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Foreword
Hello, world! Here is the first journal issue I put together for CCSC. It has

been a pleasure working with John Meinke to learn about CCSC publication
process. John has worked tirelessly for decades as the journal editor and I will
do my best to continue the legacy he had of dedicated service to the community.

I am implementing two major changes in the publication process. First, the
journals will be typeset in LATEX(as this current issue). LATEX allows authors
to typeset their final “camera-ready” copies, which are, then, compiled into a
journal. Therefore, I would prefer that authors submit their final manuscripts
in LATEX. Word docs are acceptable if an author doesn’t want to learn/use
LATEX, in which case a regional editor or I will need to convert the documents
into LATEX. Here is a repository that contains instructions, templates, and
links to learning resources: https://github.com/lubaochuan/ccsc-editor

The second change is to use on-demand printing. You can still get a hard-copy
of the journal through your regional conference or by ordering a copy yourself
on Amazon. This approach reduces paper waste and allows me to fix errors in
a journal after it is published.

I am very excited about my work, but I cannot produce quality journals
without authors contributing to the content. Please continue writing papers
to share your ideas and experiences. The CCSC community depends on you
to stay active and relevant helping all of us perfect our craft.

Baochuan Lu
Southwest Baptist University

CCSC Publications Chair
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Welcome to the 34th Annual (2018)
CCSC Eastern Conference

On behalf of the 2018 CCSC Eastern Conference Committee, welcome to
the 2018 CCSC Eastern Conference and the new Ballston Center at Marymount
University. We hope that everyone gets a chance to explore the greater DC
area and see everything Arlington has to o↵er. We are looking forward to
a great conference this year and are excited about sessions available this for
students and faculty. Whether new or returning to CCSC, we think you’ll find
new and exciting sessions for your field of interest.

In additional to 4 faculty paper sessions this year, we will have 2 student
sessions, and a poster session. This will be our first year trying student presen-
tations. We hope this will be a quality experience for the students to present
and get feedback on their work. We look forward to conferences in a few years
where these students might return as faculty colleagues. The programming
competition this year which will feature both college and high school teams
from around the eastern region which looks to be quite competitive this year.
We will have two wonderful workshops brought to us from the NSF. One on
CyberPaths which aims for diversification and broadening of the STEM tal-
ent pipeline in cybersecurity and one talk on applying and obtaining grants
through the NSF as smaller institutions.

We received 23 excellent faculty papers for double blind peer review and we
were able to accept 12 for presentation at this year’s conference. It was a very
competitive year with an acceptance rate of 52%. Topics this year ranged the
computing gamut including areas from natural language processing, Computer
Science Education, robotics, to email security. The selected papers will be
included in the Journal of Computing Sciences in Colleges.

This year we will have 4 panels and tutorials for the following: Assignments
to Promote Diversity and Accessibility, Creating a culture and environment for
Active Learning Success, Engaging HBCU Faculty in Project-Based Learning
In Silicon Valley, and Using PLCC to implement Java interpreters in a Pro-
gramming Languages course. We hope everyone is able to attend a few of these
over the next 2 days.

This conference could not be done without the volunteers on the conference
committee. I am grateful for their help and experience and continued support
of this conference. As you mingle around the Ballston building please take time
to give an extra thanks to Steve Kreutzer, Helen Wei, Vincent Cicirello, Lauren
Vantalia, Yanxia Jia, Kathy Marcropol, Karen Paullet, Adnan Chawdhry, Dave
Hovemeyer, John Wright, and Donna Schae↵er.

We hope you enjoy the conference and your time in Arlington. Please let
us know how we did and how we could make it better in the future. If you
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are interested in helping out in future conferences by hosting, participating in
the committee or as a paper reviewer, please contact any committee member.
I hope to see you all at the banquet and around DC this weekend!

Nathan Green
Marymount University

Conference Chair
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NSF Grant Workshop⇤

Mark A. Pauley
Program Director, Division of Undergraduate Education

Directorate for Education and Human Resources
National Science Foundation

This workshop is intended for faculty and supporting sta↵ at universities
and community and technical colleges who are interested in obtaining support
from the National Science Foundation (NSF) for curricular and programmatic
initiatives but who are unfamiliar with current funding opportunities and/or
lack grant-writing experience. The workshop will provide an overview of the
programs in NSF’s Directorate for Education & Human Resources that focus
on undergraduate education and cover the basic elements of a good proposal
and strategies that can be used to e↵ectively formulate and communicate ideas
to reviewers and NSF program o�cers. Also discussed will be the mechanics of
submitting a proposal, the review process from submission to award or decline,
merit review criteria, and how to volunteer to become a reviewer.

⇤Copyright is held by the author/owner.
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CyberPaths⇤

Conference Workshop

Xenia Mountrouidou
Department of Computer Science

College of Charleston
mountrouidoux@cofc.edu

The goal of the project CyberPaths is the diversification and broadening
of the STEM talent pipeline in cybersecurity in predominantly undergradu-
ate and liberal arts schools. This is achieved by the creation of a curriculum
that accommodates students of di↵erent levels of computer literacy with focus
on experiential learning. This project mitigates the challenges undergradu-
ate institutions currently face in the cybersecurity area, for example, a tight
computer science curriculum and the inability to support the expensive in-
frastructure required for cybersecurity education. To address these challenges,
first, we attract a diverse population of students by introducing cybersecurity
topics through multiple paths of study and engagement. Students will be in-
troduced to cybersecurity concepts through stand-alone course modules and
laboratory exercises injected in general education liberal arts courses. Inter-
ested students can study further by taking two cybersecurity focused courses
and cybersecurity capstone projects created by this project. Second, we use the
Global Environment for Network Innovation (GENI) infrastructure in the de-
velopment of hands-on labs and the capstone project assignments. GENI o↵ers
an a↵ordable cloud solution to undergraduate institutions that lack the infras-
tructure to support high overhead computer labs. In this talk, I will present
the CyberPaths project and briefly introduce the GENI labs and general ed-
ucation modules that we have developed. Then we will complete a couple of
short GENI labs, starting from “Hello GENI” and moving to a simple “Denial
of Service lab”.

⇤Copyright is held by the author/owner.
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Using PLCC to Implement Java
Interpreters in a Programming

Languages Course⇤

Conference Workshop

Timothy Fossum
Computer Science Department

Rochester Institute of Technology
Canandaigua, NY 14424

tvf@rit.edu

This is a hands-on workshop that introduces participants to the PLCC
compiler - compiler tool set to build Java-based interpreters for languages in
an upper-level programming Languages course. Input to PLCC is a single
specification file defining a language’s lexical, syntax, and semantic structure.
PLCC takes this specification and generates stand-alone Java source files that
implement an interpreter for the language, including a front-end scanner, a
recursive descent parser, and a read-eval-print loop. The specification file de-
fines language tokens using simple regular expressions, language syntax using
straight-forward BNF rules, and language semantics in Java classes correspond-
ing to each of the BNF rules.

This workshop is designed for Computer Science educators who [want to]
teach upper-level Programming Languages or Compilers courses in a CS pro-
gram. Workshop materials will be made available in electronic format: on-line
in advance of the workshop and on a USB stick at the beginning of the work-
shop. Participants are encouraged to install PLCC and related files used in
the Workshop on a laptop prior to attending the Workshop. This material
will be made available through Google Drive or from the Presenter by email
in Zip format. These materials will consist of the PLCC tool set, PDF work-
shop slides, worked-out examples of languages, and a sequence of examples and
problems to be carried out by participants at the workshop itself. Participants
will work through these examples and problems that illustrate, in turn, each
of the essential analysis parts of a language specification: lexical, syntax, and
semantics.

⇤Copyright is held by the author/owner.
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Assignments to Promote Diversity and
Accessibility⇤

Conference Tutorial

Jessica Zeitz and Karen Anewalt
Computer Science

University of Mary Washington
1301 College Ave

{jzeitz,anewalt}@umw.edu

Description

Researchers have long recognized the existence of the racial and gender gap in
the technology field. Increasingly, the discipline is also acknowledging the need
for inclusive access to computer science education. We will present a collection
of assignments related to diversity, inclusion, and accessibility that all com-
puter science instructors can reference. The assignments will be applicable to
many standard computer science courses such as introduction to programming,
data structures, object-oriented design, databases, and software engineering.
The materials will include recommendations for the courses where assignments
would best fit and we will discuss how to incorporate the ideas into commonly
required computer science courses such as introduction to programming, data
structures, and software engineering.

We believe that raising awareness is an essential step toward creating a
more diverse and inclusive environment within the technology field. By posi-
tioning assignments throughout the curriculum we encourage students to con-
front issues of diversity, inclusion, and accessibility within various contexts,
emphasizing that these issues are pervasive in the computing discipline.

In this tutorial, we will provide access to an online repository of assignments
related to diversity, inclusion, and accessibility. We will highlight six of our
assignments which can be used for classroom discussion or oral presentation,
writing assignments, or programming and problem-solving assignments. We
will also provide tips for leading classroom discussions about these di�cult

⇤Copyright is held by the author/owner.
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issues and encourage participants to share experiences from their past courses.
Participants will also be invited to share assignments and experiences within
the online repository that we are compiling.

The intended audience includes faculty interested in raising student aware-
ness of issues in diversity, inclusion, and accessibility within the technology field
and promoting discussion on related issues. Participants will receive copies of
at least 10 assignments that can be integrated into common computing classes
(intro to programming, data structures, software engineering, ethics).

Presenters

Jessica Zeitz is an Assistant Professor of Computer Science at the University
of Mary Washington. She teaches courses in programming, databases, object-
oriented design, and human-computer interaction. She has experience with
diversity e↵orts such as panels and community outreach. She was involved
in a large-scale event introducing computer science to middle school girls for
four years. Her research focuses on human-computer interaction and visual
analytics and her work has been published in the American Educational Re-
search Association, the Consortium of Computing Sciences in Colleges, the
IEEE Transactions on Intelligent Systems Journal and the IEEE Transactions
on Learning Technologies Journal.

Karen Anewalt is a Professor of Computer Science at the University of
Mary Washington. She teaches course in programing, Data Structures, Object-
oriented Design, Networks, Web Programming, E-commerce, Ethics, and Soft-
ware Engineering and has 18 years of teaching experience. Her professional
work focuses on computer science education and pedagogy and has been pub-
lished in the Journal of Computing Sciences in Colleges, SigCSE, and Frontiers
in Education.
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Creating a Culture and Environment
for Active Learning Success⇤

Conference Tutorial

Jesse Eickholt1, Patrick Seeling1, Lisa Gandy1,
Quentrese Cole2, and Matthew Johnson2

1Department of Computer Science
2Department of Educational Leadership

Central Michigan University
Mount Pleasant, MI 48859

{eickh1jl,seeli1p,gandy1l,cole1qt,johns9m}@cmich.edu

Active learning and active learning classrooms have received renewed in-
terest in recent years. Active learning can be broadly considered as any activ-
ity that involves the student in the learning process, requiring that students
think about what they are doing[3]. While the positive e↵ects of active learn-
ing on students’ academic performance and perceived experience are widely
reported[1], there are a number of barriers that have limited greater adoption.
These barriers include limits on faculty time, institutional resources to create
active learning spaces, concerns about student resistance and resentment, in-
structional preferences, and misunderstandings about what constitutes active
learning and related benefits[2][4].

Participants in this tutorial will be presented with many options to over-
come barriers to active learning. These options will span the spectrum in terms
of scope, with some focused on what individual instructors can do and others
looking at sparking larger departmental or institutional changes. Ample time
will be dedicated to discussion of individual concerns, challenges and success
stories. A variety of resources to support active learning will be presented, with
an emphasis placed on economy-based active learning technology and tools. We
will provide participants with an overview of frameworks and tools to convert
existing classrooms into active learning classrooms that support collaboration
and distribution of common artifacts. Specific examples we employ include
artifacts generated by computer science students (such as programs).

⇤Copyright is held by the author/owner.
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Abstract

The growth in Computer Science (CS) program enrollments over the
past decade, combined with an increased recognition of the importance
of computing skills in the global economy, means that educational insti-
tutions have an opportunity to attract an increasingly diverse set of stu-
dents. Despite robust enrollments, students may be entering university
with misconceptions about computing, computing majors, and comput-
ing career prospects, potentially limiting long-term growth in computing
programs. This paper updates the author’s previously published work
by describing a study to elicit perceptions of computing and computing
majors among a set of incoming students. The results suggest that while
students have positive feelings towards computing, computing majors,
and computing-related careers, significant di↵erences exist for socioeco-
nomic and gender groups.

1 Introduction

There has been a significant growth in undergraduate Computer Science (CS)
program enrollments since 2006, with some estimates as high as almost 300%
growth [10]. The increased recognition of computing and computational think-
ing as important skills [4], coupled with the needs of a growing job market,
means that both primary and secondary level educational institutions have the
opportunity and responsibility to construct curricula and recruitment plans

⇤Copyright c�2018 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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that attract a diverse set of students. At the university level, incoming stu-
dents are often perceived as “Digital Natives” who have been widely exposed
to computing technology and are proficient in its use [8]. Access to and use of
computing technology is not uniform, however, and can di↵er based on socioe-
conomic status, gender, and other factors [9]; such access and use can influence
self-e�cacy and academic success ([5],[6]). As a result, initiatives to recruit a
talented and diverse computing workforce are ongoing, ranging from primary
school curricula development to policy advocacy ([7], [11]).

While the positive growth in CS enrollments is encouraging, students may
be entering university with misconceptions about the nature of computing, re-
lated majors, and related career prospects. These misconceptions are often
thought to be formed from a variety of sociological and experiential factors,
including K-12 experiences, demographic factors (e.g. gender, socioeconomic
status), societal norms, and access to information technology. For example,
prior research has suggested that students’ understanding of CS is often lim-
ited, perhaps due to insu�cient career counseling and applications-centric high
school computing curricula ([2],[3]). Reported misconceptions of computing
majors and careers have included social isolation, challenging curricula, and
limited career options, among others ([1],[2],[13]). These misconceptions often
lead to negative attitudes towards and a lack of awareness of computing majors
[4], potentially limiting the ability of university computing programs to attract
and retain students.

The goal of this study was to explore perceptions of computing and com-
puting majors among a set of incoming university students by updating the
author’s previous study [12]. The conceptual model for the study (Figure 1)
recognizes the relationship between a variety of social and academic influences
– e.g. Information and Communications Technology (ICT) access and use,
peers, parents, educators, K-12 education experience – and student percep-
tions of computing and computing majors, filtered through the lens of group
di↵erences (gender, race/ethnicity, and socioeconomic status). The research
questions for this study were: What factors most influence students’ percep-
tions of computing and computing majors? and What group di↵erences exist
in students’ perceptions of computing and computing majors?

2 Methodology

An electronic survey was administered to a set of incoming students at one cam-
pus of a public research university during the 2017 summer orientation sessions.
The survey was constructed based on prior research by the author [12] and a
more recent literature review. Besides basic demographic questions, partici-
pants were primarily asked to respond to a series of Likert-style statements,
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Figure 1: Conceptual Model

using a five-level scale (1=Strongly Agree, 2=Agree, 3=Neutral [Undecided],
4=Disagree, and 5=Strongly Disagree). All research protocols and instruments
were approved by the Penn State University O�ce of Research Protections.

3 Survey Results

A total of 161 students completed at least one question on the survey (78.54%,
N=205). More than half the participants were female (55.33%, n=150). A
majority of participants were 18-30 years old (97.33%, n=148) and White/-
Caucasian (76.00%, n=150). A majority of participants identified as com-
muters (62.00%, n=150) and were not considered first-generation college stu-
dents (73.33%, n=150). In terms of community, 26.00% (n=150) came from
a rural community, 31.33% from suburbia, 40.00% from an urban area (city/-
town), and 2.67% were international students. Household income served as a
proxy measure for socioeconomic status; a plurality of participants (45.83%,
n=144) reported a household income of between $50,000 and $99,999, while
a lesser amount reported household income less than $50,000 (38.89%). The
following sections describe the survey results in light of the study constructs.
Group di↵erences are reported only when statistically significant.
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3.1 ICT Access, Use, and Academic Experience

Participants most often reported using the Internet for more than 10 hours
each week (60.00%, n=160), and most reported having Internet access at home
(85.71%, n=161), at school (66.46%), and via mobile devices (90.68%). Most
participants reported access to a computer in the home (86.34%, n=161) and
at school (61.49%). Access to tablet computers (e.g. Kindle, Galaxy, iPad)
was uncommon; only 35.40% reported having access to a tablet. Most partic-
ipants reported using computers in high school (93.79%, n=161) and middle
school (86.96%). The most common high school computing course reported by
participants was a Microsoft O�ce-style/basic computer skills course (72.67%,
n=161). Other reported high school computing courses included graphic arts,
digital photography, or digital video editing (32.92%) and digital publishing
(5.59%). Only 13.04% reported taking a computer programming course.

3.2 Perceptions of Computing

Most respondents agreed or strongly agreed with the statement Computer
Technology improves our society (69.81%, n=159). The importance of comput-
ing to respondents’ everyday lives was evident; a majority agreed or strongly
agreed with the statement Computer Technology plays an important role in my
everyday life (77.36%, n=159) and with the statement Computer Technology
plays an important role in the everyday life of my friends and family (84.28%,
n=159). Participants were also asked about the relationship of computing
to their future careers. A majority of respondents agreed or strongly agreed
with the statements Employers will expect me to have Computer Technology
skills (77.22%, n=158) and My future career will require me to use Computer
Technology on a regular basis (67.30%, n=159). Respondents overwhelmingly
agreed or strongly agreed with the statement Computer Technology jobs will
increase in the next 10-20 years (86.79%, n=159). See Table 1.

Table 1: Perceptions of Computing Response Summary

Statement n Mean Median SD
Computing improves our society 159 2.09 2.00 0.906
Employers expect computing skills 158 2.02 2.00 0.802
My career will require computer use 159 2.14 2.00 0.938
Computing jobs will increase 159 1.68 2.00 0.774
Computing important in my life 159 1.94 2.00 0.859
Computing important for friends/family 159 1.88 2.00 0.669

Participants were asked to respond to the statement, How would you de-
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scribe your feelings about Computer Technology? with a five-level scale (1=Very
Positive, 2=Positive, 3=Neutral (Undecided), 4=Negative, 5=Very Negative).
A majority responded with very positive or positive feelings (71.07%, n=159).
Significant di↵erences between genders were found for this statement (X2=9.73,
df=4, p < 0.05). Females had a higher mean response (2.33 vs. 1.90), meaning
females were less likely to report positive feelings towards computer technology.

3.3 Perceptions of Computing Majors

A series of statements were used to determine the perceived value of computing
majors and the prevalence of traditional stereotypes about computing. Over
half the respondents agreed or strongly agreed with the statement Comput-
ing majors are di�cult majors (51.57%, n=159), but recognition of the strong
computing career prospects were seen in responses to the statement Students
who are Computing majors are likely to have successful careers. A majority
(63.52%, n=159) agreed/strongly agreed with the statement. A note of posi-
tivity about computing majors (and diminishing stereotypes) was found in the
percentage of disagree/strongly disagree responses to the statements Students
who are Computing majors are more likely to be shy and non-social (49.05%,
n=159) and Computing majors and careers are primarily for male students
(66.04%, n=159). See Table 2.

Table 2: Perceptions of Computing Majors Response Summary

Statement n Mean Median SD
Computing majors are di�cult majors 159 2.50 2.00 0.745
Students likely to be shy and non-social 159 3.45 3.00 0.905
Students likely to have successful careers 159 2.26 2.00 0.750
Computing primarily for male students 159 3.76 4.00 0.984

3.4 Social Influences

Two statements were used to assess the influence of parents and educators
on the perceived importance of computing skills. A plurality of respondents
agreed or strongly agreed (46.88%, n=160) with the statement My high school
teachers and/or guidance counselors stressed the importance of Computer Tech-
nology Skills. However, a plurality of respondents were undecided about the
statement My parent(s) stressed the importance of Computer Technology Skills
(40.51%, n=158). Significant di↵erences between the genders were found for
this statement (X2=10.82, df=8, p < 0.05). Females were less likely to agree
with the statement (M = 3.12 vs. M = 2.72). One-way ANOVA also found
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significant di↵erences between responses to this statement and the reported
household income (F[2, 139] = 3.34, p < 0.05). Post-hoc Tukey analysis indi-
cated that those respondents reporting a household income of less than $50,000
(M= 3.16, p < 0.05) were less likely to agree with the statement than those
respondents reporting income in the [$50,000-$99,999] range (M = 2.72).

Three other statements were designed to assess the influence of parents
and educators on students’ awareness of computing majors. A plurality of re-
spondents agreed or strongly agreed with the statement My high school teach-
ers and/or guidance counselors provided me with information on college-level
Computing majors and careers (41.25%, n=160). A plurality of respondents
disagreed or strongly disagreed (38.99%, n=159) with the statement My par-
ent(s) provided me with information on college-level Computing majors and
careers. One-way ANOVA found significant di↵erences between responses to
this statement and the reported household income (F[2, 140] = 5.79, p < 0.01).
Post-hoc Tukey analysis indicated that those respondents reporting a house-
hold income of less than $50,000 (M = 3.43, p < 0.01) were less likely to agree
with the statement than those reporting income between $50,000 and $99,999
(M = 2.80). Finally, respondents were asked Who among the following people
is the primary influence on your choice of major? The majority reported that
their choice of major was self-directed (70.44%, n=159), followed by family
(17.61%), friends (3.77%), unknown (4.40%), and teachers (1.89%). See Table
3.

Table 3: Social Influences Response Summary

Statement n Mean Median SD
Teachers/counselors stressed skills 160 2.61 3.00 0.991
Teachers/counselors provided information 160 2.91 3.00 1.103
Parents stressed skills 158 2.94 3.00 0.979
Parents provided information 159 3.16 3.00 1.071

4 Discussion and Conclusion

The survey results show that these participants recognize the value of comput-
ing and computing majors, though it is unknown exactly how those perceptions
are developed. As expected, computer and Internet access and use was very
common among the study participants. Students are connected at school, at
home, and on the go, and it plays a large role in their everyday lives and the
lives of friends and family. Somewhat surprisingly, this does not translate into
widespread enrollment in high school computing courses beyond simple MS
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O�ce-style applications courses. Enrollment in traditional CS-related high
school courses (i.e. computer programming) was also very low.

The survey results also show that participants have a positive outlook on
computing. Computing technology is seen as important to daily life, and re-
spondents were very aware of the importance of computing skills for both their
future careers and employment in general. A slight majority see computing
majors as challenging; more importantly, existing stereotypes of computing
students – shy, non-social, and male – are not considered reality among this
population. However, the results involving parental and educator influence
were surprising. While a plurality agreed that teachers and/or guidance coun-
selors stressed the importance of computer skills, a minority of respondents
indicated the same for parents. Males were much more likely to agree that
parents stressed these skills. This gender disparity, coupled with the fact that
females were significantly less likely to report positive feelings towards comput-
ing technology than males, raises concerns that gender-based disparities may
persist. A minority of participants indicated that parents provided them with
information on computing majors, while a plurality indicated that their teach-
ers and/or guidance counselors did the same. Household income was a di↵eren-
tiator when it came to parental influence. Respondents with household incomes
less than $50,000 were less likely than respondents in the $50,000-$99,999 range
to agree that parents provided them with information on computing majors or
stressed the importance of computing skills. Universities should continue to
provide outreach programs to attract and retain lower income and female stu-
dents, though programs which can educate parents of these potential students
about computing majors and careers should also be considered.

The study described in this paper provides some positive evidence that in-
coming students recognize the value and importance of computing, computing
majors, and computing-related careers. The results are limited to a single uni-
versity, but provide a basis for further exploration of both computing-related
perceptions and the factors which may influence their development. The signif-
icant growth in CS program enrollments and the bright future for computing-
related jobs provides universities with an opportunity to attract (and retain) an
increasingly diverse set of students. By understanding some of the perceptions
students have about computing, decision-makers can make more informed deci-
sions about program o↵erings, marketing approaches, and retention strategies.
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Abstract

This paper describes a study designed to measure and compare the
perceptions of computer science (CS) majors with those of other majors
concerning the relative safety of various forms of communication, partic-
ularly electronic mail. The results indicate that, for most media, there
exist significant di↵erences between the perceptions of CS majors and
those of other majors. Similar results are obtained when comparing the
responses of CS majors with those of other majors regarding the im-
portance of considering the identity of the sender when evaluating the
relative safety of incoming email messages. The results suggest the need
for additional training in this area for students in other fields.

1 Introduction

There is a huge market for stolen passwords on the Internet. On February
8, 2018, National Public Radio [8] broadcast a story entitled “The Market for
Stolen Passwords.” The story describes a site on the dark web where passwords
for hundreds of companies are for sale. Passwords are being stolen despite the
best e↵orts of companies to alert their customers to the dangers of phishing
emails. For example, on April 11, 2013, a local bank sent an email to its
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or distributed for direct commercial advantage, the CCSC copyright notice and the title of
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customers warning them about the dangers of phishing emails. Five years later,
on April 18, 2018, the bank sent a similar email to its customers detailing the
dangers of phishing emails. In a similar scenario, our university computing
center sent an email on March 22, 2012, warning faculty, sta↵, and students
about the dangers of phishing emails. Six years later, on April 5, 2018, a
similar email was sent to all faculty, sta↵, and students alerting them to the
university Phishing Awareness Campaign. Yet, despite these types of e↵orts,
people continue to succumb to phishing attacks. Why? Are some people
more susceptible than others? This paper is focused on one group of people,
college students, and whether some students are more susceptible than others
to phishing attacks. In particular, it compares the attitudes toward email
security of non-CS majors with the attitudes of CS majors.

2 Background

Downs, Holbrook, and their colleagues have published two papers looking at
who falls for phishing attacks. For their first paper [4], they interviewed 20 non-
expert computer users to discover their strategies for dealing with possibly
suspicious emails. In addition to answering questions about email security,
the participants were involved in role playing related to email security. The
researchers concluded that people can manage the risks that they are most
familiar with, but don’t appear to extrapolate to be wary of unfamiliar risks.

Four years later, they published their second paper [7], which had 1001
respondents to an online survey. In this paper, they examined the relation-
ship between demographics and phishing susceptibility and the e↵ectiveness of
anti-phishing educational materials. Participants completed a survey followed
by two tasks. The first task was to assess their susceptibility to phishing prior
to receiving one of several forms of training. After the training, participants
completed a second task to assess reductions in susceptibility as well as any
changes in participants’ tendencies to be suspicious of legitimate emails. The
researchers concluded that women are more susceptible than men and partici-
pants between the ages of 18 and 25 are more susceptible.

Dhamija and her associates [3] addressed the question of why phishing
works. They tested their hypotheses in a usability study with 22 participants.
They showed each participant 20 web sites in random order and asked them
to determine which ones were fraudulent and why. They concluded that good
phishing websites fooled 90% of the participants. They also found that 23%
of the participants did not look at the address bar, status bar, or any other
security indicators. The researchers concluded that neither education, age, sex,
previous experience, nor hours of computer use showed a statistically significant
correlation with vulnerability to phishing.
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Herath and her colleagues [5] looked at security services as a coping mech-
anism for dealing with phishing attacks. Participants in the study were all
junior level undergraduate students in a required first-year course in manage-
ment information. Participants were asked to complete two surveys. A total
of 186 subjects responded to the first survey. Two months later, 134 of them
completed the second survey. During the two intervening months participants
were trained to install and use an email authentication service. The researchers
concluded that users’ intention to adopt an email security service is contingent
upon users’ perception of risk. The users’ risk perceptions were found to have
a significant impact on the users’ perception of the usefulness of the security
tool as well as their intentions to use the security tool.

Wang and his associates [9] examined what leads to overconfidence in phish-
ing email detection. They performed a survey experiment with 600 subjects
to collect empirical data for the study. The researchers collected data relying
on the professional survey service company, Qualtrics. Using Qualtrics, they
collected 600 valid responses from 47 States in the US. In the experiment, each
subject judged a set of randomly selected phishing emails and authentic busi-
ness emails. The researchers concluded that overconfidence is quite common in
phishing email detection. Their findings suggest that trainers need to recognize
sources of overconfidence and help devise mechanisms to reduce such bias.

Jensen and his associates [6] added mindfulness training to the traditional
rule-based training to teach individuals to identify certain cues or apply a set
of rules to avoid phishing attacks. The researchers argue that mindfulness
techniques are critical to detecting phishing attacks but are unaddressed in
rule-based instruction. They compared rule-based and mindfulness training
programs in a field study at a U.S. university that involved 355 students, fac-
ulty, and sta↵ who were familiar with phishing attacks and received regular
rule-based guidance. They found that participants who also received mindful-
ness training were better able to avoid phishing attacks than those who received
rules-based training only.

Cordova and his associates have written two previous studies comparing
CS and non-CS majors regarding computer security threats [1] and password
strength [2]. In the study of computer security threats, CS majors were found
to be significantly more aware of computer threats than non-CS majors. In
contrast, when students were asked to rate the importance of passwords in
protecting email security, the study found there is essentially no di↵erence
between the mean responses of CS majors and those of non-majors. However,
when the strength of student passwords was measured, the passwords of CS
majors were significantly stronger than those of non-CS majors.
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3 Project Goals

The aim of this research is to examine the attitudes of college students toward
the security of communication media in general and email in particular. The
objectives of this research are:

• Examine the attitudes of CS majors.
• Examine the attitudes non-CS majors.
• Determine whether CS majors are more aware of the need for email se-
curity than non-CS majors.

4 Methodology

Primary research was conducted via a survey that was administered to stu-
dents in all majors at a regional university. The purpose of the survey was
to gather demographic information as well as information about students’ at-
titudes and behaviors regarding email security. Participation was voluntary,
and no information was collected that could be used to identify any partici-
pant. To encourage participation, all participants were entered into a drawing
using a randomly generated number that was provided to them after they had
completed and closed the survey, to prevent any breach of confidentiality. The
prizes were five $25.00 gift cards. Each participant could only win once.

5 Results

Complete surveys were received from 527 students. Of these, approximately
20 percent were CS majors. Of the CS majors, the majority was male; of the
non-CS majors, the majority was female. There is no graduate program in CS.
Table 1 summarizes the data.

Freshman or Junior or Graduate
Male Female

Sophomore Senior Student
Total

CS Major 93 24 69 48 0 117

Non-CS Major 90 320 125 191 94 410

Table 1: Demographic Information.

The students were asked to rank the relative security levels applicable to
various forms of communication using a five-point scale (1–Not very secure).
A one-way ANOVA test (F(1, 530) = 3.859) was used to determine whether
there were any statistically significant di↵erences between the mean responses
of two groups. The results are summarized in Table 2.
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Communication CS majors Other majors

Media Mean Variance Mean Variance
F value P-value

Email 3.197 1.108 3.507 0.906 9.275 .0024

E-Commerce 3.145 0.660 3.276 0.923 1.814 .1786

Mail 2.957 1.162 3.322 0.971 12.006 .0006

Landline phone 3.000 1.086 3.363 1.191 10.301 .0014

Cellular phone 2.897 1.248 3.190 1.292 6.093 .0139

Texting 2.761 1.356 3.118 1.338 8.678 .0034

Television 3.051 1.359 3.377 1.238 7.681 .0058

Social Media 2.274 1.459 2.406 1.480 1.090 .2969

Table 2: Summary of Responses Regarding Security Levels of Various Com-
munication Media.

As can be observed, the F value obtained is larger than the F criterion value
(3.859) in all cases except for e-commerce and social media, indicating that
the di↵erence of opinion between CS majors and other majors is statistically
significant for all other forms of communication. It is worth noting that in
every case, the average response by CS majors indicates their perception that
the security level of each medium is lower than that of other majors. It is also
interesting that both groups identified social media as having the lowest level
of security on average, while both groups identified email as having the highest
level of security. Given the well-publicized privacy breaches in popular social
networks, perceptions regarding social media are unsurprising. However, one
would have expected students to have greater concerns about the security of
email communications.

To further investigate students’ perceptions regarding email security, the
survey included questions designed to measure their opinions regarding the
importance of email passwords as well as their consideration of the source of
an email message when deciding whether the message is safe. Table 3 summa-
rizes students’ responses to a question asking them to rate the importance of
passwords for providing email security on a five-point scale (1–Not very impor-
tant). Although the di↵erence between the mean responses of the two groups is
negligible, previous research indicates that CS majors have stronger passwords
than other majors [2].

Computer Science majors Other majors

Mean Variance Mean Variance
F value P-value

4.581 0.469 4.579 0.403 .0008 .978

Table 3: Perceptions Regarding Importance of Email Passwords.
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6 Conclusions

This study focused on di↵erences in student perceptions regarding various
forms of communication, with particular emphasis on email communication.
With the exception of social media, CS majors considered various forms of
communication to be less secure when compared to students in other majors.
In addition, CS majors were found to be more aware of email safety issues when
considering the source of the email message (with the exception of companies
with which the recipient had a commercial relationship).

Perhaps the results are unsurprising, given that CS majors are expected to
have greater technical expertise and awareness of information security issues.
However, it is interesting to note that the di↵erences in perceptions regarding
the safety of communication media was significant even for traditional media
such as television and land line phones. More importantly, the results under-
score the need for additional formal and non-formal training in email security
issues for students other fields.
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Abstract

The dominant pedagogy for Computer Science education often fo-
cuses on teaching isolated skills across a set of core courses. Recently
the community has adopted Senior Capstone Projects and Project Based
Learning to provide a cumulating experience designed to include a clear
focus on: critical thinking and problem solving; collaboration and lead-
ership; verbal and written communications; and independent work. This
paper discusses the application of project-based learning to Computer
Science education, providing a student’s perspective and a research ad-
visor’s perspective. An example of applying Project Based Learning is
presented and the e↵ectiveness and relevance of Project Based Learning
for Computer Science education is discussed.

1 Introduction

Courses in computer science, and higher education in general, tend to teach iso-
lated skills with limited time set aside to assist the student in assimilating the
skills [5]. Assimilation is critical to the development of a deeper understanding
of how the academic material fits into a broader set of knowledge, skills, and
abilities [10, 13]. A conceptual understanding of the course materials is not
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su�cient for students to achieve success in today’s challenging environment.
The field of computer science is rapidly evolving. Students require a broad
range of skills beyond programming languages, algorithms, and data struc-
tures. Rice and Shannon point out that educators have been consistently told
that we need more engaging, autonomous, authentic, and cooperative learning
processes in our formal educational institutions [10]. A major study of what
is required to succeed in college courses [2] found general “habits of mind”
to be key, along with subject-specific knowledge and skills. Employer sur-
veys show similar expectations, graduates must be able to think critically and
solve problems; work well with others; communicate in a clear and e↵ective
manner; and manage themselves and their projects e↵ectively [8, 4]. These
competencies are not optional, they are required to be successful in the current
environment [1]. The core competencies must be taught concurrent with the
acquisition of content knowledge and understanding. Students do not learn
critical thinking skills in the abstract, isolated from subject matter. Students
gain competencies by thinking critically and applying the skills in conjunction
with core computer science domain knowledge. Project-based learning (PBL),
organizes learning around projects [6]. Students determine how to approach
a problem and what activities to pursue. Their learning is connected to a
“real”, not academic, problem and involves core competencies such as collab-
oration, communications, and reflection. At the completion of their projects
students demonstrate their newly acquired skills in a public forum. The stu-
dents are evaluated on both “what” they have learned, how e↵ectively they
apply it, and how well they communicate it. Throughout the PBL process,
the teacher’s role is to guide and advise the student, and not to direct and
manage student’s work [9, 11, 13]. Project-based learning may be applied in
individual courses or throughout a curriculum, the projects can be combined
with traditional teaching, projects may be carried out as individuals or in small
groups and projects can vary in duration from a few weeks up to a whole year
[8]. The projects are complex tasks, based on challenging questions or prob-
lems that involve students in designing, problem-solving, decision making, or
investigative activities. They provide students the opportunity to work rela-
tively autonomously over extended periods of time; and culminate in realistic
products and presentations [3, 1].

2 Methodology

Project Based Learning (PBL) is applied in two student research programs
at Randolph-Macon College; the Senior Capstone course, and the Schapiro
Undergraduate Research Fellowships (SURF). The programs foster student re-
search and promote learning outside of the traditional classroom environment.
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The programs have applied concepts learned at a Buck Institute for Education
PBL [1] workshop to revise the improve student outcomes. The Buck Institute
has developed a comprehensive, research-based model for PBL to help educa-
tors develop, assess, and improve their PBL practices [1, 7]. Experience with
twenty projects over the past four years shows that projects must include a
clear focus on: critical thinking and problem solving; collaboration and lead-
ership; verbal and written communications; and self-management. We believe
that these attributes are crucial stepping stones to long-term student success.

The Senior Capstone course is a required course. Students work on a project
over a full semester. The student selects a project that draws on knowledge,
skills, and abilities from several core computer science courses. The projects
are designed to engage students in solving a real-world problem or answer-
ing a complex research question. The students demonstrate their knowledge
and skills by developing a public product, a research report, and a presenta-
tion at Research Day at the end of the spring semester. The full semester
projects allow students to develop deep content knowledge, critical thinking
and problem-solving skills, creativity, and communication skills in the context
of an authentic, meaningful project[1].

SURF fosters student research and promotes learning outside of the tradi-
tional classroom environment. The ten-week fellowship runs from early June
to early August. Research projects represent a full-time assignment for the
student. Each student submits a final written research report and presents
their findings/conclusions at the annual SURF conference. Students present
their results at Research Day at the end of the following spring semester.

3 Implementing the Project Based
Learning Model

An iterative approach is applied for our PBL projects. During each phase of
the project the students develop preliminary artifacts, and then refine their
design. We use a gated project review process to help students develop time
management skills. Students work with their faculty advisor to do prelimi-
nary research and develop the conceptual model of their project prior to the
start of the Senior Capstone or SURF project. It is critical that the students
have direct input in selecting their project. This student “voice” creates a
sense of ownership in the project. The students are personally invested in the
project, work harder, and in our experience, perform better. During the first
two weeks of the project the student refines their preliminary concept and de-
velops a full schedule for the project. Senior Capstone students give update
presentations at the end of week four and week ten, revising their schedules
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and scope of work if necessary. SURF students present updates at the end
of weeks three and eight. The presentations provide an opportunity to reflect
on the projects. Reflection on the knowledge, skills, and abilities gained helps
the students internalize what they have learned and think about how it might
apply elsewhere, beyond the project [1, 7, 9]. Reflecting on skills development
helps each student understand their value outside an academic environment.
Reflecting on the project helps the research advisers improve the outcomes of
the PBL projects. The students complete their research and document their
findings during the last week of their project. All students write a research
paper on their project and present at a public research symposium. Providing
a public forum for student work is an e↵ective way to communicate the value
of a liberal arts education and what it provides for students. The presenta-
tions allow students to demonstrate the breadth of their knowledge, skills, and
abilities; which helps build understanding of the true value of their educational
experience.

The co-authors have worked together on three PBL projects; two SURF
projects (2015 and 2016) and a Senior Capstone project. The 2016 SURF
project is detailed to demonstrate the PBL methodology applied. The project
is a multi-disciplinary project, developing a Unmanned Aerial Vehicle-based
flight research system to support Environmental Studies research.

3.1 Example Project. Project Orion SURF Project

This research project investigated the feasibility of developing a low-cost mod-
ular research system for Unmanned Aerial Vehicles (UAVs). Research and data
collection for many disciplines can prove cost prohibitive, as the instruments
and methods of collection can be expensive. There are multiple companies that
produce UAVs for research. The commercial UAV’s are cost prohibitive for in-
stitutions that do not have large research budgets. The goal of this project
was to demonstrate that it is possible to develop a low cost, modular sen-
sor package that maintains accuracy in data collection and can be mounted
on a consumer UAV. The research system deployed is comprised of: a GPS;
an Infrared Camera; and temperature and humidity sensors. All sensors are
operated autonomously via a research system computer. The project is di-
vided into two parts: the development and integration of the research system
in the lab; and field testing the research system mounted to the UAV. The
project developed research software that runs autonomously while collecting
accurate quantitative data for the user. The project required the student to:
research and select sensor packages, the flight vehicle, and the research system
computer; integrate the research system computer with the flight vehicle; and
develop data collection and sensor fusion algorithms. The student developed
the research proposal, including a 10-week schedule and detailed budget for
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the research equipment. The student was responsible for the design, build,
and testing of the flight hardware system and all software.

3.2 Research Flight Computer

The student selected a Raspberry Pi (RPi) to host the research system. The
RPi is a Single Board Computer produced by the Raspberry Pi Foundation.
The RPi is designed as a “low-cost, high performance computer” [10] that can
be used for a broad range of applications. The RPi’s modularity and General-
Purpose Input/Output interface pins [12] allowed the designer to incorporate
diverse sensors. RPi’s are also inexpensive, and easy to setup. They have a
Linux based operating system, support for wired and wireless networking, and
can be powered by lightweight batteries. The RPi has a compact footprint and
low power consumption.

3.3 Flight Test Vehicle

Figure 1: The Flight Test Vehicle

The UAV selected as the flight test
vehicle is a DJI Phantom 4 drone.
The Phantom 4 has a maximum
speed and altitude of 45mph and
6000m [Figure 1]. The Phantom 4
has a 4K camera that can be used in
tandem with the sensor package to
gather data. There are multiple ap-
plications that can process video and
still images from the camera and gen-

erate a 3-dimensional map of a specific area.

3.4 Software

Figure 2: The Research System

A critical aspect of this project in-
volved designing software to inte-
grate the sensors and accurately read
and log the data. The software is de-
signed to run autonomously while the
research system is active. The soft-
ware was designed in multiple steps,
with version 1 focusing on accurately
logging the data from the GPS sen-
sor so the user can tag the longitude
and latitude coordinates as the data
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is collected. Version 1 also dealt with error exceptions if the GPS loses sig-
nal mid-flight. Version 2 focused on the integration of the temperature and
humidity sensor. Additional error handling was introduced in Version 3 to
handle situations when the sensor cannot be polled or becomes inoperable dur-
ing flight.

3.5 Mounting the Research System on the UAV

The main challenge of designing the research system and mounting it to the
UAV was managing the overall weight and balance of the system. If the re-
search system is too heavy, or the weight is unbalanced, it will interfere with
flight stability. Preliminary testing determined that the overall weight of the
system should be under 500g. Before fabrication, it was estimated that the
research system would weight approximately 440.43g. The final weight of the
research system was 444.8g, with the extra weight being accounted for by the
rubber grommets and stainless-steel screws used to secure the components to
the Plexiglas panels.

3.6 Project Orion’s Research Results

Upon completion of the testing phase it was determined that Project Orion was
a success, demonstrating that it is possible to design a cost-e↵ective modular
sensor platform for a UAV.

4 Conclusion

4.1 The Student’s Perspective on PBL

As mentioned previously, most courses only provide students a conceptual un-
derstanding of basic Computer Science skills. Many students prepare for these
classes by learning and comprehending the bare minimum to obtain their de-
sired course grade. The PBL approach provides students with an environment
to practice the skills already learned, and a chance to develop all new skills
that are di�cult to simulate in a classroom environment.

The PBL approach in Senior Capstone and SURF projects drives students
to perform at their best due to the sense of project ownership. The BPL ap-
proach allows students to pursue projects in research areas that they select,
stimulating the student’s natural curiosity towards the subject. In turn, that
curiosity drives to student to problem solve and generate solutions that could
not have been stimulated through standard coursework. Additionally, a PBL
project does not focus on one isolated problem that can be solved using a spe-
cific technique or algorithm demonstrated in coursework. PBL projects consist
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of multiple inter-related subproblems. The subproblems usually have multiple
approaches that can be taken to develop the solution. A solution to one prob-
lem may create an all new problem or prevent another subproblem from being
solved. This forces students to think on their feet and make informed decisions
during the planning and development phases of a PBL project.

PBL also helps foster the growth of professional skills and discipline with
students. Meeting with advisors on a weekly basis engrains a sense of discipline
as both the Senior Capstones and SURF have a compressed schedule. That
personal accountability forces students to develop time management skills. Stu-
dents also learn how to e↵ectively plan their development schedule. Just like
in the professional world, one can only spend so much time pursing a solution
to a problem before there is a point no return and the project cannot be com-
pleted. Students must monitor their progress throughout the course of a PBL
project. If the current approach to the problem is not yielding results, they
must reevaluate the problem and adjust their approach. The final research
paper and presentation provide students an opportunity to refine their writing
and public speaking skills in an open public forum. This is a crucial aspect of
the PBL approach, especially for students in Science, Technology, Engineering,
and Math (STEM). STEM topics are often complicated to explain. Under-
graduate STEM students who can communicate complex topics in clear and
simple language have a distinct advantage over their peers.

4.2 The Research Advisor’s Perspective on PBL

The PBL approach has improved the outcomes for our Senior Capstone and
SURF students. The PBL projects allow students to select a project that they
are interested in, and to explore it independently. The gated project devel-
opment process provides a framework with su�cient structure to help ensure
their success and places the responsibility for developing detailed plans and
schedules on the students. This approach helps students develop time man-
agement skills. Research advisors meet with the students weekly (more often
if required) to review the student’s progress and provide technical support.

The project formation phase is critical to the overall success of the project.
Our experience shows that students who invest time in researching potential
topics prior to drafting their final proposal start from a stronger foundation
and experience fewer issues completing their projects. Starting the formulation
process two months prior to submitting the final project proposal allows the
students time to evaluate alternative approaches and develop their preliminary
research plan.

The presentations and research papers provide an opportunity for the stu-
dents to reflect on their project and demonstrate the breadth of skills that
they have developed / refined. The clear focus on verbal and written commu-
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nications skills development helps each student understand the value of clear
and concise communications. Student have multiple opportunities to practice
their skills prior to their final presentations. The public forum for student to
present in is an e↵ective way to communicate the value of a liberal arts educa-
tion and what it provides for our students. The presentations allow students to
demonstrate the breadth of their knowledge, skills, and abilities; which helps
build understanding of the true value of their educational experience. Sev-
eral students have continued their research, presenting their results at national
conferences.
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Abstract

This paper describes the creation of and experience with a communi-
cation-focused project for an undergraduate algorithms course. The
project was designed to provide students with a communication-based
project, help students develop an understanding of algorithms in a prac-
tical context, and provide a way to discuss some algorithms that fall
outside the scope of the course. Students chose an algorithm to research
and delivered their findings via a paper and an in-class presentation.
Papers and presentations focused on the historical, functional, and com-
plexity details of the chosen algorithm. An example course schedule,
assignment details, and algorithm list are provided. We also reflect on
student outcomes and discuss potential changes for future semesters.

1 Introduction

The need for computer science students to communicate e↵ectively has been
discussed for decades. In an e↵ort to increase communication skills, computer
science programs have created dedicated communication courses [1, 5, 8, 11] or
integrated writing throughout all courses, often referred to as “writing across
the curriculum” [3, 4, 7]. Some of the reasons computer science programs have
wanted to boost communication skills in their students are to help students
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learn to communicate, to have students learn through communication, to fulfill
an institutional requirement [6], or in an e↵ort to increase teamwork [10].

Communication is not only a tool and skill desired in academia. Compa-
nies are specifically interested in hiring computer science students who can
communicate ideas and solutions well. The NACE Job Outlook 2018 report
found that computer science is one of the most desired degrees, communica-
tion (written) was one of the most highly desired skills, and communication
(verbal) was also a top 10 sought after skill [12]. When asked by IEEE-USA
Today’s Engineer what employers are looking for, Ben Amaba, an executive at
IBM said, “Software engineers need good communication skills, both spoken,
and written” [10, 14].

A course on algorithms, which is required in most computer science pro-
grams, introduces a student to formal algorithm design and analysis. Some
required algorithms courses emphasize design through data structures [16],
while others emphasize analysis through complexity theory [9]. Courses may
introduce algorithms by topic such as searching, sorting, and graph theory [2]
or by method such as greedy algorithms, divide and conquer, and dynamic
programming [13]. Regardless of structure or placement in the curriculum, an
algorithms course will typically introduce, reinforce, or utilize each of these
areas.

In [15], the author discussed two writing assignments in an algorithms
course: an experimental research paper and a survey paper that begins with an
annotated bibliography. We expand this work by examining the addition of a
research project, involving a written paper and oral presentation, to an upper-
level undergraduate algorithms course. The assignment presented in this paper
focuses on the study of one particular algorithm and the concepts learned in an
algorithms class: an algorithm’s history, complexity, and relationship to other
algorithms that solve the same problem. We also provide a detailed project
design.

For the written and oral project, students were required to research an al-
gorithm, write about it, and present their findings to the class. This project
was added to the algorithms course in a general e↵ort to increase student expe-
rience with both written and verbal communication throughout the computer
science curriculum. The objectives of the project were to 1. provide a project
focused on communication, 2. help students develop a deeper understanding
of the historical significance of algorithms and their complexity and 3. provide
an avenue for discussion of algorithms that may be outside the scope of the
course.
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1.1 Environment

Randolph-Macon College is a small, private, liberal arts college with a long
history in teaching computer science, having established its Computer Science
Department in 1967. The algorithms course is required for the computer sci-
ence major, is an elective for the minor, and is taught in the spring semester.
Algorithms is usually taken in the junior or senior year with 10-15 students and
requires a minimum grade of C� to count for the major or minor. The course
has a prerequisite of data structures and a corequisite of discrete mathematics,
the latter of which is taught in the Mathematics Department.

Table 1: Example Course Schedule. Due dates are for the communication
assignment. The semester schedule at Randolph-Macon is slightly shorter than
semesters at most schools, but each class session is longer (1 hour 3-day courses
and 1.5 hour 2-day courses). A 15-week calendar could allow for 2 weeks of
student presentations for larger class sizes.

Week Lectures/Exams Due Dates
1 Intro and Discrete Math Review
2 Discrete Math Review
3 Algorithm Analysis and Graphs
4 Greedy Algorithms Topic Selection
5 Divide and Conquer
6 Review and Exam 1
7 Dynamic Programming
8 Complexity: Searching
9 Complexity: Sorting
10 Theory of NP Paper Draft
11 Review and Exam 2
12 Depth, Breadth, and Best First Search Presentation Draft
13 Student Presentations Final Presendation
14 Final Exams Final Paper

The algorithms course includes two weeks of discrete math review/preview
which is followed by topics in algorithm analysis, greedy algorithms, divide
and conquer algorithms, dynamic programming, and complexity theory. An
example course schedule with due dates for the communication assignments can
be seen in Table 1. Students complete seven homework assignments including
an introduction to LATEX, written summaries, and various combinations of
creating, coding, analyzing, and working through algorithms. The course has
one coding project, which also requires a write-up, and one research project,
which requires a research paper and oral presentation. The development of the

49



student research project is the focus of this paper.

2 Project Details

The project was divided into five parts: topic selection (5%), draft paper (15%),
draft presentation (15%), in-class presentation (25%), and final paper submis-
sion (40%). Topic selection occurred in the first half of the semester with due
dates for the remaining parts in the second half, as seen in Table 1.

Students were given 16 algorithms from which to choose, as seen in Ta-
ble 2, with the option to propose an algorithm for approval by the professor.
However, no students proposed an algorithm. The algorithms ranged in level
of di�culty. Some algorithms had been taught in previous semesters of the
algorithms course or would be taught in other courses (such as cryptography),
while other algorithms were beyond the scope of a typical undergraduate anal-
ysis or coding assignment. Challenging algorithms were expected to be covered
in high-level terms while more manageable algorithms were to be covered in
greater detail. Students were not informed of the di�culty level of the algo-
rithms, only given a brief description of each algorithm’s use.

Table 2: Sample Algorithm Topics. Students were also allowed to propose an
algorithm. Underlined topics were chosen in the spring 2018 semester.

Rabin-Karp Algorithm Fast Fourier Transform
Damerau-Levenshtein Distance Reed-Solomon Error Correction
RSA Lagged Fibonnaci Generator
Bloom Filters MapReduce
Cryptographic Hash Functions Kalman Filter
Shor’s Algorithm Hunt and Kill Algorithm
Latent Dirichlet Allocation Radix Sort
K-Nearest Neighbors The Schulze Method

2.1 Paper and Presentation Format

Students were required to include an introduction, background, algorithm de-
scription, complexity analysis, conclusion, and references in their paper and
presentation. Drafts were expected to be complete papers without any missing
parts. Students were given the following descriptions, also provided in a LATEX
template, for the sections of their paper.

• Introduction – Provide a summary and overview of the algorithm dis-
cussing its importance and use.
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• Background – Provide historical information related to the algorithm.
Answer questions such as: Who came up with the algorithm? When?
What other important things is the creator known for? Why was the
algorithm created? Why is it important? What other uses does it have?
Are there any concepts you need to know before you can understand the
algorithm? If so, define or explain them, provide pictures if that will
help.

• Algorithm – Provide a description of the algorithm and how it works.
What kind of algorithm is it (greedy, backtracking, divide and conquer,
etc)? The type may be one not covered in class. Provide pseudocode or
a very good outline of the algorithm, explain either. Provide at least one
example with pictures.

• Complexity – Determine the complexity and discuss it. What is the
complexity of algorithms that solve the same or similar problems, and is
this one better or worse? What are some suggested optimizations for the
algorithm, if any?

• Conclusion – Review the important points about the algorithms. Finish
with the advantages/disadvantages of the algorithm.

• References – Provide at least three references that must be cited in
your paper. Do not use more than one wiki-style site. If you use images
created by someone else, include the reference and cite the images in your
paper.

For their presentations, students were expected to cover the same concepts
as the paper, dedicating at least one slide to each section. Presentations were
to be rehearsed and to take 10-15 minutes, followed by questions. Feedback was
provided after both the paper and presentation draft submissions, and students
were required to incorporate suggested changes into the in-class presentation
and final paper.

3 Student Outcomes

Algorithms chosen in spring 2018 are underlined in Table 2. Draft submissions
by the students varied from needing significant changes to needing few changes.
Many students needed to improve the quality and formatting of their references
and the use of citations within the paper. Though examples were given, some
students seemed unfamiliar with the correct way to quote or cite a reference
and struggled with the appropriate amount of quotations. In particular, they
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were expected to spend the majority of their paper paraphrasing and reworking
their research, instead of quoting.

In the future, requiring an annotated bibliography or outline prior to draft
submission, with the clear requirement of minimal quotation use, may improve
the issue with proper citations and quotations. A separate, thought-out focus
on the bibliography could also allow for the requirement of no wiki-style ref-
erences. A few students found good sources with textbooks, tech sites, news
articles, and some conference and journal papers. Other student struggles in-
cluded di�culty in finding and providing an example of their algorithm in use,
and, for the presentation, keeping bullet points succinct.

After receiving feedback, most students significantly improved their presen-
tations and final papers. Overall, in-class presentations were well done, and
provided an impetus for interesting discussion and questions from the students.
Students were particularly interested to find out what would happen when
a cryptocurrency runs out of supply after the presentation on cryptographic
hash functions. Students were also able to discover, understand, and explain
important advantages and disadvantages of their chosen algorithm. Examples
include the linearity, but inflexibility, of radix sort; the di�culty in breaking
RSA mathematically, but the ability of researchers to break it by listening to
the CPU (acoustic cryptanalysis); and the ability to simply break RSA with
Shor’s Algorithm, but the unrealized potential of quantum computing.

Some algorithms chosen had been studied in previous semesters of algo-
rithms or similar courses (though not by the students in this particular course).
For algorithms that were similar in di�culty to those studied in the course, stu-
dents showed an ability to research, understand, and analyze the algorithms,
and provide examples of the algorithms working step by step. For more am-
bitious algorithms, such as the Kalman Filter and Shor’s Algorithm, students
were able to describe and explain the algorithms at a high-level and give ex-
amples of their use in real-world situations.

Anecdotal evidence shows that the communication-focused research project
potentially had a positive impact on student understanding of algorithmic con-
cepts. Of the eight students who completed the course in spring 2018, six
students received a higher grade on their final exam than the average of their
other exams, and two received a lower grade. The average increase for all stu-
dents was 4.4 points with five students increasing between 3.2 and 7.7 points,
one increasing 23.7 points, one decreasing 0.7 points, and one decreasing 12.3
points. From experience, it is unusual for a majority of students to perform
better on the final exam than previous exams, however further work would
need to be considered for conclusive results.
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4 Conclusions

The research project for the algorithms course was created to provide a com-
munication-focused project, help students gain a well-rounded understanding
of algorithm importance and complexity, and provide experience with some
advanced algorithms. The project was able to combine these goals by incor-
porating important concepts learned in an algorithms course while focusing
on both written and verbal communication. Students were required to write
a paper and give an in-class presentation in which they described the history,
purpose, use, complexity, and other details of a chosen algorithm. Feedback
on draft papers and slideshows helped students improve their work. In the
future, we plan to require students to summarize their references early in the
assignment to help quell the overuse of quotations and increase comfort with
citations.
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Abstract

Instructional sca↵olding is a teaching practice that gradually shifts
the initiative in learning from the teacher to the student. In this study,
we embedded di↵erent degrees of sca↵olding into several CS1 and CS2
homework assignments and observed which proved most e↵ective for stu-
dent learning. We evaluated student learning by measuring scores on
exam questions related to these assignments. Our initial analysis indi-
cates that high levels of assistance embedded in a homework assignment
are likely to result in reduced learning. Results related to very low levels
of assistance are inconclusive. We conclude by encouraging instructors
to avoid “spoon feeding” and “sink-or-swim” approaches, and instead
to take great care to include appropriate levels of sca↵olding in their
assignments.

1 Introduction

A common misconception among inexperienced educators is that the more you
can do for your students, the better. However, a learning environment that
“does it all for them” is going to be poor at teaching[6]. If the instructor (or
the instructor-provided material) jumps in with the answer before the student
has a chance to figure it out, the instructor is “rescuing” instead of teaching.
Thompson[7] asks teachers, “Who worked harder during that lesson?” If it
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a fee and/or specific permission.

55



was the teacher, then something is wrong. Rescuing can also be called “spoon
feeding,” because the student is not taking initiative for learning.

At the other extreme, educators sometimes assign a homework problem
and assume that if a student cannot solve it, it is because the student is not
capable. However, there may be underlying causes such as a lack of confidence
or lack of social support. This problem is exacerbated for students from un-
derrepresented populations because they are particularly susceptible to being
“weeded out” by this “sink-or-swim” approach[5, 3]. Therefore, if computer
science educators are truly committed to diversifying the field, we are obligated
to engage in e↵ective pedagogical practices that are helpful to all and essential
for marginalized students.

An e↵ective practice that addresses both of these issues is instructional
sca↵olding. This is a term invented by Wood, Bruner, and Ross][9]. Terry
Thompson defines it this way: “sca↵olded instruction characterizes a pattern
of teaching that shifts the level of responsibility for the learning from the more
knowing other to the less knowing other”[8].

Sca↵olding can be applied when the instructor is working closely with the
student, either in class, in the lab, or in o�ce hours. However, much student
learning occurs when the student is working outside the supervision of the
instructor on homework assignments. In this work we contribute to the body
of work on sca↵olding by focusing on the construction of e↵ective homework
assignments in CS 1 and CS 2. We believe a carefully sca↵olded assignment
can avoid the problems associated with either rescuing or the sink-or-swim
approach. To test this belief, we gave students assignments with varying levels
of assistance and measured learning through test performance.

2 Related work

In their review of literature on sca↵olding research in all educational fields
up to 2010, Van de Pol et al.[1] state, “With this somewhat limited body
of e↵ectiveness research on mainly one-to-one tutoring situations with mostly
simple and straightforward tasks, future research might start to focus on more
naturalistic classroom situations with all sorts of tasks.” We have responded
to their advice by extending the application of sca↵olding in CS education to
the arena of homework assignments. They further state that measurement of
sca↵olding is challenging because it is a dynamic process. Our project addresses
this concern by varying and quantifying the amount of sca↵olding that we use.

To illustrate the challenges in implementing e↵ective sca↵olding, we turn to
Thomas et al.[6], who crafted an experiment to test the e↵ectiveness of a par-
ticular intervention in a computer science class. The class was split randomly
into two groups. One group was provided object diagrams and one was not. To
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the authors’ disappointment, the group given the extra sca↵olding performed
worse on posttests. The final conclusion was that they sca↵olded the wrong
task. They provided students with completed object diagrams, but they con-
cluded that it was the students’ own creation of the diagrams that resulted in
learning. The authors called for further experiments to test this hypothesis.
Our project addresses this call by measuring the amount of learning achieved
when too much assistance is provided.

David Ginat[4] employed a sca↵olded approach to learning a di�cult CS
skill (combining patterns in complex programming problems). The sca↵olding
consisted of instructor explanations and tips given at appropriate times. The
author’s insight was that there is a hole in the curriculum that leaves some
students stranded when they try to combine programming patterns, and that
careful intervention can help these students gain confidence. He expressed
the “belief that the sca↵olding approach may be very relevant in additional
domains in computer science.” Our work seeks to clarify how sca↵olding can
be done e↵ectively in computer science homework assignments.

Van de Pol et al.[2] conducted their own study of the e↵ect of sca↵olding
in a classroom. The study included eighth-grade social studies students across
several schools in the Netherlands. The learning environment was group work
in a classroom with a teacher circulating among the groups. The teachers were
taught to provide “contingent” help—giving only as much help as is necessary.
The authors’ hypotheses were similar to those in our project. They said, “If
the level of control is too high for a student, superficial processing of the in-
formation is assumed,” and “If the level of control is too low for a student
deep processing cannot take place.” The study found (among other things)
that sca↵olding was good for improving student test scores, but only if applied
infrequently. Test scores also improved when non-contingent help was applied,
but more frequently. Our work addresses the same research questions in the
context of college-level computer science students working on homework, rather
than in-class work.

3 Approach

A typical homework assignment at the CS 2 level is to write a program to solve
a given problem. In this context, sca↵olding is anything that is provided to
the learner that is in addition to the problem statement itself. A bare problem
statement can be seen as sink or swim. Spelling out instructions on how to
complete the assignment step by step is akin to rescuing: giving too much help
and doing all the work for the learner. E↵ective sca↵olding will fall somewhere
in between. Below is an example homework assignment with an in-between
level of sca↵olding, provided as a series of hints.
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3.1 Example assignment

Write a program that draws a pyramid of blocks of any given height,
like this for height 4. Note that each block is a pair of square brackets
(no space in between). There are no spaces on the bottom line. The
program must use a recursive method to draw the pyramid.

Hint: The recursive method should do two things: Make a recursive call, and

print one line of the pyramid.

Hint: Each line of the pyramid is a sequence of spaces followed by a sequence of

blocks.

Hint: Use two parameters for the recursive method: one that holds the number

of spaces to print before the blocks, and one that holds the number of

blocks to print.

3.2 Hypothesis

Our overarching thesis is that the middle level is the best for student learning.
You can call this the Goldilocks principle—not too much and not too little,
but just right. Expanding on this, we hypothesize the following:

1. Students who completed homework assignments with no or just enough
sca↵olding did well on related exam questions (deep learning).

2. Students who completed homework assignments that provided too much
assistance did poorly on related exam questions (shallow learning).

3. Students need to seek more outside assistance when the homework scaf-
folding is insu�cient, or they will give up.

To address these hypotheses, we need to measure learning. For this study,
we gave students homework assignments and looked at student performance
on test questions related to the homework. We make the assumption that
the test questions are written well, actually assess what they are intended to
assess, and were graded fairly. They were written and graded by an experienced
teacher. Therefore, we may further assume that if the students do well on the
exam question, it is because they achieved deep learning, and if the students
do poorly on the exam question, it is because they achieved shallow learning.
There are always other variables involved in testing, but for this study we made
these assumptions.

3.3 Experiment

In spring 2017, we created three di↵erent assignments and gave them during
the second half of a second-semester introductory class (around CS 2 level).
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The class consisted of 29 total students who agreed to participate in the study.
Each of the three assignments had a di↵erent level of sca↵olding, which we
call 0, 1, or 2, corresponding to none, just enough, and too much. The above
example assignment was given at level 1. To be clear, the entire class was given
the exact same assignments. The amount of sca↵olding varied from assignment
to assignment, not from student to student. The purpose of this was to control
for discussion among students during the homework.

The next time the course was o↵ered (spring 2018), there were 22 students
who agreed to participate. We again created three di↵erent assignments, each
at a di↵erent level of sca↵olding. The assignments were similar to those from
the previous year but di↵erent enough that the students could not copy existing
solutions. We switched the level of sca↵olding on two of the assignments (level
0 and level 2).

We collected scores on the homework assignments and scores on exam ques-
tions related to the homework assignments. We also gave the students a survey
to find out if they had completed the homework on their own or used outside
assistance (such as help from peers or websites).

4 Results

In this analysis, we included only the exam question scores of students who
completed the corresponding homework assignment (at a level of 60% or above).
The reason for this is that if they did not complete the homework successfully,
presumably they did not learn from it. In that case, their exam scores are
irrelevant, because we are examining the e↵ect of homework sca↵olding on
exam scores.
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In order to evaluate the hypotheses, we examined at each level of sca↵olding
what proportion of the students did well on the exam. We define “did well on
the exam question” as scoring at 75% or above and “did poorly on the exam”
as scoring below 50%. See figure. In the cases of the homework with no extra
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sca↵olding and homework with some sca↵olding (sca↵olding level 0 and 1),
most of the students (73%) scored well on the associated questions on the exam.
However, in the case of the homework with too much assistance (sca↵olding
level 2, rightmost bar in the figure), only some of the students (44%) scored
well on the associated question on the exam, and several students (also 44%)
scored poorly.

Homework sca↵olding level 0 1 2
Number of students who completed the homework 38 44 45
Average exam score of the 29 students who completed all

three homework assignments

77% 79% 58%

For statistical analysis, we used a repeated-measure ANOVA on the test
scores for students who completed all three homework assignments (n = 29).
See table for mean exam scores. The analysis showed that the distributions
of scores on these exam questions are significantly di↵erent (p < 0.01). The
distribution of scores and the statistical analysis support Hypotheses 1 and
2, in that the students scored better on the test questions associated with
sca↵olding levels 0 and 1 than they did those associated with sca↵olding level
2.

There was no significant correlation between homework scores and test
scores.

The survey asked the students to list the forms of external help they used
on each assignment. Qualitative analysis showed that the external help fell
into three categories: help from tutors, peers, and websites. We quantified the
amount of external help by counting 1 for each of these categories. Thus, on
a given assignment, a given student could score 0, 1, 2 or 3 on this measure.
Because some students habitually seek more extra help than others, we used
a Friedman test to control for di↵erences between individual students. This
required us to examine only students who completed the survey for all three
assignments (n = 14). While the average external help score was higher on
the homework with sca↵olding level 0 (1.21) than the average score on the
level-1 and level-2 homework (1.14 and 1.07, respectively), the Friedman test
indicated that this di↵erence was not statistically significant. Therefore, we
need more data to evaluate Hypothesis 3.

4.1 Threats to validity

The following are some factors that made this experiment di�cult, and how we
attempted to mitigate them. First, students will help other students, thereby
moving from no sca↵olding to some unknown amount of sca↵olding. The survey
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is supposed to mitigate this in the questions about help received, but the survey
questions should be improved in future studies.

Some students are going to learn, and some are going to fail, regardless of
how well the homework is sca↵olded. Future studies may be able to control
for this factor in the analysis by using external measures such as student GPA,
but we chose not to request this private information from the students involved
in this study.

The distance between the assignments and the exams varied, but any e↵ect
from this should be small because exams were given frequently. Furthermore,
assignments earlier in the class may naturally need more sca↵olding. This
e↵ect should be minimal because the assignments are all near the end of this
second semester course.

Finally, the di�culty inherent to each of the exam questions varied. This
was di�cult to control for in this study.

5 Future work

The survey results should be able to help us be more accurate with Hypotheses
1 and 2. In the current study, we can only examine how the level of sca↵olding
on the homework predicts the exam score. However, while students work on the
homework, sca↵olding may be provided from outside assistance as well. This
was a confounding factor in our attempt to establish a relationship between
homework sca↵olding and test scores. If we can collect better information in
the survey, then we can get a better idea of how sca↵olding and rescuing in
general a↵ect test scores.

Over the next two years, we are planning to replicate this study with similar
assignments but switching the amount of sca↵olding provided on all of the as-
signments. The exam questions will be similar, but the homework assignments
will be di↵erent. This will give us more data points to try to establish the re-
lationship between sca↵olding in the homework and learning as demonstrated
on the exam questions. Since we are a small university, we can only control a
few variables at a time, and the course is only o↵ered once a year.

6 Conclusion

We designed an experiment to study how e↵ective construction of homework
assignments increases performance on exam questions. The results of the ex-
periment show some indication that too much help on the homework can cause
students to perform worse on exams. In other words, rescuing or spoon feeding
students results in shallow learning. We also hypothesized that when students
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are not given enough sca↵olding on an assignment, they will either give up or
seek outside assistance, but the experiment did not confirm or deny this. More
data is required to evaluate this hypothesis.

We agree with Thomas et al.’s[6] conclusion: you should not sca↵old some-
thing that you want the students to learn how to do. The sca↵olding is the
assistance the instructor gives that you do not expect the students to learn at
this time.

Van de Pol et al.[2] made the point that teachers like sca↵olding, but it is
not something they naturally do. Part of the purpose of the current work is to
encourage and empower computer science instructors to include e↵ective forms
of sca↵olding in their assignments.
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Abstract

We present Less-Java, a new procedural programming language with
a simple and concise syntax, implicit but strong typing via type infer-
ence, and built-in unit testing. These features make programming in
Less-Java more intuitive for novice programmers than programming in
traditional introductory languages. This will allow professors to dedi-
cate more class time to fundamental programming concepts rather than
syntax and language-specific quirks.

1 Introduction

1.1 Project Goal

Introductory computer science courses lay the groundwork for future courses
by teaching problem-solving techniques and fundamental programming con-
cepts like loops, conditionals, and data structures. Many computer science
departments use a mainstream language like Java in these courses, and there
are good reasons to do so. Java is ubiquitous in industry, available on many
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or distributed for direct commercial advantage, the CCSC copyright notice and the title of
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platforms, and provides an extensive standard library. Unfortunately, there
are also drawbacks to using Java as an introductory language1.

First, even simple Java programs are very verbose and unintuitive to begin-
ners, with required class declarations, long method signatures (“public static

void main (String[] args)”), and required semicolons. Students must write
a lot of boilerplate code before writing program code. The boilerplate code
is usually explained by the end of the course, but forcing students to write it
without truly understanding it is disingenuous.

Second, Java requires all variables to be declared, forcing students to distin-
guish between declaration and initialization before they really even understand
the concept of a variable itself. Many languages like Ruby and Python avoid
this requirement by removing declarations and using dynamic typing. Unfor-
tunately, these languages cannot be type-checked statically, which hurts novice
programmers because it allows incorrectly-typed code to compile and run.

Finally, there is no native unit testing framework in Java (JUnit is a popular
framework but it is a 3rd-party library). This means students must either do
all of their testing in the main method or include a jar file in their project. The
former is against software engineering best practices and the latter is unintu-
itive and tedious for novice programmers. Inaccessible unit testing discourages
students from testing their code at all, which is damaging for the student and
society at large [10].

To address these drawbacks, we present a new language named Less-Java
with 1) a simple and concise syntax, 2) implicit but strong typing via type infer-
ence [8], and 3) built-in unit testing. The language also provides simple built-in
standard I/O, a core set of built-in data structures (e.g., lists and maps), and
basic object-oriented features (e.g., classes and objects). We aimed to retain
just enough functionality to be useful in teaching introductory computer sci-
ence courses without overwhelming novice programmers. To our knowledge,
Less-Java is the first language to support all of these features.

1.2 Background

There are programming languages that attempt to address many of the cri-
tiques in the previous section. Scratch [9] and Snap [2] are educational lan-
guages often used in K-12 outreach e↵orts. They are visual, block-based lan-
guages designed to eliminate syntax errors entirely so that novice programmers
can focus only on the logic of their program. Unfortunately, Scratch’s limited
vocabulary also makes it di�cult to solve complex problems. Snap solves this
problem by allowing definition of custom blocks, but both languages still re-

1To be clear, these drawbacks do not preclude it from being an important and useful
language to learn in a more advanced course.
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quire students to move blocks around. This does not necessarily translate well
to college-level programming where students must use text-based languages.

Grace [4] is a more traditional procedural language that aims to “help
novices at programming to learn how to write correct and clean code.” Grace
even goes as far as to enforce code style in the grammar; misaligned brackets
or improper indentation cause errors when the program is compiled. This is
nice for people that eventually need to read the code, but it is a source of
frustration for students. Grace also includes advanced features (e.g., lambdas)
that are unnecessary for most introductory programming courses.

Some universities use scripting languages such as JavaScript, Ruby, and
Python, allowing students to begin programming with simpler syntax and less
boilerplate. However, there is some evidence that students may actually strug-
gle more when the syntax abstracts away underlying details [3]. In addition,
these scripting languages are also usually dynamically typed, which can induce
subtle type problems like inadvertently passing a string representation instead
of the underlying object. Finally, scripting languages often include large stan-
dard libraries and a high degree of language expressivity. These features are
valuable for experienced programmers, but for novices they tend to be a source
of confusion especially when the students use online search engines to look for
help.

2 Less-Java

We propose Less-Java, a simple language for novice-level programming [1]. In
this section we describe the language itself and our reference compiler, which
is implemented in Java and compiles Less-Java programs to Java code.

2.1 Language Design

Less-Java provides four native data types and three built-in collections. The
four native data types are 32-bit signed integers, double-precision floating-
point numbers, Booleans, and character strings. There is currently no way
to explicitly cast a data type to another data type; however, operations like
addition and subtraction implicitly widen an integer to a double when the
two types are mixed. In addition to all the standard arithmetic operators,
equality operators (==, !=) operate on all of these types. The three built-in
collections are lists, sets, and maps. They can be initialized with a call to an
appropriate constructor (optionally providing an existing variable to copy the
elements) or by providing hard-coded data using initialization operators (e.g.,
brackets for lists). These collections are essentially wrappers around standard
Java Collection classes.
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Less-Java is strongly and statically typed but does not require explicit type
declarations. Instead, the compiler assigns types to expressions based on con-
text, a process called type inference. The underlying type system is composed of
three kinds of types: variable, base, and object. The inference is implemented
by a fixed-point process loosely based on Algorithm W for the Hindley-Milner
type system [5].

The process begins with all non-literal expressions bound to a variable
type (e.g., their type is unknown). These type bindings are refined iteratively
using constraints derived from assignments and function calls. The constraints
are resolved using a process called unification, which attempts to make two
inferred types compatible. The type rules are as follows: 1) a variable type can
be unified to any of the other types, 2) a base type can only be unified to the
same base type, and 3) an object type can only be unified to the same object
type. Literals can be immediately typed as base types, and constructor calls
are typed according to the corresponding object type. If two types cannot be
unified, the compiler reports a type error and compilation fails. The process
terminates when expression types converge.

As an example, consider the assignment “a = 2.4”. Initially, the variable
“a” is bound to a variable (unknown) type, but the assignment constrains
the type of “a” to be assignable from the right-hand side. Because the right-
hand side is a literal and therefore a base type (double-precision number), the
unification binds the type of “a” to the same base type. If “a” is later passed
to a function, that function parameter will also be unified (and bound) to the
same base type. If the assignment “a = true” appears later in the program,
the unification will fail because the type of “a” is known to be a di↵erent base
type than the literal “true” (which is a boolean).

If a function exposes parametric polymorphism (i.e., one or more of its pa-
rameters or its return cannot be resolved to a non-variable type), the compiler
must generate multiple copies of the the function with concrete types. This is
similar to how C++ handles template functions.

Finally, Less-Java includes simple unit testing using a built-in syntax. Unit
tests are composed of the keyword “test” followed by any Boolean expression.
During code generation, these statements are translated into JUnit test meth-
ods. This makes it easy for students to write tests or for an instructor to
include tests in a project distribution.

2.2 Implementation

The Less-Java reference compiler is written in Java, which allows it to inter-
face with the ANTLR parser generator [6, 7], facilitating parse tree traversals
and code generation. Other development tools include Git/GitHub for version
control and the Gradle build tool.
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Lexing and parsing is handled by code that is automatically generated
from the language grammar using ANTLR. After parsing the source code, the
compiler converts the parse tree to an abstract syntax tree (AST) and performs
several AST traversals to generate symbol tables and perform type inference.
A final AST traversal generates Java target code.

During code generation, non-OOP constructs (top-level functions and unit
tests) are translated to Java code in a Main class. Regular functions are emit-
ted as public static methods with their Less-Java name and their inferred
parameter/return types. Unit tests are emitted as JUnit test methods with
the appropriate assertion.

After code generation, the generated Java source code must also be com-
piled with the Java compiler before it can be executed. The Less-Java compiler
automates this process so that the user does not need to do it separately.

3 Results

3.1 Examples

The following is a simple example program in Less-Java:

add(a, b)
{

return a + b
}

main()
{

printf("4 + 5 is %d", add(4,5))
}

test add(1, -1) == 0
test add(2.5, 3.5) == 6.0
test add(1000, 1000) == 2000

Through a combination of implied boilerplate, simplified unit tests, and
type inference, the Less-Java program is significantly shorter than equivalent
Java code. Thanks to type inference, the add function doesn’t need to be
overloaded like it would be in Java. Instead, the function is considered generic,
and a new copy of the target code is generated for each unique set of types
(e.g., integers and doubles) at concrete function calls.

The following excerpt contains a more complex program, which is a com-
putation related to the well-known Collatz conjecture [11]. This conjecture
concerns a sequence where successive terms are obtained from previous terms
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beginning with any positive integer. If the current term n is even, the next
term is n/2. If the current term is odd, the next term is 3n + 1. The Collatz
conjecture posits that this sequence will always converge to 1. For our exam-
ple, we wish to calculate the maximum sequence length within a (low, high)
range of initial starting integers. The code demonstrates a range of language
features, including functions, conditionals, loops, and unit tests. Additionally,
it shows the conciseness and cleanness of the language.

// calculate the length of the Collatz sequence beginning at n

seq_len(n)

{

len = 1

while (n != 1) {

if (n % 2 == 0) { // even

n = n / 2

} else { // odd

n = 3*n + 1

}

len = len + 1

}

return len

}

test seq_len(1) == 1

test seq_len(6) == 9

// find the maximum sequence length for starting values in the given range

max_3np1_seq(low, high)

{

max = 0

while (low <= high) {

len = seq_len(low)

if (len > max) {

max = len // new maximum

}

low = low + 1

}

return max

}

test max_3np1_seq(1, 10) == 20

test max_3np1_seq(100, 200) == 125

test max_3np1_seq(201, 210) == 89

test max_3np1_seq(900, 1000) == 174

3.2 Preliminary Evaluation

We were unable to observe students using the language in a controlled study
because of time constraints. However, we did conduct an informal experi-
ment during a competitive programming club meeting. Students were tasked
with solving a previously-approved list of problems in Less-Java (including the
Collatz conjecture problem described above) without having had any prior ex-
posure to the language. The problems were distributed as Less-Java files with
some included unit tests so that the students could check themselves. A brief
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demo program was posted on a projector for students to reference. The pro-
gram contained many of the supported control structures, native functions,
and syntax features of Less-Java. There was no formal data collection, but
students were able to solve every problem with limited assistance from the lan-
guage author and the club advisor. The students’ solutions were reasonable
in both length and complexity, and students seemed to appreciate the ease of
testing.

4 Future Work

There are many avenues for future work. Some are mostly cosmetic, such as
improving the error messages that the compiler produces, adding file I/O, and
implementing IDE support.

More significantly, object-oriented programming in Less-Java is currently
incomplete. While type inference is successful across assignments, it becomes
unstable when objects are passed as function parameters. Overloading a func-
tion to handle the di↵erent parameters is insu�cient for the object-oriented
case; functions with many polymorphic parameters need to be emitted once
for each combination of the parameters in the worst case. This cross-product
property might generate unreasonably large compiled files, especially with deep
inheritance hierarchies. One potential solution is to assign a list of interfaces
to objects based on their methods, o✏oading the static analysis work to Java’s
interfaces. This would likely require a more extensive implementation of the
Hindley-Milner type inference algorithm.

As mentioned in the previous section, an objective comparison study be-
tween Less-Java and some of the languages mentioned in the introduction would
let us draw more significant conclusions in regards to language features and
their impact on programming education.

Finally, the reference compiler for Less-Java has no optimization phase
and the generated code hasn’t been rigorously benchmarked against other lan-
guages. It should perform similarly to Java because we merely delegate most
operations to the corresponding Java constructs, but a comprehensive perfor-
mance benchmark may be able to expose some ine�ciencies in the emitted code
and address the question of whether an optimization phase in the Less-Java
would help.

5 Conclusion

Mainstream programming languages remain suboptimal for introductory com-
puter science education. Many are verbose, unintuitive, confusing, or some
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combination thereof. To address this problem, we have presented Less-Java, a
new programming language along with a reference compiler. Less-Java limits
the constructs available to the programmer to avoid confusion and complexity
while still providing all of the tools necessary to teach an introductory pro-
gramming course, including a simple and concise syntax, implicit but strong
typing via type inference, and built-in unit testing. This project also serves as
a basis for a wide range of future work.
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Abstract

Events are integral to graphical user interfaces and other software
components in modern software applications. Unfortunately, standard
techniques for handling events in Java, such as implementing interfaces
and overriding superclass methods, require a student to understand con-
cepts not covered until later in the semester of a typical CS1 topic pro-
gression. This delays the ability of students to complete assignments
involving event handling, such as responding to mouse interaction or a
timer. This paper presents a novel simplified technique for associating
student-authored methods with dispatched events in a Java program.
This technique, which is based on Java method references, has been built
into an open source object library designed for CS1. In addition to
simplified event handling the library provides a variety of graphic and
other classes that dispatch a range of events. The library allows pro-
gramming assignments involving familiar event-based programming to
be introduced comfortably within the first weeks of the semester, and it
has been used successfully by hundreds of students at multiple institu-
tions on all major operating systems.

1 Introduction

When students are introduced to a programming language for the first time
they expect to create applications similar to the ones they use every day. A
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frequent request of students in the first class of a typical college-level computer
science curriculum (CS1) is to write a program that creates a window with a
button that invokes a custom method. This often leaves the CS1 instructor
providing unsatisfactory explanations to a disappointed student. When learn-
ing Java the barrier that prevents the introduction of this type of functionality
stems from the complexity of using a graphical user interface framework that is
almost always based on event dispatching. Techniques employed for handling
dispatched events, such as implementing interfaces and overriding superclass
methods, typically are not covered until later in the semester, thereby con-
straining lecture examples and student assignments to programs that run in
the terminal.

To address this shortcoming, several e↵orts have been made to simplify the
introduction of events in a CS1 class. For example, App Inventor [10] and
Scratch [8] implement event handling in block-based languages by providing
primitive event-handler “when” blocks that capture and respond to dispatched
events. These specialized event handling blocks provide a simple and intuitive
means by which to respond to events when a block language is appropriate.
Christensen et al. [7] describe a presenter framework of prewritten Java applet
superclasses which implement predefined widgets such as buttons and images.
A student must author a subclass and override its methods to implement cus-
tom event handling behavior. Bruce et al. [4, 5, 3, 6] introduced an events-first
approach in Java by developing a supporting library called ObjectDraw which
also requires the student to subclass a WindowController superclass and over-
ride its methods to handle events. Events are dispatched by the window object
only and not by individual graphic objects. Therefore, interacting with graphic
objects drawn on the window must be simulated by computing whether or not
mouse coordinates are within the bounds of the graphic object from within
window event handler methods and tracking graphic object overlap to ensure
the topmost object is the one impacted by dispatched mouse events.

This paper describes a novel simplified technique for implementing event
handling in Java that avoids the need for the CS1 instructor to handwave
away premature explanations of keywords like “extends” and “implements.”
Also covered is the way in which this technique is incorporated into an open
source object graphics library called DoodlePad [9]. To complete assignments
a student associates their own custom authored methods with a wide range of
mouse, keyboard, timer and other events by passing a reference to a method
as a parameter to one or more object methods that assign event handlers.
Parameter passing is one of the first concepts introduced in CS1 and therefore
can be used with confidence by students early in the semester. A variety
of graphic and other classes is included in the library for students to use to
complete their assignments. These classes include standard shape objects such

74



as Rectangle, Oval, RoundRect, Arc, Path, Line, and Polygon, as well as
other objects such as Image, Sprite, Sound, Text and Pad. The event system
that implements object-specific, pixel-perfect event dispatch is also described.
In addition to the mouse, keyboard, timer and other events dispatched by
the underlying window object, every shape object individually dispatches its
own set of mouse events. This leads to a greater diversity of programming
assignments that may be completed by CS1 students.

2 Method References

At the heart of the DoodlePad library’s ability to implement event handling
is method references, introduced in Java 8 [2]. Method references provide Java
with an ability to reference a static or instance method, to pass that refer-
ence as a parameter to another method, to assign the reference to a variable,
and to invoke the referenced method. Method references are constructed us-
ing the newly introduced “::” operator which scopes a method name by an
object instance or class. The example in Listing 1 illustrates how a student
may create a Rectangle object and arrange for a custom method to be in-
voked when the mouse is pressed on the Rectangle. The showMsg() method
is associated with the Rectangle object’s mousePressed event by passing the
method reference “Example1::showMsg” as a parameter to the Rectangle ob-
ject’s setMousePressedHandler() method. This is a complete program; no other
configuration is necessary.

Listing 1: A program that creates a Rectangle and associates an event handler.

import doodlepad .*;

public class Example1 {

// Static method invoked when mouse is pressed on the Rectangle
public static void showMsg(Shape shp , double x, double y, int btn)

{

System.out.println("The Rectangle was pressed!");

}

// Create a Rectangle object and associate an event handler
public static void main(String [] args)

{

Rectangle r = new Rectangle ();

r.setMousePressedHandler( Example1 :: showMsg );

}

}

Figure 1 shows the command for compiling and running the program as well
as the resulting graphic window displaying the Rectangle object. When the
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Rectangle is clicked, a message is printed to the terminal. Note that the student
does not need to create a window explicitly. If a Pad object (the window
class in DoodlePad) is not created by the student, the library creates one
automatically. This allows the student’s focus to remain on learning concepts
of object oriented programming without being distracted by implementation
details of the underlying windowing toolkit.

The Pad class also provides methods that allow students to invoke their own
custom methods in response to an even wider range of events. Table 1 lists
events dispatched by all DoodlePad Shape subclasses and the Pad class. In all
cases, method references may be used to associate student-authored methods
with one or more dispatched events.

Figure 1: A Pad displaying a Rectangle with terminal commands and output.

3 Pixel-Perfect Mouse Event Dispatching

A novel feature of DoodlePad is the way in which the library selects mouse event
targets. Event targets are chosen from potentially multiple overlapping Shapes
as well as a Pad object, with pixel-perfect accuracy. For example, a DoodlePad
program was written that creates a Pad object and a Polygon object that forms
a V-shape. (See Figure 2) The mouseEntered, mouseMoved and mouseExited
events of both the Pad and Polygon were associated with methods that print a
message indicating the object and event that invoked the method. When the
mouse is moved along the path traced by the dashed arrow in Figure 2 the
statements in Listing 2 are printed to the terminal (duplicates removed). Note
how the order of events handled carefully follows the trajectory, even when the
mouse moves o↵ and then back on the Polygon near the center of the Pad.

To accomplish this pixel-perfect Shape object targeting the library imple-
ments a sophisticated technique for identifying the appropriate target Shape
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Table 1: Events dispatched by Shape subclass objects and the Pad object.

Event Name Shape Pad Description

mouseClicked
p p

Clicked on an object
mouseDoubleClicked

p p
Double-clicked on an object

mousePressed
p p

Mouse pressed down on an object
mouseReleased

p p
Mouse released on an object

mouseMoved
p p

Mouse moved over an object
mouseDragged

p p
Mouse moved while pressed over an object

mouseEntered
p p

Mouse moved into Shape or Pad window
mouseExited

p p
Mouse moved out of Shape or Pad window

selectionChanged
p

The selected state of a Shape changed
keyPressed

p
A key is pressed on an activated Pad

keyReleased
p

A key is released on an activated Pad
keyTyped

p
A key is pressed and released on a Pad

tick
p

A Pad’s timer tick event occurred
serverStarted

p
A Pad’s socket server has started

serverStopped
p

A Pad’s socket server has stopped
serverInfo

p
A Pad’s socket server has information

serverError
p

An error occurred with a socket server
clientOpened

p
A client socket connection has opened

clientClosed
p

A client socket connection has closed
clientReceived

p
A client socket has received data

clientInfo
p

A client socket has information
clientError

p
An error occurred with a client socket

Figure 2: A Polygon shape drawn on a Pad with event handlers.

under the mouse, which is illustrated in Figure 3. Each time a shape is drawn
on a Pad a second Shape is drawn on an in-memory Bu↵eredImage object that
mirrors the visible region of the Pad. The in-memory drawing di↵ers in that
shapes are drawn with a unique color for each shape’s fill and stroke and with
antialiasing o↵. After a shape is drawn on the in-memory Bu↵eredImage its
unique color is used as the key in a Map data structure that references the cor-
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responding Shape object on the Pad. When mouse events occur on the window
the pixel color under the identical location on the Bu↵eredImage is read and
used to look up the Shape object in the Map that should dispatch events. If
no Shape object is found in the Map, mouse events are dispatched by the Pad
object.

Listing 2: Output from moving the mouse along the dashed arrow in Figure 2.

Pad : mouseEntered

Pad : mouseMoved

Polygon : mouseEntered

Pad : mouseExited

Polygon : mouseMoved

Pad : mouseEntered

Polygon : mouseExited

Pad : mouseMoved

Polygon : mouseEntered

Pad : mouseExited

Polygon : mouseMoved

Pad : mouseEntered

Polygon : mouseExited

Pad : mouseMoved

Pad : mouseExited

Figure 3: A Map associates unique colors of shapes drawn on an in-memory
Bu↵eredImage with Shape objects drawn on the Pad.

Using this technique, the correct target Shape object is properly identified
and the event is dispatched with pixel-perfect accuracy. Students are not aware
of the underlying implementation unless they choose to inspect the library
source code in GitHub [9]. The result is an environment in which events are
dispatched in a natural manner and therefore requires little or no explanation
for students to fully master.
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4 Event-Driven Assignment Examples

The enhanced event framework implemented by DoodlePad combined with its
graphic and other classes expands the range and type of programming assign-
ments that are within the skillset of students in a CS1 level class. To illustrate,
following are a few sample program descriptions that have been created using
DoodlePad with an emphasis on the use of its unique event system. Source
code for example programs described here is available from the author upon
request.

4.1 Board Games

DoodlePad comes with a built-in ability to interactively drag Shape objects
on a Pad by changing a setting. This lets students build simple board games
by creating Shape objects, and locating and styling them appropriately. For
example, a checkers game may be created with Rectangle and Oval Shapes,
where Ovals are configured to be dragged as game pieces.

4.2 Color Matching

A classic color matching game is constructed by defining a Spot class that
subclasses Oval or Rectangle and adds a property with private visibility that
holds a randomly selected hidden fill color. Custom Spot methods show and
hide a Spot’s fill color. The program starts by creating Spot objects positioned
on a Pad in a regular grid. A mouseClicked event handler method for each
Spot changes fill color to its hidden value. After the color of a second Spot is
revealed by clicking, if the colors do not match the program pauses for a brief
period of time using the Timer and then hides the colors again. When the
two colors match, the Spot objects are made invisible to signify that they have
been solved.

4.3 Interactive Puzzles

The keyPressed Pad event and a switch statement may be used to incremen-
tally move a Shape object on a Pad using the arrow keys. Couple this with
a recursive maze generation algorithm and students have the makings of an
interactive maze puzzle.

4.4 Interactive Drawing

The Image class’s ability to set individual pixel colors coupled with its own
mouseDragged event is all that is necessary to create a rudimentary interactive
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drawing program. Students use other Shape classes to form simple buttons that
respond to mouseClicked events by setting current drawing properties such as
brush color and size.

4.5 Interactive Data Visualization

Data set visualizations make interesting projects. Shape size, position and
color may be used to represent data set attributes. Visualizations are made
interactive using the mouseEntered and mouseExited Shape events. For exam-
ple, moving the mouse over Polygons representing the 50 United States may
reveal additional details by making visible associated explanatory text. As the
mouse exits a Polygon, details are hidden.

4.6 Remote Collaboration

The Pad class has the ability to act as a socket client or a socket server. Us-
ing this functionality two Pad objects may establish a network connection and
then exchange text messages. Received messages trigger a clientReceived event
which the student can handle and translate into suitable actions. Messages are
sent to remote Pad objects using the send() and broadcast() methods. An
example program that uses this ability to communicate include an implemen-
tation of the classic “Battleship” guessing game.

5 Conclusion

A novel simplified technique for handling events has been built into a library
of graphic and other classes designed for expanding the number and type of
assignments that may be introduced in CS1. The event handling technique
depends on a new language feature introduced in Java 8 called method refer-
ences [2]. This library, called DoodlePad [9], is open source and freely available
under a GPL3 license [1]. It has been used by hundreds of students at multiple
institutions on Linux, Mac and Windows operating systems and has proven to
be a solid platform in all cases. Refer to http://doodlepad.org for further
instructional materials, examples, links to source code and complete Javadocs.
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Abstract

Computer science and math education researchers have long believed
that a symbiotic relationship exists between their disciplines [7]. In fact,
in its early days, computer science education programs were often co-
located in a math department. Stenger et al. [13] developed an instruc-
tional treatment that uses computer programming as an explicit method
for teaching abstraction and generalization in the STEM classroom. This
instructional strategy uses computer programming to explore the essen-
tial characteristics of a mathematical concept and to push learners to
advance in levels of abstraction. In this study, results are shown from
a professional learning session using computer programming activities,
mathematical arguments, and programming on an S2 robot to push mid-
dle and high school computer science, math, and science teachers (N=25)
to improve their level of generalization over area expansion of a triangle
with respect to the expansion of the sides of the triangle. The program-
ming activities served as a laboratory to expose and explain what hap-
pened in the minds of learners as they explored and learned to generalize
this geometry concept. The researchers used an initial genetic decompo-
sition to evaluate the learner’s level of abstraction. Follow up interviews
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were conducted with 6 participants. The analysis, using APOS as a
framework, categorized mathematical behaviors at the Action, Process
or Object level. The data demonstrated how computer programming
activities influenced teachers’ mental images and pushed them to higher
levels of abstraction.

1 Introduction

The ability to generalize is an essential skill for the sciences. Existing literature
supports the idea that mathematics courses, such as discrete mathematics and
calculus, help to develop these skills [6]. The belief exists among math and CS
education researchers that computer programming pushes the learner to higher
levels of abstraction [13]. Specifically, many STEM education researchers be-
lieve that using computer programming activities designed to parallel the con-
struction of an underlying mathematical process may stimulate or accelerate
the development of the associated mathematical construction [5, 8].

Stenger et al. [12] have developed an explicit method for motivating stu-
dents to generalize mathematical concepts into constructions using computer
programming exercises and proof writing, based on the theoretical perspec-
tive of APOS theory. Others have also used computer programming to fortify
mathematical concepts and as a tool to assist in abstraction [10, 11]. When
students write computer programs to show mathematical patterns, the gener-
alizations of those patterns appear in the code, strengthening students’ concep-
tual knowledge and improving their ability to generalize. This particular study
investigates whether computer programming activities regarding the perime-
ter and area of triangles influence students’ mental constructions toward higher
levels of abstraction in this subject area.

2 Theoretical Framework

The theory of reflective abstraction was described by Piaget [9] as a two-step
process, beginning with reflection on one’s existing knowledge, followed by a
projection of one’s existing knowledge onto a higher plane of thought. Fur-
ther, Piaget [9] and Dubinsky et al. [1] wrote that during the process of
cognitive development, reflective abstraction could lead to the construction of
logico-mathematical structures by the learner. The conviction that reflective
abstraction could serve as a powerful tool to describe the mental structures of
a mathematical concept led Dubinsky to develop APOS theory.

In APOS theory, the mental structures are Action, Process, Object, and
Schema. A mathematical concept develops as one acts to transform existing
physical or mental objects. Actions are interiorized as Processes and Processes
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are encapsulated to mental Objects, but APOS practitioners hold that learners
move back and forth between levels and hold positions between and partially
on levels. This nonlinear behavior and the resulting mental structures may
explain the di↵erent ways learners respond to a mathematical situation [1].

In this study, a genetic decomposition was developed as a conjecture of the
mental constructions – Actions, Processes, and Objects – that may describe
the construction of mental schema for the concept of geometry as it develops
in the mind of the learner. The genetic decomposition motivated the design of
this research study as well as the analysis of the results. It was also the basis
for the computer activities in the lessons that were developed. The pervasive
impact of the genetic decomposition is consistent with an APOS theoretical
framework [1].

3 Instructional Treatment Overview

Stenger et al. [8] developed an explicit approach to teaching abstraction and
generalization in the mathematics classroom using computer programming ex-
ercises. The instructional treatment is grounded in APOS theory and considers
the mental processes by which abstract concepts are acquired and utilized in
mathematics [4]. Dubinsky is an advocate of students writing computer pro-
grams where the constructs in the program parallel the constructs of a math-
ematical topic under investigation. By using computer programming exercises
where the programming activity specifies the procedure for the computer, the
student is motivated to reflect upon the enactment of the concept. Dubin-
sky states that the act of programming is a generic process which carries out
what may be viewed as a more general construct in specific cases and induces
the student to move towards a generic abstraction of the concept [5]. The in-
structional treatment is built upon this notion that programming is a vehicle
for building abstractions in the mind of the learner. Numerous researchers in
APOS theory have shown that computer programming is a viable tactic for
teaching a variety of topics in undergraduate mathematics [2]. Consequently,
it is commonly held that computer constructions are an intermediary between
concrete objects and abstract entities [1, 3].

4 Methodology

The researchers applied the instructional treatment to the concept of area ex-
pansion in triangles. The investigation was carried out with 25 middle and high
school teachers in a 2 week professional development. These instructors taught
computer science and math (80%), science (16%), and English (4%). Nineteen
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of the teachers were female and six were male. Earlier in the training week,
teachers had investigated whether, given three side lengths, the combination
of those lengths would form a triangle. This current lesson built on that ma-
terial. Each subject participated in a complete lesson including the pre-test,
response sheets, and post-test. The format of the lesson was as follows. A
brief introduction to the Python programming environment was given along
with the code template in Figure 1.

Figure 1: Computer Programming template for lesson

A brief lesson on how to determine the area of a triangle after knowing
only three sides was discussed and included the derivation of Heron’s formula.
Learners wrote programs to derive the perimeter and the area of a triangle
after inputting three side lengths. Learners were encouraged to experiment
with their computer programs and make observations about any relationships.
Once this initial table was constructed, the participants were ushered through
a series of program modifications and written responses. For example, they
were asked to add rows to their programs to show how perimeter and area
were a↵ected when side lengths were multiplied by a particular factor, such as
doubling, tripling, and halving the lengths of the sides. Written responses to
questions and reflections on their observations were recorded by the partici-
pants on their response sheets including generalizations of behavior. Observa-
tions on the relationship between side length and perimeter/area were solicited
as general expressions and participants were taught how to denote the general
expressions in mathematical language. For example, participants might ob-
serve that if the side lengths were tripled, then the perimeter would also triple,
or that if the side lengths were doubled, then the area would increase by that
factor (2, in this case) squared. Later, instruction was provided to show how
to calculate area when two sides and an included angle of a triangle are known.
After this, an additional column was added to the program which allowed par-
ticipants to input two side lengths and an included angle and calculate the
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area of the resulting triangle. The instructional treatment was designed so
that repetition with various program modifications would stimulate the desire
to generalize the observed behavior and make conjectures about the mathe-
matical construct. The final stage of the lesson involved making conjectures
and convincing arguments. Participants were shown how to use general expres-
sions to support, or refute, a conjecture using mathematical language. They
were then asked to attempt their own convincing arguments with the general
expressions they recorded during their inquiry. As a part of the instructional
strategy, an activity is used to further push the learner to encapsulate the
process to an object.

In this project, we had the participants program Parallax Scribbler 2 (S2)
robots in order to continue exploring the relationship between the triangle
sides and area. All of the participant’s responses were collected on response
sheets during the lesson. Additional data was collected in the form of inter-
views. Recorded interviews with five of the participants were transcribed and
analyzed. All of the collected data was reviewed and scored using APOS the-
ory. A ranked set of scores was devised to denote pre-action, action, process,
and object levels based on the genetic decomposition and recorded for each
subject’s pre-test, response sheets, post-test, and (where applicable) interview
data. In the event that authors disagreed, a discussion and further analysis of
the data was used to reach consensus.

5 Results

The ratings prior to and after instruction showed that 23 out of 25 teachers
started at the pre-action or action level of abstraction. Twelve teachers were
rated at the process or object level after the instruction.

6 Influence of Computer Programming on Gen-
eralization

The influence of writing computer programs was demonstrated by teachers
on the Python and robot activity response sheets. In the Python activity,
participants began with a small program as shown in Figure 1. You can see in
this example, the sides of a given triangle are doubled and the sides of a new
triangle and its corresponding perimeter are displayed. Participants added a
third row in which the triangle sides tripled. A new column was added to each
row to display the area for each triangle. As the participants were writing
these programs, they observed patterns and began coming up with general
expressions on their own that helped clarify the geometric relationships being

86



studied. Teacher T0010 modified his program to allow the user to type in
a scale factor and used this in the general formulas for perimeter, area, and
angle measures. He added instructions at the end of the table that displayed
the ratios for perimeter and area of the scaled triangle over the original triangle.
Sample output is in Figure 2.

Figure 2: Computer program T0010

In the follow-up interview, T0010 described how he developed a mindset of
generalizing during the process of writing code: ”The example of 30 50 70 made
it hard to see how the areas and perimeters are related without a calculator.
Who knows what 649.4 x 4 or 649.9 is right o↵ the top of their head? I
generated the lines at the end to compare the initial and the scaled triangle.
We were looking to make generalizations in order to form a conjecture. We
did two and three, but what about 100, 500 or .025? I know that you could
change the code, but after you get the math, I like to generalize the code. I
found it more di�cult to see the relationship between the first (scalar of 1) and
last row (scalar of 3) when looking at them. I thought about putting a loop
for multiple scalars, but did not feel it was necessary. I compared one original
to one scalar.” Teacher T0006 noticed the pattern and immediately added a
loop using the generalized formula she observed. She iterated a loop over the
triangle scale factor and then added a column to display that scale factor, along
with the ratio of the scaled triangle over the original triangle. Sample output
is shown in Figure 3.

Figure 3: Computer program T0006

In the follow-up, T0006 discussed what prompted generalization while cod-
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ing: ”I assumed that we were going to work toward using a loop to generate
a table as we had been doing. . . , so I thought I was working ahead. Plus, I’m
naturally inclined in all areas of my life to see what I can make a computer do
so that I don’t have to do it myself. That same mindset came into play here as
well. I didn’t have any instructional motivation until I added the columns to
show the ratios of the perimeter and then area to the factor multiplied by each
side. I thought having those columns would help students see the relationship
more easily.”

7 Influence of Robot Activity on Generaliza-
tion

An activity was used to push the learner to encapsulate the process to an
object. In this project, we had the participants program Parallax Scribbler 2
(S2) robots in order to continue exploring the relationship between the triangle
sides and area. Initially, the participants were given an 18x24-inch poster with
a triangle printed on it. Their goal was to have the robot trace the triangle by
writing code using the Spin programming language. A primer was given that
allowed the participants to write programs with just two commands: (1) turn -
by deg(deg), which rotated the robot deg degrees counterclockwise, and (2) go -
forward(d), which moved the robot straight ahead by d units, where a unit is 0.5
millimeters. After drawing a triangle on the poster, participants then modified
their program to have the robot draw a similar, smaller triangle on an 8.5x11-
inch sheet of paper. Measurements were taken of the two similar triangles and
observations were made about the ratios between the side lengths, perimeters,
and areas. Although a scale factor was not suggested, it turned out that 11 of
the 25 participants used a factor of ten. Other participants used a scaled factor
of 2. Participants that successfully completed the robot activity demonstrated
higher APOS levels when tested immediately after the activity. Four of the
thirteen (30.7%) at Pre-Action and Action level successfully completed the
robot activity while ten of the twelve (83.3%) at Process or Object level did.

8 Conclusion

The Python and robot programming activities motivated students to gener-
alize, influenced their mental images, and pushed them to higher levels of
abstraction. Some teachers who started at the action or process level were
able to transition to more general triangle properties and to use these in their
computer programs. Teachers naturally turned to their computer programs to
help them generalize over the concept. The programming activities influenced
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students and served as a catalyst to move from purely English descriptions of
their conceptions to using mathematical symbols, and the activities put them
into a mindset of generalizing. The results of this study can facilitate further
analysis of using computer programming to overcome cognitive obstacles in
teachers’ understanding of geometry.
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Abstract

In this paper we present a method for classifying texts by genre us-
ing machine learning applied in multilingual corpora. We show that by
training on languages for which training data is readily available, a sta-
ble classification model can be built that e↵ectively classifies documents
in languages for which training data is not available. Using two distinct
languages in the training phase results in better accuracy than using a
single language, while additional languages provide no benefit. Finally,
we show that language relatedness – whether the training languages are
related to the testing language – does not impact accuracy.

1 Introduction

Knowing the genre of a document (editorial, academic journal article, news
release) can facilitate a variety of tasks including part-of-speech tagging, sta-
tistical machine translation[8], and automated text summarization[3]. Since
such genre information may not be explicitly encoded in documents, there is a
need for automated genre classification.

Prior studies have demonstrated genre classification is beneficial to
topic labeling[4], sentiment analysis[7], authorship detection[1], and language
function[10]. Our research focuses on building a stable cross-lingual genre clas-
sification model applicable to languages for which little training data exists,
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referred to as less commonly known languages (LCKL). We explored the e↵ect
of language relatedness and the number of languages used in training on the
success of the resultant model.

1.1 Background

A variety of genre classification approaches have been used since the 1990s,
including discriminant analysis based textual parameters readily available
from part-of-speech tagging and syntactic analysis[5], and the “bag-of-words”
approach[2]. These studies, however, worked with monolingual corpora, and
specifically languages for which large annotated datasets already existed.

Rather than focusing on one single language, cross-lingual genre classifi-
cation (CLGC) builds genre classification models across multiple languages.
Semi-supervised learning methods such as co-training[12] or domain adapta-
tion methods have been explored. However, these methods are still heavily
dependent on statistical machine translation, which is realistically unavailable
to low-resources languages and costly in terms of memory usage and storage
in multilingual settings.

1.2 Project Goals

Our research focuses on improving genre classification prediction for low-
resourced languages by using annotated data from well-resourced languages
without resorting to machine translation or part-of-speech tagging. We focused
on answering two crucial questions: (1) Does training on related languages im-
prove the predictive ability of the model? (2) What is the optimal number of
languages needed to build a stable cross-lingual genre classification model for
LCKLs?

2 Methodology

We used two multilingual parallel corpora: the Europarl corpus, which con-
tains parlimentary proceedings in 21 European languages; and JRC Acquis,
which comprises legal documents translated into 23 di↵erent languages[9]. To
ensure the integrity of the dataset, we consider only original language texts,
excluding translated texts. Since the same number of text documents exist
in each language, we randomly selected the text documents from the equally
distributed text document corpus[8].

Our dataset included 15 languages in three groups: Slavic, Germanic, and
Romance. Within each group, the language with the fewest documents was
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identified as the LCKL and set aside as testing data, and the remaining lan-
guages were used to train the classification model. As shown in Figure 1, Dan-
ish (da) was the LCKL for the Germanic group, which also included English
(en), German (de), Dutch (nl), and Swedish (sv). The Romance group had
Romanian (ro) as LCKL, along with French (fr), Italian (it), Spanish (es), and
Portuguese (pt). Finally, for Slavic, the LCKL was Bulgarian (bg) with Polish
(pl), Czech (cs), Slovak (sk) and Slovenian (sl) as the remaining languages.

Figure 1: Document Count by Language (Thousands)

2.1 Data Processing

We utilized the Punkt algorithm[6] from NLTK[11] framework to extract 15
linguistic features from individual text documents. The features chosen were
identified by Petrenz & Webber[8] as being reliable indicators of genre, and
included measures such as colon frequency, document length, sentence mean
length, and single-sentence paragraph count. These became the input features
for a Support Vector Machine (SVM) genre classification model, implemented
from the scikit-learn library with Linear Kernel.

In order to compare the e↵ects of in-group and out-group languages on
each of the LCKLs, we performed genre classification with given features and
analyzed the confusion matrix generated by the models. Di↵erent metrics
including accuracy, precision, recall, and F-1 measure were calculated based
on the confusion matrix. This paper presents the accuracy measures, but we
found that in every case, the F-1 measure followed a similar pattern.

To identify the optimal number of training languages, we used training
datasets including from one to twelve languages. The sequence was deter-
mined by the number of documents available in each language. Starting with
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the language with the most documents, we added languages one by one to the
training dataset until it contained 12 languages (excluding all of the LCKLs).
By finding a peak in accuracy, we can determine the optimal number of lan-
guages to use in training.

3 Results

As shown by Figure 2, within the Slavic group, training on other Slavic lan-
guages resulted in higher accuracy than training on non-Slavic languages, re-
gardless of the number of languages used for training. Surprisingly, the Ro-
mance group showed the opposite trend: training on non-Romance languages
gave better results than training on Romance languages (see Figure 3).

Figure 2: Slavic Accuracy Figure 3: Romance Accuracy

Finally, within the Germanic group, performance of Germanic versus non-
Germanic training ultimately depended on the number of training languages
(see Figure 4). For all three language groups, the Europarl F-1 measure and
the JRC F-1 measure show the same trend as accuracy.

Figure 4: Germanic Accuracy

Regarding the question of how many training languages would be optimal,
Figure 5 shows that the highest accuracy values occurred when the training
dataset contained two languages.
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Figure 5: Training Languages

4 Conclusions

Our research did not reveal a consistent trend in the relationship between
training on related versus less-related languages. Slavic performed better with
related languages; Romance performed better with less-related languages; and
Germanic showed no consistent trend. Further research regarding e↵ects of
interactions between languages within each linguistic grouping is necessary so
that a more thorough understanding of the e↵ects of linguistic relatedness. A
more significant result of the research was identifying the optimal number of
training languages, ignoring relatedness. Specifically, we found that training
with two languages provides the most robust genre classification across linguis-
tic groups.
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Abstract

Employers in technology are constantly changing their job advertise-
ments and it is a challenge for academic programs to produce gradu-
ates who can meet these job requirements and employer expectations.
The Information Systems (IS)/Information Technology (IT) educators
have been facing the conundrum of whether an emerging technology is
a “game-changing” development or something more transient so as to
avoid “bloating” the curriculum. This study examines the body of knowl-
edge as represented in our IT/IS program course syllabi and the recent
job postings in five of our specialization areas including data science,
computer science, healthcare IT, information systems and cybersecurity
using natural language processing techniques. One of our goals is to
identify the major overlaps and gaps between the two entities system-
atically by employing quantitative methods. The major contributions
of this study lie in that it demonstrates how such data-driven analysis
and mining approach informs clarifications to the wording of existing
course syllabi, modifications to existing course contents, or the intro-
duction of new courses into the curriculum. Lastly, the future research
directions are delineated which this knowledge base can be applied to
enhance university graduates’ employability by analyzing students’ re-
sumes and presenting which jobs most closely match their knowledge,
skills, and abilities.
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1 Introduction

College graduates entering the workplace today are expected to be equipped
with a gamut of skills including technical, subject matter-related skills along
with practical experience and essential competencies like problem-solving and
leadership [13]. However, there have been growing concerns among business
leaders across industries, policymakers as well as higher education administra-
tors and educators about the skills gap in the current workforce [11].

Moreover, a multitude of latest surveys and studies on the job vacancies and
workforce readiness corroborate such concerns. For example, CareerBuilder’s
latest studies on the e↵ects of the skills gap on the U.S. labor market revealed
that 68 percent of 2,380 employers surveyed currently have open positions for
which they cannot find qualified candidates [2]. What makes the situation
more worrisome is that the gap between the number of jobs posted each month
and the number of people hired is growing larger as employer’s struggle to find
candidates to fill positions at all levels within their organizations. According
to the CareerBuilder report, two in three employers (67 percent) are concerned
about the growing skills gap and 55 percent of the employers have seen a
negative impact on their business due to extended job vacancies.

A research program undertaken by LinkedIn and Capgemini examined the
digital talent gap that a↵ects all areas of the business [6]. 50 percent of the
organizations participating in this study acknowledged hampering impacts of
the widening digital talent gap on their digital transformation programs and
agreed that a shortage of digital talent has cost them a competitive advantage.
Another example is the latest research conducted by Udemy, which disclosed
that the nearly 80 percent of Americans feel the U.S. is facing a skills gap, and
35 percent state that it a↵ects them personally in the face of constant changes
[14].

However, no consensus has been reached as for what underlies this mis-
match or what causes a widening shortage of skilled workers in the marketplace
[4]. Di↵erent stakeholders have experimented various approaches to close the
skills gap. For instance, some argue that companies should develop their own
talent pipeline program as the remedy [12]. The government has recognized
the need to connect individuals with careers from an early age and is trying
new approaches such as the Department of Labor’s Registered Apprenticeship
Program. On the other hand, some propose to develop labor-market intermedi-
aries such as employment agencies or trade associations, employer relationships
with technical colleges or other institutions, and employer-provided training to
bridge the supply and demand side [15].

How to prepare workers for the future has also largely focused on what
educators can and should o↵er through the academic programs. Colleges and
universities have been striving to close the gap using di↵erent approaches and
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strategies such as the co-op, partnership program run jointly by the employers
and university and the connected program or curriculum programs using con-
nections between the various stakeholders throughout a student’s educational
journey [5, 17]. However, such e↵orts mainly address the soft employability
skills gap instead of hard employability skills. As university faculty, we are
facing challenges to ensure students have both technical skills and soft skills
that employers will eventually want and to prepare students to be career-ready
and competitive in a global economy. Therefore, this study aims to tackle the
challenge from a di↵erent angle by examining the body of knowledge as repre-
sented in our IT/IS program course syllabi and the recent job postings using
natural language processing (NLP) techniques.

The rest of the article is organized as follow. The next section revisits an
IT/IS educator’s dilemma in curriculum development. The third section fo-
cuses on research methodology and presents the detailed steps involved in data
collection, data cleaning, and data analysis using several information retrieval
and data mining tools and techniques. The discussion section explores how the
result informs clarifications to the wording of existing course syllabi, modifica-
tions to existing course contents, or the introduction of new courses into the
curriculum. The last section presents our conclusions along with several future
research directions.

2 Motivation: Resolving an Educator’s Dilemma

The skills gap is particularly conspicuous in the technology field due to the
many fast-paced, disruptive innovations. From voice assistants to self-driving
cars to robot caregivers, automation and artificial intelligence (AI) are be-
coming more and more pervasive. Such phenomenon engenders a stream of
controversial debates and conversations regarding the impact of those emerg-
ing technologies on the labor market [3, 7]. It is estimated that graduates
from the disciplines such as computer science, IT, and IS today will find those
skills they have learned from school out of date within six years [8]. There is
a pressing need for university educators to examine the current curriculum to
identify and adjust those that do not match industry demand to adequately
prepare students for the work of the future [1].

However, given the fast rate of change in the employment landscape, the
IT/IS curriculum can easily become bloated. An educator’s dilemma is to find
a balance between accommodating new material from the discipline, teaching
fundamental concepts and maintaining a curriculum with the fixed number of
credits in accordance with accreditation requirements. A holistic model was
proposed to tackle such dilemma [16]. The authors [16] came up with a con-
ceptual framework consisting of two models: the strategic model for ”when” to
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incorporate new technology topics into the curriculum and the tactical model
for ”how” to insert new courses into the existing curriculum. The major lim-
itation of this framework is that “when” and “how” decisions are subjective
and to some extent “ad hoc” instead of “data-driven”. Further, no formal as-
sessment of the e↵ectiveness of this framework has been conducted. Thus, this
study attempts to tackle the dilemma using a more flexible and agile approach.
One of our goals is to identify the major overlaps and gaps between the two
entities (i.e., course syllabi and job advertisement) systematically by employing
quantitative methods.

3 Methodology

This section covers details of data curation, data cleaning and analysis tech-
niques that were used to conduct an initial explorative study.

3.1 Data Curation

The process for conducting our study requires two data sets: a set of job post-
ings for an industry and the current syllabi used by the program or department
for the relevant majors. To get the required job skills for an industry, we cre-
ated a web scrapper for one of the leading online job seeking and recruiting
websites, indeed.com. This scrapper retrieved all textual information on a job
posting while removing all html and JavaScript code. Doing this we lost the
structure of the post but retain all text in the posting. To scrape selected jobs,
we restricted the search to a location, entry level jobs only, and a search term
which is required to be in the post. For instance, our scrapper can pull the first
100 pages of a search with 15 jobs per page (1500 jobs) for selected parameters
such as Entry Level Jobs in Washington DC for “Information Technology”. The
results for each one of these data scrapes was then saved for further analysis.

To collect what skills the university currently covers in its curricula, we col-
lected the last syllabus used for each course, 99 in total. Using data extraction
techniques with Python scripting, we extracted all the textual information for
the syllabi. The extracted text from each syllabus was saved in its own file so
each individual class could be compared to industry needs.

3.2 Data Cleaning

An average job posting from indeed.com contains many boilerplate sentences,
which is irrelevant for the goal of our analysis to see if the university’s courses
contain all words that the job posting contains. For instance, basic language
and frequent words (the, is to, a, an) are not particularly useful for our analysis.
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These words are often called “stop words” and these stop lists come with
NLP kits. We remove all stop words from the job postings using the Natural
Language Toolkit’s (NLTK) stop word list for English [9]. With the basic
stop words removed, most job postings still contain some common job-related
terms. Most of these deal with employment and Human Resources such as
Equal opportunity, LLC, headquartered, experienced, etc. To remove these
terms from our evaluation, we hand curated a list of more than two hundred
common employment terms. After removing both the stop words and the
common employment terms, we obtain a list of terms that mostly relate to job
skills needed to fill the position.

Many of the data issues associated with the indeed.com data are present
in our syllabi data as well. For example, syllabi also come with boilerplate
information as the template is given by the university. We conducted the same
data cleaning procedure to remove all stop words from the syllabi. The ultimate
goal for analysis is to get rid of noise information about school policies (late
assignments, quizzes, test, drops, and withdraws) and extract the skills taught
by each course. We crafted a list of 200+ academic terms as stop words and
removed those from each syllabus as well. In the end we were left with only
the key concepts in each syllabus.

3.3 Analysis Techniques

To compare the skills taught in a class with industry needs, we created a process
that would rank the relevancy of each course to a specific industry. First, we
extracted the key terms that represent an industry and represent each syllabus
respectively. We conducted this extraction automatically using the common
information retrieval technique of term frequency–inverse document frequency
(tf-idf). Tf-idf ranks the importance of a term to the target.

Figure 1: Flowchart of the Research Methodology
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Having a value for each term, we turned each document into a vector of
values representing the terms in the document. To find out if two documents
were similar we took the cosine similarity measure between the two vectors. If
the cosine value is equal to 1, they are the same document, if the cosine value
is 0, the documents share no terms in common [10]. We conducted cosine
similarity analysis on both vectors and generated one file for each industry.
In each file the courses are ranked by how closely they match the industry
job postings based on their cosine similarity value. For instance, if we want
to inquire about the top five courses o↵ered in our program that cover the
skills matching the Data Science industry job needs most closely, we would
see: IT390, IT385, MSC385, MSC325, IT820. These courses accurately reflect
the data science components of our undergraduate data science specialty in
the IT major as well as a course in the doctorate in cybersecurity program.
Figure 1 illustrates the steps involved in our research methodology.

In addition, we had the goal of seeing what we should be teaching that
industry needs and what we are currently teaching that is not relevant to
industry. These features are created as a byproduct of the above tf-idf analysis.
Industry needs not currently covered in a class can be discovered by taking the
set di↵erence between terms in the keywords in industry and the keywords in
the syllabi, represented by A in Figure 2. Topics covered in courses but not
mentioned in job postings are covered by the reverse, the set di↵erence between
terms in the syllabi and terms in industry, represented by B in Figure 2. The

Figure 2: Venn Diagram showing the relationships between industry needs and
course topics

code and analysis for this research has been scripted using Python. To give
a high-level view of how we are doing as a school each semester, we calculate
a coverage ratio. This is defined as the percentage of terms in industry that
we cover in the syllabi. We calculate this in order of rank, so we can see how
we do on the top 10 industry terms, as well as top 25, 50, 100, and 1,000. If
all terms are examined, regardless of rank, this would be the ratio of C/A in
Figure 2.
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4 Result Analysis and Discussion

In this section several di↵erent analyses on the preliminary results are pre-
sented. The purpose is to examine gaps and overlaps between our curriculum
and industry job needs from various angles in order to achieve a holistic picture.

4.1 Analysis 1: Concepts in Syllabi Not in Job Adver-
tisements

Figure 3 is a list of the top 50 terms that were identified as frequently occurring
in our syllabi but not appearing in the job description.

Figure 3: Top 50 Terms in Syllabi Not in Job Advertisements

Most of these terms cover fundamental concepts in the core areas of com-
puter technology (e.g., motherboards), software development (e.g., threads),
networking (e.g., synchronizing), databases (e.g., tuples), and cybersecurity
(e.g., ciphers). These reflect the depth of coverage in our syllabi. RFID is
the only technology that is mentioned in the syllabi and not in the job ad-
vertisements selected. Some terms need to be edited in the syllabi, such as
“pentester” to “penetration tester”, webapps to “web application” and “honey
pots” to “honeypots”.

4.2 Analysis 2: Skills Required by the Industry, but Not
Covered by Each Concentration

While tf-idf and cosine similarity gives us a ranking of our courses per industry,
it still does not let us know if our curriculum is missing any key concepts. To
analyze this, we also generate a list of key terms that occur in the indeed.com
postings that do not occur anywhere in our syllabi. The top 5 terms in each
specialization are shown in Figure 4.

103



Figure 4: Top 5 Terms Not Covered by Each Specialty

These are the unfiltered top 5 terms. Geospatial, GIS and geographic terms
occur multiple times in three specialties and would appear to be a possible ad-
dition to our program. Our coverage in cybersecurity appears more than ade-
quate and the highly occurring terms are more descriptors than skills. However,
“genetics” as a term in cybersecurity will be researched further as this might
be an emerging area. The use of “developer” rather than “programmer” will
result in a review of our software development syllabi. Similarly, the use of
“analysts” will be reviewed. Open source intelligence (“osint”) is covered in
the cybersecurity syllabi but we will further investigate its use in data science,
outside of cybersecurity.

The Healthcare IT words are not technology related but show how Health-
care IT has migrated outside the medical o�ces and hospitals. It is now being
implemented in chiropractors, rehab clinics, spine clinics and sports facilities.

4.3 Analysis 3: Coverage Ratios

The coverage ratio represents the percentage of top keywords that exist in a
course. Figure 5 shows ratios for the top 10 to 1000 keywords in each of the
five specialties.

Figure 5: Coverage Ratios by Specialty

For the top 10 words in Information Systems, Data Science, and Cybersecu-
rity specialty there are at least one course that mentions each of them (100%).
For Data Science we have 90% (9 of the 10 keywords) and for healthcare 60%.
Further analyses show that this number changes as the number of keywords
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increases. Computer Science is fully covered for the first 100 keywords. Cyber-
security coverage is also good through 100 keywords. For Healthcare the value
goes up as we go down in keywords, so the syllabi are covering many of the
mid-term words. Further analyses will include coverage for when a keyword
happens in at least 2 courses, 3 courses, and so on.

4.4 Analysis 4: Programming Languages Requested in
Job Advertisements

Learning to program is part of the IS/IT curriculum, and academics must select
one or more languages to teach basic and more advanced concepts of software
development. Figure 6 shows the five most common programming languages
for each specialty.

Figure 6: Most Common Programming Languages in Job Advertisements

Java and Python are the primary languages requested across all specialties.
This reinforces our curriculum decisions where Java I and II are recommended
for the Computer Science specialty and Python (introduced in 2016) for the
Data Science and Cybersecurity specialties. Web development, including the
JavaScript and Perl languages, is also o↵ered and recommended for the Infor-
mation Systems specialty. Apache Spark is an important addition for the Data
Science and Information Systems specialties and should be added to the pro-
gramming environment for these options. Cobol was unexpected and indicates
the reliance on older software in the healthcare field.

5 Conclusions

This was an initial analysis of the two datasets: curriculum scope and job
advertisements in the IT/IS field. While there was substantial overlap, the
initial analysis showed that there were some gaps. In several cases this can
be overcome by a careful review of the syllabi to ensure that they reflect the
current terminology in the field and that variations on terms are used (e.g.,
analysts not just analysis). In other cases, a new course might be needed. In
this initial review, geospatial/GIS seems a good addition to the curriculum and
will be researched further.
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There are many additional analyses possible now that we have the datasets
in place. We can run these analyses every semester to identify changes in the
job advertisements as well as any curriculum changes that we have made. We
will also do additional analyses looking for other gaps over time. For example,
break down the syllabi by level (undergraduate, masters, and doctorate) and tie
this into job advertisements and their education requirements. Further research
will also be performed with a third data set, applicant resumes, to determine
whether it is possible to use these data to promote certain job positions for
individuals in the program as part of our job readiness activities.
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Abstract

Course advising plays an important role in a student’s college expe-
rience. Uninformed decisions about which courses to take during which
semesters can cause a student to fail to graduate on-time or struggle with
a major not ideal for the student. Likewise, faculty and administration
routinely ask questions about when courses should be o↵ered, how many
teachers are needed to cover the courses, and how changes to prerequi-
sites or major requirements impact schedules. However, course advising
is challenging because it can demand complex planning years into the fu-
ture while considering numerous rules about major requirements, course
prerequisites, maximum course loads, and course o↵ering schedules. We
have developed Tarot, a course advising system that uses a planning
engine to develop multi-year course schedules for complex scenarios such
as double majors, study-abroad semesters, course overrides, early grad-
uation, and transfer credits. This paper describes Tarot’s design and
operation and distinguishes its capabilities from existing course advising
tools.

1 Introduction

Course advising plays an important role in ensuring a student’s success in
their college career. This is particularly true for students attending private,

⇤Copyright c�2018 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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often costly colleges and students on academic or athletic scholarships. In
these cases, time-to-graduation is a hard constraint on their ability to a↵ord
their education. Likewise, colleges and universities are ranked according to 4-
year graduation rates, further emphasizing the importance of ensuring students
finish their degrees on-time. Without a strong course advising infrastructure,
including software tools and well-trained advisors, student success and the
institution’s ranking may su↵er.

We have developed a new software tool called Tarot to assist advisors and
students. Tarot is designed to help with the complex constraints and rules
inherent in planning multi-year course schedules. Although many academic de-
partments design prototypical two- or four-year schedules to help guide entering
students, not all students follow the same path or come from the same back-
ground. Once a student deviates from this pre-defined plan, e.g., they bring
transfer credit, or add a second major, or study abroad, or need a course over-
ride, or must finish in 3.5 years, etc., then the pre-defined plan is useless. Now,
the student and advisor must think through the intricacies of major require-
ments, course prerequisites, and o↵ering times to find a plan for this student’s
particular circumstances. This cognitive burden introduces the possibility of
mistakes and precludes any more advanced forecasting such as finding the best
time to study abroad or finding every possible major elective that would satisfy
graduation requirements.

Yet handling constraints and managing complex interactions is the raison
d’être of planning engines from the field of artificial intelligence. Tarot is a
planning engine designed specifically for course advising. Its use cases focus on
developing a student’s schedule across multiple semesters rather than schedul-
ing courses for times/days in the week, rooms, etc. We implemented Tarot in
Prolog and exploit this language’s ability to perform backtracking search to
find solutions that satisfy arbitrary constraints. Tarot is also designed for ef-
ficiency, and time-to-answer is reported for each use case described below. At
this time, Tarot handles just a few majors (math, computer science, computer
information systems, and cybersecurity), and while we have plans to extend
to more majors, we do not plan to include every available university course.
General education requirements, for example, are marked as “gen. ed.” slots
in a schedule since the courses are mostly interchangeable and available in any
semester.

In order to best explain how Tarot di↵ers from other course advising
systems, we define four levels of sophistication in terms of the kinds of questions
students and/or advisors may wish to answer.

Level 0: Questions about the present. At the most basic level, students and
advisors wish to know: What courses has this student taken? What is the
student’s current GPA, and how many credits have they earned?
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Level 1: Questions about a possible future. This level introduces forecasting,
i.e., establishing a schedule for the student’s future. Relevant queries include:
What courses should the student take, and in which semesters, in order to
graduate on time? What is a sequence of courses that allows the student to
achieve a double major? How does the schedule change if the student wishes
not to take more than two major courses per semester? How does the sched-
ule change if the student studies abroad during a certain semester or takes a
semester o↵? (Note, we assume students are unable to transfer their study
abroad credits, though of course this is not always the case in practice.)

Level 2: Questions about all possible futures. This next level considers
more than one possible future, or often, all possible futures. For example:
When should this student study abroad to ensure on-time graduation? Which
semester should a particular course be taken to remain maximally flexible?
What grade must the student earn in a certain class to ensure a desired GPA?

Level 3: Questions about the rules. Finally, sta↵ and faculty may also ask
about the rules themselves. For example: How di↵erent are two majors in
terms of shared and distinct courses? How many teachers are required to cover
the courses that students may take to complete their degrees?

In the remainder of this paper, we will show how Tarot is able to answer
questions from all four levels. We begin by discussing related works and how
they fit in terms of these levels. We then describe Tarot’s internal implemen-
tation and showcase how Tarot handles a variety of questions.

2 Related Work

Several systems have been designed to help with academic advising. For sim-
ple advising, i.e., our Level 0, the use cases involve the present and the near
future. For example, a student comes to an advisor after one or two semesters
and wants to know his or her eligibility for some specific classes in the upcom-
ing semester. Engin et al. [4] created a system that attempts to answer those
questions by comparing courses to a set of rules created using Oracle Policy
Automation (OPA). The student’s level (freshman, sophomore, etc.) can be
determined using credits earned, or the student could check his or her eligibil-
ity for a course in terms of prerequisite courses. Another system from Vincenti
and Bennett [7] is designed for the student to use on his or her own (“self-
advising”). Once the student selects courses for the current semester, a list is
generated showing which courses will be available and relevant in the following
semester. Guerin and Goldsmith [2] created an academic advising system that
uses a dynamic Bayes net. This system suggests courses based on the academic
background of the student. For example, students are directed to di↵erent se-
quences of Computer Science courses depending on whether they were stronger
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in mathematics but weaker in programming, or vice versa. Dodson et al. [3] use
Markov decision processes to likewise recommend next-semester courses based
on the student’s history. Systems like these are e↵ective when the student
and/or advisor have a clear understanding of the student’s desires in the near
term, but are not capable of developing customized concrete plans multiple
semesters into the future.

The systems described above operate mostly on Level 0 since they do not
generate full schedules. Now we consider systems that operate at Level 1. The
IDiSC+ system by Mohamed [6] uses a sophisticated algorithm to consider
several factors while forecasting semesters. This system, like those in Level 0,
considers prerequisites and availability, but the IDiSC+ system can also work
with constraints such as ensuring minimum credit hours per semester, number
of courses per semester, required electives, minimum GPA, course priority, and
even the student’s budget. A system with this type of complexity is e↵ective
for planning the archetypal undergraduate education, but falters when even
more complex factors – double majors, when to study abroad, or if a semester
will be missed – are introduced.

To our knowledge, no systems are available that operate at Level 2 or 3,
i.e., finding all possible schedules and making inferences on this set, and asking
questions about the major requirements and multitude of course schedules
themselves.

These prior e↵orts demonstrate a reasonable ecosystem for assisting stu-
dents and advisors in general advising scenarios. Students have access to
databases and planning engines that allow them to lay out an appropriate
schedule, perhaps for their entire undergraduate career. Unfortunately, more
complexity exists in real-world academic advising. This added complexity is
where Tarot is most unique. In particular, Tarot can identify all possible
scenarios meeting user-provided constraints, rather than just the most likely.
Consider an example where a first-year student is certain that she will study
abroad for one semester. She asks her advisor which semester taken abroad
would delay her graduation the least, assuming she is unable to transfer any
credits (the safest assumption for the hypothetical scenario). An advisor would
normally have to spend a substantial amount of time working this issue out,
taking into consideration long term questions like course frequency/availability,
GPA, and double majors; and this would have to be repeated for each potential
semester abroad. For Tarot, this kind of search can easily be constructed by
specifying just a few constraints. Tarot is designed to work with arbitrary
constraints, some of which may introduce exhaustive search to find all possible
solutions to a question.

In the following sections, we comment on Tarot’s implementation and
then evaluate its capabilities and e�ciency across all Levels 0 through 3.
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3 Implementation

Tarot is implemented in Prolog, whose backtracking search paradigm is an
ideal fit for Tarot’s use cases. Course information, including major require-
ments, prerequisites, and course o↵ering times (Fall/Spring; odd/even years)
are stated as Prolog facts or, in some cases, more complex rules that check for
specific conditions. For example, our computer science major’s required senior
research course has complex prerequisites: students must have completed three
300-level courses, two of which must be computer science (CSCI) courses, one
of which may be a CSCI or a computer information systems (CINF) course.

For most advising questions, Tarot internally fills out a multi-year sched-
ule. In some cases, Tarot also proceeds to find all possible ways of building
the schedule in order to answer questions from Levels 2 and 3. The sched-
ules are built by establishing a blank schedule full of “free slots” and then
recursively replacing free slots with courses. Prolog’s backtracking allows us
to specify arbitrary constraints on the schedules, such as maximum number of
major courses to take each semester, without having to define code that specifi-
cally handles these constraints. Any schedules that fail to meet the constraints
will be thrown out and the search for satisfying schedules will continue. As
a case in point, finding a schedule for a student who wishes to double major
is as simple as finding a schedule for the first major, then starting with this
schedule (and its remaining free slots) and filling in the requirements for the
second major using the same code path that filled in the first major’s courses.

Due to space constraints, we refrain from showing much Prolog code in
this report. However, it is worth noting that considerable e↵ort has been
focused on e�ciency while developing Tarot. For example, the system avoids
excessive backtracking by first scheduling senior-level courses in the last or
second-to-last semester. Next, junior-level courses are scheduled, and so on.
This ensures introductory courses that serve as prerequisites for later courses,
but which may be taken any time since they have the fewest prerequisites, are
scheduled under the most constrained environment, when most courses have
already been scheduled. This design follows the general design paradigm of
constraining the search as early as possible to avoid generating results that are
ultimately thrown away by subsequent constraints.

Presently, Tarot su↵ers from a lack of a proper user interface. Advis-
ing questions must be specified as Prolog queries on a command line. In
future work, we plan to investigate an appropriate web-based interface that
best exposes Tarot’s capabilities in a form that is clear and e�cient for non-
programmers.
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4 Evaluation

We evaluate Tarot by demonstrating some example questions and Tarot’s
responses across the three levels.

Level 0: Questions about the present. Our university uses Ellucian Degree
Works [1] to show information about a student’s class history and required
courses. Tarot has a built-in parser for Degree Works’ class history format.
We can read this class history and then ask Tarot to calculate the student’s
GPA:

readStudentFile(’classHistoryH1.txt ’, Taken),

calcGPA(Taken , GPA , Credits , AllCredits ).

The result is a table of the student’s class history, including grade earned
and individual course credits, followed by their GPA and overall earned credits.
We note that the classes and grades shown below are simulated. The query
completes in 0.002 seconds on a laptop with an Intel i5 processor and 8 GB
RAM.

Transfer astr180 (Tr, 3) chem110 (Tr, 4) csci111 (Tr, 4)
2016 Fall csci142 (B+, 4) csci211 (A-, 4) rels390 (P, 4)
2017 Spring csci201 (B, 4) csci221 (A-, 4) hlsc219 (A, 4) math141 (C+, 4)

GPA: 3.33, Credits: 24, All credits (including transfer): 39.

Level 1: Questions about a possible future. Using this same simulated class
history, we can next ask for a schedule that would allow the student to complete
his computer science degree in two years. The following query reads the class
history, generates four semesters covering the next two years, fills in a schedule,
and further ensures there are at least five general education courses in the
schedule.

readStudentFile(’classHistoryH1.txt ’, Taken),

generateBlankSemesters (2018 , 4, Semesters),

finishDegrees ([csci], Taken , [], Semesters , PlanSemesters),

ensureGenEdCount(PlanSemesters , 5).

The result is a table that gives the proposed schedule. Note that major
requirements, course prerequisites, and course o↵ering times are considered
while developing the schedule. The query completes in 0.006 seconds.

2018 Fall cinf401 csci311 csci321 math142
2019 Spring csci331 csci431 gen. ed. gen. ed.
2019 Fall csci498 phys141 gen. ed. gen. ed.
2020 Spring csci301 csci499 phys142 gen. ed.

The student may also wish to limit the number of CSCI and CINF and
MATH courses to take in the same semester to, say, two courses. Tarot fails
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to find a successful schedule (in 1.742 seconds), indicating the constraint is not
possible to achieve. Adding another semester does succeed (in 0.437 seconds):

readStudentFile(’classHistoryH1.txt ’, Taken),

generateBlankSemesters (2018 , 5, Semesters),

finishDegrees ([csci], Taken , Semesters , PlanSemesters),

ensureCourseLoad ([csci ,cinf ,math], PlanSemesters , 2),

ensureGenEdCount(PlanSemesters , 5).

2018 Fall csci321 math142 phys141 gen. ed.
2019 Spring csci331 csci431 phys142 gen. ed.
2019 Fall cinf401 gen. ed. gen. ed. gen. ed.
2020 Spring csci301 csci498 gen. ed. gen. ed.
2020 Fall csci311 csci499 gen. ed. gen. ed.

Now consider a new student, with no class history, who wishes to study
abroad (which we assume involves no transferrable major courses) during 2020
Spring semester. Tarot can plan around this missing semester to find a suc-
cessful four-year schedule (in 0.006 seconds):

generateBlankSemesters (2018 , 8, Semesters),

setMissingSemester(Semesters , 2020, spring , Semesters2),

finishDegrees ([csci], [], Semesters2 , PlanSemesters ).

Double-majors are also trivial to specify, for example, a MATH+CSCI dou-
ble major (completed in 0.009 seconds):

generateBlankSemesters (2018 , 8, Semesters),

finishDegrees ([math ,csci], [], Semesters , PlanSemesters ).

Level 2: Questions about all possible futures. If a student wishes to know
when to study abroad, we can write a query that forces Tarot to find all
schedules for all possible study abroad semesters, and then tally the number of
schedules that work for each di↵erent study abroad selection. We use Prolog’s
‘findall’ feature for this purpose. Naturally, as we develop a more friendly user
interface, direct use of Prolog code will be entirely avoided.

Assuming the student is a freshman starting college in Fall 2018, the system
finds the following number of working schedules for each possible study abroad
semester:

2019 Spring – 47,340 (20%) 2019 Fall – 51,549 (21%) 2020 Spring – 35,469 (15%)
2021 Spring – 32,870 (14%) 2021 Fall – 45,092 (19%) 2022 Spring – 28,026 (12%)

Thus, the student has the most flexibility in her schedule if she studies
abroad in 2019 Fall. Note that 2020 Fall is missing due to the frequency in
which some required major courses are o↵ered (Fall/Spring; odd/even years).
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A student may wish to know all the possible semesters to take a particular
course, for example, our department’s artificial intelligence course. To answer
this question, we first generate all possible schedules with ‘findall’ starting in
Fall 2018, then tally all the di↵erent semesters the course appears. The query
completes in 112 seconds and reports that the only semester available to take
the course is 2021 Spring if the student starts as a freshman in our introductory
programming course. If the student has prior programming experience and
starts in CSCI 141, the AI course may be taken in 2020 Spring in 20% of
possible schedules or 2021 Spring in the other 80% of possible schedules.

Sometimes students wish to know what grades are required in certain
courses to achieve a certain GPA. This is straightforward to request from
Tarot. We can simply request Tarot to generate a schedule (with unknown
grades in classes not yet completed), calculate their GPA with the query ‘cal-
cGPA(Taken, GPA, Credits, AllCredits)’, and then add a constraint like ‘GPA
>= 3.5’. We use the CLPR library (constraint logic programming in real num-
bers) [5] to e�ciently establish constraints on real-valued variables, in this case,
course grades. CLPR uses a solver for linear equations rather than backtrack-
ing search.

Level 3: Questions about the rules. Finally, Tarot can report how similar
two majors are by finding schedules for each major separately and then tallying
how many courses are in common. This operation takes as much time as
generating all possible schedules, twice (about four minutes).

Tarot can also help sta↵ and faculty determine how many teachers are
needed to cover all possible schedules for freshmen entering in odd or even
years (assuming one section of each course). This information can serve as
evidence in a proposal to support a new tenure line – i.e., an argument can be
made that at least some number of teachers are required to cover a new major
within an existing department. The query involves finding all distinct possible
schedules for each relevant major, for freshman starting in an odd year and even
year separately. Then, Tarot calculates the number of distinct courses in each
semester and divides that number by the course load for teachers (e.g., 3/3).
Naturally, this is Tarot’s most time-consuming query, requiring 9 minutes,
but it is also likely to be the least frequently executed query.

5 Conclusion

This paper describedTarot, a tool that aids students and advisors in everyday,
yet sophisticated course advising scenarios. By making use of an integrated
planning engine, Tarot is capable of developing long-term course schedules
while respecting major requirements and prerequisites. Tarot can also handle
arbitrary constraints such as maximum course load, study abroad semesters,
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and double majors. By producing and analyzing all possible schedules for a
given set of constraints, Tarot can also provide information about the best
time to take a certain course or the minimum number of teachers required to
cover all courses. In future work, we plan to develop an appropriate user inter-
face for students and advisors that best exposes Tarot’s advanced features.
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Abstract

This paper describes the adaptation of a natural language processing
algorithm, Bayesian spelling correction, for use in teaching data struc-
tures. First I describe the algorithm and its mathematical basis. Then I
describe the conversion to a programming assignment. Finally I describe
what students learned from doing the assignment, lessons learned from
this project and alternatives that could be used in assigning this project
again.

1 Introduction

The purpose of this project was to investigate what it would take to use an
algorithm from natural language processing (NLP) as the basis of a real-world
size programming assignment in a data structures class. There were multiple
motivations for undertaking this research. First, it would enable students to
learn an interesting piece of NLP that does not require any background in
linguistics. Second, it uses a large enough data volume that e�ciency actually
matters and students can’t just eyeball the data to see whether their answers
are correct. Most importantly, the assignment benefits from high-level data
and control structures, including maps or associative arrays (dictionaries in

⇤Copyright c�2018 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
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Python) and streams or lambda expressions (list comprehensions in Python).
Students also get to practice some pieces of infrastructure that will be useful in
future real-world endeavors, including the use of a serialized singleton class to
store data between programs, and how to instrument a program for analyzing
speed.

The algorithm chosen for this purpose is the Bayesian spelling correction
algorithm. A variant of this algorithm is used in most word processors today,
yet most people who have not studied it generally have no idea how it works.
Students generally assume that spelling correctors look up the problem word
in a dictionary. They can readily see that looking up the word in a dictionary
will tell you only whether the word is correct. For words not found, however,
students have generally not noticed that the possible corrections provided by
the word processor are sequenced from most to least likely.

In the first section of this paper I describe the algorithm and its mathe-
matical basis. Then I describe its conversion to a programming assignment.
Finally I summarize what students learned from this project and alternatives
that could be used in assigning this project again.

2 Background

The algorithm described here was first suggested by kernighan. Although it
was first published in 1990, it is still the basis of the spell checker in most
commercial word processors. The algorithm is based on Bayes’ Law, which
was originally proposed in [1], and found today in most statistics or AI text-
books, e.g., [140]jurafsky-martin[404-405]russell-norvig. The classical Bayesian
problem can be described as follows: Given one feature of an object, how can
we determine what is the most likely class it falls into? For example, suppose
there are three possible causes for a rash — a cold, chicken pox or the Ebola
virus. If a person has a rash, which of these diseases are they most likely to
have? Bayes’ Law can be used to answer this question when all we know is the
inverse data, i.e., for each of those diseases, we know what percent of su↵erers
usually have a rash.

I initially present this formula to students using a non-NLP example for
two reasons. First, many of them have learned it in a statistics class, and I
want to remind them of it. Second, I want them to see that this algorithm is
not NLP-specific, but can be useful in many contexts.

Bayes’ Law tells us that P (x|y) = P (y|x)P (x)/P (y), where P (y|x) repre-
sents the probability of y given x. For example, suppose that 10% of people
with a cold have a rash, 90% of people with chicken pox have a rash, and 50%
of the people with Ebola have a rash. (Note: these numbers are not medically
accurate. I was not able to obtain accurate medical information, and in any
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case, I like to warn students about “medical students’ disease”, where the lat-
ter are always subject to worrying about whatever issue is being discussed in
class.)

Now suppose that for every 100 people who visit a doctor with a rash, 90
have a cold, 9 have chicken pox and only one has Ebola (which would of course
be high, but integers keep the math easier). Suppose Kim has a rash. In that
case we know that P (rash) = 1, so we can calculate the probability that Kim
has each disease under consideration as follows:

P (cold|rash) = P (rash|cold)P (cold) = .10 ⇤ .90 = 0.0900 = 9.00%

P (pox|rash) = P (rash|pox)P (pox) = .90 ⇤ .09 = 0.0081 = 0.81%

P (Ebola|rash) = P (rash|Ebola)P (Ebola) = .50 ⇤ .01 = 0.0050 = 0.50%

In other words, although a rash is less common as a symptom of a cold
than of the other diseases, Kim is most likely to have a cold simply because
colds are so much more common. This insight is the key to understanding the
spelling algorithm.

This observation can be applied to misspelled words by framing spelling
correction as follows: Given a string of characters s, which word w in the
dictionary has the highest P (w|s), i.e., the probability that the word the user
intended to type is w given that the user actually typed the string s. Since
Bayes’ Law converts P (w|s) to P (s|w)P (w)/P (s), and P (s) is constant for
a given string, we only need to calculate P (s|w)P (w) for each word in the
dictionary. In Bayesian theory, P (w) is called the prior probability of w and
P (s|w) is called the likelihood of w.

3 Implementation

The implementation is based on using a large corpus to obtain frequency infor-
mation about both letters and words. The larger the corpus, the more accurate
the results. Kernighan used the 1988 Associated Press (AP) corpus, which con-
tains about 44,000,000 words. We used a version of this corpus [4] originally
prepared for the annual TREC information retrieval competition [5] sponsored
by the National Institute of Standards and Technology (NIST). The corpus is
now available from the Linguistic Data Consortium (LDC).

The implementation contains two programs, one which only runs once, to
preprocess the corpus, and one which is used for actual spell checking. The
preprocessing program starts by replacing every character that is not an Ascii
letter by a space. Although that will split abbreviations into two words, e.g.,
doesn + t, this is a common approach in NLP software. After that, students
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need to create dictionaries of the frequency of each character and of each char-
acter pair. Then they need to build a dictionary of words in the database with
their frequencies. They also need to save the total number of words in the
database and the number of distinct words. All of these data will be used by
the spell check program.

Regular expressions and stream or lambda processing can be useful for this
process. Since the data volume is so large, there is a large di↵erence between
the most and least e�cient implementation. For this reason we ask students to
time their program. We also ask them to serialize the result so that the data
collection does not have to be repeated.

The second program uses the generate and test model, which is a common
AI approach [7, 139-143 ↵.], although it is usually new to students. Under this
paradigm, the program contains two sections, one to generate possible words
and the other to evaluate them. After that, students need to sort the evaluated
words and display them in descending order of probability in order to model
what commercial spell checkers do. We only run the algorithm on words that
are not in the dictionary that the first program has built, since we assume that
words in the corpus are correct. Looking at the algorithm, students believe the
actual spell check program will be ine�cient, but it actually runs very rapidly.

The spell check program needs to calculate P (s|w)P (w) for every possible
correction. Fortunately, we do not need to look at every word in the dictionary
as the math above might indicate. *kernighan [3] suggest that most spelling
errors belong to one of four types:

a) Add any letter at any position (including at the beginning or end of a
word).

b) Delete the letter at any position.
c) Substitute the letter at any position with any other letter.
d) Transpose any two consecutive letters.

Kernighan calls each of these single-character errors, including the last. We
can accept their research that these are the most common kinds of errors
without necessarily considering transposition to be a single-character error. In
any case, students can see by experiment that these are the categories used
by Microsoft Word, for example, although Microsoft Word does include one
additional category, namely the insertion of a space inside a string to create
a two-word unit. The first step is to make a list of the potential good words
that the four rules will give us for evaluation purposes. In every case what
we want to calculate is the probability that a good word w will be converted
to the given bad string s using one of the four procedures. We always view
the change from the point of view of the good word, e.g., if the bad word is
acress and we are considering the good word actress, we look at what it takes
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to convert actress to acress, i.e., deleting the t. It is necessary to explain this
with examples, as students find it unintuitive.

To do this, students need to process the given string four times. Items a)
and c) involve two nested loops, an outer loop to maintain the position of the
letter in the error string and an inner loop for the correction letter. Items b)
and d) can be handled with a single loop. For each item, we need to keep
track of the type of correction and which letters were involved. We also tell
students to keep track of where in the word the correction was located to make
debugging easier.

In the second step, we prune the list by looking up each possible correc-
tion from each of the four categories in the dictionary. We drop any possible
correction that is not in the dictionary, i.e., any string which is not a word or
is so rare that it does not appear in the corpus at all. Most of the potential
corrections are dropped at this point.

For each of the four categories, we ask students to print the number of
possible corrections and those that are left after pruning. In addition to being
a useful debugging aid, this shows students that the number of words they
need to evaluate is extremely small compared to the number of words in the
dictionary. For example, Table 1 shows the results for acress.

Table 1: Potential Corrections for acress

Category Count Pruned

add 6 3
delete 182 1
substitute 156 4
transpose 5 1

Now that we have a short list of corrections, we need to calculate P (s|w) and
P (w) for each word. To obtain P (w), we can count how often the word w occurs
in the corpus, then divide by the total number of words in the corpus. It is
common to use smoothing so that no count will be zero even though a word may
not be found in the corpus. Kernighan uses Good-Turing smoothing, which
adds .5 to every word count. To keep the numbers proportional, one also needs
to add an equivalent correction to the denominator, so that instead of P (w) =
count(w)/N , where count(w) is the number of occurrences of w and N is the
total number of words in the corpus, we have P (w) = (count(w)+.5)/(N+.5V ),
where V is the number of distinct words in the corpus.

We can get P (s|w) by using the heuristics suggested by *kernighan [3]. We
assume that a particular letter substitution is independent of the word it is
located in and its place in the word. Therefore we just need to know how
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common each particular error is. Kernighan provides this data in his paper in
the form of four 2-D tables called confusion matrices. I scanned these tables
and provided them to students. The four tables are defined as follows:

del(x, y) = how often y was deleted after x,

i.e., the user typed x instead of xy

ins(x, y) = how often y was inserted after x,

i.e., the user typed an extra y after x

sub(x, y) = how often the user typed y instead of x

trans(x, y) = how often the user typed yx instead of xy

These four tables can be used to calculate P (t|c) as follows, where P (t|c)
represents the probability that the typo letter t was used instead of the correct
letter c:

P (t|c) =

8
>>><

>>>:

del(w[p� 1]), w[p])/bigrams(w[p� 1], w[p])

ins(w[p� 1], w[p])/unigrams(w[p� 1])

subst(s[p], w[p])/unigrams(w[p])

trans(w[p], w[p+ 1])/bigrams(w[p], w[p+ 1])

where p is the location in the good word where the error happened and unigrams
and bigrams are the counts of single letters and letter pairs calculated by the
corpus analysis program. If a deletion or insertion happens at the beginning
of a word, p = 0 and p� 1 refers to an imaginary slot before the first letter.

In other words, the probability that t was deleted before c is the ratio of
the frequency of the error pair tc to the total frequency of tc in the corpus.
The probability that t was added before c is the probability of the frequency
of the error pair tc compared to the frequency of the letter c. The probability
that t was substituted for c is the ratio of the error pair tc to the frequency of
c. Finally, the probability that t and c were swapped is the ratio of the error
pair tc to the total frequency of the letter pair tc. Basing the choice of the
previous character instead of the next character is arbitrary, and students have
di�culty with that concept. They also have di�culty with inserting letters at
the beginning of a word, so examples are useful here too.

We now ask students to build a chart like Table 2. P (total) is P (x|word) ⇤
P (word), multiplied by 109 for easier reading. The italicized words are incor-
rect words that are present in the corpus. This issue is discussed later in the
paper. To create the chart, students need to save all the data for each line
in a data structure such as an object, make a list or other type of collection
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of the objects, then sort the items so that the chart prints in descending or-
der of probability. To use the sort function provided by the runtime system
(e.g., in Python or Java), they need to write a comparison function to compare
two objects. Many students are not used to the idea of building a temporary
data structure just to format output correctly. In addition, although they have
studied sort comparators in a previous course, most are not comfortable with
the concept.

Table 2: Sample Output for acress

Cand Type Pos C E x|w P(x|word) P(word) P(total)

actress del 2 t c c|ct 0.0001165315 0.0000584117 6.806804
across subst 3 o e e|o 0.0000073322 0.0002452899 1.798504
acres ins 4 � s es|e 0.0000198875 0.0000818941 1.628671
acres ins 5 � s ss|s 0.0000172377 0.0000818941 1.411670
acrss ins 2 � e re|r 0.0000079273 0.0000000420 0.000333
adress subst 1 d c c|d 0.0000021981 0.0000000981 0.000216
agress subst 1 g c c|g 0.0000014294 0.0000000701 0.000100
caress trans 0 ca ac ac|ca 0.0000000000 0.0000001261 0.000000
access subst 2 c r r|c 0.0000000000 0.0000665661 0.000000

The tables were provided as two-dimensional arrays. Students were encour-
aged to convert this format to a two-dimensional associative array for easier
lookup. Although this requires only a few lines of code and avoids the need to
convert between letters and numeric subscripts, it requires a sophisticated use
of list comprehensions and many students did not bother.

The outputs have been designed to make the project easy to grade. As part
of the real-world approach to the assignment, integer columns in the output
must be right-aligned and real numbers must be decimal-aligned. Both rows
and columns must be labeled. The outputs of the data analysis program include
the unigram table, the bigram table, a few items from the frequency dictionary
(e.g., the totals and the ten most common words and their frequencies), and the
timing information. For the spelling correction program proper, the program
prints summary data about the creation and pruning of possible corrections in
addition to the correctly sorted final table. In addition, the second program
will not run if the serialization file has not been correctly implemented.

4 Lessons Learned

This assignment was tested in an upper-level elective course containing 35
students. The course included a short introduction to Python and had as pre-
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requisite our regular data structures course, which is taught in C++ using the
STL. Even with the detailed directions provided, about 20% of the class needed
help understanding the assignment in o�ce hours. In addition, it was neces-
sary to provide smaller test files with answers to enable independent student
debugging. Python append recopies the list for every new element. Several
students found it hard to believe that using this function instead of linear list
processing, thus converting the algorithm from O(n) to O(n2), was the cause
of their program not running in the time allocated by the department server.

In annual surveys, our graduates express the desire for larger and more
unstructured assignments. Our regular data structures course gives students
weekly practice with new data structures. This assignment gives them an
opportunity to integrate that material in a larger project. Students provided
very positive evaluations of the project, with several putting it on their resume
as a project they had done. However, given the class size, detailed directions are
required, i.e., most of the students are not yet ready to design a program from
the description of the problem. Further evaluation is required to see whether
giving one or more such assignments in a course would increase students’ design
ability, and/or whether the design skills could be taught explicitly.

Evaluation of the code shows a wide variety of coding skill, from professional
level to code that would horrify anyone who teaches programming. Many
students did not use list comprehensions except where they were explicitly
required. Several students used unnecessarily complex library functions that
the instructor had not expected, and several would have preferred to write
their own sort, even though writing a sort comparator function is a matter of
a few lines.

There are advantages and disadvantages to giving the assignment as a two
program set connected by a serialized file. It gives students a better idea of
how the whole system works, and helps them realize that if they don’t create
the data in the first program correctly, they won’t be able to run the second
program. The flip side of that argument is that it is more di�cult to grade
the second program if students’ first program doesn’t work. For that reason it
might be better to define the layout of the serialization file and give students
who need it a copy of that file so that they can start from scratch on part 2.

It would be possible to add library usage to the software engineering goals
for this assignment by putting the tables in a library instead of simply giving
them to students to copy and paste. One could give the tables out as 2-D
associative arrays so that students get practice using that format, or one could
precede this unit by a unit specifically designed to teach list comprehensions,
and then require their use in this assignment.

Although an advantage of using the AP ’88 corpus is that one can come
close to Kernighan’s original numbers, use of that corpus requires a paid license
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because it is not open source. Since we cannot duplicate Kernighan’s exact
corpus in any case, and any large corpus should give similar numbers, I would
use an open source corpus next time.

In the real world, it would be more appropriate to add together the two
ways to get acres and print one line with the total probability, but leaving
it as two lines and mentioning the issue in class is preferable for two reasons.
Students can see that there are two ways to generate that word, and it makes
debugging simpler.

Something that makes students uncomfortable is that the algorithm can
produce invalid possible corrections if there are typos in the original corpus,
such as the italicized words in Table 2. Our version of the AP ’88 corpus had
161,817 unique words, meaning that just using a commercial spell checker on
the unique words alone would be a significant project, as the corpus contains
a large number of proper nouns, common nouns that are capitalized (either
the first letter or the whole word) because of context, expressions such as
“aaah”, and other cases that need to be individually adjudicated. So we left
the incorrect words in the corpus and discussed the issue in class instead.

Dropping words that are not in the corpus from the list of possibilities
removes most of the incorrect words, but also removes a correct but rare word
like cress. That removes one of the points of using Good-Turing smoothing. In
addition, we do not adjust for zero terms in the confusion matrices, so that, for
example, caress and access in our table have probabilities of zero even though
they are valid words that the user could have typed.

It will be noted that our results do not match Kernighan’s because we
were not able to obtain the exact corpus that he used. His paper [3] gives
the following words in sequence, as does Jurafsky’s popular NLP textbook [2,
163-167], which is based on Kernighan’s paper:

actress, acres (twice), across, access, caress, cress

5 Conclusions

Bayesian spelling correction has been a successful addition to the standard as-
signments in a data structures course. Students recognize the task but have no
idea how it’s done. No individual step is hard, but students need to do many
steps correctly to accomplish the result. The algorithm has a solid mathemat-
ical base. Once students understand it, they can appreciate di↵erences in the
results from di↵erent commercial spell checkers, and they tend to have fairly
good intuition about which words are more common.

This algorithm is useful for teaching students something about natural lan-
guage processing without having to spend class time on basic linguistics. It is
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also useful as an assignment where the database is large enough that students
can’t just eyeball the data to get the answers. Additionally, it is CPU-intensive
enough that an e�cient implementation really makes a di↵erence, something
that has become less common as machines have become faster. There is an
opportunity to use many of the concepts that need reinforcing, such as asso-
ciative arrays, regular expressions, streams or lambda processing, serialization,
and custom sort orders. Finally, the program is not available in the standard
repositories. Although a few students will discover the blog post [6] where Pe-
ter Norvig solves the problem in a few lines, that only provides a small portion
of the code needed for this assignment.
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Blockchain technology has evolved from a hype to a technical reality and
is quickly becoming a demanded skill. Career-oriented colleges are facing the
challenge to incorporate blockchain technology into existing curriculum. While
lacking instructional and curriculum models, educators must (a) identify the
knowledge domains of blockchain technology, (b) classify their topical areas,
and (c) place them in suitable academic subjects (programming, management,
or business laws), before being able to determine the appropriate level of in-
structions and pedagogies. This paper describes a model designed and used
to evaluate what topical areas of blockchain technology are practical to teach
at a career-oriented college. The evaluation is based on seven factors: (1) ma-
turity of technology, (2) impacts on management, (3) real-world applications,
(4) subject classification, (5) knowledge prerequisites, (6) textbook readiness,
and (7) recommended pedagogies. The evaluation results are presented by a
rating scale ranging from 1 to 5 indicating the degree of “appropriateness” of
instruction at college level. A set of territorial indicators also help to clarify
the subject territory (computer science, business, or law). This paper suggests
to: (1) o↵er all majors with an introductory course for students to understand
what blockchain is and how it applies to business, (2) teach a cryptocurrency-
centered course that engages students of technical majors with in-depth discus-
sion of sciences and technologies that drive blockchain, and, if instructionally
feasible, (3) guide CS and CIS majors through a project-based programming
course for experiencing how to code blockchain applications.
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This research addresses the di�culty that the instructors and students in
Computer Science (CS) have in conducting conscientious discussions in the
classroom. Having conscientious discussion is a prerequisite for e↵ective in-
struction in ethics in CS as mandated by the CS accreditation board and
professional organizations. The “draft, depict, depose” pedagogical strategy
works in conjunction with ThoughtSwap, a web application. An instructor
shares a prompt that students answer through real-time, anonymous writing,
thus drafting their “thoughts”. The submitted collection of thoughts can be re-
distributed, so that each student will receive another student’s thought, which
may be contrasting or similar to the original thought. At this step the students
can analyze the received thought in small group discussion and represent it,
thus also depicting the thoughts that do not belong to them. Finally, small
group discussions and thoughts from drafting and depicting process may be
presented to the whole classroom, thus deposing the summarized thoughts.
The “draft, depict, depose” learning pattern supplemented by ThoughtSwap,
permits movement from individual anonymous thought sharing in written form,
to larger group discussion. ThoughtSwap is a practical pedagogical tool. Stu-
dents can join at any stage. The instructor may reorder thoughts, draw one
particular thought to the attention of the class and even, if appropriate, re-
move thoughts (though we do not recommend this). Our research examines
the overarching question of whether ThoughtSwap and the associated learn-
ing pattern, “Draft, Depict, Depose” can promote conscientious discussions in
classroom among CS students. Student-level outcomes are based on demo-
graphic distributions, self-reported openness to discourse and discussion with
others, and observed participation through and outside the tool.

⇤Copyright is held by the author/owner.
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Twitter is a widely used online social media and it has been used to discover
the relationship between data. We investigate whether the daily number of
tweets that mention any of the 4 telecom companies - Verizon, T-Mobile, ATT
and Sprint vis-à-vis stock prices. The datasets we studied are Twitter frequency
(tweets that mention the name of either of the companies) and stock prices for
a period of 14 days. We carried out ETL (Extract, Transform, and Load)
process to obtain clean and refine data sets for analyzing. We have discarded
the data of ATT and Sprint later because their names were shown in another
event during that period and not reflected the real data of these two companies.
The Tweepy library of python is used to connect to Twitter Streaming API
and download the tweets from Twitter.

The study focuses on correlating data sets of Twitter tweet frequency with
the stock prices of telecom Companies; using Statistical Methods: Z-score
and Chi-Square – Test of Independence with data visualization. Our results
demonstrate the relation between daily numbers of tweets is correlated with
that of stock price for Verizon and T-Mobile. Our preliminary results also
demonstrate the relation of frequency of tweets with stock prices of each day.
Furthermore, it appears that the daily number of tweets is not correlated with
the stock prices. The result may vary depending on if the data set is captured
for a longer period, say months or a year to have a more concrete analysis and
study their relationship.
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A Strategic Approach for Adapting the
CUDA Course at Computer Science
Departments Within United States

Universities⇤

Poster Session

Imad Al Saeed
Computer Science Department

Saint Xavier University
Chicago, IL 60655

alsaeed@sxu.edu

The purpose of this study was to encourage United States universities to
o↵er CUDA courses as one of the main courses within the computer science
department. This study included a target population of professors of both
genders who were teaching CUDA at 100 universities. The general findings in-
dicated that CUDA is an important technology and should be taught as one of
the main courses within all computer science department at United States Uni-
versities. This study provided a business plan that addressed all the resources
needed to create new CUDA courses. It also o↵ered an e↵ective solution for
the financing problems that might prevent other schools from o↵ering CUDA
courses.
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Integrative Curriculum
for Teaching Databases⇤

Poster Session

Ching-yu Huang
School of Computer Science

Kean University
Union, NJ 07083
chuang@kean.edu

In today’s age of big data, database (DB) is a particularly critical subject in
Computer Science because data management is a core business for many com-
panies, regardless of industry. Many software developers, data analysts, and
other positions that need to access data and manage users require applicants to
have a solid DB foundation. Before a student can take a DB class, they should
at least have an intermediate knowledge of programming and set operations.
Therefore, many colleges require students to first take Discrete Math and Data
Structures before taking DB. This means that students typically only get DB
exposure late in their college education; however, in order to better shape their
career paths, students should be getting earlier DB exposure. Additionally, the
curriculum of a traditional DB course focuses on relational DB and Structure
Query Language (SQL), even though the NoSQL DB is gaining much more
popularity in the workplace. Furthermore, in the workplace, web-based appli-
cations are in high demand because they are platform independent and can be
accessed worldwide. For web database application developers, it is important
to learn how DB works with di↵erent technologies. Traditional DB curriculum
neglects this practical aspect, and often solely focuses on theory. This paper
proposes an integrative curriculum for teaching DB that interweaves essential
theoretical DB concepts, as well as hands-on practical DB experience.
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Teaching Artificial Intelligence for
Undergraduate Students: A Project

Based Approach⇤

Poster Session

Weidong Liao and Osman Guzide
Computer and Information Sciences

Shepherd University
Shepherdstown, WV 25443

wliao@shepherd.edu

Artificial Intelligence has advanced rapidly in recent years due to the progress
in hardware performance and algorithmic studies. The job market for artificial
intelligence has been promising as many practical applications have become
viable nowadays. Over the years, many universities and colleges o↵ers an in-
troductory artificial intelligence course to undergraduate students. With the
progress in the area of artificial intelligence and machine learning, one intro-
ductory AI course is insu�cient and an approach to integrating artificial in-
telligence across undergraduate curriculum is essential and appealing. In this
poster, we present our project based approach to integrating artificial intel-
ligence and machine learning concepts to a variety of undergraduate courses.
A number of diverse projects will be discussed, ranging from hardware based
projects used in our Computer Organization course, to deep learning applica-
tions used in our Web Programming course.
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What GDPR Means for Data Privacy⇤

Poster Session

Susan S Conrad and Mohammed Alghamdi
School of Business

Marymount University
Fairfax, VA 22030
susansconrad@gmail.com

Data privacy/personal data has drawn a lot of attention from people in
sectors of commerce, technology, real time data processing, information tech-
nology and the banking industry. With the adoption of the European Union
General Data Protection Regulation (EU GDPR) data privacy policies must be
modified to meet the new requirements. It is estimated that more than 50must
modify business practices to meet the requirement (www.inc.com, 2018) The
days of collecting data and selling it without easy-to-read user consent is no
longer allowed under GDPR. Data portability allowing users to request a re-
port of data stored about them in a readable format, becomes a key concern
for companies such as Google, Yahoo, Microsoft, Amazon and others.

This poster provides some context to what personal data and data privacy is
interpreted by multiple organizations and countries. It discusses what types of
information are considered to be personal information and the issues associated
with keeping this information private. It briefly discusses how the EU GDPR
impacts the definition of the personal information and how the right to be
forgotten will impact privacy and data storage
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Engaging HBCU Faculty in
Project-Based Learning in

Silicon Valley⇤

Panel Discussion

Faculty that teach computer science at historically black colleges and uni-
versities (HBCUs) have unique experiences and challenges that impact the way
they create curricula. This special session will discuss challenges facing HBCUs
and how industry- academia partnerships can assist in creating curricula that
is not only engaging but helps to involve the students in their own education
using project-based learning. We will also explore how HBCUs can work to-
gether to develop interactive, creative shared knowledge that will help prepare
students for the future; whether that be careers in Silicon Valley or graduate
school. This panel includes participants from the Google-sponsored workshop
Faculty In Residence (FIR) Program that was held in the Summer of 2017.

Faculty in Residence (FIR) program was envisioned to assist faculty at HB-
CUs bridge their prior experience with curriculum development and allow them
to be immersed in Silicon Valley culture and practices. The six-week experience
permitted approximately thirty faculty from HBCUs to work alongside Silicon
Valley engineers to create curricula that is designed for teaching introductory
programming courses, applied data structures, mobile applications, machine
learning, or cybersecurity. Participants engaged in workshops related to ac-
tive learning, flipped classroom, code reviews, and technical interview do’s and
don’ts. Also, faculty were educated about the successes of existing programs
like Google’s Computer Science Summer Institute, Hampton University’s Ap-
plied Computer Science Summer program, and the HBCU Google In Residence
Program.

Prior to attending the FIR Workshop, faculty members were asked to create
at least two goals that they would work to achieve as a result of the program.
These goals had to relate to curriculum development, research connections,
and/or work products that could be used directly in the classroom for the
upcoming Fall semester. Additionally, faculty were asked to think out of the
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ordinary curriculum box and participate in design thinking to create interac-
tive, fun, yet challenging learning experiences.

To support the work being performed by the FIR participants; Google also
delivered events and opportunities that faculty could take back to inform their
students on the technical interview process. Faculty were informed of Google’s
“Skill Builder Series” that delivers information on topics such as interview
preparation, maximizing an internship, and technical skills (language specific,
platform specific development, software version control).

Panelists include faculty from Howard University, Shaw University, and
Coppin State University each with their own unique experiences from FIR.
Questions to be addressed during this panel include:

• What are current strategies (specific to Howard University, Shaw Uni-
versity, etc.) that have been working at HBCUs to increase diversity in
Computer Science?

• What was the experience of the students coming into the Courses?

• What Was the expectation (if any) of the faculty coming into the FIR
Workshop?

• What techniques were faculty able to leverage successfully in their class-
room after the FIR Experience?

• What are the lessons learned or improvements that you think Google and
HBCUs can leverage for future FIR activities?

Panelists

The faculty chosen to participate on this panel in no way represent all the inno-
vative persons that participated in the six-week thought-provoking workshop.
However, they represent the varied missions and cultures of HBCUs today
showing that these institutions are not homogenous. These faculty biographies
are provided below.

Legand Burge III, Ph.D. is a Professor of Computer Science at Howard
University in the Electrical Engineering and Computer Science Department
(EECS). Dr. Burge was instrumental in creating various academic-industry
partnerships for Howard University, including the Google In Residence program[1].
The GIR program is designed to bring Silicon Valley engineers into HBCUs to
teach programming courses from an industry perspective. This program and
its success has spread to approximately ten HBCUs and continues to gain pop-
ularity. Additionally, Dr. Burge was a key architect in helping to think through
the FIR program with Google thought leaders. He realized that one company
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alone cannot reach all the 110 HBCUs in the U.S. He knew that teaching the
faculty industry practices could help underrepresented students gain a leg-up
in the technical interview process and in Silicon Valley practices. Addition-
ally, Dr. Burge was one of the key architects of establishing and outlining the
Howard-West initiative with Google that started immersing HBCU students in
Silicon Valley culture, projects, and problems.

Dr. Burge’s research interests lie in the field of distributed computing
and in global resource management in large-scale distributed systems. Dr.
Burge is currently the director of the Distributed Systems Research Group
(DSRG) and associate director of the Center for Applied High Performance
Computing at Howard University. Dr. Burge is also interested in Computer
Science Education and Diversity, and Tech Innovation and Entrepreneurship.
Dr. Burge is a AAAS Fellow, and Fulbright Scholar recipient.

Leshell Hatley, Ph.D. is an Assistant Professor of Computer Science at
Coppin State University in Baltimore, MD and is the Founder and Executive
Director of Uplift, Inc., a nonprofit STEM education organization. Uplift of-
fered the first mobile application development course to middle and high school
students in the US and is one of the first organizations to o↵er after school
courses in Lego Mindstorms Robotics in Washington, DC. She and the stu-
dents in her research lab at Coppin State, the Lab for Artificial Intelligence and
its Applications (LAIA), won the 2016 USA White House HBCU (Historically
Black Colleges and Universities) Maker Innovation Challenge and she recently
led the first Coppin State Team to compete in the NASA Swarmathon. She
is a passionate computer engineer, educator, and researcher who continuously
combines these three attributes to create innovative approaches to teaching
STEM concepts to students between that ages of 3 and 73. With over 20 years
of teaching experience, Dr. Hatley leads teams of enthusiastic students, dedi-
cated volunteer instructors, and teams of engineers to achieve award winning
success, national news coverage, and innovative technology product designs.
Gloria Washington, PhD

Gloria Washington (Moderator), PhD is an Assistant Professor of Com-
puter Science at Howard University. At Howard, she runs the A↵ective Bio-
metrics Lab and performs research with her students on human-centered com-
puting and computer science education. She currently teaches the introduc-
tory programming courses at Howard using the C++ programming language.
Through her work in creating engaging curricula for these classes; she is also
researches technologies that can measure the engagement of the students and
adapt lessons as needed. She led the first woman graduate from Howard’s
newly minted Computer Science PhD program. Additionally, she runs a cod-
ing and tech entrepreneurship program called #WatchMeCode Tech Innovation
Experience. Through this program, she works with local high schools in the
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Washington, DC area to assist teachers with introducing coding to their stu-
dents. With the #WatchMeCode program, she hires currently enrolled Howard
University comp sci. majors to teach introductory, fun subjects to young black
males such as Coding Robotics Using Spheros and Block Chain Programming
for High-Schoolers. This helps the Howard students take ownership of the work
they are learning in their classrooms.

Before coming to Howard University, she was an Intelligence Community
Postdoctoral Research Fellow in the Department of Computing Science at
Clemson University. She performed research on identifying individuals based
solely from pictures of their ears. Dr. Washington has more than fifteen years
in Government service and has presented on her research throughout indus-
try. Ms. Washington holds M.S. and Ph.D. in Computer Science from The
George Washington University, and a B.S. in Computer Information Systems
from Lincoln University of Missouri an HBCU.

Lloyd Williams, Ph.D. is an Assistant Professor at Shaw University in
Raleigh, NC. He received a B.S. in Philosophy from Vanderbilt University.
After completing a Ph.D. in computer science from NCSU, he joined the CS
faculty at Shaw University in 2011. He brought a passion and love of students
to teaching that drew his students to computer science. He was promoted
to Department Chair for Computer Science two years later and Program Di-
rector for Science and Technology Innovation three years after that. He has
personally mentored minority computer scientists who have gone on to work
at companies including NASA, Intel, Google, Glaxo, US DOD, US DHS, Fi-
delity Investments, Cisco, ATT, Lenovo and IBM at starting salaries as high
as $80,000. He was recognized as the 2017 STEM Educator of the Year by the
Research Triangle Park Foundation’s STEM in the Park Initiative.

Dr. Williams personally created the Shaw Innovation Laboratory, taking a
former storage room and creating a lab that has been awarded over $600,000
in funding in 2016 alone, including a recent $400,000 NSF award to create the
Shaw University Center for Computer Science Living, Learning and Research.
His Shaw Innovation Lab has brought cutting edge to students both at Shaw
and from K- 12. Dr. Williams founded the Shaw Computer Club in 2011
(www.shawcc.com). The club has conducted STEM outreach with K-12. The
club has striven to create strong ties with industry, including Citrix, Red Hat,
Cisco and HP. He has hosted Google engineers to teach app development to
Shaw students for two semesters and he worked as a Faculty in Residence at
Google’s Mountain View headquarters in Summer 2017 where he created an
innovative virtual reality project that he has incorporated into his software
engineering class for Fall 2017 and hopes to deploy at other schools as well.
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