
The Journal of Computing
Sciences in Colleges

Papers of the 31st Annual CCSC
Central Plains Conference

April 4th-5th, 2025
Drake University
Des Moines, IA

Bin Peng, Associate Editor Joan Gladbach, Regional Editor
Park University University of Missouri Kansas City

Volume 40, Number 6 April 2025

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 7

CCSC National Partners 9

Welcome to the 2025 CCSC Central Plains Conference 10

Regional Committees — 2025 CCSC Central Plains Region 11

Reviewers — 2025 CCSC Central Plains Conference 14

Accessible Computing: What Every CS Educator Should Know
— Opening Keynote 15

Dr. Meredith Moore, Drake University

AI Engineering: Lessons from the Frontlines
— Banquet Speech 17

John Emmons, Salesforce

Adapt DevOps Method to Information Systems Capstone Course
Projects 18

Gary Yu Zhao and Cindy Zhiling Tu, Northwest Missouri State Univer-
sity

Improving Student Success Through Parachuting 29
Chris Bourke and Nirnimesh Ghose, University of Nebraska–Lincoln

Getting Your Hands Dirty: Teaching an IoT Course with an In-
terdisciplinary Component 39

Nathan W. Eloe and Alexander W. Taylor, Northwest Missouri State
University

Creating a Consolidated 3-in-1 Multi-B.S. Program Structure
in a Resource-Limited Computer Science & IT Department to
Achieve ABET Accreditation for All Three Programs 46

Kriti Chauhan, Katherine Lehtola, Dylan Hulon, Antoni Sayre, James
Church, and Leong Lee, Austin Peay State University

A Comparison of Different Lab Environments for Digital Foren-
sics Course 55

Zhengrui Qin, Northwest Missouri State University

3

Impact of COVID-19 on Live-Coding in First-Year Computer Sci-
ence Education: A Literature Review 65

Sourabh Kulkarni, Abbas Attarwala, and Jaime Raigoza, California State
University, Chico

Developing an Enterprise Application Tool to Discover Midwest
Job Trends 75

Chandra Prakash Bathula and Maria Weber, Saint Louis University

Domino Tilings: Projects and Assignments for Students 90
Keith Brandt and William P Klasinski, Rockhurst University

Pedagogical Evaluation of Generative AI Course for Technolo-
gists 99

Ajay Bandi, Northwest Missouri State University

The Impact of Course Modality and Size on Learning Outcomes:
Applying IaC Principles in IS/Cyber Graduate Course Design 111

Annamaria Szakonyi, Saint Louis University

Remote Protocol Analysis Lab — Nifty Assignment 121
Michael Ham, Dakota State University

Dynamic Bracketology with C++ AI for NCAA March Madness
— Nifty Assignment 123

Roy Manfredi, Westminster College

Internship Experience Sharing — Nifty Assignment 125
Bin Peng and Wen-Jung Hsin, Park University

Teaching Cellular Concepts: An Into With GSM — Nifty Assign-
ment 127

Kyle Cronin and Michael Ham, Dakota State University

Prompting Collaboration: Development of an Multidisciplinary
Applied AI Minor Program — Panel Discussion 129

Ajay Bandi, Benjamin Blackford, Aziz Fellah, Diana Linville, Trevor
C. Meyer, and Robert J. Voss, Northwest Missouri State University

An Instructor’s Introduction to Codespaces & Development Con-
tainers — Conference Tutorial 133

Bill Siever, Washington University in St. Louis; Michael P. Rogers,
University of Wisconsin Oshkosh

4

Fending off Gitastrophe: a Tutorial on Architecting Collaborative
Projects and Giving Great Feedback — Conference Tutorial 136

Michael P. Rogers, University of Wisconsin Oshkosh; Bill Siever, Wash-
ington University in St. Louis

5

6

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Bryan Dixon, President (2026),
bcdixon@csuchico.edu, Computer
Science Department, California State
University Chico, Chico, CA 95929.
Shereen Khoja, Vice
President/President-Elect (2026),
shereen@pacificu.edu, Computer
Science, Pacific University, Forest Grove,
OR 97116.
Abbas Attarwala, Publications Chair
(2027), aattarwala@csuchico.edu,
Department of Computer Science,
California State University Chico,
Chico, CA 95929.
Ed Lindoo, Treasurer (2026),
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, Denver, CO 80221.
Cathy Bareiss, Membership Secretary
(2025),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical &
Engineering Sciences, Bethel University,
Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2026),
mullinsj@umkc.edu, University of
Missouri-Kansas City, Kansas City, MO
(retired).
Michael Flinn, Eastern Representative
(2026), mflinn@frostburg.edu,
Department of Computer Science &
Information Technologies, Frostburg
State University, Frostburg, MD 21532.

David Naugler, Midsouth
Representative (2025),
dnaugler@semo.edu, Brownsburg, IN
46112.
David Largent, Midwest
Representative (2026),
dllargent@bsu.edu, Department of
Computer Science, Ball State University,
Muncie, IN 47306.
Mark Bailey, Northeastern
Representative (2025),
mbailey@hamilton.edu, Computer
Science Department, Hamilton College,
Clinton, NY 13323.
Ben Tribelhorn, Northwestern
Representative (2027), tribelhb@up.edu,
School of Engineering, University of
Portland, Portland, OR 97203.
Mohamed Lotfy, Rocky Mountain
Representative (2025),
mohamedl@uvu.edu, Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Mika Morgan, South Central
Representative (2027),
mikamorgan@wsu.edu, Department of
Computer Science, Washington State
University, Pullman, WA 99163.
Karen Works, Southeastern
Representative (2027), keworks@fsu.edu,
Department of Computer Science,
Florida State University - Panama City
Panama City, FL 32405
Michael Shindler, Southwestern
Representative (2026), mikes@uci.edu,
Computer Science Department, UC
Irvine, Irvine, CA 92697.

7

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor,
bin.peng@park.edu, Computer Science
and Information Systems, Park
University, Parkville, MO 64152.
Brian Hare, Associate Treasurer &
UPE Liaison, hareb@umkc.edu, School
of Computing & Engineering, University
of Missouri-Kansas City, Kansas City,
MO 64110.
George Dimitoglou, Comptroller,
dimitoglou@hood.edu, Department of
Computer Science, Hood College,
Frederick, MD 21701.

Megan Thomas, Membership System
Administrator,
mthomas@cs.csustan.edu, Department
of Computer Science, California State
University Stanislaus, Turlock, CA
95382.
Karina Assiter, National Partners
Chair, karinaassiter@landmark.edu,
Landmark College, Putney, VT 05346.
Ed Lindoo, UPE Liaison,
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, Denver, CO 80221.
Deborah Hwang, Webmaster,
hwangdjh@acm.org.

8

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Gold Level Partner
Rephactor
ACM2Y

CodeGrade
GitHub

Silver Level Partner
CodeZinger

9

Welcome to the 2025 CCSC Central Plains Conference

Welcome to the 31st annual Consortium for Computing Sciences in Colleges
Central Plains Region Conference, which includes opportunities to see great re-
search papers on a variety of topics in CS education; workshops on teaching
with generative AI, collaborative projects, Codespaces, and containers; nifty
assignments, and a panel on developing academic programs focusing on AI. We
are also looking forward to showcasing students with a research poster compe-
tition, a hackathon, and a programming competition.

We are especially excited about our keynote speakers. Meredith Moore
will share her expertise on accessible computing and what every CS educator
should know. John Emmons will share on experiences in leading AI teams.

This conference would not be possible without the dedication of many con-
tributors. We extend our gratitude to the authors who submitted their work,
the reviewers who ensured a high-quality program with a 53% paper accep-
tance rate, the committee members who planned and organized the event, the
session moderators, and all the on-site volunteers working to create a pleasant
experience for everyone. And, thank you to our national partners for their very
generous support!

We hope you have an enjoyable and enlightening conference!

Eric Manley
Drake University

CCSC-2025 Central Plains Conference Chair and Host

10

2025 CCSC Central Plains Conference Steering
Committee

Conference Chair
Eric Manley . Drake University
Conference Publicity
Bill Siever .Washington University in St. Louis
Joan Gladbach . University of Missouri Kansas City
Shane Adams .Graceland University
Keynote Speaker
Eric Manley . Drake University
Pre-Conference Workshop
Wen-Jung Hsin . Park University
Judy Mullins .Retired
Joan Gladbach . University of Missouri Kansas City
Papers
Charles Riedesel . University of Nebraska-Lincoln
Judy Mullins .Retired
Ron McCleary . Retired
Panels, Tutorials, Workshops
Ron McCleary . Retired
Judy Mullins .Retired
Mohammad Rawashdeh . University of Central Missouri
Mahmoud Yousef .University of Central Missouri
Nifty Assignments
Mohammad Rawashdeh . University of Central Missouri
Brian Hare . University of Missouri Kansas City
Bill Siever .Washington University in St. Louis
Ron McCleary . Retired
Judy Mullins .Retired
Lightning Talks
Wen-Jung Hsin . Park University
Bill Siever .Washington University in St. Louis
Joseph Kendall-Morwick .Washburn University
K-12 Nifty Assignments and Lightning Talks
Bill Siever .Washington University in St. Louis
Perla Weaver . Johnson County Community College
Belinda Copus .University of Central Missouri
Mohammad Rawashdeh . University of Central Missouri
Student Paper Session
Scott Sigman . Drury University
Wen-Jung Hsin . Park University

11

Mahmoud Yousef .University of Central Missouri
Joseph Kendall-Morwick .Washburn University
Student Poster Competition
Joseph Kendall-Morwick .Washburn University
Ron McCleary . Retired
Student Hack-a-thon
Scott Sigman . Drury University
Chris Branton . Drury University
Mahmoud Yousef .University of Central Missouri
Bill Siever .Washington University in St. Louis
Student Programming Contest
Charles Riedesel . University of Nebraska-Lincoln
Joan Gladbach . University of Missouri Kansas City
Brian Hare . University of Missouri Kansas City
Tim Urness .Drake University
Two-Year College Outreach
Suzanne Smith . Johnson County Community College
Trisch Price . Johnson County Community College
Mahmoud Yousef .University of Central Missouri
Local Arrangements
Eric Manley . Drake University
Tim Urness .Drake University
Andrei Migunov . Drake University

12

Regional Board — 2025 CCSC Central Plains Region

Regional Rep & Board Chair
Judy Mullins .Retired
Registrar & Membership Chair
Ron McCleary . Retired
Current Conference Chair
Eric Manley . Drake University
Next Conference Chair
Tiffany Ford . Ozarks Technical Community College
Past Conference Chair
Kevin Brunner . Graceland University
Secretary
Diana Linville . Northwest Missouri State University
Regional Treasurer
Ajay Bandi .Northwest Missouri State University
Regional Editor
Joan Gladbach . University of Missouri Kansas City
Webmaster
Deepika Jagmohan . St. Charles Community College

13

Reviewers — 2025 CCSC Central Plains Conference

Imad Al Saeed . Saint Xavier University, Chicago, IL
Rad AlrifaiNortheastern State University, Tahlequah, OK
Beth Arrowsmith University of Missouri - St. Louis, Saint Peters, MO
Kevin Brunner .Graceland University, Lamoni, IA
John Buerck . Saint Louis University, St. Louis, MO
David Bunde .Knox College, Galesburg, IL
Karla Carter . Bellevue University, Bellevue, NE
Belinda Copus University of Central Missouri, Warrensburg, MO
Aziz Fellah Northwest Missouri State University, Maryville, MO
Ernest Ferguson Northwest Missouri State University, Maryville, MO
David Furcy University of Wisconsin Oshkosh, Oshkosh, WI
Brian Hare University of Missouri-Kansas City, Kansas City, MO
David Heise . Lincoln University, Jefferson City, MO
Suvineetha Herath . Carl Sandburg College, Galesburg, IL
Charles Hoot Northwest Missouri State University, Maryville, MO
Wen Hsin .Park University, Parkville, MO
Jeff Ifland .State Of Nebraska, Lincoln, NE
Joseph Kendall-MorwickWashburn University, Topeka, KS
Srinivasarao Krishnaprasad . . . Jacksonville State University, Jacksonville, AL
Diana Linville Northwest Missouri State University, Maryville, MO
Baochuan Lu . Southwest Baptist University, Bolivar, MO
Eric Manley .Drake University, Des Moines, IA
Jose Metrolho .
. Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
Kian Pokorny .McKendree University, Lebanon, IL
Hassan Pournaghshband Kennesaw State University, Kennesaw, GA
Charles Riedesel University of Nebraska - Lincoln, Beatrice, NE
Michael Rogers University of Wisconsin Oshkosh, Oshkosh, WI
Jamil Saquer .Missouri State University, Springfield, MO
William Siever . Washington University, St. Louis, MO
Cindy TuNorthwest Missouri State University, Maryville, MO
Timothy Urness .Drake University, Des Moines, IA
Henry Walker . Grinnell College (retired), Napa, CA
Maria Weber . Saint Louis University, St. Louis, MO
Mudasser F Wyne .National University, San Diego, CA
Cong-Cong Xing Nicholls State University, Thibodaux, LA

14

Accessible Computing: What Every CS
Educator Should Know∗

Opening Keynote

Dr. Meredith Moore
Assistant Professor of Computer Science, Drake University

Abstract

Computer science education plays a crucial role
in shaping the future of technology, but acces-
sibility and inclusion are often overlooked in
curricula. This keynote will provide a practi-
cal guide to accessible computing, equipping at-
tendees with strategies to create more inclusive
learning environments. We will explore why ac-
cessibility matters—ethically, legally and peda-
gogically—and how it benefits all students, not
just those with disabilities. Key topics include
the difference between teaching accessibility as a
subject and teaching accessibly as an educator,
the fundamentals of disability language, and the
distinction between assistive and accessible tech-
nology. Attendees will also gain insight into accommodations, Universal Design
for Learning (UDL), and effective ways to support neurodivergent students in
CS classrooms. The session will conclude with simple, actionable steps that
educators can implement immediately, along with a curated list of resources
for those who want to explore accessibility in more depth. Whether you are
new to accessibility or looking to refine your approach, this talk will provide
the knowledge and tools to make computing education more accessible.

∗Copyright is held by the author/owner.

15

Bio

Dr. Moore is an Assistant Professor of Computer Science at Drake University.
Dr. Moore obtained her B.S. in Computer Science and Neuroscience from
Drake University in 2015. She then went on to get her Ph.D. from Arizona State
University in Computer Science as a National Science Foundation Graduate
Research Fellow. Dr. Moore’s research focuses on using machine learning to
improve the accessibility of technology for individuals with disabilities.

16

AI Engineering: Lessons from the
Frontlines∗

Banquet Speech

John Emmons
Director of AI at Salesforce

Abstract

From self-driving cars to generative AI, John
Emmons shares the career decisions that took
him from the Midwest to Silicon Valley, then
back again, and the lessons learned along the
way. Drawing from his experience leading high-
pressure AI projects at Tesla Autopilot and
Salesforce AI, he provides insights into how real-
world AI systems are built, the skills that mat-
ter most in the industry, and practical advice for
those looking to break into the field from the per-
spective of an AI engineering manager.

Bio

John Emmons completed the engineering dual degree program between Wash-
ington University in St. Louis and Drake University in 2016. He went on to
get a Master’s degree in computer science, focusing on deep learning, from
Stanford University in 2018. He spent the next five years as a machine learn-
ing scientist at Tesla, eventually leading the Autopilot Vision team. For the
last two years, he has served as the Director of AI at Salesforce. When John
isn’t running AI teams, he like to run long distances on the road and boasts a
sub-3-hour marathon time.

∗Copyright is held by the author/owner.

17

Adapt DevOps Method to Information
Systems Capstone Course Projects∗

Gary Yu Zhao and Cindy Zhiling Tu
School of Computer Science and Information Systems

Northwest Missouri State University
Maryville, MO 64468

{zhao, cindytu}@nwmissouri.edu

Abstract

This paper explores the design of a DevOps-based information sys-
tems (IS) capstone course in a Master of Science in Information Systems
program. The researchers aim to investigate this teaching case to gather
direct student feedback and provide insights for instructors to adapt
the DevOps method in IS capstone projects. The study addresses the
research questions and identifies key findings through inductive content
analysis of 32 student feedback responses from two consecutive semesters.
The preliminary results contribute to the field of information systems ed-
ucation and encourage more instructors to engage with DevOps-based IS
capstone projects.

1 Introduction

Many companies in the industry expect higher education institutions to pre-
pare students as future practical experts, enabling them to gain experience in
system development and teamwork before entering the IT workforce [2]. In-
formation systems (IS) capstone courses, typically at the end of a curriculum,
help students gain and demonstrate relevant skills and insights [9]. By gaining
sufficient practical experience with the capstone courses, students can avoid

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

18

the costs and effort of exploring uncertain career paths and become valuable
assets to project teams immediately upon joining the workforce [3].

In the concurrent IS education context, “project-based learning” (PBL) has
been widely adopted to explore the development of students’ comprehensive
hands-on skills and experience in system analysis and design, project manage-
ment, and team collaboration [3]. IS students take courses in technical sub-
jects like programming, networking, cybersecurity, and databases, along with
business and management topics such as project management and financial
modeling. They also work on UX design, requirements gathering, and systems
diagrams through student projects. These courses help students build the
skills needed for their capstone project, where they apply technical, manage-
ment, and professional skills to complete the project and interact with clients
[15]. The IS capstone course encompasses the full cycle of information systems
development, from conceptualization and design to prototyping or implemen-
tation. Students typically work in small teams on independent projects, en-
couraging self-directed learning through structured reflection. Given the small
group size and short time frame, many instructors adopt agile methodologies
which emphasize adaptive planning, iterative development, early delivery, and
continuous improvement [15]. A key element of success in Agile-based cap-
stone projects is client communication and rapid feedback. However, Agile
methodology emphasizes improving the speed and flexibility of development
and focuses less on the collaboration between developers and IS end-users –
operations teams.

In recent years, DevOps, as the next step of agile, has become one of the
mainstream methods in software development projects. DevOps is a software
development methodology that integrates development and IT operations to
enhance the speed, quality, and reliability of software delivery [1]. It fosters a
culture of collaboration, allowing project stakeholders and developers to work
closely together to ensure software meets business needs. Traditional software
development methodologies employed in IS Capstone projects also emphasize
user involvement, such as Waterfall, RAD, Agile, etc. However, DevOps has
advanced previous methods and focuses on the cooperation between develop-
ment and user operations. Based on the features of IS capstone projects, is
DevOps suitable? What factors affect the successful application of the DevOps
method in the IS capstone course? Little research has been done on this topic.
Our study focuses on the application of the DevOps method on students who
executed capstone projects by conducting a case study.

19

2 Theoretical Background

2.1 DevOps Methodology

DevOps, which stems from software engineering, merges development and op-
erations practices. DevOps emphasizes automation, streamlining tasks like
testing and deployment, enabling system analysts to focus on analyzing require-
ments [7]. The methodology promotes continuous improvement, with system
analysts providing feedback to refine the development process. Automated test-
ing and continuous integration ensure the software is reliable and aligned with
business goals, while faster release cycles help deliver timely updates [1]. The
integration of DevOps enables faster, higher-quality software delivery, which
supports business growth and improves client satisfaction[5]. Through these
processes, the project team can ensure both the effectiveness and timeliness
of software solutions[4]. DevOps is a relatively recent practice that has been
widely adopted in the software industry. However, in the context of IS edu-
cation, the focus tends to be more on teaching development (Dev) skills than
operational (Ops) skills. As a result, while DevOps is well-established in the
software industry, there are limited reports of its use as a teaching method in
the IS education context [5].

2.2 Project-based Learning

Project-based learning (PBL) has attracted significant attention, especially in
IS education, as educators look to improve classroom instruction using sim-
ulated or real-world projects. Previous research has largely focused on how
PBL affects students’ learning outcomes, both mentally and physically, with
many studies relying on self-reported feedback from students [8]. [14] also ar-
gued that the practical sessions may be a possible channel to improve students’
skills in project management. [7] introduced a distinctive approach by incorpo-
rating DevOps-based learning into PBL. Building on this, we adopt a similar
approach by integrating DevOps into IS capstone course, focusing on local
real-world projects to further increase student motivation and engagement.

Figure 1 shows the conceptualized processes of the IS capstone project
adapting the DevOps method. The end users – operations teams work with
the capstone project team through all the project phases, including business
requirements engineering, system analysis, design, prototype, implementation,
testing, deployment, and feedback.

20

Figure 1: Conceptual framework of adapting DevOps to IS capstone projects.

3 Case Study

We conducted a case study using semester-long observations, informal inter-
views, and surveys. The case study is a suitable method for this research as
it helps identify potential opportunities and rich elements from participants’
behavior in specific, observable settings [12]. The study was conducted at a
regional public university in the Midwest, where a Master of Science in In-
formation Systems (MSIS) program includes a capstone project course. The
study was carried out during the spring 2024 from January to May and fall
2024 semester from August to December. One university department served
as a client for developing a campus recycling management system. A total of
32 students were assigned to 6 project teams and went through the informa-
tion systems development processes. In Spring 2024, project teams worked on
collecting user requirements, system analysis, design, and prototype. In Fall
2024, the teams completed system implementation, testing, and deployment.

All student teams were required to study and apply DevOps method in
their real-world projects. In each semester, the first two weeks were for project
kick-off and DevOps training/reviewing stage. The client’s operational staff
and manager hosted kick-off meetings with all project teams and introduced
the system’s business needs. Then, 3 sprints were scheduled for system devel-
opment, with 4 weeks duration for each sprint. Projects were wrapped up in
the last two weeks. During each sprint, project teams worked with client opera-
tion staff closely, completed a specific set of tasks, and demonstrated the sprint
outcomes or prototypes to the client. The client operations staff collaborates
with project teams through interviews, emails, MS Teams, and face-to-face

21

meetings. The client’s cooperation with teams facilitated valuable feedback,
enabling teams to refine their approach for the next sprint. To conclude the
project, teams presented the final products to the client with a final report. The
implemented system was deployed on the university application server. Table
1 shows the technologies and tools being used in the DevOps-based capstone
projects.

Table 1: Technologies and Tools used in the DevOps-based Capstone Projects

Project Tasks Technologies
Project management Trello, Jira
System analysis and design LucidChart, Mockups, Visual Studio
Prototype Wix, Figma
Implementation tools GitHub, GitHub Co-Pilot
Frontend HTML, CSS, JavaScript, React.js, Vue.js
Backend Node.js, C#, Python, Java, MySQL, REST

APIs, SQL Server Management Studio
(SSMS), SQLite, MongoDB

Testing SoapUI, Automated Python scripts
Deployment Docker, University application server
Observation and feedback Slack

During the semester, periodic observations were conducted to assess the
collaboration between students and the client in the DevOps-based capstone
projects. The study focused on the growth of student’s learning motivation and
outcomes, which were measured through qualitative feedback collected through
interviews and a survey. A questionnaire survey was completed close to the end
of the second semester to gather feedback on the impact of DevOps on Capstone
projects and project team members. The survey includes 30 questions with a 5-
lickert scale covering 7 aspects. A total of 32 feedback responses from students
over two semesters were gathered and analyzed. To show the results clearly,
we aggregated the 5 scales into 3 scales (Agree, Neutral, Disagree). Figure 2
shows the results.

4 Findings and Discussion

The DevOps-based IS capstone course design was well-received by students.
The main findings demonstrate how this course structure enhances students’
learning outcomes and motivation and what factors primarily affect the DevOps
teams.

22

Figure 2: Results of student survey.

4.1 Positive Impact on Student Team Members

The student feedback, alongside discussions with clients, helped adjust teaching
strategies and highlighted the benefits of DevOps in strengthening ties between
the classroom and real-world businesses. Overall, the project team members
were very satisfied with the progress, output artifacts, teamwork, and cooper-
ation with the operations staff. From the learning outcome perspective, the
students emphasized the experience and skills they gained from this DevOps-
based capstone course.

“Working in a DevOps team taught us the importance of collaboration be-
tween development and operations. It broke down silos and helped us commu-
nicate more effectively, making our project run smoothly.”

The interview feedback highlights that DevOps teams provide hands-on
training, integrating students or new team members into the necessary activ-
ities, as regular courses often do not teach all the competencies required for
DevOps roles. DevOps teams foster a more interconnected environment where
individuals develop broader, more generalized skills [4]. Figure 2 shows that
67% of students gained a better understanding of DevOps concepts, and about
60% of students confidently applied DevOps to their projects.

“Using tools like Jira, Docker, and GitHub in our project gave us valuable

23

exposure to industry-standard technologies, which I’m sure will be helpful in
future job roles.”

Above feedback emphasizes the benefits of DevOps tools and automation
used in implementation, defect validation, and deployment, allowing develop-
ers to quickly and easily configure environments without manual intervention.
63% of students use DevOps-related technologies and tools effectively (Figure
2). By adopting DevOps to optimize processes, teams can achieve greater effi-
ciency and improved outcomes[10].

“The iterative nature of the DevOps process helped us continuously learn
and improve as we received feedback and made improvements in real-time.”

The practice of DevOps teams facilitated large-scale learning and knowl-
edge sharing as team members gained experience in multiple roles, enhancing
their skills and autonomy [11]. The single-case study showed that DevOps con-
tributes to innovation in software development by promoting adaptability and
continuous learning, which supports the implementation of innovative prac-
tices[4]. Consistently, Figure 2 shows that about 70% of students have the
intention of applying DevOps in their future projects.

4.2 Success Factors of DevOps-based Capstone Project

Based on feedback from student DevOps project teams, the following key
factors were identified as critical to the success of a DevOps-based capstone
project:

“I appreciate the fit scope of the project, as it allowed us to gain experience
in managing tasks similar to those we will encounter in future work. Overall,
the course was well-planned, and I have learned a great deal.”

One challenge in using project-based learning (PBL) to enhance motivation
is determining an appropriate project scope. A narrow scope limits practical
application, while an overly broad scope makes timely completion difficult. An
adequately scoped project tailored to the course level and student experience
is critical to the DevOps-based PBL success. This balance allows students to
gain practical experience, work with client operations staff, and gain deeper
course understanding while ensuring they can complete the project within two
semesters. These findings align with prior research[3], [7]and are particularly
relevant in information systems courses. Furthermore, the survey shows that
about 70% of students agreed that more structured training or courses help
them handle the challenges of learning and implementing DevOps in the cap-

24

stone projects (Figure 2).

“Receiving constant feedback from the instructor and team members allowed
us to continuously improve our work continuously, leading to better results by
the end of the project.”

Both literature and interviews with DevOps practitioners identify build-
ing a collaborative culture as the primary critical success factor in DevOps
adoption. While adopting new tools is relatively straightforward, changing the
culture within software development teams is more challenging due to differing
perspectives between developers and operators[4]. The feedback emphasized
the importance of breaking down silos and promoting effective communication
and cross-functional collaboration.

“Defining roles from the beginning and holding each team member account-
able ensured that tasks were completed on time and to a high standard.”

Teams found that assigning clear responsibilities for both development and
operations tasks helped avoid confusion and redundancy. Defined roles help op-
timize the use of resources, ensuring that team members with specific expertise
handle the tasks best suited to them. This contributes to both productivity and
cost-effectiveness. Accountability ensures that tasks are completed on time and
with quality, contributing to the overall success of the project. Additionally,
learning how to manage time in a DevOps setting mimics real-world scenarios,
enhancing their readiness for industry roles where deadlines and efficiency are
critical. Student DevOps teams must ensure project success, balance academic
demands, and develop the discipline needed for future careers [6].

“DevOps taught us to be flexible and adaptable. When things went wrong,
we were able to quickly make adjustments and continue moving forward.”

DevOps involves using a wide range of tools for continuous integration,
deployment, monitoring, and collaboration[13]. These tools evolve rapidly,
and new ones frequently emerge. As shown in Figure 2, about 60% of team
members can use Dockers, GitHub, CI/CD pipelines, and Python scripting
effectively through the capstone projects; about 70% of members believe that
they can handle the DevOps solutions based on the cloud service by using
these tools. Moreover, student teams must be flexible and resilient to quickly
adapt to changing technologies and workflows, which is key to their success
in real-world environments. More than 90% of students agreed that emerging
technologies, such as AI, machine learning, and data-driven, will enrich and

25

advance DevOps practice (Figure 2).

4.3 Improve Learning Motivation and Outcomes

“Communication between team members from both the development team and
operations was essential. This communication encourages our student teams
to work dedicatedly, learn efficiently, and achieve the final goals.”

Student feedback highlights that the operations staff’s passion for communi-
cating and instructing significantly influences their learning motivation. Many
students appreciated the client team’s proactive and enthusiastic approach,
noting their commitment to course planning and student outcomes. Over half
of the students stated that the operations team’s passion inspired them to work
harder on lectures and projects. In the DevOps-based capstone project, which
requires significant effort, the operations team serves as an essential role model,
assisting students through the complex process. Research typically focuses on
role models in primary or secondary education, but this study reaffirms the
importance of passionate project clients in motivating students, particularly in
IT-related majors[3].

Students often worry about how to apply theoretical knowledge from lec-
tures to real-world scenarios, particularly as many plan to enter the workforce
after graduation. In response, the course created an immersive learning en-
vironment that fosters intensive discussions among students, instructors, and
client operations staff. These discussions help students identify weaknesses,
clarify issues in IS system development, and practically apply course concepts.
Feedback emphasized the value of such interactions, with students noting that
discussions enhanced their understanding and flexibility in using course knowl-
edge. Additionally, hands-on learning, particularly through real projects, al-
lowed students to develop problem-solving skills and gain practical experience.
This approach has successfully bridged the gap between theory and practice,
fostering collaboration and preparing students for their future careers. As
shown in the survey (Figure 2), over 80% of students agree that DevOps-based
capstone projects provide valuable opportunities for continuous learning and
skill development.

5 Conclusion

This study successfully implemented a practical DevOps-based information
systems capstone project in collaboration with a real-world client, integrating
both IT and management knowledge to improve performance. A case study
examined the impact of DevOps on project success and explored key factors
influencing capstone project outcomes. The study found that applying DevOps

26

to capstone projects yields benefits similar to those of information systems de-
velopment. It also identified various factors crucial to success. The effective
DevOps-based course design model could be extended to other information
systems courses and project-based initiatives aligned with university social re-
sponsibility goals.

References

[1] Mohammed Airaj. “Enable cloud DevOps approach for industry and
higher education”. In: Concurrency and Computation: Practice and Ex-
perience 29.5 (2017), e3937.

[2] Chin-Ling Chiang and Huei Lee. “The effect of project-based learning
on learning motivation and problem-solving ability of vocational high
school students”. In: International Journal of Information and Education
Technology 6.9 (2016), pp. 709–712.

[3] Chih-Yuan Chou. “A DevOps-based Service-Learning Design in An Ad-
vanced IS-related Course”. In: Proceedings of the International Confer-
ence on Information Systems (ICIS). Jan. 2023, pp. 1–9.

[4] Joao Faustino et al. “DevOps benefits: A systematic literature review”.
In: Software: Practice and Experience 52.9 (2022), pp. 1905–1926. doi:
10.1002/spe.3096.

[5] Marcelo Fernandes et al. “Challenges and Recommendations in DevOps
Education: A Systematic Literature Review”. In: Proceedings of the XXXIV
Brazilian Symposium on Software Engineering. SBES ’20. New York, NY,
USA: Association for Computing Machinery, Dec. 2020, pp. 648–657. doi:
10.1145/3422392.3422496.

[6] Alexandre Grotta and Edmir Parada Vasques Prado. “DevOps Didactic
Transposition in IS Higher Education: A Systematic Literature Review”.
In: AMCIS 2022 Proceedings. 2022, p. 15. url: https://aisel.aisnet.
org/amcis2022/sig_ed/sig_ed/15.

[7] Alexandre Grotta and Edmir Parada Vasques Prado. “DevOpsBL: DevOps-
based Learning on Information Systems Higher Education”. In: AM-
CIS 2021 Proceedings. 6. 2021. url: https://aisel.aisnet.org/
amcis2021/is_education/sig_education/6.

[8] Pengyue Guo et al. “A review of project-based learning in higher ed-
ucation: Student outcomes and measures”. In: International Journal of
Educational Research 102 (2020), p. 101586.

27

[9] Eric H Hobson, Philip E Johnston, and Alisa J Spinelli. “Staging a reflec-
tive capstone course to transition PharmD graduates to professional life”.
In: American Journal of Pharmaceutical Education 79.1 (2015), p. 14.

[10] Rajitha Mawananehewa Jayasekera and Shantha Jayalal. “Factors Influ-
encing the Utilization of Cloud Optimization Tools Among DevOps En-
gineers: Insights From a Software Development Company in Srilanka”. In:
International Journal of Vallis Aurea 10.1 (Jan. 2024), pp. 39–56. doi:
10.62598/JVA.10.1.4.4.

[11] Michael Maloni, Pamila Dembla, and J Anthony Swaim. “A cross-functional
systems project in an IS capstone course”. In: Journal of Information
Systems Education 23.3 (2012), p. 283.

[12] Michael D Myers. Qualitative research in business & management. Thou-
sand Oaks, CA: Sage Publications Ltd, 2009, pp. xii, 284.

[13] Mojtaba Shahin, Ali Rezaei Nasab, and Muhammad Ali Babar. “A quali-
tative study of architectural design issues in DevOps”. In: Journal of Soft-
ware: Evolution and Process 35.5 (2023), e2379. doi: 10.1002/smr.2379.

[14] Harold Smith III, Debra Smarkusky, and Elizabeth Corrigall. “Defining
Projects to Integrate Evolving Team Fundamentals and Project Manage-
ment Skills”. In: Journal of Information Systems Education 19.1 (2008),
pp. 99–110. url: https://aisel.aisnet.org/jise/vol19/iss1/10.

[15] Cindy Zhiling Tu and Joni Adkins. “Effect of user involvement in infor-
mation systems capstone course: a case study”. In: Journal of Computing
Sciences in Colleges 35.6 (2020), pp. 107–116.

28

Improving Student Success Through
Parachuting∗

Chris Bourke and Nirnimesh Ghose
School of Computing

University of Nebraska–Lincoln
Lincoln, NE 68588

{chris.bourke, nghose}@unl.edu

Abstract

We report on our experience implementing a parachute program that
identifies struggling students in a Computer Science I course and invites
them to “parachute” out and start over mid-semester in a lower-level
computing course that still confers credit toward their degree program.
This program gives students a second chance at success, aims to improve
student outcomes in early computing curricula, and to improve retention
overall in computing majors.

1 Introduction

Many students struggle in introductory STEM courses. Within computing
disciplines the number of DFW students (those receiving a non-passing grade
of D or F or withdrawing from the course) has remained consistent across time,
delivery mode, programming language, etc. [15]. Much research and effort has
been done in an attempt to address this issue and to improve student outcomes.
Introductory computing courses are especially challenging because of the non-
uniform and non-standard coverage of computing in high schools. Students
come into college with highly varying backgrounds in computing.

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

29

We present a novel approach to this problem through a Parachute Program
that has been used at the University of Nebraska–Lincoln’s School of Comput-
ing for the last two years. Through a combination of self- and instructor-based
assessments, struggling students are identified at pre-defined milestones in a
Computer Science I (CS1) course. Students who are at risk of failing are invited
to “parachute” out of the CS1 course and safely land in a lower-level Computer
Science 0.5 (CS0.5). In this new course they are given the opportunity to start
over.

The goal of this program is to improve student outcomes overall. For strug-
gling students in particular, it aims to improve retention by strengthening their
foundation and giving them a chance to acclimatize themselves to college life.

2 Related Work

Methods have been tried across many STEM disciplines to address struggling
students. Placement exams are commonly used to place students into an ap-
propriate introductory course that matches their background knowledge and
readiness. However, these exams are far from perfect. Underplacement (plac-
ing well-prepared students in lower level courses) is far more common than
overplacement (placing students in a course they are not prepared for) [13].
Placing students into remedial courses can have wide-reaching and long-term
negative impacts [7]. Taking a remedial course also has an an impact on time-
to-graduation and disproportionately affects under-represented minority stu-
dents. Not only do remedial courses have extensive costs to institutions and
students, the overall research on their benefit is mixed at best [2].

Other efforts attempt to identify struggling students while they are taking
a course. Math departments have been administering “gateway” exams since at
least the 1980s which have evolved over time. The key difference with gateway
exams is that they are given within a course and intended to measure skills
which every student in a course should develop rather than whether or not
they are prepared to take the course [10]. Reporting indicates passing rates
are typically high (though initially may be as low as 50% the first time a
student takes it). However, this is in contrast to the typical failure rates of
college math courses [4] which are as high as 27% in Calculus I [5].

In addition, though a gateway exam may be part of a student’s grade, they
only serve as a guide to the student and instructor as to whether or not they
have learned the material that is expected of them or whether they are on the
right trajectory to complete the course. Whether or not they pass a gateway
exam does not affect a student’s enrollment in the course.

Within computing disciplines several placement exams have been developed
[14, 12]. These efforts have faced challenges because the typical CS-related K–

30

12 curriculum is not nearly as standard as (say) math and may not exist at all.
As a consequence, students enter college with a much wider variety of prior
computing experience.

However, these tests have been used mostly to determine whether or not
a student should be placed in CS1 (low or no prior experience) or is prepared
enough to start off in CS2. This is because historically most computing curric-
ula only have these two options for introductory courses. With the explosion in
computing enrollment and the expansion of computing sub-disciplines (CS+X,
data science, informatics, etc.), this is less true. Many institutions have started
to offer a wider variety of introductory courses catering to different student in-
terests, backgrounds and goals.

A recent effort has been made to adapt and extend existing placement ex-
ams as an instrument to assess a student’s preparedness to take CS1 or to take
an alternative introductory course [3]. Even if no validated instrument is used,
some departments have started offering multiple sections of CS1 targeted to-
ward students with differing prior computing experience [9]. Though they may
cover the same topics, these courses may differ in the delivery or assessment or
offer more or alternative opportunities for practice and collaboration.

No evidence could be found that this parachute program or any similar pro-
gram is used by other institutions. Nevertheless we mention that the parachute
program was inspired by a similar program that was supposedly used in some
chemistry departments (folklore).

3 Parachute Program

The parachute program was first piloted in spring 2023 and involved several
significant changes to curriculum and to the structures, schedule, and topics of
courses.

3.1 Courses

The School of Computing at the University of Nebraska-Lincoln offers a wide
variety of introductory computing courses. The two most relevant courses to
the parachute program are CSCE 101 and CSCE 155A.

CSCE 101 is a CS0.5 course in that it is more than a rudimentary com-
puting skills course but not fully a CS1 course. It emphasizes problem solving
and introduces basic python programming. As a service course, it is intended
mostly for non-computing majors as it satisfies general education requirements.
Traditionally 101 has been a terminal computing course. As a consequence,
enrollment is extremely diverse, attracting students from all levels and dozens
of different majors.

31

CSCE 155A is a full CS1 course [1] intended for computing majors. It cov-
ers problem solving and software development principles. Enrollment consists
mainly of incoming freshman computing majors serving as their first college-
level computing course. There is no computing prerequisite and no prior com-
puting or programming experience is necessary or expected. This course in-
troduces computational thinking by solving puzzles. Students are introduced
to programming by first writing formulas in Google Sheets and then develop-
ing rudimentary programs to solve real-world examples using Coral [6]. Once
the students are comfortable using computational thinking to write programs,
Python is introduced using a flipped classroom model. The students learn the
basics before the class using an interactive, auto-graded textbook. Class time
is spent on live coding demonstrating the problem solving process on problems
and puzzles from the well-known Algorithmic Puzzles book [11]. For example,
when recursion is covered, class time is used to develop code to solve the three
jugs puzzle (given an 8-pint jug full of water and two empty jugs of 5- and 3-
pint capacity, get precisely 4 pints of water in one of the jugs by filling up and
emptying jugs into others) using recursion. Students are then assessed using a
more complex problem for which they develop a full program. For recursion,
students are challenged to develop a program to draw the decision tree for the
four knights puzzle [8].

Both courses are offered as 15-week semester courses in fall and spring
semesters and are synchronized with the same weekly lecture and lab schedules.

3.2 Process

Student progress in CSCE 155A is closely tracked in the first five weeks. Assess-
ments are evenly distributed throughout the semester so that approximately
one third of the assessment has been completed by the end of the 5th week.
In the first week students are given a Computing Skills Inventory “exam” [3]
which is graded and gives both the student and the instructor a baseline on
whether or not the student is likely to succeed (pass) in 155A.

In week 5 students whose grade is less than 73% (C) are invited to join the
parachute program and switch their enrollment to CSCE 101. The invitation is
entirely voluntary. Those that opt-in to the parachute program are re-enrolled
into 101 and “restart” their introductory course in week 6. The re-enrollment
and administrative processes are handled entirely by faculty and staff. Those
that choose not to opt-in continue their enrollment in CSCE 155A. In all cases,
tracking of student progress continues through the end of the semester.

32

3.3 Curricular Changes

Prior to adopting the parachute program, several curricular changes were made.
First, CSCE 101 was reorganized so that the first 5 weeks consisted of general
computing topics and computational thinking but no formal programming. In-
troduction to coding (Python) was moved to begin in week 6. Second, curricu-
lum rules were changed to allow CSCE 101 to count toward degree requirements
of computing majors provided that it was completed before any other comput-
ing courses. Prior to this, it did not count toward any computing degree (other
than general credit hours).

These two changes were necessary to make the parachute program possible.
Students being parachuted into 101 from 155A would have been completely lost
if simply dropped into a course 5 weeks into the semester. By front-loading the
course with general computing topics, parachuted students get a fresh (re)start
in 101 at the point that Python is being introduced in both courses.

It was also necessary to ensure that 101 counted toward a computing de-
gree program so that credit hours were not lost by the student. This change
also mitigates the impact that parachuting has on the time-to-graduation for
computing students.

4 Results

The parachute program began in spring 2023 and has been offered for four
semesters total. During this period, enrollment and DFW rates (see Table 1a)
have been fairly static with overall rates being 15.25% and 37.37% for CSCE
101 and CSCE 155A respectively.

The number of invitees and those who accepted the invite to parachute
from CSCE 155A to CSCE 101 can be found in Table 1b. Spring 2023 was the
initial pilot for this program and so was more targeted with fewer invitees. The
number of invitees has grown as adjustments and refinements to the process
have been made. The number of students accepting the parachute opportu-
nity is somewhat volatile but consistent with respect to on/off semesters (the
bulk of incoming freshman students are in fall while spring has a more diverse
enrollment of transfers, retakes, non-majors, etc.).

For students that accepted our invitation the outcomes were very positive.
They successfully integrated into CSCE 101 and were able to perform fairly
well. The majority (20/25) passed mostly with A (11) or B (6) grades. Nev-
ertheless some were not able to make the transition and either failed (1) or
ultimately withdrew (4).

In contrast, those that declined our invitation (37) to parachute did ex-
tremely poorly. While one student was able to achieve a B and 6 were earned
a C, the vast majority earned grades of D (6) or F (13) or ultimately withdrew

33

Table 1: Course Data during the parachute program from Spring 23 (S23)
through Fall 2024 (F24)

CSCE 101 CSCE 155A
Sem Enr. DFW Enr. DFW
S23 131 18.32% 69 34.78%
F23 99 18.18% 132 35.61%
S24 157 12.74% 86 36.05%
F24 118 12.71% 85 43.53%
Total 505 15.25% 372 37.37%

(a) Semester-by-semester enrollment
(Enr.) and DFW rates

Sem Invited (%) Accepted (%)
S23 4 (5.80%) 4 (100%)
F23 14 (10.61%) 7 (50%)
S24 24 (27.91%) 3 (12.5%)
F24 20 (23.85%) 11 (55%)
Total 62 (16.67%) 25 (40.32%)

(b) Parachute program invitees and
accepts(numbers and percentage of
the class) by semester.

(11) giving an overall DFW rate of 81.08%, far exceeding typical failure rates.
A sankey flow diagram of these outcomes can be found in Figure 1.

Figure 1: Flow of students through CSCE 155A
and the Parachute Program.

Beyond the success rates
of these introductory courses,
one of the aims of the
parachute program is to re-
tain more students in com-
puting majors. Unfortu-
nately, among students prior
to fall 2024 that received an
invitation to participate (42)
nearly half (20) had dropped
or failed out of college en-
tirely (though it is possi-
ble some transferred to an-
other institution). Neverthe-
less, among those still en-
rolled, nearly one third (7/22) persisted in their computing major and were
still matriculating a year later. Though the remaining students found different
majors (15/22), some continued with computing as a minor. Though it is still
early, data from fall 2024 provides a bit more optimism. More students in this
cohort (7/11) are continuing with computing courses and all are still enrolled.

5 Discussion

The numbers presented in this paper are admittedly small. However, we are
making no claims of generalization or formal methodological analysis. The
parachute program attempts to engage with students who are already on the

34

margin and so the numbers will necessarily be small. Nevertheless, our ex-
periences and data over the last two years give several interesting points of
discussion. Our experiences have also led to refinements and we’ve identified
some best practices.

5.1 Common Outcomes

Given that students who accepted our invite did well and those that declined
tended to fail, an obvious first question is: why did students decline our in-
vitation? Unfortunately, we don’t have much in the way of direct data to
answer this question. A small number of students were unable to accept the
invitation because they had already taken and passed the parachute course
or they were non-computing majors whose program required 155A (or would
not count 101). We do have some anecdotal evidence that students wanted to
persist with CSCE 155A and intended to improve, a sort of sunken cost fallacy.
However, more commonly we observed that students who were already failing
at that point were completely disengaged with the course to the point that
they ignored even our outreach efforts.

This theme continued when we looked at the near-term data. About half
of all students who declined parachuting had failed or dropped out of our
institution entirely within the next year. This suggests that these students were
experiencing problems that went well beyond these courses and the computing
curriculum. Most had failed more than one course or even the majority of their
courses.

Nevertheless, the parachute program did result in significant positive out-
comes. It was able to successfully retain a good number of students who may
not have persisted in computing or in college at all. Given the minimal invest-
ment in administrative time and effort, these are very positive outcomes.

Though retention in computing majors is certainly a goal, it is not the
only positive outcome. Many students switched to other disciplines (which is
common) but still earned credit for the parachute course toward their degree
program. This program serves as an easy “off-ramp” to students who were not
entirely set on a computing major. They were able to get a taste of computing
and decide that it was not for them without losing out on the credit hours
or negatively impacting their GPA. These students also have the potential to
return to computing later on or in alternative ways such as receiving a minor.

Though it was not observed directly, the invitation process itself may serve
as a wake-up call to students who are under-performing early in the course and
can serve as an early intervention mechanism.

35

5.2 Refinements

Though the program is only two years old, several refinements and adjustments
have been made. Only about a third of the invitees are represented in the final
DFW students. That is, a good majority of DFW students were not initially
identified and invited to parachute in the first 5 weeks. This suggests that
students do not necessarily “fail fast” in this course. To address this, we have
adjusted the cutoff for invitees downward over time in an effort to capture
more students who would otherwise fail. In the most recent offering of the
course, students meeting the parachute criteria were contacted directly with an
invitation, however, the entire class was made aware of the program. Students
who were doing well or reasonably well were also given the opportunity to
opt-into the program. Several students took this opportunity citing stress,
workload, or perceived difficulty of the course as reasons.

In Fall 2024, the program was expanded to include another CS1 section
designed for students with some computing background. However, among 8
students invited, all declined and all eventually failed. Nevertheless, we intend
to continue and expand the program going forward.

5.3 Best Practices

We see the curricular changes discussed in Section 3.3 as necessary to a program
like this. If students are to be re-enrolled in a different course during a semester,
it is absolutely essential that the course count toward their degree program in a
significant way. Without this change, parachuting would only exacerbate time-
to-graduation challenges. Any program considering a change like this needs to
reexamine and potentially realign their early curriculum as a first step.

Recall that it was necessary to ensure that the content of the parachute
course, CSCE 101, be realigned to accommodate students entering the course
at week 6. However, our CS1 course content also had to be aligned so that
assessments were more evenly distributed using smaller assessments and front-
loading the course so that early success or risks could be established. If the
course had a more traditional structure, say heavily exam-based, trends in
assessment could not have been observed.

Another necessary component is clear and frequent communication. Stu-
dents need to know if they are doing well in the course even before the 5 week
invite period. The invitation also needs to be crafted so that it is not an in-
dictment of the student’s performance but instead framed as a way to provide
them help and an opportunity to succeed.

Now that we have a good amount of data, we intend to update our com-
munication strategy to provide more transparency with respect to that data.
In particular, we intend to share general success rates of those who choose to

36

parachute versus those that do not.
Though not a best practice, another necessary component to a program like

this is administrative buy-in. When this program was originally proposed there
was initial concern that students could not be administratively re-enrolled mid-
semester. There were questions as to the impact on financial aid, scholarships
and other legal issues. As a result, the program, though approved, is required
to be voluntary for students. Administrative support was also necessary to
handle the logistics of re-enrollment and to prevent late enrollment fees.

6 Conclusion

As with any intervention, change and improvement are incremental; there is
no silver bullet. The results of our parachute program are somewhat mixed,
but the positive results are compelling especially given the minimum amount
of work required to implement and administer it. In doing so, it has also
led to other positive curricular changes. This paper has outlined the general
process, its results, and best practices so that other institutions might think
about adopting or adapting a similar program.

References

[1] Brett A. Becker and Keith Quille. “50 Years of CS1 at SIGCSE: A Review
of the Evolution of Introductory Programming Education Research”. In:
Proceedings of the 50th ACM Technical Symposium on Computer Sci-
ence Education. SIGCSE ’19. Minneapolis, MN, USA: Association for
Computing Machinery, 2019, pp. 338–344.

[2] Angela Boatman and Bridget Terry Long. “Does Remediation Work for
All Students? How the Effects of Postsecondary Remedial and Develop-
mental Courses Vary by Level of Academic Preparation”. In: Educational
Evaluation and Policy Analysis 40.1 (2018), pp. 29–58.

[3] Ryan Bockmon and Chris Bourke. “Validation of the Placement Skill In-
ventory: A CS0/CS1 Placement Exam”. In: Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1. SIGCSE
2023. Toronto ON, Canada: Association for Computing Machinery, 2023,
pp. 39–45.

[4] B. Bonham and H. Boylan. “Developmental mathematics: Challenges,
promising practices, and recent initiatives”. In: Journal of Developmental
Education 34.3 (2011), pp. 1–10.

37

[5] D. M. Bressoud, V. Mesa, and C. L. Rasmussen. “Insights and recom-
mendations from the MAA national study of college calculus”. In: Math-
ematics Teacher 109.3 (2015).

[6] Alex Daniel Edgcomb, Frank Vahid, and Roman Lysecky. “Coral: An
Ultra-Simple Language For Learning to Program”. In: 2019 ASEE Annual
Conference & Exposition. 10.18260/1-2–32550. Tampa, Florida: ASEE
Conferences, June 2019.

[7] National Center for Education Statistics. National Postsecondary Stu-
dent Aid Study 2020 (NPSAS:20). 2020. url: https://nces.ed.gov/
surveys/npsas/.

[8] Mehdi Iranpoor. “Knights Exchange Puzzle—Teaching the Efficiency of
Modeling”. In: INFORMS Transactions on Education 21.2 (2021), pp. 108–
114.

[9] Michael S. Kirkpatrick and Chris Mayfield. “Evaluating an Alternative
CS1 for Students with Prior Programming Experience”. In: Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. SIGCSE ’17. Seattle, Washington, USA: Association for Com-
puting Machinery, 2017, pp. 333–338.

[10] P. Gavin LaRose and Robert Megginson. “IMPLEMENTATION AND
ASSESSMENT OF ON-LINE GATEWAY TESTING”. In: PRIMUS 13.4
(2003), pp. 289–307.

[11] Anany Levitin and Maria Levitin. Algorithmic puzzles. Oxford University
Press, 2011.

[12] Markeya S Peteranetz and Anthony D Albano. “Development and Eval-
uation of the Nebraska Assessment of Computing Knowledge”. In: Fron-
tiers in Computer Science 2 (2020), p. 11.

[13] Judith Scott-Clayton, Peter M. Crosta, and Clive R. Belfield. “Improving
the Targeting of Treatment: Evidence From College Remediation”. In:
Educational Evaluation and Policy Analysis 36.3 (2014), pp. 371–393.

[14] Allison Elliott Tew and Mark Guzdial. “The FCS1: A Language Indepen-
dent Assessment of CS1 Knowledge”. In: Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education. SIGCSE ’11. Dal-
las, TX, USA: Association for Computing Machinery, 2011, pp. 111–116.

[15] Christopher Watson and Frederick W.B. Li. “Failure Rates in Introduc-
tory Programming Revisited”. In: Proceedings of the 2014 Conference on
Innovation & Technology in Computer Science Education. ITiCSE ’14.
Uppsala, Sweden: Association for Computing Machinery, 2014, pp. 39–
44.

38

Getting Your Hands Dirty: Teaching an
IoT Course with an Interdisciplinary

Component∗

Nathan W. Eloe1 and Alexander W. Taylor2

1School of Computer and Information Systems
2School of Agricultural Sciences

Northwest Missouri State University
Maryville, MO 64468

{nathane, ataylor}@nwmissouri.edu

Abstract
Project-based computer science classes are nothing new; considerable

effort goes into creating relevant and realistic educational experiences for
students to learn and demonstrate mastery of core learning outcomes.
Finding projects that can engage and interest students while still meet-
ing required educational outcomes can be a difficult task, but local op-
portunities can lead to successful student experiences. This paper details
the authors’ experiences in adopting an interdisciplinary approach to a
project-based Internet of Things course. The intent is to expose students
to other areas to drive engagement and interest while also benefiting the
larger university community.

1 Introduction

1.1 Related Work

Project-based learning is not a new approach to teaching computer science [3],
and efforts to improve measurement of learning outcomes and construct frame-
works to administer such classes within the changing academic landscape are

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

39

ongoing [1]. Two particularly important factors to the success of such projects
are student motivation [3] and how well the project maps to the real world.
Student engagement can be driven in part by providing the project the stu-
dents feel a connection to or by improving their sense of community [6]. Real
world project mapping can be addressed by integrating internships into the
curriculum [2], but this approach does not scale well to a full class experience.
This paper reports the experiences of using a project of importance to the uni-
versity community while crossing curricular borders in an Internet of Things
class.

1.2 Motivation

In the winter months of 2022, the campus greenhouses suffered a heater failure,
leading to a catastrophic loss of plants. While monitoring hardware exists in
the greenhouses, the manager was not aware of the outage at the time and
was unable to react. This led to the idea of targeting the Internet of Things
class project at creating a distributed sensor platform that allowed for remote
alerting of greenhouse staff in the event of an outage. Over the summer, the
structure of the class was planned out and executed in Fall 2023.

1.3 Course Structure

The first half of the class focused heavily on the “things” part of the Internet
of Things; programming microcontrollers to react to external stimuli and per-
form actions based on that stimulus. About six weeks into the semester, the
class took a field trip across campus to the Horticulture Complex where they
participated in a brief lecture on the importance of greenhouses, the param-
eters that will be measured (pH, temperature, humidity and light levels) and
a tour of the various types of greenhouses that are present at the University.
Two exemplars were also presented to highlight the importance of controls on
greenhouses (phalaenopsis orchids and habanero peppers). From there, the
students were able to design and implement sensor platforms using hardware
purchased by the School of Agriculture and 3D printed enclosures.

1.4 The Project

The platforms were built around the ESP32 microcontroller and used the ES-
PNow [4] mesh technology for communication with a base station. The class
of 30 students (primarily juniors and seniors) were divided into groups; each
group was responsible for constructing a sensor for a greenhouse and one group
was assigned the task of building the base station. Figure 1 shows a block di-
agram of the system, and Figure 2 shows a deconstructed prototype. Students

40

Figure 1: Block diagram of the platform sensors

were provided hardware similar to that used in class and datasheets and given
the freedom to explore solutions to a variety of problems not usually encoun-
tered in purely software–based projects. Several days throughout the rest of
the semester were deemed “greenhouse days” where the class met at the Horti-
culture Complex to test and improve their implementations. Throughout the
second half of the semester, one day would be spent on course content (specif-
ically the “Internet” part of Internet of Things) and the other class day spent
working both in their groups and helping other groups.

2 Results and Student Feedback

While very few quantitative results can be shared the project was mostly suc-
cessful as a prototype of both the sensor system and a class structure. The
final product worked with some issues primarily centered around the choice
of wireless networking protocol and power in the 2.4GHz band. This results
presentation focuses on the project deliverables, qualitative student feedback,
faculty observation, and university reception.

2.1 Project Deliverables

The students were able to work together to provide an implementation that
was primarily limited by the choice of wireless networking protocols and the
structure of the greenhouses and Horticulture Complex. While there were some
issues and there was a high rate of board failure over the next few months, some
sensors were still operational almost a year after deployment. Those boards

41

Figure 2: Partially assembled sensor platform

that failed may still be operational, but could not generate enough signal to
penetrate the building the base station is located in.

The crop technician responsible for greenhouse management relayed that
shortly after the semester ended they received an alert that the temperature
was spiking in the greenhouses. Student workers were able to respond quickly
to find that the thermostats in the heaters were stuck, causing them to remain
on well past their intended working temperature. They were able to react and
save the plants, avoiding a second total plant loss. Upon hearing this, students
who had implemented the sensors were excited to learn that they had made a
difference with their class project.

2.2 Student Evaluations

Student responses to the course were varied but overwhelmingly positive, with
an average evaluation score of 3.85/4. The primary negative comment was that
the coursework was light towards the end of the semester for the sensor groups
while the basestation group was continuing to work dilligently on finalizing
their portion of the project. Other comments included:

• With learning the basics of most IOT things, then getting into a practical
application of what we learned, it was easy to stay involved in the material
and as a result a lot of progress was made in understanding the realm of
IOT.

• I think that this class has been the most interesting and the most real
world application of a class that I’ve done so far.

42

• ...he [the instructor] let us (the students) take over towards the end with
the ag project as if its was a real world problem. He of course would help
with anything and show us new ideas but he left all of the decision making
up to us the students. Really really enjoyed this class. Learned a ton
about real world IOT as well, for sure going to recommend to everyone.

• This was a super fun class and a lot was learned by all. I thought the
structure of the course was great. With learning the basics of most IOT
things, then getting into a practical application of what we learned, it
was easy to stay involved in the material and as a result a lot of progress
was made in understanding the realm of IOT

Constructive feedback included the need to spend more time covering the op-
eration of basic circuits. Omitted comments didn’t address course content
constructively or at all but were overwhelmingly positive (for example “It was
a fun class, I had so much fun and actually learned something”).

2.3 Faculty Observations

From the CS side, the students seemed incredibly motivated. Anecdotally, on
the third day of class a student in the front row was heard remarking that he’d
found a cheap 3 pack of the microcontrollers on Amazon and had purchased
them. Another student took the first two days of lecture content and made the
microcontroller control a strip of addressable lights that had been harvested
from a PC. Students used office hours to get help and spent extra time working
in the greenhouses. Also anecdotally, one student mentioned that this was the
one class they still had any motivation to really put effort into and was pushing
for a better grade than the minimum needed to graduate.

From the Agriculture/client perspective the implementation of the green-
house monitoring system did relieve some workload from the crop technician
and student workers responsible for maintaining the School of Agricultural
Science’s greenhouses. The crop technician lives about 45 minutes away from
campus, and on cold weekends would drive back up to the school to make sure
all the heaters were working properly. The text alert system relieved some of
the stress involved with weekend and night-time monitoring. From a School of
Agriculture perspective, this project has been lauded as part of the university’s
commitment to the Career Ready - Day One motto and has been highlighted
in prospective student visits. Calls for more student agriculturalists being
involved in the project has led to a steadily growing contingent of students
being interested in single board computers and sensor networks. As semi- and
fully autonomous drones and field equipment become more commonplace in
our fields, making sure agriculture students are more cognizant of the work

43

going into designing and deploying these systems is critical to their future and
continued employment.

2.4 University Response

The University response to this project was also overwhelmingly positive. Pho-
tographers from the University Marketing team attended the final “presenta-
tion” where students remained with their groups in the greenhouses and talked
to the invitees. These photographs have been used in university news releases
and marketing materials [5]. Additionally in an email responding to the invi-
tation to the final activity the Provost mentioned “This collaboration is perfect
and exactly what we need for our students.”, and followed through with the
awarding of a grant in Fall 2024 to improve on the project and build a base on
which we can expand the greenhouse monitoring system. That project is cur-
rently in progress using new microcontrollers and different wireless technologies
to help with the ineffective short range wireless mesh technologies that were
implemented in Fall 2023. This implementation is subject to new and exciting
problems for students and faculty to solve, but that is the scope of a future
paper.

3 Conclusions

One issue with computer science education is it is not particularly kinetic;
unless one is working with drones or other hardware most of the work is one
or two people frowning at a computer screen, which does not make for very
exciting photo opportunities or the chance to see your code directly interacting
with the real world. Every CS student has written Hello World multiple times
by the time they are a senior, and yet blinking a LED by pulsing a GPIO pin
and getting to learn how the devices they interact with regularly work adds an
element of novelty and excitement to the work. Seeing students’ faces light up
with actual joy when we lit an LED for the first time was particularly gratifying
from an educator’s standpoint.

It is particularly interesting that one student commented that it was the
“most real world application of a class that I’ve done so far”. There was nothing
built into the structure of this class that made it remotely like a structured
software engineering course; in fact, any structured SDLC was primarily driven
by students who had taken the Software Engineering Principles course and were
applying skills from other classes. This project was no more or less “real” than
other project-based educational experiences. It just felt different, in the sense
that you could actually see and feel the products of your work (and smell if
you really screwed up). It is easy to lose sight of the fact that while Computer
Science is software heavy, the addition of a tactile element that hardware brings

44

to the educational experience builds an excitement factor; lighting up a single
LED on a breadboard is more exciting than a single pixel on a monitor.

Another benefit of this kind of project is it introduces CS students to other
disciplines; Computer Science is problem solving, and to do that we need prob-
lems to solve. Being able to work in cross- and interdisciplinary teams is an
incredibly valuable skill. Getting students to realize that the field does not
exist in a vacuum helps put the value of General Education (and in this case
specifically science) classes in perspective; a point that was emphasized repeat-
edly throughout the course was that a lot of the content came from Electrical
Engineering (circuit diagrams and construction) and Physics (Ohm’s Law and
related equations), and specific class demos came from the world of Theater
(LED color mixing). The project problem domain was agriculture, but also
applied to smart homes and remote sensing (which has applications in Geology
and other related Natural Sciences). They could apply the skills and lessons
from the class to improve accessibility or provide smart monitoring of power
usage with the intent of decreasing energy grid load. The problem domains are
nearly endless, assuming one is willing to look for those application areas.

References

[1] Nathan Eloe and Charles Hoot. “Accommodating Shortened Term Lengths
in a Capstone Course using Minimally Viable Prototypes”. In: 2020 IEEE
Frontiers in Education Conference (FIE). 2020, pp. 1–8. doi: 10.1109/
FIE44824.2020.9273821.

[2] Arturo Jaime et al. “The Effect of Internships on Computer Science En-
gineering Capstone Projects”. In: IEEE Transactions on Education 63.1
(2020), pp. 24–31. doi: 10.1109/TE.2019.2930024.

[3] Robert Pucher and Martin Lehner. “Project based learning in computer
science–a review of more than 500 projects”. In: Procedia-Social and Be-
havioral Sciences 29 (2011), pp. 1561–1566.

[4] Espressif Systems. ESP-NOW Wireless Communication Protocol | Espres-
sif Systems. 2024. url: https://www.espressif.com/en/solutions/
low-power-solutions/esp-now (visited on 11/25/2024).

[5] Northwest Missouri State University. Comptuer science students put their
skills to work to monitor campus greenhouses. 2023. url: https://www.
nwmissouri.edu/media/news/2023/12/11internetofthingsproject.
htm (visited on 01/14/2025).

[6] Suzanne Young and Mary Alice Bruce. “Classroom community and stu-
dent engagement in online courses”. In: Journal of Online Learning and
Teaching 7.2 (2011), pp. 219–230.

45

Creating a Consolidated 3-in-1
Multi-B.S. Program Structure in a

Resource-Limited Computer Science &
IT Department to Achieve ABET

Accreditation for All Three Programs∗

Kriti Chauhan, Katherine Lehtola, Dylan Hulon,
Antoni Sayre, James Church, Leong Lee

Department of Computer Science and Information Technology
Austin Peay State University

Clarksville, TN 37044
{chauhank, 1klehtola, 1dhulon, 1asayre, churchj, leel}@apsu.edu

Abstract
Most computing departments offer one or two undergraduate pro-

grams, but the CSIT Department at a mid-south state university offers
three, all three accredited by the Accreditation Board for Engineering
and Technology (ABET): Computer Information Systems, Computer In-
formation Technology, and Computer Science. In 2018, an integrated
3-in-1 B.S. program structure was adopted, which earned ABET accred-
itation in 2021-2022. With about 650 majors and 100–150 graduates
annually, the streamlined curriculum has optimized resources and con-
tributed to the department’s success.

1 Introduction

Computing departments, being relatively new in US universities, benefit from
accreditation, to assure quality and attract students. This paper outlines the

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

46

restructuring of courses offered by a regional four-year, mid-south university’s
Computer Science and Information Technology (CSIT) Department to improve
resource utilization and pursue ABET accreditation.

The CSIT department in the College of Science, Technology, Engineering &
Mathematics emerged from the Mathematics department in 2003, as demand
grew significantly since offering the first computing course at the university in
1970. Today, it employs 11 tenured/tenure-track faculty, two instructors, 12
adjuncts, three academic advisors, and 30 student workers. The department
offers three ABET-accredited Bachelor of Science degrees—Computer Informa-
tion Systems, Computer Information Technology, and Computer Science—with
six concentrations. It is among eight of 411 U.S. universities accredited by the
Computing Accreditation Commission (CAC) of ABET to offer at least three
accredited programs, reflecting its commitment to quality.

Currently, the CSIT department enrolls approximately 650 computing ma-
jors and graduates around 100 to 150 students annually. Offering around 100 to
120 sections of classes during regular school semesters (Fall or Spring), manag-
ing the limited resources to meet ABET accreditation requirements and teach
the numerous bachelor’s and master’s classes offered is a significant challenge.
This paper presents the consolidated 3-in-1 multi-B.S. program structure de-
signed for efficient resource management, in hopes that this program structure
benefits other universities and departments facing similar challenges.

2 Background

The rapidly changing computing industry has led the ABET CAC to frequently
revise its accreditation criteria. In 2019, updates were made to both the Gen-
eral Criteria and Program Criteria for computer science, information technol-
ogy, and information systems programs. Notably, Criterion 3 (Student Out-
comes) introduced five core outcomes along with one program-specific outcome
for each discipline [6]. Criterion 5 (Curriculum) was also updated, requiring
programs to ensure these outcomes are met, including the addition of topics like
“substantial coverage of at least one general-purpose programming language”
for computer science [1]. Achieving and sustaining ABET accreditation now re-
lies on departments demonstrating adaptability, efficiency, and evidence-based
alignment with these criteria.

Institutions have leveraged these updates to improve program effectiveness.
For example, the United States Air Force Academy adopted CAC-specified out-
comes in 2018 and mapped them to their courses, streamlining curriculum de-
velopment [4]. Similarly, the University of Central Oklahoma improved ABET
evaluation by organizing course materials on a shared server [3]. The New
York City College of Technology used detailed assessment models and a focus

47

on student-centered outcomes to secure re-accreditation [5], while the Univer-
sity of Central Missouri aligned its Cybersecurity program with ABET crite-
ria through evidence-based assessments [8]. East Tennessee State University
streamlined its administrative processes to facilitate ABET accreditation for
its integrated programs, showcasing the benefits of simplified assessment prin-
ciples [7]. These examples highlight the importance of flexibility and strategic
planning in meeting evolving ABET standards.

3 Seeking ABET Accreditation

In 2018, the CSIT department began the challenging journey of seeking ABET
accreditation to validate academic standards. Despite disruptions caused by
the COVID-19 pandemic in 2019-2020, the department’s faculty persevered,
achieving ABET accreditation for all three B.S. programs (CIS, CIT, and CS)
during 2020-2022. Accreditation actions officially began for the CIT and CS
programs on October 1, 2020, and for the CIS program on October 1, 2021,
with the site visit and review completed during the 2021-2022 cycle.

The CAC of ABET ensures computing programs meet quality standards
essential for the profession. To keep pace with the rapidly evolving computing
industry, the CAC updates its criteria annually. This paper uses the Criteria for
Accrediting Computing Programs, 2023-24 [2] as the basis for the department’s
recent progress report.

The criteria are divided into General Criteria for all baccalaureate-level
computing programs and specific Program Criteria for individual programs.
ABET evaluates programs to ensure they meet both the General and Program
Criteria. There are eight General Criteria applicable to the CIS, CIT, and
CS programs. Additionally, each of these programs—CIS, CIT, and CS—must
also satisfy its specific Program Criteria.

ABET criteria are divided into General Criteria for all baccalaureate-level
programs and Program Criteria for specific disciplines. The eight General Cri-
teria cover: 1. Students, 2. Program Educational Objectives, 3. Student Out-
comes, 4. Continuous Improvement, 5. Curriculum, 6. Faculty, 7. Facilities,
and 8. Institutional Support.

Program-specific criteria address discipline-specific requirements for CIS,
CIT, and CS programs. This paper focuses on Criterion 3 (Student Outcomes)
and Criterion 5 (Curriculum) within the department’s integrated 3-in-1 B.S.
program structure, emphasizing efficient resource management. Additionally,
Criterion 4 (Continuous Improvement), which evaluates the effectiveness of
Student Outcomes, is discussed in this context.

48

• General Criteria

– Criterion 1. Students
– Criterion 2. Program Educational Objectives
– Criterion 3. Student Outcomes
– Criterion 4. Continuous Improvement
– Criterion 5. Curriculum
– Criterion 6. Faculty
– Criterion 7. Facilities
– Criterion 8. Institutional Support
– CIS: Information Systems & Similarly Named Computing Programs
– CIT: Information Technology & Similarly Named Computing Pro-

grams
– CS: Computer Science & Similarly Named Computing Programs

• Program Criteria

– Criterion 1. Students
– Criterion 2. Program Educational Objectives
– Criterion 3. Student Outcomes
– Criterion 4. Continuous Improvement
– Criterion 5. Curriculum
– Criterion 6. Faculty
– Criterion 7. Facilities
– Criterion 8. Institutional Support
– CIS: Information Systems & Similarly Named Computing Programs
– CIT: Information Technology & Similarly Named Computing Pro-

grams
– CS: Computer Science & Similarly Named Computing Programs

This paper focuses on Criterion 3 (Student Outcomes) and Criterion 5
(Curriculum), exploring how these criteria are integrated into our 3-in-1 multi-
B.S. program structure for efficient resource management. Since Criterion 4
(Continuous Improvement) involves the assessment of Criterion 3 (Student
Outcomes), it is also relevant to our discussion.

Criteria 3 (student outcomes) and 5 (curriculum) are typically the most
challenging aspects of the ABET CAC accreditation process. Improper map-
ping of Criterion 3 to the program can complicate Criterion 4 (continuous
improvement). The next section will present the Criterion 5 Curriculum 3-in-1
Program Map alongside the introduction of the 3-in-1 program structure.

49

Table 1: Criterion 3. Student Outcomes (SLOs), 3-in-1 Program Map (2023-24
ABET Criteria)

B.S. in Computer Infor-
mation Systems

B.S. in Computer Infor-
mation Technology

B.S. in Computer Science

Graduates of the program will have an ability to:
1. Analyze a complex computing problem and to apply principles of com-

puting and other relevant disciplines to identify solutions. (SLO1)
2. Design, implement, and evaluate a computing-based solution to meet

a given set of computing requirements in the context of the program’s
discipline. (SLO2)

3. Communicate effectively in a variety of professional contexts. (SLO3)
4. Recognize professional responsibilities and make informed judgments in

computing practice based on legal and ethical principles. (SLO4)
5. Function effectively as a member or leader of a team engaged in activities

appropriate to the program’s discipline. (SLO5)

6. Support the deliv-
ery, use, and manage-
ment of information sys-
tems within an infor-
mation systems environ-
ment. [IS] (SLO6-CIS)

6. Use systemic ap-
proaches to select,
develop, apply, integrate,
and administer secure
computing technologies
to accomplish user goals.
[IT] (SLO6-CIT)

6. Apply computer
science theory and
software development
fundamentals to produce
computing-based solu-
tions. [CS] (SLO6-CS)

4 Resources, 3-in-1 Program Structure, SLOs, Comput-
ing Core, Major Core

Due to limited resources, the CSIT department’s 3-in-1 program structure aims
to minimize course preparations. Adjunct instructors typically don’t develop
course materials due to compensation and time constraints, while full-time in-
structors, though responsible for course development, can only manage 30-40
preparations per semester. To streamline this, the department developed Com-
puting Core and Major Core, and the degree plan comprises of four sections:

50

• General Education Core Courses: cover communications, history, hu-
manities/fine arts, mathematics, natural sciences, and social/behavioral
sciences.

• Computing Core Courses: Required across all degree programs, allow-
ing one instructor to develop materials for multiple sections, ensuring
consistency and efficiency in foundational computing concepts. These
courses are offered every semester.

• Major Core Courses: Required for all concentrations within a specific
program, offering essential skills for any specialization. These are offered
annually.

• Concentration Courses: Specialized courses for specific concentrations,
offered once a year.

The 3-in-1 program structure is mapped in Table 2, which aligns with the
department’s assessment plan. To meet Criterion 4: Continuous Improvement,
assessment is conducted using CSCI 3000-4999 level courses, with each ma-
jor’s core courses used to assess relevant Student Learning Outcomes (SLOs).
This structure enables the CSIT department to maintain efficient course devel-
opment and meet ABET requirements with a manageable workload of 30-40
preparations per semester by the limited full-time instructors. Criterion 4:
Continuous Improvement is a substantial topic that warrants further discus-
sion in another paper.

5 Curriculum

The 3-in-1 program structure, as shown in Table 2, aligns with ABET CAC
Criterion 5: Curriculum and the ABET curriculum structure outlined in Table
3, based on the 2023-2024 ABET Criteria. Note that concentration courses
are not used to satisfy ABET Criteria. Information Systems offers General IS
concentration and Cybersecurity concentration. Information Technology offers
Database concentration and Web and Networking concentration. Computer
Science offers General CS concentration and Software Engineering concentra-
tion.

ABET criteria are updated annually, and the university maps its academic
bulletin to these criteria each year to ensure compliance. The CSIT faculty
integrate these criteria when making curriculum changes, and maintain com-
pliance despite limited resources.

With Computing Core courses offered each semester and Major Core and
Concentration courses annually, the department can create a predictable course

51

schedule that meets ABET requirements. This tiered structure allows the de-
partment to operate within its resource constraints, including faculty, budget,
and classroom space. This approach may benefit other small universities offer-
ing multiple degrees with common courses.

Table 2: The 3-in-1 Program Structure (AY 2023-24 Bulletin for 2023-24 ABET
Criteria)

B.S. in Computer Information
Systems

B.S. in Computer Information
Technology

B.S. in Computer Science

General Education Core
Computing Core

• Complete one option from:

– Regular sequence

∗ CSCI 1010 Introduction to Programming I 3
∗ CSCI 1011 Introduction to Programming I Lab 1
∗ CSCI 2010 Introduction to Programming II 3
∗ CSCI 2011 Introduction to Programming II Lab 1

– CSCI 2000 Programming for STEM 4

• CSCI 2600 Computer Ethics 3
• CSCI 2700 Data Communications & Networking 3
• CSCI 4200 Principles of Information Security 3
• CSCI 4400 Principles of Database Management 3
• CSCI 4800 Senior Seminar 1

Total Hours 17-21
CIS Major Core

• CSCI 4018 Cloud Computing 3

• CSCI 4603 Requirements &
Project Mgt 3

• CSCI 4750 Systems Analysis &
Design 3

• ENGL 1100 Technical & Re-
port Writing 3

• MATH 1530 Elements of
Statistics 3

• Complete one course from:

– CSCI 2500 Discrete
Structures 3

– MATH 1810 Elements
of Calculus 3

– MATH 1910 Calculus I
4

– Choose 1 of 2 focuses
(Courses Not Shown
Here)

• Information Systems Environ-
ment

– Choose 1 of 2 focuses
(Courses Not Shown
Here)

Total Hours 33-34

CIT Major Core

• CSCI 1005 – Intro. to Informa-
tion Technology 3

• CSCI 1300 Introduction to
Web Development 3

• CSCI 2500 Discrete Structures
3

• CSCI 3300 Client-Side Web
Development 3

• CSCI 3350 User Experience
Design 3

• CSCI 4603 Requirements &
Project Mgt.

• CSCI 4650 Windows Server-
Side Web Dev. 3

• CSCI 4750 Systems Analysis &
Design 3

• CSCI 4760 Linux System Ad-
ministration 3

• MATH 1530 Elements of
Statistics 3

Total Hours 30

CS Major Core
• CSCI 3005 Graphical User In-

terfaces 3

• CSCI 3250 Data Structure &
Algorithms 3

• CSCI 3400 Computer Organi-
zation I 3

• CSCI 4100 Operating Systems
& Arch. 3

• CSCI 4230 Programming Lan-
guages 3

• CSCI 4270 Algorithm Design &
Analysis 3

• CSCI 4805 Computer Science
Capstone 3

• MATH 1910 Calculus I 4

• MATH 1920 Calculus II 4

• MATH 3000 Discrete Mathe-
matics 3

• MATH 3450 Linear Algebra 3

• 1 Math Elective; Select 2 Sci-
ence Lecture & Lab

Total Hours 46

General Info. Systems Concentra-
tion OR Info. Assurance & Se-
curity Concentration (Courses Not
Shown Here) Electives. Total Pro-
gram Hours 120

General Info. Systems Concentra-
tion OR Info. Assurance & Se-
curity Concentration (Courses Not
Shown Here) Electives. Total Pro-
gram Hours 120

General Comp. Sci. Concen-
tration OR Software Engineer-
ing Concentration (Courses Not
Shown Here) Electives. Total Pro-
gram Hours 120

52

Table 3: Criterion 5. Curriculum, AY 2023-24 Bulletin (To Satisfy 2023-24
ABET Criteria)

B.S. in Computer Infor-
mation Systems

B.S. in Computer Information
Technology

B.S. in Computer Science

General Curriculum Criteria (Almost the same for all computing-related B.S. Programs) – Covered by
Computing Core courses
The program includes mathematics appropriate to the discipline and at least 30 semester credit hours of
up-to-date coverage of fundamental and advanced computing topics that provide both breadth and depth.
The computing topics include:

1. Techniques, skills, and tools necessary for computing practice (CSCI 1010 / CSCI 1011 / CSCI 2000 /
CSCI 2010 / CSCI 2011).

2. Principles and practices for secure computing (CSCI 4200).
3. Local and global impacts of computing solutions on individuals, organizations, and society (CSCI 2600 /

CSCI 4800).

Program Specific Curriculum Criteria – Covered by Computing OR Major Core Courses
Computer Informa-
tion Systems meets
the following curriculum
program criteria.

1. Information systems
(at least 30 credit
hours): Fundamentals
and applied prac-
tice in application
development (CSCI
1010 / CSCI 1011 /
CSCI 2000 / CSCI
2010 / CSCI 2011),
data and information
management (CSCI
4400), information
technology infrastruc-
ture (CSCI 3400 /
CSCI 2700), systems
analysis, design and
acquisition (CSCI
4750), project man-
agement (CSCI 4603),
and the role of in-
formation systems in
organizations (CSCI
4750).

2. Information systems
environment require-
ment (at least 15
credit hours): Co-
hesive set of topics
that provide an un-
derstanding of an
information systems
environment - choose
one of two 15-hour
focuses – Earth &
Environmental Science
or Business).

3. Quantitative analysis
or methods (include
statistics): MATH
1530 (statistics)/
CSCI 2500 / MATH
1810 / MATH 1910.

Computer Information Tech-
nology meets the following cur-
riculum program criteria.

1. Information Technology (at
least 45 credit hours):

(a) Fundamentals and
applied practice in: in-
formation management
(CSCI 4400), integrated
systems (CSCI 4750),
platform technologies
(CSCI 4760), system
paradigms (CSCI 4603
/ 4750), user experience
design (CSCI 3350),
networking (CSCI 2700),
software development
and management (CSCI
4603 / CSCI 4750),
web and mobile systems
(CSCI 1300 / CSCI 3300
/ CSCI 3350 / CSCI
4650).

(b) Advanced and supple-
mental IT topics that
build on fundamentals
and applied practice to
provide depth. (CSCI
1300 / CSCI 3300 /
CSCI 3350 / CSCI 4650
/ CSCI 4750)

(c) Experiential learning ap-
propriate to the program
(CSCI 3350 / CSCI 4650
/ CSCI 4750).

(d) Principles and practices
of IT project manage-
ment (CSCI 4603).

2. Mathematics (at least 6
credit hours, include rele-
vant discrete mathematics):
Math 1530 / CSCI 2500
(includes relevant discrete
mathematics).

Computer Science meets the following
curriculum program criteria.

1. Computer science (at least 40 credit
hours):

(a) Substantial coverage of algorithms
and complexity (CSCI 3250 / CSCI
4270), computer science theory
(CSCI 3250 / CSCI 4230), concepts
of programming languages (CSCI
4230), and software development
(CSCI 1010 / CSCI 2010 / CSCI
2000 / CSCI 3005).

(b) Substantial coverage of at least one
general-purpose programming lan-
guage (CSCI 1010/2010 / CSCI 2000
/ CSCI 3005).

(c) Exposure to computer architecture
and organization (CSCI 3400), infor-
mation management (CSCI 3250 /
CSCI 4400), networking and commu-
nication (CSCI 2700 / CSCI 4100),
operating systems (CSCI 4100), and
parallel and distributed computing
(CSCI 4100).

(d) Study of computing-based systems at
varying levels of abstraction. (CSCI
1010 / CSCI 2010 / CSCI 2000 /
CSCI 3005 / CSCI 3400 / CSCI
3250).

(e) A major project that requires inte-
gration and application of knowledge
and skills acquired in earlier course
work. (CSCI 4805).

2. Mathematics and Statistics (at least 15
credit hours, include discrete mathemat-
ics, probability, and statistics and must
have mathematical rigor at least equiv-
alent to introductory calculus): MATH
1910 / MATH 1920 / MATH 3000 /
MATH 3450 / MATH 4670 / STAT 3250
/ STAT 4240.

3. Science: Coursework that develops and
applies the scientific method in a non-
computing area - Natural Science Core
for Computer Science

6 Conclusions

The 3-in-1 program structure, though unconventional, effectively addresses re-
source constraints while meeting ABET’s student learning outcomes, curricu-
lum, and continuous improvement requirements. It provides a clear framework
for long-term course scheduling, optimizing limited resources and enhancing

53

manpower, room allocation, and budget efficiency. This structure also offers
flexibility for students, allowing them to switch between B.S. programs and
reuse Computing Core courses across CIS, CIT, or CS degrees. Students can
change concentrations and apply Major Core courses across different areas,
aiding retention.

Ultimately, the 3-in-1 structure helped the CSIT department achieve ABET
accreditation for all three programs. Ongoing studies are exploring its impact
on continuous improvement, resource allocation, and justification. With a
central core, major core, and upper-division classes, this structure offers clarity
for advisors, flexibility for students, and better resource management, making
it a valuable model for other departments facing similar challenges.

References

[1] ABET. Nov. 2018. url: https://www.abet.org/wp-content/uploads/2018/
11/C001-19-20-CAC-Criteria-11-24-18.pdf.

[2] ABET. Criteria for accrediting computing programs, 2023 - 2024. June 2023.
url: https : / / www . abet . org / accreditation / accreditation - criteria /
criteria-for-accrediting-computing-programs-2023-2024/.

[3] Jicheng Fu et al. “Obtaining and maintaining ABET accreditation: An experience-
based review of the ABET criteria for computer science programs”. In: Journal
of Computing Sciences in Colleges 29.4 (2014), pp. 13–19.

[4] Steve Hadfield et al. “Streamlining computer science curriculum development
and assessment using the new ABET student outcomes”. In: Proceedings of the
Western Canadian Conference on Computing Education. 2019, pp. 1–6. doi: 10.
1145/3314994.3325079. url: https://doi.org/10.1145/3314994.3325079.

[5] Lili Ma and Benito Mendoza. “Assessing Student Outcomes Related to Design
for ETAC-ABET Accreditation”. In: Journal of Computing Sciences in Colleges
38.3 (2022), pp. 150–164.

[6] Michael J Oudshoorn et al. “Understanding the new abet computer science cri-
teria”. In: Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. 2018, pp. 429–434. doi: 10.1145/3159450.3159534. url:
https://doi.org/10.1145/3159450.3159534.

[7] Tony Pittarese et al. “Developing an integrated multi-program computing de-
partment”. In: Journal of Computing Sciences in Colleges 30.5 (2015), pp. 20–
26.

[8] Xiaodong Yue, Belinda Copus, and Hyungbae Park. “How to secure ABET ac-
creditation for a cybersecurity program: a case study”. In: Journal of Computing
Sciences in Colleges 37.6 (2022), pp. 15–24.

54

A Comparison of Different Lab
Environments for Digital Forensics

Course∗

Zhengrui Qin
School of Computer Science and Information Systems

Northwest Missouri State University
Maryville, MO 64468

zqin@nwmissouri.edu

Abstract
Nowadays, with the development of cloud computing, various lab en-

vironments have emerged, which, however, have seldom been compared
with each other. In this paper, we have conducted a survey on differ-
ent lab environments for Digital Forensics course, i.e. NDG (Network
Development Group), Cengage MindTap, and running labs on personal
computers. In the survey, students have expressed their preferences and
evaluated each lab environment. We believe this study can help in-
structors select the right lab environment for Digital Forensics course or
similar courses.

1 Introduction

In recent years, cloud computing [6] has emerged as a popular and promising
computing paradigm, which not only benefits industries and individuals but
also changes the teaching approach in colleges. As the result, assignments/labs
are shifting from paper-based and/or computer-based approaches to cloud-
based approaches. This trend greatly lightens the burden of the teachers;
furthermore, it facilitates the online students significantly.

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

55

However, when developing a new course or upgrading an existing course,
it may be challenging to select the proper cloud product from various cloud
vendors. In the field of cybersecurity, several cloud services are available, such
as NDG (Network Development Group) [5], Cengage MindTap [1], and TestOut
[7]. Each of these cloud services offers assignments/labs for a bunch of courses.
Some of these cloud services have been studied separately by scholars [2, 3].
However, to the best of our knowledge, no research or study has compared
these cloud services. Furthermore, to be more accurate, it is better to conduct
the comparison to a specific course instead to the cloud service as a whole,
which will be even more challenging. First, a course usually only uses one
cloud service. Second, even a course may use two or more cloud services, it
may not use them in the same semester but in different semesters; as the result,
one cannot get the feedback for different cloud services from the same group
of students.

In this paper, we aim to provide the comparison of the cloud services for
Digital Forensics course, a mandatory course in the cybersecurity program.
We will compare two cloud services that provide digital forensics labs, NDG
and MindTap, along with lab environment in one’s own computer; that is,
three lab environments will be compared, two are cloud-based and one is PC-
based. In our Digital Forensics course in the fall of 2023, we assigned labs from
both NDG and MindTap to students, and also offered multiple digital forensics
activities on their own computers (provided by the university). At the end of
the semester, we conducted a survey among the students who took the course.
In this paper, we have presented our survey and shown our observations. We
hope that our work can help teachers select the proper cloud service in a similar
situation.

The rest of paper is organized as follows. Section 2 briefly describes NDG
and MindTap labs. Section 3 presents the questionnaire of our survey. Section
4 shows the survey results and our observations. Section 5 concludes the paper.

2 Preliminaries

In this section, we will describe the three lab environments in our Digital
Forensics course. The first two, NDG and MindTap, are hosted in the cloud,
and the students only need a web browser to conduct the labs. However, for
the 3rd one, the students have to install necessary software to create a lab
environment on their own computers.

2.1 NDG (Network Development Group)

NDG Online[5] is a hands-on IT cloud training solution with environments
right in users’ browsers. It offers a growing selection of online courses and

56

labs featuring coursebooks, videos, lab exercises, and assessments. It covers
seven broad topics, including Cloud, Cybersecurity, Linux, Networking, Open
Source, Storage, and Virtualization.

The product used in our Digital Forensics course is NDG Forensics V2
within Cybersecurity. Each student needs an account, which costs $50. We
used a cybersecurity grant to purchased one account for each student.

NDG Forensics V2 consists of 21 labs, listed as below.

Lab 01: Creating a Forensic Image
Lab 02: Live Acquisition
Lab 03: Live Forensics
Lab 04: Registry Forensics
Lab 05: File Systems
Lab 06: Keyword Search and Analysis
Lab 07: Data Carving
Lab 08: Metadata and Link File Analysis
Lab 09: Recycle Bin Forensics
Lab 10: Steganography and Alternative Data Streams
Lab 11: Picture File Analysis
Lab 12: Email Analysis
Lab 13: Internet Browser Forensics
Lab 14: Timeline Analysis
Lab 15: IoT Forensics
Lab 16: Mobile Forensic Analysis
Lab 17: Log Capturing and Interpretation
Lab 18: Pagefile Analysis
Lab 19: Password Cracking
Lab 20: File Hashing and Hash Analysis
Lab 21: Chain of Custody

2.2 Cengage MindTap

MindTap [1], powered by Cengage, is an online learning platform, through
which the students can access their full eBook, do their homework, conduct
live virtual machine labs, complete assessments, and peruse study tools.

The textbook used in our course, Guide to Computer Forensics and Inves-
tigations [4], contains 16 modules. Each module has a live virtual machine lab,
except Module 2 and Module 8. The labs are listed as below.

Lab 1: Understanding the Digital Forensics Profession and Investigation
Lab 3: Data Acquisition
Lab 4: Processing Crime and Incident Scenes
Lab 5: Working with Windows and CLI Systems
Lab 6: Current Digital Forensics Tools
Lab 7: Linux and Macintosh File Systems
Lab 9: Digital Forensics Analysis and Validation
Lab 10: Virtual Machine Forensics, Live Acquisitions, and Network Forensics
Lab 11: E-mail and Social Media Investigations

57

Lab 12: Mobile Device Forensics
Lab 13: Cloud Forensics
Lab 14: Report Writing for High-Tech Investigations
Lab 15 Expert Testimony in Digital Investigations
Lab 16: Ethics for the Expert Witness

2.3 Labs on Personal Computers

In this option, the students have to install digital forensics tools on their own
computers. Tools include VirtualBox, Autopsy, FTK, Sleuth Kit, etc. Below
is an example lab.

Defeat Simple Steganography:
Here is a public website: https://github.com/JerryQinNW/386-site. The site illustrates

some simple techniques for hiding information in plain view. Explore the site, and try to
uncover a hidden message.

Verify: Include a screen shot clearly showing on your machine the secret message(s)
uncovered.

Describe and show what you did to uncover each message. The answers are the same for
everyone, so your screenshots and explanations are critical for earning credit.

2.4 Lab Selection

As we only had 14 weeks excluding the first week and the final exam week in
the fall semester, we could not assign all labs to the students. For NDG labs,
we selected Lab 01, Lab 02, Lab 03, Lab 05, Lab 10, Lab 12, and Lab 16; and
for MindTap labs, we selected Lab 1, Lab 2, Lab 4, Lab 5, Lab 7, Lab 9, Lab
10. Most of the two chosen sets of labs are of different topics, while there are
still some overlapped topics, such as NDG Lab 05 and MindTap Lab 7 with
the same topic – File Systems.

3 The Survey

To make a fair comparison, we have designed a survey with 16 questions.
The questionnaire is listed below. Questions #1-13 ask students’ opinions on
MindTap and NDG, respectively. Question #14 directly compare MindTap
and NDG. Question #15 compares running labs on one’s own computer (the
3rd option) against MindTap and NDG. Finally, Question #16 is asking the
students how they like the textbook, Guide to Computer Forensics and Inves-
tigations.

1. Are NDG labs interesting?
2. Are MindTap (Cengage) labs interesting?
3. How satisfied are you with NDG labs? (latency, bandwidth, instructions, etc.)
4. How satisfied are you with MindTap labs? (latency, bandwidth, instructions, etc.)
5. How effective is NDG labs? (think about what you have learned from the labs)

58

6. How effective is MindTap labs? (think about what you have learned from the labs)
7. Is it worthy to pay $50 for all the labs in NDG?
8. On average, how many hours do you spend roughly on each NDG lab?
9. On average, how many hours do you spend roughly on each MindTap lab?
10. Are the NDG labs difficult?
11. Are the MindTap labs difficult?
12. On average, how many attempts do you need to finish one MindTap lab?
13. On average, how many attempts do you need to finish one NDG lab?
14. Comparing labs in NDG labs and MindTap, on average, which is better?
15. Do you prefer to run the labs on your own computer rather than NDG or MindTap?

(Install all software and create the environment.)
16. How do you like the textbook?

For each question except Question #12 and #13, we measure the students’
opinions with the 5-point Likert scale, which consists of the following points:
(1 point) strongly disagree; (2 points) disagree; (3 points) neither agree nor
disagree; (4 points) agree; and (5 points) strongly agree. For Question #12
and #13, we ask the students to input their numbers.

It is necessary to point out that we did not survey the 3rd option directly.
The reason is that at the beginning of the semester, we asked the students
whether they would like to do the labs on their own computers or on the cloud;
all students chose the cloud option. As the result, we did not assign any labs in
the 3rd option. However, students did engage many digital forensics activities
during class discussions and demonstrations.

4 Survey Results and Analysis

At the last week of the fall semester of 2023, we conducted an anonymous
survey among the students who took the Digital Forensics course. 16 out of
19 students took the survey. The results are shown in Figure 1 - Figure 9 and
Table 1. We will explain them one by one.

4.1 Survey Observations

Figure 1 shows the interesting level of NDG labs and MindTap labs. Comparing
Figure 1a and Figure 1b, we can see that NDG labs are more interesting than
MindTap labs from the view of students. In total, 62.5% students agree or
strongly agree that NDG labs are interesting, while the percentage for MindTap
labs is only 37.5%.

Figure 2 shows how the students are satisfied with NDG labs and Mind-
Tap labs considering the latency, bandwidth, instructions, etc., for example,
whether the instructions of the labs are easy to follow. Comparing Figure 2a
and Figure 2b, we can see that NDG labs are more satisfying than MindTap

59

(a) NDG interesting level. (b) MindTap interesting level.

Figure 1: Interesting level of NDG and MindTap.

(a) NDG satisfying result. (b) MindTap satisfying result.

Figure 2: How are NDG and MindTap labs satisfying?

labs. In total, 62.5% students agree or strongly agree that NDG labs are satis-
fying, while the percentage for MindTap labs is only 12.5%. We observed this
trend during the semester as well, as some students complained that instruc-
tions of MindTap labs sometimes were hard to follow.

(a) Effectiveness of NDG labs. (b) Effectiveness of MindTap labs.

Figure 3: Effectiveness of NDG and MindTap labs.

Figure 3 shows the effectiveness of NDG labs and MindTap labs, i.e., what
students can learn from the labs or how the knowledge in class is strengthened.
We can see that NDG labs are more effective than MindTap labs. In total,

60

37.5% of students disagree or strongly disagree that MindTap labs are effective
while the percentage for NDG labs is only 12.5%. However, even for NDG labs,
only half of the students agree or strongly agree the labs are effective.

(a) Difficulty level of NDG labs. (b) Difficulty level of MindTap labs.

Figure 4: Difficulty assessment for NDG and MindTap labs.

Figure 4 shows whether the labs are difficult. We can see that most of stu-
dents think that neither NDG nor MindTap labs are difficult. This observation
is also reflected during the help session, because there were only a few cases
that the students asked for helps on the labs. Even with these cases, with
only some hints or guidance from the instructor or the teaching assistant, the
students could smoothly go through the labs.

(a) # of attempts needed in NDG labs. (b) # of attempts needed in MindTap labs.

Figure 5: Number of attempts on average needed for one lab.

Figure 5 shows that on average how many attempts are need for each lab.
We designed this question because we noticed that sometimes the labs were
frozen and required to be restarted. In this regard, NDG platform performs
much worse than MindTap platform, since the students need two attempts for
more than half of labs while they only need one attempt for most of MindTap
labs.

MindTap labs are included in the ebook, which can be counted as free.
NDG labs are $50 for each student account, and we are interested that how
the students value the cost. Figure 6 shows that, only a quarter of the students

61

Figure 6: NDG cost effectiveness. Figure 7: Overall comparison.

agree or strong agree it is worthy to pay $50 for the labs, even though they did
not pay a penny (paid by a cybersecurity grant).

Figure 7 shows the overall comparison between NDG labs and MindTap
labs. Based on previous comparison in Figure 1 - Figure 5, it is not surprising
to see that the students prefer NDG labs to MindTap labs.

Figure 8: Running labs on PC? Figure 9: Textbook assessment.

Figure 8 shows that, compared to NDG and MindTap labs, the students are
actually willing to run the labs on their own computers (provided by the uni-
versity). This observation is reasonable, because even NDG labs, the better of
the two, are far from perfect. Figure 9 shows how the students value the text-
book. The majority of the students either like the textbook or remain neutral,
even though they do not like MindTap labs. This suggests that, as instructors,
we would better not to use MindTap labs while using the corresponding digital
forensics textbook.

We also estimated how much time students spent on each lab on average.
Table 1 shows the time spent for each of the 16 students and the average, for
NDG labs and MindTap labs, respectively. Since the survey is done at the end
of the term, the time is just an estimate based on students’ impression. On
average, students spent about 1 to 2 hours on each lab, while MindTap labs
take about half hour longer.

62

Table 1: Hours spent on NDG and MindTap labs.

Student 1 2 3 4 5 6 7 8
NDG 0.5 1.5 0.5 1.5 1.0 1.0 1.0 0.7

MindTap 1.0 1.0 1.0 1.5 2.0 1.0 1.0 0.7
Student 9 10 11 12 13 14 15 16
NDG 1.5 0.5 1.0 1.0 1.5 5.0 1.5 1.3

MindTap 1.5 0.5 1.5 5.0 2.0 5.0 1.5 2.0
Mean ± Std Dev NDG 1.3 ± 1.1 MindTap 1.8 ± 1.3

4.2 Instructor’s View

Based on the students’ opinions above and the instructor’s investigation, NDG
labs are better than MindTap labs in terms of lab design, effectiveness, and
knowledge coverage. However, NDG labs presents challenges in grading (Foren-
sics V2 did not provide any grading mechanism in 2023). To grade the NDG
labs, the instructor had to ask the students to manually take some screenshots,
check the time students spent, and examine the data volume transferred. As
the result, the grading could not be very accurate. However, MindTap labs are
graded automatically by the platform itself.

5 Conclusion

In this paper, we have investigated different lab environments for Digital Foren-
sics course. We conducted a survey among the students who took the course in
the fall of 2023. It turns out that students preferred NDG labs to the MindTap
labs. However, both NDG and MindTap labs are far from perfect. Therefore,
running all the labs on students’ own computers or a cybersecurity lab would
be a promising choice. We believe that our findings can provide some guidance
for instructors in a similar situation.

References

[1] Cengage MindTap. url: https://www.cengage.com/mindtap/.

[2] Jahan Hassan, Anamika Devi, and Biplob Ray. “Virtual laboratories in
tertiary education: Case study analysis by learning theories”. In: Education
Sciences 12.8 (2022), p. 554.

[3] Usha Jagannathan and Risa Blair. Interdisciplinary initiative for infusion
of virtual labs in IT and engineering degree programs. 2015.

63

[4] Bill Nelson, Amelia Phillips, and Christopher Steuart. Guide to computer
forensics and investigations. Cengage Learning, 2022.

[5] Network Development Group. url: https://www.netdevgroup.com/
online/.

[6] Ling Qian et al. “Cloud computing: An overview”. In: Cloud Computing:
First International Conference, CloudCom 2009, Beijing, China, Decem-
ber 1-4, 2009. Proceedings 1. Springer. 2009, pp. 626–631.

[7] TestOut. url: https://w3.testout.com.

64

Impact of COVID-19 on Live-Coding in
First-Year Computer Science Education:

A Literature Review∗

Sourabh Kulkarni, Abbas Attarwala, Jaime Raigoza
Computer Science Department

California State University, Chico
Chico, CA 95973

{sdkulkarni, aattarwala, jraigoza}@csuchico.edu

Abstract

The COVID pandemic has significantly influenced educational
methodologies, leading to a shift towards more interactive and
technology-integrated teaching approaches. Live-coding, which involves
real-time coding demonstrations, has gained recognition as a valuable
tool in computer science education. This study investigates the impact
of the pandemic on the popularity and application of live-coding. By
conducting a comprehensive literature review of 22 research papers, this
study categorizes the papers based on their publication date relative
to the pandemic: pre-COVID (2017 to 2019), during COVID (2020 to
2022), and post-COVID (2023 to 2024). The papers were selected using
a specific search query for live-coding in introductory computer science
education on Google Scholar. A systematic literature review was per-
formed to determine their sentiment towards live-coding, categorizing
the sentiments as positive, neutral, or negative. The sentiment data were
then statistically analyzed using Fisher’s Exact Test to assess significant
differences across the three periods. Results from this manuscript indi-
cate shifts in positive sentiment towards live-coding during and after the
pandemic.

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

65

1 Introduction

The origin of live-coding as an educational tool has gained significant atten-
tion within the academic community, particularly in the fields of computer
science and programming education. Live-coding involves instructors writing
and explaining code in real time during lectures. [1] has mentioned the benefits
of live-coding over static examples and power point slides where live-coding of-
fers students a more richer and an interactive learning experience over other
forms of learning.

The global spread of the COVID virus caused disruptions, in education
systems around the world leading to the adoption of transitions to online
and blended learning methods. In this manuscript, we investigate whether
COVID increased positive sentiment towards live-coding in first-year program-
ming courses in computer science. Our research question is: How has the pop-
ularity and application of live-coding in first-year computer science education
changed before, during, and after the COVID pandemic?

We first perform a literature review, detailed in Section 2, classifying papers
as positive or not positive (neutral or negative) towards live-coding across three
time periods: pre-COVID (2017 to 2019), during COVID (2020 to 2022), and
post-COVID (2022 to 2024). In Section 4, we state our hypothesis and perform
the Fisher Exact Test (FET). Section 5 presents our discussion of the results,
and Section 6 provides our conclusions.

2 Literature Review

For pre-COVID, the following papers were looked at: 1) The paper [16] eval-
uates the effectiveness of live-coding in introductory programming courses. It
highlights the benefits, such as enhanced understanding of programming con-
cepts and debugging through real-time code development. Positive feedback
includes increased confidence and learning program design. However, some
students expressed concerns about the pace and suggested more interactive
involvement. Thus, the overall sentiment of the paper towards live-coding is
Neutral. 2) The paper [3] introduces “Improv”, an IDE extension that en-
hances live-coding in education by integrating PowerPoint slides with live code,
reducing cognitive load and enhancing instructional clarity. Using Mayer’s mul-
timedia learning principles, Improv synchronizes code snippets with presenta-
tion slides, improving tutorial delivery. The authors highlight its benefits,
stating that Improv combines the organization of slide presentations with the
flexibility of live-coding, contributing positively to learning at scale. Thus, the
overall sentiment of the paper towards live-coding is Positive. 3) The paper
[5] reviews the current state of computing education research, analyzing aca-

66

demic and policy literature to address challenges and opportunities in teaching
computing, especially with new UK curricula. It explores various pedagogi-
cal techniques, including live-coding. The authors note that live-coding can
be as effective as, if not better than, static code examples for teaching intro-
ductory programming, indicating their positive sentiment towards live-coding.
Thus, the overall sentiment of the paper towards live-coding is Positive. 4)
The paper [2] explores using Jupyter notebooks as versatile educational tools
across various disciplines. It discusses how Jupyter notebooks enhance student
engagement, participation, understanding, and performance. Highlighting live-
coding, the paper states that live-coding provides active learning by allowing
students to complete code in notebooks before demonstrations. The paper as-
serts that notebooks increase student engagement and preparation for careers,
indicating a Positive sentiment towards live-coding. 5) The paper [15] investi-
gates factors influencing student performance in an introductory programming
course at the Royal University of Bhutan. Using a mixed methods approach,
data were collected through tests, surveys, and interviews. The findings suggest
that live-coding, along with other methods like pair programming and indepen-
dent coding, aids in learning. The paper highlights the benefits of live-coding,
noting its effectiveness in engaging students. Thus, the overall sentiment of the
paper towards live-coding is Positive. 6) The paper [4] discusses developing
a virtual laboratory to teach X-ray imaging principles to engineering students.
It uses a creative approach integrating scientific simulations with modern com-
puting techniques. The study combines qualitative and quantitative data to
evaluate the virtual lab’s impact on learning. The paper highlights the benefit
of live-coding, noting that synchronous editing of shared documents enhances
ensemble live-coding performance. Thus, the overall sentiment of the paper
towards live-coding is Positive.

For during COVID, the following papers were looked at: 1) The paper [13]
reviews academic and policy literature on using worked examples in computer
science education, focusing on code-tracing and code-generation examples. It
highlights that live-coding is appreciated by students more than standard lec-
tures but also notes studies showing no significant differences between live-
coding and static examples. Given these mixed findings, the overall sentiment
of the paper towards live-coding is Neutral. 2) The paper [21] investigates
challenges faced by near-novice programmers when learning a second program-
ming language, focusing on a transfer pedagogy using live-coding. The study
involves 62 second-year students transitioning from Python to Java, employ-
ing both quantitative and qualitative methods. Student feedback highlighted
increased engagement, while lecturer feedback noted mixed results depend-
ing on student experience. Despite some challenges, the overall sentiment of
the paper towards live-coding is Positive. 3) The paper [14] examines the

67

impact of active learning classrooms (ALC) on student performance in a sec-
ond programming course at the University of Toronto Mississauga. Using a
quasi-experimental design with 529 participants, the study compares active
learning methods, including live-coding, in different classroom environments.
The results do not indicate significant differences in student performance be-
tween room types, although ALCs stimulated interactivity. Thus, the general
sentiment of the paper towards live-coding is Neutral. 4) The paper [12] in-
vestigates novice programmers’ understanding of code before and after an in-
troductory programming course. Using a mixed-methods approach, it assesses
students’ understanding through a “code as a story” method and evaluates
code quality using SonarQube. The study suggests adding methods like live-
coding to improve teaching. Despite not specifying live-coding’s benefits, the
overall sentiment of the paper towards live-coding is Positive. 5) The paper
[20] investigates challenge-based and competency-based assessment strategies
in a first-year programming course at McMaster University. Involving 207 stu-
dents, the study evaluates performance through term tests and a final exam.
The paper highlights live-coding as a key pedagogical approach that resulted
in significant interaction and active learning. Thus, the overall sentiment of
the paper towards live-coding is Positive. 6) The paper [10] investigates the
rapid shift from face-to-face to online learning during the COVID pandemic
using a mixed-methods approach. The study includes surveys, focus groups,
and continuous monitoring to assess student engagement. It highlights live-
coding, reporting that students found it helpful for maintaining focus during
screencasts. Despite challenges with course organization, the overall sentiment
of the paper towards live-coding is Positive. 7) The paper [22] offers practical
advice and strategies for teaching introductory programming courses, com-
piled from the experiences of four seasoned teachers. It presents 26 tips to
enhance teaching effectiveness and student learning. The authors advocate for
the ‘Code Early and Often’ approach, suggesting that live-coding be included
in programming practices, noting its benefits for hands-on learners. Thus, the
overall sentiment of the paper towards live-coding is Positive. 8) The pa-
per [9] studies the effectiveness of live-coding versus static code examples in
a mid-level programming course. Using video analysis and student surveys,
the study qualitatively evaluates teaching methods and student preferences.
The authors note that live-coding helps students understand the development
process, while static examples enhance code reading and tracing abilities. The
paper highlights benefits of both approaches, resulting in an overall sentiment
towards live-coding that is Neutral. 9) The paper [7] evaluates live-coding in
computer science lessons from students’ perspectives using semi-structured in-
terviews with 10 first and second-year IT students at Westerdals Oslo ACT.
The study identifies benefits such as ease of asking questions and thorough ex-

68

planations, but also challenges like fast pace and unsatisfactory explanations.
Therefore, the overall sentiment of the paper towards live-coding is Neutral.
10) The paper [8] describes a new university course for teaching fundamental
software engineering concepts to novice students, emphasizing maintainable
and scalable code. Live-coding is used in five plenary lectures to introduce
theoretical concepts with practical examples. The course’s effectiveness was
assessed through student feedback, homework performance, and final exam re-
sults. The authors highlight the importance of practical examples, favoring
live-coding. Thus, the overall sentiment of the paper towards live-coding is
Positive.

For post-COVID, the following papers were looked at: 1) The paper [18]
investigates the impact of live-coding versus traditional static-code pedago-
gies on students’ programming processes and performance in an introductory
computer science course. Using two student groups with the same syllabus and
instructor, the study collected data through exams, assignments, and feedback.
The findings show no statistically significant differences between the groups,
indicating that live-coding may not offer the perceived benefits over static code
examples. Thus, the overall sentiment of the paper towards live-coding is Neu-
tral/Negative. 2) The paper [11] examines how various editor features affect
student experiences and perceptions in a creative coding course. Aiming to
improve IDE design for educational purposes, the study uses a two-year longi-
tudinal design with log analysis and surveys. The authors express a positive
sentiment towards live-coding, noting its benefits for novices and creative con-
texts. Thus, the overall sentiment of the paper towards live-coding is Positive.
3) The paper [1] examines the effectiveness of live-coding in computer science
education, comparing it with traditional PowerPoint-based methods. Using
examples from courses at Boston University and California State University,
Chico, the study highlights live-coding’s interactive learning atmosphere and
proposes a statistical method to evaluate its impact on student performance.
Student feedback overwhelmingly supports live-coding, indicating a Positive
sentiment towards this approach. The paper [19] explores the impact of live-
coding versus static-code examples in introductory computer science, gathering
data on student grades, programming processes, and lecture questions. The
results show no significant differences in grades, with a slight advantage for
static-code examples. Although live-coding improved adherence to program-
ming processes, the static-code group performed slightly better on assignments
and exams. Thus, the overall sentiment of the paper towards live-coding is
Neutral.

69

3 Data

We used Google Scholar to find research papers on live-coding and alternative
forms of teaching first-year programming in computer science. Specifically,
we used the following query on Google Scholar: “comparative study between
‘live-coding’ and static example in ‘computer science’ ‘first year” ’. We used
the above search query for the three different time ranges of 2017-2019 (pre-
COVID), 2020-2022 (during COVID) and 2023-2024 (post-COVID).

For the search query and the time range 2017-2019, we received 27 results.
Among these, 5 were books, 3 were music-related, and 1 each were related to
food, love, chemistry, and arts. Additionally, there was 1 tutorial schedule and
7 unrelated results. One result was a duplicate. Consequently, 21 results were
discarded, leaving 6 relevant results for our research. For the search query and
time range 2020-2022, we found 44 results. Among these, 5 were books, 18
were unrelated to live-coding, 1 might be related but is inaccessible, and 1 was
psychology-related. One link was broken, 1 was psychology and music-related,
1 was math-related, 2 were music-related, and 1 was physics-related. One paper
mixed slides and live-coding but did not include any additional information
for us to draw conclusions on the sentiment of live-coding. Consequently, 32
results were discarded, leaving 12 relevant results for our research. For the
search query since 2023, we received 12 results. Among these, 4 were related
to computer science but not to live-coding. Three were music-related, and
1 might be related to live-coding but is inaccessible. Consequently, 8 results
were discarded, leaving 4 relevant results for our research. We summarize our
findings in Table 1.

Table 1: The first row indicates the number of papers with positive sentiments
towards live-coding. The second row indicates the number of papers with
neutral or negative sentiments towards live-coding.

Pre-COVID During COVID Post-COVID
Positive Sentiment 5 8 2

on Live Coding [3], [5], [2], [15], [4] [21], [12], [20], [10], [6], [22], [17], [8] [11], [1]

Non-Positive Sentiment 1 4 2
on Live Coding [16] [13], [14], [9], [7] [18], [19]

4 Results

The results of the FET are presented in Table 2. This table reports the p-value,
odds ratio, and confidence interval for running the FET in three different com-
parisons: 1) Pre vs. During COVID, 2) Pre vs. Post COVID, and 3) During
vs. Post COVID. FET is a statistical test used to assess whether there are
nonrandom relationships between two categorical variables in a contingency

70

table. It is particularly useful for small sample sizes or when expected frequen-
cies are less than 5. FET is a nonparametric test, making it suitable for small
datasets. It is primarily used for 2 × 2 contingency tables (Table 1 presents
the data with 2 rows and 3 columns. When conducting FET, we analyze two
columns at a time to determine the association between the time periods and
the sentiment of the papers) and provides the p-value, which represents the
probability of observing a distribution of values as extreme or more extreme
than the one observed, assuming the null hypothesis (H0) is true. For each
pairwise comparison (as seen in column 1 of Table 2), we test the following
hypotheses:

• H0: The odds ratio of positive sentiment about live-coding between the
two time periods is 1 (no difference in odds).

• Alternative hypothesis (H1): The odds ratio of positive sentiment about
live-coding between the two time periods is not 1 (different odds).

In our study, we examine the association between the time period (pre,
during, and post COVID) and the sentiment (positive or negative) of papers
about live-coding. The characteristics of our data make FET particularly suit-
able. We have a relatively small number of papers, especially when split across
different time periods and sentiment categories. FET is ideal for such scenar-
ios where other tests might not be reliable due to small expected frequencies.
Given the importance of accurately detecting any association between time pe-
riod and sentiment, the exact p-value provided by FET offers a precise measure
of significance without relying on large-sample approximations. The test helps
us understand if the observed differences in sentiment across different time pe-
riods are statistically significant. By comparing the odds of positive sentiment
before and during the pandemic, we can assess how the pandemic influenced
the perception of live-coding.

Table 2: Fisher’s Exact Test Results for Various COVID Period Comparisons.

Comparison p-value Odds Ratio Confidence Interval
Pre vs. During COVID 0.6148 2.5 [0.2136 29.2543]
Pre vs. Post COVID 0.5000 5 [0.2732 91.5179]

During vs. Post COVID 0.6044 2 [0.2009 19.9137]

As seen in Table 2, the p-values for all comparisons are greater than 0.05,
indicating that we fail to reject H0 in each case. This suggests that there is no
statistically significant association between the timeline (pre, during, and post
COVID) and the sentiment of papers about live-coding.

71

5 Discussion

The analysis performed using Fisher’s exact test reveals that there is no statis-
tically significant difference in the sentiment of papers about live-coding when
comparing the periods before, during, and after COVID. This conclusion is
supported by p-values greater than 0.05 across all comparisons. Even though
the results lack statistical significance, they offer several valuable insights and
points for discussion. The odds ratios for all comparisons are greater than 1,
suggesting a tendency towards an increase in positive sentiment about live-
coding when compared across all three different rows of Table 2. Row 1 shows
an odds ratio of 2.5, indicating that the odds of a paper being positive about
live-coding during COVID are 2.5 times the odds pre-COVID. Row 2 shows
an odds ratio of 5, suggesting that post-COVID odds are 5 times the pre-
COVID odds. Row 3 shows an odds ratio of 2, indicating post-COVID odds are
2 times the odds during COVID. This increased positive sentiment may be due
to the necessity-driven adoption and innovation in live-coding practices during
the pandemic. Educators and developers may have found new, effective ways
to utilize live-coding under the constraints of remote learning and working.
The development and adoption of advanced online collaboration tools during
the pandemic could have positively influenced the perception of live-coding.
Even though the statistical significance is not achieved, the observed trends
indicate a growing acceptance and potential benefits of live-coding. Educators
and developers should consider integrating live-coding into their practices more
extensively. Universities and colleges could invest in training programs and
resources to help educators and developers effectively implement live-coding,
leveraging the positive experiences reported during and after the pandemic.

6 Conclusion

While the lack of statistical significance suggests that observed trends should
be interpreted with caution, the overall positive shift in sentiment towards
live-coding pre, during, and post-COVID indicates a potentially valuable de-
velopment in educational and professional practices. By further investigating
and leveraging these trends, stakeholders can improve the effectiveness and
acceptance of live-coding methodologies.

Acknowledgement

We gratefully acknowledge the use of OpenAI’s ChatGPT for proofreading,
grammatical checks, and other text editing tasks.

72

References

[1] Abbas Attarwala. “Live Coding in the Classroom: Evaluating Its Impact
on Student Performance Through ANOVA and ANCOVA”. In: 2023 In-
ternational Conference on Intelligent Education and Intelligent Research
(IEIR). IEEE. 2023, pp. 1–6.

[2] Lorena A Barba et al. “Teaching and learning with Jupyter”. In: Recu-
perado: https://jupyter4edu. github. io/jupyter-edu-book (2019), pp. 1–
77.

[3] Charles H Chen and Philip J Guo. “Improv: Teaching programming at
scale via live coding”. In: Proceedings of the Sixth (2019) ACM Conference
on Learning@ Scale. 2019, pp. 1–10.

[4] Alberto Corbi et al. “X-ray imaging virtual online laboratory for engi-
neering undergraduates”. In: European Journal of Physics 41.1 (2019),
p. 014001.

[5] Tom Crick. Final draft: Computing education: An overview of research
in the field. 2017.

[6] Kristine L Grayson, Angela K Hilliker, and Joanna R Wares. “R Mark-
down as a dynamic interface for teaching: modules from math and biology
classrooms”. In: Mathematical biosciences 349 (2022), p. 108844.

[7] Tor-Morten Grønli and Siri Fagernes. “The live programming lecturing
technique: A study of the student experience in introductory and ad-
vanced programming courses”. In: Norsk IKT-konferanse for forskning
og utdanning. 4. 2020.

[8] Markus Hofbauer et al. “Teaching software engineering as programming
over time”. In: Proceedings of the 4th International Workshop on Software
Engineering Education for the Next Generation. 2022, pp. 51–58.

[9] Derek Hwang et al. “A qualitative analysis of lecture videos and student
feedback on static code examples and live coding: A case study”. In:
Proceedings of the 23rd Australasian Computing Education Conference.
2021, pp. 147–157.

[10] Nikola Luburić et al. “The challenges of migrating an active learning
classroom online in a crisis”. In: Computer applications in engineering
education 29.6 (2021), pp. 1617–1641.

[11] Andrew M Mcnutt, Anton Outkine, and Ravi Chugh. “A Study of Editor
Features in a Creative Coding Classroom”. In: Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems. 2023, pp. 1–
15.

73

[12] Maria Medvidova and Jaroslav Porubän. “Program comprehension and
quality experiments in programming education”. In: Third International
Computer Programming Education Conference (ICPEC 2022). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik. 2022.

[13] Kasia Muldner, Jay Jennings, and Veronica Chiarelli. “A review of worked
examples in programming activities”. In: ACM Transactions on Comput-
ing Education 23.1 (2022), pp. 1–35.

[14] Ayesha Naeem Syeda, Rutwa Engineer, and Bogdan Simion. “Analyzing
the effects of active learning classrooms in cs2”. In: Proceedings of the
51st ACM Technical Symposium on Computer Science Education. 2020,
pp. 93–99.

[15] Mani Pelmo. “Teaching and learning introductory computer program-
ming at the royal university of Bhutan: Factors affecting student perfor-
mance”. PhD thesis. Curtin University, 2019.

[16] Adalbert Gerald Soosai Raj et al. “Role of live-coding in learning intro-
ductory programming”. In: Proceedings of the 18th koli calling interna-
tional conference on computing education research. 2018, pp. 1–8.

[17] Marisha Rawlins and Pilin Junsangsri. “Refining Competency-Based
Grading in Undergraduate Programming Courses”. In: ASEE-NE 2022.
2022.

[18] Anshul Shah et al. “An Empirical Evaluation of Live Coding in CS1”. In:
Proceedings of the 2023 ACM Conference on International Computing
Education Research-Volume 1. 2023, pp. 476–494.

[19] Anshul Shah et al. “The Impact of a Remote Live-Coding Pedagogy on
Student Programming Processes, Grades, and Lecture Questions Asked”.
In: Proceedings of the 2023 Conference on Innovation and Technology in
Computer Science Education V. 1. 2023, pp. 533–539.

[20] Gaganpreet Sidhu, Seshasai Srinivasan, and Nasim Muhammad.
“Challenge-based and competency-based assessments in an undergrad-
uate programming course”. In: International Journal of Emerging Tech-
nologies in Learning (IJET) 16.13 (2021), pp. 17–28.

[21] Ethel Tshukudu, Quintin Cutts, and Mary Ellen Foster. “Evaluating
a pedagogy for improving conceptual transfer and understanding in a
second programming language learning context”. In: Proceedings of the
21st Koli Calling International Conference on Computing Education Re-
search. 2021, pp. 1–10.

[22] Xihui Zhang et al. “Teaching introductory programming from A to Z:
Twenty-six tips from the trenches”. In: Journal of Information Systems
Education 31.2 (2020), pp. 106–118.

74

Developing an Enterprise Application
Tool to Discover Midwest Job Trends∗

Chandra Prakash Bathula and Maria Weber
School Of Professional Studies

Saint Louis University
St Louis, MO 63103

{chadraprakash.bathula, maria.l.weber}@slu.edu

Abstract

Significant growth in Computer and Mathematical Occupations can
be seen in the coming decade while outpacing other fields with a double
margin of median pay and a high demand for specialized skills driven by
technological advancements. According to the Bureau of Labor Statistics
(BLS), between 2023-2033, the United States is projected to see a 11%
and 7% growth in the Computer and Mathematical Occupations sector
with more than 393,000 jobs annually [5] [6] [3]. This paper examines
national trends in Computer and Mathematical Occupations, including
wages, growth, and a particular focus on the Central Plains region (Iowa,
Kansas, Missouri, and Nebraska). The median national annual salary for
these roles varies from $101,000 - $104,000, while their regional pay might
vary based on geographical development [5] [3]. Among the compared
states, Missouri has the highest growth rate in the region, with roles
like Data Scientists and Software Developers leading the chart. While
Nebraska and Iowa have a moderate growth rate for roles like Data Sci-
entists and Information Security Analysts roles, Kansas is projected to
see a high growth rate in Actuaries. In addition, this study underscores
the variations in employment per 1000 jobs and growth rates, stressing
the need for targeted skill development to increase opportunities in this

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

75

evolving and technology-influenced field. Descriptive statistics and visu-
alizations are used to explore regional competitiveness and distributions
by providing information to educators, students, and policy makers.

1 Introduction

In the last two decades, we have seen exponential growth in Technology, includ-
ing Artificial Intelligence (AI), Augmented Reality (AR), and Quantum Com-
puting, among others. Technology and the Internet have become an integral
part of our daily lives. For example, global connectivity and communication
are made simple thanks to IoT devices, mobile devices, and unlimited internet;
shopping saw a shift from on-site to online due to the explosion of web and
mobile applications. The total employment in the US is projected to increase
from 167.8 million in 2023 to 174.6 million jobs in 2033 [5], with a growth 4%.
Primarily, these statistics are at the national level; we will narrow down the
article to the central plains, a subregion of the Midwest, comparing growth and
pay [5].

During the next ten years, 2023-2033, Computer and Mathematical Occu-
pations tend to see faster growth compared to other occupations according to
the Bureau of Labor Statistics (BLS) [5][4]. There is a noticeable difference of
approximately $65,000 in the median pay compared to the rest of the occupa-
tions as of 2023 [5][4]. Most of these occupations require a bachelor’s degree as
a minimum educational requirement. However, only a very few choose a mas-
ter’s degree, and the variance in pay will be relative to the degree and position
with years of experience [7].

2 National Trends

Total employment in the US during the last two decades starting from 2003
saw an exponential growth, 141.6 million jobs and peaked in 2007 with 149.3
million jobs, as it is the internet era, in almost every sector, Computer Science
being the primary focus [7]. After the great recession in 2008, employment
growth saw a dip but increased steadily until the 2019 Covid pandemic [5].
The Pandemic saw an unprecedented impact, pushing the unemployment rate
to its highest level since World War 2 [7]. The unemployment rate in the US was
notably high in early 2021 but improved significantly by the following year [16].
After 2022, employment growth stabilized and has been growing exponentially
with a total employment of 167.8 million. In recent years, there has been a
noticeable employment shift towards careers in the Computer Science field.

According to the BLS statistics, we can expect substantial openings in
Computer and Mathematical Occupations for the next decade reflecting the

76

growing demand for talent in these areas [5][3]. Even though the overall US
employment growth rate is steady for the projected period until 2033, it is
expected to have 1.3 million jobs in IT by 2026. Moreover, Microsoft’s CELA
predicted we will see about 13 million technology-related jobs in the US [18].
Compared with the other occupations, Computer and Information technology
with Mathematical occupations tend to see 11% and 7% growth, higher than
the nation’s average on employment. Artificial Intelligence, the new hype in
the market, is said to impact the job market positively [5] [4].

With a promising atmosphere of growing employment in the Computer and
Mathematical Occupations, one more advantage is the higher salaries. Com-
puter and Information Sciences and Mathematical occupations have nearly
twice the difference in median annual wage with $101,000 – $104,000 com-
pared to the other occupations [4] [3]. Employment growth, high paying roles
and technological shift, all these have happened during the last two decades
with technological advancements in every way possible, not limited to IoT, AI,
Cloud Computing, Web Development, and Big Data. All the above factors con-
stituted the people to choose these growing occupations [9]. These stats are on
a national scale, but the growth in these groups, pay scales, and employment
per 1,000 jobs varies from state to state.

3 Regional Analysis on Central Plains

In this section, a comparison will be made between the national level to the sub-
regional levels to analyze the trends in localized opportunities and concerning
challenges. Our primary focus will be on central plains, including Iowa, Kansas,
Missouri, and Nebraska. As of 2023, the United States saw an average 3.6%
unemployment rate [5]. However, some states vary significantly compared to
the national average. States like North Dakota and South Dakota have notably
lower unemployment rates, while a higher rate can be seen in Nevada. Even
Silicon Valley in California, while primary a tech hub, saw a relatively high
unemployment rate, reflecting boarder economic trends rather than just tech-
related issues. States like Texas, California, New York, Virginia, and Florida
play a crucial role in the growth of Computer and Mathematical Occupations,
standing as the top states for employment growth in these fields [5].

Comparing the employment growth in 2023 and 2024, Missouri, Kansas,
Nebraska, and Iowa saw varying growth rates. Among these, Missouri had
the highest employment growth in Computer and Mathematical Occupations,
with significant employment figures and a notable employment rate per 1,000
jobs. Kansas also showed strong performance, with higher numbers in terms
of employment per 1,000 jobs. Iowa, though lower in overall growth, still
displayed significant employment in these fields, while Nebraska had a higher

77

employment per 1000 jobs 13]. Excluding Iowa and Kansas, the remaining
states in the central plains have growth rates of about 2.0% or more [11][15].

As the employment per 1000 jobs is relatively high in these states, it is
highly recommended that students focus on developing competitive skill sets to
capitalize on opportunities within Computer and Mathematical Occupations.
States like California and Texas, which are at the forefront of growth in these
fields, also exhibit strong employment rates, leading to increased competition
for available positions [5].

4 Navigating Job Growth and Skills Demand

This paper will focus on Computer and Mathematical Occupations, as defined
by the BLS, which includes a diverse range of roles such as computer analysts,
data scientists, software developers, statisticians, and others. Approximately
20 positions are part of these Occupations, with multiple names and Standard
Occupational Classification (SOC) codes ranging from 15-0000 to 15-2099, re-
flect the ever-expanding demand for professionals skilled in technology and
data analysis [3]. As the shift of digital transformation continues to shape in-
dustries around the globe, Computer and Mathematical Occupations are at the
forefront of this shift, offering opportunities for those with specialized skills in
areas like data science, artificial intelligence, CyberSecurity, and software de-
velopment. Table 1 shows some of the roles of Computer and Mathematical
Occupations. Individual roles within this sector differ, the underlying demand
for these skills remains consistent across various positions.

Although there is a continuous demand for technology-driven roles like
data scientists, developers, information security analysts, and others, actu-
aries, Statisticians, and Business Analysts play a key role in Computer and
Mathematical Occupations. The foundation for the roles of data scientists,
business analysts, and data analysts are the core skills from the areas of ad-
vanced statistical analysis and data interpretation. Whilst statisticians use
mathematical techniques for data analysis, business analysts apply data in-
sights to guide business decisions and their growth, which are the responsi-
bilities of a data scientist. These foundational roles are crucial as industries
become data-dependent. Statisticians, Actuaries, and Business Analysts con-
tribute to developing emerging technologies like Artificial Intelligence (AI),
Machine Learning, and predictive analytics, underscoring the importance of
acquiring skills in these areas. Their expertise remains in high demand across
diverse industries, inspiring and motivating others to delve into these fields.

78

Table 1: Table of Job Data for Various IT and Statistical Occupations

SOC
Code

Position
Name

Annual
Median
Pay
(2023)

Median
Pay
Hourly
(2023)

Minimum
Education
Required

Estimated
Jobs
2023

Projected
Growth
(2023-
33)

Growth
%

15-1221 Computer
and In-
formation
Research
Scientist

$145,080 $69.75 Masters 36,600 9,400 26%

15-1241 Computer
Network
Architects

$129,840 $62.42 Bachelors 177,800 23,900 13%

15-1212 Information
Security
Analyst

$120,360 $57.87 Bachelors 180,700 39,800 22%

15-2051 Data Scien-
tists

$108,020 $51.93 Bachelors 202,900 63,400 34%

15-1211 Computer
System
Analysts

$103,800 $49.90 Bachelors 527,200 56,600 11%

15-2011 Actuaries $112,030 $57.60 Bachelors 30,600 6,400 21%
15-
1252/53

Software
Developer,
Software
Quality
Assurance
Analysts

$130,160 $62.58 Bachelors 1,897,100 327,900 17%

15-2041 Statisticians $104,860 $50.41 Bachelors 48,800 9,900 11%

5 Comparing National Growth Over Central Plains Re-
gion

It is evident that Computer and Mathematical Occupations tend to see a higher
growth rate compared to the rest of the professions. Students can focus on any
of these roles to have a good career for the next decade. From table 2, among
all the roles in Computer and Mathematical Occupations, Data Scientist and
Information Security Analyst (15-2051 & 15-1212) roles have higher growth
with 36% and 33% over the 2023-2033 projected period. Furthermore, this
trend continues in the central plains’ region as well. Missouri has a projected
growth of 37.63% overall for the 2022-32 decade. Iowa, in the next place, has
a 3.1% annual growth rate, Nebraska has 2.1%, and Kansas has 1.1% [11][14]
[15]. Aligning closely with the National growth rate, Missouri has a 33.97%
growth rate for Information Security Analysts in 2022-2032 [13].

Central Plains region can serve as an insightful case study to look at na-
tional trends on a local scale. This region mirrors broader national trends in
Computer and Mathematical Occupations, as the states exhibit a strong de-

79

mand for technology and data, reflecting the growing national emphasis. While
there is a variation in growth rates, the consistent need for skilled professionals
across these states underscores the broader trend of this sector’s job expansion
in the U.S. The Central Plains region offers a clear view of national trends in
specific local economies.

Table 2: Roles Comparison Between National and Central Plains Region (Mis-
souri, Iowa, Kansas, Nebraska)

SOC Code National
Growth
Rate (2023-
2033)

Missouri
Annual
Growth
Rate

Iowa
Annual
Growth
Rate

Kansas
Annual
Growth
Rate

Nebraska
Annual
Growth
Rate

15-1211 11% 1.02% 1.0% 1.1% 1.02%
15-2011 22% 2.48% 2.3% 2.0% 2.04%
15-1252/53 17% 2.64% 2.3% 0.7% 2.20%
15-2051 36% 3.76% 3.1% 1.2% 2.71%
15-1241 13% 0.72% 0.5% 1% 0.56%
15-1212 33% 3.39% 3.4% 1.1% 2.47%
15-1221 26% 3.25% NA 1.1% 1.22%

5.1 State-specific job role comparisons:

Missouri:

• Students and Faculty can focus on Computer and Mathematical Occupa-
tions a bit more compared to other fields and from table 2, roles like Data
Scientists, Information Security Analysts, Software Developers, and QA
Analysts in MO will see significant growth in the 2022-2032 projected
period [13]. And as per fig 3, MO stands first in rankings for higher
annual median pay as well.

• Computer and Information Systems Managers are getting paid higher
than the remaining states as per fig1.

• MO has a high growth rate in Software Developers and QA Analysts
(15-1252;15-1253) roles, with 26.43%, compared to the nation’s average
growth rate of 17% as shown in table 2.

Iowa:

• From table 2, next to MO, Iowa has a moderate annual growth rate for
Data Scientists with 3.1% and Information Security Analyst roles with
3.4% [15].

80

Figure 1: Annual Median Pay comparison over the Central Plains’ based on
job roles.

Kansas:

• Compared to other roles, Software Developers (15-1252) have lesser de-
mand than other states, with only a 0.7% annual growth rate. Overall
growth rates are moderate, and among them, Actuaries (15-2011) tend
to show a high 2.0% annual growth rate [11].

Nebraska:

• The growth rate is steady. The roles of Information Security Analysts
and Data Scientists tend to have good annual growth rates of 2.47% and
2.71% [14].

Takeaways:

• Missouri job seekers can focus on IT-related careers as they tend to have
a higher growth rate. Missouri, Iowa, and Nebraska have good growth
rates in Data Scientist and Information Security Analyst roles. Kansas
job seekers can shift their focus to Actuaries and analytics-related careers.

All the roles that were discussed above revolve around diverse skill sets. Be
it a Computer and Information Research Scientist, Computer Network Archi-
tect, or Data Scientist, they all rely on multiple programming languages, Cloud
Computing, and Analytical Software and tools [9]. Some of the standard tools
and technologies of these roles mentioned in table 3.

81

Figure 2: Hourly Median Pay comparison over the Central Plains’ based on
job roles.

Table 3: In Demand Skills

Category Skills
Programming Lan-
guages

R, SQL, Python, C#, C++, Java, JavaScript

Cloud Computing AWS, Microsoft Azure, Google Cloud Platform
Shell Scripting Bash, Linux, UNIX
Analytical Tools Tableau, Power BI, RStudio, Excel
Network & Commu-
nication

Wireshark, LANs, WANs, Packet Analyzers, Net-
work Implementation

Development &
Testing

SAS, JIRA, Jenkins, DevOps, Selenium, Git,
Postman

Machine Learning &
Data Science

Scikit-learn, NumPy, TensorFlow

6 Impact of AI on the Job Market

In the two years of the pandemic, from 2020-2022, the world saw a significant
loss of lives and livelihood. That includes the IT sector as well, which intro-
duced work from home. People started to work typically, and the job market
seemed to be expected until the introduction of OpenAI’s ChatGPT in Novem-
ber 2022 [2], followed by Bard, which later rebranded as Gemini and Claude
in the very next year. All these AI Chatbots has versatility and functionalities
that have shifted the workflow of software organizations. Even though AI was
introduced decades ago in Product recommendations, Movie Suggestions, and
Games, people did not notice it [1]. After these, Chatbot’s introduction with

82

Figure 3: Descriptive Statistics for the Annual Pay, Hourly Pay, Highest Pay
Variation and State Rankings

the capabilities that solve complex computing problems scared people from the
job perspective [17].

Organizations started layoffs by leveraging the Large Language Models
(LLMs) and Retrieval Augmented Generation (RAGs) on their work to au-
tomate and cut expenses. Even before reaching the peak potential of AI, the
job market seems so challenging. Nevertheless, it will not be the same or result
in a negative trend. On a positive note, even if AI is about to disrupt 40%
of traditional job roles, it is about creating 60% of newer roles [9] [10]. The
report of Microsoft’s CELA said that the software field is expected to witness
13 million Data Science roles globally by 2030, and 20-50 million job roles are
new in the software field, like AI Ethics Compliance, AI monitoring, AI consul-
tant, Generative AI Developer and Prompt engineer, especially in the sectors
like healthcare, green energy, and education [2] [10] [4] [18].

Due to the development of AI, we need the workforce to see the product
or productivity in the software field. For example, if a research organization is
working on a groundbreaking technology, it can be a product or software appli-
cation that leverages machine learning. The path will include data collection,
data cleaning, data engineering, data analysis, model building, application de-
velopment with that ML model, deploying it on a server, be it a cloud or

83

physical server, and performance monitoring now and then as per traffic. Al-
ternatively, if it is a product that is not software, we will have a few more steps
of building the product, transportation, marketing, and sales [8]. All this work
will be done in the above-mentioned roles, such as Computer and Information
Research Scientist, Information Security Analyst, Data Scientist, Statistician,
Computer Systems Analyst, Computer Network Architect, and Software De-
veloper. Even a single AI wrapper creates multiple roles between the idea and
the product.

7 Strategic Recommendations

This section of the paper highlights actionable strategies tailored for univer-
sities, students, and policy markets to address the exponential growth and
shifting dynamics of Computer and Mathematical Occupations. It compares
national and regional job trends, skill demands, and the impact of AI on the
job market.

7.1 Recommendations for Universities and Faculty

As the demand is for Computer and Mathematical Occupations nationally
and regionally, updating the existing curriculum to introduce more relevant
concepts that reflect the roles of Computer and Mathematical Occupations
can be helpful [5] [4]. Universities and Faculty should focus on this sector
to train the students accordingly to meet the job market and be competitive.
Below are suggestions that can help faculty to navigate students:

• Introducing specialized courses in Cybersecurity, Machine Learning, and
AI to cater to roles like Data Science (15-2051) and Information Security
Analyst (15-1212), which are expected to grow 36% and 33% by 2033.

• Incorporating hands-on training on practical tools and technologies, such
as Analytical software like Tableau and Power BI, Big data software like
Data Bricks, and Cloud Computing in Amazon Web Services, Google
Cloud Platform, and Microsoft’s Azure[18] [19].

• Encourage students to pursue specializations and certifications such as
Associate of the Society of Actuaries (ASA), Certified Information Sys-
tems Security Professional (CISSP), Chartered Enterprise Risk Analyst
(CERA), AWS Solutions Architect, and other cloud specialization certi-
fications [18] [19].

• Equip students in central plains states to target localized job opportuni-
ties by highlighting state-specific opportunities, such as Software Devel-
opers in MO and demand for Data Scientists in Nebraska.

84

7.2 Guidance for Students

Students should work extra hard to survive this evolving software field. Peo-
ple choose IT for multiple reasons, including high-paying jobs, to create new
software applications and innovate new products. To have employment in the
Computer and Mathematical Occupations sector, students should focus on in-
demand skills and tools. Some suggestions that can help students in entering
this field are:

• From Table 3, we can see in-demand skills like cloud platform operations,
machine learning frameworks (TensorFlow, Scikit-learn), programming
languages (C++, Python, R), and certifications per the job market, and
it is suggested that students focus on these skill sets.

• Build portfolios showcasing proficiency in skills and technologies, con-
tribute to open-source projects to gain visibility and hands-on experi-
ence, and use platforms like LinkedIn, Twitter, and GitHub to connect
with industry leaders [12].

• Target promising job roles based on growth rates nationally and region-
ally and acquire expertise in emerging roles like AI prompt Engineering
and AI monitoring, which are expected to see 60% new job roles by 2030
[9] [10].

7.3 Suggestions For Policy Makers

Policymakers can bridge the gap between students and faculty by tackling the
evolving job market. Some of the suggestions are:

• Designing interdisciplinary courses by involving Computer Science, Busi-
ness applications, and Mathematical concepts in STEM education helps
students understand the complete architecture of organizations and how
to design a software solution. Online platforms with these interdisci-
plinary courses can help educate people who cannot afford tuition fees.

• Collaborating with research institutes and top companies to provide re-
search or internship opportunities for students during the summer or after
graduation to get Hands On experience.

• Providing Tax benefits for organizations that establish local research and
training hubs, which provide job training and certifications.

85

8 Job Search Platform

This research paper proposes developing a tool to help students and job seek-
ers find growing job roles based on education, pay range, and location. The
application will be in a way in which a user will be first asked to create a profile
with all the relevant personal and academically relevant information. That in-
cludes portfolio, GitHub, Medium, and Dribbble Hyper-Links, which showcase
their coding skills and expertise in their field. There will be a home page that
describes all the functionalities of the application. Then a Job Search Page will
be available in which there will be a search option to look for a growing job role
based on their education and location through filters. Filter to view the job
roles growth from national-wide to regional-wide and can be further deduced
to state. Next step is to choose a Job role, growth percentage locally and na-
tionally, Job Description, Responsibilities, Relevant Skills, and Pay variance
with the help of BLS data. Then, the page for job openings will appear based
on the location applied in the filter option with the help of Google’s Cloud Tal-
ent Solutions Job Search API and CoreSignal API. People’s information based
on the company can be pulled with the help of LinkedIn API, which can help
network with concerned personnel. Moreover, a community discussion forum
can also be created to notify people of updates outside the application. This
platform, as shown in fig4, will be beneficial for STEM graduates, students,
and people who are seeking jobs.

Figure 4: Hierarchical Diagram for Job Search Platform.

86

9 Conclusions

Analysis of this paper concludes that the Computer and Mathematical Occupa-
tions remain a faster growth sector in this evolving software job market, which
offers a median average of approximately $105,000 nationally, which is more
than any other occupation. Even though tech hubs like California, Texas, and
Virginia lead in the growth of these occupations, the Central Plains region,
Iowa, Kansas, Missouri, and Nebraska, has stable growth and affordability
for professionals in fthese fields with slow growth annually and overall, in the
projected period.

The emerging hype around newer technologies like Artificial Intelligence,
Data Science, and Cyber Security highlights the importance of equipping the
workforce with relevant skills. Policy Makers and educational institutions must
prioritize technical advancements aligning with regional job growth to maintain
competitiveness in evolving sectors.

While the modest growth rate is at 10% nationally, these discussed job
roles and fields offer promising stability and rewarding careers. Success in this
will depend on staying updated with emerging technologies and addressing the
skill gaps to effectively meet industry needs and standards. Even though this
paper examined based on the available statistics, this can change based on the
innovations that enter the market each day.

Note:
• Annual and Hourly Pay Medians are taken instead of the mean because the mean is

more prone to outliers, and the median will not be affected by one huge value.

• All the statistics of Central Plains states are from their respective state websites, and
the national statistics are from the BLS website.

• Missouri’s growth rate for the period 2023-2033 was taken as an annual average by
dividing it by the total number of years to compare it with the rest of the states.

• Standard error is the smaller the value the closer to the actual value.

References

[1] Xavier Amatriain and Justin Basilico. “Recommender Systems in Indus-
try: A Netflix Case Study”. In: Recommender Systems Handbook. Springer
US, 2015, pp. 385–419. isbn: 9781489976376.

[2] Zhiqing Bian. “Research on the Impact of Artificial Intelligence on the
Labor Market”. In: Highlights in Business, Economics and Management
24 (2024), pp. 1036–1041.

87

[3] Bureau of Labor Statistics. Computer and information technology occu-
pations. September 6, 2023. 2023. url: https://www.bls.gov/ooh/
computer-and-information-technology/home.htm.

[4] Bureau of Labor Statistics. Computer and Mathematical Occupations.
April 4, 2023. url: https://www.bls.gov/oes/2023/may/oes150000.
html.

[5] Bureau of Labor Statistics. Home : U.S. Bureau of Labor Statistics. Jan-
uary 31, 2019. 2019. url: https://www.bls.gov/opub/geographic-
profile/.

[6] Bureau of Labor Statistics. Math Occupations : Occupational Outlook
Handbook: : U.S. Bureau of Labor Statistics. September 4, 2019. 2019.
url: https://www.bls.gov/ooh/math/home.htm.

[7] Helen C. Connolly and Peter Gottschalk. Differences in Wage Growth
by Education Level: Do Less-Educated Workers Gain Less from Work
Experience? Tech. rep. 2331. IZA Discussion Paper, Sept. 2006. doi:
10.2139/ssrn.937356. url: https://ssrn.com/abstract=937356.

[8] Felix Dobslaw et al. “The Gap between Higher Education and the Soft-
ware Industry—A Case Study on Technology Differences”. In: Proceed-
ings of the 5th European Conference on Software Engineering Education.
2023, pp. 11–21.

[9] Minghao Duan. “The Role of Innovation in Economic Growth and How
Techno-logical Advancements Transform Industries and Employment”.
In: Proceedings of the 2023 4th International Conference on Big Data
Economy and Information Management. 2023, pp. 658–661.

[10] H. Ekelund. Why there will be plenty of jobs in the future - even with AI.
February 26, 2024. 2024. url: https://www.weforum.org/stories/
2024/02/artificial-intelligence-ai-jobs-future/.

[11] Kansas Department Of Labor.Kansas Labor Information Center (KLIC).
2024. url: https://klic.dol.ks.gov/vosnet/lmi/.

[12] Mehrdad Maghsoudi. “Uncovering the skillsets required in computer sci-
ence jobs using social network analysis”. In: Education and Information
Technologies 29.10 (2024), pp. 12759–12780.

[13] Missouri Economic Research and Information Center. Home page | Mis-
souri Economic Research and Information Center. 2024. url: https:
//meric.mo.gov/.

[14] Official Nebraska Government Website. Home. 2017. url: https://www.
nebraska.gov/.

88

[15] Official State of Iowa Website. Occupational Projections | Iowa Work-
force Development. 2024. url: https://workforce.iowa.gov/labor-
market-information/occupations/occupational-projections.

[16] R. Pandita. “Internet a change agent: An overview of internet penetration
and growth across the world”. In: International Journal of Information
Dissemination and Technology 7.2 (2017), p. 83. doi: 10.5958/2249-
5576.2017.00001.2.

[17] Ayisha Tabbassum et al. “The Impact of AI on Future Employment
Patterns”. In: International Journal of Global Innovations and Solutions
(IJGIS) (2024).

[18] Benneth Chukwuemeka Uzoma and Isokpehi Bonaventure Okhuoya. A
Research On Cloud Computing. 2022.

[19] D. Wiershem, G. Zhang, and C. R. Johnston. “Information Technology
Certification Value: An Initial Response from Employers”. In: Journal of
International Technology and Information Management 19.4 (2010). doi:
10.58729/1941-6679.1095.

89

Domino Tilings: Projects and
Assignments for Students∗

Keith Brandt and William P Klasinski
Department of Mathematics, Analytics, and Technology

Rockhurst University
Kansas City, MO 64110
keith.brandt@rockhurst.edu

Abstract

We describe our work to solve several domino tiling questions. This
setting provides a wide variety of questions that can be studied by stu-
dents. Skills used include branching, loops, working with lists, recursion,
and procedural programming.

1 Introduction

By domino tiling, we mean the following: Let m and n be positive integers
where at least one is even. For brevity, we will often say tiling instead of
domino tiling. Consider the m × n grid, which we will call “the board,” that
contains m rows and n columns. Our general task is to count the number
of ways to place mn

2 dominoes on the board so that each domino covers two
adjacent squares. Figure 1 shows an example tiling of a 3× 4 board.

In this paper, we describe our solutions to a few domino tiling questions,
and we pose a few more questions that could be considered. Skills used can be
found in an introductory programming text such as [2].

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

90

Figure 1: Example Domino Tiling

Figure 2: Placement of first domino on a board

2 Setup and the Algorithm

We view the board as an m× n table whose entries are positive integers indi-
cating the order of placement of the dominoes.

2.1 Domino Placement

The algorithm to place dominoes follows a simple recursive structure: Each
time a new domino is to be placed on the board, the algorithm considers
placing it either vertically or horizontally. Once an orientation is determined,
the domino is placed, the board is updated, and the recursion continues until
no more dominoes can be placed. At that point, that algorithm has reached a
dead end (backtrack) or the board is full.

Determine the location to place the new domino as follows: Scan the
columns, in left-to-right order, from top to bottom, until we find an empty
square. Using this approach, the first domino placed will lie in the upper-left
corner of the board, in one of the two positions shown in Figure 2.

In each of the boards in Figure 2, the location to consider for the second
domino is indicated with an “x”. There is only one option, horizontal, for the
second domino in the board on the left, whereas both horizontal and vertical

91

Figure 3: Placing the first two dominoes on a 3× 4 board

placements can be made for the second domino in the board on the right. Of
course, before attempting to place a domino in either orientation, the algorithm
checks to see that there is sufficient space to make the placement.

2.2 Tiling Representation

When we place the k-th domino, we update the board by putting the integer
k into the two cells corresponding to the squares covered by that domino. To
illustrate the process, we return to the boards described in Figure 2. For the
board on the left, the second domino must be placed horizontally. For the
board on the right, the second domino can be placed in either orientation.
By convention, we will always attempt a vertical placement first. The three
possible ways to place the first two dominoes are shown in Figure 3.

3 The Questions

We now list questions we have studied and describe their solutions.

3.1 Square Boards

Our first task, the one that motivated this article, is to count the number of
tilings of a 2n × 2n board, where n ≥ 1. To increase efficiency, we exploit
the symmetry of the square and initialize the board to begin with a vertical
domino. We can then double the final count. The solution for the first few
values of n are shown in Table 1.

Table 1: Domino tilings of a 2n× 2n board

2n 2 4 6 8
Tilings 2 36 6,728 12,988,816

92

Figure 4: Symmetries of the square

The values shown in Table 1 count all possible tilings of a 2n × 2n board.
However, many of the tilings counted are simply flips and rotations of each
other. Our next task is to produce a list of tilings that are distinct in the sense
that no tiling on the list is a flip or rotation of any other tiling on the list.

The group of symmetries of a square is known as the dihedral group (see
[1], page 31). Consider a square centered at the origin, as shown in Figure 4.
The dihedral group consists of eight elements, which are listed in Table 2.

Table 2: Elements of the dihedral group

Element Description
I Identity
ρ Rotation by 90 degrees clockwise
ρ2 Rotation by 180 degrees
ρ3 Rotation by 270 degrees clockwise
h Flip across line y = 0
v Flip across line x = 0
d1 Flip across line y = x
d2 Flip across line y = −x

Say two tilings are equivalent if one can be obtained from the other via
a flip or rotation from the dihedral group. We now modify our algorithm as
follows. We build a list of tilings we call the essential list that has the following
property: No two elements in the essential list are equivalent to each other.
The essential list will begin with the first tiling found by the algorithm. For
all subsequent tilings found by the algorithm, we form all possible flips and

93

rotations and then check to see if any of these are equivalent to the tilings that
are already on the essential list. If none of the flips or rotations of the tiling
being considered are on the essential list, then it is added to the essential list.

There is one subtle point that must be addressed. It is easy to write func-
tions that carry out the various flips and rotations. However, once an element
of the dihedral group is applied to a tiling, the integers that indicate the order
of placement become irrelevant (or worse, a distraction). We devised a tool we
call the signature that allows us to compare tilings. The signature of a tiling
is a nested list that indicates the structure of each row of the tiling. Deter-
mine the signature of a tiling as follows: Scan each row from left to right while
comparing neighbors.

• If two neighbors are equal, we have come across a horizontal domino, so
add a 2 to the list for that row and advance the index by 2 (to consider
the next two entries in that row).

• If two neighbors are not equal, we know the first of these neighbors is
part of a vertical domino. Add 1 to the list for that row and advance the
index by 1.

For example, the signature of the tiling in Figure 1 is [[1,1,2], [1,1,2], [2,2]].
Note that if 2 tilings have identical structure (not paying attention to order
placed), then their signatures will be equal. We use signatures to compare
candidate tilings with the tilings in the essential list before adding them to the
essential list. Our results for essential tilings of boards are given in Table 3.

Table 3: Essential tilings of a 2n× 2n board

2n 2 4 6 8
Tilings 1 9 930 1,629,189

3.2 Rectangular Boards

Minor adjustments to our algorithm for square boards allow us to study tilings
of more general m × n boards where at least one of m or n is even. Table 4
shows our results for m < n ≤ 8.

The reader may recognize the values in the row for m = 2. It is an easy
exercise to show that the number of domino tilings of a 2×n board correspond
to Fibonacci numbers. Given n ≥ 3, we form all tilings of a 2 × n grid by
appending two horizontal dominoes to all tilings of a 2× (n− 2) board and by
appending one vertical domino to all tilings of a 2× (n− 1) board.

94

Table 4: Tilings of m× n boards

m\n 3 4 5 6 7 8
2 3 5 8 13 21 34
3 11 * 41 * 153
4 95 281 781 2,245
5 1,183 * 14,824
6 31,529 167,089
7 1,292,697

We can also apply some flips and rotations to rectangular boards that are
not square. We may flip a tiling both horizontally and vertically, and we may
rotate it by 180 degrees. By applying these flips and rotations, we can count
the essential tilings using the method described for square boards. Our results
for essential tilings of m× n boards are given in Table 5.

Table 5: Essential tilings of m× n boards

m\n 3 4 5 6 7 8
2 2 4 5 9 12 21
3 5 * 14 * 46
4 33 98 230 658
5 329 * 3,818
6 8,121 42,837

3.3 Boards with Holes

By removing one square from the board, we can study tilings of m× n boards
where m and n are both odd. In our study, we restricted our attention to
square boards.

If certain squares are removed, the resulting board will have no tilings at
all. Define the parity of a square to be the parity (even or odd) of the sum of
its indices. That is, the parity of the square that lies in the i-th row and j-th
column is the parity of the sum i+ j. For example, the squares along the main
diagonal all have even parity since their indices are the same. When n is odd,
an n×n board will have n2+1

2 squares with even parity and n2−1
2 squares with

odd parity. In short, we must remove a square that has even parity, since each
domino placed will cover neighboring squares with opposite parities.

The approach here is to place a special character in the cell corresponding to

95

Figure 5: Tiling 5× 5 boards. Total tilings (left) and essential tilings (right)

Figure 6: Tiling 7× 7 boards. Total tilings (left) and essential tilings (right)

the square that is removed. The algorithm can then be modified to work around
that square. Not surprisingly, the number of tilings of such boards depends on
the square removed. Figure 5 and Figure 6 give our results for 5 × 5 boards
and 7×7 boards respectively. The number in each square indicates the number
of tilings with that square removed. Due to symmetry, it suffices to show the
results for the upper-left portion of the board. For essential tilings, the choice
of square to be removed limits which flips and rotations may be applied.

3.4 Additional Questions to Consider

We restricted our study to counting domino tilings of boards with an even
number of squares—and boards with an odd number of squares with one square
removed. A first natural question would be to complete our study of boards
with one square removed (we limited our attention to square boards). Other
questions to study could be tilings of rectangular boards with multiple squares
removed (paying close attention to parity). Furthermore, tilings of a variety
of non-rectangular boards could be studied. The Wikipedia page for domino

96

tilings [8] gives an example tiling of an Aztec diamond. We could also allow
dominoes to bend and then study tilings of surfaces such as a cylinder or
a cube. Another challenge would be to develop more efficient algorithms to
count tilings of larger boards. Considering shapes other than dominoes such
as polyominoes [9] opens another world of possibilities.

4 Technical Aspects

We wrote our code in Python on the Cocalc platform [6]. We represent boards
and tilings as nested lists, with a list for each row of the board. In our original
implementation for square boards, the list is initialized to be empty. As domi-
noes are placed, integers are appended to the appropriate lists. When studying
boards with a square removed, we initialize the board to have zeros in every
location, with the exception of a special character for the removed square. The
zeros are rewritten as dominoes are placed. On Cocalc, our code takes between
30 to 60 minutes to run for the largest boards listed in our tables. (Our pro-
gram was not able to count all essential tilings of a 7×8 board in a reasonable
time.) This paper grew out of a student project, where the student and faculty
mentor wrote the various pieces of the code independently and then compared
results. We are happy to share our code with any interested readers.

5 Conclusion

Domino tilings provide a wealth of questions to study. The tools used to solve
them are well within the reach of students in first-year programming classes.
The solutions apply many of the skills studied in such classes, and, for larger
boards, illustrate the power of computers. Furthermore, students can check
their work, as many of the values are known. The sequences in Table 2, Table
4, and the first row of Table 6 can be found in the Online Encyclopedia of
Integer Sequences [5] (Sequences A00403, A099390, and A001224 respectively).
Our values in Table 5 are contained in a larger table published by Klarner and
Pollack in [4]. A closed-form formula for the values in Table 5 is given in [3]
and [7]. Klarner and Pollack attribute a different but similar looking formula
to Knuth.

References

[1] Joseph A. Gallian. Contemporary Abstract Algebra, 8th Edition. Pacific
Grove, California: Thompson Brooks/Cole, 2013.

97

[2] Mark J. Johnson. A Concise Introduction to Programming in Python, 2nd
Edition. Boca Raton, Florida: Chapman and Hall/CRC Press, 2018.

[3] Pieter Kasteleyn. “The Statistics of Dimers on a Lattice I: The Number
of Dimer Arrangements on a Quadratic Lattice”. In: Physica 27.12 (1961),
pp. 1209–1225. doi: https://doi.org/10.1016/0031-8914(61)90063-
5.

[4] David Klarner and Jordan Pollack. “Tilings of Rectangles with Fixed
Width”. In: Discrete Mathematics 32.1 (1980), pp. 45–52. doi: https:
//doi.org/10.1016/0012-365X(80)90098-9.

[5] OEIS Foundation, Inc. The Online Encyclopedia of Integer Sequences.
https://oeis.org.

[6] Sage Math, Inc. CoCalc – Collaborative Calculation and Data Science.
url: https://cocalc.com.

[7] H.N.V. Temperley and Michael E. Fisher. “Dimer Problem in Statisti-
cal Mechanics–An Exact Result”. In: Philosophical Magazine 6.68 (1961),
pp. 1161–1163. doi: http://dx.doi.org/10.1080/14786436108243366.

[8] Wikipedia Contributors. Domino Tiling. url: https://en.wikipedia.
org/wiki/Domino_tiling.

[9] Wikipedia Contributors. Polyomino. https://en.wikipedia.org/wiki/
Polyomino.

98

Pedagogical Evaluation of Generative AI
Course for Technologists∗

Ajay Bandi
School of Computer Science and Information Systems

Northwest Missouri State University
Maryville, MO 64468

ajay@nwmissouri.edu

Abstract

Generative AI is a transformative technology that impacts various
fields, including software development, data analytics, and cybersecurity.
To address this, we have designed and developed a Generative AI course
for technologists, integrating foundational knowledge of various Gen AI
architecture models with hands-on practical experience using Python li-
braries, including HuggingFace. This paper discusses the detailed course
structure and assessments. A pedagogical evaluation approach is fol-
lowed to identify the challenges encountered in the course and how to
overcome them. The results demonstrate that the Generative AI Course
for Technologists effectively equips students with technical expertise and
critical thinking skills through a balanced combination of theoretical con-
cepts and practical exercises, such as chatbot development and prompt
engineering. The course addresses challenges like hardware limitations
and API integration by proposing future improvements, including a ded-
icated Python module and access to cloud-based GPU tools, ensuring
learners are well-prepared to navigate and ethically apply Generative AI
in real-world contexts.

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

99

1 Introduction

Generative AI represents a paradigm shift in artificial intelligence, transforming
fields such as software development, data analytics, and cybersecurity. Table
1 shows the prescribed tasks and corresponding Generative AI tools utilized
across the domains of software development, data analytics, and cybersecurity.
As these technologies evolve, there is a growing need to prepare technologists
[5] to navigate this landscape with a combination of theoretical knowledge,
practical skills, and ethical awareness [6, 9].

Table 1: Prescribed tasks for using Generative AI tools across domains.

Prescribed Task Generative AI Tool
Software Development
Generate boilerplate code and API
documentation GitHub Copilot, Tabnine

Refactor and debug code with suggestions Amazon CodeWhisperer,
Codex

Create test cases and automate unit testing Testim.io, Diffblue Cover
Generate user stories and task breakdown for
agile workflows ChatGPT, Atlassian AI

Data Analytics
Generate synthetic datasets for model
training or testing Gretel.ai, ChatGPT

Automate exploratory data analysis and
provide data insights DataRobot, Tableau AI

Create natural language summaries of
analytical findings OpenAI GPT, BigML

Optimize query formulation for large-scale
databases ChatGPT, Perplexity AI

Cybersecurity
Identify vulnerabilities in source code and
suggest remediation steps

GitHub Copilot,
DeepCode

Generate synthetic phishing emails for
cybersecurity training OpenAI GPT, ChatGPT

Automate the creation of security policy
documentation Jasper, ChatGPT

Detect and summarize malware behavior
from logs or incident reports

Microsoft Azure OpenAI,
Splunk AI

To address this need, we developed the course at the Northwest Missouri

100

State University Generative AI Course for Technologists, which aims to provide
learners with a comprehensive understanding of the architecture, tools and
applications of Generative AI.

The course curriculum emphasizes both foundational knowledge and ap-
plied learning. Students explore key architectural models, including Variational
Autoencoders (VAEs), Generative Adversarial Networks (GANs), transform-
ers, and Large Language Models (LLMs). These models emphasize a wide
range of applications, from generative content creation to advanced natural
language processing, providing a solid framework for understanding the inter-
nal architecture of Generative AI.

To ensure relevance and engagement, the course includes hands-on activ-
ities where students design and implement AI-based solutions. For example,
participants build retrieval-augmented AI chatbots using tools such as graph
databases and vector databases. These activities enable students to bridge the-
oretical concepts with practical applications, fostering skills that are directly
transferable to industry contexts. Beyond technical expertise, the course in-
cludes significant emphasis on the ethical, privacy, and security dimensions of
Generative AI. Learners critically assess the implications of deploying AI tech-
nologies in real-world scenarios, ensuring they are prepared to address chal-
lenges such as bias, misuse, and data protection. A capstone project further
reinforces these objectives by requiring students to integrate their learning into
a comprehensive, real-world application.

This paper discusses the pedagogical framework, instructional strategies,
and outcomes of this course, highlighting how it prepares students to lever-
age Generative AI responsibly and effectively. The integration of technical
rigor, practical application, and ethical considerations offers a model for equip-
ping technologists with the skills necessary to lead in an increasingly AI-driven
world.

2 Professional Advisory Team

The decision to offer Crafting a Generative AI Course for Technologists origi-
nated from insights provided by our professional advisory team, which consists
of 40 industry professionals from the Midwest region, as well as feedback from
technical speakers who have delivered guest lectures at our institution. These
experts highlighted the growing importance of integrating Generative AI tools
into software development workflows [1] to enhance efficiency and boost pro-
ductivity.

However, they also emphasized the critical need for professionals to effec-
tively evaluate the responses generated by these tools before implementing
them in workplace settings. This requires not only technical expertise but

101

also the ability to design precise prompts that can elicit accurate and reliable
outputs. As prompt engineering becomes a cornerstone skill in utilizing Gen-
erative AI effectively, equipping technologists with this knowledge is essential
to maximizing the potential of these tools while ensuring their responsible use.

This course aims to bridge this gap by providing students with the skills
to harness Generative AI tools effectively, evaluate their outputs critically, and
design prompts that optimize results. By doing so, the course prepares future
technologists to leverage Generative AI responsibly and productively in their
professional environments.

3 Course Structure

This section provides details about the course materials. The hands-on work-
sheets and assignments are available in the GitHub repository1.

Prerequisites: Students are required to successfully complete Programming
II and Database Systems prior to enrolling in the Generative AI course. Profi-
ciency in programming is essential, as this course is designed for technologists
with an emphasis on the implementation of Generative AI applications rather
than their usage alone. Foundational knowledge of databases is necessary, as
the course leverages graph databases to manage extensive datasets for Gener-
ative AI applications. This course is primarily designed for junior, senior, or
graduate students.

3.1 Module 1: Introduction:

This module provides a foundational understanding of Generative AI, focusing
on its definition and explaining the basic principles of how Generative AI works.
The module includes hands-on activities for content generation, such as text,
images, and audio, while explaining the different input and output formats,
where the source code is already provided, and students need to supply the
input and observe the output in a Google Colab environment. Learners will
explore Python libraries such as Optical Character Recognition (OCR) for
extracting text from images, PIL for image processing, Google Text-to-Speech
(gTTS) for converting text into speech, SpeechRecognition for processing audio
input, cv2 for computer vision tasks, and rembg for background removal.

3.2 Module 2: Generative AI Models and Architectures

This module offers the foundational Generative AI models, their functional-
ity, and diverse applications, offering a comprehensive understanding of the

1https://github.com/bandiajay/Generative-AI

102

underlying mechanics and capabilities of these technologies. It explores key
architectures such as Variational Autoencoders (VAEs), which are used for
unsupervised learning, Transformers that revolutionized natural language pro-
cessing, Generative Adversarial Networks (GANs) known for creating realistic
data, and Large Language Models (LLMs) that power conversational AI. The
module discusses the unique features, advantages, and real-world applications
of each architecture, such as content creation, image synthesis, and automated
reasoning. This module does not include hands-on exercises, but details the-
oretical explanations supported by examples to help students appreciate the
potential and versatility of these models in various domains.

3.3 Module 3: AI Open Platforms (ChatGPT and HuggingFace)

This module provides an overview of OpenAI, exploring its key milestones,
developments, and the evolution of its products, including the role of Chat-
GPT within the GPT model series. It compares different versions of GPT,
highlighting their features, improvements, and applications. Also, the mod-
ule includes six hands-on worksheets covering key natural language processing
(NLP) techniques: sentiment analysis, named entity recognition (NER), text
generation, text generation using Hugging Face, text similarity measurement,
and language translation. Students are encouraged to try different models from
Hugging Face to deepen their understanding and explore various capabilities.

3.4 Module 4: Generative AI Chatbots

This module focuses on designing and testing chatbots, their architecture, prac-
tical implementation, and the role of the Neo4j database in enabling intelligent
conversational systems compared to the rule-based systems. It provides hands-
on experience through a worksheet in a Google Colab environment, where tools
such as LangChain, OpenAI, HuggingFace, and Neo4j are used to design and
implement chatbots. The module elaborates on the core building blocks of
chatbot systems, including graph and vector databases for semantic search and
augmented search retrieved (RAG) to provide accurate and context-sensitive
responses [3]. It explains how the integration of Neo4j enhances the system’s
ability to manage complex relationships and structured data. This module
covers both the conceptual and technical knowledge needed to create advanced
chatbot systems.

3.5 Module 5: Prompt Engineering with Generative AI

This module focuses on Prompt Engineering with Generative AI, educating
students on understanding what prompts are and how to design them effec-

103

tively to achieve the best results from AI models. It covers the different types of
prompt engineering techniques and their appropriate use. It explains the com-
mon challenges faced in creating prompts and provides advanced techniques
for crafting different types of prompts based on specific needs. It highlights
Prompt Engineering strategies to address ethical concerns, sharing important
ethical considerations and best practices to avoid potential issues and use the
technology responsibly. We also focused on how to evaluate the re4sults from
generative AI tools using an evaluation framework [2]. This module includes
an exercise on using ChatGPT’s Playground, where students will experiment
with crafting prompts and adjusting its parameters. Microsoft GiHub Copilot
is introduced to generate source code for demonstration.

3.6 Module 6: Security Risks and Privacy Concerns using Genera-
tive AI

This module addresses the security risks and privacy vulnerabilities associated
with Generative AI, highlighting the critical importance of data validation
and robust governance. It examines key issues such as data poisoning, where
malicious inputs can disrupt model performance; data leakage, which can ex-
pose sensitive information; and privacy breaches, often caused by weak data
anonymization protocols. The module also discusses contributing factors, such
as the large size datasets, the increasing complexity of AI algorithms, and the
lack of adequate human oversight during development and deployment. In ad-
dition to identifying these challenges, it provides strategic recommendations
for mitigating risks, including stricter data handling protocols and enhanced
transparency in AI workflows. While the module does not include hands-on
exercises, it emphasizes building awareness and fostering responsible AI prac-
tices.

3.7 Module 7: Final Project

The project consists of five milestones, requiring teams to submit deliverables
collaboratively. Teams must document their project idea, including team de-
tails, project title, and a concise description of their approach. They should
outline the tools and technologies used, create a high-level architecture, and
explain the workflow in detail. Teams will then provide a complete implemen-
tation of the project, along with citations, and save their work on a GitHub
repository. The project also includes a presentation where all team members
are required to upload audio and video recordings, demonstrating key parts of
the project. Students are required to provide constructive feedback on other
teams’ presentations. Some of the sample projects are explained in the next
section.

104

4 Assessments

The students completed a comprehensive series of tasks as part of their learn-
ing of the material, which included 13 worksheets, 6 assignments, a couple
of in-class activities, 2 exams, a research paper, and the final project. These
activities were designed to enhance their understanding of the concepts of Gen-
erative AI and its applications.

The worksheets focused on state-of-the-art Generative AI technologies, such
as the conversion tools of various input and output formats, Image-to-Text,
Audio-to-Text, and Retrieval-Augmented Generation (RAG)-enabled chatbots.
Students were tasked with experimenting with various inputs on a given code-
base, generating prescribed outputs, and analyzing their learning outcomes
throughout the process. This hands-on approach provided valuable practical
exposure to cutting-edge technologies. The assignments were primarily theoret-
ical and centered on key topics such as security issues and prompt engineering.
These tasks encouraged students to deepen their understanding of foundational
concepts while critically analyzing potential challenges in the field.

Two in-class activities were conducted. The first focused on creating prompts
to test the models for generating correct outputs, where students designed
prompts to solve reasoning problems. The second activity explored factors
such as Top-k sampling and penalty settings in ChatGPT. Students recorded
their observations while adjusting these values, gaining insights into how these
parameters influence the model’s behavior.

Two exams covering all the topics ensured that students had a thorough
grasp of the subject matter. This assessment also allowed them to provide
feedback and suggest future directions for course improvement in the coming
semesters. In addition, students collaborated on a research paper under the
guidance of a supervisor. These papers focused on current trends in Generative
AI, including topics like Fake News Detection, Ethical Concerns, and the role
of Generative AI in Software Engineering. This activity fostered teamwork and
research skills.

Finally, a team-based final project was developed, utilizing modern Gen-
erative AI technologies such as OpenAI and LangChain. This project allowed
students to apply their learning to real-world applications, reinforcing their
understanding of the field.

5 Pedagogical evaluation

The course has been offered at Northwest Missouri State University as a spe-
cial project since Spring 2024 for three semesters, during which challenges were
observed. Using the pedagogical approach evaluation framework [4, 7, 8], the

105

challenges faced by students and the strategies employed by educators to over-
come them were analyzed.

Research paper:
The research papers focus on diverse applications, techniques, and ethical

considerations of Generative AI across various domains. Topics include prac-
tical industry implementations of Gen AI in project management, healthcare,
dynamic advertising, and agile development, highlighting how Generative AI
enhances efficiency, innovation, and user engagement. Technical advancements
are explored through areas like prompt engineering, automating technical docu-
mentation, software testing, and data curation, emphasizing tools and methods
to improve workflows and productivity.

Ethical challenges and concerns are another central theme, with discus-
sions on bias and fairness, AI hallucinations, and deepfake technologies, ad-
dressing the risks and implications of AI-generated content. Communication
technologies, including chatbots, are examined for their current capabilities
and future evolution. Overall, the papers present a well-rounded perspective
on Generative AI, blending practical applications, technical insights, and eth-
ical considerations to equip students with a comprehensive understanding of
the technology’s potential and challenges.

Challenges:
One of the primary challenges is students generating content directly using

ChatGPT. To address this, students are required to work incrementally by
submitting outlines or prompts for each milestone before submitting the actual
paper. This approach encourages students to think critically about their paper
topics in advance. More points are allocated to the process of creating the
paper, such as outlining and generating prompts, rather than the final content.

Final Project: The final project features a range of generative AI chatbots
designed to address real-world challenges across various domains. These include
an e-commerce chatbot for Apple’s website to enhance customer support, a
story teller chatbot for creative writing and entertainment, and the GitHub
GuideBot to assist with software documentation. In education, EDUBOT
provides personalized learning support, while the interview bot, leveraging
retrieval-augmented generation, helps users prepare for interviews. In health-
care, MediAssist offers AI-driven guidance for wellness and medical inquiries.
Together, these projects highlight the versatility of generative AI in improving
user experiences, automating workflows, and fostering skill development across
industries.

Challenges in Final Project Implementation:
As part of their final project, students implemented RAG-enabled chatbots.

They encountered two major challenges during the process. The first challenge

106

Figure 1: Knowledge graph of the data used to develop the interview bot.

involved converting data into knowledge graphs using Neo4j and LangChain.
For intance, the knowledge graph of intervew bot is shown in Figure 1. For
websites with large datasets, the process of extracting and converting data
into knowledge graphs was particularly time-consuming and computationally
demanding. This issue was exacerbated by the use of i5 Core processors, which
lack the GPU capabilities required for generative AI chatbot operations. Also,
the need to purchase OpenAI API keys further complicated the process due to
resource constraints.

The second challenge was ensuring the chatbot’s accuracy in providing an-
swers. While these issues were not fully addressed this year, plans are in place
to resolve them in the near future, including upgrading hardware and optimiz-
ing processes.

Worksheets and Assignments:
The assignments and worksheets in Generative AI using Python cover a

range of topics focused on text, speech, and image processing. Tasks include
text-to-speech conversion (Google Text-to-Speech), speech recognition, and
sentiment analysis to explore natural language processing (NLP) techniques.
Students also worked on named entity recognition, text similarity, machine
translation, and text generation using tools like Hugging Face API. Optical
character recognition (OCR) tasks involved Tesseract and EasyOCR for ex-
tracting text from images. Image-based projects included background removal
and image colorization, showcasing generative techniques in computer vision.
Also, students implemented chatbots, including a retrieval-augmented gener-

107

ation (RAG)-enabled chatbot, demonstrating the integration of advanced AI
models for interactive applications.

Challenges:
Students in the course had understanding of Python programming but faced

significant challenges when it came to using Python libraries for generative AI,
such as Transformers and LangChain. These libraries, essential for building
language model-powered applications, require advanced understanding and in-
tegration, which posed difficulties for many students. Also, students encoun-
tered issues with API usage, particularly when integrating models like Hugging
Face and OpenAI into their assignments. Hardware limitations, such as the
lack of GPUs, slowed down model training and processing, while dataset prepa-
ration and preprocessing for tasks like creating knowledge graphs or training
natural language models were often challenging. Debugging errors in frame-
works like LangChain and libraries like Tesseract and EasyOCR also time-
consuming. Balancing the accuracy and performance of generative AI applica-
tions, especially when developing chatbots, added another layer of complexity.
To overcome these hurdles, a dedicated module on Python for generative AI
applications could be developed, focusing on the proper use of libraries, un-
derstanding APIs, and streamlining the debugging process. Providing access
to cloud-based tools with GPU support would also help alleviate hardware
constraints, improving the overall learning experience.

Exams and in-class activities Two in-class activities were conducted:
the first involved designing prompts to test model outputs for reasoning prob-
lems, while the second focused on exploring factors like Top-k sampling and
penalty settings in ChatGPT, allowing students to observe how these param-
eters affect model behavior. Two comprehensive exams ensured students mas-
tered the material and provided feedback for course improvement. Also, stu-
dents collaborated on research papers under supervision, addressing current
trends in Generative AI, such as Fake News Detection, Ethical Concerns, and
its role in Software Engineering, fostering teamwork and research skills.

Challenges in exams and in-class activities For the in-class activity, it
was challenging for students to understand the various definitions of parame-
ters and observe how the output changes when varying these parameters. Also,
during exams, students were allowed to use generative AI tools, but many sim-
ply copied and pasted verbose answers without tailoring them to the proper
format. As an educator, I emphasized the importance of redesigning prompts
to generate clear and understandable answers. I also guided students in eval-
uating their outputs, including source code problems, by helping them better
understand ChatGPT’s parameters.

108

6 Conclusion

This paper presented the design, implementation, and outcomes of the Gen-
erative AI Course for Technologists at Northwest Missouri State University.
The course combines foundational knowledge, hands-on activities, and ethical
considerations to equip students with the skills needed to navigate the evolving
landscape of Generative AI. By integrating practical exercises, such as chat-
bot development and prompt engineering, with theoretical concepts like VAEs,
GANs, and LLMs, learners gain both technical expertise and critical thinking
abilities. Assessments, including worksheets, projects, and research papers, re-
inforce this holistic approach, ensuring students can apply AI tools responsibly
in real-world contexts. The course framework highlights the importance of bal-
ancing innovation with ethical awareness, addressing challenges such as bias,
security risks, and misuse. As Generative AI continues to transform industries,
this curriculum serves as a robust model for preparing future technologists. The
paper also highlighted significant challenges in learning and implementation,
such as hardware limitations, complexities in integrating Python libraries like
Transformers and LangChain, and issues with API usage. To overcome these
barriers, future iterations of the course will include a dedicated module on
Python for Generative AI applications, emphasizing library usage, API inte-
gration, and debugging. Also, providing access to cloud-based GPU tools and
streamlining the creation of knowledge graphs will further enhance the learning
experience.

References

[1] Ajay Bandi and Hemanth Kagitha. “A Case Study on the Generative AI
Project Life Cycle Using Large Language Models”. In: Proceedings of 39th
International Confer 98 (2024), pp. 189–199.

[2] Ajay Bandi and Ruida Zeng. “Evaluation of the Effectiveness of Prompts
and Generative AI Responses”. In: International Conference on Computer
Applications in Industry and Engineering. Springer. 2024, pp. 56–69.

[3] Ajay Bandi et al. “Enhancing Generative AI Chatbot Accuracy Using
Knowledge Graph”. In: International Conference on Software Engineering
and Data Engineering. Springer. 2024, pp. 157–167.

[4] Richard Hall. “Aligning learning, teaching and assessment using the web:
an evaluation of pedagogic approaches”. In: British Journal of Educational
Technology 33.2 (2002), pp. 149–158.

109

[5] Antonie J Jetter et al. “Training Practitioners for Real-time Product De-
velopment Using Generative Artificial Intelligence”. In: 2024 Portland In-
ternational Conference on Management of Engineering and Technology
(PICMET). IEEE. 2024, pp. 1–11.

[6] Swapna Kumar et al. “The Role of Instructional Designers in the Integra-
tion of Generative Artificial Intelligence in Online and Blended Learning
in Higher Education.” In: Online Learning 28.3 (2024), pp. 207–231.

[7] John M LaVelle, Chris Lovato, and Clayton L Stephenson. “Pedagogical
considerations for the teaching of evaluation”. In: Evaluation and program
planning 79 (2020), p. 101786.

[8] Jelena Maksimović. “Evaluation approach in pedagogical research”. In:
Social Context of education (2009), p. 89.

[9] Patricia Santos, Keysha Urgel, and Verónica Moreno. “Generative Artifi-
cial Intelligence in Teaching and Learning of ICT Engineering Education:
A Literature Review and Illustrative Scenarios”. In: 2024 47th MIPRO
ICT and Electronics Convention (MIPRO). IEEE. 2024, pp. 1338–1343.

110

The Impact of Course Modality and Size
on Learning Outcomes: Applying IaC

Principles in IS/Cyber Graduate Course
Design∗

Annamaria Szakonyi
Information Systems and Cybersecurity

Saint Louis University
St. Louis, MO 63103

annamaria.szakonyi@slu.edu

Abstract

This study explores the impact of class size and course modality on
student learning outcomes, using Infrastructure as Code (IaC) principles
to design Information Systems and Cybersecurity graduate courses. To
address challenges like larger class sizes, diverse formats, and AI reliance,
IaC principles such as scalability, modularity, and repeatability were ap-
plied to course design. Tools like LMS blueprints and modular templates
ensured consistency across online and in-person formats. Analysis of stu-
dent feedback and grades showed that smaller classes and individual as-
signments improved outcomes, while group work fostered collaboration.
The findings suggest that IaC-inspired strategies can improve scalability
and quality in graduate education.

1 Introduction: The Era of Higher Education Challenges

Saint Louis University’s (SLU) School for Professional Studies (SPS) offers
online applied education for working professionals both domestically and inter-

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

111

nationally[8]. In recent years, SLU has faced rising costs, fewer traditional stu-
dents, and growing competition. As of 2018, 66% of U.S. adults had less than a
four-year degree, and many who re-enroll in college prefer online programs, re-
flecting the growing shift away from the traditional student model[4][1][7]. The
UPCEA[9] argues that higher education has reached “the end of the ‘traditional
students’ as we know them.”

In addition, according to the Institute of International Education[5] Open
Doors 2024 report[3], U.S. colleges and universities saw a record 1,126,690
international students in 2023-2024, accounting for 6% of the total U.S. higher
ed population. In this same period, 56% of international students majored
in STEM fields. Among the top 10 states hosting international students, the
Midwest has seen significant growth, with Missouri facing a 35% increase from
the previous year. Clearly, the competition is staggering.

To meet these challenges, SLU has further expanded into global markets,
introducing a global graduate program in 2022, welcoming global and non-
traditional students on campus. With these changes, and the continuing re-
quirements to cut costs, faculty have faced the need to adapt to teaching in
various modalities and formats, both online and on-ground, with constantly
growing class sizes and caps.

Another significant concern faced by faculty is the increasing reliance on AI
by student populations, sometimes resulting in academic integrity issues. This
creates significant risks for students to absorb knowledge and to grow their
professional skills of critical thinking, problem solving and communication.

To respond to the need for flexible course modalities, growing class sizes
and students’ over-reliance on AI, faculty at SPS have been exploring inno-
vative course designs and assessments to build adaptable and scalable courses
that can be replicated in various settings, while maintaining some level of stan-
dardization.

2 Infrastructure as Code Principles in Course Design

Some of the technology challenges of businesses are similar to that of higher ed-
ucation: delivering to various types of consumers, fluctuations in user volumes,
cost considerations, speed, and flexibility to adjust to these needs. DevOps
has evolved as a key IS methodology to these business problems. Considering
the similarities, as well as the author’s expertise in Information Systems and
Cybersecurity disciplines, the principles of Infrastructure as Code (IaC) used
in DevOps deployments were considered in the design of graduate courses.

According to Amazon Web Services, Infrastructure as Code is the creation
and management of environments using code instead of manual processes, en-
abling greater efficiency, scalability, consistency and automation while reducing

112

errors and speeding up deployment. This helps businesses scale, adapt, control
costs and innovate faster in dynamic computing environments[2]. According to
Morris[6], IaC relies on various important principles, including:

1. Repeatability and reproducibility: any action and process should be re-
peatable efficiently, without significant human effort.

2. Idempotency and consistency: running the environment multiple times
should always produce the same result, assuring consistency.

3. Scalability and automation: easily adjust and scale environments up or
down based on changing demands without manual intervention.

4. Modularity and reusability: creation of reusable pieces for common tasks.
5. Version control and continuous deployment: tracking changes and inte-

grating testing into regular deployment for traceability and collaboration.
6. Reliability and accountability: ensuring predictable infrastructure per-

formance and clear change oversight for transparency and trust.

Applying these principles can help organizations save time, reduce costs,
and be more responsive to external challenges. This paper demonstrates that
these principles of Infrastructure as Code can support course and assignment
redesign to meet the current challenges of IS/Cyber graduate programs. The
paper will discuss the author’s practical application of these principles in course
and assignment redesign and the related results in student learning and success
for a specific course in the IS program.

3 Requirements for Course Design

3.1 Requirements for Class Modalities

To teach in various modalities, a crucial criteria was to make things repeatable
yet flexible, easily replicating the same content in various formats. To move
between online and in person lectures, it was important to provide the ability to
hide and unhide content. Creating ways to auto-generate online and in-person
formats based on predefined templates was crucial. Repeatable content and
workflows assured this and provided consistency across formats and modalities.

3.2 Requirements for Class Size

To manage the increased work for faculty with the higher class sizes, it was
important to automate assignment grading where possible. Assignments had
to be scalable depending on student numbers by working in groups versus
individual settings. However, considerations had to be given to the risks of
group work, making group-based projects equitable and fair.

113

3.3 Requirements for the Over-Reliance on GenAI

Assignment formats had to support students to focus on their message, im-
prove critical thinking and writing skills. Assignments needed to be less prone
to full reliance on GenAI and more reliable on their own critical thinking. Var-
ious assignments for different formats had to be developed to encourage oral
assessments that are generally more AI-resistant, despite growing class sizes.

To meet these challenges and needs, the various IaC principles were aligned
with the specific challenge, as demonstrated in Figure 1. These principles then
drove the design and implementation of new assignments, class activities and
assessments to grow student success.

Figure 1: The challenges, needs and related IaC principles for course redesign.

4 Examples of IaC Principles in Course Design

Based on these requirements, various changes were implemented across different
modalities and class sizes to assignments, class activities and assessments.

4.1 Repeatability and Reproducibility

Using the IaC principles, the author used Blueprints in the Learning Manage-
ment System with various components (both assignments and course content)
that can be easily hidden or published. As an example, case study based
assignments allowed us to change the use case or problem statement, while
maintaining standard requirements. Templates for both the course and the
assignments helped faculty use relevant components and adjust according to
specific class and student needs.

4.2 Idempotency and Consistency

Templates and Blueprints allowed faculty to stay consistent across various sec-
tions. Assignment templates also assured students had fairly standard submis-

114

sions, which made grading faster and easier for faculty, saving them time from
grading that could be reallocated to student mentorship where it was needed.

4.3 Scalability and Automation

Assignment templates facilitated easier and faster grading by allowing faculty
to recognize where to look for the answer, and limiting the space for students to
provide too much information. This also forced students to think critically and
grow their writing, both crucial skills in the industry. Incorporating project
management tools in group work also helped faculty assess team contributions
quickly, providing fair and equitable grades based on student involvement in
each assignment. Critical thinking based quizzes were also developed that
could enable faculty to auto-grade using the Learning Management System.

4.4 Modularity and Reusability

The author decided to test out mini-modules that can be easily replicated in
other sections. This was done through various lecture videos and using the
Learning Management System. Modularity also applied to how assignments
were created, as depending on class size and student interaction, various mod-
ules could be included or excluded in the specific assignments.

4.5 Version Control and Continuous Deployment

Versioning student submissions with project management tools encouraged ac-
countability. Students were required to follow PM best practices and tools to
track their work, and provide reports on those. This not only helped them
practice common industry tools, but also allowed them to grow their report
writing capabilities that will be crucial in a corporate environment.

4.6 Reliability and Accountability

Reliable assessments can detect AI usage while maintaining academic integrity.
This is best accomplished through oral assessments, where the immediate inter-
action between students and faculty allows the cross-checking of understanding.
In-person students delivered presentations with strict criteria and time limits,
while allowing creativity, mimicking real-life situations of industry presenta-
tions. This was a limitation in the online formats, where project management
tools were used to assure accountability of team members. The templates used
in various assignments forced students to think critically, as they had limited
space and their message had to be summarized very thoughtfully to meet re-
quirements. This required students to practice their prompt engineering skills

115

and to learn how to disclose their AI use and to transparently describe their
process for delivering assignments.

5 Course Design Results

To evaluate the success of these principles in the practice of course redesign,
class grade averages and course evaluation survey responses from students re-
lated to assignments, exams/quizzes and class discussions were analyzed for
the same course in the IS graduate program between the period of Fall 2023
and Fall 2024. The results are summarized in Table 1.

Table 1: Results of various class modalities and sizes for the same course in
the Information Systems graduate program between Fall 2023 and Fall 2024.

Course evaluation scores ranged between 0 and 4 as follows: strongly agree
(4), agree (3), disagree (2), strongly disagree (1), and not applicable (0). Based
on the course data, several trends emerged regarding the impact of assignment
types, teaching modalities, and class sizes on student grades and responses.

5.1 Impact of Teaching Modality

Online courses (1, 2, 6, 7) had higher median grades (A to A-) compared to on-
ground courses (3 - 5, 8, 9), where median grades ranged from A- to B. Student
satisfaction with assignments and exams was comparable across modalities,
with most courses reaching scores of 3.80 or above. The exceptions are online
courses (1, 7) with assignment/homework feedback, and online courses 1, 5 and

116

on-ground course 9 with lower score for exams. Online courses had lower mean
scores for how discussions supported learning (3.50, 3.67 and 3.71 for courses
1, 6 and 7) compared to on-ground courses, which frequently exceeded 3.90.

5.2 Impact of Class Size

Smaller courses (1, 2, 6, 7) had higher average grades (88.35% - 96.85%) com-
pared to larger classes (3 - 5, 8, 9) with average grades between 85.84% and
89.2%. Survey response rates were significantly higher in smaller classes, es-
pecially in courses 1 and 2, where response rates reached 100%, compared to
response rates as low as 19.19% in larger sections (8 and 9). It is clear that
smaller classes facilitate more personalized interaction, boosting both grades
and engagement.

5.3 Impact of Assignment Types

Courses with individual-only assignments (1, 2, 6, 7) had slightly higher grades
on average than those incorporating group work (3 - 5, 8, 9). For instance,
courses 8 and 9, which used group work exclusively, had median grades of B+
and B, compared to A and A- in individual-only courses. Results showed mini-
mal differences in student perceptions of assignments, regardless of assignment
type, with most responses hovering around a mean of 3.80 to 3.87. It’s notable,
however, that the worst responses regarding assignments (means of 3.71 and
3.75 for courses 1 and 7, respectively) were received for 2 courses that required
individual assignments only. This suggests that despite students performing
better with individual assignments, they prefer group interactions more.

5.4 Student Feedback

In addition to the quantitative data, the verbal feedback provided by students
in the course evaluations also supported some of these findings. As an example,
course 2 respondents (online, small, individual assignments) shared that the
course would benefit from group work, an offline format, and more discussions:

“I think this course would be better done if this was conducted in
offline because it would be easy to understand and improve skills.”
“This course could have incorporated a valuable group project.
Each team could have been assigned a real–world company and
tasked with identifying potential cyber threats while formulating
effective prevention strategies. The teams would then present their
findings collaboratively, fostering a practical understanding of cy-
bersecurity challenges in a corporate setting.”
“[...]As previously suggested, incorporating a group project into

117

the curriculum would enrich the learning experience by providing
hands–on exposure. Such projects not only cultivate practical skills
in preventing cyber threats but also enhance essential abilities in
public speaking and team collaboration among students.”
“[...]More opportunities for open discussions and peer interaction
would have added to the collaborative learning experience.”

This shows that increasing class sizes for online lectures would be to the
detriment of students, as discussions managed among more than 25 people will
be cumbersome for faculty to engage with. In addition, students recognize the
practical benefit of group work and presentations.

For course 3 (on-ground, large, mix of individual and in-class group work),
the only feedback somewhat related to the course assignments and activities
was as follows:

“[...]just did a good job in making us understand the current sit-
uations by interlinking the recent situations and giving them as
examples. The in-class activities and the final week’s lab are the
learning add-ons for me.”

This course was co-located with other instructors’ sections for grading, but
the group activities in class were managed by the main instructor. This shows
the importance of discussions and hands-on activities, which can be hindered
by increased class sizes, as students will receive less individual attention.

Feedback for course 4 (on-ground, large, mix of individual and in-class
group work) stated that:

“the class environment and the teaching style of the course is abso-
lutely good. The in class activities and quizzes are more interactive
and made us to think the outcomes on our own. And the discussions
helped us in improving our logical thinking capabilities.”

This demonstrates the satisfaction of students appreciating the variety of
activities and interaction with faculty. Despite being a large class, faculty did
a good job connecting with students and making the interaction meaningful.

Feedback for course 8 (on-ground, large, group assignments and individ-
ual exams) suggested that students enjoyed the presentations and working in
teams, helping them grow their professional skills. However, some comments
warned about the risks of group work in case of conflict, which can create ad-
ditional strain on faculty without appropriate resources to assist them in the
resolution and tracking of these types of issues.

“Nothing but the presentation work was good because it helps stu-
dents to improve more in the speaking skills and knowledge”

118

“I like this course, this one is beneficial and showcases how we need
to protect a corporation in terms of strong cybersecurity principles,
and the professor is also so informative and helps the students with
their respective doubts and gives valid clarification on it, and it
is a good subject for maintaining teamwork. However, I observed
some flaws in it, including the teammates are not co operative only
one or two persons are actively participate in teamwork but it will
impact for all teammates. We can’t push everyone right so I think
working in a team is not a good option, it will impact all.”
“[...] The midterm assessment process was also excellent, as it pro-
vided meaningful feedback to track our progress. [...]”

6 Conclusions, Limitations

Students clearly enjoy group activities and related assignments with project
management activities and presentations, though some risks were presented
related to group conflicts and inequitable contributions of team members. Tra-
ditional solutions such as requiring students to describe contributions of team
members are not efficient in large class sizes, as that requires faculty to individ-
ually review student submissions. Instead, using project tracking tools worked
as a good compromise that helped students showcase their contributions.

Smaller classes yielded higher grades and engagement, suggesting that scal-
ability and adaptability of teaching approaches are critical as enrollments grow.
Individual-focused assignments may support higher academic performance,
while group-based approaches could introduce challenges in larger classes. Mit-
igating these will require institutions to provide adequate resources to faculty,
including TAs to help grade and manage situations in conflict in large classes.

To maintain consistency across formats and sizes, it is beneficial to develop
modular and scalable teaching strategies that emphasize clarity, fairness, and
student-centered learning approaches. These findings highlight the importance
of flexibility in assignment design and teaching methods to address diverse
student needs in various learning environments.

Certain limitations of this analysis exist. Student grades may not necessar-
ily reflect actual student learning. However, student responses to surveys are
also not consistent, ranging between 19% to 100%. Courses with lower survey
response rates lack true representation of how successfully the various exams,
assignments and discussions supported student learning. In addition, due to
the cross-listing of multiple sections, some course surveys applied to multiple
instructors. Due to the confidential nature of the surveys, it wasn’t always
evident which sections the student responses came from. Even though the
majority of assignments were the same due to the combined in-person compo-

119

nent, some slight variations could still exist based on the section’s responsible
faculty. Overall, however, due to the similarity of the main artifacts across sec-
tions, this data provides valuable insights into how successfully the changes in
this course contributed to student success across class sizes and course modal-
ities. Creating a more targeted survey for student input on the effectiveness
of assignments, quizzes, exams and activities could provide a more robust ap-
proach to measuring how well these IaC principles facilitated course redesign
to meet the needs of various class sizes and modalities while assuring student
success and learning.

References

[1] National Student Clearinghouse (NSC). Some college, no credential student out-
comes: 2024 report for the nation and the states. https://nscresearchcenter.
org/some-college-no-credential/.

[2] AWS. What is Infrastructure as Code? https://aws.amazon.com/what-is/
iac/.

[3] Open Doors. International students. https : / / opendoorsdata . org / data /
international-students/.

[4] Elise Gould. Two-thirds of adults have less than a four-year degree. https :
//www.epi.org/publication/two-thirds-of-adults-have-less-than-a-
four-year-degree- policymakers-should- work- to-make-college-more-
attainable- for- them- but- also- strengthen- labor- protections- that-
help-all-workers/.

[5] Institute of International Education (IIE). United States hosts more than 1.1
million international students at higher education institutions, reaching all-time
high. https://www.iie.org/news/us-hosts-more-than-1-1-million-intl-
students-at-higher-education-institutions-all-time-high.

[6] Kief Morris. Infrastructure as Code. O’Reilly Media, 2016.

[7] Annamaria Szakonyi et al. “Non-traditional education to advance women in
computing careers in the St. Louis metro region”. In: Proceedings of the 2021
IEEE Global Engineering Education Conference. EDUCON2021. Vienna, Aus-
tria: IEEE, 2021, pp. 1093–1097. doi: 10.1109/EDUCON46332.2021.9454075.
url: https://ieeexplore.ieee.org/document/9454075.

[8] Saint Louis University. About Professional Studies. https://www.slu.edu/
professional-studies/about/index.php.

[9] UPCEA. The Pulse of Higher Ed: The End of the “Traditional Students” as We
Know Them. https://upcea.edu/the-end-of-the-traditional-students-
as-we-know-them/.

120

Remote Protocol Analysis Lab ∗

Nifty Assignment

Michael Ham
Beacom College of Computer and Cyber Sciences

Dakota State University
Madison, SD 57042
michael.ham@dsu.edu

Protocol analysis is a critical skill for cybersecurity engineers, especially
as interconnected wireless devices expand the threat landscape. Non-routable
communication protocols, such as Infrared, Zigbee, and Bluetooth, play a vital
role in Internet of Things (IoT) applications and require specialized knowledge
for effective threat hunting and vulnerability assessment. Academic standards,
such as the NSA-CAE designations, emphasize the importance of networking
and communication protocol analysis as essential knowledge units for cyberse-
curity education.

This nifty assignment requires remote learners to use a logic analyzer to
analyze a custom-built IoT device and develop a software extension to decode
the device’s transmitted signals. The target device is a light-up tree made
from a foam cone decorated with an RGB LED strip. The LEDs are typically
controlled by an infrared (IR) remote using the NEC protocol. However, the
LED strip IR receiver is attached directly to an Arduino microcontroller in
this lab. The Arduino enables the programmatic injection of raw NEC IR
commands that would otherwise be transmitted wirelessly. Direct command
injection allows for unique functionality not seen in the LED strip, such as
flashing “DSU” in Morse code with different colors representing each letter in
the sequence. The device’s programmable nature makes it a unique tool for
students to explore beyond “standard” wireless communication protocols.

Applied labs like this provide students with experiential opportunities to
practice capturing and analyzing real-time signals from target IOT devices;
these learned skills translate directly to professional skill sets. Delivering such
a lab on campus is more accessible than conducting the same lab for online stu-
dents. Compared to campus students, remote learners face hurdles in accessing

∗Copyright is held by the author/owner.

121

similar applied lab experiences due to physical, regulatory, and technical barri-
ers. Hardware costs, geographic limitations, and the need for accurate timing
data in signal analysis are important considerations for remote lab participa-
tion.

A remotely accessible web-based platform is crucial for providing this and
similar labs. A remote platform can connect theoretical learning with practical
application by incorporating tools such as logic analyzers (e.g., Saleae Logic 8)
with a target hardware device, emulating a physical presence. This environ-
ment ensures meaningful educational experiences in protocol analysis for every
student, irrespective of the learning modality.

The web platform developed for this online lab is a Docker-based solution
that provides students access to the hardware and tools needed for the assign-
ment. It consists of three containers (nginx, logic2, and rpa-app). These three
containers work in concert to provide a web presence through Nginx and a
custom-built Flask application (rpa-app). This application allows students to
control the target hardware device and work directly with a logic analyzer via
the Logic2 software as if they installed it locally.

Upon logging into the web application, students interact with four central
components on an easy-to-navigate page. First, the Logic2 software, which is
attached directly to a logic analyzer, is embedded via NoVNC. Second, students
have access to a live video stream of the target device, enabling them to observe
their interventions as if they were locally present. This live view helps learners
bridge the gap between virtual and physical interaction. Third, programmable
buttons send raw serial commands to the Arduino, allowing students to perform
certain tasks, such as resetting the device or transmitting the NEC IR sequence
to light up the tree. The buttons are extensible, supporting various target
devices and functionalities. Lastly, the platform has a web form for students to
upload and test their Logic2 software extensions. This setup grants students
complete control over hardware transmissions, live analysis, and immediate
feedback from the device.

The Docker-based architecture makes this assignment scalable, easy to de-
ploy, and accessible to other universities. Using Docker minimizes hardware re-
quirements via horizontal scaling while maintaining the consistency of a hands-
on learning environment, enabling institutions to replicate the experience for
their students. The modular design makes adapting to other target devices or
communication protocols easy, broadening its educational impact.

This assignment helps students progress toward learning outcomes, includ-
ing analyzing raw communication signals and developing software extensions
to decode protocols, creating functional software extensions using an API to
translate theoretical knowledge into actionable tools, and demonstrating their
understanding of how digital communication protocols control devices.

122

Dynamic Bracketology with C++ AI for
NCAA March Madness∗

Nifty Assignment

Roy Manfredi
Computer and Digital Technology

Westminster College
Fulton, MO 65251

roy.manfredi@westminster-mo.edu

Teaching C++ in CSA404: Data Structures, I often encounter students
losing interest in repetitive coding exercises. To address this, I created an en-
gaging midterm project in early 2024 that combined real-world problem solving
with their enthusiasm for sports: developing an AI model to predict NCAA
March Madness brackets. This spontaneous change from the planned curricu-
lum captivated students while fulfilling course objectives.

The project began with research into college basketball teams, requiring
students to analyze data and create C++ structs that represent players and
teams. Data entry was divided among the six students, each researching a
specific tournament region. Once data were compiled, students collaborated in
teams to develop functions to calculate player scores, aggregate team scores,
and dynamically visualize the bracket.

The assignment addressed key course goals by leveraging essential data
structures such as structs and arrays for player and team data storage. The
students created algorithms to process player statistics and dynamically cal-
culate team scores. This required the implementation of modular functions
and dynamic programming techniques, highlighting scalability and reusability.
Performance metrics included the efficiency of score computations, adaptability
of the bracket generator to changing data inputs, and accuracy of predictions
in public bracket leagues.

After completing the core functionality, each student personalized their
AI to reflect individual scoring priorities, incorporating unique algorithms to
predict winners. The project culminated in submitting AI-generated brack-
ets to a public league, where several performed exceptionally well in national

∗Copyright is held by the author/owner.

123

pools.There were three performance metrics evaluating technical efficiency and
practical outcomes.

1: Algorithm accuracy:

Metric: How well the program’s predictions aligned with real-world tour-
nament outcomes. Relevance: While not expected to produce perfect brackets,
the AI algorithms were evaluated by their ability to predict winners correctly,
with results compared to actual tournament outcomes or rankings in public
bracket leagues (e.g., ESPN).

2. Impact of Algorithm Customization:

Metric: Variability in predictions based on individual students’ scoring cri-
teria. Relevance: Students’ unique weighting of factors (e.g., offensive vs. de-
fensive strengths, player experience) influenced how their AI performed, show-
casing the importance of thoughtful algorithm design.

3. Reusability and modularity of the code:

Metric: How easily functions and data structures could be reused or adapted
for new scenarios. Relevance: The modular design allowed for future applica-
tions beyond basketball, such as applying similar logic to other tournaments
(even ones like a favorite food tournament) or real-world prediction models.
This assignment achieved 100 percent student buy-in and sparked continued
interest in computational problem-solving. While this specific content res-
onated with the class demographics, the adaptable structure can be applied
to other domains, making it a versatile teaching tool. Students continue to
discuss and inquire about this project, demonstrating its long-term impact on
engagement and learning.

124

Internship Experience Sharing ∗

Nifty Assignment

Bin Peng and Wen-Jung Hsin
Computer Science and Information Systems

Park University
Parkville, MO 64152

{bpeng, wen.hsin}@park.edu

Computer Science (CS) and Information Systems (IS) internships at the col-
lege or university level offer students opportunities to gain hands-on experience
and apply their academic knowledge in a professional setting. These intern-
ships provide skill development, mentorship, industry insights, and enhanced
job prospects, among many other benefits. In the CS/IS program at Park Uni-
versity, the internship is strongly recommended. Students can earn academic
credits for completing an internship by following specific guidelines for con-
verting the internship into course credits at Park University. These guidelines
include: (1) the request must be approved before the internship begins, (2)
the student must work in a professional environment, (3) the internship duties
must be sufficiently complex to require the expertise of a senior-level CS/IS
student, and (4) prior to enrolling in the internship course, the student and
their job supervisor must jointly prepare an internship proposal, which must
be agreed upon and supervised by an academic advisor.

An internship is regarded as a vital component of a student’s academic
experience in the CS/IS program at Park University. As a result, students
are strongly encouraged to complete a survey after finishing their internship to
share their experiences with fellow students in the CS/IS program. The survey
is shown in Table 1: CS/IS Survey – Internship Experience Sharing.

Each year, these shared experiences are disseminated to all CS/IS students
through various communication channels, such as emails, the departmental
LinkedIn group, poster displays at the departmental bulletin boards, and pre-
sentations at the annual Student Research and Creative Arts Symposium at
Park University to showcase students’ achievements. Sharing the results of
these experiences not only provides valuable insights into how peers navigate
and handle internships, but also fosters discussions and idea-sharing among

∗Copyright is held by the author/owner.

125

students, ultimately enhancing the likelihood of supporting one another in se-
curing and successfully completing internships. Encouraging students to share
their experiences has led to a significant increase in recognition and participa-
tion among students in the CS/IS program at Park University.

Table 1: CS/IS Survey– Internship Experience Sharing

The Computer Science and Information Systems program invites you to share
your internship experiences. Your insight and reflection will be compiled and
shared with all CS/IS students to promote greater participation in intern-
ships.

Demographic
Information

(1) What is your name?
(2) What is your current class standing? (i.e., junior, senior,
etc.)
(3) Are you an international Student?* (Yes/No)
(4) How can the CS/IS program share your submission? (i.e.,
anonymously, both name and email, name but not email, oth-
ers.)
(5) What is your email address?

Internship
Experience

(1) When did you start looking for internship opportunities?
(We’re interested in knowing when during your studies, such as
midway through your sophomore year, although if it was more
than a couple of years ago, feel free to mention the specific year.)
(2) Describe your experience securing the internship position, in-
cluding a) how you learned about this opportunity (e.g. through
Park University’s career services, personal connections, internet
searches, etc.), b) the duration it took to receive an offer, and
c) whether any prior experience played a role.
(3) Briefly describe the company and its location. This can be
specific such as “Facebook, Menlo Park, CA” or more general,
like “an insurance company in the Kansas City area”.
(4) Describe your duties during the internship.
(5) Describe what you learned from this experience. Feel free
to mention technical skills, soft skills, career directions, career
insights, or anything else you found meaningful.
(6) Provide your advice to students on how to secure an intern-
ship.

* International students are required to complete additional paperwork for
internships, therefore, the CS/IS program would like to recognize students
who have successfully navigated this process.

126

Teaching Cellular Concepts: An Into
With GSM

Nifty Assignment

Kyle Cronin, Michael Ham
Beacom College of Computer & Cyber Science

Dakota State University
Madison, SD 57042

kyle.cronin@dsu.edu, mike.ham@dsu.edu

Many excellent labs and curriculum exist for teaching TCP/IP concepts,
ethernet, routing and switching, and 802.11. However, today one of the prime
mechanisms for communication do not exist within traditional networked en-
vironments: enter the mobile phone. While our students need not be experts
at cellular communication, a basic understanding of device and base station
signaling is important when entering the cybersecurity industry. In this nifty
assignment, students stand up a simple OpenBTS base station using a Rasp-
berry Pi and a Software Defined Radio.

To get started, students require basic hardware: a Raspberry Pi, an USRP
B200 software defined radio, and a set of Android phones and SIM cards.
Blank SIM cards can be procured and programmed, however Android OS and
the proper OpenBTS configuration will allow for SIMs from any carrier to
work.

With the hardware online, students can explore the configuration options
that exist within modern cellular infrastructure. It should be noted that
OpenBTS, an older project, only supports GSM (2G communication), how-
ever the signaling characteristics of modern networks (LTE and 5G) carry over,
while GSM can be easily operated off of commodity computing hardware with
low processing power.

This lab environment exposes students to the configuration settings that
are required for mobile networks to operate. In order to bring a base station
online, students must demonstrate a knowledge of the configurations required:
Absolute Radio Frequency Channel Numbers, Mobile Country Codes, Mobile
Network Codes, and International Mobile Subscriber Identity registration. In
order to complete the task, students must apply all appropriate values, connect
a set of phones, and be able to communicate within the devices.

127

The activity exposes students to the necessary parameters, but also allows
for exploration beyond. OpenBTS supports capturing all cellular signaling
information in a PCAP format, which allows students to easily analyze the
changes in their configuration options and how they may be observed in an
offline modality. As is often done in TCP/IP exercise, students can prove
configuration options are present and show how they impact the operation of
the network.

Outside of basic configuration, several security challenges can be introduced
and demonstrated within a network environment. With a necessary discussion
of the legal state of operating test cellular networks, students may observe
the connection process as well as what may interrupt or cause issues with the
process of a device registration. Common topics such as network spoofing can
easily be demonstrated between students, leading to a discussion as to how
these attacks can be somewhat mitigated in modern cellular network environ-
ments.

In totality, operating a GSM network from scratch allows students a hands-
on opportunity to explore a modality for communication that is often challeng-
ing or unavailable in a learning environment. Students can demonstrate the
concepts, as well as compare them to modern networks, while not having a
heavy computing environment. Additionally, this lab can be positioned to give
students without a traditional electrical engineering background exposure to
cellular environments in a hands on way.

128

Prompting Collaboration: Development
of an Multidisciplinary Applied AI Minor

Program∗

Panel Discussion

Ajay Bandi1, Benjamin Blackford2, Aziz Fellah1, Diana Linville1,
Trevor C. Meyer3, Robert J. Voss4

1School of Computer Science and Information Systems
2School of Business

3Department of Language, Literature and Writing
4Department of Humanities and Social Sciences
Northwest Missouri State University, MO 64468

{ajay, blkfrd, afellah, dianar, tmeyer, robvoss}@wmissouri.edu

1 Summary

Artificial Intelligence (AI) has rapidly transformed industries and research,
becoming a driving force for technological innovation and development [1].
As AI continues to grow and change, it is reshaping the way we approach
problem-solving, decision-making, and creative processes across various sectors.
Northwest Missouri State University is developing a new multidisciplinary AI
minor open to all undergraduate students on campus. The program is tailored
for students from any discipline who want to explore how AI can be utilized
and integrated into their fields such as computer science, humanities, business,
sciences, healthcare, agriculture, and education, among others. The curriculum
integrates topics such as foundational AI concepts, prompt engineering and
writing processes, ethical considerations in AI, AI in the workplace, and a
capstone project. This program also promotes interdisciplinary collaboration
and emphasizes the ethical use of AI.

By the end of the program, students will be able to use AI to enhance ef-
ficiency and accuracy in tasks, develop and evaluate effective prompts, apply

∗Copyright is held by the author/owner.

129

generative AI tools across various input formats, and assess the ethical con-
siderations of AI in real-world applications. The panel members are experts
from diverse fields, including management, humanities, technical writing, and
computer science. The panel discusses the development of the AI minor cur-
riculum and explores opportunities to extend the AI curriculum by offering
AI certificates for undergraduate and graduate online professional students.
By attending this panel, the audience will gain valuable insights into devel-
oping comprehensive AI programs, fostering cross-disciplinary innovation, and
preparing students to use AI ethically and effectively across diverse fields.

2 Minor Courses

The Applied AI minor requires 24 credit hours. Of these 24 hours, students
must complete 15 required hours and 9 elective hours. The descriptions of
the required courses are provided in this section. The electives are flexible,
and students can take them within their major or outside of the major. This
multidisciplinary minor program will begin in fall 2025 at Northwest Missouri
State University.

Introduction to Applied AI: A non-technical introduction to the funda-
mental concepts in Generative AI focusing on practical applications, societal
impacts, and ethical considerations.

AI in the Workplace: This course provides an overview of how AI is
currently impacting the workplace. Topics will include the workflow changes,
social impacts, and training needs associated with the rapid advancements in
AI. Ethical issues will also be addressed. Students will learn how to effectively
apply AI to appropriate activities in the workplace.

Prompt Engineering: Bridging writing students and artificial intelli-
gence, this course explores the art and science of prompt engineering. Students
will learn to develop, evaluate, and refine prompts to effectively communicate
with and guide generative artificial intelligence (Gen-AI) models to generate
outputs tailored to specific audiences, purposes, and contexts. Building upon
foundational AI concepts, students will learn key prompt engineering tech-
niques, including zero-shot, few-shot, chain-of-thought, tree-of-thought, and
the NOVA system, among others, and creatively repurposing those techniques
to develop their own methods and methodologies. Through iterative practice
and real-world scenarios, the course equips students with strategies to maxi-
mize the value of AI in creative, technical, and executive applications, while
developing critical thinking, problem-solving, and communication skills crucial
for leveraging Gen-AI.

130

Ethics and AI: This course introduces students to the intersection of dig-
ital humanities and artificial intelligence, focusing on ethical considerations,
societal impacts, and the evolving role of AI in the study of human culture and
history. Students will explore how AI tools are reshaping digital research, data
visualization, and archival practices in the humanities. Special attention will
be given to issues of bias in digital methods, the ethics of AI-generated con-
tent, and the implications of automation in historical interpretation. Through
hands-on projects, students will critically assess the responsible use of AI in
the humanities and develop ethical frameworks for engaging with digital tools
in research and public-facing projects.

Capstone in AI: This capstone project course offers students from diverse
disciplines the opportunity to explore and apply AI techniques and tools specific
to their field of study. Through hands-on projects, students will use AI-powered
tools to solve real-world problems while collaborating within multidisciplinary
teams to develop practical solutions. The course emphasizes the integration of
AI across various domains, equipping students with the experience and skills
necessary to apply AI effectively to real-world challenges.

3 Biographies

Dr. Ajay Bandi is an associate professor of computer science and the gradu-
ate program coordinator for the MS in Applied Computer Science. He teaches
a wide variety of both on-campus and online graduate courses in computer
science and data science. He has integrated Generative AI into his teaching
and research, publishing refereed papers in this area.
Dr. Ben Blackford is the Director of the Melvin D. & Valorie G. Booth
School of Business at Northwest Missouri State University. He has a PhD from
the University of Nebraska - Lincoln with an emphasis on Strategy. His re-
search interests include humor in advertising and interpersonal relationships in
the workplace. Prior to academia, he spent 25 years with Wal-Mart and also
co-founded a management consulting and financial advising company.
Dr. Aziz Fellah is an Associate Professor in Computer Science with exten-
sive experience at various institutions. His background spans several subfields
of computer science across the discipline.
Ms. Diana Linville is a Senior Instructor and Assistant Director of the
School of Computer Science and Information Systems at Northwest Missouri
State University and is the program coordinator for the interdisciplinary de-
gree, Digital Media: Computer Science, as well as co-teaching an interdisci-
plinary course, Knacktive.
Dr. Trevor C. Meyer in an Assistant Professor in the Department of Lan-
guage, Literature, and Writing. He has taught courses in rhetoric (theory and

131

history), professional & technical writing, and composition. Generative AI has
been a major feature of his teaching and scholarship for the past several years.
Dr. Robert Voss is an Associate Professor of History, Secondary Social
Science Coordinator, and MSEd Teaching History Coordinator specializing in
the intersections of technology, history, and society. With expertise in digital
humanities and AI ethics, he brings a critical perspective on how emerging
technologies shape research, education, and our understanding of the past.

References

[1] Ajay Bandi, Pydi Venkata Satya Ramesh Adapa, and Yudu Eswar Vinay
Pratap Kumar Kuchi. The power of generative ai: A review of requirements,
models, input–output formats, evaluation metrics, and challenges. Future Inter-
net, 15(8):260, 2023.

132

An Instructor’s Introduction to
Codespaces & Development Containers

Conference Tutorial

Bill Siever1, Michael P. Rogers2
1Computer Science & Engineering
Washington University in St. Louis

bsiever@gmail.com
2Department of Computer Science
University of Wisconsin Oshkosh

mprogers@mac.com

A containerized environment (e.g., Docker) provides a way to bundle a piece
of software with all its requirements and dependencies into a single, easily re-
producible and moderately portable “container”. Development containers (dev
containers) leverage containers to provide all the tools and libraries necessary
for a specific software development target. In addition, dev containers specify
other elements relevant to development, such as settings and extensions for
Integrated Development Environments (IDEs) [1].

For example, a dev container could be a combination of: 1) a container
that has specific compiler/interpreter and library versions for a Java or Python
project, and 2) IDE extensions and settings to develop and debug the appli-
cation. Unlike many other approaches to managing tools and libraries, the
container typically includes appropriate versions of all dependencies in a single
bundle that is isolated from other installations, thus avoiding conflicts.

Many of the biggest benefits dev containers bring to application develop-
ment are equally valuable in educational environments, including:

1. A complete and consistent development environment with appropriate
versions of all dependencies for a project can be launched in a couple of
minutes. This can eliminate both student off-task time spent installing
and maintaining software and confusion from inconsistent versions of
tools.

2. Cloud-based environments can be used to mitigate the limitations or
inconsistencies of local resources (e.g., student laptops with insufficient
space or the limited capacity of IT departments to maintain lab software).

133

3. Support for collaboration and code review are readily available.

4. It is possible to limit integration of facilities that could undermine intel-
lectual property and academic integrity, such as AI-assisted development
tools.

GitHub currently provides free educational use of their cloud-based dev
container environment, Codespaces [2]. A Codespace is a dev container in a
web-hosted version of Visual Studio Code [3], an editor widely used for devel-
opment. Several courses, like Harvard’s CS50 [4], are leveraging Codespaces
to ensure a broad range of students in large-scale computing courses are all
working in the same environment. Codespaces can virtually eliminate student
and faculty time setting up and debugging issues that arise from the myriad
of computing platforms that students use for coursework.

Tutorial

This tutorial will start with an overview of the fundamental concepts behind
dev containers and provide some examples of their flexibility and breadth of
use, including a dev container developed by one of the authors for a course in
Digital Logic and another used to maintain course websites. We will proceed
to work through two hands-on examples (along with any/all participants): 1)
Launching and exploring a preconfigured dev container that may be suitable
for many introductory courses and 2) Customizing a dev container with mod-
ifications that are relevant to computing educators. We will conclude with a
group discussion about potential uses of and experiences with dev containers.

Biographies

Bill Siever is a Teaching Professor of Computer Science and Engineering at
Washington University in St. Louis, where he teaches courses in Computer
Science and Computer Engineering. Recently, he has updated an introductory
course in Digital Logic and Computer Design to leverage dev containers.

Michael P. Rogers is an assistant professor at the University of Wisconsin
Oshkosh, where he teaches a variety of computer science courses, including
Software Engineering and Mobile App Development, where CodeSpaces and
dev containers are a frequent topic of conversation.

References

[1] Development containers. https://containers.dev/.

134

[2] Github codespaces. https://github.com/features/codespaces.

[3] Visual studio code. https://code.visualstudio.com/.

[4] David J. Malan, Jonathan Carter, Rongxin Liu, and Carter Zenke. Providing stu-
dents with standardized, cloud-based programming environments at term’s start
(for free). In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 2, SIGCSE 2023, page 1183, New York, NY, USA, 2023.
Association for Computing Machinery.

135

Fending off Gitastrophe: a Tutorial on
Architecting Collaborative Projects and

Giving Great Feedback

Conference Tutorial

Michael P. Rogers1, Bill Siever2

1Department of Computer Science
University of Wisconsin Oshkosh

mprogers@mac.com
2Computer Science & Engineering
Washington University in St. Louis

bsiever@gmail.com

1 Git and GitHub

Employers expect that students graduating from a 4-year CS program will have
familiarity with version control, and the ACM curricular guidelines [1] reflect
that. Of all the version control systems in existence, Git is by far the most
popular [2].

Git can benefit individual developers: it allows them to safely test out
new ideas, and the ability to rollback changes if necessary. Its true strength,
however, lies in collaboration. Participants will learn the fundamentals of how
to use Git on a collaborative project via GitHub, a leading cloud-based Git
platform. Beyond housing repositories, GitHub also has powerful tools for
collaboration that will be demonstrated in this tutorial. Most GitHub features
are free for students, including the ability to create an unlimited number of
private repos, with an unlimited number of collaborators.

2 Tutorial

The tutorial will begin with an overview of Git and GitHub concepts and
terminology (repositories, branches, pushing, fetching, pulling, pull requests
and code reviews). It will be followed by a demonstration of a collaborative

136

workflow that works well when working with student teams: forking and cloning
a repo, making pull requests, evaluating pull requests, and providing feedback.

Time permitting, participants will then walk through the same process: fork
a repo, make changes to it, and then submit a pull request. Merge conflicts
will also be covered.

The tutorial will wrap up with a discussion of other strategies for working
Git and GitHub into the classroom, and questions.

Biography

Michael P. Rogers is an assistant professor at the University of Wisconsin
Oshkosh, where he teaches a variety of computer science courses, including
Software Engineering and Mobile App Development, where Git and GitHub
are used extensively.

Bill Siever is a Teaching Professor of Computer Science and Engineering
at Washington University in St. Louis where he teaches courses in Computer
Science and Computer Engineering.

References

[1] Amruth N. Kumar and Rajendra K. Raj. Computer science curricula 2023
(cs2023): The final report. In Proceedings of the 55th ACM Technical Sympo-
sium on Computer Science Education V. 2, SIGCSE 2024, page 1867–1868, New
York, NY, USA, 2024. Association for Computing Machinery.

[2] Stack Overflow. Stack overflow developer survey 2022: Technology - version
control, 2022. Accessed: 2025-01-15.

137

