
The Journal of Computing
Sciences in Colleges

Papers of the 25th Annual CCSC
Central Plains Conference

April 5th-6th, 2019
St. Charles Community College

Cottleville, MO

Papers of the 12th Annual CCSC
Southwestern Conference

March 22nd-23rd, 2019
Stanford University

Stanford, CA

Baochuan Lu, Editor John Meinke, Associate Editor
Southwest Baptist University UMUC Europe, Retired

Susan T. Dean, Associate Editor Steven Kreutzer, Contributing Editor
UMUC Europe, Retired Bloomfield College

Volume 34, Number 4 April 2019

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing Sci-
ences in Colleges. Printed in the USA. POSTMASTER: Send address changes
to Susan Dean, CCSC Membership Secretary, 89 Stockton Ave, Walton, NY
13856.

Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 7

CCSC National Partners & Foreword 9

Papers of the 25th Annual CCSC Central Plains Conference 11

Welcome to the 2019 CCSC Central Plains Conference 12

Regional Committees — 2019 CCSC Central Plains Region 13

Reviewers — 2019 CCSC Central Plains Conference 14

STEM and Future Workforce — Opening Keynote 15

Randy Schilling

Debugging Diversity: Creating Opportunities through Computer
Science Education — Banquet Keynote 16

Sherea Dunlap

Microsoft, LinkedIn, Online Professionalism — Saturday Keynote 17

Jo Otey

Revising an Accredited Computer Science Program at a Public
Regional University to Meet New ABET Guidelines 18

Xiaodong Yue, Belinda Copus, Hyungbae Park, Mahmoud Yousef, Songlin
Tian, University of Central Missouri

The Visible File System – An Application for Teaching File Sys-
tem Internals 24

Bruce Mechtly, Fritz Helbert, Dylan Cox, Zachary Hastings, Washburn
University

Initial Evaluation of Accessibility and Design Awareness with 3-D
Immersive Environments 32

Nicholas Rosasco, Alex Kaariainen, Jeffrey Will, Valparaiso University

Getting Ahead with a Hat: Reengineering a Computer Organi-
zation Course 42

Michael P. Rogers, Charles Hoot, Northwest Missouri State University

3

When the Play Is “The Thing” and Not the Software: Student
Experiences Engineering Software for a Theatre Production 52

Brian Kokensparger, Creighton University

Teaching AP-CSP In A College Setting Using An AP-CSP En-
dorsed Curriculum: An Experience Report 60

Tim DeClue, Southwest Baptist University

Capstone as Consulting 67

Denise M. Case, Charles Hoot, Northwest Missouri State University

Embedding Security Concepts in Introductory Programming
Courses 78

Ajay Bandi, Abdelaziz Fellah, Harish Bondalapati, Northwest Missouri
State University

Introducing Fundamental Computer Science Concepts Through
Game Design 90

Fei Cao, Dabin Ding, University of Central Missouri, Michelle Zhu,
Montclair State University

How Learning Works: Applying Cognitive Psychology Theory to
Computer Science Course Structure — Conference Workshop 97

Jennifer McKanry, Gretchen Haskell, Dasha Kochuk, University of Mis-
souri – St. Louis

CyberReady StL Curriculum: Tutorial, Best Practices, and Re-
sults from Initial Deployment – Conference Workshop 99

Rebecca Dohrman, Paul Gross, Steve Coxon, Chris Sellers, Christi De-
Muri, Robyn Ray, Dustin Nadler

Introduction to Cloud-Based Machine Learning
— Conference Workshop 100

Saty Raghavachary, Jeffrey Miller, University of Southern California

SASS (Syntactically Awesome Style Sheets)
— Conference Tutorial 101

Jane O’Donnell, St. Charles Community College

Easy Handwriting Recognition — Nifty Assignment 103

Eric D. Manley, Timothy Urness, Drake University

4

Streaming TV Services — Nifty Assignment 106
Kendall Bingham, University of Missouri - Kansas City

Applying Asymmetric Encryption Algorithm Using Kryptos
— Nifty Assignment 110

Imad Al Saeed, Saint Xavier University

Building A Memory Reading Circuit — Nifty Assignment 114
Bin Peng, Park University

Geospatial Data Handling — Nifty Assignment 117
Saty Raghavachary, University of Southern California

An IoT Assignment Sequence — Nifty Assignment 120
Bill Siever, Washington University in St. Louis

Blended Courses in Computer Science and Information Systems
Education: Adapting to Changing Educational Methods and Needs
— Panel Discussion 122

Charles Badami, Denise Case, Nathan Eloe, Aziz Fellah, Doug Hawley,
Charles Hoot, Diana Linville, Northwest Missouri State University

Challenges of Mentoring Graduate Directed Projects: Profession-
Based Learning Through Collaboration — Panel Discussion 123

Ajay Bandi, Denise Case, Nathan Eloe, Aziz Fellah, Northwest Missouri
State University

Papers of the 12th Annual CCSC Southwestern Conference 124

Welcome to the 2019 CCSC Southwestern Conference 125

Regional Committees — 2019 CCSC Southwestern Region 126

Reviewers — 2019 CCSC Southwestern Conference 127

Experience Report: Explorable Web Apps to Teach AI to Non-
Majors 128

Justin Li, Occidental College

Investigating University Student Desires and Use of Smartphone
Privacy Settings 134

Marina Moore, Bruce DeBruhl, California Polytechnic State University
San Luis Obispo

5

Less Is More: Assessment and Student Learning in Computer
Science Education 142

Adamou Fode Made, Abeer Hasan, Sharon Tuttle, David Tuttle, Hum-
boldt State University

6

The Consortium for Computing Sciences in
Colleges Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing
Sciences in Colleges (along with the
years of expiration of their terms), as
well as members serving CCSC:

Jeff Lehman, President (2020),
(260)359-4209,
jlehman@huntington.edu,
Mathematics and Computer Science
Department, Huntington University,
2303 College Avenue, Huntington, IN
46750.
Karina Assiter, Vice President
(2020), (802)387-7112,
karinaassiter@landmark.edu.
Baochuan Lu, Publications Chair
(2021), (417)328-1676,
blu@sbuniv.edu, Southwest Baptist
University - Department of Computer
and Information Sciences, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill
Rd., Kansas City MO 64110.
Susan Dean, Membership Secretary
(2019), Associate Treasurer,
(607)865-4017, Associate Editor,
susandean@frontier.com, UMUC
Europe Ret, US Post: 89 Stockton
Ave., Walton, NY 13856.
Judy Mullins, Central Plains
Representative (2020), Associate
Treasurer, (816)390-4386,

mullinsj@umkc.edu, School of
Computing and Engineering, 5110
Rockhill Road, 546 Flarsheim Hall,
University of Missouri - Kansas City,
Kansas City, MO 64110.

John Wright, Eastern
Representative (2020), (814)641-3592,
wrightj@juniata.edu, Juniata College,
1700 Moore Street, Brumbaugh
Academic Center, Huntingdon, PA
16652.

David R. Naugler, Midsouth
Representative(2019), (573) 651-2787,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.

Lawrence D’Antonio,
Northeastern Representative (2019),
(201)684-7714, ldant@ramapo.edu,
Computer Science Department,
Ramapo College of New Jersey,
Mahwah, NJ 07430.

Cathy Bareiss, Midwest
Representative (2020),
cbareiss@olivet.edu, Olivet Nazarene
University, Bourbonnais, IL 60914.

Brent Wilson, Northwestern
Representative (2021), (503)554-2722,
bwilson@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.

Mohamed Lotfy, Rocky Mountain
Representative (2019), Information
Technology Department, College of
Computer & Information Sciences,
Regis University, Denver, CO 80221.

Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of

7

Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308-2099.

Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer
Science, Greenville, SC 29613.

Bryan Dixon, Southwestern
Representative (2020), (530)898-4864,
bcdixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These
members are serving in positions as
indicated:

Brian Snider, Associate
Membership Secretary,
(503)554-2778,
bsnider@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.

Will Mitchell, Associate Treasurer,
(317)392-3038, willmitchell@acm.org,
1455 S. Greenview Ct, Shelbyville, IN

46176-9248.
John Meinke, Associate Editor,
meinkej@acm.org, UMUC Europe
Ret, German Post: Werderstr 8,
D-68723 Oftersheim, Germany, ph
011-49-6202-5777916.
Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,
MSC 2615, Pacific University, Forest
Grove, OR 97116.
Elizabeth Adams, National
Partners Chair, adamses@jmu.edu,
James Madison University, 11520
Lockhart Place, Silver Spring, MD
20902.
Megan Thomas, Membership
System Administrator,
(209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus,
One University Circle, Turlock, CA
95382.
Deborah Hwang, Webmaster,
(812)488-2193,
hwang@evansville.edu, Electrical
Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

8

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft

Google for Education
GitHub

NSF – National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology

Teradata
Mercury Learning and Information

9

Foreword

Welcome to the 2019 issues of our journal for the CCSC spring 2019 confer-
ences: Southwestern (March 22-23), Central Plains (April 5-6), South Central
(April 5), Mid-south (April 12-13), and Northeastern (April 12-13).

Please plan to attend one or more conferences, where you can meet and
exchange ideas with like-minded computer science educators. Each conference
covers a variety of topics that are practical and stimulating. You can find
detailed conference programs on the conference websites, which are listed on
the CCSC conferencecalendar: http://www.ccsc.org/regions/calendar.

From January 2019, this journal will be published electronically on the
CCSC website and links to the journal issues will be sent to CCSC members
via email. Those of you who would like hard copies of journal issues can order
them from Amazon. Simply search for “CCSC Journal” to find available issues.
The journal will continue to be available in the ACM Digital Library.

As an author, you may post your papers published by CCSC on any website.
Please make sure to use the PDF versions of your papers with CCSC’s copyright
box. Such PDFs can be downloaded from the ACM Digital Library or extracted
from our electronic journal.

Please feel free to email me directly at blu@sbuniv.edu if you notice any
issue with our publications.

Baochuan Lu
Southwest Baptist University

CCSC Publications Chair

10

Papers of the 25th Annual
CCSC

Central Plains Conference

April 5th-6th, 2019
St. Charles Community College

Cottleville, MO

11

Welcome to the 2019 CCSC Central Plains
Conference

2019 ushers in the 25th year of the CCSC Central Plains Region conference
and I am proud that St. Charles Community College (SCC) has been selected
to host. Every year that I have attended the conference I have taken back
to my classroom something new and exciting to help teach and energize my
students. Whether it is finding a new tool or technology or partnering with
one of my peers, the conference has something for everyone.

This year’s conference at SCC we will have some exciting events on the
schedule, tours of some of our business partners’ facilities, specialty tracks for
vendors, students and K-12 teachers to focus in on what interests you most.
We will also have a Meet and Greet at the OPO Startup in downtown St.
Charles, a technology hub for startup companies in the St. Charles area.

All professional papers, panels, tutorials, and nifty assignments go through
a double-blind review process. This year we were able to accept 53% of the
paper submissions. We would like to extend our appreciation to the authors
who submitted their work for our consideration and to the highly talented group
of reviewers that exerted a tremendous amount of time and effort to review
all the submissions. Our conference would not be as remarkable without our
National Partners, Sponsors, and Vendors for their continued support of our
organizations. Thank you all!

Finally, this conference would be nowhere near as successful without the
dedication and support from the volunteers and committee members that help
support the CCSC efforts throughout the year to bring you this wonderful
event. Without their tireless work and dedication, I would not have been able
to plan and build a conference this great. This includes the support from past
conference chairs, thank you all for letting me be a pest throughout the year
of planning.

I hope you have a wonderful time at the CCSC-2019 conference, gain some
enlightenment and take back something new to enrich your classroom and
research.

Rex McKanry
St. Charles Community College

Conference Chair

12

2019 CCSC Central Plains Conference Steering
Committee

Conference Chair: Rex McKanrySt. Charles Community College
Conference Co-Chair: Chetan Jaiswal Truman State University
Conference Publicity: Tom Mertz, Michael P. Rogers Kansas State
Polytechnic, Northwest Missouri State University
Keynote Speakers: Scott Bell, Rex McKanry, Chetan Jaiswal Northwest
Missouri State University, St. Charles Community College, Truman State Uni-
versity
Pre-Conference Workshop: Judy Mullins, Rex McKanry University of
Missouri Kansas City, St. Charles Community College
Papers: Ajay Bandi . Northwest Missouri State University
Panels, Tutorials, Workshops: Scott Sigman Drury University
Nifty Assignments: Mahmoud Yousef University of Central Missouri
Lightning Talks: Kendall BinghamUniversity of Missouri Kansas City
K-12 Outreach, Nifty Assignments, Lightning Talks: Scott Bell . . . Northwest
Missouri State University
Student Paper Session: Scott Sigman . Drury University
Student Poster Competition: Joseph Kendall-MorwickMissouri Western
University
Student Programming Contest: Charles Riedesel University of
Nebraska-Lincoln
Two-Year College Outreach: Rex McKanry . St. Charles Community College
Submission System Admin: David HeiseLincoln University

Regional Board — 2019 CCSC Central Plains Region

Regional Rep Board Chair: Judy Mullins University of Missouri Kansas City
Registrar Membership Chair: Ron McCleary .Retired
Current Conference Chair: Rex McKanry . . . St. Charles Community College
Next Conference Chair: Chetan Jaiswal Truman State University
Past Conference Chair: Scott Bell Northwest Missouri State University
Secretary: Diana Linville Northwest Missouri State University
Regional Treasurer: Denise Case Northwest Missouri State University
Regional Editor: Bin “Crystal” Peng .Park University
Webmaster: Michael P. Rogers Northwest Missouri State University

13

Reviewers — 2019 CCSC Central Plains Conference

Imad Al Saeed . Saint Xavier University, Chicago, IL
Rad AlrifaiNortheastern State University, Tahlequah, OK
Beth Arrowsmith University of Missouri St. Louis, Saint Louis, MO
Ajay BandiNorthwest Missouri State University, Maryville, MO
Scott Bell Northwest Missouri State University, Maryville, MO
John Buerck . Saint Louis University, Saint Louis, MO
Denise Case Northwest Missouri State University, Maryville, MO
Chia-Chu Chiang University of Arkansas at Little Rock, Little Rock, AR
Tim DeClue . Southwest Baptist University, Bolivar, MO
George Dimitoglou . Hood College, Frederick, MD
Aziz Fellah Northwest Missouri State University, Maryville, MO
Ernest Ferguson Northwest Missouri State University, Maryville, MO
David Furcy University of Wisconsin Oshkosh, Oshkosh, WI
David Heise . Lincoln University, Jefferson City, MO
Suvineetha Herath . Carl Sandburg College, Galesburg, IL
Charitha Hettiarachchi . Northwest Missouri State University, Maryville, MO
Wen Hsin . Park University Parkville, MO
Chetan Jaiswal . Truman State University, Kirksville, MO
Yipkei Kwok Missouri Western State University, St. Joseph, MO
Baochuan Lu . Southwest Baptist University, Bolivar, MO
Rick Massengale Arkansas Tech University, Russellville, AR
Ron McCleary . Retired
Bruce Mechtly . Washburn University, Topeka, KS
Jose MetrolhoPolytechnic Institute of Castelo Branco, Castelo Branco,
Portugal
Michael Oudshoorn High Point University, High Point, NC
Michael Rogers Northwest Missouri State University, Maryville, MO
Jamil Saquer . Missouri State University, Springfield, MO
Matthew Schieber Northwest Missouri State University, Maryville, MO
William Siever Washington University in St. Louis, Saint Louis, MO
Jeffery Solheim .Fort Hays State University, Hays, KS
Carol Spradling Northwest Missouri State University, Maryville, MO
Timothy Urness .Drake University, Des Moines, IA
Nancy Van Cleave Eastern Illinois University, Charleston, IL
Ken Vollmar . Missouri State University, Springfield, MO
Henry Walker . Grinnell College, Grinnell, IA
Baoqiang Yan Missouri Western State University, St. Joseph, MO
Mahmoud YousefUniversity of Central Missouri, Warrensburg, MO

14

STEM and Future Workforce1

Friday Opening Keynote

Randy Schilling
Founder of BoardPaq and OPO Startups

Schilling is the President and Chief Executive Of-
ficer of BoardPaq, an affordable, easy-to-use, secure
Board of Directors iPad and web (PC/Mac) applica-
tion for planning, running and managing paperless
Board meetings. The management team at Board-
Paq has more than 65 years of experience in the IT
industry. The Company’s offices are located in His-
toric Downtown Saint Charles, Missouri.

Boardpaq is dedicated to providing services to im-
prove overall board functionality. BoardPaq is more
than a meeting facilitator; it seeks to provide an effective communication path-
way for more engaged and productive members. Boardpaq offers a paperless
environment that yields more efficient communication. Boardpaq is the ulti-
mate collaboration tool that empowers boards to be great in and out of the
boardroom.

Schilling is the former Chief Executive Officer and Founder of Quilogy, a
Microsoft nationally managed system integrator, which is located in historic St.
Charles, Missouri. Schilling founded Quilogy in 1992 under the name Solutech,
Inc. with a personal investment of $5,000. Under Schilling’s leadership, the
company grew to over 500 employees and 16 offices.

Schilling is a long-time resident of St. Charles, Missouri, his hometown.
He is active in a wide range of business and civic organizations, including: Di-
rector, CASS Information Systems, (NASDAQ: CASS), the nation’s leading
provider of transportation, utility and telecom invoice payment and informa-
tion services, Chairperson of Education Committee of St. Charles County
Partners for Progress, a group of leading business and community leaders that
manage and encourage commerce and growth in St. Charles County, and Advi-
sory Council Member, Arch Grants, a non profit organization that accelerates
economic development by providing $50,000 equity-free grants and pro bono
support services to entrepreneurs who locate their early-stage business in St.
Louis, Missouri.

1Copyright is held by the author/owner.

15

Debugging Diversity: Creating Opportunities
through Computer Science Education1

Banquet Keynote

Sherea Dunlap
Executive Director at Create a Loop

Sherea Dunlap began teaching in Baltimore City after
earning a Master’s Degree from University of Maryland,
College Park. On moving to St. Louis, Sherea began
a six-year career teaching upper elementary and middle
school at St. Louis independent schools: Community
School and City Academy.

At Create a Loop, Sherea’s focus is on bringing
AP Computer Science and Washington University of St.
Louis college-level course material to Create a LOOP’s
elementary, middle and high school curriculum.

1Copyright is held by the author/owner.

16

Microsoft, LinkedIn, Online Professionalism1

Saturday Opening Keynote

Jo Otey
Customer Success Manager, Microsoft

Otey is a technology guy who puts people be-
fore machines, specializing in solving problems of
digital transformation within healthcare, nutrition,
startups, and non-profits. Working at Microsoft, he
has access to numerous resources and professional ex-
perts to solve complex problems. He believes when
you have a growth mindset anything is possible.

1Copyright is held by the author/owner.

17

Revising an Accredited Computer

Science Program at a Public Regional

University to Meet New ABET

Guidelines∗

Xiaodong Yue, Belinda Copus, Hyungbae Park
Mahmoud Yousef and Songlin Tian

School of Computer Science and Mathematics
University of Central Missouri

Warrensburg, MO 64093
{yue,copus,park,yousef,tian}@ucmo.edu

Abstract

In response to the most recent ABET CAC accreditation criteria
change, the computer science program at the University of Central Mis-
souri revised its curriculum and assessment process in preparation for a
re-accreditation visit in Fall 2019. In this paper, a case study is presented
based on the lessons learned and experiences gained from our revision
process. The findings and recommendations summarized in this paper
could be adopted in a similar setting by other institutions, especially
those with re-accreditation visits in Fall 2019 or beyond.

1 Introduction

The new ABET Computing Accreditation Commission (CAC) accreditation
criteria[1] were approved in October 2017. The new criteria are optional for
reviews during the 2018-2019 accreditation cycle, but are mandatory for the
2019-2020 accreditation visit. In preparation for its re-accreditation visit in
Fall 2019, the computer science program at the University of Central Missouri

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

18

revised its curriculum and continuous improvement process in the 2017-2018
academic year to comply with the new criteria. We hope that other computer
science programs with a re-accreditation visit in Fall 2019 or beyond will benefit
from the experiences and findings discussed in this paper.

2 Background

The BS in Computer Science (CS) at the University of Central Missouri was
accredited by ABET CAC under the computer science program criteria. The
CS program is a 120-credit hour program, composed of 36 hours of required
computer science courses, 6 hours of computer science electives, 30 hours of
mathematics and science, 37-44 hours of general education, and 4-11 hours of
free electives.

3 Meeting The New Criteria

There are significant changes in the new ABET CAC accreditation criteria,
especially in Criterion 3, Student Outcomes; Criterion 5, Curriculum; and in
the computer science program criteria. In the next section we will go through
each of the criteria one by one to provide a synopsis on our understanding of
the key issues to be addressed and areas needing special attention.

3.1 Criterion 3: Student Outcomes

The current CAC criterion 3 has 9 student outcomes (a-i). Under the current
criterion, a program is allowed to define its own outcomes as long as those
outcomes can be mapped to CAC outcomes a-i. The new CAC criterion 3
reduces the number of student outcomes from 9 to 5. In addition, all 5 new
student outcomes are required for any computing program. A program may
define additional outcomes. Since the new ABET CAC student outcomes are
fairly comprehensive, the faculty determined that no additional outcomes are
needed for our CS program. Since all the student outcomes are required, ABET
no longer requires periodic review of student outcomes. As a result, the new
CAC self-study questionnaire[2] on Criterion 3 has been significantly simpli-
fied. In particular, the program is no longer required to describe 1) how the
student outcomes prepare graduates to attain the program educational objec-
tives (PEOs); 2) the process used for reviewing and revising student outcomes;
and 3) how programs enable students to attain, by the time of graduation,
characteristics (a) through (i) as listed in Criterion 3 as well as any applicable
characteristics defined within the program criteria. Instead, programs are now

19

required to describe how the student outcomes are documented and publicly
stated. This new requirement is easily fulfilled by posting to the program web-
site. In summary, our finding is that Criterion 3 is significantly simplified in
the new criteria.

3.2 Criterion 5: Curriculum

The minimum credit hours requirement in computing topics remains 30 in the
new CAC criteria Criterion 5. The most significant change is that, besides at
least 30 semester credit hours (or equivalent) of up-to-date coverage of funda-
mental and advanced computing topics that provide both breadth and depth,
programs must include computing topics from the following 3 areas:

1. Techniques, skills, and tools necessary for computing practice;
2. Principles and practices for secure computing;
3. Local and global impacts of computing solutions on individuals, organi-

zations, and society.

Topic 1 is related to the current CAC student outcome i. Since techniques,
skills, and tools necessary for computing practice are covered in various com-
puter science courses in our current program, this new requirement can be met
without any program revision.

There are several secure computing-related elective courses in our current
CS program. By carefully reviewing course content and associated prerequi-
sites, the faculty determined that an existing elective course in information
assurance should become a required course, as it provides balanced coverage
of various secure computing concepts. This modification required minimal ad-
justment to the curriculum and did not increase required credit hours.

Topic 3 is associated with current CAC student outcome g. Those topics
are covered in a required ethics course in the current CS program. As a result,
this new requirement can also be met without any program revision.

The new CAC self-study questionnaire on Criterion 5 has no significant
changes with respect to the current questionnaire except for some minor ed-
itorial changes. In summary, our finding is that, although there are several
changes in the new CAC Criterion 5, it should be fairly easy for programs to
adjust in terms of curriculum revisions.

3.3 Computer Science Program Criteria

The computer science program criteria, in our opinion, have the most signifi-
cant changes. The current CAC criteria adds two additional student outcomes,
j and k, for computer science programs, while the new criteria reduces the num-
ber of program specific student outcomes to a new single outcome. This new

20

student outcome is also required for every computer science program. Overall,
the total number of student outcomes has been reduced from 11 in the current
CAC criteria to 6 in the new CAC criteria for computer science programs. Our
conclusion is that such change will significantly reduce the amount of assess-
ment and evaluation effort required by program faculty, and will thus result in
a more sustainable and effective program improvement process.

3.3.1 Computer Science Requirements

The new CAC computer science program criteria requires at least 40 semester
credit hours (or equivalent) that must include:

1. Substantial coverage of algorithms and complexity, computer science the-
ory, concepts of programming languages, and software development;

2. Substantial coverage of at least one general-purpose programming lan-
guage;

3. Exposure to computer architecture and organization, information man-
agement, networking and communication, operating systems, and parallel
and distributed computing;

4. The study of computing-based systems at varying levels of abstraction;
5. A major project that requires integration and application of knowledge

and skills acquired in earlier course work.
The minimum credit hours requirement in computer science course work re-
mains 40 in the new CAC criteria. The requirements change from 4 items in
the current CAC criteria to 5 items in the new CAC criteria.

Requirement 1 in the new criteria corresponds to Requirement 1 in the cur-
rent criteria. There are several changes in this requirement. First of all, instead
of “coverage” in the current criteria, the new criteria emphasizes “substantial
coverage.” Second, “fundamentals of algorithms” and “software design” are
revised to “algorithms and complexity” and “software development,” respec-
tively. Third, “data structures” and “computer organization and architecture”
are replaced by “computer science theory.”

Although data structures is no longer part of this requirement, the faculty
decided to retain the Data Structures course as a required course in the CS
program since it covers some fundamental algorithms, computing theory, and
extensive Java programming experience. In response to the deletion of the
computer organization and architecture topics, the faculty decided to remove
a previously required course, Introduction to Computer Organization, and in-
tegrate parts of the content with another course. By reviewing the current CS
program, the faculty concluded that our current program already provides sub-
stantial coverage of algorithms and complexity and computer science theory.
Therefore, no adjustments were required for those topics. Our interpretation of
the change from Software Design to Software Development is that Software De-

21

sign is a process of problem-solving and planning for a software solution while
Software Development focuses more on implementation of a software solution
and its whole life cycle. The faculty concluded that the current software-related
courses in the CS program could be retained to meet this requirement.

Requirement 2 in the new criteria corresponds to Requirement 3 in the
current criteria. There are two changes in this requirement: First, the words
“proficiency in” are replaced by “substantial coverage of.” Second, “higher-
level language” is replaced by “general-purpose programming language.” Our
interpretation is that this requirement has been moderated in the new cri-
teria since the words “substantial coverage of” are weaker than “proficiency
in.” Programs can always provide substantial coverage of a programming lan-
guage, but cannot always guarantee students’ proficiency in that language. In
addition, the primary instructional language in our CS program is Java—a
general-purpose programming language. There are 3 required courses and sev-
eral elective courses in the current CS program that provide significant coverage
of Java. As a result, our conclusion is that this requirement is met by the cur-
rent CS program. It is worth noting that since the new criteria emphasize
“substantial coverage,” our approach is to make sure there are at least several
required courses, coupled with a few electives, covering each topic.

Requirement 3 in the new criteria corresponds to Requirement 2 in the
current criteria. Instead of the generic wording in the current criteria, “a
variety of programming languages and systems,” this requirement now has a
very specific list of curricular topics: computer architecture and organization,
information management, networking and communication, operating systems,
and parallel and distributed computing.

The current CS program has two required courses, Database and Operating
Systems, in which information management and operating systems topics are
covered. We combined our Computer Architecture course with our Computer
Organization course and retitled it to, “Computer Organization and Architec-
ture.” The course content was redesigned so that the revised course provides
a balanced coverage of both organization and architecture. Since the current
CS program does not have a required course in networking and communica-
tion, the faculty decided to change an elective course in Computer Networking
course to a required course. With the old Computer Organization course re-
moved, no extra credit hours needed to be added to the program. We also
determined that the parallel and distributed computing concepts are taught in
three required courses that already exist. It is also worth noting that programs
need only provide “exposure” to topics listed in this requirement and most of
these topics are already included in existing required courses.

Requirements 4 and 5 are both new. By reviewing the CS program, the
faculty concluded that Requirement 4 is met by the concepts covered in several

22

required courses, as is Requirement 5.

3.3.2 Mathematics and Science Requirements

One significant change in the Mathematics and Science requirement is that
the minimum 30 credit hours requirement is lifted in the new CAC criteria.
The minimum 15 credit hours in mathematics remains intact. Our current CS
program requires a minimum 16 credit hours in mathematics and no program
adjustment is needed.

To address the reduced credit hours in Science, the faculty proposed to
reduce the science credit hours from 14 to eight so that students will only
need to take two science courses with labs. Three of the six reduced hours
were applied to the newly required Information Assurance course, mentioned
in section 3.2. The remaining three applied as elective hours, which resolved
a common student complaint that there are not enough elective hours in the
current CS program.

The revised CS program remains a 120 credit hours program, comprised
of 36 hours in required computer science courses, 9 hours in computer science
electives, 24 hours in mathematics and science, 37-44 hours in general edu-
cation, and 7-14 hours in free electives. The revised program is more flexible
when compared with the current program, with more hours in computer science
electives and in free electives. The faculty believe these changes may attract
and retain more students in the CS program.

4 Conclusions

The changes to the ABET CAC criteria are significant, and all computer science
programs must revise their curricula and assessment plans before their next
visits. Based on our experience, this is something that can be accomplished
even in a short time frame given sufficient planning and faculty involvement
while providing a context for training younger faculty in assessment and the
continuous improvement process.

References
[1] ABET. Criteria for accrediting computing programs, 2018-2019, version

2. https://www.abet.org/wp-content/uploads/2018/02/C001-18-19-CAC-Criteria-

Version-2.0-updated-02-12-18.pdf.

[2] ABET. Self-study questionnaire: Template for the computing self-study, 2018-2019, ver-
sion 2. http://www.abet.org/wp-content/uploads/2018/03/C002B-CAC-Self-Study-

Questionnaire-2018-19-Version-2.0-FINAL.docx/.

23

The Visible File System – An

Application for Teaching File System

Internals∗

Bruce Mechtly, Fritz Helbert, Dylan Cox, and Zachary Hastings
Washburn University

Topeka, KS 66621
bruce.mechtly@washburn.edu

Abstract

In digital forensics one sometimes needs to look at a file system with-
out filtering. One may be interested in seeing items that have been
deleted, or see how deletion is done in a particular file system. One
may also be interested in looking at slack space, or the space between
partitions. The Visible File System (VisFS) application was developed
to allow unfiltered viewing of file system structures as well as searching
for patterns in those structures and file blocks. The main view shows
the raw disk content in hexadecimal as well as a collapsible tree showing
the meaning of the data. Currently, VisFS supports VFAT, NTFS, Ext,
HFS, ISO and UDF file systems. VisFS also automatically indexes all
blocks that are allocated in the directory tree so that blocks identified
in a search can be easily found in the directory tree. VisFS runs on
Windows, Mac, and Linux.

1 Introduction

This work began while preparing an introductory digital forensics class. It was
difficult to visualize how deleted items appear in a file system directory. At
first hex dumps of the directory, blocks were shown before and after deletion
with hand-drawn markup showing the file name, timestamps, links, and other

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

24

metadata. It occurred to the instructor that a Java application could automate
the process and provide links from directory blocks to other directory and file
blocks.

The VisFS application now allows visualization of the Master Boot Record
(MBR), GPT (GUID Partition Table) and the structures and files of six types
of file systems. It can also make dd (raw) images of devices and partitions.

The main window consists of two sections. On the left is a JTree object
that organizes the data into a collapsible tree. By collapsing tree nodes one
can select more or less detail. On the right is a hex dump of the raw data
on the device (usually one sector at a time). By using buttons one can step
forward or backward and view a hex dump of surrounding sectors.

In the tree view items marked with a “*” at the end can be double-clicked
to follow links. In this way one can start in the root directory and follow any
path through the file system.

The “Search” tab allows searching by ASCII/UTF-8, UTF-16 (big and
little-endian), hex and regular expressions. When the target is found the sector
appears in a list with a link to the directory tree if the sector is in an allocated
block.

2 Master Boot Records and Partition Tables

Figure 1 shows the contents of a master boot record (MBR) with a DOS-style
partition table. Note that the second partition is selected in the Tree View and
highlighted in the hex dump. If any extended partitions are present there are
links to follow the EBR (extended boot record) chain.

VisFS can also interpret GUID partition tables (GPT). In this case, the
MBR is called a “Protective MBR” and is retained for legacy systems.

3 The VFAT (FAT-32) File System

The first sector of a VFAT file system is called the volume boot record (VBR).
It contains information about the partition such as the number of sectors per
cluster, the size of the FATs, etc. From this information, you can calculate
where the data clusters start. The root directory is always at data cluster 2.
Figure 2 shows the root directory block for a VFAT partition.

Note that one directory entry is expanded. The last two lines are the DOS
directory entry containing the DOS 8.3 file name, timestamps, and starting
data cluster. The first two lines are the VFAT long file name “VisibleFS.jar”.
The long file names work backward from the directory entry. The first nibble

25

Figure 1: A Classic MBR with DOS-style Partition Table

Figure 2: The Root Directory for a VFAT Partition

26

of the first byte is a 0 or a 4 (4 indicating the last one). The second nibble is
a sequence number.

Deleted entries are marked with an E5 in their first byte. This partially
obscures the DOS 8.3 file name, but timestamps and starting data cluster
remain intact. This may have some forensic value.

Double-clicking on a directory entry for a file will take you to a listing of the
file blocks. The blocks are found by following links in the FAT. If the blocks
are contiguous they are listed as a “data run”.

4 The NTFS File System

The first sector of an NTFS file system is called the BIOS parameter block
(BPB). It gives information about the partition such as the size of MFT (Master
File Table) and INDX (Directory B-Tree Nodes) blocks. The root directory is
always pointed to by MFT #5.

Figure 3 shows the root directory of an NTFS file system. Note that an
MFT is organized into attributes. Only directories have $INDEX ROOT and
$INDEX ALLOCATION attributes. The $INDEX ROOT attribute is the root
node of a B-Tree for that directory. Small directories may be complete in the
$INDEX ROOT attribute of the MFT. Larger directories will have links to
INDX blocks which are child nodes in the B-Tree.

Figure 3: The Root Directory of an NTFS File System

Figure 4 shows an INDX block. INDX blocks are simply lists of directory
entries. Each entry points to an MFT block. In this case, the INDX block is a

27

B-Tree leaf so it doesn’t contain any INDX links. In a larger directory, there
would be several levels of non-leaf nodes.

Figure 4: An NTFS INDX Block

Note that NTFS is rich with metadata. Each directory entry has four
timestamps. Each MFT has at least eight timestamps (four in the $STAN-
DARD INFORMATION attribute and four in the $FILE NAME attribute.
Often an MFT will have more than one $FILE NAME attribute.

Because of how B-Tree nodes split there are sometimes old directory entries
that are no longer used (the second half of the directory entries are rewritten
into a new node). The old data is not cleared. This means that there may be
old file names and timestamps left over from a previous state of the file system.

5 Searching

Figure 5 shows the Search tab. The entire partition is searched for a target
string. The matched sectors are listed at the bottom. Single-clicking on one of
them will show the target in the relevant sector. Double-clicking will take you
to the relevant data structure in the directory tree (if the sector is indexed).

28

Figure 5: The Search Tab

6 Other File Systems

There is insufficient space in this paper to show examples of other file systems.
A brief description must suffice.

Ext file systems are based on I-nodes. Directories are stored in H-Trees
(similar to a B-Tree but based on hashes of file names). I-nodes are distributed
in groups over the device (to minimize R/W head motion). The root directory
is always at I-node #2. Ext2 and Ext3 have the classic UNIX single, double
and triple indirect pointers. Ext4 uses “extents” instead of a list of pointers.
Each extent is a pair of integers giving the starting block and run length.

The HFS (hierarchical file system) is the file system used on MACs. The
directory tree is stored in a “Catalog File”. It is a B+-tree with all folder and
files listed serially at the lowest level. The B+-tree nodes at the lowest level
are also connected in a linked list. Hierarchical relationships between folders
are provided through “Catalog ID Numbers” or CNIDs. Each catalog node
has room for eight extents. If more extents are required these are contained in
the “Extent Overflow File”.

ISO-9660 is a file system for data CDs and DVDs. It is a simple file system
where files are assumed to be contiguous (originally designed for read-only
media). Later on, features were added to allow the file system to be modified
(CDRW, etc), but in reality, the modifications are written on a different place
on the disk and a new directory tree is written that supersedes the old one.
These are called “sessions”. A forensics tool should allow the investigator to

29

see older sessions so all the data on the disk can be examined. Extensions for
non-DOS 8.3 file names were added later. VisFS shows all sessions on the disk.

UDF (Universal Disk Format) is a much more advanced system for data
CDs, DVDs and Blu-Rays. It supports multiple sessions in a novel way. With
each session, a Virtual Allocation Table (VAT) is written which remaps existing
blocks to new blocks when items are modified. Only the last VAT is current,
but in a forensics context, an investigator may want to use the older VATs.
VisFS can detect multiple sessions and allow the investigator to select which
VAT to use.

7 Design Details

No file system libraries are needed to run VisFS. This decision was made so
that it could run on Windows, Mac, and Linux without dependencies. Devices
are opened using Java’s RandomAccessFile class. Windows doesn’t report
non-Windows partitions, so the entire device is opened as a RandomAccessFile
and the VisFS application keeps track of where the partitions start internally.
Unfortunately, raw device access requires admin or root access. Image files do
not require admin access and are a good choice for students in a lab where
they don’t have such privileges.

The JTree object is a collection of TreeNode objects. We used the Default-
MutableTreeNode class where we passed a TreeObject object to its constructor.
The TreeObject class is one that we created to store information that connects
the tree to the hex dump. It contains the text displayed in the tree node as
well as a command string (what to do if the user double-clicks on the node),
integers to determine where highlighting in the hex dump should begin and
end, and a boolean to determine if the node should be collapsed or expanded.

Many file system specification references were consulted. Brian Carrier’s
book[2] is one of the best sources available. Most of the other resources were
web-based (VFAT[4], NTFS[7], Ext[5], HFS[3], ISO-9660[6], UDF[1]. Dozens
of other web-based resources were used but there is not enough space to list
them here.

Note: The Visible File System application can be downloaded from the fol-
lowing URL: http://cislinux2.washburn.edu/ForensicsTools/VisibleFS.
jar

References

[1] Optical Storage Technology Association. Specifications: Universal disk for-
mat (UDF). http://www.osta.org/specs/.

30

[2] Brian Carrier. File System Forensic Analysis. Addison-Wesley, Reading,
Massachusetts, 2005.

[3] Matt Deatherage, Justin Seal, Nathaniel Irons, Jerry Kindall, John C.
Welch, and John Gruber. The HFS primer. http://macjournals.com/

~mwj/mwj_samples/MWJ_20030525.pdf. Retrieved September 27, 2017.

[4] Author unknown. Design of the FAT file system. https://en.wikipedia.
org/wiki/Design_of_the_FAT_file_system. Retrieved September 27,
2017.

[5] Author unknown. Ext4 Disk Layout. https://ext4.wiki.kernel.org/

index.php/Ext4_Disk_Layout. Retrieved September 27, 2017.

[6] Author unknown. ISO 9660. http://macjournals.com/~mwj/mwj_

samples/MWJ_20030525.pdf. Retrieved September 27, 2017.

[7] Author unknown. NTFS. https://en.wikipedia.org/wiki/NTFS. Re-
trieved September 27, 2017.

31

Initial Evaluation of Accessibility and

Design Awareness with 3-D Immersive

Environments ∗

Nicholas Rosasco1, Alex Kaariainen2, Jeffrey Will2
1Department of Computing and Information Sciences
2Department of Electrical and Computer Engineering

Valparaiso University
Valparasio, IN 46383

{nicholas.rosasco,alex.kaariainen,jeff.will}@valpo.edu

Abstract

This paper describes an effort to build and evaluate the effectiveness
of an immersive 3-D visualization system to help increase the aware-
ness that students have when designing software that has a high level
of accessibility for the differently abled. The demonstration utilizes an
immersive virtual reality (VR) environment in which we simulated two
types of colorblindness in a generally familiar environment. We report on
the initial trial of this tool and the results of student surveys designed to
assess impact on student perception and understanding and demonstrate
that the use of virtual environments can give students greater empathy
for individuals with visual impairments.

1 Introduction

In the United States, the Americans with Disabilities Act (ADA) [5] and sub-
sequent legislation defines a statutory requirement for accessible software in
the private sector. Further regulations, including Section 508 [6], bolster these
expectations for software and systems provided by the national government.
Similar legal and regulatory structures exist in multiple jurisdictions, as shown

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

32

through the European Accessibility Act, various Japanese regulations [17], and
laws found everywhere from Europe to the People’s Republic of China, among
many others. Globally, this standard is so general an expectation that an index
for policies covering web-based systems alone is maintained by the W3C [18].

This legal expectation is paralleled by curricular, ethics, and policy guid-
ance provided by and for the computing disciplines. The ACM/IEEE CS2013
[3] curricular framework provided by the combined professional and academic
computing community includes multiple mentions of accessibility concerns.
It is a foundational, core/tier one topic in “Human Computer Interaction”.
Knowledge in this topic is also noted as a tier two area under the Social Con-
text heading. Specifically, CS2013’s expectations on developer assumptions
and accessibility are found in “SP/Social Context”: “Identify developer as-
sumptions and values embedded in hardware and software design, especially as
they pertain to usability for diverse populations including under-represented
populations and the disabled.” Related concepts can also be found in the
sections for “HCI/Foundations” and “HCI/Designing Interactions”:

• Define a user-centered design process that explicitly takes account of the
fact that the user is not like the developer or their acquaintances.

• Discuss why human-centered software development is important.
• For an identified user group, undertake and document an analysis of their

needs.

This doubled imperative – legal and professional - creates a need to effec-
tively impart the significance of these requirements and expectations upon the
students. Unfortunately, it is understood that not all topics listed may be cov-
ered, as detailed in the CS2013 “Principles” discussion as well as the Chapter
4 introduction.

In order to make the most of the time available, it may be possible to
combine these areas with additional learning objectives. Specifically, these can
be linked to the overall importance of design as a way to anticipate and solve
problems. By doing this, the need for accessibility awareness can be articulated
as functional and non-functional requirements. In turn, these requirements can
be discussed as needs that must be met for any software or system a student
may build as a working professional.

By recasting this issue into the context of an expectation, it is possible to
concurrently touch on multiple CS2013 sections that refer to the design process,
particularly with reference to user interfaces, including:

• Explain how user-centered design complements other software process
models,

• Choose appropriate methods to support the development of a specific UI,
and

33

• Use a variety of techniques to evaluate a given UI.

This also provides an opportunity to make this expectation a habitual,
as opposed to an occasional, consideration – and to link it to good design
generally. Similarly, the importance of effective design is emphasized both in
the curricular guidance - and in the commonly accepted guidance for software
engineering practice. While the fines or repercussions of failing to provide
the differently abled will vary by jurisdiction, the use of software engineering
solutions at the design stage is general. Similarly, the convention is that a
mistake made becomes an order of magnitude costlier with each subsequent
round (design, implementation, test, etcetera) in general [2][4].

2 Background, Context, and Motivation

Various studies, including significant recent work from ongoing projects at
Stanford [9][7][15], provide evidence that virtual reality environments can be
used to foster empathy and understanding. Additionally, previous scholarship
in teaching computer science and software engineering provides numerous ex-
amples for the teaching of accessibility issues, and fostering awareness [19].
Much of this instruction is placed in the context of a human-computer inter-
face or other specialized elective course. The work of Shinohara et al illustrates
that this is a general pattern for this topic across the United States [10]. This
could imply that, for institutions without an accessibility specialist, or with the
ability to offer limited electives, this topic is at risk of neglect. The same study
indicates that curricular integration was still a central issue. To help meet this
need to increase the awareness of accessibility issues, it was decided to add a
CAVE system to the collection of examples and tools used for teaching this
topic.

To meet that need, a project at Valparaiso University simulated two types
of colorblindness in a generally familiar environment. We then used a stu-
dent survey to assess the impact on the student’s perception and understand-
ing and demonstrate that the use of virtual environments can give students
greater empathy for individuals with visual impairments. The project sought
to incorporate these objectives into a session that could be incorporated into
required courses. This was considered especially important as the size of Val-
paraiso’s program dictates a smaller breadth of electives than what would be
available at a larger institution or from a larger department. It was felt that
the best possible presentation would put the inclusion of accessibility into a
larger narrative. By linking accessibility to design, and by making designing for
accessibility a preemptive solution that could prevent an expensive retrofit or
required corrective re-release, a narrative showing the power of thinking ahead
can be built.

34

The project described and explained in this paper is intended to see if a
memorable and suitable moment in a classroom can be built to accommodate
those background factors. The expectation is that the use of an atypical tech-
nology can create an understanding and impression that can impact a student’s
thinking about design and accessibility. That experience was be built around
colorblindness.

Colorblindness was chosen as a consideration to address because it is an
issue found in a significant part of the general public [8], occurs in varying
degrees, and is not externally apparent that someone has the physical issue
[11]. For example, the National Eye Institute [8] notes that, “As many as 8
percent of men and 0.5 percent of women with Northern European ancestry
have the common form of red-green color blindness.” Also, in the United States
during 2005, it is estimated that 1 percent or about 1.46 million men suffer
from deuteranopia [14]. For the purposes of classroom use, this makes it likely
that every student may either have or have a close connection to someone with
this condition. Two forms of the condition, protanopia and deuteranopia, were
chosen for demonstration and simulation. They are commonly referred to as
red-green color blindness [8][1].

3 Methodology

Valparaiso University’s Electrical and Computer Engineering Department owns
and operates a commercially available CAVE Virtual Reality System (“Vis-
Cube”) environment developed by Visbox, Inc [16] as shown in Figure 1. This
environment can immerse six to eight people simultaneously and is thus effec-
tive as an educational tool. The four displays are merged to create a seamless
3 D environment that makes use of the entire space, including the floor as well
as the three front facing walls. This creates a similar experience to that of the
more popular head mounted displays (HMDs).

For this project, protanopia and deuteranopia were simulated via a post-
processing effect [13] using a 3D look up table (LUT) in the Unity Engine
[12]. Three unique post-processing profiles were used, two that illustrate col-
orblindness, the third for the ‘unaltered vision mode’ because various visual
improvements were still necessary such as anti-aliasing and ambient occlusion.
Switching between these three configurations, which can be triggered with a re-
mote control, allow at run-time swapping between the post-processing profiles.
Both instructor and students share the same VR experience. This quick-change
capability, combined with a brief discussion meant that 24 students - a stan-
dard section size at Valparaiso University - were able to have an immersive
and educational experience in the space of a 50 minute ‘Carnegie hour’ class
period.

35

Figure 1: VisCube 3D Cave Environment

To test the impact of this exercise, Institutional Review Board approval
was sought to use a pre- and post- exercise survey on current students as test
subjects. For this initial study, students in the ‘Seminar in Professional Prac-
tices’ course were the participants. This course covers topics such as ethics,
computing’s impact on society, and other questions related to professional and
academic practices. It is traditionally taken by upperclassmen, many of whom
have had REU or internship experiences and most of whom have spent signifi-
cant time developing software. Some students had participated in some initial
rollout exercises of this same configuration, so had seen an earlier pilot edition
of the overall sequence and presentation. For this initial trial, 14 students,
approximately three quarters of a graduating class for Valparaiso University’s
Computer Science program, participated. For the first trial of the system and
lesson, a set of pre-survey questions was given to the participants. As the de-
velopment of this suite involved some exposure to the tools prior to the first
structured, intentional test, a question about for prior experience was included.
After that check and a request for explanation, the following questions were
posed:

• Have you experienced simulated or actual colorblindness previously?
(The remaining questions include Likert-scaled responses.)

• Your awareness of the need to consider colorblindness when designing
software and systems.*
1/Not at all aware, 2/Slightly aware, 3/Somewhat aware, 4/Moderately aware,
5/Extremely aware

• Your awareness of the need to design software and systems for the differently
abled, in general (not just for colorblindness).*
1/Not at all aware, 2/Slightly aware, 3/Somewhat aware, 4/Moderately aware,
5/Extremely aware

• Do you regularly consider the needs of the differently abled when coding or

36

building applications?
1/Never, 2/Rarely, 3/Sometimes, 4/Often, 5/Always
(Questions marked with an asterisk at the end were posed before and after the
exercise.)

Once a group of students had completed the pre-survey, we asked them
to accompany the instructor and enter the VisCube to immediately begin the
demonstration. The demonstration begins in a rendering of a gymnasium.
Various attributes were intended to create emphasis of color. For example,
a basketball and a soccer ball were placed on the gymnasium floor as their
colors are something that is familiar to most students. The first switch from
‘unaltered’ mode to each of the colorblindness modes was done in that space
and used to start a conversation about perception. During the demonstration,
the instructor leads a “walking and talking” discussion. The instructor then
leads the group into several spaces configured for various STEM disciplines
which are used to illustrate some challenges colorblind students may face in
the classroom. For example, while in the chemistry classroom the instructor
makes a point of the periodic table poster which relies heavily on color to convey
various information. Then, several discussion questions – with the system set
for the less and then the more challenging degree of colorblindness – are posed
to move the discussion to a close. The final set of questions reframes the issues
the students had have reading a specific item, the periodic table, as a factor
in a high stress/high stakes situation like a test. The discussion is concluded
as the group returns to the starting point, leaving the demonstration ready for
the next group.

Students were then asked several questions as a post-survey and again asked
to respond on a Likert scale:

• Your awareness of the need to consider colorblindness when designing
software and systems?
1/Not at all aware, 2/Slightly aware, 3/Somewhat aware, 4/Moderately aware,
5/Extremely aware

• Your awareness of the need to design software and systems for the differently
abled, in general (not just for colorblindness).*
1/Not at all aware, 2/Slightly aware, 3/Somewhat aware,4/Moderately aware,
5/Extremely aware

• Will you regularly consider the needs of the differently abled when coding or
building applications?
1/Never, 2/Rarely, 3/Sometimes, 4/Often, 5/Always

• Did the immersive experience in the VisCube visualization system increase your
knowledge of the need to build software with this issue in mind?
1/No impact on me, 2/Minor impact on me, 3/Neutral, 4/Moderate impact on
me, 5/Major impact on me

• Do you think you’ll remember this experience longer term?

37

1/Never-No, 2/Probably not, 3/Occasionally-Sometimes, 4/Lots-Usually,
5/Always-almost always

They are also given two additional comments that allow for more general
comments and feedback:

• Any other comments or observations, generally?
• Any thoughts/observations on the demo, specifically?

4 Results

Our initial trial included 14 student participants. While this is a somewhat
small number, it approximates a graduating class from the Computer Science
programs at Valparaiso University. Our sample population included some stu-
dents with prior direct or indirect exposure to this demonstration for various
reasons. To simplify conduct of the experiment, and to have a more reasonable
sample size, these students were both identified and left in the aggregate data
below. Additionally, a prerequisite course currently incorporates some mention
of this in a lecture or two. Even allowing for this prior awareness, the results
show a general strengthening of student awareness.

In Figure 2 the students were polled before and after experiencing the col-
orblindness demonstration. After the demonstration the students were asked
to rate on a scale of one to five the following questions: Their awareness of the
need to consider colorblindness when designing software and similar systems.
Their awareness of the need to consider the differently-abled in general. Their
awareness of the need to consider the differently-abled when writing code and
developing applications. After the demonstration they were also asked two
additional questions regarding the experience, touching on the on their knowl-
edge and awareness. A query on longer term impact (“do you think you’ll
remember”) was also posed (see Table 1).

Table 1: Average Scores – Immersion and Recollection
Question Average Score

Did the immersive experience in the VisCube visualization
system increase your knowledge of the need to build soft-
ware with this issue in mind?

3.79

Do you think you’ll remember this experience long term? 4.00

For the first question, which asked them about their awareness of the need
to consider colorblindness when designing software and similar systems, there
was a 21% increase in awareness post demonstration. The second question,

38

Figure 2: The three categories are the polled class’s self-recorded awareness
for the need to consider a topic. Categories 1’s topic was ‘colorblindness when
designing software’. Categories 2’s topic was ‘Differently-abled in General’.
Categories 3’s topic was ‘Differently-abled when building software applications’

which asked them about their awareness of the need to consider the differently-
abled in general, had a 13% increase in awareness post demonstration. The
third question asked them about their awareness of the need to consider the
differently-abled when creating applications, also had a 13% increase, which
may also reflect the similarity of the queries. The last two questions both had
most of the participants reported that the VisCube colorblindness demonstra-
tion did increase their knowledge of the needs to build software systems with
colorblindness needs in mind.

5 Conclusions and Future Work

The initial survey results indicate an overall improvement with awareness. This
initial trial data indicates that a compelling environment was created. A longer
term follow up, if only to test the duration of impact, is planned as part
of the ongoing use of this classroom exercise as a part of the departmental
long term assessment program. Further deployment of the exercise to other
courses is also planned, including both the capstone project course and the
initial sophomore course with a design focus. The classroom-friendly length

39

of the demonstration makes this particularly easy to implement this, but will
generate a need for additional scenarios and environments. It is expected that
this eventual ensemble of tools will broaden and deepen the impression the
experience makes on students.

From a graphics and technical standpoint there are improvements that can
be made, including increases to the overall the visual fidelity. The implemen-
tation of other forms of colorblindness, particularly tritanopia, is also planned
for the near term. Context and supporting materials, including video from
those with colorblindness and other ability issues, are also being investigated
for use outside the classroom and to enable more reflection on this topic.

The Valparaiso Department of Psychology has also expressed in both the
initial demonstration and in crafting similar tools to support their courses.
Further interdisciplinary efforts are under consideration in partnership with
the programs in the University’s College of Nursing and Health Professions. It
is expected that these efforts will also include trials with HMD display systems
for greater portability and to test implementations with lower overhead costs
and facilities requirements.

References

[1] Colour Blind Awareness Project. Types of color blindness.
http://www.colourblindawareness.org/colour-blindness/types-

of-colour-blindness/.

[2] Præcipio Consulting. Paying for mistakes: The cost to fix a software
defect and how to avoid it. https://praecipio.com/pc/display/ae/
2014/10/09/Paying+for+Mistakes%3A+The+Cost+to+Fix+a+

Software+Defect+and+How+to+Avoid+It.

[3] ACM Computing Curricula Task Force (Ed.). Computer science
curricula 2013: Curriculum guidelines for undergraduate degree
programs in computer science.

[4] Peter Freeman. Essential elements of software engineering education
revisited.

[5] US Government. Americans with disabilities act 1990.
https://www.ada.gov/pubs/adastatute08.htm.

[6] US Government. Section 508 homepage.
https://www.section508.gov/.

40

[7] Fernanda Herrera, Jeremy Bailenson, Erika Weisz, Elise Ogle, and Jamil
Zaki. Building long-term empathy: A large-scale comparison of
traditional and virtual reality perspective-taking.

[8] National Eye Institute/National Institutes of Health. Facts about
colorblindness.
https://nei.nih.gov/health/color_blindness/facts_about.

[9] Stanford University Press Office. Virtual reality can help make people
more compassionate compared to other media. https:
//www.eurekalert.org/pub_releases/2018-10/su-vrc101518.php.

[10] Kristen Shinohara, Saba Kawas, Andrew J Ko, and Richard E Ladner.
Who teaches accessibility? In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education - SIGCSE ’18.

[11] Craig Stephenson. The physics of color vision and color blindness.
http://ffden-2.phys.uaf.edu/212_spring2005.web.dir/Craig_

Stephenson/colorblindness.html.

[12] Unity3D. Unity documentation 2018.2 - LUTs.
https://docs.unity3d.com/Manual/PostProcessing-UserLut.html.

[13] Unity3D. Unity documentation 2018.2 - post-processing stack.
https://docs.unity3d.com/Manual/PostProcessing-Stack.html.

[14] US Census. Age and sex distribution in 2005. https:
//www.census.gov/population/pop-profile/dynamic/AgeSex.pdf.

[15] Austin van Loon, Jeremy Bailenson, Joshua Bostick Jamil Zaki, and
Robb Willer. Virtual reality perspective-taking increases cognitive
empathy for specific others.

[16] Visbox Inc. VisCube product description.
http://www.visbox.com/products/.

[17] W3C. Japan - web accessibility initiative.
https://www.w3.org/WAI/Policy/policy/japan/.

[18] W3C. Web accessibility laws policies.
https://www.w3.org/WAI/Policy.

[19] Brian Wentz, Paul T Jaeger, and Jonathan Lazar. Retrofitting
accessibility: The legal inequality of after-the-fact online access for
persons with disabilities in the united states.

41

Getting Ahead with a Hat:

Reengineering a Computer

Organization Course∗

Michael P. Rogers, Charles Hoot
Computer Science and Information Systems

Northwest Missouri State University
Maryville, MO 64468

mprogers@mac.com, hoot@nwmissouri.edu

Abstract

This paper describes efforts to reengineer and revitalize a computer
organization course to make it more relevant and more appealing to our
students.

1 Introduction

For many years our university has offered a single, sophomore-level course
in computer organization that covered an ambitious amount of material, from
history of computing to building a simple CPU, with a large dollop of assembly
language programming in between. The course was highly challenging and
perceived by our students as being largely irrelevant.

Part of the problem arose because the course was originally two: one in
computer organization, and one in computer architecture. When they were
condensed into one course, the designers were reluctant to compromise coverage
of important topics. However, as the field of computer science has continued
to evolve, so have the ACM curricular guidelines to which we pay heed. It was
recognized that significant changes had to be made.

This paper describes those changes, beginning with an overview of the old
course, goals of the redesign, the technology choices that we made when re-
vamping the course, and student perceptions of the result.

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

42

2 Overview of the Old Course

The original course, inherited by the authors, covered a wide swathe of topics,
loosely adopted from the classic text by Patterson and Hennessy[5]: a history
of computing; data representation; benchmarking; a considerable amount of
MIPS assembly language programming up to recursive functions; digital logic
design; building a basic ALU; the fetch-execute cycle; a MIPS data path; and
memory.

The course was problematic for three reasons.
First, it was simply too ambitious for a one semester, 3 hour course, and

was in need of judicious editing. It spent too much time covering topics that
the ACM curricular guidelines now deem of lesser importance (e.g., digital logic
design).

Secondly, the choice of assembly language, while it should be irrelevant,
does affect the tone of the class. Teaching MIPS assembly on the MARS
simulator simply did not resonate with our students. In spite of instructor
protestations to the contrary, students felt that the course was entirely divorced
from anything that they were likely to see in practice, and therefore irrelevant.
From an instructional standpoint, finding useful instructional material, and
resolving issues with MIPS was challenging, with searches leading to pages
that were often a decade old.

Finally, the course represented missed opportunities: we had a number of
gaps in our curriculum, critical topics that were either very lightly covered,
or simply left to electives that some students would never take. These topics
included C programming, as well as UNIX/Linux command-line tools and sys-
tem administration. C, so close to the hardware that it has been described as a
”machine independent assembly language”[2], is consistently the second most
popular language on the Tiobe Index[6], and a good fit for a computer orga-
nization course. Knowledge of the UNIX/Linux toolkit is essential in so many
areas — even Microsoft now officially supports GNU/Linux on Windows[1]. To
omit it seemed to border on curricular malpractice and it became an essential
part of our re-engineering strategy.

3 Goals of the Reengineering

The main goal of the redesign was to encourage a hands on exploration of
the material through the judicious use of hardware, i.e., we wanted students
to have a chance to play with hardware. A secondary goal was to give our
students more exposure to command-line level tasks, and give them a peek
at what goes on behind the scenes of an IDE. To accomplish these goals,
the course now uses Raspberry Pi’s as the basic platform. This gives the

43

students a chance to write and run real assembly language programs on a real
machine, and use a debugger to view the contents of actual memory directly.
The addition of a custom designed hat makes assembly language programming
a more visceral and tactile experience. While not complicated, the hat has
both input and output that serves as an introduction to the wider world of
embedded programming.

3.1 The New Course

The course starts with general computer architecture, but quickly adds in the
Raspberry Pi to reinforce theory with practical experience in ARM assembly.
Midway through the course the hat is added to the mix to increase the wow
factor and facilitate discussion of I/O beyond the keyboard and screen. In the
final portion of the course, C is introduced to illustrate connections between
higher level languages and assembly.

3.2 Course Topics and Coverage

The following is a detailed description of the new syllabus, with major topics
bolded for easy reference.

1. Base arithmetic and the representation of integer data types.
This is essential information that they can readily master and serves as
a gentle introduction to the course.

2. A general overview of a computer architecture. The fetch-execute
cycle is discussed using a simplified model of a cpu and assembly lan-
guage.

3. Welcome to the Raspberry Pi. Students receive their Raspberry
Pis and learn valuable skills that are not emphasized elsewhere in the
curriculum. They start with the basics, installing the Raspian OS on an
SD card, and learning how to connect to the Pi using either ssh or VNC.
For many students, this is the first time that they have had a chance to
work at the command line level in a UNIX environment. The students
work with the nano text editor, giving them an opportunity to practice
the basic file system Linux commands that they learn in this section.

4. ARM assembly and more architecture. Students are introduced to
general architecture concepts such as memory, registers, assembly and
machine code, using ARM as a concrete example. Fundamental assem-
bly language operations, including data movement, branching, and basic
math, are covered. Simple programs are created, assembled into machine

44

code and then run, using gcc throughout. This affords an opportunity to
discuss the differences between machine code, assembly, and higher level
languages.

5. Debugging programs. The gdb debugger is introduced so that stu-
dents can debug their assembly language programs. The debugger is
used throughout the remainder of course as a tool to explain and explore
the structure of programs and data. This is a big advantage over the
prior version of the course. Now students get to see real structure on a
real device as opposed to just a simulator (MIPS and MARS).

6. Pointers.Students are introduced to pointers, implemented in ARM as-
sembly using register indirect addressing mode. Since our students have
typically used Java and Python prior to this course, pointers are a ma-
jor step. The differences between Java references and assembly language
pointers are explored, and we prepare for pointers in C later in the course.
Strings are introduced as well.

7. Memory hierarchy. Caching and the memory hierarchy are discussed
along with their effects on program performance. As the course is cur-
rently configured, the discussion of performance is theoretical only with
no concrete examples.

8. RISC vs. CISC. A theoretical discussion of the differences and relative
performance of the two architectures is presented. ARM is used as an
illustration of RISC. This leads to a low level discussion of the structure
of machine code instructions.

9. Branching. Conditions at the assembly language level are introduced
and contrasted with the abstractions of a higher level language. The con-
nection between assembly and higher level languages is further strength-
ened by showing how a general if-then-else construct translates into as-
sembly language.

10. Low level input/output: The General Purpose Input/Output (GPIO)
pins on the Raspberry Pi are briefly described. We give the students a
small taste of electronics, but recognize that we are not teaching computer
engineering. The goal is to give them enough information so that they
can understand conceptually what is happening with the components on
the Pi hat when they call functions in the Wiring Pi library. To start,
students will control the three LEDs and then later work with the buzzer
and switch. Polling is discussed in this unit.

45

11. Looping. Looping in assembly is addressed and contrasted with a gen-
eral while loop in a higher level language. Now they can make the LEDs
blink!

12. Character I/O. While students have already been exposed to the printf()
function for doing character-based output, a more substantial exploration
is undertaken.

13. Functions: To this point, students have been calling pre-existing func-
tions with a limited number of parameters. The full story of calling
conventions and using the stack to pass parameters and return values is
presented as students write their own functions.

14. Arrays: Students get a more detailed view of how an array of data is
stored in memory. Accessing arrays using a base and offset motivates the
use of the more advanced addressing modes provided by ARM.

15. Memory use: The typical partition of memory into code, data, stack
and heap areas is presented and the difference between global and local
variables is highlighted.

16. Pipelining: This is primarily a theoretical discussion, though ARM is
used as an example. Assembly code reorganization to avoid hazards and
stalls is shown along with the information that modern compilers will
attempt to optimize their code to keep pipelines full.

17. Floating point. The IEEE 754 standard for floating point is shown.
Normalization and the special NaN codes are discussed. Finally, the
details of how floating point values are stored in registers/memory and
the assembly language operations available on ARM are shown.

18. An introduction to C. Even though C is a high level language it is
closer to assembly than many other languages and is relatively simple.
About 4 weeks are taken to present the core of the C language. Using
gdb, the students can tie the C code back to the assembly and see how
much the higher level language is abstracting away. We also go out on a
high note since working with C is easier than working in assembly.

4 Building a Hat

In this section we outline the steps required to design, build and deploy a hat,
and tips on how to integrate it into the curriculum.

Our first step was to ask ourselves whether, in fact, we needed to build a hat.
Could we just choose from several already on the market, or take another tack

46

and have students construct circuits on a breadboard? We opted for a custom
build for several reasons. We were on a budget, and could fabricate a hat with
just the components we needed for less than commercially available products.
As a side benefit, it provided the opportunity to familiarize ourselves, as well as
a small group of student assistants, with the hardware development lifecycle,
and hone skills that are useful in another class that we offer, the Internet of
Things (IoT).

In contrast, letting the students prototype on a breadboard would detract
from the main goals of the course, consume too much class time, and add un-
certainty when trying to debug code. Furthermore, in our IoT course, students
do prototyping for much of the semester, so students interested in working with
hardware directly already have an option.

Instructors acquainted with Arduino microcontrollers will feel right at home
with the Raspberry Pi. The most recent models, based on the Broadcom’s
BCM 2837 system-on-a-chip, expose 26 GPIO pins that can be programmed
using the WiringPi[3] library. The operation — set the pin mode and then
write or read values — is the same, and the WiringPi library uses familiar
method names (See Table 1). While WiringPi is sizable, these 6 methods are
all that are required to create a wide range of intriguing assignments.

Table 1: WiringPi Library Methods
Method Description

void wiringPiSetupGpio(); Initializes the WiringPi library

void pinMode(int pin, int mode);
Establishes whether a pin will be used for
input, digital output, or PWM (Pulse
Width Modulation) output.

void digitalWrite(int pin, int value);
Turns the pin on (value = HIGH) or off
(value = LOW). We can use this to turn
LEDs on and off.

void pwmWrite(int pin, int value);

Sets the duty cycle of a pin configured for
PWM (value ranges from 0 (0%) to 1024
(100%). We can use this to control LED
brightness.

int digitalRead(int pin);
Reads the voltage presented to a pin and
returns either LOW or HIGH. We use this
to determine if a button is pressed.

int softToneWrite(int pin, int freq);
Causes a pin to emit a square wave of a
given frequency. By connecting this to a
buzzer we can play music.

Version 1.0 of our hat design uses 3 LEDs, a switch and a piezoelec-
tric buzzer: we wanted to start small, and learn from our inevitable mis-

47

takes. The basic electronics are quite straightforward [2, 4]. Basically, when
digitalWrite(pin,HIGH); is executed, a voltage is applied to the pin; it flows
through an LED back to ground (another pin), completing the circuit so that
the LED glows. The softToneWrite() function behaves similarly with re-
spect to the buzzer, except the voltage fluctuates, generating a tone. In the
case of the switch, when it is open a voltage is applied to the connected pin,
so digitalRead() returns HIGH; when it is closed, the voltage drops to 0, and
digitalRead() returns LOW.

We began with a rudimentary prototype, connecting a 40-pin ribbon cable
to our Raspberry Pi, and jumper wires from the cable to our prototype board
(see Figure 1).

Figure 1: The Hat Prototype

Once we were sure our circuit functioned, we transformed our schematic
into a printed circuit board using DipTrace, a CAD program that is popular
among hobbyists (see Figure 2).

The boards were produced by OshPark. They offered prototypes at $5
per square inch for 3 boards, and shipped within 12 calendar days. The cost
of a medium run was $1 per square inch with a 100 square inch minimum
shipping within 15 calendar days. Frugality was an important consideration
throughout the design process. The total cost of both Raspberry Pi and hat
came to $63.13, per student which is quite affordable. To reduce the instructor’s
responsibilities, the distribution of the hardware was delegated to the library:
students would check out the equipment for the semester. This had the added
benefit of a standardized method for charging students if they did not return
the Pi, or returned it in a damaged state.

48

Figure 2: Hat Printed Circuit Board

5 Student Feedback

We did do a pre- and post-course survey to evaluate general knowledge of
course topics (Table 2). The results are decidedly mixed, and not as high as we
would like, but understandable considering when the survey was administered
– towards the end of the semester but before students had begun to review
material for the final exam. We anticipate that these numbers will improve
considerably when we teach the course for a second time.

Since the vast majority of students were taking this course for the first time,
a formal survey, comparing their current experience to that using MIPS and
MARS, was not practical. But, based on post-course comments and student
interviews, students were generally pleased with the reworking of the course.
While students felt that the course was challenging, they also thought it was
interesting and enjoyed working with the Raspberry Pi and the hat. They also
said that it prepared them well for later courses. Anecdotal evidence from
one student who was repeating the course (with the same instructor) indicated
that they definitely preferred the redo to the original, and that it made more
connections between computer organization and the rest of the curriculum.

6 Conclusions

Reengineering the course has definitely made it more relevant and engaging.
By incorporating affordable hardware that only requires a small number of

49

Table 2: Pre- and Post-Course Survey Results

Question
% Correct,
Pre Course

% Correct,
Post Course

How many values can a bit hold? 36.7 55.3
How many bits can a byte hold? 73.3 75.7
How many values can a byte hold? 40.7 75.7
What register contains the address
of the instruction about to execute?

13.3 73.0

Where should you store a data value
that is going to be used often in a
program?

43.3 70.3

Which of the following architectures
has simple instructions?

27.1 77.8

Purpose of pipelining 23.7 62.2
The code that runs on a CPU is 56.7 73.0
When you cannot find a data value
in cache, what is that called?

35.6 64.9

Given int r [] = {10, 20, 30, 40};
what is *(r+2)?

45.0 63.9

The program that translates
assembly into machine code

31.7 62.2

library functions, students are better motivated and able to grasp lower level
architectural details. This allows weaving in abstract topics while providing
opportunities to write tangibly interactive assembly language programs. It also
facilitates the transition from assembly to the higher level language C where
they can appreciate the economy of code that abstraction allows. As a side
benefit, the course fits better in our curriculum. The combination of hardware,
assembly and C leads naturally into our IoT and OS courses.

References

[1] Microsoft Corp. Learn about the windows subsystem for linux — mi-
crosoft docs. https://docs.microsoft.com/en-us/windows/wsl/about.
Retrieved on October, 20 2018.

[2] Harry Fairhead. Raspberry Pi IoT in C. IO Press, 2016.

[3] Gordon Henderson. Wiring pi. https://wiringPi.com. Retrieved on Oc-
tober, 20 2018.

50

[4] Simon Monk. Raspberry Pi Cookbook: Software and Hardware Problems
and Solutions. OREILLY, 3rd edition, 2019.

[5] Patterson and Hennessey. Computer Organization and Design. Elsevier,
5th edition, 2014.

[6] tiobe.com. Knuth: Computers and typesetting. https://tiobe.com/

tiobe-index/. Retrieved on October, 20 2018.

51

When the Play Is “The Thing” and Not

the Software: Student Experiences

Engineering Software for a Theatre

Production ∗

Brian Kokensparger
Journalism, Media and Computing Department

Creighton University
Omaha, NE 68178

402 280-2878
bkoken@creighton.edu

Abstract

In Fall 2018, a software engineering class collaborated with Creighton
University’s theatre program to produce software extending the produc-
tion of a new play that was partly set in the “twittersphere”. Employ-
ing an Extreme Programming approach, the students discovered that
the theatrical staging process had a lot to say about the software engi-
neering process, especially in the employment of “soft skills” surround-
ing requirements elicitation and user interface development. This paper
presents themes drawn from students’ reflections as well as those from
the course instructor, all of whom call for a more structured planning
process and special attention to change and time management during the
development period. The instructor also reflects on the question, “How
is developing software for an actual theatre production a good learning
experience for software engineering students?”

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

52

1 Introduction

A software engineering course has as one of its chief outcomes that students
gain experience with software evolution, including change management, esti-
mating the impact of changes, and the task of refactoring [1]. Therefore, course
instructors often look for “real world” opportunities for students, where they
work on projects that are likely to evolve both intrinsically and extrinsically,
and yet are also too embedded in the real world to fail.

In addition to these real-world requirements, this also involves working with
“real world” students, who have a number of other courses to manage at the
same time, a social life, trips home, and other things that workers in industry
do not usually encounter. And instead of offering a paycheck and continued
employment as carrots, the instructor only has the end of semester grade (and
perhaps aspirations of a career in the field) to use as a measuring stick and
motivator.

The literature provides some support for using software to support theatre
productions in higher education [2, 4, 3]. In the course instructor’s former ex-
perience doing college-level theatre, he discovered that it has a specific purpose
– the goal of training actors and crew members – and often disregards com-
mercial appeal to educate the audience and actors alike. This results in the
theater producing plays that may not be performed regularly by local profes-
sional and community theaters. In this educational context, there is a certain
amount of latitude given to the performers and stagers of the play, and in turn
the audience does not expect high-budget commercial production values.

Apply this to projects in a college software engineering course (versus soft-
ware engineering in industry): The college developers are free to try new things,
to have the little approximations and micro-failures that one expects from stu-
dent work, and to produce a best effort deliverable based on limited resources
(in terms of time, budget, available equipment, and support).

Yet, in theatre, when the curtain opens, the show must be ready to go on.
There are no exceptions to this reality. Theatre is theatre, and no matter where
or how it is done, when opening day arrives, the curtain opens, and human
beings must be ready to perform. If they are not prepared for this reality,
then it may be a painful experience for everyone involved. But the curtain still
opens.

It is the resolution of these two opposites that challenged the SE course
instructor to work in a context where micro-failures are accepted and even
expected, yet also to work in a context where a curtain literally “opens” on
the project, requiring the students to deal with that reality.

Within this context, this project considered the question: “How is devel-
oping software for an actual theatre production a good learning experience for
software engineering students?”

53

2 Context of The Project

2.1 The Script and the Production

Creighton University’s theatre program chose a new script written by an alumna
as a world premiere of the play. The script was billed as partially taking place
in the “twittersphere,” and incorporated human actors both as onstage charac-
ters and their avatars. In the premiere production, the director decided to stage
the onstage characters and avatars as different actors and direct the avatars to
hang in their own space on the edges of the stage, while the human characters
used the space in center stage to interact with each other, as well as with the
props and set features.

As the script had a technical theme, it was a perfect first project for the in-
structor to develop a partnership with the play’s director, and to work out the
ways and means of mounting both a production of the play and development
of associated software. The playwright was in residence for the last month of
rehearsals and for performances, which allowed actors and the software engi-
neering students direct access to her for questions and other support.

2.2 Overview of Extreme Programming

Though Extreme Programming (XP) is difficult to define, it began in 1996
as a variation within the agile approach and emphasizes a customer-centric
approach to software development that responds quickly and effectively to
changes and emphasizes teamwork, respect, and courage in the development
cycle [5].

As XP utilizes User Stories to elicit requirements, this focus on the user
experience and expected interactions with the software requirements in more of
a narrative format seemed a perfect approach for working with a play director,
who is immersed in story and extended sequential interactions.

Of additional significance in terms of the XP approach to the project was
the dialogical dynamics of the process. These dynamics are presented below.

2.3 The Software Engineering Project

To meet the student learning outcomes identified above, the software engineer-
ing project associated with the theatre production involved the development
and delivery of software applications that the cast, crew, director, playwright,
and audience could use before and after the performances to interact with one
another, and to engage the production in a deeper way. The forms that these
applications took were determined through the XP practice of articulating User
Stories (a customer task), estimating the required resources to actualize the

54

User Stories in software (a developer task), prioritizing the User Stories (a
customer task), developing the software applications by priority (a developer
task), user testing the software to provide feedback (a customer task), and
doing final debugging and revision to produce a deliverable (a developer task),
on or before the articulated deadline (set by the customer).

3 Project Methodology

It was determined by the customer (the play’s director), that the software de-
velopment would be focused on enhancing the audience’s engagement with the
play through online applications that could be accessed before and after perfor-
mances. No software would be developed for use during the actual performance
itself. This allowed for the play to be offered in a traditional format, without
the potential obtrusion of technology. In XP, this is solely a customer decision;
the developers had no vote on the matter but agreed with the decision.

The entire software engineering class (the developers) met directly with the
director (the customer), prompting her to articulate User Stories and asking
pertinent follow-up questions to make sure they understood the details.

After the meeting, the students wrote a short collaborative document ar-
ticulating in as much detail as possible what they heard from the User Stories
session. After discussion, this collaborative document was revised until it re-
flected the consensus of the students who attended the meeting.

Once the User Stories were documented, the students met to estimate the
time and required resources (target device, platform, development language,
etc.) for each of the User Stories. The instructor then took these estimates
back to the director, who prioritized them. Afterwards, he documented these
priorities and presented them to the students. Due to limitations in space,
the stories and elicited functional and nonfunctional requirements could not be
provided in this paper.

The students were then assigned to two groups: one group developing ap-
plications facilitating the interactions between the actors (as themselves) and
the audience members, and another group developing applications facilitating
the interactions between the characters and the audience members.

After the groups were assigned and given their prioritized User Stories, they
were directed to meet and distribute individual tasks using a Pairs Program-
ming paradigm, which is an important feature of XP. Development iteration
planning meetings were held during class sessions, with both groups meeting in
separate corners of the classroom, employing the XP practice of All Engineers
in One Room.

Near the end of the project period (ten days before opening night for the
production), both groups merged into one group to work on those areas where

55

the software applications needed to interact (for implementation of a shared
password, development of a landing page to allow access to all of the software
applications, and adjusting the look and feel of the applications to a single
design standard).

After user acceptance testing (where the instructor stood in for the di-
rector, who was understandably too busy with technical rehearsals and last
minute details to test the applications herself), the URL for the landing page
and password were released to the theater box office for distribution, thus sig-
naling the software release for free access by audience members, cast, crew, the
director, and the playwright.

4 Student and Instructor Experiences

4.1 Student Experiences

Immediately after the project was completed and released for public access,
a survey was administered, as a self-evaluation of each student’s work on the
project, as well as a reflection over what they learned, what they discovered
they are “good at” (strengths), and what they discovered they need to learn
more about (challenges). There were 12 students enrolled in the course, and
all 12 students returned the surveys. These surveys consisted of open-ended
questions, designed to elicit themes under qualitative analysis.

4.2 Student Survey Results

In the initial survey results, there were great variations among the individual
responses. Some students, for example, cited design skills as a strength, while
others cited design skills as a need for further learning. These specific skill-
level responses were likely related to the nature of the project itself. Since this
project required significant backend development, that reality likely inspired
those varied responses. Therefore, the skills responses to the survey basically
canceled each other out, and were not helpful in addressing the research ques-
tion.

The software engineering instructor was more interested in the soft skills
– teamwork, planning, project design (versus UI design), leadership, and time
management. Using qualitative analysis techniques, some themes were gener-
ated from the student responses, and are provided in Table 1.

These themes suggested a difference between doing a software engineering
project within a controlled environment (where the customers and most other
stakeholders are technically knowledgeable), and in an open and uncontrolled
environment of technical laypersons, such as a theatre production. Notably:

56

Table 1: Soft-skill Themes from the Survey of Software Engineering Students
Regarding Their Project Experiences

Things I Learned Strengths Challenges

Dealing with change
and expectations

Debugging code when
under pressure.

Time management

Importance of having
a project manager

Discovered I am a good
writer!

Communicating with
non-CS people.

Importance of team-
work

Planning and collaboration
in the planning process

A good version
control tool

The “Things I Learned” themes revolved around the student learning out-
comes for the course, which centered upon change management, project man-
agement, and group work. From the survey, and the software that the students
produced, it was clear that students were becoming proficient in these specific
learning outcome areas.

The “Strengths” and “Weaknesses” themes reinforced the learning out-
comes, including working under time constraints, the importance of written
and oral communication with non-technical users, working with others, and
version control. These strengths and weaknesses were particularly enhanced
by the domain of working with a theatre production. The pressures of time
management were exacerbated by the project: When opening night arrived, it
arrived. When the show opened, the software had to be up and accessible, and
it had to work. This was the ultimate reality. Several times, when working
in class, students commented about how stressful the experience was. It is
a future research topic to determine if the stress was “good stress” or “bad
stress,” but the reality was that having opening day loom large before the
class tempered their resolve in getting the software completed and functional
for non-technical users.

4.3 Instructor Experiences

Although it is an instructor’s job to be proactive – to anticipate stumbling
blocks for students and to try to eliminate them – for this project, the in-
structor resolved to let the students experience a real project in the real world:
Complete with its micro-successes and micro-failures. They were free to make
their own choices and live with them. This is the most unique benefit of work-
ing with a theatre production. As the play director cannot get up on stage and
do the acting for the cast on opening night, the instructor could not make the
choices and write the code and test it for the students. It was their “show,”
and all he could do was try to prepare them and counsel them towards making

57

good choices that led to success.
Mistakes were inevitable, and a couple occurred with this project as well:

• They missed the stated one week before opening deadline for release, and
the applications ended up being released six days later – the day before
opening night.

• The original goal and design was to introduce the audience members to
all of the characters in the play but withhold one character (who would
have been a “spoiler” if included in pre-performance accesses) until after
the user viewed the performance. The instructor was surprised to hear
one of the students say “just got an email from the director, and we don’t
have to worry about locking and unlocking the spoiler.” This was a sig-
nificant change from the User Story, that had specified that the spoiler
character would “unlock” only after the users viewed the performance.
Important changes like this one should have been submitted to the dia-
logical processes set out in the XP approach to software engineering.

In an educational setting, the presence of these micro-failures gave the class
an opportunity for discussion and learning. Just as an actor on stage will flub
a line, or occasionally miss an entrance, software engineering students will also
make mistakes. Better they make them in the classroom and within the safe
confines of an educational community than out in industry, where the stakes
are higher.

Does a software engineer in the corporate world lose her job over missing a
deadline? It’s been known to happen. In a college software engineering class, a
student might get a C on the project instead of an A or a B. The consequence
for this micro-failure is not nearly as high stakes for students (but it still hurts).

5 Conclusion

As the research question for this project consisted of “How is developing soft-
ware for an actual theatre production a good learning experience for software
engineering students?” the results of this qualitative study are that having
software engineering students collaborate with actors and directors in theatre
productions provides real-life production experiences with immovable dead-
lines, but also introduces soft skill challenges that are not typically encoun-
tered in industry, such as working with non-technical customers, motivating
customers who have other goals besides software production, and dealing with
significant changes to project requirements and deliverables right up to release
date. This provides software engineering students with learning opportunities
that are difficult to get in typical classroom projects, and other areas where the
software is “the thing” in which everyone is focused. When the play itself is

58

“the thing,” the software becomes “that other thing,” and this difference pro-
vides an excellent learning opportunity for students to develop their soft skills
(along with the micro-failures that come with it), intensified by the context of
“too embedded in the world of real people” to fail.

References

[1] ACM IEEE-CS Joint Task Force. Computer science curricula 2013: Final
report. http://ai.stanford.edu/users/sahami/CS2013/final-
draft/CS2013-final-report.pdf/. 2013. Retrieved November 24, 2017.

[2] Stephan Krusche, Dora Dzvonyar, Han Xu, and Bernd Bruegge. Software
theater - teaching demo-oriented prototyping. ACM Transactions on
Computing Education (TOCE) - Special Issue on Capstone Projects,
18(2), July 2018.

[3] Michael Skirpan, Jacqueline Cameron, and Tom Yeh. More than a show:
Using personalized immersive theater to educate and engage the public in
technology ethics. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, CHI ’18, New York, NY, USA, 2018.
ACM.

[4] Michael Skirpan, Jacqueline Cameron, and Tom Yeh. Quantified self: An
interdisciplinary immersive theater project supporting a collaborative
learning environment for cs ethics. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, SIGCSE ’18, pages
946–951, New York, NY, USA, 2018. ACM.

[5] Don Wells. Extreme Programming: A gentle introduction.
http://www.extremeprogramming.org/. Retrieved November 13, 2018.

59

Teaching AP-CSP In A College Setting

Using An AP-CSP Endorsed

Curriculum: An Experience Report∗

Tim DeClue
Department of Computer and Information Sciences

Southwest Baptist University
Bolivar, MO 65613
tdeclue@sbuniv.edu

Abstract

The College Board’s AP-Computer Science Principles (AP-CSP)
course is a recent development in advanced placement courses and is
significant due to its explosive growth and widespread curriculum sup-
port in the United States. This paper discusses the AP-CSP course,
describes the author’s experience teaching the course to traditional col-
lege students in a university setting, and suggests some changes that may
be worth noting should others wish to replicate the experience.

1 Introduction

In May of 2016, the College Board began testing the Advanced Placement
Computer Science Principles (AP-CSP) course for the first time following sev-
eral years of development. According to the College Board, this course “. . . is
designed to be equivalent to a first-semester introductory college computing
course” [3, p.4]. AP-CSP joined APCS-A, a course supported for many years
and focused on Java-based programming, as the two advanced placement com-
puter science courses supported by the College Board. In the fall of 2017, high
school students began matriculating to college and receiving college credit for

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

60

their advanced placement work. In the spring of 2018, the author began pro-
viding professional development to K12 computer science teachers using the
Code.org curriculum. In the fall of 2018, the author taught the university
course for which credit is granted for AP-CSP, and the author chose to use the
Code.org curriculum to support the university course.

2 Course History and Content

AP-CSP was developed over several years by the College Board in part-
nership with the National Science Foundation, a variety of secondary
and post-secondary education providers, and computer science professional
organizations[3]. The course is designed to appeal to a broad range of students,
particularly underrepresented groups, and is intended to be both relevant and
have content integrity with classical computer science. Ten different organiza-
tions are endorsed by the College Board to provide curricula and professional
development which supports teaching AP-CSP [2]. Some endorsed content
providers, like Code.org, stress making the course accessible to all high school
students and explicitly seek to avoid advantaging students with prior comput-
ing experience or background. According to the College Board, “students will
develop computational thinking skills vital for success across all disciplines,
such using computational tools to analyze and study data and working with
large data sets to analyze, visualize, and draw conclusions from trends.” [3,
p.4]. The course content is built upon the intersection of six computational
thinking practices with seven big ideas in computer science as shown below.

CSP Big Ideas CSP Computational Thinking Practices

1. Creativity 1. Connecting computing to real life
2. Abstraction 2. Develop programs
3. Data and Information 3. Abstracting to break down problems
4. Algorithms 4. Analyzing problems
5. Programming 5. Communicate ideas orally and in writing
6. The Internet 6. Collaborate with others to solve problems
7. Global Impact

In a break from traditional AP courses, AP-CSP not only tests knowledge
of the content with a test at the end of the school year, but also requires two
non-trivial applied projects be completed and submitted for assessment by the
students during the course. These two projects — called the Explore Task
and the Create Task — account for 40% of the AP exam score. The Explore
Task is a research activity which culminates in a creative digital artifact, and

61

the Create Task is a creative activity which culminates in a piece of software
designed and programmed by the student and a partner.

These ideas, practices, and tasks are combined with rigorous, relevant com-
puter science content to form a significant contribution to the student’s com-
puting education. Students leave the course with a solid computer science
foundation able to effectively inform their daily life.

3 The AP-CSP Code.org Curriculum

Code.org implements the big ideas and practices in computing in a web-based
curriculum structure, a set of research-based instructional strategies, a variety
of resources and tools, and both web-based and face-to-face professional devel-
opment for K12 teachers [4]. Student activities include a mix of “plugged” and
“unplugged” learning.

The Code.org curriculum divides the content into five units.

Unit Description

Unit 1:
The Internet

Illustrates how the internet is multi-layered
and explores interesting aspects of the internet
including issues related to reliability and security.

Unit 2:
Digital Information

This unit focuses on how computers store complex
information using binary approaches.

Unit 3:
Programming

The Code.org curriculum uses JavaScript to
illustrate problem-solving through the use of
programming.

Unit 4:
Big Data and Privacy

This unit explores the intersection of current
events, policy, law and ethics as it related to data
and encryption.

Unit 5:
Building Apps

Students are provided additional opportunities to
explore programming approaches in Code.org’s
App Lab.

Woven through the units are activities which support and lead to the Ex-
plore Task and Create Task through-course assessments.

4 The Experience Report

The author used the Code.org supplied curriculum with only three deviations
from the Code.org curriculum guide. These deviations were related to the
schedule, the introductory programming environment, and the choice not to

62

have the students take the advanced placement test at the end of the course.
The deviations are explained below.

4.1 Schedule

The university setting where the course was taught utilizes a traditional
fall/spring sixteen-week semester schedule and utilizes the last week as a final
exam week. The AP-CSP is designed to be delivered over an entire school year
with the AP test taking place in May. Due to this one semester constraint, the
author divided the course into segments which could fit into a single sixteen-
week semester as shown in Figure 1. Additionally, the course where the AP-
CSP curriculum was implemented was a three-credit hour course which utilized
two days of lecture and two days of lab each lasting 50 minutes apiece.

4.2 Performance Tasks

According to the Course and Exam Description for the AP-CSP course [3],
students working on the Explore and Create Tasks are to be given a minimum
of 20 class hours to work on these projects (8 hours for the Explore Task and
12 hours for the Create Task). This amount of time—equivalent to one-third
of a single-semester course—was not a feasible use of time. Additionally, one
reason class time is provided to high school students is so the teacher can make
sure the students are the author of the projects they ultimately turn in. This
issue is less of an issue for traditional college students as they are generally
already living away from home and parents are usually less of a factor.

4.3 Programming Environment and Schedule

The Code.org curriculum has a built-in programming environment called App
Lab [4]. App Lab is an effective environment for teaching programming at both
the high school and college level, however, the context of the programming
lessons is drawing and manipulating somewhat cartoonish ocean scenes. For
this reason, the author chose to use Earsketch [1] — a different programming
environment from another endorsed curriculum provider which utilizes music
sampling and a built-in audio workbench—as the environment for the class
the author taught at the college level. Earsketch was able to support all of the
content included in the Code.org AP-CSP curriculum, but also allowed college-
age students to create musical compositions using musical styles popular with
the students.

JavasScript was used as the language, which corresponds to the language
utilized in the Code.org curriculum, and the same lesson content was taught,
although some choices had to be made regarding how much emphasis was

63

F
igu

re
1:

C
lass

S
ch

ed
u

le

64

provided to programming topics. Finally, the Code.org curriculum teaches the
programming content in two units; the programming content in the author’s
course was taught over a four-week period as one unit.

4.4 The AP Exam

The final deviation was simply that the students in the author’s course did
not take the AP exam. The reason was simply that the students were already
receiving college credit for the course, so the need to gain AP credit for the
course did not exist.

5 Conclusions and Observations

A first important conclusion was that the AP-CSP course content was very
appropriate, relevant, and useful for college-age students. AP-CSP is billed as
a college-level course and the author’s experience supported this assertion.

A second conclusion was that the unplugged and plugged lab-based lab work
provided by Code.org supported learning effectively. Students remained on
task during class time each day during the semester. The unplugged activities,
in particular were interesting and useful for the students. In one sense, the
activities — due to their lack of reliance on technology — were refreshing and
innovative to the students.

The last conclusion was that the Code.org instructional strategies were
effective in supporting learning. In the author’s opinion, these strategies —
in combination with the innovative packaging of the course content — lie at
the heart of the success of the course. There are six instructional strategies
advocated by Code.org. These strategies are shown and defined below.

Strategy Description

Lead Learner
A teacher-focused strategy which recognizes a shift from the teacher being the
source of knowledge to the teacher being the leader in seeking knowledge.

Journaling
An opportunity for students to reflect on and write about an experience.
Journaling can be digital or take place with physical notebooks.

Think-Pair-Share
A discussion seeding practice. Students are asked to think individually about a
problem or task, then paired to explore the problem or task, and finally to share
out what the pairs talked about.

Peer Feedback
The practice of students sharing their work with one another to prompt
discussion, suggestions and iteratively improve their work.

Pair Programming
The technique of two programmers working together on one computer. The
programmers have different roles named “driver” and “navigator”.

Debugging
The practice of finding and fixing problems. Debugging is presented as a natural
part of any creative activity which utilizes computers.

These six strategies promoted an active, engaged classroom which sup-
ported effective learning. Of even greater impact is the observation that these

65

strategies can be applied in other contexts and other courses with similar pos-
itive benefits. For example, during the semester the author was teaching this
course, the author also implemented many of these same instructional tech-
niques in a systems analysis and design course with similar results.

References

[1] EarSketch programming environment.
https://earsketch.gatech.edu/earsketch2/.

[2] College Board. AP Computer Science principles: Adopt ready-to-use
curricula. https://apcentral.collegeboard.org/courses/ap-
computer-science-principles/classroom-resources/curricula-

pedagogical-support. Retrieved November 25, 2018.

[3] College Board. AP Computer Science principles course and exam
description updated fall 2017. https://secure-
media.collegeboard.org/digitalServices/pdf/ap/ap-computer-

science-principles-course-and-exam-description.pdf.

[4] Code.org. Computer science principles curriculum guide.
https://curriculum.code.org/csp-18/.

66

Capstone as Consulting∗

Denise M. Case, Charles Hoot
School of Computer Science and Information Science

Northwest Missouri State University
Maryville, MO 64468
{case,hoot}@nwmissouri.edu

Abstract

This paper describes the first semester in the restructuring of a two
semester capstone course to frame project management, design, and im-
plementation as a consulting effort. We draw upon real-world experi-
ence to introduce appropriate artifacts and procedures to the course.
As part of profession-based learning, students will use industry-standard
tools as recommended by a professional advisory team. This includes
the introduction of JIRA and the expanded use of Git. Students learn
project management tools and techniques early in the course and are
then granted additional permissions to plan and implement under their
own management and organization. The intent is to help students transi-
tion from novice developers to peer- and mentor-evaluated professionals
that have developed an understanding of client perceptions and priori-
ties, along with project scope, budget, and risk evaluation. As part of the
initial phase of the project, students implement a variety of architectural
prototypes which may include mobile and progressive apps.

1 Introduction

Common to many computer science programs, we have a capstone course where
students implement a team project [7]. While most the originate from clients
within the university (including faculty, staff, and students), some clients are
members of the local community or are located remotely. Our capstone course

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

67

spans two semesters; the first semester traditionally focuses on design and the
second semester focuses on implementation.

Creating useful software artifacts for a capstone project can be challenging
for a variety of reasons. In particular, both clients and students in the course
have varying capabilities. Client often have little understanding of software
engineering and the development process. Students often have little under-
standing of interacting with a client or with team members. Added to this
is the challenge of assessing the learning, competencies, and contributions of
individual students within the larger group.

Motivation for this effort was four-fold: (1) better align student outcomes
to industry practices, (2) adjust assessments to better reflect the tangible value
produced by the individual and the team, (3) improve student interactions with
a client, and (4) help students better understand professional obligations and
the value of their work. In this context, with this motivation, we developed the
following proposal: Use a structured consultancy model supported by industry-
standard version control and project management tools. Initial scaffolds will
be provided to guide the project in the early phases and help manage client
interactions and expectations. This gives the appropriate foundations leading
to student-led management of projects. Our work will provide a reusable,
authentic approach to implementing this critical course.

2 Related Work

The course design builds on a variety of prior work from academia and indus-
try. The Service Learning Practicum (SLP) model has been used successfully
for two-semester capstone courses [2] and Carnegie Mellon has used a sys-
tems engineering consulting model in hundreds of partnerships over 18 years
[8]. Both apply a consulting model to the course to create mutually-beneficial
partnerships with non-profits to engage and motivate the students.

In 2009, Hurtig and Estell proposed a common framework for diverse cap-
stone courses based on common project management phases of conceptual
design and feasibility, design and definition, implementation, start-up, and
project closeout [6]. The project-based approach employs a project review
board (PRB) to guide and assess projects against standard rubrics [6].

The MVP schedule developed for this consultancy model, shown in Fig 1,
was also influenced by the capstone framework timeline provided [6].

Clear, et.al, define terms and discuss a variety of issues related to project
sponsors and issues that may arise [4]. Their work has influenced the concepts
of roles presented in the next section. In the SIGCSE 2002 paper, Chamil-
lard and Braun discuss course structure and specifically, discusses the impor-
tant tradeoff between the balance between the development process and work

68

S
e
m

e
s
te

r
2

Follow On Contract

Full Implementation

Validation and Documentation

Performance Review

Delivery

Performance Review

MVP Presentation

RFP

S
e
m

e
s
te

r
1

Design Competition

 Initial Contract

Implement MVP/s

Security, Data Services, and

Critical Functionality

Sprint

Sprint

Sprint

Sprint

Sprint

Sprint

Figure 1: Consultancy Model Timeline

products created by the students [3]. They also describe the importance of a
knowledgeable customer and the benefits this offers the students. They have
students change teams, providing critical and inherent peer review that occurs
when using artifacts developed by others. In a 1997 work, Dutson suggests
possible course requirements and nine possible causes of team dysfunction,
and suggests specific criteria for evaluation of the instructor, projects, class-
mates, and course [5]. In 2014, Acheson discussed the use of capstone projects
sourced from industry partners and discusses interventions for problems that
can arise [1]. A key outcome of the proposed model is the focus on applying
the capstone course in a way that enables students to practice and demonstrate
elements and outcomes from seven required enabling courses [10].

3 Terms and definitions

3.1 Consultancy Specific Artifacts

Request For Proposal (RFP): An RFP outlines basic requirements for a
project and invites multiple entities to propose competing solutions. One or
more solutions are selected to move into a contract phase. In our context,
the competition is replaced by cooperative melding of designs into one initial
contract.

Contract: A contract is the basis for the development and specifies the
requirements that must be satisfied for a successful delivery. Each semester in
the course has its own contract specifying the product to be delivered. As the
first semester progresses, client feature requests are collected and prioritized
for inclusion in the second semester contract for the completed application.

Minimally Viable Prototype (MVP): The endpoint deliverable of the
first semester contract is an MVP. The prototype should demonstrate the core

69

architecture for the application and provide observable value for the stakehold-
ers. While the data model may not be finalized, a majority of issues should be
resolved. We strongly recommend that security be addressed in the MVP.

3.2 Project Management Tools

To allow a systematic process of collaboration, two key development tools were
used: version control and issue tracking. Git was used to store documentation
and project code. Documentation was predominantly written in markdown.
Development was driven by prioritized user stories. JIRA was presented at the
start of the course.

3.3 Project Roles

The client is typically a person external to the course. They should have a
project idea that is sufficiently interesting while being doable by a group of
students that are not yet professionals. The client needs to have a clear under-
standing of these limitations and the potential impact on the final deliverable
at the end of the second semester. Another important feature in a client is
the ability to meet, either in person or via tele-conferencing, on a regular basis
with the consulting team. The instructor serves as the mentor and consulting
lead. The instructor employs each of the consulting teams and is responsible
for overseeing the work with the goal of achieving client satisfaction for the
agreed-upon budget, schedule, and scope. The consulting teams should consist
of 3-5 students. Standard roles that will be filled within a team are project
manager, architect, data lead, and user experience lead. Team membership
and roles should change during the development process.

3.4 Project Development Artifacts

Production of artifacts is a critical part of the capstone experience. Since teams
will change throughout the course, students must use artifacts developed by
others as is often the case in industry. This enables a natural process of feed-
back as teams attempt to make use of vague or poorly executed artifacts during
cross team implementation and testing. To better manage these documents,
they will be created in markdown and stored along with the code base on the
project repository. They will be living documents that are updated as needed
as the client and development teams understanding of the project evolves.

Project Proposal: The project proposal is created based on the RFP
provided by the client. This is a rapid response modeled on design contests
(e.g. weekend “hack-a-thon”) held by industry professionals. The expectation

70

is that teams will need about 6 hours to complete the work. If possible, teams
should be in competition to best meet the objectives of the client.

Charter and Contract: The project charter and contract is used to
document understanding of the project and guides the development process.
It should clearly state the problem (what needs to be solved), and outline the
key features the software solution must address.

Progress Reports: Team members will regularly document their work
with billing and links to their commits.

User Stories: User stories are the primary drivers of the development
effort. Each story will have an individual that is responsible for the story and
its eventual implementation.

Data Diagram: The data lead is primarily responsible for designing and
maintaining the documentation for the data store. Often, this will be an ER
diagram for a relational data base.

Interface Sketches: The UX lead is primarily responsible for designing
and maintaining user interface sketches. Typically, there will be one or more
sketches for each user story.

Seed Data: Seed data is a useful but often overlooked part of project
development. Using seed data allows testing of the application against a given
state of the data store. The seed data can also be used to revert the data store
to a default if the data store becomes damaged.

Testing: Test plans and results are required for due diligence.

4 Course Design

The goal of the redesign was to bring in aspects of designing and implementing
projects based on a consulting firm delivering a project to an outside client.
While it is not feasible to completely model contract development, students
will get a taste of it in a more forgiving environment. The course is arranged
as a series of modules guiding the process of designing and implementing a real-
world project. It builds on earlier courses and is conducted over two semesters.
The first semester emphasizes the design process, while the second semester
culminates in the production of final deliverables. An outline of the course
phases over the two semesters can be see in Fig 1. We will focus on the first
semester in this paper.

The first semester will have the students establish a project charter, enter
into a phased contract, develop requirements, and build architectural proto-
types. Students will form into development teams with the goal of completing
contracted tasks, on-time, within budget, while satisfying the client. Students
will take on roles within a flexible team framework and are required to bill
hours, document value, and learn to manage clients as well as the project.

71

The responsibility is on the instructor as mentor to find a client with a
project of reasonable scope where a successful implementation is a viable result.
We ask that students work hard, learn a lot, have fun, and hone many of
the skills used by a software developer to make a living in applied computer
science. In addition, students build pubic portfolios, get a chance to focus on
and develop individual strengths, and learn to experience and appreciate the
joys and challenges of working collaboratively to achieve success.

4.1 Project Timeline - First Semester

Following the consultancy model, all projects will begin with an RFP where
basic requirements and motivation are set out. If clients need assistance writ-
ing one, the instructor should begin this process several months before school
begins. Ideally, the client should present the RFP to the students on the first
day of class. Obtaining a reasonable initial design is the first challenge to be
met by the students. To start, students are broken up into small teams and
develop independent designs within a very short time frame. These competing
designs will be combined to create the initial design for the project. There are
a couple of reasons that this approach was adopted. Producing competing de-
signs helps to better explore the design space [9] and result in an initial design
that is more likely to be viable. Students also get a brief taste of an RFP that
invites multiple submissions in a phased competition.

To create the initial design, the teams will meet with the instructor and
the client. The instructor will moderate as the client chooses the best parts
from each of the proposals. Once the initial design is done, the features that
are critical to the success of the project will be identified by the client. A
minimally viable prototype (MVP) is identified and a contract is created for
the next phase of the project which will implement the MVP. The instructor
will play a crucial roll in the creation of the MVP. Neither the client or students
are likely to be able to accurately estimate the amount of work required to
complete the implementation of the MVP. It is crucial to make sure that the
implementation can be completed in the requisite time. It is also likely that
neither the students or clients will recognize that security and data services are
high priority and should be strongly considered for inclusion in the MVP.

Implementing the MVP will be done using 3 to 4 week iterations and cul-
minates at the end of the first semester. Teams are expected to meet regularly
with their client to demonstrate progress and get client feedback. If major
changes to the acceptance criteria are requested by the client, the instructor
will help negotiate a modification to the contract to maintain a consistent ex-
pected level of work. As the semester winds down, students will present the
MVP and the client will determine if the the acceptance criteria of the con-
tract are met. The semester ends in a performance review addressing both

72

individual and team performance.

4.2 Challenges

As novices, students are typically not practiced in developing requirements
and eliciting feedback from a client. As the development progresses, students
may have trouble breaking tasks into manageable pieces and choosing a good
implementation order. Estimating work can be a challenge even for seasoned
developers. To ameliorate these challenges, scaffolding is employed providing
more supports at the beginning and progressively dropping the supports as the
students and teams gain experience and develop autonomy.

Architecture implementation including security is presented and addressed
early in the process. Entity-relationship diagrams are developed quickly and
tested early with a full set of sample data and reviewed with the client. An
MVP that tests the hardest and most critical parts are implemented first, and
tested in the first semester. The results of this initial deep but focused imple-
mentation and the associated lessons learned forms the basis for the detailed
design requirements to be implemented in the second semester of the course.
Critical features, role-based security, and some of the key services are addressed
during the first semester of the course. Implementation begins very early, and
the hardest parts must be tackled and solved in the first semester. This sets a
firm foundation for an enjoyable, collaborative, rewarding development expe-
rience that is most likely to support student success. Solving hard parts early
enables students to reach goals, supporting the intrinsic rewards of satisfying
the client and perfecting useful deliverables. Progressive MVPs ensure that
clients and projects can continue over a series of capstone courses, with each
class of students gaining experience in proposal writing, contract development,
requirement management, software implementation, and client acceptance.

5 Assessment

The course is designed to have regular assessments provided by the mentor. A
students overall grade is a 50/50 mix of individual and group assessments. All
assessments are done over artifacts from a public cloud-based repository for
the project. A current score is available for students, but points are not given
until the course nears completion.

Client involvement and feedback is critical to the success of project and
ultimately the course. Clients are expected to provide formal feedback on
project artifacts on a regular basis. Where possible, rubrics are provided to
assist clients with providing specific, applicable, actionable feedback. During
the first semester the focus is on the design documents and the implementation

73

of the MVP. As the basic project documents are created, the client will review
them. Near the end of first semester, the client will assess the MVP, note
any deficiencies, and work with the team to modify the second semester plan.
At the end of the first semester, the client will review and approve the second
semester project plan and, if they wish, sign a new contract for remaining work.
During second semester, focus shifts to the implementation and deliverables for
the application while similar reviews will occur.

5.1 Individual contributions

To measure the individual contributions, the instructor grades only docu-
mented artifacts - commits in Markdown, drawings, code, or other evidence
of contributions. Contributions are associated with a single person, so teams
must be careful to allow a chance for all member to commit changes that doc-
ument their participation. For example, in pair programming, partners may
alternate roles and commits.

Every week, students will submit detailed billing for the previous week.
This will include a description with hours and links to the work product. It is
expected that each student will contribute at least 15 hours a week (including
3 hours in class) broken up into no less than three sessions of at least an hour
spread out over the week. Students should commit to the master branch in the
shared repository after each session, so there should be at least three commits
per week (more is better). Students will use a billing rate of approximately
$75 per hour. (This assumes a multiplier around 2.5.) Thus, each student
will generate billing of about $1100 per week. Over the full two semesters,
this translates into about $150,000 for a team of five students. The mentor
assesses the claims weekly and awards Individual points out of 1100, leading
to a cumulative assessment of the realized dollar value over the semester. A
sample billing submission has a 2-part format and is shown in Fig 2.

Links to Participating Artifacts

 * Project Charter (link)

 * iOS app repository (link)

My top 3 person, unique contributions this week.

Commit 1 - $150 (2 hrs) - Created repo, invited team, published version (links)

Commit 2 - $375 (5 hrs) - Drafted schedule, web page gaunt chart. (links)

Commit 3 - $300 (4 hrs) - Expanded risk section of charter (links)

In Class - $200 - On-time attendance for three class meetings.

Figure 2: Sample Individual Weekly Billing Report

74

5.2 Project Team Assessment

At appropriate times throughout the semester the state of the project is as-
sessed. The assessment is user story driven with ten components. The score
on a component is the percentage of user stories that satisfy the requirement.

1. The user story is assigned to a responsible team member.
2. Documentation and design reflects all client and mentor comments.
3. The client agrees with all associated sketches.
4. The client agrees to the data used. Appropriate seed data is created.
5. Acceptance criteria have been agreed to by the client.
6. All implementing files for the user story are listed.
7. All tasks in the project management system for the user story are done.
8. The user story is assigned to a tester to verify that everything works.
9. The client gives informal acceptance that the user story is complete.

10. The client confirms that contract acceptance criteria have been met.

6 Results

This effort describes a standardized approach to conducting a capstone course
as a consulting effort. Scaffolding was provided early and progressively re-
moved as students gained knowledge and experience. This provided students
with an authentic experience in the context of a supportive framework. To
do this, projects were conducted as consulting team competing for a contract.
While many aspects of managing a project remain similar to a standard course,
new artifacts were introduced. An RFP kicked off the project resulting in an
initial phase contract with acceptance criteria. The contract improved inter-
action between students and clients, while tempering client expectations. Es-
tablishing the initial phase end goal as a minimally-viable prototype improves
the students ability to decompose problems, and evaluate risk, and implement
priorities. Demonstrating a prototype with observable value improved inter-
actions with the client and motivated the students. An important aspect of
providing an authentic experience was to tie their work to an estimated dollar
value. This allowed us to reinforce the necessity of evenly loading all develop-
ers throughout the course. Simulated billing reinforced the expected value of
their time. It motivated the use of JIRA and issue trackers to manage their
time and tasks. Developing artifacts in markdown and code and using the
Git distributed version control system to track changes resulted in a complete
history of the evolving artifacts and participation of each team member.

75

7 Conclusions

Implementing the first semester of a two-part capstone computer science project
as an extended consulting assignment has enabled new learning opportunities
for participants. The restructured course supported continuous recognition of
value and a novel approach to managing scope, schedule, budget, and risk using
industry-standard tools. Future work includes the extension of this consultancy
model into the second semester for final implementation and delivery.

References

[1] Lingma Lu Acheson. Student learning through hands-on industry projects.
In International Conferences on Educational Technologies 2014 and Sus-
tainability, Technology and Education 2014, 2014.

[2] Aaron Bloomfield, Mark Sherriff, and Kara Williams. A service learning
practicum capstone. In Proceedings of the 45th ACM technical symposium
on Computer science education, pages 265–270. ACM, 2014.

[3] AT Chamillard and Kim A Braun. The software engineering capstone:
structure and tradeoffs. ACM SIGCSE Bulletin, 34(1):227–231, 2002.

[4] Tony Clear, Michael Goldweber, Frank H Young, Paul M Leidig, and Kirk
Scott. Resources for instructors of capstone courses in computing. ACM
SIGCSE Bulletin, 33(4):93–113, 2001.

[5] Alan Dutson, Robert Todd, Spencer Magleby, and Carl Sorensen. A re-
view of literature on teaching engineering design through project-oriented
capstone courses. Journal of Engineering Ed, 86(1):17–28, 1997.

[6] Juliet K Hurtig and John K Estell. A common framework for diverse
capstone experiences. In Frontiers in Education Conference, 2009. FIE’09.
39th IEEE, pages 1–6. IEEE, 2009.

[7] Larry J. McKenzie, Michael S. Trevisan, Denny C. Davis, and Steven W.
Beyerlein. Capstone design courses and assessment: A national study.
In Proceedings of the 2004 American Society of Engineering Education
Annual Conference and Exposition, 2004.

[8] Joseph Mertz and Scott McElfresh. Teaching communication, leadership,
and the social context of computing via a consulting course. In Proceedings
of the 41st ACM technical symposium on Computer science education,
pages 77–81. ACM, 2010.

76

[9] Don Norman. The Design of Everyday Things: Revised and Expanded
Edition. Basic Books, 2013.

[10] Norman Pestaina, Tiana Solis, and Peter J. Clarke. Assessing bs–cs stu-
dent outcomes using senior project. In 2014 ASEE Annual Conference
and Exposition, pages 24.199.1–24.199.15. ASEE, 2014.

77

Embedding Security Concepts in

Introductory Programming Courses∗

Ajay Bandi, Abdelaziz Fellah, Harish Bondalapati
School of Computer Science and Information Systems

Northwest Missouri State University
Maryville, MO 64468

{ajay,afellah,s530741}@nwmissouri.edu

Abstract

The challenges of teaching and learning introductory computer pro-
gramming tend to cumulate over the years. Students should achieve a
chain of ideal accomplishments including problem-solving skills, language
features, structures, semantics, and coding. However, current program-
ming practices consider security as a low-priority task and students rarely
embed the predefined security requirements in their coding and software
development process which may lead to insecure programs. Changing
this trend in the classroom is quite challenging. As a result, a program
which appears to be secure at the source code level may equate to secu-
rity vulnerabilities that are often exploited by hackers. In this paper, we
focus on the language-based security main features and standard security
mechanisms in developing secure programs and avoiding security loop-
holes. This paper takes a step forward in this direction and contributes
to filling the security gap.

1 Introduction

A software vulnerability is a security flaw within a software product that can be
exploited by hackers and can cause cascading and recurring negative impacts
in the software industry. Many software developers believe that software vul-
nerabilities should be addressed after the product is released, hacked, or once

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

78

errors and defects are discovered. They refer to such a policy as “release early
and fix later”. However, security vulnerabilities and flaws in software could
happen at any point in time when the application goes live and available for
the users. Several studies [15, 4] have confirmed that vulnerability disclosure
may adversely affect in the long run the market performance of a software and
the reputation of a firm whose software has been breached.

Developers have a misconception that security is someone else’s responsibil-
ity [9]. They mostly concentrate on implementing the functionality of software
systems and later releasing security updates sometimes called patches while
many other users are still running old versions that might have flaws and make
them prone to failure. Overall, a patch means there is one less vulnerability and
access to the patch may give security advantages to an attacker. It is the re-
sponsibility of all the teams who gather requirements, design, write code, test,
deploy and maintain the software [12]. Thus, the consequences of the security
flaws are a spectrum of various defects that are manifested in either require-
ment, design, architecture, or implementation. Removing such defects and
security flaws is a major challenge for software developers. One of the primary
reasons that developers do not focus on security tasks is because they lack the
expertise of using secure programming practices [3, 11]. Research has shown
that most software [13] vulnerabilities are related to programming errors that
are well understood. Such vulnerabilities could be avoided and prevented by
injecting/incorporating coding standards, developing guidelines, adopting the
best practices that define the programming language itself, and understanding
how the language is interpreted and compiled on various runtime platforms.
Moreover, research has shown [13, 16, 7] that adding security through testing is
not a feasible solution and it is an incessant task for software developers. Even
with automated testing tools, errors still occur in lines of code at a significant
rate. Most of the current researches were focused on exploration of security by
designing specific computer security courses rather than including the concepts
in CS introductory programming courses.

In this paper, we present effective ways of introducing the most fundamental
security-related vulnerability topics, characteristics and sources of vulnerability
such as sources, severe flaws, severity and the best practices of developing
secure programs in introductory computer programming courses.

Security vulnerabilities affect different types of software such as operating
systems, networks, e-mail servers, software libraries, browsers, and coding,
just to name a few. In the work, we focus on secure programming concepts
in general and in particular on secure coding in Java. These concepts are
incorporated in the introductory Java programming labs. Specifically and in
terms of learning outcomes, students should be able to

• Understand common software flaws that lead to vulnerabilities.

79

• Identify coding mistakes and eliminate coding errors which may lead to
software vulnerabilities.

• Understand how common coding mistakes can be exploited.
• Incorporate best practices and enforce a coding standard which helps

programmers circumvent pitfalls and avoid vulnerabilities

From the programming perspective, the course covers the following common
types of software flaws that lead to vulnerabilities: input validation errors, error
handling & exceptions, memory safety violations and hashing.

2 Literature Review and Background

Some of the malicious attacks and hacking strategies are data breaches (SQL
injections, XML injections), buffer overflow attacks, phishing, and sniffing, etc.
Some of the security breaches negatively impacted several firms. For example,
Guess.com was vulnerable to an SQL injection, allowing any user to construct
a customized URL to access approximately 200,000 names and their credit
card information from the website’s customer database. Recently, the phishing
WannaCry Ransomware attack is suspected in 150 countries by encrypting the
users’ hard disks impacting more than 230,000 people [3]. Heartland Payment
System was attacked, and the customers’ data was stolen using sniffing. The
Code Red (computer worm) infected over 359,000 computers by exploiting a
buffer overflow vulnerability in Microsoft Internet Information Services [17].

The primary target of the hackers and cyber-criminals is to routinely exploit
the insecure code. The hacking strategies usually happen after the software is
released into the market, causing a threat to the privacy of the users. When
these threats are raising and discovered, organizations invest extra millions
of dollars in securing their applications [8]. This also increases the cost to
fix the insecure code in the existing versions as well as future releases of the
software. The effects of social media and social networking sites on marketing
and business have become an excellent vehicle for effective communications
and have been integrated in the marketplace. Social media websites or apps
allow third-party applications to collect feedback using opinion polls and track
the users’ activity to sponsor ads. For example, Facebook uses pixels to track
the users’ activity and sponsor ads. This raises a concern about users’ data
privacy and security. However, social media platforms are offering privacy
controls, but users ignore them because of lack of knowledge and awareness.
This is also applicable to the other insecure websites and apps because of lack
of (adherence to) security principles. Software organizations must scrutinize
the apps designed by individuals/businesses to identify any vulnerabilities or
any security and policy violations. A recent example of a data firm Cambridge

80

Analytica which gained access to personal information of millions of Facebook
users. Even though this incident is not considered to be a breach of databases
but a violation of terms of use of data, privacy of the users was compromised.

3 Research Goal

Vulnerable programs are one of the leading causes of computer insecurity. Our
contributions focus on developing In this research we focus on the threats to
security and users’ privacy in software applications that arise due to lack of
secure coding practices. The best way to prevent these vulnerabilities is by
improving the understanding and learning abilities of developers and users at
the student level by teaching security concepts [2]. However, it is a challenge
for educators to increase the number of credit hours for computer science or
data science [6] degrees or to add new courses. To leverage the number of credit
hours, we propose embedding secure programming concepts during the intro-
ductory programming courses. We embedded these security concepts in our
lab sessions that are conducted over 2 hours weekly without slimming down or
modifying the original description of the course. This helps to improve the stu-
dents’ ability to develop secure software from their introductory programming
courses.

4 Language-Based Security Concepts

Figure 1: Classification of Security Concepts

We emphasized and embedded security concepts in the Object-Oriented
Programming course (Java). We incorporated security concepts during class

81

time while balancing the teaching of regular material on programming concepts.
Then, we embedded the implementation of security concepts in the lab sessions.
The classification of security concepts are shown in Figure 1. We broadly clas-
sified the security concepts as language-based, hashing, data encryption, and
secure random generation. The rationale for this classification is to cover all
the basic security issues that relate to the concepts of the introductory pro-
gramming course for graduate students. We further classify the language-based
concepts into input validation, exception & error handling, access modifiers,
and memory safety. The rationale for the classification of language-based se-
curity concepts is because students do not require any additional knowledge
of these concepts as they are related to the general programming concepts.
Other than the language-based security concepts, students can make use of
existing Java APIs to implement in the labs. We did not concentrate those
concepts in the regular class time. This gave students the similar experience of
learning and using regular Java APIs. The rest of this section presents a brief
description of these concepts with a sample source code that we used in labs.

4.1 Input Validation Vulnerability

This class of vulnerability is called input validation vulnerability and it occurs
when a program does not check or validate user inputs. The unsafe domain
of inputs may trigger a vulnerability that are commonly exploited by hackers
and can arise in any programming language. The lack of validation in the
input fields such as text boxes, radio buttons, checkboxes, and dropdowns, to
name few are the primary reason of vulnerabilities that may lead to potential
injection attacks such as SQL and XML injections. In addition to injection at-
tacks, the invalid inputs could sometimes cause the defects in the functionality
of the software [14, 5]. Typically, the class of input validation vulnerabilities
includes buffer overflows, string format, and integer overflows. From the pro-
gramming language perspective, the choice of the type, strong or weak, and
the type checking, static or dynamic, can contribute to security problems and
may affect the robustness of the software. We classified input validations into
three different categories.

Strongly Typed: Strongly typed languages such as Java requires developers
to infer the data type during the compilation time, i.e., developers must validate
user inputs by checking the type of the data. For example:

Listing 1: Example for Strongly Typed

Scanner sc = new Scanner (new F i l e (‘ ‘ f i l e . txt ’ ’)) ;
i f (sc . hasNextInt ()){

//Read i n t e g e r data
int data = sc . next Int () ;

82

} else {
//Handle mismatch

}

Range Validation: Input data such as age, dates, quantity, and price need
to be validated to prevent miscalculations. Range validation is not only for
numeric data values but also for characters and string data types. For example,

Listing 2: Example for Range Validation

Scanner sc = new Scanner (System . in) ;
int semester ;
do{

semester = sc . next Int () ;
}while (semester>=1 && semester <=4);

Length Validation: User inputs such as phone numbers, social security num-
bers, credit/debit card details are of fixed length. Validating these values are
important in any software to avoid human errors. For example,

Listing 3: Example for Length Validation

Scanner sc = new Scanner (System . in) ;
long mobile = sc . nextLong () ;
while (new St r ing (mobile) . l ength () != 10){

mobile = sc . nextLong () ;
}

4.2 Exception & Error Handling

When an error occurs such as invalid user inputs, software act in an unexpected
manner in response to such an exceptional event and the code may raise an
exception. Appropriate exceptions and error handling techniques are an im-
portant software component of software security. In programming languages
such as C++, C# or Java, error handling is considered a form of exception
handling. Let us consider an application when exceptions and errors are not
handled; the complete error stack is displayed to the users. This error stack
may contain all the details like which database is used or threads that re-
veals the implementation details. Attackers can take advantage of these error
messages to create vulnerabilities [16]. For example,

Listing 4: Example for Exception & Error Handling

Scanner sc = new Scanner (System . in) ;
int semester ;
try {

semester = sc . next Int () ;
} catch (InputMismatchException ex){

83

//User Message : I n v a l i d semester , Enter v a l i d semester#
semester = sc . next Int () ;

}

4.3 Access Modifiers

Access modifiers of classes, methods, and attributes in Java and other pro-
gramming languages provide a mechanism to restrict access but may have a
negative impact on the security of an application since they do not guarantee
information flow control of a code. The absence of a well-defined access modi-
fier in a Java code may break the encapsulation of that code which may lead to
unexpected program behaviors. The goal of security is to prevent unauthorized
access to any data. If an inappropriate access specifier is used, the attackers
can change the state of the objects by accessing its variables or by calling
methods. In the Java programming language, there are four access modifiers
(private, protected, public, package). If global access is not required, usage of
public access modifier to the state variables of a class should be avoided as it
allows any other object to change its state. Alternatively, it is better to use
public setter methods to mutate the state of instance variables by performing
any required validations.

4.4 Buffer/Integer Overflow

Java language is considered to be memory safe regarding array bounds and
pointer dereferences. However, it is required to explicitly handle integer over-
flows while calculating and assigning values that involve large numerals. A
buffer overflow occurs when the user is trying to store data into the buffer than
its limit. It is one of the most common vulnerabilities. In every programming
language, a datatype is pre-defined to hold certain bytes (for instance, integer
type in Java, can hold 4 bytes with any value in the range of -2,147,483,648
to 2,147,483,647. When assigning a value to a variable, Java would throw a
syntax error during the compile time if the value is out of the range [7, 17].

4.5 Hashing

Confidential data like passwords and digital signatures are used to verify the
authenticity of an account or a document. If these details are stored as clear
text in the database, a hacker could hack the passwords during the data breach.
Instead, use a hash function to generate a hash code and store in the database.
Later, this hash code is compared with the new hash code generated from
the data provided by the user. Java API provides MD5, SHA-1, SHA-256

84

algorithms to create the hash values. An example source code snippet for
SHA-1 is shown below.

Listing 5: Example for Hashing

MessageDigest md = MessageDigest . g e t In s tance (”SHA”) ;
byte [] d i g e s t = md. d i g e s t (password . getBytes ()) ;
S t r ing encryptedPassword = new St r ing (d i g e s t) ;

4.6 Data Encryption

Encryption can secure the transmission of data through a network. Java Cryp-
tography Architecture (JCA) [11] allows implementing several prominent sym-
metric and asymmetric algorithms for verification of messages and encryp-
tion/decryption of data. Java API includes encryption algorithms like AES,
Blowfish, DES, RSA, DESede, etc. Sample source code for data encryption
using AES algorithm is provided below.

Listing 6: Example for Encryption

KeyGenerator keygen = KeyGenerator . g e t In s tance (”AES”) ;
SecretKey aesKey = keygen . generateKey () ;
Cipher aesCipher ;
// Create the c ipher
aesCipher = Cipher . g e t In s tance (”AES/ECB/PKCS5Padding”) ;
// I n i t i a l i z e the c ipher f o r encryp t ion
aesCipher . i n i t (Cipher .ENCRYPT MODE, aesKey) ;
// Our c l e a r t e x t b y t e [] c l e a r t e x t =

” This i s j u s t an example” . getBytes () ;
// Encrypt the c l e a r t e x t
byte [] c i p h e r t e x t = aesCipher . doFinal (c l e a r t e x t) ;

4.7 Secure Random Number Generation

Pseudo random number algorithms are used to generate a sequence of ran-
dom values. While the sequence generated by these algorithms may appear
to be random, at their core they are not. Having an insecure or deterministic
random generator cause vulnerabilities in applications. Java API provides a
SecureRandom class to generate a secure pseudo random number generator
[11]. A sample code snippet is shown below.

Listing 7: Example for Secure Random

SecureRandom random = new SecureRandom () ;
byte bytes [] = new byte [2 0] ;
random . nextBytes (bytes) ;

85

5 Case Studies

The methodology of the case studies is adopted from [10]. In this research, we
proposed emphasizing security concepts to students and embedding security-
related scenarios in lab assignments. We have conducted our case studies in a
graduate course of a total of 90 students, where students are taking Object-
Oriented Programming course (Java emphasis). Approximately 30% of the
graduate students who enrolled in this course are computer science undergrad-
uate majors and the remaining 70% are non-computer science undergraduate
majors. The steps involved were as listed below:

1. Students are pretested for their current level of understanding security
concepts using survey [1].

2. Emphasize on security concepts to the students was done while teaching
the course while balancing the regular programming concepts.

3. Students are given a total of 12 lab assignments embedding scenarios
related to security concepts along with regular programming language
concepts. Different kinds of input validation scenarios are included in
the Control Structures, Interfaces & Abstract Classes, and Sorting &
Equals labs. Exception & Error handling scenarios are included in the
Casting & Exceptions and Sorting & Equals labs. Hashing and Random
Generators are included in the Interfaces & Abstract Classes. Buffer
Overflow scenario are included with Recursion tracing problems.

4. Students are post-tested for their level of understanding security concepts
using survey [1].

6 Results and Analysis

After collecting the data from our case studies, we presented our results in a
comprehensive tabular format shown in Tables I and II.

Table I: Students’ Level of Understanding of Security Concepts

Table I shows the results for the overall level of understanding of all the
security concepts. The pretest results show that around 59 students out of
73 were below knowledgeable. Later, we emphasized the security concepts in
the class, embedded those concepts in labs and asked students to solve the

86

lab exercises. After the post-test, all the students have substantially strength-
ened their technical knowledge of security concepts mentioned in this paper.
Both students pretest and post-test results were proved by the instructor. The
“Mastering” level did improve by 47%. These students in level 5 moved from
other levels. The number of students who are knowledgeable about the secu-
rity concepts is also increased by 26% and these students moved from lower
levels. The increased percentage in green color shows the substantial posi-
tive increase of understanding level. The red color graphs are considered as
positive decrease highlighting the number of students moved from the lower
three categories (never heard of, exposure, familiarity) to the knowledgeable
and mastering categories. Overall there is no negative impact of introducing
security concepts in the introductory programming class for graduate students.

Table II shows the comprehensive pretest and post-test results of individ-
ual security concepts. The “Mastering” level of students did improve in all the
individual security concepts. From the results, most of the students’ under-
standing level increase in the input validation, category.

Table II: Students’ Level of Understanding of Individual Concepts

In all the security concepts, there is a definite increase in the understand-
ing levels of students in mastering and knowledgeable categories. The red color
graph in each category shows that the positive decrease highlighting the stu-
dents in those levels move students to upper levels. In our study, none of the

87

students move from higher level to lower levels. Therefore, there is no declining
performance of any student.

7 Conclusion

The proposed approach of embedding security concepts in introductory pro-
gramming courses and the practical implementation of those concepts in labs
for graduate students has provided evidence in strengthening the students un-
derstanding and learning considering the security concepts without compro-
mising the programming skills. The empirical evidence shows that students’
understanding and learning improved from lower levels to higher levels. Stu-
dents are also comfortable in handling security issues such as input validations,
hashing, exceptions, usage of access modifiers, and generating secure random
numbers. Our study also highlights providing insights on how to teach security
concepts without increasing the number of credit hours in the computer science
curriculum. As future research, we propose to identify any shortcomings and
pitfalls in this approach by extending this study to larger computer science
undergraduate majors for a more extended period.

References

[1] Pre and post survey. https://goo.gl/forms/rBcJuHWDSt21hvO12.

[2] Java cryptography architecture, 1993,2018. https://docs.oracle.com/

javase/7/docs/technotes/guides/security/crypto/CryptoSpec.

html.

[3] OWASP Secure Coding Practices Quick Reference Guide. 2010.

[4] Ashish Arora, Ramayya Krishnan, Rahul Telang, and Yubao Yang. An
empirical analysis of software vendors’ patch release behavior: Impact of
vulnerability disclosure. Information Systems Research, 21(1):115–132,
2010.

[5] C. Warren Axelrod. Engineering Safe and Secure Software Systems.
Artech House, 2012.

[6] Ajay Bandi and Abdelaziz Fellah. Crafting a data visualization course for
the tech industry. Journal of Computing Science in Colleges, 33(2):46–56,
2017.

[7] Jon Brodkin. The top 10 reasons web sites get hacked. Network World,
24(39):1–20, 2007.

88

[8] Brian Chess and Jacob West. Secure Programming with Static Analysis.
Pearson Education, 2007.

[9] Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan
Walpole. Buffer overflows: Attacks and defenses for the vulnerability of
the decade. pages 119–129. DARPA Information Survivability, 2000.

[10] Abdelaziz Fellah and Ajay Bandi. The essence of recursion: Reduction,
delegation, and visualization. Journal of Computing Science in Colleges,
33(5):115–123, 2018.

[11] Katerina Goseva-Popstojanova and Andrei Perhinschi. On the capability
of static code analysis to detect security vulnerabilities. Information and
Software Technology, 68(C):18–33, 2015.

[12] Samanvay Gupta. Buffer overflow attack. IOSR Journal of Computer
Engineering, 1(1), 2012.

[13] Elisa Heymann, Barton P Miller, and Jim Kupsch. 10 common program-
ming mistakes that make you vulnerable to attack. Condor Week, 2012.

[14] Clifton Phua. Protecting organisations from personal data breaches. Com-
puter Fraud & Security, 2009(1):13–18, 2009.

[15] Rahul Telang and Sunil Wattal. An empirical analysis of the impact of
software vulnerability announcements on firm stock price. IEEE Transac-
tions on Software Engineering, 33(8):544–557, 2017.

[16] Jason Earl Thomas. Individual cyber security: Empowering employees
to resist spear phishing to prevent identity theft and ransomware attacks.
International Journal of Business and Management, 13(6), 2018.

[17] Kenneth A Williams, Xiaohong Yuan, Huiming Yu, and Kelvin Bryant.
Teaching secure coding for beginning programmers. Journal of Computing
Sciences in Colleges, 29(4):91–99, 2014.

89

Introducing Fundamental Computer

Science Concepts Through Game

Design∗

Fei Cao1, Dabin Ding1, Michelle Zhu2

1School of Computer Science and Mathematics
University of Central Missouri

Warrensburg, MO 64093
{fcao,dding}@ucmo.edu

2Computer Science Department
Montclair State University

Montclair, NJ 07043
zhumi@montclair.edu

Abstract

Understanding fundamental Computer Science (CS) concepts and
nurturing computational thinking skills are essential to learning to solve
various science and engineering problems. However, many computer
science curricula, especially in the early college years, do not provide
students with an engaging and fun learning environment especially for
traditionally underrepresented minorities in CS. Meanwhile, educational
games have become an important teaching tool in a wide variety of dis-
ciplines. We plan to integrate CS concepts and skills such as debugging,
data structure, and parallel and distributed computing concepts into our
game design courses. Our experiences indicate that (1) students tirelessly
strive to understand the CS concepts in order to design game challenges
and (2) the virtual reality (VR) immersion experience is enormously en-
gaging and fun.

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

90

1 Introduction and Motivation

Computer Science is a fast-growing discipline and has been penetrating into and
interacting with almost every aspect of our daily life. However, we found that
very few early courses provide our students with opportunities to apply inno-
vative thinking to problem-solving in an attractive and fun way. The potential
of video games make them a unique and engaging CS teaching platform as
they can bear student learning objectives under multiple levels with increasing
difficulties, allow repeated practices for proficiency, adapt to personal learning
pace and background as well as keep track of the progress with the strength
and weakness for each student[7, 9, 1]. [11] studied the 12 factors contributing
to success in introductory computer science courses and suggested game play-
ing was predictive of success. Therefore, we plan to enhance our current game
courses to help students learn more CS concepts at both undergraduate and
graduate levels. Our preliminary work has been included in a two-page poster
paper[2].

2 Game Course Description

The entire class is assigned to design and build a role-play adventure educa-
tional game using game development tools including Blender [5] and Unity [10].
Students work in teams. There are several phases from design to model and to
prototype, namely game concept, CS topics, story and characters, gameplay,
level design, and interface design as shown in Figure 1. Pre-selected CS topics
such as programming, data structures, and Parallel and Distributed Comput-
ing (PDC) concepts will be covered. Collaboration among different teams is
critical to ensure the consistency for level advancement. A world map is de-
signed with multiple levels on each continent. Each team is responsible for
the development of one level of the game. We present two example student
projects here as case studies.

Figure 1: CS Educational Game Design Phases

91

2.1 Case Study I

Figure 2: A Student Game Challenge
Example on Debugging

Programming concept of debugging:
The first example student project fo-
cuses on programming topics. It was
designed to teach the players how to
problem-solve in the world of pro-
gramming. The game is set in an
augmented reality of the Silicon Val-
ley area. A team of players wear
VR headsets and play a “simulation”
of their world. The team ends up
getting stuck when the VR headsets
break due to an unexpected glitch
which may cause various bugs and er-
rors in the system’s code. Each level
in the game takes place in a different
semi-open world location, with the
difficulty of puzzles scaled to each en-
vironment. The design of this game
focuses on teaching the concepts of
error-reading and checking through
debugging the code tied to various
in-game objects. These concepts are
presented primarily via puzzles. The
players navigate the in-game world in
search of escapes. When they find
out the cause of the game’s bugs,
they must move toward the enemy
headquarters, where the glitch that
is trapping them within the game re-
sides. The players are given a pro-
gramming puzzle when interacting
with some objects (as shown in Fig-
ure 2a), as well as after a combat seg-
ment. The team must pass in order to “debug” or “fix” the object or enemy
so that it is functional and docile again. The puzzle elements are set up in a
Scratch-like interface, in which code is viewed via visual code segments. Ob-
jects related to the puzzle may be moved and changed, and an error code acts
as a hint. One player is chosen to solve the puzzle. Other team members may
send messages to this player to help or cheer him on. The player chosen to
solve the puzzle is determined at random, though a player who has not solved

92

a puzzle in a while will be set to a higher priority level to be chosen. Once
chosen, this player’s priority level will be reset. This is to ensure that each
player will get a chance to contribute and that the game is not completed by
one single player. A sample puzzle solving interface is shown in Figure 2b
where four players collaborate to debug a program, and Figure 2c shows the
interface those players see once they successfully solve the puzzle.

2.2 Case Study II

Parallel and Distributed Computing concept of workload balance: A second
example student project focuses on PDC topics. It was designed to illustrate
the challenge of navigation and searching for robots. The scenario of the game
is that all players are trapped in a virtual world in VR and cannot get out.
The players need to navigate the world, learn the key PDC concepts, and
use the acquired knowledge to grab resources, solve puzzles, and overcome
obstacles to escape traps. We experimented the challenge of applying static
load balancing concepts with the same set of students in the game course with
no prior knowledge of PDC. Students were asked to first act as the players and
then as the designers.

As players, students were asked to efficiently distribute ten tasks to three
robots. Each task has a randomly generated computation time. The three
robots have identical computation power and execute assigned tasks in par-
allel. Students were also required to record their scheduling time, minimum
execution time, and the strategies they used. We designed three missions for
experimentation: 1) schedule a batch of ten tasks simultaneously; 2) schedule
the ten tasks in sequential order, where there are no dependencies among the
tasks; and 3) schedule the ten tasks with dependencies according to a Directed
Acyclic Graph (DAG).

Due to uneven workload distribution of specific solutions, it is possible that
some robots will complete their tasks before others and become idle. Since the
total time needed will be determined by the slowest robot, the objective is to
have all three robots finish the assigned tasks at approximately the same time
with an equal workload. Based on student feedback, most students said that
the leading strategy they used was to balance the workload of the three robots
to get the minimum execution time. They learned problem-solving and how to
efficiently schedule the tasks. Among the 30 students who took the challenge,
most students said that they used similar, yet slightly different strategies for
mission 1 and 2; mission 3 is more complicated and took them the longest time
to find an optimized schedule. Most of them scheduled the tasks layer by layer,
with adjustments for each layer. They also mentioned that they may not be
able to find an optimized solution for mission 3 if the number of tasks scaled
up.

93

Figure 3: A Student Game Challenge
Example on Load Balancing

Students were then asked to re-
design the challenge after they ac-
quired the knowledge for solving the
above three missions. They came
up with all kinds of creative game-
play to apply the concept into a sce-
nario. They also took the varying
backgrounds of players into consid-
eration and designed different diffi-
culty levels. Through the games they
re-designed, players should learn the
concept at their own pace and learn
how to apply the acquired knowl-
edge and thinking skills in a problem-
solving scenario. Players are put un-
der pressure and engaged via chal-
lenges, stories, and entertainment.
The re-designed games also provide
incentives for players to go up to
higher difficulty settings. That gives
players a chance to identify patterns
or formulas by trying different tech-
niques in their placements of the pro-
cess blocks.

Figure 3 shows the game design
of the above challenge example of ap-
plying static load balancing concepts
among multiple processors in order to
remove obstacles and access the next
area. The purple items in Figure 3b are computation tasks of different sizes
and computation time. Each player will strategically assign each task to a
robot so that the summation of the total computing time for each robot will
be the same or close. The game will compute the total time for each player and
determine the winner. Given nine tasks ordered with the following computing
time (32, 30, 20, 14, 11, 8, 5, 3, 2), for instance, a good systematic distribution
would be to assign the tasks in the descending order for each robot and then
reverse the order of the robots for the next round of task distribution until all
tasks are gone. Consequently, we will get robot A with tasks (32, 8, 5), robot
B (30, 11, 3) and robot C (20, 14, 2). The total time for each robot will be 45,
44, and 36 respectively. The final task completion time for the three robots
will be the one with the longest time which is 45 for robot A. If several players

94

complete simultaneously, the one with the shortest time distributing the tasks
wins and gets more resources than others.

3 Experience and Future Work

We observed that most students found the courses exciting. They needed
to study the CS topics thoroughly in order to design the challenges. More
students, including non-CS majors enrolled in the courses. Students not only
learned game design and development but also enhanced their programming
skills and learned CS concepts. Students were able to comprehend the concepts
more easily and reflect on their mistakes for better performance in the next
rounds. For future work, we would like to design more challenges covering
additional key CS skills and concepts. We are also aware that certain types of
problems work better under team competition mode, while others require deep
individual reflexive thinking. Based on that, we would like to design various
game modes and difficulty levels to allow students to play and learn at their own
pace. As women are underrepresented in computer-related programs [4, 3], it is
also our interest to include more game themes to attract more female students
to participate [6, 8].

4 Acknowledgement

We gratefully acknowledge the support from the Early Adopter for Multi-
Course and Multi-Semester PDC award by NSF/TCPP program.

References

[1] Ashok R Basawapatna, Kyu Han Koh, and Alexander Repenning. Us-
ing scalable game design to teach computer science from middle school
to graduate school. In Proceedings of the fifteenth annual conference on
Innovation and technology in computer science education, pages 224–228.
ACM, 2010.

[2] Fei Cao, Dabin Ding, and Michelle Zhu. Engaging students in parallel and
distributed computing learning by games design using unity. Poster paper
at EduHPC-18: Workshop on Education for High-Performance Comput-
ing, Dallas, TX, Nov. 2018.

[3] Maria Charles and Karen Bradley. A matter of degrees: Female under-
representation in computer science programs cross-nationally. na, 2006.

95

[4] J McGrath Cohoon. Toward improving female retention in the computer
science major. Communications of the ACM, 44(5):108–114, 2001.

[5] Blender Foundation. Home of the blender project - free and open 3d
creation software. https://www.blender.org/.

[6] Tracy Fullerton, Janine Fron, Celia Pearce, Jacki Morie, et al. 11 getting
girls into the game: Toward a “virtuous cycle”. 2008.

[7] Mark Overmars. Teaching computer science through game design. Com-
puter, 37(4):81–83, 2004.

[8] Marina Papastergiou. Digital game-based learning in high school com-
puter science education: Impact on educational effectiveness and student
motivation. Computers & Education, 52(1):1–12, 2009.

[9] Kathryn T Stolee and Teale Fristoe. Expressing computer science con-
cepts through kodu game lab. In Proceedings of the 42nd ACM technical
symposium on Computer science education, pages 99–104. ACM, 2011.

[10] Unity. https://unity3d.com/.

[11] Brenda Cantwell Wilson and Sharon Shrock. Contributing to success in
an introductory computer science course: a study of twelve factors. In
ACM SIGCSE Bulletin, volume 33, pages 184–188. ACM, 2001.

96

How Learning Works: Applying

Cognitive Psychology Theory to

Computer Science Course Structure∗

Conference Workshop

Jennifer McKanry, Gretchen Haskell, Dasha Kochuk
Center for Teaching and Learning
University of Missouri – St. Louis

St. Louis, MO 63121
{mckanryj, haskellg, kochukd}@umsl.edu

Many traditional teaching strategies, such as lecture, can be made more
effective by incorporating active learning strategies derived from cognitive and
educational psychology research. Understanding the basics of how learning
works can help restructure your class to take advantage of your students’
strengths. Additionally, you can build in homework exercises that have been
shown to be far more effective in helping students learn than rereading and
highlighting. In the following paragraphs a few of these concepts will be de-
scribed.

The human attention span in a lecture environment deteriorates after ap-
proximately ten minutes. By incorporating active learning and movement into
a class at regular intervals you can effectively reset this attention clock. You
can also stimulate neuropathways through the idea of retrieval practice (testing
effect). This involves asking your students, in low-stakes ways, to recall infor-
mation without resources. Even if they are incorrect, this will build stronger
pathways to the information that have been shown to develop longer term re-
tention. Examples might include quizzing or writing of a one-minute paper
where students recite everything they remember on a topic. This will also help
them space out their studying (distributed learning) which is a more effective
learning strategy than cramming. Problem based learning is also a very effec-
tive way to promote deeper learning by students. This involves giving students
a unique problem to solve prior to explaining to them how they should solve it.
This struggle helps students have more motivation to solve the problem and

∗Copyright is held by the author/owner.

97

understand the logic behind the solution. Struggle, while uncomfortable for
students, is a very effective learning tool and makes learning more “sticky”.

Finally, the strategy of introducing application examples before theory.
While traditional lecture introduces theory before showing examples of ap-
plication, this is actual not the best way for students to learn. Students do
not know how to store or encode theory presented out of context, therefore,
they remember far less. However, when an application example is presented
first, students then have a context in which to place the theory when reviewed.
This short list is only a brief example of the simple steps that can be taken to
adjust courses to improve student outcomes.

References

[1] Susan A. Ambrose, Michael W. Bridges, Michele DiPietro, Marsha C.
Lovett, and Marie K. Norman. How learning works: Seven Research-based
Principles for Smart Teaching. Jossey-Bass, San Francisco, CA, 2010.

[2] Peter C. Brown, Henry L. Roediger III, and Mark A. McDaniel. Make It
Stick: The Science of Successful Learning. The Belknap Press of Harvard
University Press, Cambridge, MA, 2014.

[3] Joshua R. Eyler. How Humans Learn: The Science and Stories behind
Effective College Teaching. West Virginia University Press, Morgantown,
WV, 2018.

98

CyberReady StL Curriculum: Tutorial,

Best Practices, and Results from Initial

Deployment∗

Conference Workshop

Rebecca Dohrman1, Paul Gross2, Steve Coxon3,
Chris Sellers4, Christi DeMuri5, Robyn Ray4, Dustin Nadler1

1College of Arts and Sciences, Maryville University
2Gross Code and Education

3School of Education, Maryville University
4Jennings High School
5Ritenour High school
St. Louis, MO 63144

{rldohrman,scoxon,dnadler}@maryville.edu

This workshop will walk participants through the development and recent
deployment of the CyberReady StL curriculum which is built on the Raspberry
Pi platform to introduce students to the basics of coding in Python, the Rasp-
berry Pi platform (with SenseHat), and networking in order to help students
be more cyberready and to prepare them for subsequent computing curricula
(i.e. CyberPatriot). The tutorial will be presented by a team of researchers
from Maryville University, a computing expert who was on the development
team for the curriculum, and three educators who deployed the curriculum in
the Fall 2018. The team will talk through results from the pre- and post- tests
about attitudes related to computing as well as cyberreadiness skill.

∗Copyright is held by the author/owner.

99

Introduction to Cloud-Based Machine

Learning∗

Conference Workshop

Saty Raghavachary, Jeffrey Miller
Computer Science Department

University of Southern California
Los Angeles, CA 90089

{saty, jeffrey.miller}@usc.edu

Machine Learning (ML) is transforming society in fundamental ways. From
recommendation engines to self-driving cars to e-commerce to voice-driven per-
sonal assistants, they are seemingly ubiquitous. There is a huge demand, from
students across multiple disciplines (including non-CS, non-technical ones, such
as business, music, health, law), for courses that introduce them to the funda-
mentals of ML. This tutorial aims to get participants started on ML, using a
mix of lecture and hands-on examples.

In this tutorial, we will present the basics of machine learning, focusing
on neural networks, and walk the attendees through two complete machine
learning examples: a basic one that uses just three binary inputs to train a
small network coded from scratch, and another one that uses the expressive
Keras library to create and train a model to learn to identify cats and dogs
from a dataset of input images, and use the results to have the model classify
new images.

The tutorial should be of interest to colleagues who are considering de-
veloping a beginner ML course, or incorporating small ML projects into their
existing courses. We will use Google’s ‘Colab’ for our two examples - Colab is a
powerful ‘cloud’ engine that is GPU-enabled for accelerated computing, and is
available via just a standard GMail/GDrive account. Attendees will learn the
fundamentals of machine learning, specifically the use of neural networks for
training and classification; use of Colab via a standard web browser, to launch
ML projects on the Google cloud; use of ‘Jupyter’ notebooks (‘computable
documents’) to house code as well as related text and images.

The tutorial is expected to last 60-90 minutes.

∗Copyright is held by the author/owner.

100

SASS

(Syntactically Awesome Style Sheets)∗

Conference Tutorial

Jane O’Donnell
Department of Computer Science

Multimedia and Web Design Program
St. Charles Community College

Cottleville, MO 63376
jodonnell@stchas.edu

SASS is an easy-to-use open source styling language that helps reduce the
repetition and maintainability challenges of traditional CSS. SASS allows you
to scale styles when working on big web development projects, making it faster
and more efficient to write reusable styles from scratch for smaller projects.
SASS is a preprocessor scripting language that compiles into Cascading Style
Sheets (CSS) using a GUI compiler app many of which are open source. Like
object-oriented languages, SASS uses variables, nesting, mixins and functions
to write reusable styles. Once completed the SASS file is then translated into
a CSS file using a compiler.

Participants in this tutorial will be presented with the basic syntax of SASS
using a simple web editor Notepad++ with an introduction of a variety of SASS
open source compilers including Koala. When the SASS Script is interpreted
by the compiler, the resulting CSS will be applied to a web page.

References

[1] Hampton Catlin, Natalie Weizenbaum, and Chris Eppstein. SASS. https:
//sass-lang.com. Retrieved January 17, 2019.

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

101

[2] Ethan Lai. Koala. http://koala-app.com/. Retrieved January 17, 2019.

[3] Taisiya. 10+ best tools and resources to compile manage SASS, LESS,
and Stylus – CSS preprocessors. https://graygrids.com/best-tools-

resources-compile-manage-sass-less-stylus-css-preprocessors/.
Retrieved January 17, 2019.

102

Easy Handwriting Recognition∗

Nifty Assignment

Eric D. Manley, Timothy Urness
Department of Mathematics and Computer Science

Drake University
Des Moines, IA 50311

{eric.manley,timothy.urness}@drake.edu

Abstract

In this assignment, students create a GUI which allows the user to
draw handwritten digits using a mouse and then attempts to recognize
the character using a CS1-accessible machine learning algorithm. The
assignment can be used to emphasize file input, 2D lists/arrays, and/or
GUIs. The assignment is nifty because it uses real data with a simple
algorithm to achieve compelling results for a familiar application.

1 The GUI

The students create a GUI consisting of a canvas which responds to click-
move mouse events by changing the color of the canvas pixel and capturing
the corresponding entry in a 2D-List of 0s and 1s, a button which runs the
prediction algorithm, and a label to display the algorithm’s guess. The example
GUI in Figure 1 was made using the Python tkinter module, though any GUI
with a similar canvas (and any programming language) will work.

2 The Data

The user’s drawing is compared against a set of handwritten digit samples
from the well-known MNIST database [1], which have been reformatted for
CS1-accessible reading. We converted the data from grayscale to black and
white for easier comparison, reduced the number of samples (from 60000 to
2000), and converted it from binary to a comma separated values (csv) file

∗Copyright is held by the author/owner.

103

Figure 1: The GUI and Data

where every 29 lines consists of a line with the digit represented and then
28 lines representing the rows in the 28x28 pixel image (see Figure 1). The
resulting data set has an easy-to-understand format, where the handwritten
characters can be seen visually in the 0s and 1s, and students see immediately
how it should be read in as 2D-lists.

3 The Prediction Algorithm

Students write prediction code as follows:

• Create a function computes a similarity score between the drawing 2D
list and a sample from the data set. You can simply count the number of
pixels that agree or weight some more heavily than others (e.g., 5 points
for black pixel agreement, 1 point for white). As an optional extension,
students can be given the freedom to experiment and define similarity in
any way they choose.

• Loop through each of the samples in the data set, compute the similarity
between that sample and the drawing, and keep track of the sample with
the best similarity score. The digit corresponding to the best similarity
score is then displayed as the prediction.

104

This algorithm is a variant of the K-nearest-neighbor (KNN) machine learning
algorithm with k = 1 and a custom similarity function. Other variations of
KNN are known to perform very well on this data set [1].

References

[1] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST
database. http://yann.lecun.com/exdb/mnist/.

105

Streaming TV Services∗

Nifty Assignment

Kendall Bingham
School of Computing and Engineering
University of Missouri - Kansas City

Kansas City, MO 64110
binghamkl@umkc.edu

Abstract

Cutting the cord has become very popular in the last few years. With
so many choices streaming TV services with multiple packages how does
a consumer know which is the best value for their viewing habits? This
assignment allows students to create a program to find the best streaming
service for a user.

1 Student Skills

This was a CS101 program given about 3/4 of the way through the semester
in Python:

• Reading Files, in this example .csv files were used

• Dictionaries

2 Input Files

There were 4 types of files given for their project. Some types consisting of
multiple files. For instance ProviderName.csv has a csv file for each provider,
so there could be dozens of this type of file.

1. Provider.csv: contains all the providers, prices, and the name of the csv
file that contains the channels that provider carries.

∗Copyright is held by the author/owner.

106

2. {ProviderName}.csv: one for each provider name, simply has all the
channels for that streaming service.

3. shows channel.csv: list of TV shows with the channel that it airs new
episodes on. We don’t cover re-runs.

4. {username}.csv: multiple user files are provided to test with. These
contain shows they like to watch with an associated weighting. The
higher the weighting the more important the show is to the user.

3 The Output

This assignment had 2 parts; Cost Per Channel, and User Weighted Choice.

3.1 Cost Per Channel

For this output they only needed to read the provider file for name, price, and
quantity of channel to calculate the cost per channel, sorted from low to high.
Figure 1 shows the Cost Per Channel output.

Figure 1: Cost Per Channel

3.2 User Weighted Choice

The second part of the assignment was somewhat more challenging. The pro-
gram asked for an input file of a user’s favorite show and a weighting. The
higher the weight, the more important the show was to that person. Each
streaming service score would be the sum all the weights of shows that they
carried.

107

For instance, if we have 2 Providers; Sling and DirectTV. The user likes a
couple of shows that we’ll call Apples and Bananas. Apples is something they
like to watch, but don’t need, so they weighted it a 1. Bananas is as show
they cannot miss, so they weighted it 5. Sling has Apples, but not Bananas,
DirectTV has Apples and Bananas.

SLING = 1

DIRECT TV = 6 = 1 + 5

The output is then sorted by the cost per point as shown in Figure 2.

Figure 2: Cost Per Point

4 Conclusion

Most students found it to be a fun and relatable assignment. The difficulty
of the assignment is easily modified as well. If the data structures are too
complex, then combining some of the information into 1 or 2 files would work.
The algorithm and methods can easily be tweaked to fit other languages or
lessons. The large number of records can be intimidating to students, it would
be advised to include a smaller subset for students to get a familiar with.

4.1 Student Feedback

The assignment was very well received by the students 58%, rating it as one
they liked. These were some of the more interesting student quotes.

Awesome introduction to data structures. -Anon

108

I like this program .it was my favorite -Anon

I felt like this program was a little to easy... -Anon

very difficult -Anon

The original assignment and files can be found at the following repository:
https://github.com/kbingham-umkc/StreamingTVService

109

Applying Asymmetric Encryption

Algorithm Using Kryptos∗

Nifty Assignment

Imad Al Saeed
Computer Science Department

Saint Xavier University
Chicago, IL 60655

773 298-3393
alsaeed@sxu.edu

Abstract

This assignment is for a course on Cybersecurity, for students with
no prior knowledge with Cryptography (most interested in assignments
for CS1-CS2). The course instructor explains the Asymmetric Encryp-
tion Cryptography concepts as solutions for the key distribution to the
students. Also, the course instructor explains how the Public Key Cryp-
tography gives another way to communicate privately without having
to share secret information prior to the communication. The instructor
provides the students with the following link to download the Kryp-
tos software https://tinyurl.com/yxdr997w. Students should down-
load Kryptos version (2.0) (Figure 1) as the newer version may not work
on their systems.

1 General Scenario

Students should pair with a classmate and send each other encrypted messages
using a program called Kryptos. Both students should follow the same steps
and use the same algorithms and parameters to generate their keys (Public
and Private Keys).

One student should be a sender and the second one should be a receiver.
Both students should use RSA (Rivest–Shamir–Adleman) as one of the first

∗Copyright is held by the author/owner.

110

Figure 1: Kryptos Software

public-key cryptosystems used for secure data transmission and SHA-1 (Se-
cure Hash Algorithm 1) algorithm to generate their public and private keys.
Students have to name their key file as Lastname Key and save it under their
working folder. Students should send the public key file to each other via email.
Upon receiving the public key via email, each student can send encrypted mes-
sages to each other over a public channel (the Internet). Each student should
load his/her partner’s encrypted message file and the public keys file to Kryptos
software.

2 Assignment Setup

Part 1: Generating Public and Private keys
First, students should create a working folder and name it (Asymmetric -

Encryption). Second, students should start a Kryptos program and set the
Status parameter to “Sender”, Operation parameter to “Public key encrypt”,
Algorithm parameter to “RSA”, “No padding”, and “SHA-1”, and the Algo-
rithm parameter should be left as is (using the defaults setting). Regarding to
the Key parameter, students should select “Set Key”, click on the “Generate

111

Key” from the pop-up menu, and then click on “Save key”. Students should
name the key files as Lastname Key and save it under the Asymmetric En-
cryption folder. The program will generate two keys (Public key and Private
key) named as Lastname Key.private and Lastname Key.public located under
the working folder. Finally, each student should send only a public key file
(Lastname Key.public) to each other via email.

Part2: Message Encryption Process
Each student should use their partners public key that he/she received via

email to encrypt his/her message as follows: First, each student should use the
Notepad program to create a text file. Each student should write a message in
that text file and save it as Lastname Plain.txt. Second, each student should
repeat the exact same steps mentioned in step 1 including the parameter and
algorithms until Generating Key step. At the Greater Key, students should
load his/her plain text file and the public key file that he/she received from
his/her partner and select “input file” to load the plain text message file and
select “New” for the output File and name it as Lastname Cipher.enc. Finally,
students should hit GO. The new encrypted message file will be saved inside
the working folder. Each student should send his/her encrypted file (Last-
name Cipher.enc) to his/her partner.

Part3: Message Decryption Process
After the partners receive the encrypted message file from each other,

he/she should use his/her own private key to decrypt the encrypted message
using the Kryptos software by setting the Status parameter to “Receiver”, Op-
eration parameter to “Private key decrypt”, Algorithm parameter to “RSA”,
“No padding”, and “SHA-1”, and the Algorithm parameter should be left as
is (using the defaults setting). Regrading the Key parameter, students should
select “Set Key”, then click on the “Load Key” to load the “Private Key” and
set the Mode parameter to ECB. Regarding the Input/Output parameter, stu-
dents should choose the encrypted message file that he/she received from the
partner for input and choose a new one for the output file. Finally, students
should hit GO. The original decrypted message will be found in the working
folder as a plain text file. Partners should collect and zip their working folder
and send it to their instructor for grading.

3 Assignment Summary

112

Summary This assignment explains the use of the Asym-
metric Encryption Cryptography. Students
will communicate secretly using Public Key
algorithm using a software called Kryptos.

Topics Applying Asymmetric Encryption algorithm
using Kryptos.

Audience This assignment is for a course on Cybersecu-
rity, and for students with no prior knowledge
with Cryptography.

Difficulty This is a low to intermediate level assignment,
taking 1 week for a (CS1 - CS2) student.

Strengths This is a very interesting assignment for stu-
dents who are interesting to learn about Cy-
bersecurity. It is easy and fun to do. Students
like this assignment very much.

Weaknesses The learning curve for using the Kryptos soft-
ware. Students need some time to learn it and
become familiar with it.

Dependencies Students should understand the general con-
cepts of Asymmetric Cryptography before
they can do this assignment.

Variants Because there are quite a few encryption soft-
ware, Kryptos was chosen as a nice and easy
tool for students to implement what they
learned about Public Key Cryptography.

113

Building A Memory Reading Circuit∗

Nifty Assignment

Bin Peng
Department of Computer Science and Information Systems

Park University
Parkville, MO 64152

bpeng@park.edu

1 Assignment Description

This assignment is for an undergraduate Computer Architecture course. Stu-
dents are required to build a sequential circuit to simulate memory reading.
Before this assignment, students have studied combinational circuits and se-
quential circuits such as adders, multiplexers, memory cells, and ripple binary
counters. Students have also practiced building simple combinational and se-
quential circuits in Logisim[1], a well-known graphic tool for designing and
simulating logic circuits. The purpose of the exercise is to combine knowledge
of digital circuit components and ROM to create a memory reading circuit,
which is an essential part of a computer.

This circuit will read a block of data out of a memory device and display
the data on a user terminal. The block of data will be a string of ASCII
characters. The characters are hardcoded into the memory device during design
time. Memory addresses will be generated automatically using a counter. The
students design proper control logic to have each character read out of the
memory device sequentially and displayed. The memory device is simulated
using a Logisim ROM component. The user terminal is simulated with a
TeleTYpewriter (TTY) in Logisim.

Students are given the following instructions:

1. Pick a string with at least 35 characters (could be more than one sen-
tence). The character count includes spaces and punctuation.

2. Decide the minimal number of address bits (n) needed to address each of
those characters. n will be the data bits attribute of the counter as well
as the address bit width attribute for the ROM component.

∗Copyright is held by the author/owner.

114

3. Encode the string in ASCII and express the values in hexadecimal.
4. Enter those ASCII values in the ROM component in Logisim. If there

are still unfilled cells in the ROM, fill in space characters.
5. Build the circuit in Logisim. The basic connection is from the n-bit

counter to the ROM, and then to the TTY. The data output of the
ROM device needs to go through a bit selector to only let the lower 7
bits into the TTY. Both the counter and the TTY need a clock signal.
The string should be displayed in the TTY character by character.

6. Add an On/Off button to turn on/off the circuit. This is to simulate
the power button of a computer. The button is off initially. The ROM
and the TTY should be enabled when the button is poked once (On)
and then disabled when the button is poked again (Off). When a TTY
is disabled, it should not accept any data for display (though previously
displayed characters will remain on screen). Additional wiring plus basic
gates like AND, NOT gates may be used.

7. For extra credits, set up the circuit so it will clear the TTY display and
reset the counter back to 0 with some action(s) of the On/Off button.

Figure 1: A Memory Reading Circuit

Figure 1 shows the basic circuit. This circuit uses those Logisim compo-
nents: counter (the component with a label of “ctr” in Figure 1), ROM, bit
selector (the component with a label of “Sel”), and TTY. A few optional com-
ponents are included in this circuit: an 8-bit output data pin (the component
labelled “x8” which connects to the ROM) to display the ROM output in bi-
nary, two Hex Digit displays to display the ROM output in Hexadecimal, and
a splitter (the component directly connects to the two Hex digital display) to

115

split the 8-bit output of the ROM into the higher 4-bit and the lower 4-bit for
the Hex displays. Students are expected to use the Logisim Documentation to
figure out how to use those components. Students have used those components
in previous assignments: clock, constant, button, JK flip-flop, and basic gates.

2 Additional Ideas

For an advanced class, the instructions may be further simplified to let students
figure out the interconnection.

The Logisim counter component may be replaced by a synchronous counter
built by students. In the author’s class students built a 4-bit synchronous
counter in a previous assignment. That circuit could be extended to an n-bit
synchronous counter and then used in this circuit as a sub-circuit.

This assignment may be altered to build a memory writing circuit. With the
Logisim keyboard component, the circuit may accept user input, echo display
on a TTY and store the input in a RAM device.

References

[1] Logisim. http://www.cburch.com/logisim/index.html. Retrieved
November 25, 2018.

116

Geospatial Data Handling∗

Nifty Assignment

Saty Raghavachary
School of Engineering

University of Southern California
Los Angeles, CA 90089

saty@usc.edu

1 Description

The goal of the assignment is to get students to think about geospatial data
- how they could generate such data using their smartphones, represent the
data using a simple, capable, and widely-used, text-based ‘KML’ file format,
and easily visualize the data on Google Earth. Further, it shows students how
they can process (query) the data they collected (eg. find the nearest location
in their sampled data, to another one; compute the enclosing ’convex hull’
for their data collection), and visualize the query results and the hull, also
using KML and Google Earth. This exercise empowers students to be able
to handle any other type of geospatial data in the future, and even use their
own plotting schemes (colors, symbols ...) to visualize spatial data; it also
provides a platform for them to perform more powerful spatial data queries in
the future, via library calls in Python or R.

The assignment appears to satisfy the various items in the ‘niftyness’ check-
list that is on the Nifty Assignments site (http://nifty.stanford.edu/) -
specifically, the assignment is:

• ‘fun’, visual
• doable by a variety of students
• extensible by students in multiple ways
• easily adoptable by instructors
• modifiable by instructors

∗Copyright is held by the author/owner.

117

I have been using this assignment for 4 years (8 terms) now, it is consistently
a student favorite. Students like that it is hands-on, useful/relevant, engaging
and open-ended, so they enjoy working on it.

2 Materials

There were 4 types of files given for their project. Some types consisting of
multiple files. For instance ProviderName.csv has a csv file for each provider,
so there could be dozens of this type of file.

• smartphone (to obtain latitude/longitude (‘lat,long’) coordinates, at sam-
pled locations)

• a simple KML starter file (XML format) that is used to represent the
sampled (lat,long) coordinates

• Google Earth
• free spatial database software (Oracle+Oracle Spatial, Postgres+PostGIS,

MySQL, or QGIS)

3 Metadata

118

Summary The assignment asks students to sample spatial data using
their smartphone (locations of campus buildings, eateries
etc.), visualize the collected data on Google Earth, write
simple spatial queries, and visualize the query results also
on Google Earth. The spatial queries consist of the follow-
ing: computing the convex hull of the sampled locations;
finding the three nearest neighbors of a chosen location.

Topics Spatial data collection, representation, querying, SQL, vi-
sualization.

Audience CS1/CS2 students. CS1 students can do data collection
and visualization, and do simplified query processing with-
out needing database software, and results visualization;
CS2 students would use a spatial database program (eg.
Postgres) for the query part, using simple SQL syntax.

Difficulty Easy (CS1)/intermediate(CS2). The difficulty level would
vary (easy vs medium difficulty), depending on whether
spatial querying (eg. finding the nearest neighbor of a given
location) is done ‘by hand’, or by using database software.

Strengths The assignment would provide students, exposure to the
vast, colorful world of geospatial information - it does so
using simple, active-learning steps that turn the students
into data creators, analyzers and also consumers. It is an
easy on-ramp to the exciting, relevant and useful field of
data science.

Weaknesses The assignment is specifically focused on geospatial data,
some students (and instructors) might not have a fondness
for this type of data [or about data processing].

Dependencies None, beyond what the assignment asks to download and
install (Google Earth, possibly Postgres - both are free,
multi-platform and easy to install).

Variants After doing the assignment, interested students can use this
as a starting point to do much more - connect to a cloud
database, create interactivity for end users, write a smart-
phone app that does similar queries, collect much more
data and do more complex queries, utilize open-source map
software for more advanced visualizations, etc. Likewise,
instructors can modify the assignment in multiple ways,
eg. have students analyze locations of supermarkets and
fast-food restaurants, study the distribution of schools in
surrounding communities, do other types of visualizations,
make the data collection process simpler via a button click,
etc.

119

An IoT Assignment Sequence∗

Nifty Assignments

Bill Siever
Computer and Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

bsiever@gmail.com

Internet-of-Things (IoT) is still an emerging area with few formal curricular
materials. Developing IoT assignments can be challenging for a variety of
reasons: a) it spans many topics; b) students may not be prepared for the
variety of technologies used; and c) students may not be prepared to develop
complex systems. This presentation will detail an assignment sequence used in
a lower division IoT application development course. The course is accessible
to sophomores who have taken both CS1 and an introduction to computer
engineering. It exposes students to IoT application development via modules
on six major facets of IoT applications: 1) Intro. to IoT and user interface
(UI) principals, 2) UI Behavior, 3) embedded systems, 4) cloud services, 5)
multi-device interactions, and 6) mobile app development. Each module has
multiple in-class exercises and one out-of-class assignment. The assignment
structure presented here may be useful for other IoT courses/projects, software
engineering courses, or capstone projects.

The approach is based on refinements from multiple offerings of the course
and by existing literature, especially [1, 2]. Classes meet twice a week. The
first weekly session is an active learning exercises, where students work collab-
oratively on new content. The second is devoted to short lectures, quizzes, or
assignment assessment.

The assignment sequence was intended to provide a model for end-to-end
development of a real-life IoT application. The assignments focus on two smart
home applications: a smart light is developed during in-class exercises and a
IoT garage door is developed via out-of-class assignments. The course culmi-
nates in a project intended to review the end-to-end development process.

∗Copyright is held by the author/owner.

120

Module Topics In-Class Work Assignment

IoT Intro. &
UI Principals

Design Thinking
User-Stories,
Paper Prototypes,
HTML+CSS,
Responsive Design

Smart Light
UI

Garage Door
UI

UI Behavior

Objects,
Event-Driven Prog.,
Listener Pattern,
JavaScript

Simulated
Smart Light

Simulated
Garage Door

Embedded

Embedded Dev.,
State Machines,
Timers/Async,
IoT Safety,
C++

Non-IoT
RGB Light

Non-IoT
Garage Door
Control

Cloud

Cloud Connectivity,
Publish-Subscribe,
HTTP Protocol,
Cloud Services

IoT RGB Light,
Cloud Services

IoT
Garage Door

Device-to-
Device

Sequence Diagrams,
More Cloud
Connectivity

Cloud Services
IoT
Garage Door &
Smart Remote

Mobile-
Apps

Responsive Design,
Cordova Framework

RGB Light App Garage Door
App

References

[1] Valerie Galluzzi, Carlotta A. Berry, and Yosi Shibberu. A Multidisci-
plinary Pilot Course on the Internet of Things: Curriculum Development
Using Lean Startup Principles. In ASEE Annual Conference & Exposition,
Columbus, OH, 2017.

[2] Linda M Laird and Nicholas S Bowen. A new software engineering under-
graduate program supporting the internet of things (iot) and cyber-physical
systems (cps). In 2016 ASEE Annual Conference & Exposition, number
10.18260/p.26192, New Orleans, Louisiana, June 2016. ASEE Conferences.

121

Blended Courses in Computer Science

and Information Systems Education:

Adapting to Changing Educational

Methods and Needs∗

Panel Discussion

Charles Badami, Denise Case, Nathan Eloe, Aziz Fellah,
Doug Hawley, Charles Hoot, Diana Linville

School of Computer Science and Information Sciences
Northwest Missouri State University

Maryville, MO 64468
{cbadami, case, nathane, afellah, hawley, hoot, dianar}@nwmissouri.edu

Education is constantly evolving, requiring the application of new instruc-
tion delivery methods so institutions remain competitive in the changing aca-
demic landscape. Blended courses, a mechanism in which courses have reduced
face to face time while requiring more out of classroom work by students, are
one move towards a more asynchronous educational environment. This panel
will discuss the implementation of blended versions of a variety of courses with
differing mixes of content type from professional development, programming,
and theory. Discussion will center around the activities that were successful
across a number of courses, techniques that were effective in some classes and
not others, and whether a blended format can be successful for courses of all
types (technical, theoretical, and professional), across students of all levels.

∗Copyright is held by the author/owner.

122

Challenges of Mentoring Graduate

Directed Projects: Profession-Based

Learning Through Collaboration∗

Panel Discussion

Ajay Bandi, Denise Case, Nathan Eloe, Aziz Fellah
School of Computer Science and Information Systems

Northwest Missouri State University
Maryville, MO 64468

{ajay, dcase, nathane, afellah}@nwmissouri.edu

Developing teamwork and communication skills in a capstone course (Grad-
uate Directed Projects), and collaborating with real-world clients are essential
components of a profession-based learning framework. However, finding real-
world clients with suitable projects is a challenging task for educators. This
panel will discuss the obstacles and benefits of collaboration with real-world
clients, share experiences, and reflect upon issues from different perspectives.
Special attention will be given to collaboration with real-world clients, running
effective client meetings, assessing individual contribution in group work, and
providing hands-on experience with the latest tools and technologies by follow-
ing agile software methodologies. In addition, the panel will address issues in
teaching such courses.

∗Copyright is held by the author/owner.

123

Papers of the 12th Annual
CCSC

Southwestern Conference

March 22nd-23rd, 2019
Stanford University

Stanford, CA

124

Welcome to the 2019 CCSC Southwestern
Conference

Welcome to the 12th CCSC Southwest Region Conference, held at Stanford
University March 22nd-23rd, 2019. We are delighted to be hosting the con-
ference at Stanford for a second time. We want to welcome both veteran and
first-time attendees to the conference. We have a strong and varied program
planned, but I have always felt that the best part of CCSC is the opportunity
to get to know colleagues in our own backyards and foster new community
connections that can lead to future collaboration, peer mentoring, career de-
velopment, and friendship.

We are proud to feature an outstanding collection of keynote speakers this
year. Dan Garcia of UC Berkeley will give the opening keynote address. Jessie
Wusthoff, the Director of Diversity and Inclusion at Clover Health will share
her expertise on disability and accessibility, and help faculty advance their un-
derstanding and practice of accessibility beyond simple legal compliance. Prof.
Leo Porter of UC San Diego will highlight research results on active learning in
the computer science classroom, and give concrete, readily adoptable sugges-
tions for faculty who want to increase student engagement and learning. Dr.
Mike Erlinger of Harvey Mudd College will share wisdom and lessons learned
from his years at the National Science Foundation, and give practical advice for
faculty on how to utilize NSF programs and funding to enhance their research
and teaching. We are also pleased to welcome Wesley Chun of Google, who will
lead a hands-on tutorial on the use of cloud computing in education. The rest
of our program includes two paper sessions, lightning talks, “birds of a feather”
group discussions, a student poster session, and a tour of the beautiful Rodin
sculpture garden on Stanford campus.

We received 18 research paper submissions this year, and accepted 3 of
them, for an acceptance rate of 17%. Thank you to the dedicated reviewers
who allow us to retain a rigorous and selective process that ensures high-quality
publications.

This conference could not be done without those reviewers, and the other
volunteers on the conference committee. Megan Thomas managed the review
process as Papers Chair. Diba Mizra, Youwen Ouyang, Leo Port, Paul Cao,
and Rick Covington each chaired other aspects of the conference. All of us
were organized by our indefatigable Region Chair Mike Doherty.

Cynthia Lee
Stanford University

Conference Chair

125

2019 CCSC Southwestern Conference Committee

Cynthia Lee, Conference/Panels/Tutorials Chair Stanford University
Megan Thomas, Papers Chair California State University, Stanislaus
Diba Mirza, Authors Chair University of California, Santa Barbara
Youwen Ouyang, Posters ChairCalifornia State University, San Marcos
Leo Porter, Speakers Chair University of California, San Diego
Paul Cao, Lightning Talk ChairUniversity of California, San Diego
Rick Covington, Partner’s Chair California State University, Northridge

Regional Board — 2019 CCSC Southwestern Region

Michael Doherty, Region Chair . University of the Pacific
Dean Nevins, Treasurer/Registrar Santa Barbara City College
Bryan Dixon, Regional Representative California State University, Chico
Angelo Kyrilov, WebmasterUniversity of California, Merced
Colleen Lewis, Past Region Chair . Harvey Mudd College

126

Reviewers — 2019 CCSC Southwestern Conference

Stephanie August Loyola Marymount University, Los Angeles, CA
Bridget BensonCalifornia Poly State University, San Luis Obispo, CA
Kevin Buell . Garmin
Bruce DeBruhl California Poly State University, San Luis Obispo, CA
Bryan Dixon California State University Chico, Chico, CA
Zachary Dodds . Harvey Mudd College, Claremont, CA
Michael Doherty .University of the Pacific, Stockton, CA
Jeffrey Hemmes .Air Force Space Command
Angelo KyrilovUniversity of California, Merced, Merced, CA
Colleen Lewis . Harvey Mudd College, Claremont, CA
Ed Lindoo . Regis University, Denver, CO
Nakai McAddis Northern Arizona University, Flagstaff, AZ
Diba Mirza University of California, Santa Barbara, Santa Barbara, CA
Niema MoshiriUniversity of California, San Diego, San Diego, CA
Dean NevinsSanta Barbara City College, Santa Barbara, CA
Muath Obaidat City University of New York, New York City, NY
Youwen Ouyang . . . California State University San Marcos, San Marcos, CA
Leo PorterUniversity of California, San Diego, San Diego, CA
Megan ThomasCalifornia State University Stanislaus, Turlock, CA
Richert Wang . . .University of California, Santa Barbara, Santa Barbara, CA
Howard Whitston University of South Alabama, Mobile, AL

127

Experience Report: Explorable Web

Apps to Teach AI to Non-Majors∗

Justin Li
Computer Science and Cognitive Science

Occidental College
Los Angeles, CA 90041

justinnhli@oxy.edu

Abstract

We report on the experience of using web apps to teach AI to students
with no programming experience. These apps allow students to explore
methodological limitations and modeling assumptions, and provide them
with algorithmic thinking experience. We conclude with qualitative stu-
dent feedback and general observations about this approach.

1 Introduction

Computational methods are increasingly important across many disciplines in
the physical and social sciences. While many fields simply ask students to
visualize the results of machine learning, other fields have a more substantial
intersection with CS. Cognitive science students, for example, may be inter-
ested in topics such as natural language processing (NLP), human-computer
interaction (HCI), and artificial intelligence (AI). Similarly, economics students
may look at algorithmic approaches to game theory, and urban planners may
want to create agent-based models of sociological phenomenon.

Guest-lecturing to and co-teaching these non-majors present a unique ped-
agogical challenge. Psychology or economics students may have no experience
in programming, and thus lack the prerequisite knowledge to complete tradi-
tional CS assignments such as large coding projects. At the same time, these

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

128

interdisciplinary collaborations are an opportunity to introduce computational
thinking [4] to non-majors. This raises the question of what pedagogical ap-
proaches could be applied to meet the needs of these non-CS students.

This paper reports on our experience teaching cognitive science students us-
ing three custom-built, interactive, “explorable” web apps, including a course
catalog prerequisite extractor, an pattern-matching chatbot, and a Bayesian
network calculator. We deployed these web apps in co-taught and cross-listed
courses between computer science and cognitive science, at both the introduc-
tory and advanced levels. The source code for these apps and their associated
assignments are available on GitHub1, with hosted versions on Heroku2.

These apps present graphical user interface (GUI) that allows the students
to engage in algorithmic thinking and problem solving without writing code.
These apps not only demonstrate the topic under discussion, but with guided
questions, additionally provide three benefits:

1. allow students to discover the limits of a particular approach

2. allow students to examine modeling assumptions

3. provide an algorithmic problem solving experience

Below, we describe how each app operates, a sketch of the associated as-
signments, and how they provide some of the benefits listed above.

2 Course Catalog Prerequisite Extraction

The prerequisite extraction app was originally created for an upper-level, cross-
listed AI course, where only half the students have any CS experience. As part
of the module on NLP and information retrieval, students were given a course
catalog and asked to extract the prerequisites of each course onto separate
lines, as a department code and a course number. Students were allowed to
use any programming language of their choice or, for non-technical students,
to use the prerequisite extraction app. The app must therefore allow students
to manipulate text in a repeatable way without writing code.

To achieve this goal, students use a GUI to specify how the course catalog
should be processed (Figure 1). Students can add transformation rules that
select and split lines of text, as well as insert, delete, and replace words as
necessary. Once the transformations are specified, the app applies them to a
copy of the course catalog, and shows the original course descriptions and the

1https://github.com/justinnhli/ccsc-sw-2019-apps
2https://ccsc-sw-2019-apps.herokuapp.com/

129

Figure 1: The Course Catalog Prerequisite Extraction app interface.

extracted text side-by-side. This provides immediate feedback for students,
who may then modify their transformation rules to fine-tune the extraction.

While students are often quickly able to extract the sentence with pre-
requisites, the details eventually make perfect extraction difficult. Differences
between “CS 101 and 102,” “CS 101 and CS 102,” and “Computer Science 101,
102” force students to create robust sequences of transformations. Other de-
scriptions such as “any CS 100-level course except CS 130” require additional
semantics and data processing to match the required output format. Once stu-
dents are satisfied with their outputs, they are asked to score their “program”
and identify failure cases. The assignment therefore forces students to confront
the variability of language, and to experience the challenges both of creating
algorithms and of evaluating the performance of an AI.

The interactive app and the questions together demonstrate Benefits 1,
2, and 3. First, despite the seeming generality of the transformations, it is
impossible to perfectly extract all prerequisites. Even with a tedious number
of transformations to deal with all wording variations, the rules would still fail
on negations and other edge cases. The accompanying questions on evaluation
further emphasize the limits of such an approach (Benefit 1).

Students are also led to discover misconceptions in their understanding of
the domain (Benefit 2). Through this exercise, they realize that course catalogs
are not as uniform as they might expect, and even minor variations such as
extra commas may cause their programs to fail. For cognitive science students
in particular, this may be their first encounter with the difficulty of NLP.

Finally, although students did not write any code, they nonetheless solved
a problem with algorithmic/computational thinking (Benefit 3). Much like
writing code, students were given the goal of extracting prerequisites, and had
to assemble smaller computational building blocks in the appropriate order
to achieve the desired result. In essence, the app’s GUI provides a domain-
specific language for information extraction, without the potential for syntax
errors and typos. Through this app, non-CS students can get a sense of the
problem solving that programmers engage in.

130

3 Pattern-Matching Chatbot

The pattern-matching chatbot app was originally created for a guest lecture on
the relationship between AI and gender. Mimicking one of the first chatbots,
ELIZA, it simply tries to match each received message against a list of patterns,
and selects a random response from the first matching pattern. The app was
later adapted for a co-taught introductory cognitive science course, as well as
advanced courses in both AI and HCI, both of which were cross-listed. Again,
the majority of students using the app had no CS experience.

To illustrate the operation of the chatbot, the app provides both a chat win-
dow and a textbox where students can edit the patterns and responses. The
patterns are indicated by lines that begin with “@”, while possible responses
are indicated by “%”. The chatbot is also able to match variable text, which
are represented by repeated capital letters (e.g. “XXXXX”) usable in both the
patterns and the responses. Whenever the patterns change, they are dynami-
cally loaded into the chatbot, so students have immediate feedback on how the
new patterns affect the flow of the conversation.

The accompanying instructions for the app depend on whether the students
are absolute beginners or more advanced students. Beginners are simply asked
to modify the patterns to remove the mystery of how chatbots might work. For
advanced students, this app served as a leaping-off point for deeper discussion
of conversational interfaces. By attempting to design a useful chatbot with
this limited architecture, students see how semantics, conversational context,
and even timing may be necessary for human-level language understanding.

The chatbot app demonstrates Benefits 1 and 3. Although it is obvious that
pattern-matching is fragile, students may not be able to articulate the exact
scenarios in which the approach breaks down. By placing students in the chat,
the app allows students to evaluate the effectiveness of the chatbot (Benefit 1).
Advanced students designing chatbots are also forced to consider the effect of
patterns being matched in order, and to structure the patterns to provide both
specific and generic responses. While the pattern-and-response inputs to the
chatbot app are less expressive than that of the prerequisite extraction app, it
nonetheless asks students to consider how computational units work together
to create the desired output (Benefit 3).

4 Bayesian Network Calculator

The Bayesian network app was created for the cross-listed AI course. Bayesian
networks are a graphical model for reasoning about causality and the proba-
bility of occurrence of events. In addition to being commonly used in AI and
robotics, it has also gained traction as a general modeling tool in the sciences.

131

This app allows students to visualize a Bayesian network and calculate
probabilities. Students enter the causal relationships between events and the
conditional probability tables in a textbox, which the app visualizes graphically.
Students can then further specify observations of events or to calculate the
posterior probability based on those observations.

This app demonstrates Benefits 1 and 2. Since students are asked to create
and evaluate a Bayesian model of their choice, they must justify the causal
relationships and the conditional probabilities, which often requires data that
students do not have (Benefit 1). Students are then prompted for cases where
the model gives unintuitive results and to explain the discrepancy — whether
the network fails to model the phenomenon due incorrect causality/probabil-
ities, or if it is their intuition that is faulty. These questions and the app
together provoke students to critique their models and potentially discover
insight about the phenomenon, much as real modelers might (Benefit 2).

5 Qualitative Student Feedback

Student evaluations and feedback over the past three years provide informal
evaluation of these interactive apps as pedagogical tools. For example, in the
reflection component of the assignment, a student wrote that the prerequisite
extraction app provided the “challenge of figuring out what worked and what
didn’t work,” which hints at the algorithmic problem solving required. Another
student described how the “huge amount of variability in how people convey
information which makes it difficult to correctly isolate desired information,”
and that as a result, “coding for information retrieval must be tailored specif-
ically to the corpus.” These comments suggest that the app was effective in
provoking examination of the current limits of the NLP. Similarly, a student
reflected on their Bayesian network and how they “didn’t think about how those
probabilities would interact with each other”, a failure in their model of the phe-
nomenon that led to discrepancies between the prediction and their intuition.
In general, the feedback suggest that these open-ended web apps engaged stu-
dents in critically assessing the AI techniques. Further study may be able to
quantify the effect on student learning compared to other activities.

6 Comments and Conclusion

Interactive pedagogical material is not new. Multiple digital CS textbooks now
contain auto-graded coding exercises, which have been shown to improve test
scores as compared to static textbooks [1]. Others have applied the lab science
paradigm to teach AI, with the goal of increased engagement and providing

132

experiential learning to students [2].
What differentiates the apps in this paper is the focus on non-CS students.

We draw inspiration from “explorable explanations”, online documents that
combine a narrative with interactive “illustrations” [3]. Such documents em-
phasize accessibility to a broad audience by preferring graphical interfaces, and
often explore a combinatorial space where the user can make self-guided dis-
coveries. Although the web apps presented in this paper are designed with
supporting instruction and guided questions for the classroom context, the fo-
cus on accessibility is maintained. Explorable explanations have influenced
other parts of the design of these web apps. All of the apps have textual inputs
(or have inputs directly encoded into the URL), which makes the result easily
sharable for collaboration. The open-ended input of text transformation rules
and Bayesian network structure aims to make discoveries possible, and it nat-
urally leads to discussions of limitations and modeling assumptions. All three
apps are also relatively domain independent, and can by used by non-major
students to engage in computational thinking in their domain of expertise.

To the best of our knowledge, neither explorable explanations nor educa-
tional web apps have received much discussion in the literature. This paper
reported our experience with three different interactive web apps, their design,
their use in coursework, and feedback from students hinting at the learning
outcomes. In our experience, the presentation of CS content to non-CS stu-
dents have benefited from use of interactive web apps that allow students to
explore CS concepts without writing code. We anticipate that as conventions
develop and as supporting frameworks mature, these approaches for non-CS
pedagogy will receive more attention and its benefits more formally studied.

References

[1] Alex Daniel Edgcomb et al. Student performance improvement using
interactive textbooks: A three-university cross-semester analysis. In 2015
ASEE Annual Conference & Exposition, Seattle, Washington, 2015.

[2] Stephanie Elizabeth August. Enhancing expertise, sociability, and literacy
through teaching artificial intelligence as a lab science. In 2012 ASEE
Annual Conference & Exposition, San Antonio, Texas, 2012. ASEE
Conferences.

[3] Bret Victor. Explorable explanations.
http://worrydream.com/ExplorableExplanations/, 2011.

[4] Jeannette M. Wing. Computational thinking. Communications of the
ACM, 49(1):33–35, 2006.

133

Investigating University Student

Desires and Use of Smartphone Privacy

Settings∗

Marina Moore1 and Bruce DeBruhl2
1Political Science Department

2Computer Science and Software Engineering
California Polytechnic State University, San Luis Obispo

{mmoore32,bdebruhl}@calpoly.edu

Abstract

Smartphones provide an abundance of settings to help users control
how their data is used. In this paper, we explore what the expressed
privacy desires are for college-age smartphone users and whether these
are achieved by their settings. To accomplish this, we use a survey
and in-person interviews to learn how people feel about their data being
shared and how they make decisions about their settings. We find that,
in general, people are very concerned with microphone and photo data
and less concerned with location data. However, user actions indicate a
higher concern with location data than microphones or photo data.

1 Introduction

Smartphones have become a ubiquitous part of people’s lives. In our study,
almost all respondents (99.3%) report using their smartphone at least once
an hour. In addition to being tools for communication, productivity, and en-
tertainment, smartphones have the potential to be tools for surveillance [7].
Developers can use the robust data from smartphones to determine users’
whereabouts, habits, and associates. This information allows developers to

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

134

personalize the user experience and improve apps [9] but it also has the poten-
tial for privacy invasions [9] by corporations and law enforcement.

Fortunately, smartphone users can control how their data is used through
their settings [6]. These settings determine which applications have access to
certain data, including location, photos, microphone, and contacts. However,
these privacy settings are only useful if people understand and use them. Al-
though it is possible to create a phone that is private by design, these concerns
are often outweighed by business and usability considerations when creating
default settings [4].

Previously, it was found that when it comes to phone security, people are
most concerned about losing their device, followed by losing data on their
device, followed by abuse [3]. Since privacy focuses primarily on the last of
these categories, people tend to make privacy decisions considering the purpose
of an app rather than looking at how the data can be abused [6]. Previous
research has shown that people’s behaviors do not always reflect the attitudes
they express [10]. Towards these ends, previous research has attempted to
reduce the burden on users to analyze their settings by defining defaults that
more closely match people’s privacy behavior [6].

In this work, we examine if university students understand their phone per-
missions and if their permissions align with their preferences. We hypothesize
that confusing smartphone settings cause a mismatch between user preferences
and behavior. To test this hypothesis we gather data through both a sur-
vey and interviews of students. The survey determines phone usage and data
sharing preferences, and the interview investigates how people make decisions
about their privacy settings.

From our survey and interviews, we make the following observations.

1. When considering photos, contacts, locations, and microphone, people
report being least comfortable with observers accessing their microphone
or photos.

2. When considering friends, employers, companies, and law enforcement,
people report being least comfortable with employers receiving their data.

3. When making decisions about settings, people are the most careful about
giving access to their location.

Comparing points 1 and 3 highlights the mismatch we anticipated seeing.

2 Method

We aim to determine if a gap exists between undergraduate student preference
and behavior in smartphone usage. We do this with a two-stage experiment.

135

First, we survey a large group of participants to learn their data sharing pref-
erences. We then interview a subset of these participants to learn about how
they make decisions about privacy settings. Throughout this work, we focus
on four categories of privacy settings: location, camera, contacts, and micro-
phone. These categories represent a combination of information recorded by
the device and information stored on the device. Additionally, location and
microphone use are among the most common extraneous permissions requested
by apps [8]. To test participants’ preferences we also consider four observer
groups: friends, employers, corporations, and law enforcement. We choose
these observer groups based on common uses and recent privacy cases.

We conduct both the survey and interviews with students at California
Polytechnic State University. We choose students as our audience for multiple
reasons. Primarily we want a group of people intuitively familiar with smart-
phones. College students today grew up with smartphones and technology is
a ubiquitous part of their school and social lives. As of 2015, the university
consisted of 57.2% white students and 85.8% students from California [2]. Al-
though the university demographics are not exceptionally diverse, we believe
our results are still illustrative because demographics have not been found to
be correlated with privacy preferences [10].

Online Survey - After an informed consent screen, survey participants
answered questions about their age, smartphone usage, and data sharing pref-
erences. Age is used to verify if they are in the university age group. For
smartphone usage, we ask if the student owns a smartphone, how frequently
they use their phone, how often their phone is near them, and what apps they
most frequently use.

We state data sharing preference questions in the form “How would you
feel if observer had access to your data category?” The observer categories
are close friends, your employer, a company such as Apple or Google, and law
enforcement. The data categories are location, camera, contacts, and micro-
phone. It is important to note, that mentioning specific companies may bias
the data as people are more likely to trust a named brand [10]. However, we
choose Apple and Google as two of the most admired companies [1] who also
have massive amounts of consumer data. We collect responses using a Likert
scale from very uncomfortable to very comfortable [5].

We advertised the survey to students through popular Facebook pages and
email lists. Respondents entered into a drawing for a gift card as a reward for
participating.

Interviews - At the end of the survey, we asked participants if they
would be willing to participate in a short in-person interview. 42.4% of re-
spondents agreed to participate in the survey, but after filtering for those with
iPhones and scheduling we interviewed 13 people (9.4%). We choose to filter

136

Figure 1: In this figure, we show observer-category combinations as either
comfortable or uncomfortable. Highlighted cells had 75% of responses match
the label.

by OS because a majority of respondents, 81.9%, used an iPhone and restrict-
ing to a single operating system makes the interviews more homogenous. We
note that restricting the population by OS may present bias, however, doing a
Mann-Whitney U test on answers for each user shows no meaningful difference
between Android and Apple users.

In the interviews, we ask participants to walk through their location, cam-
era, contact, and microphone permissions. We ask them to list which apps
have access to their data and how they made decisions to allow these apps to
have access to their data. At the end of the interview, we ask participants
if they have any additional thoughts about their app permissions and if they
plan to change any of their settings.

3 Results

We had 138 respondents to the survey and interviewed 13 of them. Using
these responses, we derive insights about how people feel about their data
being shared and whether this is appropriately reflected in their settings.

Survey - The 138 respondents are all 18-25 year old students who own
smartphones and attend the same university. We test whether smartphone lo-
cation can be a proxy for participant location by asking how often participants
have their phone within 5 feet of their person. 97.9% of respondents report
keeping their phone with them regularly, with 66.7% reporting most of the day
and 31.2% reporting always.

We consider the participant responses using the nominal categories of com-
fortable, uncomfortable, and undecided. Using these labels we analyze the
observer-category combinations on the survey. In Figure 1, we show com-
fortable vs uncomfortable with any results agreed on by 75% of respondents
highlighted in orange. Using this labeling, it is clear that respondents are un-
comfortable with any observers having access to their photos or microphone.
Another combination that is consistently uncomfortable is employers having

137

access to location. The only combinations rated comfortable are friends ac-
cessing location and contacts.

By grouping results by data category, we are able to see that people are most
uncomfortable with photo and microphone access across observers. Location
has the same trend except that people are comfortable with friends having
access to their location. We show these results in Figure 2. From this, we
determine that people are uncomfortable sharing their photos and giving access
to their location and microphone with the exception of friends having access
to location. People are more neutral about sharing their contacts, with people
being generally comfortable sharing contacts with their friends and generally
uncomfortable for other observers.

Interviews - We conducted an extended interview with 13 students. Not-
icable trends in how people make decisions about settings focus on location.
Many students make specific exclusions in their settings based on company
reputation.

Most interviewees mention specific features within apps as being the reason
they allow apps to have access to a category of data or that they agreed to the
pop-up when they felt it was justified. We find that most people allow:

• location for maps or transit;

• photos for social media or messaging;

• contacts for sending money or messaging;

• microphone for social media, video recording, or music recognition/tuner
apps.

Most respondents think about their location settings the most. Despite
this, all respondents have their location services turned on at the operating
system level. All of the interviewees partially use Apple’s “while using” option.
This option allows them to get the features available from location without
constantly sharing their location.

A few respondents specifically forbid certain companies from accessing their
data. Three respondents do not allow Facebook access to contacts, and 2 do
not allow Facebook to see their location. Additionally, people do not allow
Google or social media apps to see their location due to mistrust of the brands.

We find that there is some confusion about what some settings mean, es-
pecially photo read and write. In the settings, photo access is broken into
read and write, but most apps that request photo access request them both at
the same time. One person is not sure what these settings mean, but another
wishes for more granularity in allowing apps to write photos without having
read access.

After going through their settings in detail, some interviewees learned new
information. Four people mention some uncertainty as to why certain apps ask

138

F
igu

re
2:

In
th

is
fi

gu
re,

w
e

sh
ow

p
referen

ces
b
y

d
a
ta

ca
teg

o
ry.

139

for microphone usage. Our survey indicates that people are most concerned
about access to their microphone which is not reflected in how they make deci-
sions about giving microphone access. Three people mentioned specific things
they will change after the interview including location settings and deleting an
unused app. One person planned to go through their settings again after the
interview.

4 Discussion and Conclusion

We find that, in general, students are comfortable sharing their location and
contacts with their friends, but are not generally comfortable sharing other
data. Despite this, the students interviewed report sharing all categories of
data with a variety of companies. This is especially noticeable where many
students are uncomfortable sharing their photos and microphone but share
them nonetheless.

Future Work - In the future, we propose exploring regional and inter-
national differences in privacy behavior by repeating this survey and interview
process. Additionally, repeating the study amongst different age groups could
demonstrate generational differences in smartphone privacy preferences.

References

[1] World’s most admired companies for 2018. http://fortune.com/

worlds-most-admired-companies/. Accessed: 2018-05-24.

[2] Fact book, 2015.

[3] Marian Harbach, Emanuel von Zezschwitz, Andreas Fichtner, Alexander
De Luca, and Matthew Smith. It’s a hard lock life: A field study of
smartphone (un)locking behavior and risk perception. Symposium on Us-
able Privacy and Security, 2014.

[4] Giovanni Iachello and Jason Hong. End-user privacy in human-computer
interaction. Foundations and Trends in Human-Computer Interaction, 1,
2007.

[5] Rensis Likert. A technique for the measurement of attitudes. Archives of
Psychology, 1932.

[6] Jialiu Lin, Bin Liu, Norman Sadeh, and Jason I. Hong. Modeling users’
mobile app privacy preferences: Restoring usability in a sea of permission
settings. Symposium on Usable Privacy and Security, 2014.

140

[7] Alina Selyukh. The FBI has successfully unlocked the iPhone without
apple’s help. NPR, 2016.

[8] Vincent Taylor, Alastair Beresford, and Ivan Martinovic. There are many
apps for that: Quantifying the availability of privacy-preserving apps.
WiSec, 2017.

[9] Omer Tene and Jules Polonetsky. Big data for all: Privacy and user
control in the age of analytics. NW Journal of Technology and Intellectual
Property, 2012.

[10] Allison Woodruff, Vasyl Pihur, Sunny Consolvo, Lauren Schmidt, Laura
Brandimarte, and Alessandro Acquisti. Would a privacy fundamentalist
sell their dna for $1000... if nothing bad happened as a result? the westin
categories, behavioral intentions, and consequences. Symposium on Usable
Privacy and Security, 2014.

141

Less Is More: Assessment and Student

Learning in Computer Science

Education∗

Adamou Fode Made1, Abeer Hasan2

Sharon Tuttle1, David Tuttle1
1Department of Computer Science

{adamou.fode, sharon.tuttle, david.tuttle}@humboldt.edu
2Department of Mathematics

Humboldt State University
{abeer.hasan}@humboldt.edu

Abstract

In this paper, we report on an assessment experiment adding in-class
weekly quizzes in an introductory CS 1 course at a public California
State University campus. Statistical methods were used to test whether
regular assessment of student learning through quizzes leads to better
overall grades. Our results suggest that these additional assessments
produced negative results in every section in which the quizzes were
used.

Key words: Assessments, CS 1, learning improvements, graduation rate,
computer science education.

1 Introduction

The last few decades have seen an enormous growth of interest in CS 1 courses
as well as the development of many languages at the introductory CS 1 level
across higher education. Like many institutions, our institution struggles to
find which computing language will produce the best pedagogical outcomes for

∗Copyright c©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

142

an introduction to computer science course. For the past several years, we have
used a mixture of DrRacket and C++ for our introductory course, which offers
new programmers a smoother introduction to programming concepts before
they get bogged down in the heavy syntax of C++. Our approach is based
on the “How to Design Programs” textbook [4]. Both types of programming
language were taught for precisely 8 weeks.

Although the above mixture has been working relatively well, we have been
continually searching for ways to increase student success and improve first-
year retention rate. One approach has been to introduce weekly quizzes at
the beginning of each weekly lab session, to motivate students to be better
prepared. We were hoping that more frequent assessment will keep students
on task and thereby improve learning. If students were better prepared for
labs, we theorized, they would stay on top of their homework, which would
make them better learners and produce better exam outcomes. The weekly
quizzes are supposed to provide students with feedback consistently and more
accurately, as well as provide a better feel for how the course is going not only
for the students but also for the teacher. Weekly quizzes might also provide
opportunities to close the gap between current and desired performance.

There is a long-standing scholarship research in the literature on ways to
motivate CS students as they begin to learn to program. For example, Peter
Brusilovsky and Colin Higgins [5] argued that the use of web learning man-
agement system (LMS) allows students to gain understanding and mastery of
higher-level programming skills. Others scholars have argued for the necessity
of more frequent assessment, see [1], [2] and [3]. In our case, we chose to use an
old-fashioned pen-and-paper quiz for several reasons. First, it reduces cheat-
ing [5] compared to online take-home assignments. Second, the LMS approach
requires having large computing labs which our school does not have avail-
able. During these quizzes, we do not want the students to worry about the
particulars of a programming environment or be distracted by the computer.
Hence we opted for in-class paper quizzes given every week at the beginning
of their labs where we can focus on particular syntax and other conceptual
matters. Lastly, using an on-paper quiz allows the teacher to give qualitative
and personalized feedback rather than rely on automatic generic feedback.

This paper reports on a comparison of student performance across two
faculty member’s sections of CS 1 with 180 students in the control group and
163 students in the treatment. We aim to answer the following question: “Do
weekly quizzes improve students learnings leading them to achieve a higher
grade”?

143

2 Methodology

2.1 Study participants and course description

Our study took place at a campus of the California State University, a public
university in the United States of America. The study had two groups, a control
group and a treatment group which was given weekly quizzes. Two instructors
taught sections of the CS 1 course across multiple years, some sections in the
treatment and some in the control group, to reduce the effect of the teacher
in the study. Our CS 1 course is open to both a general student audience as
well as to first-year students majoring or minoring in CS. The experiment for
the control group ran from Fall 2014 through Spring 2016 for four semesters,
while the treatment group ran from Fall 2016 through Spring 2018, also for
four semesters. The two instructors used very similar teaching techniques,
used similar syllabi, and are both established in the CS-education field. Both
groups had the same resources available to them, the same written assessments,
and equivalent exams. There were 163 students in the control group and 180
students in the treatment group.

Typically, when students finish their lab-activities, they can stay and work
on their assignments or they can just submit their work for the day. Each lab
session is 110 minutes long, thus there is plenty of time to make room for an
extra assignment. Therefore, nothing was removed from the lab-activities to
accommodate the weekly quizzes. Each quiz is formatted to take no more than
10 minutes of lab time.

In our CS 1 course, we explore the art and science of problem-solving us-
ing the computer as a tool. Course topics include problem-solving, simple
expressions and compound expressions, types of data, syntax and semantics,
function application, design and implementation, introduction to software test-
ing, Boolean operations, Boolean functions, conditional expressions, and some
of the basic structures of computing (sequential, conditional, iterative, and pro-
cedural). Students design and implement several programs, first in DrRacket
and then transitioning to C++. While studying C++ we also introduce the
student to the difference between call by value and call by reference as well as
pointers if time permits.

3 Statistical Data Analysis

Figure 1 plot shows no significant difference in the average test scores or the
course totals between the two groups. In fact, by exam 2, students in the
treatment group (those taking weekly quizzes) start showing either fatigue, or
perhaps were overwhelmed with more work than was necessary. By the time

144

Table 1: Grading weights by assessment category

Control Group Treatment Group

Homework Assignments 25% 25%
Lab Exercises 12.5% 10%

Clicker Questions 12.5% 10%
Two In-Class Exams 15%*2 = 30% 15%*2 = 30%

Final Exam 20% 15%

Table 2: Numerical summaries for the control and treatment groups

Control Group Treatment Group

Sample Size 163 180
Average Exam Scores (79.3, 80.8, 75.4) (78.8, 73.3, 64.9)

Failure Rate (with W’s and WU’s) 25.8% 24.4 %
Success Rate (with W’s and WU’s) 74.3% 75.6 %

Drop Out Rate 11.0 % 9.4%
Success Rate (Pass/Fail) 85.9 % 85.6 %

Figure 1: Comparison Average Exam Score and Course Weighted Total

145

Figure 2: Comparison of Exams for Control and Treatment Group

the students took the final exam, the difference was clear: students who had
more assessment were not doing better as shown by the combined test scores,
see Figure 2. Moreover, Figure 3 shows that the average lab score for the
control group is better than that of the treatment group. Perhaps the extra
10 minutes that was devoted to answering students’ questions was more useful
than the time the students spent doing the in-class quizzes. There is still an
open question to why they performed less on the labs that the quizzes were
supposed to help prepare them on.

We compare the medians of the average exam scores for the two groups
using Mann-Whitney’s Test (Exam scores had an asymmetric distribution and
did not pass a normality test. This is why we decided to compare their medians
instead of their means). The observed difference in the sample medians was
significant with a p-value of 0.0016. The course totals for the two groups were
not significantly different (p-value = 0.089). Note that it does not make sense
to compare the course total for the two groups because they did not use the
same grading rubric. The observed sample difference in the failure rate was
insignificant (the 2-sample proportion test gives a p-value of 0.179). There was
no significant effect for the section or instructor. The main difference between
the two groups was due to the presence and absence of weekly quizzes. All
the scores we compared were out of 100, but due to some extra credits points,

146

Figure 3: Comparison Average Lab and Homework Scores

some students scored above 100 points .

In the course evaluations, students (fewer than 10) made comment regarding
the quizzes. They wanted the quizzes to be graded faster. However, whenever
the quizzes were not return within a week, we made sure that the solution to
the quiz is available before the next assessment. However, it is worth noting
that one student had the following comment: “I prefer to have the assignment
that is about the same material as the weekly quiz due before the weekly quiz,
because I would have found it easier to remember the code for the quiz if I had
used it before hand”.

4 Conclusion

Our quantitative analysis provides evidence that having additional assessment
beyond homework, lab exercises, TurningPoint technology and three exams
in our typical CS 1 course was counter-productive for improving the success
rate in the course. However, there may be mitigating factors. It seems highly
likely that student fatigue with constant probing may have impacted them
negatively. While some students burn out, others improve, and this positive
effect also depends on the amount of time spent on homework. It is seems

147

highly likely that some students did better because they devoted more time
to their homework compared to the pressure of taking an assessment. Other
students may have put more energy in just doing well on the weekly quiz and
neglected their homework. In all of the above cases, instead of increasing the
student passing rate, we have created more problems by increasing students’
frustrations, which may lead some to abandon the CS major or even education
altogether. However, in both cases, other avenues such as tutoring (which is
not currently offered for CS1) could help perhaps increase the graduation rate,
therefore decreasing the course size with fewer students retaking the course. We
believe reducing the drop-out rate is one of the best ways to achieve retention
and a higher graduation rate in the CS program in order to meet the ever
growing demands in the field of computation. Indeed, this paper provides
evidence that Introductory CS is really about inviting and building identity
– computational identity – for each individual student. Assessments that, for
whatever reason, seem overly onerous or pre-professional, will stunt that growth
if it is not already well-established.

References

[1] https://www.ernweb.com/educational-research-articles/

frequent-assessments-student-progress-reduce-pressure-

teachers-teach-test/.

[2] Hasan A. and Ghosh Hajra S. Using oral presentations and cooperative
discussions to facilitate learning statistics. RUME, 2017. http://sigmaa.
maa.org/rume/crume2017/Abstracts_Files/Papers/55/pdf".

[3] Tina Blythe and Associates. The Teaching for Understanding Guide.
Jossey-Bass, San Fransisco, 1998.

[4] Flatt M. Felleisen M., Findler R. and Krishnamurthy K. How to Design
Programs. 2018.

[5] Brusilovsky P. and Sosnovsky S. Individualized exercises for self-assessment
of programming knowledge: An evaluation of quizpack. ACM Journal of
Educational Resources in Computing, 5(3), 2005.

148

