
The Journal of Computing
Sciences in Colleges

Papers of the 17th Annual CCSC
Mid-South Conference

April 12-13, 2019
University of Arkansas Little Rock

Little Rock, AR

Baochuan Lu, Editor John Meinke, Associate Editor
Southwest Baptist University UMUC Europe, Retired

Susan T. Dean, Associate Editor Steven Kreutzer, Contributing Editor
UMUC Europe, Retired Bloomfield College

Volume 34, Number 7 April 2019

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing Sci-
ences in Colleges. Printed in the USA. POSTMASTER: Send address changes
to Susan Dean, CCSC Membership Secretary, 89 Stockton Ave, Walton, NY
13856.

Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners & Foreword 7

Welcome to the 2019 CCSC Mid-South Conference 9

Regional Committees — 2019 CCSC Mid-South Region 10

Reviewers — 2019 CCSC Mid-South Conference 11

Generating Synthetic Data to Support Entity Resolution
Education and Research 12

Yumeng Ye, John R. Talburt, University of Arkansas at Little Rock

Flipping One Day Each Week in a Smaller CS1 Course:
An Experience Report 20

Mark Hodges, Dominican University

Categorizing And Ameliorating Generalization-Specialization
Design Mistakes in an Intermediate Programming Class 28

John W. Coffey, University of West Florida

Scoring Matrix Combined With Machine Learning For Heteroge-
neously Structured Entity Resolution 38

Xinming Li, John R. Talburt, Ting Li, Xiangwen Liu, University of
Arkansas at Little Rock

Digital Distraction Outside the Classroom: An Empirical Study 46
Rajvardhan Patil,Matt Brown, Mohamed Ibrahim, Jeanine Myers, Kristi
Brown, Muhammad Khan, Rebecca Callaway, Arkansas Tech University

Data Science Academic Programs in the U.S. 56
Ismail Bile Hassan, Jigang Liu, Metropolitan State University

An Analysis of the Effect of Stop Words on the Performance of
the Matrix Comparator for Entity Resolution 64

Awaad Alsarkhi, John R. Talburt, University of Arkansas at Little Rock

3

Developing a Guided Peer-Assisted Learning Community for CS
Students 72

Yi Liu, Gita PhelpsA, Georgia College and State University, Fengxia
Yan, Morehouse School of Medicine

Google Analytics — Conference Tutorial 81
Daniel Brandon, Christian Brothers University

Software Design Patterns Applied To Building An Interpreter
— Conference Tutorial 83

Larry Morell, Arkansas Tech University

Teaching Object-Oriented Programming with Geometry
— Conference Tutorial 84

Serge Salan, Christian Brothers University

Scalable Processing of Massive Text Data Stores for NLP
— Conference Tutorial 85

Brittany Bright, Cesar Cuevas, Israel Cuevas, Andrew Mackey, Uni-
versity of Arkanas at Fort Smith

Longest Pattern Lock — Nifty Assignment 86
Jingsai Liang, Westminster College

Understanding the Identity Function in SML by Theory
— Nifty Assignment 87

Cong-Cong Xing, Nicholls State University, Jun Huang, Chongqing
Univ. of Posts and Telecommunications

4

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing
Sciences in Colleges (along with the
years of expiration of their terms), as
well as members serving CCSC:

Jeff Lehman, President (2020),
(260)359-4209,
jlehman@huntington.edu,
Mathematics and Computer Science
Department, Huntington University,
2303 College Avenue, Huntington, IN
46750.
Karina Assiter, Vice President
(2020), (802)387-7112,
karinaassiter@landmark.edu.
Baochuan Lu, Publications Chair
(2021), (417)328-1676,
blu@sbuniv.edu, Southwest Baptist
University - Department of Computer
and Information Sciences, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill
Rd., Kansas City MO 64110.
Susan Dean, Membership Secretary
(2019), Associate Treasurer,
(607)865-4017, Associate Editor,
susandean@frontier.com, UMUC
Europe Ret, US Post: 89 Stockton
Ave., Walton, NY 13856.
Judy Mullins, Central Plains

Representative (2020), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, School of
Computing and Engineering, 5110
Rockhill Road, 546 Flarsheim Hall,
University of Missouri - Kansas City,
Kansas City, MO 64110.
John Wright, Eastern
Representative (2020), (814)641-3592,
wrightj@juniata.edu, Juniata College,
1700 Moore Street, Brumbaugh
Academic Center, Huntingdon, PA
16652.
David R. Naugler, Midsouth
Representative(2019), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Lawrence D’Antonio,
Northeastern Representative (2019),
(201)684-7714, ldant@ramapo.edu,
Computer Science Department,
Ramapo College of New Jersey,
Mahwah, NJ 07430.
Cathy Bareiss, Midwest
Representative (2020),
cbareiss@olivet.edu, Olivet Nazarene
University, Bourbonnais, IL 60914.
Brent Wilson, Northwestern
Representative (2021), (503)554-2722,
bwilson@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Mohamed Lotfy, Rocky Mountain
Representative (2019), Information
Technology Department, College of
Computer & Information Sciences,
Regis University, Denver, CO 80221.

5

Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308-2099.
Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer
Science, Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2020), (530)898-4864,
bcdixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These
members are serving in positions as
indicated:
Brian Snider, Associate
Membership Secretary,
(503)554-2778,
bsnider@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Will Mitchell, Associate Treasurer,
(317)392-3038, willmitchell@acm.org,

1455 S. Greenview Ct, Shelbyville, IN
46176-9248.
John Meinke, Associate Editor,
meinkej@acm.org, UMUC Europe
Ret, German Post: Werderstr 8,
D-68723 Oftersheim, Germany, ph
011-49-6202-5777916.
Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,
MSC 2615, Pacific University, Forest
Grove, OR 97116.
Elizabeth Adams, National
Partners Chair, adamses@jmu.edu,
James Madison University, 11520
Lockhart Place, Silver Spring, MD
20902.
Megan Thomas, Membership
System Administrator,
(209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus,
One University Circle, Turlock, CA
95382.
Deborah Hwang, Webmaster,
(812)488-2193,
hwang@evansville.edu, Electrical
Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

6

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft

Google for Education
GitHub

NSF – National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology

Teradata
Mercury Learning and Information

Mercy College

7

Foreword
Welcome to the 2019 issues of our journal for the CCSC spring 2019 confer-

ences: Southwestern (March 22-23), Central Plains (April 5-6), South Central
(April 5), Mid-south (April 12-13), and Northeastern (April 12-13).

Please plan to attend one or more conferences, where you can meet and
exchange ideas with like-minded computer science educators. Each conference
covers a variety of topics that are practical and stimulating. You can find
detailed conference programs on the conference websites, which are listed on
the CCSC conferencecalendar: http://www.ccsc.org/regions/calendar.

From January 2019, this journal will be published electronically on the
CCSC website and links to the journal issues will be sent to CCSC members
via email. Those of you who would like hard copies of journal issues can order
them from Amazon. Simply search for “CCSC Journal” to find available issues.
The journal will continue to be available in the ACM Digital Library.

As an author, you may post your papers published by CCSC on any website.
Please make sure to use the PDF versions of your papers with CCSC’s copyright
box. Such PDFs can be downloaded from the ACM Digital Library or extracted
from our electronic journal.

Please feel free to email me directly at blu@sbuniv.edu if you notice any
issue with our publications.

Baochuan Lu
Southwest Baptist University

CCSC Publications Chair

8

Welcome to the 2019 CCSC Mid-South Conference

On behalf of the University of Arkansas at Little Rock, I extend greetings
and a warm welcome to the attendees of the 17th Annual CCSC Mid-South
Conference. We are honored to have the privilege of hosting the conference on
April 12-13, 2019. A special thanks to Dean Lawrence Whitman, for providing
the space for the conference events in the George W. Donaghey College of
Engineering and Information Technology building.

A lot of hard work has gone into the planning of the conference, and the
Conference Steering Committee has put together an outstanding program.
This year the program includes 12 papers, 4 tutorials, and two Nifty As-
signments. The conference will begin on Friday with a student programming
contest. There will also be student poster sessions and a vendor showcase in
addition to the paper sessions, tutorials, and Nifty Assignment sessions.

The CCSC-MS Conference has been a wonderful platform for sharing ideas
and building community among the colleges and universities in our region. I
want to especially thank the faculty members who have taken time from the
regular duties to make this conference happen. I also want to thank all of
the students and faculty who submitted their papers, posters, tutorials, and
assignments, the program committee for reviewing the submissions, and the
volunteers who moderate these sessions.

Finally, I want to thank everyone attending in the conference. I hope it will
be a productive and satisfying experience for each of you. While you are here,
I hope you will have time to tour our campus and meet some of our students.
We are really happy to have you here on our campus. If there is anything at all
we can do to help while you are here, please let us know. Also please consider
helping with the 2020 CCSC-MS Conference. If you are interested in hosting
or assisting in any way, please contact one of the Steering Committee members
to find out how you can contribute.

John R. Talburt
University of Arkansas at Little Rock

CCSC-MS Site Chair
Gabriel Ferrer

Hendrix College
CCSC-MS Conference Chair

9

2019 CCSC Mid-South Conference Steering Committee

Gabriel Ferrer, Conference Chair .Hendrix College
John Talburt, Site Chair University of Arkansas at Little Rock
James McGuffee, Papers Co-chair Christian Brothers University
David Sonnier, Papers Co-chair . Lyon College
David Middleton, Panels/Workshops/Tutorials ChairArkansas Tech
University
Matt Brown, Nifty Ideas Co-chair Arkansas Tech University
Kriangsiri ’Top’ Malasri, Student Programming Contest Co-chair . University
of Memphis
Brent Yorgey, Student Programming Contest Co-chair Hendrix College
David Middleton, Student Papers Chair Arkansas Tech University
David Middleton, Past Conference Chair Arkansas Tech University

Regional Board — 2019 CCSC Mid-South Region

Gabriel Ferrer, Board Chair . Hendrix College
David Naugler, Editor Southeast Missouri State University
Mark Goadrich, Registrar .Hendrix College
Brian McLaughlan, Treasurer University of Arkansas - Fort Smith
David Hoelzeman, Webmaster .Arkansas Tech University
David Naugler, National Board Representative Southeast Missouri State
University

10

Reviewers — 2019 CCSC Mid-South Conference

Matt Brown . Arkansas Tech University, Russellville, AR
Gabriel Ferrer . Hendrix College, Conway, AR
Mark Goodrich .Hendrix College, Conway AR
Kriangsiri Malasri . University of Memphis, Memphis, TN
Larry Morell Arkansas Technical University, Russellville, AR
David Naugler Southeast Missouri State University (retired), Cape
Girardeau, MO
Melody Penning University of Arkansas for Medical Sciences, Little Rock, AR
Pei WangUniversity of Arkansas for Medical Sciences, Little Rock, AR
Cong-Cong Xing Nicholls State University, Thibodaux, LA
Brent Yorgey . Hendrix College, Conway, AR

11

Generating Synthetic Data to Support
Entity Resolution Education and

Research∗

Yumeng Ye and John R. Talburt
Department of Information Science

University of Arkansas at Little Rock
Little Rock, AR 72204

{yxye1,jrtalburt}@ualr.edu

Abstract

Almost all organizations use some type of Entity Resolution (ER)
methods to uniquely identify their customers and vendors across dif-
ferent channels of contact. In the case of persons, this requires the
use of personally identifying information (PII) such as name, address,
phone number, and email address. Because of the growing concerns over
data privacy and identity theft, organizations are reluctant to release
personally-identifiable customer information even for education and re-
search purposes. An alternative is to generate synthetic data to use in
student exercises and for research related to entity resolution methods
and techniques. One advantage of synthetically generated data for ER
is it can be fully annotated with the correct linking making it very easy
to calculate the precision and recall of linking operations. This paper
discusses a simple method to generate synthetic data as input for ER
processes. The method allows the user to randomly assign certain types
and levels of data quality errors along with other types of non-error varia-
tions to the data, such as nicknames, different date formats, and changes
in address. For ER research in particular, the method can create intro-
duce data redundancy by copying records referencing the same person
into the same file or into different files with different record layouts.

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

12

Background
Entity Resolution (ER) is the process of linking two references in the informa-
tion system which refers to the same entity in the real world [5]. In industry,
it can happen that the same customer may interact with the company through
multiple channels. Therefore, organizations need powerful ER tools to rec-
ognize and classify their customers throughout the system. In academic area,
both ER education program and research projects require large amount of sam-
ple data for teaching or testing purpose. Some research projects involve with
how to improve the efficiency of record linking under big data. However, it
is difficult to obtain real-world datasets for research and academic education.
When real data is hard to be obtained, or specific data characteristics are re-
quired in ER research, generating synthetic data can often solve the problem
[4].

Introduction
In real-world data, one entity can have several records in the system or across
multiple data sources; and these records may not be identical. For example,
if one person moves to a new location, the system could have a new record
with different address information. It can also happen that in one company,
different departments have some records of the same person, but several at-
tribute values are changed. In addition, several common data quality issues
can also exist across the same entitys records, such as missing value, digits
transpose, inconsistent formats etc. This paper describes a computer program
written in R language [2], which was designed to generate synthetic data and
include 14 types of data quality issues. The original entities are generated with
a random number of duplicate records, then the users can customize the level
of data quality issues randomly assigned to each of the records. The outputs
of the program are multiple data files containing copies of the records derived
from original entities. Each data file has customized delimiters and attributes.
This synthetic data generator can be used for research and instruction in entity
resolution and information quality.

Preparation of Seed Data
For the experiments described in this paper, the names (including gender) and
addresses generated by the program were derived from two sources. One is
a sample of publicly available occupancy records with addresses in four U.S.
states, California, Texas, Florida, and Arkansas. The other is a R package

13

called rlErrorGeneratoR package used to introduce errors into a dataset and
create a dirty version of the data [1]. rlErrorGeneratoR contains a dataset
which includes 253,326 unique fake person name, gender and address informa-
tion. In addition, several other attributes including social security number,
homephone, date-of-birth, were derived from a R package called generator,
which generates data containing fake person-identifying information [3].

The synthetic identity of a person in this generator comprises the following
items

• Identity Number
• Name comprising 3 items: First, Middle, Last
• Gender Code (M, F, U) consistent with the First Name value
• Social Security Number (9-digit value in XXX-XX-XXXX format)
• Home Phone (10-digit in (XXX)-XXX-XXXX format)
• Date-of-Birth (date value in Microsoft Excel date format)

To create the original entities table for this generator, first use the rlError-
GeneratoR package to generate unique fake person name, gender and address
information. Each address information includes street number, street name,
city, state, zip code. Then use generator package to create fake social security
number, home phone and date-of birth for each corresponding entity. Finally,
a record ID was assigned to each entity. The original entities table has 253,326
rows, and 9 columns. Figure 1 shows show some of the rows of this table.

Figure 1: Example Records from the Original Entities Table.

Several additional tables must be created for the error generation process.
One is the nickname lookup table. The nickname lookup table has 4 columns:
looku_id, lookup_name, lookup_alternate, lookup type. When the nickname
variation is generated, the system looks up the original name in the table, and
replaces it with the alternate name is replaced. Figure 2 shows part of the
nickname lookup table as an example.

Another table is a “new address table.” It is used to replacing an address
in the original dataset to simulate when a person moves and changes address.

14

Figure 2: Example Records in the Nickname Lookup Table.

The new address table only has one column which is in the same full address
format as the address in the original dataset. Figure 3 shows part of the new
address table as an example.

Figure 3: Example Records of New Address Table.

Data Error Functions
Several types of data error and variation can be created by rlErrorGeneratoR
package.

1. Generate duplicate records (data redundancy)
2. Swap the value between two columns (misfielding error).
3. Remove hyphens, parentheses, forward slash.
4. Randomly transpose two characters of a string.
5. Repeat random one character.
6. Only keep the initial (first) character of a string.
7. Convert as name to a nickname (name variation)

15

8. Change females last name (change in marital status).
9. Change address (moving to a new address)

10. Create twins identity (one of the most problematic issues for ER)
11. Randomly delete entire value (missing value error)
12. Only capitalize the first letter (letter casing variation)
13. Convert to lower case (letter casing variation)

The logic of all functions are almost the same. The user only needs to
specify the name of the original entities table, the attribute to be changed, and
the percentage of errors to generate. The error generator function randomly
samples a number of records, replacing the value with the error or variation.
Each function returns two datasets. The first dataset is a completely new
table, in which the selected changes have been made. The second dataset is
an error lookup table, which contains the record ID, type of error, name of the
attribute, string before changing, string after changing. Figure 4 shows the R
code for generating the variation which only keeps the initial (first character)
of a selected name value.

Figure 4: Generating the Variation Keeping the Initial of a Name Value.

Synthetic Data Generation
After the seed data are prepared, the generator can create synthetic data
records by the following procedure:

1. Duplicate Record Generation

16

(a) Define a random number range of duplicate records to be generated
for each entity.

(b) Create a column called id_truth, in which each group of duplicate
records has the same id_truth (annotation).

2. Random Error Assignment
(a) Randomly select a certain number of records and assign the data

error function to certain attributes of the records.
(b) Use the output dataset generated from one error function to create

as an input to another data error function.
(c) Merge all error lookup tables together to generate single set of syn-

thetic records with the desired errors and variations.
3. Create Multiple Files

(a) Create the truth set by extracting the record ID and id_truth from
the dataset.

(b) Define the number of files to be created.
(c) Randomly extract a certain number of records and write them to a

separate data file.
(d) Reformat the record ID for each data file.
(e) Update the error lookup table with the new record ID.
(f) Reformat the attributes for each data file. For example:

i. Parse the address into street, city, state, zip in one file but leave
together in another file

ii. Remove or include some attributes such as date-of-birth or gen-
der in one file, but not another

(g) Assign different delimiters for different data files, such as comma
delimited, pipe delimited.

4. Output all the data files.

A more detailed application procedure is provided below as an example.
The example shows the generating error notes when applying these steps. In
the end, three data files are created which have 506,288 records in total.

1. Generate a random number between 1-7 for duplicate records in each
entity.

2. Randomly select 10,000 records, swap the value in fname, lname col-
umn.

3. Randomly select 100,000 records, remove the hyphens in ssn.
4. Randomly select 50,000 records, remove the parentheses in homephone.
5. Randomly select 50,000 records, remove the hyphens in homephone.
6. Randomly select 100,000 records, remove the forward slash in dob.

17

7. Randomly select 10,000 records, transpose two characters in ssn.
8. Randomly select 20,000 records, transpose two characters in homephone.
9. Randomly select 20,000 records, randomly repeat one character in fname.

10. Randomly select 20,000 records, randomly repeat one character in lname.
11. Randomly select 100,000 records, only keep the initial of mname.
12. Randomly select 10,000 records, only keep the initial of fname.
13. If the fname exists in both the data and nickname table, convert to

nickname.
14. Randomly select 10,000 records (females only), change lname for mar-

riage.
15. Randomly select 50,000 records, change the full_address.
16. Randomly select 50 records, for twins identity (only change fname

and ssn).
17. Randomly select 50,000 records, delete ssn.
18. Randomly select 50,000 records, delete homephone.
19. Randomly select 50,000 records, delete dob.
20. Randomly select 50,000 records, delete mname.
21. Randomly select 50,000 records, delete fname.
22. Randomly select 50,000 records, delete gender.
23. Randomly select 50,000 records, fname, lname, mname capitalize first

letter
24. Randomly select 500,000 records, change full_address to lowercase
25. Create full error lookup table
26. Randomly assign 30% of the records to List A, 40% to List B, 30% to

List C.
27. Reformat (assign new) recid for List A (A848132, A999999)
28. Reformat (assign new) recid for List B (B858256, B999999)
29. Reformat (assign new) recid for List C (C787384, C999999)
30. Update Lists A,B,C full_error_lookup table with new recid.
31. Create truth table named as TruthABC.
32. Assign attributes to List A, B, C.

(a) List A: fname, lname, mname, address, city, state, zip,ssn,homephone
(b) List B: full name, street number, address, city, state, zip, ssn,dob
(c) List C: fname_lname,mname, gender, full_address, homephone, dob

33. Output Lists A, B, C with different structures

(a) List A: tab delimited
(b) List B: quote comma delimited, no column names
(c) List C: | delimited

34. Output full_error_lookup table, truth table

18

Conclusion and Future Work
Several synthetic data files which were generated by this method, are cur-
rently used in both information quality courses and entity resolution research
projects. The students use different entity resolution methodologies, such as
deterministic matching, probabilistic matching, and machine learning to link
records together across different data files. The linking performance can then
be measures by comparing the process created links with the true links in the
truth set. The research team has written a Java program to take the pro-
cess generated links and true links as input and automatically generate the
precision, recall and F-measure obtained by the linking process.

However, it is not clear whether the synthetic data generated by this method
can satisfy all types of data quality and entity resolution research. In partic-
ular, the effectiveness of the method to generate data supporting research on
probabilistic matching for record linking. For this type of research in addition
to making individual records reflect realistic data entry errors, the data also
need to ensure that the higher the frequency of a name value, the higher the
number of different persons using the name value, a fundamental assumption
of probabilistic matching. Therefore, the next step is to confirm whether this
approach can generate data with these characteristics.

References
[1] rlErrorGeneratoR. https://github.com/ilangurudev/rlErrorGeneratoR.
[2] What is R? https://www.r-project.org/about.html.
[3] Package ‘generator’ generate data containing fake personally identifiable in-

formation, 2016. https://cran.r-project.org/web/packages/generator/
generator.pdf.

[4] J.R. Talburt, Y. Zhou, and S.Y. Shivaiah. SOG: A synthetic occupancy genera-
tor to support entity resolution instruction and research. In 2009 International
Conference on Information Quality, 2009.

[5] Y. Zhou and J. Talburt. Entity dentity information management (EIIM). In
International Conference on Information Quality, pages 327–341, 2011.

19

Flipping One Day Each Week in A
Smaller CS1 Course:

An Experience Report∗

Mark Hodges
Computer Science Department

Dominican University
River Forest, IL 60302

mhodges@dom.edu

Abstract
This paper describes the authors experience using recorded video to

flip one day each week of a CS1 course taught at a small liberal arts
university. By moving content from class onto videos, the author was able
to use one class period each week to treat as a lab for student practice
with the material. Experiences from the two semesters this approach was
used, and lessons learned from those semesters are presented, including
important considerations about course structure as well as mechanisms
to ensure that students watch the videos.

Introduction
In teaching a first programming course that does not have a lab component, I
found a particular difficulty in fitting much hands-on active time into the class
time. As a result, students were getting their first extensive programming
experience with many concepts only after class, often when there is not much
assistance available.

To address this issue, I partially flipped the class: creating videos for stu-
dents to watch outside of class each week in order to use one day each week as
a lab. Although designed to address a very specific need, I believe the lessons

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

20

learned form this experience can be valuable for moving more lecture time out
of other CS1 courses, including those that have a lab already. In this experience
paper, I describe the approach that I took, including the reasons I refrained
from fully flipping the course, the advantages this approach had, as well as the
limitations, and other lessons I learned along the way from the two semesters
that I have taught using these videos.

Related Work

There is significant research into the pedagogy of flipping classrooms, including
the use of pre-lecture video in those classrooms. Research primarily highlights
introductory courses such as this one that are flipped, both in computer science
and in other fields [3].

Examples of other experience papers on flipping a classroom include Largent,
who flipped a CS0 course using lecture video outside of class and focusing
on various active learning activities, particularly clickers in the classroom [5].
Campbell, et al. flipped a CS1 course using video lectures [2]. Fryling, et al.
compares using a traditional model, a fully flipped model, and a half flip model
for the same introductory programming course [1].

Flipping is often, though not always, used in large lecture classes [3]. For
example, Campbell, et als class size was over 300 [2]. The ability to incorporate
active learning techniques or small group collaboration is particularly valuable
in large lectures where it might not be possible without an intentional design
to permit it. However, there is also research into the experience of flipping
smaller classrooms and the value that can be gained by doing soSarawagi, for
example, described flipping a CS0 class with under 30 students [7].

There are important considerations about how flipping a course will impact
inclusion, particularly of students with a variety of disabilities, including physi-
cal and learning disabilities. However, not a great deal of research has gone into
ensuring that a flipped classroom remains or becomes inclusive. Talbert [8] and
Milman [6] present opposing viewpoints about whether flipping a classroom in-
creases the students control over the stream of information, thus benefitting
students with learning disabilities [8] or removes beneficial scaffolding activities
and the opportunities for questions, making it detrimental to those students
[6]. In a previous paper, I address some of the questions about inclusion and
makes recommendations based on the experience of creating videos to flip a
classroom [4].

21

Course Description
The CS1 course is a three credit-hour class, taught in three 50-minute ses-
sions each week. For many students, it is their first experience with computer
programming. I often teach this course in parallel with another instructor,
using similar weekly assignments and the same tests. In both years that I used
videos, my sections had an enrollment of 24 students, which is typical for the
course.

Examples of other experience papers on flipping a classroom include Largent,
who flipped a CS0 course using lecture video outside of class and focusing
on various active learning activities, particularly clickers in the classroom [5].
Campbell, et al. flipped a CS1 course using video lectures [2] . Fryling, et al.
compares using a traditional model, a fully flipped model, and a half flip model
for the same introductory programming course [1].

Course Pedagogy
In the five years before flipping the course, I have taught the course five times,
always with a more traditional lecture format, and almost always in parallel
with another instructor who taught another section at the same time. The
content and format of the course has remained relatively static during that
time.

Structure of Revised Course
I created approximately 20 minutes of video for each week, typically broken
into two videos of 10 minutes each. Videos were posted well in advance of the
week, along with associated material such as PowerPoint slides and written
code.

Students were expected to have completed watching each weeks videos by
the start of the week, typically for Mondays class although the due date was
pushed back one class period if there was an assignment due on Monday. That
day would have a lab, which was often, but not always, a modest programming
exercise.

The second time that I taught the course, I changed the mechanism for
ensuring that students watched the videos. The first semester, I used short,
unannounced quizzes several times during the semester at the start of the lab
day, which covered material from that weeks videos. In the second semester,
I instead required students to complete worksheets while they watched the
videos; students submitted the worksheets for credit. I discuss the reason for
the change and the experiences from both semesters later in this paper.

22

On the other days in class, I used a more traditional lecture format. A
fully flipped classroom would have included more videos outside of class, and
incorporated completing the assignments during class. I decided against that
for a variety of reasons: wanting to encourage group work in the classroom but
still having individual assignments, wanting to incorporate lectures that could
include more student involvement and answer student questions, and not being
able to have a teaching assistant for the class time. As a department we also
had concerns that fully flipping one section would create too large of a difference
between the two CS1 sections, since they are often run in parallel. This was a
particular concern since, during some semesters, students do not choose which
section they go intothe two sections meet at the same time and students are
assigned by the department to keep a balance of majors and non-majors, class
levels, male/female, etc. between the two sections.

Video Content
I created the videos during the summer before the first semester I used them
in the course. Each video focused on one specific topic and averaged about 10
minutes in length. For larger topics, I tried to find a natural way to split the
topic into two rather than producing longer videos. Videos were always of the
screen, recorded using Camtasia, and alternated between PowerPoints (using
many custom animations to visualize the topic) and programming in an IDE.
Videos were created with an eye towards students watching them on phones
and other small screens, which meant zooming in and panning around a screen
to write code and demonstrate a running program.

The videos did not cover all the topics for a particular week, but they
typically taught the majority of that weeks content. During the days of typical
lecture coverage, I would cover any additional topics for that week, as well as
delve further into the topics covered by the videos. These were often spurred
by questions that students had from the videos or the in-class lab.

Each 10-minute video typically required between four to six hours to plan,
prepare, record and edit, and then to produce the associated content. At the
time that I created each video, I would write the lab as well as the associated
quiz if there was to be one.

Observations / Lessons Learned

Student Feedback and learning
Based on informal feedback from students, students generally liked the video
format. In particular, students praised the ability to go back later and watch

23

the videos as they were completing an assignment. Student engagement in the
labs was strong, and as I note in the next section, students appeared to have
an increased investment in understanding the solution to the lab as compared
to the short exercises in class from previous semesters.

Although I did not formally study student learning and compare it to previ-
ous years, I believe that student learning was improved by using this approach.
In particular, it allowed students to wrestle with challenging concepts while
doing the lab during class time instead of struggling with it while they were
completing the assignment away from as many resources. Because assignments
were similar to those in previous semesters, students still applied the material
in the same way out of class, but seemed to have fewer questions when doing
so because of the additional practice time in class.

Organization of Class Time
Inherently, the modified class structure gave students more time to practice
writing code. Of particular help was the fact that an instructor was nearby
during this time, so students benefited by being able to get help when they ran
into problems.

Although originally planned to take one-third of each weeks class time, the
videos and labs became the focus of many weeks. During each lab, I answered
student questions individually, and would often take a few minutes during the
lab to bring the class together and discuss a concept that several students were
struggling with, or demonstrate a piece of code. However, students regularly
requested that we discuss questions from the lab in the next class, and that class
often involved walking through a solution to the lab exercise, with students
asking questions throughout that process. Although not my original design,
I felt that this process was particularly helpful for the students. It tended to
have students more engaged than when I have written code together with them
in class before, since they had already spent time struggling with the material
on their own. Students seemed to be much more invested in finding a correct
solution, and seemed to understand that solution better.

Mechanism to Ensure Students Watched Videos
In a previous computer applications course, where I had flipped just one unit
in class, I simply used the assignments to ensure that students were, in fact,
watching the videos. This went poorly, resulting in students waiting until just
before each assignment was due to actually watch the relevant videos. This
meant they were often completely lost during the in-class exercises, and thus
didnt have a meaningful opportunity to ask questions or practice using the
skills in the video before they were doing the assignment on their own. This

24

process really undermined any value of the videos and flipped classroom. As
a result, I wanted to implement a mechanism to ensure that students watched
the videos before the in-class labs.

The first time I taught the CS 1 course using the videos, I decided to
use short, unannounced quizzes at the start of some labs. The goal of the
quizzes was to determine whether the students had watched the videos that
were assigned for that week. I wanted the quiz to be very quick at the beginning
of a lab-based class period to allow the vast majority of class time to be spent
on the lab.

As a result of this philosophy, I did not allow students to use physical notes
during the quiz. I felt it would have been very difficult to create questions that
a student who watched the video could answer very quickly, but that a student
who had not watched the video could not answer, if I allowed students to bring
the printed code from the video (which I provided for students since I felt it
was a valuable resource).

The quiz structure was generally a failure. I knew going in that it would
not really gauge understanding of the video material, but just evaluate whether
they had watched the videos at all. But it had other major disadvantages as
well. Not allowing written notes during the quiz gave students the message
that they should not take notes as they watched the videos. In addition, the
format of a brief quiz at the start of class made accessibility accommodations,
such as extra time, very challenging, particularly since I try to avoid making a
students disability public unless they choose to do so.

The second time I taught the course, I removed the quizzes and instead
gave students a worksheet to complete each week, which they submitted for
credit at the start of the lab. This approach was much more successful. One
major downside of a worksheet, and the reason I initially decided on a different
approach, is that one student can easily copy off of another student, rather
than watch the videos. However, I feel the advantages strongly outweighed
this disadvantage. The worksheets allowed my evaluation to focus more on
understanding the key concepts from the videos than on simply whether the
student watched the videos or not. Inherently, students were writing some when
watching the videos, even if they didnt take other notes. It also encouraged
students to go back and re-watch the videos if they were unable to answer
the worksheets questions. I received more questions about video content (and
received more emails from students when there were problems with the video)
than I had during the semester with the quizzes.

Accessibility
Using videos had both positive and negative impacts on accessibility of the
course. The negative impact is perhaps strongest for students with hearing or

25

visual impairments. The negative impact on those who are hearing impaired
can be mostly mitigated by adding captions to the video. This can be done
without a great deal of effort using software like Camtasia, sometimes with
the first draft created automatically using speech recognition. A small disad-
vantage is that some formats for publishing the videos do not have optional
captions, meaning the captions must always be on. The negative impact on
students with visual impairments is harder to offset, and specialized material
may be needed for those students.

A big advantage is the ability to watch at the best pace and in the best
environment for the student, which is of particular benefit for students with
learning disabilities. Multiple students commented on their preference for being
able to re-watch a lesson, and this was particularly true of students for whom
English was not their first language.

Venue for Publishing Videos

There are multiple considerations when deciding where to publish the videos.
For the first semester, I chose to publish the videos directly through Canvas,
our Learning Management System, which had the advantage of integrating
well with other class material. Canvass system included the ability to speed
up and slow down videos, which students found helpful. I encouraged students
to watch videos at least twice: once at the regular pace, and one more time
with the speed increased if they felt comfortable with that.

During the second semester, I instead used Panopto to publish the videos.
Panopto still integrates relatively well with Canvas, and includes the ability to
control video speed, but adds some additional features as well. Panopto uses
voice recognition and screen reading to index search terms in the video, allows
students to record notes either for private use or that other viewers can see,
and to allow the professor to see which students have watched the video, and
how many times they have watched.

One limitation of using our LMS, either directly or by making the Panopto
videos available through the LMS, was that students did not have access to the
videos after the semester ended. It may be valuable to provide students with
another platform, either for the entire semester, or just for use after the end of
the semester, where they can still access the videos.

26

References
[1] Eric Breimer, Meg Fryling, and Robert Yoder. Full flip, half flip and no flip:

Evaluation of flipping an introductory programming course. Information Systems
Education Journal, 14(5):4, 2016.

[2] J. Campbell, D. Horton, M. Craig, and P. Gries. Evaluating an inverted CS1. In
Proceedings of the 45th ACM Technical Symposium on Computer Science Educa-
tion, pages 307–312, 2014.

[3] M. N. Giannakos and J. Krogstie. Reviewing the flipped classroom research: Re-
flections for computer science education. In Proceedings of the Computer Science
Education Research Conference, pages 23–29, 2014.

[4] M. R. Hodges. Ensuring videos for a flipped classroom increase inclusivity. Journal
of computing Sciences in Colleges, 34(1):81–88, 2018.

[5] D. L. Largent. Flipping a large CS0 course: an experience report about exploring
the use of video, clickers and active learning. Journal of computing Sciences in
Colleges, 29(1):84–91, 2013.

[6] N.B. Milman. What is it and how can it best be used? Distance Learning,
9(3):85–87, 2012.

[7] N. Sarawagi. A flipped CS0 classroom: applying bloom’s taxonomy to algorithmic
thinking. Journal of computing Sciences in Colleges, 29(5):21–28, 2014.

[8] R. Talbert. Inverting the linear algebra classroom. Problems, Resources, and
Issues in Mathematics Undergraduate Studies, 24(5):361–374, 2014.

27

Categorizing And Ameliorating
Generalization-Specialization Design

Mistakes in an Intermediate
Programming Class∗

John W. Coffey
Department of Computer Science

University of West Florida
Pensacola, FL. 32514

jcoffey@uwf.edu

Creating complex generalization-specialization relationships is challenging
for students who are new to object-oriented design. The current work seeks
to categorize student design mistakes in inheritance modeling involving mul-
tiple inheritance and a larger number of super and sub-classes than students
routinely encounter in introductory inheritance-related code examples. Stu-
dent responses to a task requiring the creation of an inheritance lattice has
led to a preliminary categorization of major error types and an assessment of
relative frequencies of the errors. Examples of student work that illustrate var-
ious errors are included. This article concludes with a discussion of how these
examples can be used in active learning exercises.

Introduction
Within the endeavor of teaching and learning object oriented software design,
understanding inheritance and generalization-specialization relationships re-
mains a challenge for many beginning students. The problem is further com-
plicated because students must develop an understanding of inheritance in the
context of related concepts including polymorphism, dynamic binding, and in

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

28

some programming languages, a mechanism akin to the interface mechanism
provided by Java.

Much of the pedagogical work on object modeling for inheritance described
in the literature is broad and encompasses the various associated topics just
mentioned. The issue of sequencing these topics remains unresolved as evi-
denced by different topic orders in currently popular textbooks. For instance,
in [1], Horstmann discusses interfaces and polymorphism before inheritance
and in [2] he presents polymorphism in the context of an inheritance discus-
sion that precedes interfaces. Other authors including Savitch [7] have created
texts with different orderings of these topics.

Inheritance and polymorphic programming examples provided in textbooks
usually include only a few classes and single inheritance. Experience in teaching
an intermediate level object oriented programming class revealed that students
struggle with more complex generalization specialization relationships. Specif-
ically, in the current study, students had to create a lattice of relationships for
a problem involving eight classes, three levels of generalization-specialization,
and multiple inheritance. An analysis of results revealed several recurring,
characteristic categories of errors.

The remainder of this paper contains a description of various characteristics
of the problem of teaching and learning inheritance. After a review of relevant
literature, the current study is presented. An attempt is made to character-
ize the types of mistakes learners make in constructing hierarchies or lattices
involving more than minimal arrangements of classes. Several examples that
are illustrative of the types of errors students made are presented. The paper
concludes with a strategy pertaining to the use of these examples as teaching
materials in an active learning scenario to help students gain a broader and
deeper understanding of generalization-specialization relationships.

Literature on Teaching/Learning Inheritance
Liberman, Beeri, and Kolikant [3] studied inheritance and polymorphism mis-
takes in K-12 teachers who were learning to teach object-oriented programming.
They found that students lacked sufficient understanding of hierarchies, had
troubles based upon deficient training in other aspects of OO programming,
made incorrect application of analogies to everyday life, and had a tendency to
think in terms of alternative, simplifed models. Liberman, Beeri, and Kolikant
further concluded that learners lacked adequate understanding of the compu-
tational model underlying compilation and execution of OO programs to make
good decisions regarding inheritance orderings.

Reek [6] described efforts to help first year CS students understand the
difference between inheritance and inclusion (generalization/specialization and

29

composition). He had students implement two problems, one of which naturally
lent itself to inheritance and the other to inclusion. Before each lab, students
had to decide which organizational construct applied. Reek concluded that the
preparatory work they performed helped students understand that inheritance
was the better mechanism for implementation of one of the first problems
and that inclusion was the better choice for the other problem. Without the
preparatory work, students struggled to decide whether to use hierarchy or
composition.

Mascarell [4] presented several visual representations for data structures,
algorithms, and scoping and access rules for object-oriented programming for
inheritance. She utilized a diagram that is similar to a UML class diagram
that contained both inheritance and inclusion. She provided an example of
class Car that extended class Vehicle and includes an engine attribute. She
did not present data regarding student learning outcomes, but she concluded
with the notion of ”one concept, one drawing“, a compelling idea of providing
example diagrams creating strong intuitions for the nature of the construct
being studied.

Or-Bach and Lavy [5] had third year CS students create class diagrams,
with a format of their own choosing, requiring the definition of an abstract
class with two concrete classes, and inheritance and polymorphism mecha-
nisms required. Out of 33 participating students, four generated the exact
solution the instructors visualized, six students omitted the required abstract
base class, and numerous students included additional, unnecessary classes.
Of the unnecessary classes, some were irrelevant, and some might have been
included, but more properly would have been included as attributes.

Schmolitzky [8] describes dilemmas in deciding how to present inheritance
and polymorphism - whether to teach reuse by extension or polymorphism first
and how to sequence teaching the Java interface construct. He decided upon a
sequence of teaching interfaces first, the concept of subtyping (including sub-
stitutability of a subtype where supertypes are expected) and dynamic binding
next, and inheritance last. As described earlier in this article, the issue of
how to sequence these topics has manifest as different topic sequences in text-
books and represents what appears to be an ongoing challenge in the design of
curricula pertaining to inheritance/polymorphism/interface.

The Current Study
The current study represents an attempt to examine errors intermediate pro-
gramming students make in trying to create generalization/specialization rela-
tionships for relatively complex scenarios. Students were required to create an
inheritance lattice for eight classes. The following sections contain descriptions

30

of the course, the methods employed in the study and the study’s results.

The Course
The course in which the current study was performed was the second in a
three-course series on objectoriented programming with Java. The first course
followed an objectsfirst approach and provided background in variables, control
constructs, the use of predefined classes, creating userdefined classes, and basic
containers. The current course continued with inheritance, polymorphism,
interfaces, exceptions, file I/O, database and recursion.

Methods
Students in the study were introduced to the vocabulary pertaining to object
oriented programming and generalization-specialization relationships including
class, attribute, method, and the notions of single and multiple inheritance.
They examined several examples of class hierarchies, and performed an inter-
active activity of defining a class hierarchy. They were also required to produce
class hierarchies for a programming project involving inheritance. In order to
assess their ability to produce correct inheritance relationships, they had to
answer the following question on the final examination:

Draw an inheritance diagram for the following classes: student, undergrad-
uate student, professor, employee, teaching assistant, secretary, department
chair, person. Note: a teaching assistant is a student who works for a profes-
sor; a department chair is a professor.

Additionally, students had to indicate if the problem required single or
multiple inheritance.

Results
A total of 21 students answered the question, and of those, two produced
completely correct answers. The arithmetic mean grade for all students on the
question was 79.5%, surprisingly low, as the expectation was that this question
would be one of the easier ones on the exam. Table 1 provides a taxonomy of
errors and their frequency of occurrence.

As can be seen in Table 1, the most commonly occurring error type was
failure to represent a superclass-subclass relationship. A typical example of
this type of error is having department_chair and professor at the same
level in the inheritance structure. Interestingly, students made this particular
error even though the problem description states explicitly that a department
chair is_a professor. More than 50% of all students made this type of error.

31

Table 1: The most frequent error types with frequencies.
Error Description Occurrences
Missed superclass subclass relationship 12
Improper symbol for inheritance 6
Real-world relationship, not generalization-specialization 5
No root class specified 4
Represented other relationships than is_a 3

Almost a quarter of all students made connections based upon real-world
relationships between entities rather than on generalization-specialization re-
lationships between them. This type of error was the third most commonly
occurring error. Liberman, Beeri, and Kolikant [1] noted this type of problem
in their work, so the current work confirms their result. Examples of this type
of error included having teaching assistants subclasses of both professors and
department chairs since TAs work for both, and having secretary as a subclass
of department chair because department chairs have secretaries.

Surprisingly, 20% of students failed to indicate class Person as the base
class. Failure to use the proper symbol to indicate inheritance occurred fre-
quently. This error is viewed as readily correctable. What follows are a few
illustrative examples of typical student errors.

Figure 1: Inclusion of a composition relationship in an inheritance diagram

Figure 1 was created by one of the highest performing students in the class.
It is diffcult to explain why, in an inheritance diagram, the student utilized the
symbol for composition, which features importantly in class diagrams. It is of
note that the composition relationship the student indicated is an example of
a real-world relationship between the two entities rather than a generalization-
specialization relationship between them. Without the composition relation-
ship, that diagram constitutes the answer to the question that the instructor

32

sought. This example provides an interesting case to present to students indi-
cating that they should use the symbology that is relevant to specific diagram
types, and not introduce inappropriate symbols into a diagram.

Figure 2: Reversing a generalization-specialization relationship and missing an
is_a relationship.

In Figure 2, the student made two errors: as specified in the problem de-
scription, a teaching assistant is both a student and an employee. Interestingly,
in a separate part of the same question, the student whose work is shown in
Figure 2 correctly indicated that the solution to the problem required multiple
inheritance, even though none appeared in his diagram. Additionally, the fact
that a department chair is_a professor was stated explicitly in the problem
description, yet the relationship between them was reversed. This relationship
was judged to be a real-world relationship mistake as professors are seen as
working for department chairs. The characterization of a teaching assistant as
a student rather than an undergraduate student was correct.

Figure 3 contains another example of modeling real-world relationships
rather than generalization-specialization relationships. Teaching Assistant should
have appeared as a subclass of both Student and Employee. Instead, teach-
ing assistant is represented as a subclass of department chair and professor,
presumably because teaching assistants work for both. This answer also failed
to account for the generalization-specialization relationship between professor
and department chair. The is_a relationship between professor and depart-
ment chair was stated explicitly in the question.

The work presented in Figure 4 is interesting because the student correctly
indicated the relatively more difficult multiple inheritance relationship of a
teaching assistant, but missed the relatively simple base class Person. The
student also failed to use the inheritance symbology that should have featured a

33

Figure 3: An error modeling real-world relationships rather than
generalization-specialization

Figure 4: Missing the base class, textttis_a symbology, and inheritance.

triangle on the connector pointing to the superclass. Interestingly, this student
correctly dealt with several of the more diffcult aspects of the problem, only
to miss two of the simpler parts of the problem.

The final example, presented in Figure 5, was the lowest quality individual

34

Figure 5: Numerous errors: rolling many subclasses into one, incorrect sym-
bology for inheritance, etc.

answer delivered in the class, and it was an outlier from the rest. This student
got the top-level relationships (person, student, and employee) correct, but
after that, not much else. The partitioning of the rectangles into two or three
areas is similar to the three areas in a node representing a class in a class
diagram class name at the top, then boxes for attributes and methods. It
is likely the student was confusing the type of diagram to draw. It is diffcult
to see any pattern in the various classes in the employee box other than as a
status ranking Professor above chair, which is in turn above secretary and then
teaching assistant. It is also inexplicable why a directed link was made from
the box containing class student to the box containing class employee.

Discussion
Overall, the performance of the students was acceptable, but not up to expecta-
tions for the problem. Confusing real-world relationships with generalization-
specialization is the most concerning error students made and one that must
be addressed. Failing to designate a root class was another important error
students made. A different version of this question (that was used in previous

35

course offerings) omitted mention of the need for class Person and tasked
students with creating a hierarchy, furnishing additional classes as needed.
Students have struggled with that question even more than with the question
posed here.

The erroneous examples presented here comprise a range of errors. The
diagrams presented can be utilized as examples in an active learning activity
on object-oriented design. In the next offering of the course, students will be
given an interactive exercise in which they will read the problem and then
identify each of the diagram presented above as correct or having errors. If
the students state that the diagram contains errors, they will be required to
state the nature of the error and to propose a revised diagram that corrects the
error. This exercise is envisioned as a small group exercise with two or three
students per group.

Also, as Reek [5] stated, it is important that students have a firm founda-
tion in basic is_a and part_of relationships if they are to have any hope of
mastering the other issues surrounding inheritance, including polymorphism
and interfaces. The proposed exercise can be extended by adding other items
that might better be represented as attributes, in order to help students gain
proficiency at determining if noun-like entities should become classes or at-
tributes.

Conclusions
Motivation for the current work came from the fact that students had an un-
expectedly difficult time dealing with what was supposed to be a relatively
simple exam question. It is demonstrable that the current task involved more
classes than students had been tasked with organizing in their prior experiences.
However, the most common error was failure to indicate a basic generalization-
specialization relationship. As documented in the literature, the tendency to
create an association based upon a real-world relationship rather than on a
generalization/specialization relationship was also noted frequently. It is rec-
ognized that more time should be spent learning about larger class hierarchies
and lattices, and that the error examples presented here (and others) can be
used as supplementary teaching materials for this important topic.

References
[1] C. Horstmann. Big Java, 4th edition. 2009.

[2] C. Horstmann. Big Java, Early Objects, 5th edition. John Wiley and Sons, Inc.,
2013.

36

[3] Beeri C. Liberman, N. and Y. Kolikant. Difficulties in learning inheritance and
polymorphism. ACM Trans. Comput. Educ., 11, 1, Article 4(10):891–921, 2015.

[4] J. B. Mascarell. Visual help to learn programming. ACM Inroads, 11, 1, Article
4(2(4)):42–48, 2011.

[5] R Or-Bach and I. Lavy. Cognitive activities of abstraction in object orientation:
An empirical study. ACM Inroads - The SIGCSE Bulletin, 36(2):82–86, 2004.

[6] K. A. Reek. Teaching inheritance versus inclusion to first year computer sci-
ence students. In Proceedings of SIGCES96, the ACM Special Interest Group on
Computer Science, Philadelphia, PA., 1996.

[7] W. Savitch. Absolute Java, 5th Edition. Pearson Education, Inc.

[8] Axel Schmolitzky. Teaching inheritance concepts with Java. In Proceedings of
the 4th International Symposium on Principles and Practice of Programming in
Java, PPPJ ’06, pages 203–207, New York, NY, USA, 2006. ACM.

37

Scoring Matrix Combined With
Machine Learning For Heterogeneously

Structured Entity Resolution∗

Xinming Li, John R. Talburt, Ting Li, Xiangwen Liu
Information Science Department

University of Arkansas at Little Rock
Little Rock, AR 72204

{xxli3, jrtalburt, txli1, xxliu10}@ualr.edu

Abstract

This paper describes how machine learning works with “coring ma-
trix”, which is designed for measuring the similarity between heteroge-
neously structured references, to get a better performance in Entity Res-
olution (ER). In the scoring matrix, each entity reference is tokenized
and all pairs of tokens between the references are scored by a similar-
ity scoring function such as the Levenshtein edit distance. In so doing,
a similarity score vector can measure the similarity between references.
With the similarity score vector, machine learning is used to make the
linking decision. Our experiments show that machine learning based on
score vector outperforms TF-IDF and FuzzyWuzzy benchmarks. One
possible explanation is that a similarity score vector conveys much more
information than a single similarity score. Random forest and neural
network even get better performance with raw score vector input than
with the statistic characteristic input.

Introduction
Entity resolution (ER) is the process of determining whether two references to
real world objects in an information system are referring to the same object,

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

38

or to different objects [8]. Generally speaking, an ER system takes entity ref-
erences and makes linking decisions based on the degree to which the values
of the attributes of two references are similar [4]. If the two references are
similar enough, the ER system will link them; otherwise, not link. The two
most common types of linking rules are Boolean rules and scoring rules. The
Boolean rules follow the IF-THEN logic of Boolean expressions and produce
a True (link) or False (no link) decision. On the other hand, scoring rules
follow the FellegiSunter model of probabilistic weights and yield a numerical
score representing the relative similarity between two references [3]. Exten-
sive research has been focused on both methods. Using XML scripts to define
Boolean rules [12], blocking using user-defined inverted indices [13], calcula-
tion of weights for the scoring rule [9], Multi-valued attributes comparison [6],
blocking strategy for the scoring rule for very-large datasets [10], and evolving
rule logic [11]. Very recently, machine learning and deep learning is also applied
in entity resolution field [2, 7]. In our big data era, entity references tend to
be from multiple sources, and thus references might follow different structures
at the attribute level. In this case, the classic Boolean rules and scoring rules
cannot be applied without data standardization. Therefore, it is necessary
to design a method specifically for the heterogeneously structured references.
Overall, this research makes two main contributions. First, it designs a sim-
ilarity measurement tool for the heterogeneously structured reference in ER;
besides no need to standardize heterogeneously structured references to a uni-
fied attribute structure, another advantage of a scoring matrix is using a vector
rather than a single value to represent the references similarity. Second, this
research shows that machine learning could make the best use of similarity
information conveyed by the score vector, thus making a much better linking
decision. Although normalizing, such as averaging, the score vector into an ag-
gregated score which is then compared to a threshold value to make the linking
decision is intuitive and easy to understand, the normalization process actually
discards some information since a vector conveys much more information than
a single value. This point is proved by the result that a scoring matrix combin-
ing with machine learning outperforms the benchmark, which are using classic
TFIDF to represent references first and then use cosine similarity to measure
reference similarity.

Problem Statement
The key problem this research addresses is heterogeneously structured refer-
ences. When the references are heterogeneously structured at the attribute
level, the existing Boolean matching rules and scoring rules cannot be directly
applied unless the references are standardized with the same attribute struc-

39

ture. For example, if the ER system is designed to compare peoples first names
and last names as separate fields, then a reference source where both names
are in a single field must be preprocessed and reformatted to separate and
properly classify the name words. However, this data standardization process
can take substantial analysis and processing effort. Moreover, it should be
done by an analyst with sufficient domain knowledge and understanding of the
source data. In addition, from the ER systems perspective, the standardiza-
tion pre-process creates a dependency between the standardization and the ER
process itself. Changes to the preprocess can potentially cause the ER engine
to produce significantly different results even though the input references and
matching rules are unchanged. This preprocess dependency increases the com-
plexity and scope of versioning and change control over the entire ER process
to assure consistent ER results. The practical problem of this research is a
very general one. Multiplesource of the same information is regarded as the
first among the ten root conditions of data quality problem [5]. The prob-
lem of performing ER on sources with heterogeneous formats is becoming even
more acute as organizations begin to follow the new paradigm of “structure-
on-read” rather than structure-on-write underpinning the “data lake” strategy.
Therefore, the purpose of this research is to explore methods that can operate
effectively without pre-process standardization and directly ingest heteroge-
neously structured reference sources into the ER process. The next section
explains the scoring matrix design to solve this problem.

Similarity Measurement Tool: Scoring Matrix
In ER, the decisions to link or not link two references is based on the degree
of similarity between the references. The basic assumption is that the more
similar two references are, the more likely they refer to the same real-world
entity, i.e. are linked. The similarity functions are used to make the similarity
decision. In the scoring matrix design, we adopt one of the most commonly
used similarity function called LED (Levenshtein Edit Distance). It measures
the similarity between two strings by the minimum number of operations that
must be performed to transform one string to another; the operations could
be character deletions, insertions, or substitutions. For example, the LED
between “Jim” and “James” is three in that at least three operations are needed
to transform “Ji” to “James”. They are substituting “i” with “a”, and then
adding “e” and “s”. In order to get a normalized similarity value between zero
and one, in which one represents the exact match and less than one represents
proportionally less degree of similarity, we adopt the normalized LED.

The core concept of our scoring matrix method is the matrix comparator,
with which two references can be compared in a matrix through tokenizing

40

the whole reference as a string. Figure 1 illustrates the logic of scoring ma-
trix. The reference being compared is an unstructured combination of “name”
and “address” fields. The first reference is “Woods John 18 Chaparral Little
Rock AR 72212”; the second reference is “John Wood 18 Chaparral Ln Little
Rock ARK 72212”. With the scoring matrix method, these two references are
tokenized into the white-space and punctuation delimited substrings (tokens).
The tokens are used as labels for rows and columns of a matrix. Each cell of the
matrix contains a value representing the similarity between the tokens labeling
the row and column of the cell. The similarities are given as the normalized
LED between the two string as mentioned above. For visual clarity, cells with
a similarity of 0.00 are left blank. The basic scheme is to find the highest sim-
ilarity score (best match) for each token and then average the highest scores
to get an overall score. Finding the highest similarity scores is realized by an
iteration as the following pseudo shows.

Initialize an array r
While matrix M is not empty Do

Find the maximal value of matrix M
s := maxM0[i][j]
Add s to r
Delete row i of M
Delete column j of M

End

With the above scoring matrix design, given any pair of references, no
matter what the structure is, a score vector will be derived to represent the
similarity between the two references.

Figure 1: Matrix Comparator Example

41

Machine Learning Based On The Score Vector
Although normalizing, such as averaging, the score vector into an aggregated
score which is then compared to a threshold value to make the linking decision
is intuitive and easy to understand, the normalizing process actually discards
some information since a vector conveys much more information than a single
value. Machine learning takes multiple dimension numerical features as input.
However, the problem to apply machine learning is that the length of the score
vector is not identical, depending on the number of tokens of two compared
references. Therefore, we need to fix the length of score vector before applying
machine learning.

Data Processing: To fix the length of input, two methods are used. The
first is to use the statistic characteristics of the score vector. They are the
mean of score values, the variance of the score values, and the length of score
vector. In other words, we use mean, variance and length as three features in
machine learning; this method is referred as feature data input in this paper.
The second method is to pad the raw score vector to identical length that is
the longest of all the score vector, i.e., that is 12 in the experiment dataset.
This method is referred as raw data input.

Dataset: There are 499,500 samples to train and test machine learning
model. These samples are derived from all the combination of two references
in a 1,000 references dataset. Each sample has one score vector derived from
the scoring matrix and one label 0 or 1 showing the reference pair refers to the
same person or not.

Experiment Design: As the linking decision could be seen as a binary
decision, 0 for not link and 1 for link, the classification machine learning al-
gorithms can be directly applied after the data processing. We start with
logistic regression to test the effectiveness of scoring matrix, using two alterna-
tive similarity measurements as benchmark. The first benchmark uses TF-IDF
to represent references and then use cosine similarity to measure references
similarity. The second benchmark directly uses existing FuzzyWuzzy similar-
ity measurement [1]. Then we investigate other machine learning algorithms,
including support vector machine (SVM), decision tree, random forest, and
neural network. Finally, we further test the raw data input.

Experiment 1: Effectiveness of Scoring Matrix
The results show that scoring matrix outperforms two benchmarks significantly.
Scoring matrix performs very well on recall. One possible explanation is that
scoring matrix use a vector rather than a single value to make link decision, and
a vector could provide more information than a single value to make linking
decision. In other words, score vector renders machine learning extra ability

42

Table 1: Results of experiment 1
Precision Recall F-measure

TF-IDF 0.84 0.49 0.62
FuzzyWuzzy 0.84 0.42 0.56

Scoring Matrix 0.81 0.68 0.74

to recognize linking pattern.

Experiment 2: Explore Machine Learning Algorithm

Table 2: Results of experiment 2
Precision Recall F-measure

SVM 0.78 0.74 0.76
Decision Tree 0.85 0.70 0.77

Random Forest 0.83 0.75 0.79
Neural Network 0.77 0.75 0.76

This experiment shows that the performance could be further enhanced
by exploring other machine leaning algorithms. For this dataset, the random
forest algorithm performs best.

Experiment 3: Raw Score Vector Input

Table 3: Results of experiment 3
Precision Recall F-measure

Logical Regression 0.83 0.67 0.74
SVM 0.82 0.69 0.75

Decision Tree 0.81 0.72 0.77
Random Forest 0.86 0.78 0.82
Neural Network 0.83 0.73 0.78

These results show that machine learning achieves almost equal perfor-
mance with the raw data input and with the feature data input. Especially,
the the random forest and neural network even get the better performance with
raw data input than with feature data input (Table 2). One possible expla-
nation is that, compared to other machine learning algorithms, random forest
and neural network could extract more information from the raw score vector.

43

CONCLUSIONS
In the big data era, entity references from multiple sources are very common;
and references from different sources would be heterogeneously structured.
Facing this practical problem in entity resolution, this research proposes the
method of scoring matrix plus machine learning, in which a scoring matrix
is the tool to measure the similarity between heterogeneously structured ref-
erences and machine learning is used to make the linking decision based on
the score vector derived from scorning matrix. The experiments show that
the combination of scoring matrix and machine learning could boost the per-
formance significantly compared to the benchmarks. For future research, the
scoring matrix design could consider weights for the tokens during similarity
calculation.

References
[1] FuzzyWuzzy Using Python. https://www.neudesic.com/blog/fuzzywuzzy-

using-python retrieved November 15, 2018.

[2] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. Distributed representations of tuples for entity resolu-
tion. Proceedings of the VLDB Endowment, 11(11):1454–1467, 2018.

[3] Ivan P Fellegi and Alan B Sunter. A theory for record linkage. Journal of the
American Statistical Association, 64(328):1183–1210, 1969.

[4] F. Kobayashi and J. R. Talburt. Improving the quality of entity resolution
for school enrollment data through affinity scores. In Proceedings ofă19th MIT
International Conference on Information Quality, pages 69–80, 2014.

[5] Yang W Lee, Leo L Pipino, James D Funk, and Richard Y Wang. Journey to
data quality. The MIT Press, 2009.

[6] Pablo N Mazzucchi-Augel and Héctor G Ceballos. An alignment comparator for
entity resolution with multi-valued attributes. In Mexican International Confer-
ence on Artificial Intelligence, pages 272–284. Springer, 2014.

[7] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra.
Deep learning for entity matching: A design space exploration. In Proceedings of
the 2018 International Conference on Management of Data, pages 19–34. ACM,
2018.

[8] J. R. Talburt. Entity resolution and information quality. 2011.

44

[9] P. Wang, D. Pullen, N. Wu, and J. R. Talburt. Iterative approach to weight cal-
culation in probabilistic entity resolution. In 2014 19th International Conference
on Information Quality (ICIQ-19).

[10] Pei Wang, Daniel Pullen, John R Talburt, and Cheng Chen. A method for
match key blocking in probabilistic matching. In Information Technology: New
Generations, pages 847–857. Springer, 2016.

[11] Steven Euijong Whang and Hector Garcia-Molina. Entity resolution with evolv-
ing rules. Proceedings of the VLDB Endowment, 3(1-2):1326–1337, 2010.

[12] Yinle Zhou, John R Talburt, Fumiko Kobayashi, and Eric D Nelson. Implement-
ing boolean matching rules in an entity resolution system using xml scripts. In
Proceedings of the International Conference on Information and Knowledge En-
gineering (IKE), page 1. The Steering Committee of The World Congress in
Computer Science, Computer , 2012.

[13] Yinle Zhou, John R Talburt, and Eric Nelson. User-defined inverted index in
boolean, rule-based entity resolution systems. In 2013 10th International Con-
ference on Information Technology: New Generations, pages 608–612. IEEE,
2013.

45

Digital Distraction Outside the
Classroom: An Empirical Study∗

Rajvardhan Patil, Matt Brown, Mohamed Ibrahim,
Jeanine Myers, Kristi Brown, Muhammad Khan,

Rebecca Callaway
Arkansas Tech University

Russellville, AR 72801
{rpatil, hbrown11, mibrahim1, jmyers32, kspittlerbrown,

mkhan3,rcallaway}@atu.edu

Abstract

The purpose of this study was to investigate the impact of the use
of digital devices on students performance on assignments completed
outside of the classroom across different academic disciplines. The in-
vestigators employed between subject design to examine the relationship
between student performance on an assignment that was delivered in two
different formats (paper or electronic) to 281 students in three different
colleges within the same university (computing and engineering, mathe-
matics, and education). The results revealed that the digital distractions
significantly and negatively correlated with assignment score and thus,
digital distraction corresponded with lower scores on the assignments.
Furthermore, the study found that digital distractions were significantly
and positively correlated with time required to complete the assignment
(the longer the time students spent on phone applications and internet
sites not related to the assignment, the more time they need to com-
plete the assignment). Finally, the results of this study found that the
digital distraction were significantly lower for students in a computing
related major than for non-computing majors, indicating that digital dis-
tractions may not impact all students equally. This paper discusses the
experimental setup, methodology, and findings of the research in detail.

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

46

1 Introduction
The digital age is also the age of information overload. Digital distraction
is prevalent in virtually every environment people operate. Education is no
different, where students can be negatively impacted by digital distractions.
Although recent studies have identified the potential negative impacts of dig-
ital distraction on the learning process both inside the classroom and outside
of the classroom, more of the literature appears to focus on digital distraction
inside the classroom. However, the impact of digital distraction outside of the
classroom is arguably more important, since students are expected to achieve
more learning on their own in a typical post-secondary education environment.
This research focuses on digital distractions during assignment completion out-
side of the classroom in a post-secondary environment. An experiment was
conducted where college students were given homework assignments followed
by a questionnaire concerning digital distraction during the assignments. More
than one course was used, two different types of assignment were given, and
each assignment was given on both paper and electronic format. The results
indicate digital distraction negatively impacts performance on assignments.

2 Background
Digital distraction has been identified as a concern in both the workplace and
educational environments. Agrawal et al. define digital distraction as “distrac-
tion due to electronic devices and media that breaks the concentration from
the main piece of work that is being done” [2]. “Cyber slacking” is another
term used to identify this problem [9]. Various studies have addressed digital
distraction in the classroom, many finding a significant negative impact. In
one study, over 70% of students using laptops in a college class spent half of
their class time doing nonacademic activities on their laptops [15]. In a 2017
study, 94% of college students admitted they wanted to use their cell phones
for non-class related activities [26]. In another study, 80% of students indi-
cated they pay attention less in the classroom because of digital devices [21].
Because of studies such as these, the potential negative impact of digital dis-
tractions in the classroom is well established. Some work has also been to done
to try and measure the impact of different aspects of digital distraction outside
the classroom. One study found that over 40% of students observed in the
library for at least 30 minutes spend time using their phone [1]. Indications
that phones are a source of distraction to students outside of a classroom are
further established in [4, 27]. In one example, [6], found that college students
who studied over a 3-hour period while having access to their mobile devices,
were pulled off-task by their mobile devices an average of 35 times. Similarly,

47

[25] observed that college students stayed on task for only 65% of a 15-minute
study period, checking their mobile devices once every 5 minutes. These find-
ings align with self-report studies indicating that more than 60% of college
students use mobile devices for off-task purposes while doing schoolwork out-
side of class [12, 22]. Another study finds that as the amount of time spend
on social networks increases; college GPA decreases [3]. The same result was
echoed in [20, 25] where the relationship between Social Network Sites (SNS)
use and academic performance was significantly negative. [19] stated that the
constant digital media distractions interrupt the thought and communication
processes, obstructing students ability to learn and showed a negative correla-
tion between frequency of media use and academic performance. These results
were also echoed by other researchers who have found that multitasking and
digital distraction hinder academic achievement due to playing games or surfing
the internet during learning [11, 17, 5, 16].

While some have argued to embrace digital devices in the learning process,
other researchers have suggested that the academic benefits of students using
digital devices are overstated. Regarding the benefits of social media in the
classroom, two studies found no relationship between the use of digital devices
in the classroom and student academic achievements [10, 23]. In addition, [8]
found that student collaboration with digital devices did not improve students
thinking or understanding. Further, regardless of whether digital devices are
properly handled in a classroom, the potential issue of digital distraction during
learning outside the classroom, where instructors have no control of the learning
environment, looms large. This study contributes to the understanding of this
issue by considering the impact of digital distraction on student performance
on an assignment completed out of the classroom for different types of students,
different types of assignments, and different assignment formats.

3 Methodology
An experiment was conducted using students in courses convenient to the re-
searchers over a two-semester time frame. Students in each class were given
a homework assignment on paper or in a digital format. Upon completion of
the assignment, students electively completed a questionnaire regarding digital
distraction during completion of the assignment. Students not completing the
questionnaire were not included in the results of the study. The experiment
was repeated with a different type of assignment in a second semester. IRB
approval was obtained for this study and all ethical considerations were met.
In total, 281 students in courses in computing, education, and mathematics de-
partments participated in the study. One student only partially completed the
questionaire and therefore was included in only some of the analysis (sample

48

sizes are noted in tables).

3.1 Students
All students were degree seeking students from a Southern Regional Educa-
tional Board (SREB) four-year category three university in the mid-south. The
following statistics describe the demographics of the students participating in
the study. Of the 281 participants, 17% were graduate students and 83% were
undergraduate students. The majors represented included 52% computing or
closely related majors (Information Systems, Information Technology, Com-
puter Science, or Electrical Engineering), 35% education majors, 7% business
majors, 4% majors from natural and health sciences, and the remaining 2%
from other majors. Ages: 18-21 59%, 22-25 19%, 26-30 8%, 31-40 9%, 41 and
over 5%. Gender: 42% were female; 58% were male. Students were also asked
to provide their preferred learning style with the following results: Hands-on
24%, Reading 9%, Video/movies 8%, Lectures 6%, a mixture of all of these
learning styles 53%.

3.2 Materials
Two different assignments were given to participating students. Regardless of
the assignment, the same questionnaire was administered following comple-
tion of the assignment. The first assignment was given during the spring 2018
semester. In this assignment, students were required to read a journal article
and answer questions concerning the article. The second assignment, given to
a second group of students (independent of the first group), was administered
during the fall 2018 semester. In the second assignment, students were required
to read a brief introduction to logical thinking including propositions and truth
tables with examples. The students were then asked a series of thirteen ques-
tions. Blooms taxonomy framework was used to design these questions. Except
for create category, the other five hierarchies in the taxonomy were covered,
where the complixity of questions increased as the students advanced through
each level. In each semester, approximately half of the students were given the
assignment on paper and the other half of the students were given the assign-
ment in a digital format. Both the assignments were takehome, and students
were given a day or two to complete them. Immediately after the assignments
were submitted, students were given a questionnaire (the questionnaire was
voluntary, but students received a small amount of bonus points for complet-
ing the questionnaire). The questionnaire contained ten questions primarily
regarding their use of digital devices while completing the assignment and five
demographic questions.

49

Table 1: Correlations between assignment grade and digital distractions

3.3 Project Goals (Research Questions)
The research questions considered in this study include: 1. Is student per-
formance on an assignment significantly correlated with digital distractions,
how the assignment was delivered (paper or digital), the type of assignment
(reading comprehension or logical thinking), or the type of major (computing
versus non-computing), or the use of digital devices to help with the assign-
ment? 2. Is time to complete the assignment significantly correlated with
digital distractions, how the assignment was delivered (paper or digital), the
type of assignment (reading comprehension or logical thinking), or the type
of major (computing versus non-computing), or the use of digital devices to
help with the assignment? 3. Are computing students more or less likely to be
distracted?

4 Results
A simple correlation analysis was used to determine what factors correlated
with the grade students received on the assignment. (Note: In Tables 1, 2, 3:
*denotes a significant correlation, p<0.05.) A simple correlation analysis was
used to determine what factors correlated with the grade students received on
the assignment. (Note: In Tables 1, 2, 3: *denotes a significant correlation,
p<0.05.)

As can be seen in 1, digital distractions as measured by time on the internet,

50

Table 2: Correlations between assignment completion time and digital distrac-
tions

time on phone apps, and frequency of phone use and internet use were all signif-
icantly negatively correlated with assignment score. Thus, digital distraction
corresponded with lower scores on the assignments. The type of college major
and type of assignment were correlated with assignment score. Assignment
scores could not be shown to be significantly correlated with the format of the
assignment, that is whether the assignment was given on paper or digitally had
no impact on the assignment score. Further, time spent seeking online help
on the assignment was not shown to be siginficaly correlated with assignment
performance.

As can be seen in 2, digital distractions as measured by time on the internet,
time on phone apps were significantly positively correlated with time required
to complete the assignment. That is, as the time students spend on internet
sites not related to the assignment or the time spent on phone apps not related
to assignment, the time to complete the assignment increased. Also, the time
spent seeking online help for the assignment was positively correlated with the
time to complete the assignment. The type of college major and type of as-
signment were correlated with assignment completion time. Again, assignment
completion time could not be shown to be significantly correlated with the
format of the assignment, that is whether the assignment was given on paper
or digitally had no impact on the assignment completion time.

As can be seen in 3, four of the five measures of digital distraction were
significantly lower for computing students than for non-computing students.

51

Table 3: Correlations between major and digital distractions

Thus, there is an indication that digital distractions will not impact all types
of students in the same way. It is unclear if these results are confounded by the
students interest levels in the assignment. Because, although both assignments
dealt with topics relevant to all majors, the assignments dealt with topics
computing students would likely find more familiar, potentially making them
less distracted.

5 Conclusion
Digital distractions are an issue in post-secondary education beyond just the
classroom. The results of the present study indicate that the digital distrac-
tions impact both the quality and quantity of student work outside the class-
room. Further, the students type of major did significantly change both the
propensity to be distracted and the assignment score. In contrast, the format
of the assignment (whether the assignment was given on paper or online) did
not significantly differ with digital distraction or assignment performance. In
addition, the use of digital resources to help complete the assignment did not
significantly correlate to improved performance. The main conclusions of this
study support previous findings produced in different settings and with other
populations and provide empirical evidence that validates the negative effect
of digital distraction on students assignment performance. For example, pre-
vious studies found that digital distraction is linked to drops in time spent
studying [6, 28], homework assignment performance [7], homework completion
rates [14], course grades [18, 24], and cumulative college grade-point average
[13, 25]. While the negative impact of digital distraction seems clear, effective
approaches of how to address the issue may be less easy to identify.

52

References
[1] Farhad Mohammad Afzali and Briana B. Morrison. Cellphone usage in academia:

The problem and solutions. In Companion of the 2018 ACM Conference on
Computer Supported Cooperative Work and Social Computing, CSCW ’18, pages
325–328, New York, NY, USA, 2018. ACM.

[2] Priyanshi Agrawal, H. S. Sahana, and Rahul De’. Digital distraction. In Proceed-
ings of the 10th International Conference on Theory and Practice of Electronic
Governance, ICEGOV ’17, pages 191–194, New York, NY, USA, 2017. ACM.

[3] Priti Bajpai and Maneesha. Analyzing effect of social media on academic perfor-
mance of university graduates. In Proceedings of the 2018 The 3rd International
Conference on Information and Education Innovations, ICIEI 2018, pages 40–44,
New York, NY, USA, 2018. ACM.

[4] Robert E. Beasley, Jacob T. McMain, Mathew D. Millard, Dylan A. Pasley, and
Matthew J. Western. The effects of college student smartphone use on academic
distraction and dishonesty. J. Comput. Sci. Coll., 32(1):17–26, October 2016.

[5] Saraswathi Bellur, Kristine L. Nowak, and Kyle S. Hull. Make it our time:
In class multitaskers have lower academic performance. Computers in Human
Behavior, 53:63–70, 2015.

[6] Charles Calderwood, Phillip L Ackerman, and Erin Marie Conklin. What else
do college students “do” while studying? an investigation of multitasking. Com-
puters & Education, 75:19–29, 2014.

[7] Charles Calderwood, Jeffrey D Green, Jennifer A Joy-Gaba, and Jaclyn M
Moloney. Forecasting errors in student media multitasking during homework
completion. Computers & Education, 94:37–48, 2016.

[8] G Falloon and Elaine Khoo. Exploring young students’ talk in iPad-supported
collaborative learning environments. Computers Education, 77:1328, 08 2014.

[9] Abraham E. Flanigan and Kenneth A. Kiewra. What college instructors can do
about student cyber-slacking. Educational Psychology Review, 30(2):585–597,
Jun 2018.

[10] Håkan Fleischer. What is our current understanding of one-to-one computer
projects: A systematic narrative research review. Educational Research Review,
7:107122, 06 2012.

[11] Mathias Hatakka, Annika Andersson, and Åke Grönlund. Students use of one to
one laptops: a capability approach analysis. Information Technology & People,
26(1):94–112, 2013.

[12] Wade C Jacobsen and Renata Forste. The wired generation: Academic and social
outcomes of electronic media use among university students. Cyberpsychology,
Behavior, and Social Networking, 14(5):275–280, 2011.

53

[13] Reynol Junco. Too much face and not enough books: The relationship between
multiple indices of Facebook use and academic performance. Computers in Hu-
man Behavior, 28:187–198, 01 2012.

[14] Reynol Junco and Shelia R. Cotten. No A 4 U: The relationship between mul-
titasking and academic performance. Computers Education, 59(2):505–514,
September 2012.

[15] Robin Kay and Sharon Lauricella. Assessing laptop use in higher education:
The laptop use scale. Journal of Computing in Higher Education, 28, 12 2015.

[16] Jeffrey H. Kuznekoff and Scott Titsworth. The impact of mobile phone usage
on student learning. Communication Education, 62(3):233–252, 2013.

[17] Jing Lei and Yong Zhao. One-to-one computing: What does it bring to schools?
Journal of Educational Computing Research, 39(2):97–122, 2008.

[18] Andrew Lepp, Jacob Barkley, and Aryn C. Karpinski. The relationship be-
tween cell phone use, academic performance, anxiety, and satisfaction with life
in college students, 11 2014.

[19] Jean-Louis Leysens, Daniel B. le Roux, and Douglas A. Parry. Can I have
your attention, please?: An empirical investigation of media multitasking during
university lectures. In Proceedings of the Annual Conference of the South African
Institute of Computer Scientists and Information Technologists, SAICSIT ’16,
pages 21:1–21:10, New York, NY, USA, 2016. ACM.

[20] Dong Liu, Paul Kirschner, and Aryn C Karpinski. A meta-analysis of the rela-
tionship of academic performance and social network site use among adolescents
and young adults. Computers in Human Behavior, 77, 12 2017.

[21] Bernard Mccoy. Digital distractions in the classroom: Student classroom use of
digital devices for non-class related purposes. Journal of Media Education, 4:5,
10 2013.

[22] Kouider Mokhtari, Julie Delello, and Carla Reichard. Connected yet distracted:
Multitasking among college students. Journal of College Reading and Learning,
45(2):164–180, 2015.

[23] William R. Penuel. Implementation and effects of one-to-one computing initia-
tives: A research synthesis. Journal of Research on Technology in Education,
38(3):329–348, 2006.

[24] Susan Ravizza, Zach Hambrick, and Kimberly Fenn. Non-academic internet
use in the classroom is negatively related to classroom learning regardless of
intellectual ability. Computers Education, 78:109114, 09 2014.

[25] Larry Rosen, Mark Carrier, and Nancy Cheever. Author’s personal copy face-
book and texting made me do it: Media-induced task-switching while studying.
Computers in Human Behavior, 29:948–958, 05 2013.

54

[26] Suliman S. Aljomaa, Mohammad Qudah, Ismael Bursan, Salaheldin Bakhiet,
and Adel Abduljabbar. Smartphone addiction among university students in the
light of some variables. Computers in Human Behavior, 61:155–164, 08 2016.

[27] Aaron Smith. U.S. smartphone use in 2015. http://www.pewinternet.org/
2015/04/01/us-smartphone-use-in-2015/.

[28] Diane Wentworth and June H. Middleton. Technology use and academic perfor-
mance. Computers Education, 78:306311, 09 2014.

55

Data Science Academic Programs
in the U.S.∗

Ismail Bile Hassan and Jigang Liu
Computer and Information Sciences and Cybersecurity

Metropolitan State University
Saint Paul, MN 55106

{ismail.bilehassan, jigang.liu}@metrostate.edu

Abstract
As the development of big data and cloud computing has taken the

center stage of the technology advance for the last decade, data science
programs at various levels have been established for meeting the de-
mands from all sectors of our economy. In this project, we study data
science programs offered by the U.S. institutions. We are particularly
interested in regular programs at Bachelor, Master, and Ph.D. levels of-
fered on campus. The result of our study will not only help the educators
who are currently running a Data Science related program to find their
counterparts at other institutions for improving and promoting their pro-
grams but also support the educators who are planning to offer a Data
Science program to locate an exemplary program for drafting their cur-
riculum and preparing their proposal. Although Data Science provides
a promising field in supporting the economy growth, employment oppor-
tunity, and technology advancement, a conscious and balanced decision
should be made for developing an academic program in the field based
on a thorough assessment on allocated resource, faculty preparation, and
enrollment potential.

1 Introduction
According to a study by Louridas and Ebert [5], approximately 1,200 exabytes
of data are produced annually. This resulted the concept of Big Data which

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

56

is defined as datasets whose size is beyond the ability of typical database soft-
ware tools to capture, store, manage, and analyze by McKinsey Global Insti-
tute (MGI) in 2011 [6]. The massive amount of unstructured data presents
enormous challenges for the business and IT sectors. Data science, business
intelligence, analytics, and other related fields in big data and data analytics
have become increasingly vital in both academic and business communities.

Big data has been used to transform medical practice, modernize public
policies, and inform business decision-making [7]. Several reports have revealed
the demand for data science. Manyika et al. predict that by 2018 the U.S.A.
could face a serious shortage of deep analytical skills required for as many as
190,000 positions. The U.S. will not be able to fill this gap simply by changing
graduation requirements, waiting for students to graduate with more Data
Science skills, or by importing the talent from overseas.

Therefore, data science and data analytics fields have been developed as to
deal with the big data tsunami as well as other data related theory, technology,
tools, and applications. Data Analytics involves the process of investigating
data sets in order to derive conclusions on the information they contain by
applying specialized systems and software.

Until now, a number of research studies have examined Data Science pro-
grams within a particular discipline, such as Business [2] or iSchool [10]. Since
Data Science is a multidisciplinary field, it is essential and critical to have an
overall view of the current status of the program development across disciplines
so that a conscious and balanced decision could be made. In next section, an
overview on Data Science is introduced. The status of an overall development
of Data Science programs in the U.S. is presented in Section 3, followed by the
analysis of the result in Section 4. Finally, in Section 5, our conclusion and
future work is provided.

2 Data Science in a Nutshell
Data Science can be defined as being comprised of three areas: analytics, in-
frastructure, and data curation [4]. It is experiencing rapid and unplanned
growth, spurred by the proliferation of complex and rich data in science, in-
dustry, and government. Fueled in part by reports, such as the widely cited
McKinsey report [6], that forecast a need for hundreds of thousands of data sci-
ence jobs in the next decade, data science programs have exploded in academics
as university administrators have rushed to meet the demand [3].

The need for new and innovative tools for managing and deriving insights
from big, unstructured data continues to grow. Consequently, there is a rapidly
increasing demand for data scientists who know how to apply these new tools
to handle big, unstructured data and to solve business problems [1]. In re-

57

sponse to this novel demand, several U.S.A. higher education institutions have
launched blended programs such as Data Analytics, Business Intelligence, or
Data Science [10]. In addition to the effort made by the academia from the
U.S., the faculty members from the European Union drafted their Data Science
framework through the EDISON project [4] as shown in Figure 1 below,

Figure 1: Data Science Competence Groups [4]

Although the proposed framework in Figure 1 is based on the structure in-
troduced by NIST [8], the relationship and transition between the competence
groups demonstrated in the framework provide a solid foundation for design-
ing the corresponding curricula. For instance, this framework indicates the
three cornerstones of Data Science in Analytics, Engineering, and Domain Ex-
pertise, which are corresponding to Statistics, Computer Science, and Domain
Expertise in either Business, Biology, or Healthcare.

In addition to presenting a framework of Data Science shown Figure 1
above, the EDISON project [4] studies many aspects of Data Science in terms
of sub-areas of three key components in Engineering, Analytics, and Expertise,
and also analyzes the professional skills and responsibilities required for various
occupations in Data Science. Since the EDISON framework also considers
the ACM Information Technology Competence Model, its competences and
knowledge domains outlined for Data Science provide a solid foundation for
crafting a Data Science academic program.

The data science programs are multidisciplinary and a single subject domain
is not enough to cover the magnitude of content and skills needed for Data
Science (DS) programs. A DS program should represent a combination of
subject areas from several disciplines including applied mathematics, statistics,
and computer science [9].

58

3 Data Science Programs In The U.S.
An extensive study on the current Data Science programs in the U.S. higher ed-
ucation by collecting the programs through google search engine as well as some
selected websites, such as http://datascience.community/colleges, http:
//datasciencedegreeprograms.net, and http://www.discoverdatascience.
org. Website http://datascience.community/colleges lists 581 programs
in data science, data analytics, and other related fields at more than 200 univer-
sities around the world. In the forms of on-campus and online, these programs
include Ph.D., Master, Bachelor, and Certificate programs in the different aca-
demic levels of graduate, bachelor, and associate.

However, our study focuses on campus-based Ph.D., M.S. and B.S. Data
Science programs in the U.S., thus, we filtered all the DS programs in U.S.
from http://datascience.community/colleges by using key word “Data
Science”. In addition, we also checked with the search results from other web-
sites and then verified and eliminated all duplicated search results as well.
Although DS programs can be introduced as graduate, graduate certificate,
undergraduate, certificates and minors, we are only interested in studying the
regular programs at B.S., M.S., and Ph.D. levels in this project. Based on the
discussion above, Data Analytics, Data Mining, and Big Data are considered
as sub-areas of Data Science. Therefore, all programs in those sub-areas are
not included in this study.

To have a coherent view of the distribution of DS programs among the
institutions in terms of research funding, curriculum spectrum, available re-
sources, and enrollment capacity, we adopt the Carnegie Classification, which
is “the leading framework for recognizing and describing institutional diver-
sity in U.S. higher education for the past four and a half decades” at http:
//carnegieclassifications.iu.edu, maintained by Indiana University. The
first publication of the classification was in 1973 and the one used for this pa-
per was published in 2015 and updated in 2017. Table 1 shows the definitions
of the classifications that are used to classify the institutions of higher ed-
ucation in the U.S. We coded with a letter with a number to each class in
order to simplify the data presentation and discussion. Letters R, M, and B
represent“Research,” “Master,” and “Bachelor,” respectively.

Instead of listing all the institutions along with their programs, we present
an aggregated result of our findings based on the Carnegie classifications and
corresponding programs offered by each of the categories of institutions. As
Table 2 shown below, the distributions of the Data Science programs in B.S.,
M.S. and Ph.D. along with each of 10 Carnegie classifications listed in Table 1
is well illustrated.

It should be stated that Table 2 only shows the numbers of the programs,
not the number of the institutions. In other words, a university can offer all

59

Table 1: The Carnegie Classification and Definition

Table 2: Data Science Academic Programs by the Carnegie Classifications

three levels of the programs in B.S., M.S., and Ph.D. We also realized that 2
Ph.D. programs in Data Science are offered by non-research institutes.

4 Discussion And Recommendation
As indicated in Table 2 in section 3, there are 107 campus-based Data Science
programs at either Ph.D., M.S. or B.S. level. With regarding to the number
of the programs, 38% of them are offered by R1 universities/colleges while
27% of them are offered by R2 and R3 universities/colleges combined. In
other words, out of 107 campus-based programs in Data Science, 70, or 65%
of them, are offered by Doctoral universities/colleges. Without considering 13
Ph.D. programs (107 13 = 94), only 27 programs, or 29% of them, are offered
by Masters universities/colleges. Out of those 27 programs offered by Masters
institutions, 18, or 70% of them, are offered by the universities/colleges under
the classification of M1. Baccalaureate Colleges contribute the smallest potion
of the programs in either M.S. or B.S., with 11, which is about 11% of the total
number of M.S. and B.S.programs.

To understand who are running those programs in terms of hosting depart-
ment or unit, we further divide our findings based on their hosting departments.

60

Table 3 highlights the hosting departments for those 13 Ph.D. programs in Data
Science. Although there is no a dominated department shown in the table, 10
out of 13 Ph.D. programs, or 77%, are administrated by non-computing related
departments, while 8 out of 13, or 62%, are hosted in Math/Statistics/Data
Science related departments or centers.

Table 3: On Campus Ph.D. Programs in Data Science

As the layout of Table 3, Table 4 below gives the distribution of the hosting
department for those M.S. campus-based programs. Not like the Ph.D. pro-
grams, there are two dominated departments in Computer Science and Arts
and Sciences with 10 and 9, or 22% and 20%, respectively. It is also noticed
that there are 4 programs offered by “Data Science”department, which means
some institutions have moved faster than others by updating their department
structure.

Table 4: Masters and Bachelor’s Programs in Data Science

Baccalaureate programs in Data Science compose of most programs within
this study with 49. Table 4 demonstrates the distribution of the hosting de-
partments. The standout departments from this category are again Computer
Science plus Data Science with 10 and 8, or 20% and 16%, respectively. If

61

we cluster computer science related departments together, the number of the
B.S. Data Science programs becomes 20, which is 40%. We also noticed that
there are 8 institutions moving ahead with a standalone unit in Data Science
to catch up the trend and demand of the development of the new technology.
Without listing all the programs studied in this study due to the length and
space, exemplary programs are provided in Table 5 below for a starting point
to study specific curricula.

Table 5: Exemplary Ph.D., M.S., and B.S. programs in Data Science

To provide computer science educators a starting point in studying aca-
demic programs in Data Science, both B.S. and M.S. programs listed in Table
5 above are hosted by Department of Computer Science, while the Ph.D. pro-
gram at NYU is administrated by the Center of Data Science of the University.

Apparently, there is no one-size-fits-all solution to build a Data Science pro-
gram at an institution. One must consider the following factors during their
planning phase: 1) available resources; 2) faculty preparation; 3) enrollment
potential. Resources can be many different things, namely funding, adminis-
tration support, and local employment market. Those factors can play against
each other or work cooperatively. The leadership is critical to orchestra the
development. Data Science is heavily related to Math, Statistics, as well as
Computer Science and Information Technology. It is not common to have fac-
ulty members ready under this kind of preparation. Although the first two
factors are critical, it is impossible to run a successful program in Data Science
without a reasonable enrollment. In other words, no matter how advanced
and completed program you might have, it cannot survive without reasonable
enrollments. The result of this study reflects the three considerations discussed
above as 38% of all programs are offered by the universities and colleges in R1
category since those institutions have the advantages in available resources,
faculty preparation, and student enrollment over all other categories of univer-
sities and colleges.

5 Conclusions and Future Work
The study of this project tells us that the academic programs in Data Science
have grown healthily for the last decade, especially those 13 Ph.D. programs,
which provide the foundation for a sustainable future of data science programs.
However, it is interesting to noticing while with 115 universities/colleges under
the category R1, only 5% of them offer a Ph.D. program in Data Science. If

62

we consider all doctoral universities and colleges (334), only 3% of them offer a
Ph.D. program in Data Science. So, as AI and machine learning begin taking
the essential role in data science, more advanced programs, especially at Ph.D.
level is definitely needed.

Although knowing what is the current distribution of the programs in Data
Science is important, we are planning to further look into each of the programs
studied in this work in terms of the curriculum design and implementation in
the future so that we can have a complete view in how to build a successful
Data Science program.

References
[1] L. Burtch. The burtch works study: Salaries of data scientists, may 2018. https://www.

burtchworks.com/wp-content/uploads/2018/05/Burtch-Works-Study_DS-2018.pdf.

[2] Chiang R. H. L. Chen, H. and V. C. Storey. Business intelligence and analytics: from
big data to big impact. MIS Quarterly, 36(4):1165–1188, dec 2012.

[3] R. D. De Veaux and et al. Curriculum guidelines for undergraduate programs in data
science. The Annual Review of Statistics and Its Application, 4(2):1–16, 2017.

[4] Manieri A. Demchenko, Y. and E. Spekschoor. EDISON data science frame-
work: Part 1. data science competence framework (cf-ds), edison, release 2, v0.8,
jul 2017. http://edison-project.eu/sites/edison-project.eu/files/filefield_
paths/edison_cf-ds-release2-v08_0.pdf.

[5] P. Louridas and C. Ebert. Embedded analytics and statistics for big data. IEEE
Software, 30(6):33–39, nov 2014.

[6] Chui M. Brown B. Bughin J. Dobbs R. Roxburgh C. Manyika, J. and A. H. By-
ers. Big data: The next frontier for innovation, competition, and productivity,
jun 2011. https://www.mckinsey.com/business-functions/digital-mckinsey/our-
insights/big-data-the-next-frontier-for-innovation.

[7] V. Mayer-Schönberger and K. Cukier. Big Data: A Revolution That Will Transform
How We Live, Work, and Think. Houghton Mifflin Harcourt, Boston, Massachusetts,
2013. ISBN-10: 0544227751, ISBN-13/EAN: 9780544227750.

[8] National Institute of Standards and Technology. NIST Big Data Interoperability Frame-
work: Volume 1, Definitions, NIST Special Publication 1500-1r1, sep 2018.

[9] Megan ONeil. As data proliferate, so do data-related graduate programs, feb 2014.
https://www.chronicle.com/article/As-Data-Proliferate-So-Do/144363.

[10] R. Tang and W. Sae-Lim. Data science programs in u.s. higher education: An ex-
ploratory content analysis of program description, curriculum structure, and course
focus. Education for Information, 32(3):269–290.

63

An Analysis of the Effect of Stop Words
on the Performance of the Matrix
Comparator for Entity Resolution∗

Awaad Alsarkhi, John R. Talburt
Department of Information Science

University of Arkansas at Little Rock
Little Rock, AR 72204

{aalsarkhi, jrtalburt}@ualr.edu

Abstract

Abstract: This paper investigates the effect of removing stop words
on the performance of the matrix comparator for linking unstandard-
ized entity references. Experiments on annotated synthetic customer
references produces three outcomes as indicated by the F-measure of the
linking results. These outcomes are (1) performances improves using stop
words, (2) stop words have no significant effect, and (3) stop words de-
grade performance. Preliminary results indicate the standard deviation
of the token frequencies and the ratio of the highest frequency token to
the number of references are predictors of these outcomes. In particular,
reference data with high standard deviations and ratios see the greatest
improvement (Outcome 1) with the use of stop words.

1 Intoduction
Entity resolution (ER) is the process considered as one of the basic tools to
determine whether two references to real-world objects in an information sys-
tem are referring to the same object, or to different objects[6]. References to
the same entity called equivalent references. The goal of ER is to link two

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

64

references if and only if the references are equivalent. For this reason, ER is
sometime referred to as record linking.

Is measured by the precision, recall, and F-measure of the links it makes
between references. The linking precision is the ratio of true positive links
(links between equivalent references) to the total number of links. Linking
recall is the ratio of the true positive links to the total number of possible true
positive links (all equivalent pairs), and the F-measure is the harmonic mean
of the precision and recall.

ER processes are based on the Similarity Assumption [7] which states the
more similar two references are, the more likely they are equivalent, and similar
they are equivalent. Traditionally, measured the values of the same attributes,
e.g. First names, street numbers, and dates-of-birth. However, this approach
assumes the attribute values in both references have appropriate metadata tags
to signify the attributes to which they belong, and that the same metadata tags
are used for all references.

The process to create this type of uniform metadata tagging is called data
standardization. Most ER processes rely on having standardized input. How-
ever, when there are many disparate sources of data, the standardization pro-
cess may require a great deal of time and effort to harmonize [3] Even if the
sources have already been standardized by the data provider, different sources
may have different standardizations. For example, one source may have stan-
dardized the references with a separate field (tag) for the street number of a
home address whereas another sources standardization leaves the street number
as part of a single street address field.

2 Matrix Comparator
One of the approaches to ER developed to avoid the need to standardize refer-
ences prior to the ER process is the matrix comparator [4]. In this approach,
each reference is transformed into a list of tokens, where is each token in a
string of characters in the reference separated by a non-word character. In
addition, all letters are converted to upper case.

The tokens generated by the two references are compared in a two-dimensional
row and column matrix as shown in Figure 1. The tokens from the first string
are used to label the rows of the matrix, and the tokens from the second string
label the columns of the matrix. The value in each row and column is the nor-
malized Levenshtein Edit Distance (LED) between the row token and column
token. For example, in Figure 1 the value 0.75 in the row labeled with to-
ken JOHN and column labeled JON is the LED similarity between the strings
JOHN and JON. Note in Figure 1 cells with a zero similarity are left blank.

After all of the cells of the matrix have been populated with LED similarity

65

Figure 1: Example Token Matrix

values, the comparator systematically selects the largest LED values in each
row and column in descending order in an iterative process. In the first iter-
ation, the row and column with the largest LED value for the entire matrix
is identified and the value is the starting value of a running total. Next, all
values in the row and column of the largest value are removed. In the second
iteration, the largest value of the remaining values in the matrix is identified.
The identified value is added to the running total, and all values in the same
row and column are removed. The process continues in subsequent iterations
until all of the values have been removed from the matrix.

The number of iterations will be equal to the number of tokens from the
string generating the fewest tokens. After the last iteration, the running total
is divided by the number of iterations. If the calculated average value is greater
than or equal to a threshold value provided by the user, then the comparator
returns a true result and links the references, otherwise, it returns a false result
and the references are not linked.

There can be in the implementation of the comparator to try to improve
its linking performance, such as using a different similarity function other than
LED, or even using multiple similarity functions. The variation of interest for
this paper is the use of stop words.

3 Stop Words
The use of stop words in the matrix comparator [4] is a simple form of token
weighting in which the most frequently occurring words are given a weight
of zero, i.e. are excluded from the matrix, and all other tokens are given a
weight of one. This is a simplification of the term frequency inverse document

66

frequency (tf-idf) often applied in techniques for document retrieval [5]. In
an ER application, each reference is considered a document. However, the
reference are very small documents, and the term frequency value tf is almost
always one. Hence, the inverse document frequency is directly related frequency
of the token across all documents, in this case all references.

The motivation is that tokens with a very high frequency across all ref-
erences are less indicative of linking because they are as likely to occur in
non-equivalent references as in equivalent references. For example, if a set of
references all have addresses in California, then the address token CA will be in
every reference and will always contribute to the matrix score. Excluding CA
will cause the average similarity score to be based on other tokens presumably
more references or non-equivalence.

However, the implication that removing high-frequency tokens will improve
the linking performance of the matrix comparator is only a hypothesis. The
remainder discusses the results of a perhaps you meant "series of experiments
designed to test this hypothesis.

4 Research Design
The experiments are based on of annotated, synthetic customer references gen-
erated by different processes. The first corpus was generated by the Synthetic
Occupancy Generator (SOG) [8] designed to simulate the movement of con-
sumers from address-to-address and changes of name through marriage over
time. It also included gender coding, phone numbers, social security numbers,
and dates-of-birth. At the same time, a number of data quality problems were
deliberately injected into the SOG data to increase its realism. These included
problems such as deleted (missing) values, misspellings, transpositions, trun-
cations, and inconsistent date and telephone formats.

Most importantly for ER research, the SOG corpus includes many redun-
dant (duplicate) references to the same customers in different file formats and
with different information and data quality problems. The SOG corpus com-
prises around 271K records in three different file layouts.

The second corpus also represents customer references, but was generated
with an R package called rlErrorGeneratoR [2] also design to produce realistic
consumer data with various levels of data quality problems including duplicate
records. The R generated corpus comprises about 800K references.

Both corpora also generated a separate annotation file in the form of a
crosswalk table listing every generated reference together with identifier. While
every reference in each corpus has a different record identifier, different refer-
ences to the same customer have the same entity identifier in the crosswalk
table. The crosswalk table allows an ER metrics program to quickly join ER

67

linking output to the crosswalk table, count the true positive, false positive,
and links, and calculate the precision, recall, and F-measure.

Next, samples of approximately 5,000 references were drawn from each cor-
pus. However, the records were not selected at random. In order to create
samples exhibiting a reasonable level of linking, the first step was to append
the entity identifier from the crosswalk table to each record in the file. Next,
the file was sorted by the entity identifier. After sorting, a segment of 5,000
consecutive records were selected from a random starting point in the sorted
file. Because references to the same customer are in adjacent records in the
sorted file, this method of stratified sampling guaranteed each sample would
contain a significant number of true positive pairs. In all, there were 12 samples
drawn from the two annotated corpora.

The next step was to perform a frequency analysis on the tokens in each
sample. This was done by using a regular expression to tokenize each reference
into substrings delimited by non-word characters W. The collected tokens were
then sorted to produce a token frequency table. Finally, the tokens were sorted
into descending order by frequency to identify the highest frequency tokens as
candidates for stop words. In addition, the frequency distribution of the tokens
in each sample of analyzed with three statistics calculated.

1. The average frequency
2. The standard deviation of the frequency
3. The ratio of the highest frequency to the sample size

The final step was to determine the number of stop words producing the best
F-measure for each sample. This was done by two trial and error processes.
The first process was to select a number of stop words giving the best F-
measure results. The starting point was a baseline of no (zero) stop words,
then incrementing in steps of 25 stop words.

However, each selection of stop words required a second process for finding
the matching threshold that produces the best result for the given set of stop
words. For the experiments described here, the ER runs were performed with
OYSTER, an open source ER system [9] available on BitBucket [1].

In OYSTER, the matrix comparator is i[1] implemented as a function of
the form

MatrixComparator(x.xx, a|b|c|d)
Where x.xx represents the matching threshold given as a number from 0.00

to 1.00, and a|b|c|d represents a list of stop words separated by a pipe (|)
delimiter.

68

5 Results
Table 1 shows the results obtained from this process for each of the 12 refer-
ence samples. The Start F-Measure is the baseline showing the best measure
achieved without using stop words. The Best F-measure is the best measure
achieved when using stop words. The columns labeled Threshold and Stop
Words give the linking threshold and number of stop words giving the best
result.

Table 1: Experimental Results from 12 Samples
SampleCase Start F-measure Best F-measure Threshhold Stop Words Effect Freq.Std. Dev Top Ratio
1 0.318 0.522 0.56 1000 Pos 26.89 0.44
2 0.322 0.518 0.6 200 Pos 25.77 0.39
3 0.293 0.297 0.81 25 None 20.38 0.31
4 0.293 0.294 0.81 25 None 20.05 0.29
5 0.802 0.802 0.67 0 Neg 3.04 0.01
6 0.796 0.796 0.67 0 Neg 3.05 0.01
7 0.872 0.930 0.71 200 Pos 55.47 0.87
8 0.875 0.934 0.69 150 Pos 57.05 0.86
9 0.857 0.922 0.71 150 Pos 55.53 0.87
10 0.851 0.913 0.72 300 Pos 54.9 0.87
11 0.869 0.912 0.74 400 Pos 58.27 0.85
12 0.9 0.931 0.79 100 Pos 61.31 0.82

In these cases, increasing the number of stop words seems to have no effect,
either positive of negative. These three results are illustrated in Figure 2. This
graph shows the F-measures obtained for varying numbers of stop words for
three different samples.

The graph plot labeled Improve shows the results for Sample 1, the No
Effect plot shows the results for Sample 3, and Degrade plots the results for
Sample 5.

From these preliminary results, it appears these results are correlated with
the distribution of the token frequencies. Samples in which the token fre-

69

quencies where widely dispersed from very large to very small were related to
positive outcomes.

Two measures of the frequency dispersion have been added to Table 1 to
illustrate this observation. The column labeled Freq. Std. Dev shows the
standard deviation of the token frequencies. The column labeled Top Ratio
is the ratio of the highest frequency token to the number of references in the
sample.

6 CONCLUSION AND FUTURE WORK
These experiments show that when comparing non-standardized references
with the matrix comparator, the addition of stop words does not always im-
prove linking results, and in some cases, may actually degrade performance.
Based on the samples used for these experiments it appears the use of stop
words will only be effective when there is a wide dispersal of token frequencies,
i.e. when the frequency distribution has a large standard deviation.

The results presented here using samples of 5,000 references, no significant
improvement from the use of stop words occurred unless the standard deviation
was 25 or greater. In addition, the best improvements were obtained with the
highest frequency token occurred in 40% or more of the references.

Future work is need to confirm these results with other sources of references
data. Also further statistical analysis can perhaps quantify the relationship.
A regression analysis may allow a user to predict not only whether stop words
are justified, but perhaps the number of stop words and the threshold value
that will yield the best performance.

References
[1] Oyster Open Source Project. https://bitbucket.org/oysterer/oyster/.

[2] rlErrorGeneratoR. https://github.com/ilangurudev/rlErrorGeneratoR.

[3] A. Jurek-Loughrey and P. Deepak. Semi-supervised and unsupervised approaches
to record pairs classification in multi-source data linkage. Springer, 2018.

[4] X. Li, J. R. Talburt, and T. Li. Scoring matrix for unstandardized data in entity
resolution. In Proceeding of the Computer Science and Computer Intelligence
Conference, Las Vega, NV, 2018.

[5] G. Salton and C. Budckley. Term-weighting approaches in automatic text re-
treival. Information Processing & Management, 24(5):513–523, 1998.

[6] J. Talburt. Entity Resolution and Information Quality. Morgan Kaufamann,
2011.

70

[7] J. R. Talburt and Y. Zhou. Entity Information Life Cycle for Big Data. Morgan
Kaufamann, 2015.

[8] J. R. Talburt, Y. Zhou, and Y. Shivaiah. Sog: A synthetic occupany genera-
tor to support entity resolution instruction and research. In Proceedings of the
International Conference on Information Quality, Cambridge, MA, 2009.

[9] Y Zhou and JR Talburt. OYSTER: An open source entity resolution system
supporting identity information management. In ID360-The Global Forum on
Identity, Austin, volume 90, 2012.

71

Developing a Guided Peer-Assisted
Learning Community for CS Students∗

Yi Liu1, Gita PhelpsA1, Fengxia Yan2

1Department of IS and CS
Georgia College and State University

Milledgeville, GA, 31061
{yi.liu,gita.phelps}@gcsu.edu

2Morehouse School of Medicineă
20 Westview Dr SW

fyan@msm.edu

Abstract
This paper describes an effective learning community run by CS stu-

dents, and guided by CS faculty. The community offers a positive learn-
ing environment outside classrooms, providing timely supportive services
to students who have different learning styles. It provides three types of
services: online teaching videos made by freshmen and sophomores, on-
site tutoring meetings provided by juniors and seniors, and supplemental
instruction led by sophomores and juniors. The goal is to improve the
academic performance of the students in the CS courses, and therefore,
hopefully increasing the retention rate of CS majors. The data collected
during the past six years show that the average percentage of the DFW
rate in the first programming course is reduced after the community was
assembled. At the same time, the community had positive effects on
retaining CS students.

Introduction
The retention rate of CS majors is usually low. More than half of the stu-
dents that initially choose to major inăCS either exit the field or drop out

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

72

of college [2]. Students who leave the major usually have low performance in
their CS courses; therefore, efforts to improve the academic performance of the
students in CS courses are important to retain CS students [12]. Many peda-
gogical techniques have been developed for use in classrooms, such as flipping
the classroom, group work, and peer teaching. Additional methods found to
be beneficial in CS courses include interactive teaching [3], subtitle labeling
[7], and visualization [7]. The leading reasons mentioned by Guzdial [3] that
make CS courses difficult to teach include instructors who underestimate the
complexity of coding problem assigned, and students with diverse educational
and social backgrounds who respond to different teaching styles and methods.
Guzdial states that even a small change to a programming problem could alter
the complexity of a problem. But the instructors, as experts, aren’t good at
predicting how difficult the modified problem would be. The students may
need different remedial help if they fall behind. Moreover, although the stu-
dents effort beyond the classroom is critical to the success of learning, few
papers have systematically addressed how to work with the students after the
class.

This paper describes a peer-assisted learning community run by CS under-
graduate students, and guided by the CS faculty, focusing on providing different
services to assist the learning outside classrooms. The community is comprised
of CS students of all levels – from freshmen to seniors. Research has shown that
students feel more comfortable and open when interacting with a peer [4]. The
peer-assisted community can provide a comfortable environment to support
the learning with low cost, which is particularly suitable for small liberal art
universities. Three types of services provided are online teaching videos, on-site
tutoring meetings, and supplemental instruction. Freshmen and sophomores
create online teaching videos when they are enrolled in lower-level courses.
Each video provides remedial support for a confusing and challenging concept
in the first two CS courses. CS juniors and seniors provide on-site tutoring
meetings. The meetings are usually available Monday through Thursday for
many CS courses. Supplemental instruction (SI) is led by CS sophomores and
juniors during the first and the second programming courses.

By providing three different services, the community helps students to in-
dividualize their learning in a way that fits their personal learning styles and
paces. A student can reinforce a difficult topic by watching videos online, at-
tending a one-on-one tutoring meeting, or participating in a one-on-many SI
session when needed. The community also creates great bonding opportunities
for CS students. The students offering the services usually are our top stu-
dents and are role models for the other students. They show positive learning
attitudes, provide support during potentially frustrating situations, and of-
fer constructive learning experiences. This positive bonding may increase the

73

retention of CS students.
The data we collected during the past six years include grade distributions

from the first programming course, the retention rates of CS majors, and the
student evaluation surveys. The results show that the average percentage of
DFW rates dropped in the first programming course; the 1-year and 2-year
retention rates increased for CS majors; and the majority of the students agree
or strongly agree that the community is a valuable asset, and would recommend
it to other students. The 3-year and 4-year retention rates are not reported in
this paper since the upper-level CS courses have been constantly modified to
meet the requirements of ABET. ă

This paper describes the structure of the learning community, our experi-
ence assembling the community, and our analysis of ăthe data collected over
the past six years. The last section shows the conclusions based on the grade
distributions, the retention rates, and the surveys given at the end of each
semester.

The Structure of the Guided Peer-Assisted Learn-
ing Community
Online Peer-Teaching Videos
With emerging technologies, the fast speed of the Internet, and the low costs
associated with the video production, using videos to teach programming is in-
creasingly prevalent on the Internet and in classrooms. Many students search
for examples and solutions to assignments; however, obtaining high-quality
videos to explain the entry-level programming concepts or questions that only
typical freshmen have is difficult and time-consuming when the videos are ev-
erywhere. Furthermore, most of the online videos usually provide the solutions
using different methods not discussed in class, so students are still not able
to understand the topics discussed in the class. The videos found on the In-
ternet are usually too long to view when a student wants a specific feedback
to a single fundamental concept or a coding question. ă We decided to build
our own peer-teaching video channel [1]. All videos are made by our students
for their peers. Each video focuses on a challenging concept for many of our
students. Meanwhile, the students who create the videos reinforce and extend
their own learning, and improve their communication skills and self-esteem [4].
The other students watching the videos are not only benefited by receiving
more time on the difficult topics to gain understanding of the concepts, but
also feel motivated, knowing that the videos were created by peers at the same
institution who have taken the course. The videos are very short, lasting about
5-10 minutes. They are posted on a YouTube channel created by the depart-

74

ment and now have more than 79,000 views. The top two popular ones have
more than 10,000 views as heretofore [11].

On-Site Guided Peer-Tutoring
The community provides on-site peer-tutoring meetings after the class, guided
by the CS faculty. Some research papers show that the tutoring works best
when students of different ability levels work together [8, 10]. The guided
peer-tutoring program can not only improve the academic performance of both
tutors and tutees, but also build supportive relationships among peers [4, 6, 9].
In order to deliver an effective tutoring program, CS faculty screen the tutors
based on their overall knowledge of CS, oral communication abilities, potential
teaching skills, and personalities. Tutors are role models who are willing to
share their positive learning experiences and passion toward CS to the tutees.

The guided peer-tutoring meetings are tailored to attract the students by
scheduling tutoring hours according to the students needs. The goal is to pro-
vide timely one-on-one help to individualize the learning of tutees. In general,
the tutoring meetings are offered in the late afternoons and early nights when
course instructors are not available.

Supplemental Instruction for Lower-Level CS Courses
The community provides Supplemental Instruction (SI) to support the difficult
lower-level CS courses by offering peer-assisted study sessions regularly after
the class. Students who have successfully completed a course can be hired as a
Supplemental Instruction leader. ăThe sophomores and juniors who deliver the
SI service are paired with a professor and attend the class with the students.
They host group study sessions twice a week, providing informal reviews on the
course assignments and exams. In general, each lower-level programming class
has one SI leader, working 8 hours each week. ăThey are required to attend
every class and assist CS faculty by helping to answer questions during in-class
activities. They host one-on-many review sessions related to the course. The
sessions are offered in a comfortable and open place so the students can directly
interact with the peers, and take the control of their own studying.

DATA COLLECTION AND ANALYSIS
The guided peer-tutoring service began the fall of 2010, and is reported two
years later [5]; while the other two started during the years of 2011 and 2012.
The strategy developed to build the effective guided peer-tutoring helps us to
design the community. For example, the number of students who used the

75

peer-tutoring service were much lower than what we expected during the first
year. In order to fully utilize the tutoring service, a strategy was developed
to promote it. The strategy includes announcing it at the very early of each
semester, posting flyers in the hallway and on the door of each instructors office,
publishing tutoring schedules on course websites, frequently making teacher
referrals, inviting tutors to visit the classroom, and assigning extra challenging
assignments to encourage the good students to visit the tutors. The strategy
is then applied to the other services of the community to boost the visits. At
the same time, different surveys were developed and sent to the students to
help us understand and maximize the benefits offered by the community.

Data Collection
The community was assembled in 2011. In order to understand how the com-
munity assists the learning, the data collected included the grade distributions
from our first programming course, the retention rates of our CS program, and
the results from surveys at the end of each semester. The grade distributions
and the retention rates from 2005 to 2017 were categorized into two groups;
one included the dataăbefore the community was created from 2005 to 2010;
the other contained the data during which the community was implemented
from 2011 to 2017. The results from both groups are presented in this paper.

Grade Distributions from the First Programming Course
The first programming course is one of the classes in the core curriculum of the
university. It usually has a mixture of CS major and non-major students with
different learning styles, and social and academic backgrounds. This course is
listed as one of the courses with the highest DFW rates on the campus. Three
instructors are usually allocated to teach the first programming course each
year. However, this paper only reports the grade distributions from one in-
structor who has taught the course for more than 20 years, and has constantly
advocated the peer-teaching videos. The second instructor joined the depart-
ment in 2014, and sometimes applied neither SI norăthe peer-teaching videos;
while the third one who was hired at the year of 2003 frequently altered her
teaching styles and exercises for several years to work with the students in the
liberal art college. She did not fully promote the peer-teaching videos until
2015.

Table 1: Grade Distributions

76

Table 1 shows the grade distributions of the first programming course be-
tween two groups, the group without the community from 2005 to 2010, and
the other one using the community from 2011 to 2017. The first, second, third
and fourth columns show the percentages of A, B, C, and DFW in each group
respectively. The average percentage of students who earned DFW is dropped
from 42.9% to 33.4% ăin the fifth column. The chi-square statistic test is then
applied to the results. The chi-square test returns 7.5449 for the DFW rate
with the p-value of .006018, indicating that the drop is significant at p < .01.

Retention Rates from 2005 to 2016
The 1-year retention rate for the year of 2017, and the 2-year retention rate for
2016 have not been released when we began to write the paper at the beginning
of the fall of 2018. ăSo only the retention rates from 2005 to 2016 are used in
the paper.

Table 2 lists the 1-year and 2-year retention rates for our CS program.
The data are also categorized based on gender, male and female. The 1-year
and the 2-year retention rates for male students gain about 5.8%, and 8.5%,
respectively. ăThe 1-year and the 2-year retention rates for females increase
about 33.4% and 31.3% separately. However, the Fisher exact test statistic
value for females is 0.1279, indicating that the difference is not significant
statistically. The exact power for Fisher’s Exact Test returns 30%, implying
that the sample size is not big enough to claim the difference statistically.
However, the results are very encouraging, showing that 15 out of 27 females
stayed in the program after the first year. It is worth for further considerations
when more females enter the program. The overall 1-year and the 2-year
retention rates for all students rise about 9.2%, and 11.4%, respectively. Table
3 then shows the retention rates of the university. The 1-year and the 2-year
retention rates of the university for all students increase from 83.8% to 85.2%,
and from 69.6% to 69.9% respectively. ăThe comparison of the retention rates
between CS program and the university further confirms that the community
is worth investing.

Student Evaluation Surveys
Tables 4-6 briefly list some samples of student evaluation surveys for the com-
munity. Most of the students who use the community services agree or strongly
agree that videos, tutoring meetings, or SI sessions are helpful to understand
the course material. ăThey will also recommend the services to the other stu-
dents. Although the percentages of students who agree or strongly agree that
the services help to improve their grades in the course are usually lower than

77

Table 2: Retention Rates of CS Majors

Table 3: Retention Rates of the University

the other survey questions, the comments obtained from the students are very
positive, indicating that the community is valuable to most of the students.

Table 4: SI Evaluation Survey

CONCLUSIONS
This paper presents a guided peer-assisted learning community conducted by
CS undergraduate students from freshmen to seniors. ăThe community guided

78

Table 5: Tutor Evaluation Survey

Table 6: Video Evaluation Survey

by the CS faculty is highly cost-effective, making it very suitable for small
liberal art universities. The data collected from the past six years show that
the community successfully reduced the DFW rate in the first programming
course significantly. The 1-year and 2-year retention rates increased after the
community was assembled. The results from the surveys show that the majority
of the students agree or strongly agree that the community is beneficial and
helpful to them. Therefore, we will continue to build the community to help the
students to achieve higher academic performance by providing various services
to assist the learning outside classrooms. Our further research will continue to
investigate the effectiveness of the community on retaining students, especially
females since the result is very encouraging, showing that 15 out of 27 females
stayed in the program after the first year. The research will further explore
ăhow to make the community more valuable to the other programming courses.

References
[1] CS YouTube Channel. http://www.youtube.com/user/cspeerteacher.

[2] Xianglei Chen and Matthew Soldner. STEM attrition: College students’ paths
into and out of STEM fields. https://nces.ed.gov/pubs2014/2014001rev.pdf.

79

[3] Mark Guzdial. Learning computer science is different than learning other STEM
disciplines. Communications of ACM, 1 2018.

[4] Russ Hodges and William G. White. Encouraging high-risk student participation
in tutoring and supplemental instruction. Journal of Developmental Education,
01 2001.

[5] Yi Liu, Gita Phelps, and J. F. Yao. Design and benefits of an on-site tutoring
program for the first programming class. Journal of Computing Sciences in
Colleges, 29(5):42–49, May 2014.

[6] Martha Maxwell. Does tutoring help? a look at the literature. Review of
Research in Developmental Education, 7(4), 1990.

[7] Thomas L Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleis-
cher, Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan
Rodger, et al. Exploring the role of visualization and engagement in computer
science education. In ACM Sigcse Bulletin, volume 35, pages 131–152. ACM,
2002.

[8] David C Rheinheimer, Beverlyn Grace-Odeleye, Germain E Francois, and Cyn-
thia Kusorgbor. Tutoring: A support strategy for at-risk students. Learning
Assistance Review, 15(1):23–34, 2010.

[9] Nathan Rountree, Janet Rountree, and Anthony Robins. Predictors of success
and failure in a CS1 course. ACM SIGCSE Bulletin, 34(4):121–124, 2002.

[10] Keith J Topping. The effectiveness of peer tutoring in further and higher educa-
tion: A typology and review of the literature. Higher education, 32(3):321–345,
1996.

[11] Susan Wiedenbeck, Deborah Labelle, and Vennila N R Kain. Factors affecting
course outcomes in introductory programming.

[12] Brenda Cantwell Wilson and Sharon Shrock. Contributing to success in an in-
troductory computer science course: a study of twelve factors. In ACM SIGCSE
Bulletin, volume 33, pages 184–188. ACM, 2001.

80

Google Analytics∗

Conference Tutorial

Daniel Brandon
MIS, School of Business

Christian Brothers University
Memphis, TN 38104

dbrandon@cbu.edu

Google Analytics (GA) and such systems are essential tools in todays com-
plex corporate marketing environment. Businesses now gather vast amounts
of information today not only via their transaction processing systems (TPS),
but also thru a myriad of social media platforms such as Facebook and Twitter.
Thus the term big data. TPS data is now generated not only from store point
of sale systems but also from online web purchases.

Businesses need to digest and carefully analyze this vast amount of data
to determine who their customers are, how to best serve and retain these
customers, how to sell more product to these customers thru up selling and
cross selling, who else could be their customers, and how best to convert these
potential customers cost effectively thru targeted advertising.

Google Analytics allows organizations to generate, analyze, and visualize
information about their website and mobile app usage by customers and other
visitors. GA also helps organizations to better focus available resources to
generate and retain more customers and enables organizations to work smarter
to generate more success from their digital property. Specifically GA tracks
the origin of website visitors and relates these origins to page interactions,
conversions, purchases, downloads, and other online transactions.

This tutorial will discuss the following topics:

• What is GA
• Why is it vital to business today
• How to incorporate GA into a web site
• How to use GA data analytics tools
• How to use R to clean, process, and visualize GA data

∗Copyright is held by the author/owner.

81

Presenter Background
Dr. Brandon is a Professor of Management Information Systems at Chris-
tian Brothers University in Memphis TN where he teaches courses in MIS,
programming, database, data analytics, statistics, and project management.
He has authored two books and numerous journal articles and conference pro-
ceedings including some for CCSC. He has designed and developed modern web
based information systems for a number of organizations and was formerly the
Director of Information Systems at the NASA Stennis Space Center.

82

Software Design Patterns Applied To
Building An Interpreter∗

Conference Tutorial

Larry Morell
Computer and Information Science

Arkansas Tech University
Russellville, AR 72801

lmorell@atu.edu

While it is possible to teach software design patterns via a series of discon-
nected examples, it is useful for students to see how several design patterns
can be applied in a single development effort. By doing so students see better
how patterns interrelate. Furthermore, as they apply additional patterns to
later stages of the development, their grasp of previously applied patterns is
reinforced.

This tutorial demonstrates how to teach a variety of software design pat-
terns in the context of building an interpreter for a simple programming lan-
guage called ELSE (Experimental Language for Software Education). This
approach has been taken and refined over the past five years in an under-
graduate course in Software Engineering and in a graduate course in Software
Design. The focus of the courses has been on teaching patterns, but stu-
dents also learned a substantial part of how to build an interpreters for simple
languages. The final project in the course required students to investigate in-
dependently one or more software patterns and apply what they have learned
to the interpreter they had already built.

This tutorial describes the variety of design patterns that have been taught
in the courses and how they are applied to aspects of the interpreter. Each
attendee will receive a copy of the assignments given along with their solutions
in Java.

∗Copyright is held by the author/owner.

83

Teaching Object-Oriented
Programming with Geometry∗

Conference Tutorial

Serge Salan
Department of Mathematics and Computer Science

Christian Brothers University
Memphis, TN 38104

ssalan@cbu.edu

This tutorial provides a method to teach object-oriented programming
(OOP) to new programmers. The method relies on using a running exam-
ple to explain basic to advanced concepts in OOP. The example is based on
geometry objects, e.g., a point, a triangle, a rectangle, as well as known con-
cepts such as calculating a distance. Geometry is an area of mathematics that
is accessible to students, and the teacher does not usually need to provide back-
ground knowledge before starting the lecture. Furthermore, it gives a natural
way to illustrate the topic with figures, which allows the students to rely on
visualization to better understand the material.

The tutorial covers the main topics of OOP: abstraction, encapsulation,
inheritance and polymorphism, and applies concepts from geometry in each
topic. The language used is Java. We will show working Java code to ac-
company every example. Other important Java features are discussed, namely
access control, static methods, array of objects, and multiple constructors in
a class. Finally, this tutorial will suggest programming assignments that are
based on the code learned during the lecture.

Speaker Background
Serge Salan is an assistant professor of computer science completing his fourth
year at Christian Brothers University. His Ph.D. in computer science is from
the University of Memphis. Courses that he regularly teaches include the
freshmen level programming sequence, data structures, and algorithms. He
is knowledgeable about Java, Python, and C++, and taught OOP in these
languages.

∗Copyright is held by the author/owner.

84

Scalable Processing of Massive Text
Data Stores for NLP∗

Conference Tutorial

Brittany Bright, Cesar Cuevas, Israel Cuevas, Andrew Mackey
University of Arkanas at Fort Smith

Fort Smith, AR 72913
{brittany.bright, israel.cuevas, andrew.mackey}@uafs.edu

ccueva00@g.uafs.edu

The storage and processing of text are integral components of machine
learning and natural language processing algorithms. As text-generating sources
continue to enlarge the size of natural language data stores, the ability for indi-
vidual systems to process overwhelming volumes of data becomes challenging.
The emergence of systems capable of parallelizing text processing has enabled
researchers to rapidly build, train, and deploy intricate NLP and machine learn-
ing models. In this tutorial, methods of parallel processing of massive text data
stores for NLP and machine learning algorithms will be introduced. Tools for
constructing models using a variety of approaches, ranging from typical fre-
quency implementations to graph representations of text, will be reviewed. In
addition, challenges for both industry and academia will be discussed.

∗Copyright is held by the author/owner.

85

Longest Pattern Lock∗

Nifty Assignment

Jingsai Liang
Computer Science Department

Westminster College, Salt Lake City, UT 84105
JLiang@westminstercollege.edu

Pattern lock with nine vertices is a very common way to secure the smart-
phone. In this assignment, students are expected to find and draw the longest
pattern lock in term of the length of the password under two different rules
which decide if a path is a feasible password. This assignment is a great chance
for students to apply permutation and brute force they learned in class to solve
this real-world problem, which leads them to realize the data structure and al-
gorithm are really helpful and powerful in the real world. Finally, students can
easily visualize the pattern lock by using python package matplotlib, which
code is provided in the starting code.

In order to calculate the length of a password, we convert nine vertices 1
to 9 of the pattern lock to nine points on an xy plane from (0,0) to (2,2). For
example, the coordinate of 1 at the bottom left is (0,0) and the coordinate
of point 6 is (2,1). A password on the pattern lock can be defined as a set of
continuous line segments. A password is thus also a path. We will use password
and path interchangeably in this assignment. The length of a password is the
sum of distances between every two adjacent points on the path. Not all
permutations of “123456789” are paths. We should follow one of the following
two rules when designing a password. Students are expected to find all paths
having the longest length and draw one such path under each rule.

Rule 1 of Path: You CANNOT directly draw a line segment from a to b
without passing the middle point c. For example, “132456987” is not a feasible
path since you cannot draw a line segment from 1 to 3 without passing 2. One
feasible longest path under this rule is “276183495”. Rule 2 of Path: You CAN
directly draw a line segment from a to b without passing the middle point c
if point c has already been used before a and b in the path. For example,
“213456987” is not a feasible path under rule 1, but is a feasible path under
rule 2 since 2 has been used before 1 and 3 in this path. One feasible longest
path under this rule is “519283764”.

∗Copyright is held by the author/owner.

86

Understanding the Identity Function
in SML by Theory∗

Nifty Assignment

Cong-Cong Xing1, Jun Huang2

1Dept. of Mathematics and Computer Science
Nicholls State University

Thibodaux, LA 70310
cong-cong.xing@nicholls.edu

2School of Computer Science
Chongqing Univ. of Posts and Telecommunications

Chongqing, China 400065
xiaoniuadmin@gmail.com

Motivation Being one of the representative languages in the paradigm
of functional programming, Standard ML (SML) offers many advanced fea-
tures that are rarely seen in imperative programming. One such feature is the
type/typing in SML, which can be exemplified by the identity function (and
programs related to it). While SML provides some explanations to the typing
issues of the identity function, these explanations may seem to be ad-hoc, ob-
scure, and hard to grasp by students. We believe that a clearer approach to
understanding these typing issues would be by using the theory of the 2nd or-
der typed λ-calculus. Meanwhile, by doing so, students can be given a chance
to see an application of the theory and to appreciate the importance of theory,
as well.

Overview Identity function, which takes an argument and returns the
same argument as the result, is an interesting instance in SML. It can be
simply coded as fun id x = x in SML, and the (typing) response of SML to
this definition is id = fn: 'a -> 'a, meaning that the identifier id is bound
to a function that takes an input of any type and returns a result of the same
type as that of the input. Here, 'a is the notation of type variable in SML,
signifying that the value of 'a can be any type (e.g., int, bool, int->int,
etc.). While the definition of the identity function id and its (deduced) type

∗Copyright is held by the author/owner.

87

are not that hard to understand for students, it is the following programs
that confuse them tremendously. Given id as defined, on one hand, the code
id(id) generates an error in SML. In other words, the application of id to
itself does not give the identity function itself as expected by many students.
On the other hand, the code id(id:int->int), that is, the same application
but with the type of the argument id being particularized, does produce the
identity function (of type int->int) as expected. So, the question is how to
understand this factual typing in SML. The standard textbook (e.g., Elements
of ML Programming, by Jeffrey Ullman, Prentice Hall, 1998) interpretation
for this uses notions of generalizable and non-generalizable type variables, and
expansive and non-expansive expressions – terms that are coined specially to
cope with this kind of typing instances, and have no meaning otherwise. As
a result, these interpretations seem to be ad hoc, not convincing, vague, and
indifferent to most students. Therefore, a clearer, more accurate, and more
convincing explanation may be needed, and this is exactly what the 2nd order
typed λ-calculus can provide. As such, an assignment requiring the explanation
of the typing of following SML programs (1) fun id x = x, (2) id(id), and
(3) id(id:int->int) using the framework of the 2nd order typed λ-calculus
can be formed.

Classroom Observations This assignment was given as homework for a
senior-level Functional Programming course in computer science. Most stu-
dents were able to more or less figure out the typing of the identity function,
but had trouble dealing with the rest. After being explained, students realized
that they actually did not truly understand the meanings involved in the typ-
ing rules, and agreed that the theory does give a formal and precise foundation
for them to understand the typing behaviors of SML.

What can be gained Upon completion of this assignment, students are
expected to

• Master the typing rules of the 2nd order typed λ-calculus.
• Have a clearer understanding of the typing issues associated with the

identity function in SML.
• See the connection between theory and practice in programming lan-

guages. Realize and appreciate the importance of theoretical studies.

We hope that this assignment (solution can be obtained by contacting the
authors) will be useful to colleagues.

88

