

1 4
1

9 4 26
816

70

3 9
5

3 4 26
011

92

2 4
1

2 3 27
896

77

2 3
1

9 4 24
812

45

3 6
5

3 4 26
816

42

2 4
6

2 4 24
847

70

2 6
1

9 4 66
814

53

2 6
5

3 4 21
844

92

2 5
1

3 4 14
864

70

2 6
1

9 4 26
815

78

4 6
5

7 4 26
874

78

2 4
1

2 4 57
816

70

1 6
1

9 4 26
817

70

3 9
5

3 4 26
017

92

2 4
1

7 3 27
898

77

2 4
1

9 4 22
813

78

3 6
5

3 4 41
812

92

2 4
1

2 4 82
827

70

2 2
1

9 4 26
815

03

2 6
5

3 1 24
874

98

2 5
1

3 4 86
710

70

2 4
1

9 4 27
874

70

3 6
5

3 7 26
857

98

2 4
1

2 4 87
817

70

1 0
1

9 4 26
815

70

3 9
5

3 4 37
015

92

2 4
1

2 5 28
856

77

x[0] = a

x[1] = b

x[2] = c

4-d array

4-d array

4-d array

This assignment was given and discussed in a freshman-level introductory
Java programming class, and students’ responses were basically that they had
no idea about how to picture a 4-d AMS until now. Potential benefits from
this assignment are summarized as follows.

• It provides a concrete approach for students to visualize and analyze
abstract higher dimensional AMSs.

• Since the central idea of this approach is that an n-d AMS can be decom-
posed to a 1-d AMS and multiple (n− 1)-d AMSs, its connection to the
notions of recursion and mathematical induction is apparent. As such,
this approach may lay some preliminary foundation for students’ future
studies in recursion and mathematical induction.

• Although the assignment asks students to verify that a 2-d array can be
regarded as a 1-d array of 1-d arrays, it can be easily adapted to work
with 3-d (or higher dimensional) arrays in the same fashion. Namely,
students can be asked to decompose a 3-d array x[][][] into a 1-d array
of 2-d arrays, and pass one of the x[i]’s as the argument to a method
that requires a 2-d array parameter and does some operations to the
parameter, to validate the correctness of this notion.

We hope that this assignment can be found useful by colleagues.

70

Challenges Developing and Teaching
Online Professional Courses for Technical

Graduate Programs ∗

Panel Discussion

Ajay Bandi, Denise Case, Nathan Eloe,
Aziz Fellah, Charles Hoot

Northwest Missouri State University
Maryville, MO 64468

{ajay, dcase, nathane, afellah, hoot}@nwmissouri.edu

This panel discussion will focus on experiences and recommendations from
faculty designing and teaching online professional courses for a technical grad-
uate program. Teaching in any field where content evolves quickly can be
demanding. Add in the complexities of online, asynchronous instruction with
remote students in highly varied environments with diverse backgrounds, and
course development and production can become challenging[1, 3]. Program-
ming languages evolve, tools get updated, online instructions change links, and
providing current, concise, yet comprehensive assistance can be surprisingly
difficult.

Professional students are often intelligent and successful but may have little
formal training with computers[2]. Assuming a comfort level with common
computer tasks may lead to surprises for the instructor. Not all students are
comfortable (at first) with creating folders and files, understanding paths, or
finding files stored under their username. Alternatively, some students have
long since mastered these tasks and don’t need remediation or foundational
instructions. Multiple environments may be needed, each with slightly different
installations and tools, e.g., cloud service providers, Mac, Linux, and Windows.

Recommendations from this discussion will help educators engage more
effectively in this increasingly popular mode of instruction.

∗Copyright is held by the author/owner.

71

References

[1] Charles Badami, Ajay Bandi, Denise Case, Aziz Fellah, and Mahmoud Yousef.
Engaging graduate students during the pandemic: panel discussion. Journal of
Computing Sciences in Colleges, 36(6):78–79, 2021.

[2] Carla Brodley, Megan Barry, Aidan Connell, Catherine Gill, Ian Gorton, Ben-
jamin Hescott, Bryan Lackaye, Cynthia LuBien, Leena Razzaq, Amit Shesh, et al.
An MS in CS for non-CS majors: Moving to increase diversity of thought and
demographics in CS. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, pages 1248–1254, 2020.

[3] Xi Lin and Li Gao. Students’ sense of community and perspectives of taking syn-
chronous and asynchronous online courses. Asian Journal of Distance Education,
15(1):169–179, 2020.

72

Teaching Multiple Graduate Sections
with Large Class Sizes ∗

Panel Discussion

Ajay Bandi, Denise Case, Nathan Eloe,
Aziz Fellah, Charles Hoot

Northwest Missouri State University
Maryville, MO 64468

{ajay, dcase, nathane, afellah, hoot}@nwmissouri.edu

This panel discussion will focus on how educators manage multiple sections
with large class sizes (∼60) to achieve student learning outcomes. Graduate
enrollment has tripled in the fall 2021 semester in several universities within the
US. It is challenging for educators to focus on every student in a large section
every day. The discussion looks at various teaching practices and approaches
that can help students learn programming skills in this environment. The
panel also addresses the assessment and evaluation strategies for multiple large
sections. We will look at how we managed the technical performance issues in
the Canvas learning management system when 300 students tried to take an
exam at the same time. In addition, classroom engagement was encouraged
through small group discussions and collaborations using the GitHub version
control system with approximately 60 pull requests per section per day. Each
student provided a unique contribution to the source code where the whole
class was working on a large project. While it has several challenges, students
learned to communicate with others to push their code. The recommendations
from this panel will help educators to teach and modify their pedagogy for
large sections without compromising the necessary competencies.

∗Copyright is held by the author/owner.

73

