The Journal of Computing
Sciences in Colleges

Papers of the 28th Annual CCSC
Midwestern Conference

October 1-2, 2021
lvy Tech Community College
Fort Wayne, IN

Baochuan Lu, Editor Saleh Alnaeli, Regional Editor
Southwest Baptist University University of Wisconsin-Stout

Volume 37, Number 4 October 2021

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright (©2021 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

Table of Contents

The Consortium for Computing Sciences in Colleges Board of

Directors 7
CCSC National Partners 9
Welcome to the 2021 CCSC Midwestern Conference 10
Regional Committees — 2021 CCSC Midwestern Region 11
Reviewers — 2021 CCSC Midwestern Conference 13

Conducting Survey Research in a Computing Topics Course:
Phubbing and Being Phubbed 14
Robert E. Beasley, Mohanid M. Akermawi, David G. Barnette, Nathanael

D. Beasley, Franklin College

Automating Configuring Parallel Compute Environments for
Students 25

Bryan Dizon, California State University - Chico

Godot Engine and Checklist-Based Specifications: Revising a
Game Programming Class for Asynchronous Online Teaching 30
Paul Gestwicki, Ball State University

Visualizing Recursion Using Code and Stack Animation 41
Y. Daniel Liang, Jireh Bethely, Gursimran Singh Walia,
Georgia Southern University

A Machine Learning Approach to Understanding the Viability of
Private 4-Year Higher-Education Institutions 50
Kian L. Pokorny, McKendree University

Python Data Structures for Java Programmers
— Conference Tutorial 58

Bill Nicholson , Isaiah Dicrostoforo, University of Cincinnati

A Tutorial on Flutter — Conference Tutorial 59
Michael P. Rogers, University of Wisconsin Oshkosh

Using GitHub Classroom for Assignment Management
and Automated Feedback — Conference Tutorial 60
Zachary Kurmas, Grand Valley State University

The Philosophies of CS 1 — Panel Discussion 62
Cathy Bareiss, Bethel University, Jessen Havill, Denison University,
Steve Bogaerts, DePauw University, Osvaldo Jimenez, University of the
Pacific, John Trono, Saint Michael’s College

IndianaComputes! Views of a K-12 Professional Development
Program — Panel Discussion 62
Karen M. Morris, University of Notre Dame

Teaching Heterogeneous Parallel Programming With CUDA
— Conference Workshop 64
David P. Bunde, Knox College

An Introduction to Tableau as a Data Visualization Tool
— Conference Workshop 66
Mary Jo Geise, University of Findlay

Building Regional Community for Computing Education

Graduate Students — Conference Workshop 67
Morgan M. Fong, Max Fowler, Seth Poulsen, Vidushi Ojha, Geoffrey L.
Herman, University of Illinois Urbana-Champaign

Aspects of US-China Competition May Motivate Students
— Work In Progress 69
Pradip Peter Dey, Bhaskar Raj Sinha, National University

Developing a Cross-Platform Mobile Course Using a Multi-Paradigm
Library — Work In Progress 71
Alisa Neeman, Muskingum University

IndianaComputes! a K-12 Professional Development Program
— Work In Progress 72
Karen M. Morris, University of Notre Dame

Can OneUp Gamified Challenges Boost Undergrad Student Mo-

tivation Plus Engagement and Supplement Learning in An Online

Introductory Cybersecurity Course? — Work In Progress 73
Ankur Chattopadhyay, Meghyn Winslow, Momoka Kinder, Northern
Kentucky University

Practical Program Verification with DAFNY

— Work In Progress 75
Ramachandra B. Abhyankar, Robert W. Sternfeld, Indiana State
University

Spear phishing attack using Kali Linux — Work In Progress s

Imad Al Saeed, Saint Xavier University

Faculty-Advisor Relationship Impact on Student Pathways to IT
Careers/Education — Work In Progress 79
Matthew Cloud, Ivy Tech Community College of Indiana

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:

Karina Assiter, President (2022),
(802)387-7112,
karinaassiter@landmark.edu.

Chris Healy, Vice President (2022),
chris.healy@furman.edu, Computer
Science Department, 3300 Poinsett
Highway Greenville, SC 29613.
Baochuan Lu, Publications Chair
(2021), (417)328-1676, blu@sbuniv.edu,
Southwest Baptist University -
Department of Computer and
Information Sciences, 1600 University
Ave., Bolivar, MO 65613.

Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umke.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill Rd.,
Kansas City MO 64110.

Cathy Bareiss, Membership Secretary
(2022),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical
Engineering Sciences, 1001 Bethel
Circle, Mishawaka, IN 46545.

Judy Mullins, Central Plains
Representative (2023), Associate
Treasurer, (816)390-4386,
mullinsj@Qumkc.edu, UMKC, Retired.
Michael Flinn, Eastern Representative
(2023), mflinn@frostburg.edu,
Department of Computer Science
Information Technologies, Frostburg

State University, 101 Braddock Road,
Frostburg, MD 21532.

David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.

Grace Mirsky, Midwest
Representative(2023), gmirsky@ben.edu,
Mathematical and Computational
Sciences, 5700 College Rd. Lisle, IL
60532.

Lawrence D’Antonio, Northeastern
Representative (2022), (201)684-7714,
ldant@ramapo.edu, Computer Science
Department, Ramapo College of New
Jersey, Mahwah, NJ 07430.

Shereen Khoja, Northwestern
Representative(2021),
shereen@pacificu.edu, Computer
Science, 2043 College Way, Forest
Grove, OR 97116.

Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.

Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308.

Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer Science,
Greenville, SC 29613.

Bryan Dixon, Southwestern
Representative (2023), (530)898-4864,

bedixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These members
are serving in positions as indicated:

Bin Peng, Associate Editor, (816)
584-6884, bin.peng@park.edu, Park
University - Department of Computer
Science and Information Systems, 8700
NW River Park Drive, Parkville, MO
64152.

Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,

MSC 2615, Pacific University, Forest
Grove, OR 97116.

Elizabeth Adams, National Partners
Chair, adamses@jmu.edu, James
Madison University, 11520 Lockhart
Place, Silver Spring, MD 20902.
Megan Thomas, Membership System
Administrator, (209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus, One
University Circle, Turlock, CA 95382.
Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft
Google for Education
GitHub
NSF — National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology
Teradata
Mercury Learning and Information
Mercy College

Welcome to the 2021 CCSC Midwestern Conference

Welcome to the 28th annual CCSC Midwestern Conference held at Ivy Tech
Community College on October 1-2, 2021. With this year’s hybrid conference
format, we are looking forward to seeing everyone either in person in Fort
Wayne, IN or virtually from anywhere.

The conference program includes paper sessions, speakers, pre- and post-
conference workshops, tutorials, student activities and vendor sessions. We
had a smaller number of paper submissions than usual, which is not surprising
given the tumultuous year that we have all had. Nevertheless, the papers that
were submitted were of high quality, and six out of eight submissions were
accepted for a 75% acceptance rate.

We are honored to have Mr. James Weaver, Quantum Developer Advocate
at IBM, as our keynote speaker. Mr. Weaver is a prominent developer, as
well as an accomplished author and speaker. We are also very pleased to
welcome Dr. Joe Czyzyk, Advanced Analytics Math Modeler at The Dow
Chemical Company, as our banquet speaker. Dr. Czyzyk received his Ph.D. in
Industrial Engineering / Management Science from Northwestern University
and has worked at Argonne National Labs and Central Michigan University
Research Corporation prior to joining The Dow Chemical Company. His talk
will be on “How Data Science is Adding Value at The Dow Chemical Company”.

We have three workshops planned: two pre-conference and one post-conference.
The pre-conference workshops are titled “Building Regional Community for
Computing Education Graduate Students” and “An Introduction to Tableau
as a Data Visualization Tool”. The post-conference workshop is “Teaching het-
erogeneous parallel programming with CUDA”. Three exciting tutorial sessions
are also planned, as well as multiple activities focused on students. These ac-
tivities include the programming competition, the Student Showcase, and a
popular panel session titled “What Students Need to Know About Industry”.

Google, zyBooks and Codio are each hosting sessions. We sincerely thank
them for their support of CCSC as National Partners. I encourage you to
attend their sessions and speak with their company representatives.

In closing, I would like to express my sincere thanks to the Conference Com-
mittee and Paper Reviewers, whose efforts make this conference an outstanding
forum for sharing ideas. We are always happy to welcome new volunteers, so
please let us know if you are interested in joining us. Thank you for being part
of the 28th annual meeting of CCSC Midwest.

Grace Mirsky

Benedictine University
Conference Chair

10

2021 CCSC Midwestern Conference Steering Committee

Imad Al Saeed, Registrar (2022) Saint Xavier Univ., Orland Park, IL
Saleh M. Alnaeli, Editor (2021) .. Univ. of Wisconsin-Stout, Menomonie, WI
Stefan Brandle, Webmaster (2023) Taylor Univ., Upland, IN
Mary Jo Geise, Treasurer (2023) Univ. of Findlay, Findlay, OH
Sean Joyce, At-Large (2022) Heidelberg Univ., Tiffin, OH

Kris Roberts, At-Large (2021) Ivy Tech Community College, Fort Wayne, IN
Grace Mirsky, Regional Representative (2023) ...Benedictine Univ., Lisle, IL
Grace Mirsky, Conference Chair Benedictine Univ., Lisle, IL
Jeff Lehman, Past Conference Chair Huntington Univ., Huntington, IN

11

Regional Board — 2021 CCSC Midwestern Region

Grace Mirsky, Conference Chair Benedictine Univ., Lisle, IL
Saleh M. Alnaeli, Vice-Chair Univ. of Wisconsin-Stout, Menomonie, WI
Kris Roberts, Site Chair Ivy Tech Community College, IL
Saleh Alnaeli, Authors Univ. of Wisconsin-Stout, Menomonie, WI

Cyrus Grant, Nifty Tools and Assignments Dominican Univ., River Forest, IL
Cathy Bareiss, Panels, Tutorials, Workshops ... Bethel Univ., Mishawaka, IN

Robert Beasley, Papers Franklin College, Franklin, IN
Jeff Lehman, Past Conference Chair Huntington Univ., Huntington, IN
Paul Talaga, Programming Contest Co-Chair Univ. of Indianapolis,
Indianapolis, IN

Md Haque, Programming Contest Co-Chair Univ. of Indianapolis,
Indianapolis, IN

David Largent, Publicity Ball State Univ., Muncie, IN
Imad Al Saeed, Registrar (2022) Saint Xavier Univ., Orland Park, IL
Deborah Hwang, Co-Registrar Univ. of Evansville, Evansville, IN
Stephen Brandle, Speakers Chair Taylor Univ., Upland, IN

Scott Anderson, Treasurer and Speaker Co-Chair Univ. of Southern Indiana,
Evansville, IN

Paul Gestwicki, Student Showcase Ball State Univ., Muncie, IN
Shahsa Wu, Student Showcase Co-Chair ..Spring Arbor Univ., Spring Arbor,
MI

Donna Ogle, Student Showcase Co-Chair Rockford Univ., Rockford, IL
Kris Roberts, Two-year College Liaison Co-Chair Ivy Tech Community
College, Fort Wayne, IN

Takako Soma, Vendors Ilinois College, Jacksonville, IL
Stefan Brandle, Webmaster Taylor Univ., Upland, IN
Jeff Lehman, Work-in-progress Chair Huntington Univ., Huntington, IN

12

Reviewers — 2021 CCSC Midwestern Conference

Robert Adams Grand Valley State University, Allendale, MI
Alisa Neeman Muskingum University, New Concord, OH
Brian Howard DePauw University, Greencastle, IN
Dave Surma Indiana University South Bend, South Bend, IN
David Bunde oo Knox College, Galesburg, 1L
David LargentcooiaL Ball State University, Muncie, IN
Deborah Hwang University of Evansville, Evansville, IN
Henry Walkert Grinnell College, Evansville, IN
Eugene Wallingford University of Northern Iowa, Cedar Falls, TA
Henry Walker, Grinnell College, Grinnell, TA
James Teresco ..., Siena College, Loudonville, NY
James Vanderhyde Saint Xavier University, Chicago, IL
Jeffrey Lehman Huntington University, Huntington, IN
Kristofer Schlieper ... Minnesota State University Moorhead, Moorhead, MN
Lawrence D’Antonio Ramapo College, Mahwah, NJ
Michael Glass ...t Valparaiso University, Valparaiso, IN
Paul Gestwickil Ball State University, Muncie, IN
Robert Adams Grand Valley State University, Allendale, MI
Zachary Kurmas Grand Valley State University, Allendale, MI

13

Conducting Survey Research in a
Computing Topics Course: Phubbing and
Being Phubbed®

Robert E. Beasley, Mohanid M. Akermauwt,
David G. Barnette, Nathanael D. Beasley
Department of Mathematics € Computing

Franklin College
Franklin, IN /6131

{rbeasley,mohanid. akermawi}@franklincollege. edu

{david.barnette,nathanael.beasleyt@franklincollege. edu

Abstract

This article describes the experience of using a Computing Topics
course to teach students how to conduct survey research in the field of
Computing. In the course, teams of three or four students were required
to think of something they would like to investigate about computing
technology using the scientific method. They were then required to ar-
ticulate their research methodology, conduct their research, present the
results of their research, and discuss the results of their research. It also
reports on the findings of one team’s research in the area of phubbing
(i.e., the practice of ignoring one’s companion or companions in order
to pay attention to one’s phone). The results of the study suggest that
college students 1) often phub romantic partners, but they “kind of dis-
like” being phubbed by romantic partners, 2) frequently phub family
members (other than romantic partners), and they “don’t mind” being
phubbed by family members, 3) rarely phub professional superiors, and
they “pretty much dislike” being phubbed by professional superiors, and
4) sometimes phub professional peers, but they “kind of dislike” being
phubbed by professional peers. Implications are discussed.

*Copyright (©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

14

Introduction

Topics courses permit faculty members to teach subjects that are of current
interest. Such courses are usually offered at the request of a faculty member and
require institutional approval. For the past several years, the primary author
of this article (i.e., the professor) has offered a topics course titled Cognition in
Computing. A significant portion of this course requires teams of three or four
students to think of something they would like to investigate about computing
technology using the scientific method. They were then required to articulate
their research methodology, conduct their research, present the results of their
research, and discuss the results of their research. The only stipulation for the
research projects was that they focus on phone use and that they utilize the
survey research methodology. These were chosen so that all of the teams in
the course were focused in the same general area and so that data could be
easily gathered from a significant number of other students on the small college
campus. The teams were evaluated by the professor and by peer review.

Before the research projects began, class time was dedicated to describing
the Scientific Method. Although all of the students in the class had taken a
course in basic applied statistics, additional class time was dedicated to re-
viewing basic applied statistical methods and the use of statistical software. In
addition, class time was dedicated to reading and discussing various examples
of survey research in the field of Computing. The students were tested over
these topics via a traditional examination.

During the course, the professor worked closely with the teams to carefully
state their hypotheses, develop their survey instruments, define their variables,
describe their procedures, and select their statistical methods. This part of
the course was a collaborative effort with the professor acting in a mentoring
or coaching role with the teams to ensure that the research design was of high
quality.

Toward the end of the course, all four teams, each of which had a different
research topic, presented their research to the class for evaluation. Although
all of the teams did a very good job, the results of their work were not quite in
a publishable state due to minor data analysis issues, incomplete conclusions,
and so on.

When the course was complete, the professor contacted the students in one
of the teams whose data seemed particularly interesting. These students, who
had just graduated, were asked if they’d like to continue with the research direc-
tion. They all agreed. The professor took the lead on the project, performing
some additional data analyses, communicating the results of the analyses with
the team via email, and meeting with the team in person to discuss the results
of the analyses and their implications.

The topic of the study was phubbing. The Ozford Living Dictionary defines

15

phubbing as the practice of ignoring one’s companion or companions in order to
pay attention to one’s phone [1]. Behaviors associated with phubbing include
leaving one’s phone out in plain sight, letting one’s phone alert them to calls
and notifications, checking one’s phone for calls and notifications, answering
calls and notifications without explanation, and using one’s phone when there
is a break in the conversation [7].

In this study, the team set out to examine the frequency with which college
students phub others and to determine if this frequency is in harmony with their
own feelings about being phubbed. More specifically, the team attempted to
determine whether or not phubbing frequency in college students is consistent
with their affective (i.e., emotional) response to being phubbed in romantic
relationships, familial relationships, professional relationships with superiors,
and professional relationships with peers.

Research Methodology

Hypotheses

The four general null hypotheses were:

e H1y: Phubbing frequency in college students is consistent with their
affective response to being phubbed in romantic relationships.

e H2y: Phubbing frequency in college students is consistent with their
affective response to being phubbed in familial relationships.

e H3y: Phubbing frequency in college students is consistent with their
affective response to being phubbed in professional relationships with
superiors.

e H4y: Phubbing frequency in college students is consistent with their
affective response to being phubbed in professional relationships with
peers.

Instruments

The first instrument was used to elicit the frequency with which college students
phub others. The questions used to elicit this frequency were: (Q1) I have my
phone out in plain sight, (Q2) I let my phone alert me to calls/notifications,
(Q3) I check my phone for calls/notifications, (Q4) I answer calls/notifications
without explanation, and (Q5) I use my phone when there is a break in the
conversation. The 5-point Likert-type responses to these questions were: never
(0 points), rarely (1 point), sometimes (2 points), usually (3 points), always (4
points), and no answer.

16

The second instrument was used to elicit the affective responses of college
students to being phubbed by others. The questions used to elicit these re-
sponses were (Q1) I like when they have their phone out in plain sight, (Q2)
I like when they let their phone alert them to calls/notifications, (Q3) I like
when they check their phone for calls/notifications, (Q4) I like when they an-
swer calls/notifications without explanation, and (Q5) I like when they use
their phone when there is a break in the conversation. The 5- point Likert-
type responses to these questions were: strongly disagree (0 points), disagree
(1 point), neutral (2 points), agree (3 points), strongly agree (4 points), and
no answer.

The five questions on the two instruments were asked in the context of
four scenarios. These were 1) when interacting with a romantic partner, 2)
when interacting with a family member (other than a romantic partner), 3)
when interacting with a professional superior (e.g., boss, professor), and 4)
when interacting with a professional peer (e.g., coworker, classmate). Both
surveys contained 20 questions. Both instruments were critiqued by the other
teams during the course and where revised accordingly. This ensured that the
questions were well written and free of ambiguities.

Variables

The first variable was phubbing frequency. This variable was measured by the
responses to the questions on the first survey. For each student, the value of
this variable was computed by averaging the frequency with which he or she
leaves their phone out in plain sight, lets their phone alert them to calls and
notifications, checks their phone for calls and notifications, answers calls and
notifications without explanation, and uses their phone when there is a break in
the conversation—when interacting with another person. The second variable
was affective response to being phubbed. This variable was measured by the
responses to the questions on the second survey. For each student, the value
of this variable was computed by averaging how much he or she likes it when
the person they are interacting with leaves their phone out in plain sight, lets
their phone alert them to calls and notifications, checks their phone for calls
and notifications, answers calls and notifications without explanation, and uses
their phone when there is a break in the conversation.

Procedures

The data for the study was collected over a one-week period. The team col-
lected survey responses from college students who were friends and acquain-
tances. Thus, convenience sampling was used. Before completing a survey,
each student was required to read and sign an informed consent form approved

17

by the academic institution’s Institutional Review Board. Half of the students
completed survey one, and half of the students completed survey two. Two
groups of students were surveyed so that the responses to the questions on one
survey would not influence the responses to the questions on the other survey.
In addition, students were asked not to complete a second survey if they had
already completed the analogous one. This was done to prevent the cross pol-
lination of survey responses. And finally, the team attempted to gather survey
responses from an equal number of males and females.

Statistical Methods

Since the data on the surveys were ordinal in nature, and since they were dis-
played to the respondents as increasing numeric values (i.e., 0-4), the analysis
of means was considered appropriate and pragmatic for this research. Thus,
two-sample t-tests were used to determine whether or not the mean phubbing
frequency and the mean affective response to being phubbed differed signifi-
cantly when interacting with a romantic partner, a family member (other than
a romantic partner), a professional superior, or a professional peer. The alpha
level for all two-sample t-tests was set at 0.05.

Results

Subjects and Sample Size

The subjects in the study consisted of 100 undergraduate students from a small,
Midwestern, coeducational, liberal arts college. The demographic results were:
Sex (Male 48%, Female 51%, Not Reported 1%) and Age (Z = 20.49).

Survey Response Means

Table 1 shows the results of the two surveys. As can be seen, when interacting
with a romantic partner, the mean phubbing frequency was 2.36, and the mean
affective response to being phubbed was 1.73. When interacting with a family
member (other than a romantic partner), the mean phubbing frequency was
2.78, and the mean affective response to being phubbed was 2.05. When in-
teracting with a professional superior, the mean phubbing frequency was 0.58,
and the mean affective response to being phubbed was 1.28. And when inter-
acting with a professional peer, the mean phubbing frequency was 2.13, and
the mean affective response to being phubbed was 1.78.

18

Table 1: Results of the two surveys (*p < 0.05, **p < 0.01).

Phubbing Affective Response

Frequency to Being Phubbed
Interaction N Mean sD N Mean SD T-Value P-Value | Signif
Romantic Partner 49 2.36 0.81 49 1.73 0.50 4.61 0.00 **
Family Member 50 2.78 0.64 50 2.05 0.44 6.57 0.00 **
Professional Superior 50 0.58 0.55 50 1.28 0.61 -5.99 0.00 **
Professional Peer 50 2.13 0.84 50 1.78 0.60 2.42 0.02 *

Hypothesis Testing

In order to reject a stated null hypothesis, the mean phubbing frequency and
the mean affective response to being phubbed had to be significantly different.
Since the mean phubbing frequency (Z = 2.36) and the mean affective response
to being phubbed (T = 1.73) were significantly different (p < 0.01) when in-
teracting with a romantic partner, null hypothesis H10 was rejected. Thus,
phubbing frequency in college students is inconsistent with their affective re-
sponse to being phubbed in romantic relationships. Since the mean phubbing
frequency (T = 2.78) and the mean affective response to being phubbed (T
= 2.05) were significantly different (p < 0.01) when interacting with a family
member (other than a romantic partner), null hypothesis H20 was also rejected.
Thus, phubbing frequency in college students is inconsistent with their affective
response to being phubbed in familial relationships. Since the mean phubbing
frequency (T = 0.58) and the mean affective response to being phubbed (T
= 1.28) were significantly different (p < 0.01) when interacting with a pro-
fessional superior, null hypothesis H30 was rejected as well. Thus, phubbing
frequency in college students is inconsistent with their affective response to be-
ing phubbed in professional relationships with superiors. And finally, since the
mean phubbing frequency (Z = 2.13) and the mean affective response to being
phubbed (Z = 1.78) were significantly different (p < 0.05) when interacting
with a professional peer, null hypothesis H40 was rejected. Thus, phubbing
frequency in college students is inconsistent with their affective response to
being phubbed in professional relationships with peers.

Reliability and Validity

Cronbach’s Alpha was used to determine the reliability (internal consistency)
of the questions on the two survey instruments. The outcomes of these analyses
were interpreted using the following scale: < 0.50 (Unacceptable), 0.50 <
0.60 (Poor), 0.60 < 0.70 (Questionable), 0.70 < 0.80 (Acceptable), 0.80 <
0.90 (Good), 0.90 (Excellent). The reliability threshold on all measures was
set at 0.70, which is typically viewed as acceptable reliability. The reliability

19

of the individual measures on the first instrument were Q01-Q05 = 0.7771
(n=48), Q06-Q10 = 0.7738 (n=>50), Q11-Q15 = 0.7128 (n=>50), and Q16-Q20
= 0.8361 (n=49). The overall reliability of the first instrument was Q01-Q20
= 0.7928 (n=47), which is at the very top of the acceptable range (almost
to the good range). The reliability of the individual measures on the second
instrument were Q01-Q05 = 0.5182 (n=46), Q06-Q10 = 0.6708 (n—=48), Q11-
Q15 = 0.7906 (n=49), and Q16-Q20 = 0.8682 (n=50). The overall reliability
of the second instrument was Q01-Q20 = 0.8371 (n=43), which is in the good
range. Only the reliabilities of Q01-Q05 and Q06-Q10 should be viewed with
caution.

The face validity of the two measures was good as most students in the
age group studied would expect a survey on phubbing to include items about
leaving one’s phone out in plain sight, letting one’s phone alert them to calls
and notifications, checking one’s phone for calls and notifications, answering
calls and notifications without explanation, and using one’s phone when there
is a break in the conversation. In fact, the team generate the list of phubbing
behaviors for this study. The content validity of the two measures was also good
as those five behaviors are all commonly-observed signs of phubbing according
to the students on the team.

Discussion

Since the data collected in this study was ordinal in form, a table of numeric
intervals was created to assist in the interpretation of the means displayed
in Table 1 with finer granularity. Table 2 shows these numeric intervals and
their respective interpretations. Notice that the numeric interval of 0.00 to
0.17 (interpreted as Never and Hate) and the numeric interval of 3.84 to 4.00
(interpreted as Always and Love) span one third of a point combined, whereas
the remaining numeric intervals span one third of a point each. This was done
so that the midpoint interpretations of Sometimes and Don’t Mind straddle
the midpoint of 2.00 on the 4-point scale. Note: Whenever an interpretation
from the table below is used in this discussion, it will be displayed in italics.

Romantic Partners

The results of this study suggest that college students often phub romantic
partners (Z = 2.36), but they kind of dislike being phubbed by romantic part-
ners themselves (£ = 1.73). Thus, there is a moderate disconnect between
college student phubbing behavior with romantic partners and how they them-
selves feel about being phubbed by them. This could be a cause of concern,
since the results of a study of 400 adolescents and youths by Davey et al. [3]

20

Table 2: Numeric Intervals and Their Respective Interpretations.

Phubbing Frequency Affective Response to Being Phubbed
Mean Interpretation Mean Interpretation
0.00t0 0.17 Never 0.00t0 0.17 Hate
0.18 t0 0.50 Almost Never 0.18 t0 0.50 Pretty Much Hate
0.51t0 0.83 Rarely 0.51t00.83 Kind of Hate
0.84101.17 Very Infrequently 0.841t01.17 Dislike
1.18 to 1.50 Infrequently 1.18 to 1.50 Pretty Much Dislike
1.51to 1.83 Seldom 1.51t0 1.83 Kind of Dislike
1.84to0 2.17 Sometimes 1.84t0 2.17 Don’t Mind
2.18to 2.50 Often 2.18to 2.50 Kind of Like
2.51t02.83 Frequently 2.51t02.83 Pretty Much Like
2.84t03.17 Very Frequently 2.84t03.17 Like
3.18to 3.50 Usually 3.18 to 3.50 Kind of Love
3.511t03.83 Almost Always 3.511t03.83 Pretty Much Love
3.84 t0 4.00 Always 3.84 t0 4.00 Love

suggest that phubbing others decreases relationship health and increases de-
pression—the latter of which has its own negative effects on relationships. In
addition, the results of a study of 153 college students by Chotpitayasunondh
and Douglas [2] suggest a significant negative correlation between phubbing
intensity and relationship satisfaction as well as between phubbing intensity
and communication quality, which is vital to good romantic relationships. Per-
haps the reason for these findings is that phubbing can create the perception
that what is happening on the phubber’s phone is more important than their
romantic partner [4].

Family Members (Other Than Romantic Partners)

The results of this study also suggest that college students frequently phub
family members (other than romantic partners) (T = 2.78). However, they
don’t mind being phubbed by family members themselves (T = 2.05). We
should keep in mind, however, that what applies to romantic relationships
likely applies to familial relationships—phubbing decreases relationship health,
increases depression (which has its own negative effects on relationships), de-
creases relationship satisfaction, and decreases communication quality (which
is vital to good familial relationships) [3, 2]. Perhaps the reason for these find-
ings is that phubbing can create the perception that what is happening on the
phubber’s phone is more important than their family members [4]. In addition,
Seppélé cites research which suggests that, when one uses one’s phone while
eating with family, their own enjoyment of the meal decreases, and their de-
gree of personal engagement with their family members decreases [4]. Perhaps

21

the reason students phub family members so frequently is that they take their
relationships with them for granted. And perhaps the reason they don’t mind
being phubbed by family members is that they feel secure in their relationships
with them.

Professional Superiors

The results of this study also suggest that college students rarely phub pro-
fessional superiors (T = 0.58), and they pretty much dislike being phubbed by
professional superiors themselves (T = 1.28). Perhaps the reason students don’t
make a habit of phubbing bosses and professors is that it might be perceived as
disrespect and/or unprofessionalism, and it might harm their professional repu-
tations. According to Gupta [5], phubbing does not demonstrate dedication to
one’s work, and students know this inherently when they are interacting with
their professional superiors. Perhaps a reason students don’t appreciate being
phubbed by bosses and professors is that it makes them feel neglected profes-
sionally. Another reason might be that they think they should be shown the
same courtesies that they show their professional superiors. Again, Gupta [5]
asserts that phubbing does not demonstrate dedication to one’s work, and this
fact is not lost on students when they are interacting with their professional
superiors.

Professional Peers

Finally, the results of this study suggest that college students sometimes phub
professional peers (Z = 2.13), but they kind of dislike being phubbed by pro-
fessional peers themselves (T = 1.78). Thus, there is a moderate disconnect
between student phubbing behavior with professional peers and how they them-
selves feel about being phubbed by them. As mentioned earlier, the results
of the Chotpitayasunondh and Douglas [2] study suggest a significant nega-
tive correlation between phubbing intensity and communication quality. Thus,
when phubbing occurs, communication quality (which is crucial when working
with professional peers) decreases. Perhaps the reason students feel somewhat
comfortable phubbing their professional peers is that they don’t mind being
phubbed by their professional peers that much.

Implications

Davey et al. [3] assert that students need guidance from family members,
healthcare workers, teachers, and others to help them control their phubbing
behaviors in an effort to promote better social, relational, and mental health.
In addition, Roberts and David [8] assert that organizations need to create clear

22

policies on phone use in the workplace and provide training to educate workers
with regard to those policies. Fortunately, colleges and universities are in a
great position to help educate students concerning the negative consequences
of phubbing on social, relational, and mental health as well as the expectations
that will be placed on them when they enter the work world.

Professors should institute and adhere to reasonable restrictions on phone
use and should model proper phone use themselves. These can help students
form life- and work- improving habits [4]. Permitting students to use their
phones whenever they wish will likely contribute to the problems associated
with the phubbing behaviors discussed in this article. A study of 413 corporate
adults by Roberts and David [8] suggests that, when supervisors phub their sub-
ordinates, supervisory trust decreases. And when supervisory trust decreases,
both psychological meaningfulness (i.e., feelings that one’s work is valuable or
conducive to one’s professional growth) decreases and psychological availability
(i.e., confidence in one’s ability to carry out one’s work) decreases. And when
psychological meaningfulness and psychological availability decrease, employee
engagement (i.e., the ability to focus on the task at hand) decreases. The im-
plications for college faculty are clear. When professors phub their students,
the students trust their professors less. When students trust their professors
less, they feel like their work is less valuable or conducive to their professional
growth, and they feel like they are less able to carry out their work. And when
these conditions are present, students are less able to focus on their academic
work.

As demonstrated earlier, college students don’t (for the most part) like
being phubbed by others. Thus, they are aware of the fact that phubbing
has negative consequences. However, they continue to phub others often or
frequently (with the exception of their professional superiors), which may be
a symptom of deeper issue. One possibility is that students feel no moral
obligation to treat others as they would like to be treated. Another possibility
is that phone use is a behavioral addiction, which is characterized by behaviors
that reward impulses despite their adverse consequences [6].

23

References

[1]

2]

131

4]

[5]

[6]

17l

18]

24

Oxford living dictionary, "phubbing,". https://en.oxforddictionaries.
com/definition/phubbing.

Varoth Chotpitayasunondh and Karen M Douglas. The effects of “phub-
bing” on social interaction. Journal of Applied Social Psychology, 48(6):304—
316, 2018.

Sanjeev Davey, Anuradha Davey, Santosh K Raghav, Jai V Singh, Ni-
rankar Singh, Agata Blachnio, and Aneta Przepiorkaa. Predictors and con-
sequences of “phubbing” among adolescents and youth in india: An impact
evaluation study. Journal of family & community medicine, 25(1):35, 2018.

J. Ducharme. Phubbing is hurting your relationships. here’s what it is.
http://time.com/5216853/what-is-phubbing/.

S. Gupta. Here’s how you can be more professional at work. https:
//www.entrepreneur.com/article/317946.

Engin Karadag, Sule Betiil Tosuntag, Evren Erzen, Pinar Duru, Nalan
Bostan, Berrak Mizrak Sahin, Ilkay Culha, and Burcu Babadag. Determi-
nants of phubbing, which is the sum of many virtual addictions: A struc-
tural equation model. Journal of behavioral addictions, 4(2):60-74, 2015.

Newport Academy. Phubbing and why it’s bad for us. https:
//www.newportacademy.com/resources/mental-health/phubbing-
why-its-bad-for-us/.

James A Roberts and Meredith E David. Put down your phone and listen to
me: How boss phubbing undermines the psychological conditions necessary
for employee engagement. Computers in Human Behavior, 75:206-217,
2017.

Automating Configuring Parallel
Compute Environments for Students*

Bryan Dixon
Computer Science Department
California State University - Chico
Chico CA, 95929

bcdizon@csuchico. edu

Abstract

In this research, we used Jetson Nano boards and Ansible playbooks
to simplify the configuration of small clusters for students to use in a
parallel programming course. Along the way, we discovered some unex-
pected use cases and outcomes when students repurposed the playbooks.
We will also discuss how these methods could be used in the future,
especially as less expensive Jetson Nano boards become a more readily
available option.

1 Introduction

When approaching teaching our Numerical Methods and Parallel Program-
ming course, a common complaint gathered from students over the years was
that the assignments required using a shared computing environment, which
often resulted in extra noise in their performance metric measurements and
made it harder for them to create conclusions about their parallel performance
observations confidently. In some cases, students had to wait for days before
their code could run, resulting in them not getting runs completed before the
assignment due dates.

There are quite a few examples of using small embedded boards, like Rasp-
berry Pis, to build clusters for computing and education[13, 15, 10]. They are
not limited to small scale deployments either, as at least one US research lab

*Copyright (©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

25

built a 750 node Raspberry Pi cluster, and there were talks about expanding
it to 10000 nodes[17, 5]. A CCSC paper from a few years ago even explored
how to have students build such a setup on the cheap[16].

These were all examples of homogenous compute clusters, and the cur-
rent top US supercomputers are being built on heterogenous compute nodes
consisting of compute processors and GPUs|[8|. Furthermore, the future of su-
percomputers is moving towards these heterogeneous architectures as well|7].
Given that the future of parallel programming in supercomputing is moving
toward a hybrid CPU and GPU compute node configuration, it makes sense to
give students the ability to work with such a system on a small scale. It hap-
pened that in March 2019, NVIDIA launched its Jetson Nano embedded boards
that retailed for $99 each[2]. NVIDIA has since launched a new cheaper model
for $59. This platform makes for an even more attractive board for building a
small cluster with GPUs on each node that can replicate a small scale version
of these heterogeneous architectures.

2 Parallel Course

Our university has a Numerical Methods and Parallel Programming course,
and it would be instrumental for the students to develop on such a cluster.
In most cases, a simple two-node cluster is more than adequate to learn some
of the basics of multi-node programming that we explore in the class. When
teaching this course, the focus was on covering a breadth of topics related to
parallel, in contrast to the previous approach of taking a deep dive into MPI[9].
As such, it was beneficial for the cluster configured to support Apache Spark
in addition to Open MPI[1].

3 Guide and Playbooks

To facilitate the cluster deployment and make it easier for the students, we
built a guide and a set of Ansible playbooks that the students could use to
build their own small scale clusters[11, 14]. The guide included a few things:
a part list, an initial setup, and how to run the Ansible playbooks.

The part list included all the parts they would need to purchase to build
a small two node Jetson cluster, with links to places they could buy them if
needed. There was no requirement students had to buy the Jetson boards
for the class; however, with the cheaper $59 nano board option, it would be
more reasonable to request that students purchase at least a single board and
work with a partner to make a small cluster. There was no textbook required
for the class, which minimize the expenditures required for these assignments.
Students who opted not to build their own Jetson clusters ran into the same

26

shared environment issues that motivated the idea of providing this set of tools
to help students run their small clusters.
The guide then included a set of steps to do the following:

1. Statically assign IPs to the Jetson boards

2. Generate RSA keys and copy the keys from their local computers to each
of the boards

3. Get Ansible installed in a local Python virtual environment

4. Modify the Ansible config file provided with their board IPs and the
username used on the boards

5. Test their Ansible config by pinging their inventory

Ansible is a configuration management tool that simplifies software deploy-
ment to numerous systems. Such tools are beneficial and common for managing
large clusters. We chose to create several separate playbooks instead of putting
all configuration steps into a single Ansible playbook. These separate, distinct
playbooks allow the students, and potentially anyone else that may use the
playbooks, to focus on the parts they require. The separate playbooks help
prevent users from installing packages and tools that are unnecessary for their
use case. The guide currently has the following playbooks:

e all.yml - Runs all of the playbooks at once

e initial.yml - To install updates and the basic GCC, G++, BLAS, and
OpenMPI libraries

e nfs.yml - Configure NFS, shared home, and share SSH keys

e hosts.yml - Configure the /etc/hosts on the nodes to match the inventory
names

e python.yml - Configure Python3, pip3, OpenMPI for Python3 bindings,

Numpy for Python3

spark.yml - Install and configure Apache Spark on the nodes

rust.yml - Currently only installs Rust on the primary node

clang.yml - Installs Clang 7 on the cluster and is necessary for Rust

zsh.yml - Installs Zsh on the cluster but does not force it as the default

shell

For students who did not want to use the playbook for simplifying things,
the guide also includes some step by step manual install instructions for just
getting MPI and the shared home directory set up. Moreover, it included
directions to run the Linpack HPL Benchmark if students were curious about
how their cluster would benchmark compared to a real super computer|6].

3.1 Use in Class
The parallel programming course has been taught with the Ansible playbooks
and Jetson Cluster guide one time so far. We did not require students to buy

27

a cluster. We did recommend they share clusters to cut down on the costs per
student. The feedback was overwhelmingly positive for the students who did
purchase a cluster or paired up to make a cluster.

3.2 Other Uses

One of the unexpected outcomes was students choosing to combine nodes to
create larger than two-node clusters. When students add additional worker
nodes to the Ansible configuration, the playbooks will scale to configure the
more massive cluster correctly. Allowing the playbooks to scale was a planned
design, as there was hope students might combine resources to run a more
massive cluster for their final projects. We tested the scaling playbook func-
tionality by updating a cluster designated for teaching from a two-node to a
four-node cluster. One enterprising student made a large cluster with nodes
from other students and even gave remote SSH access to the cluster he was
hosting to other students in the class.

We also had a couple of students indicate that they could use the playbooks
for pretty much any set of Debian nodes they wanted. There were examples of
the playbooks being used to configure two Google Cloud compute instances as
a small cluster and another instance where the playbooks aided in the configu-
ration of two local VMware Virtual Machine Instances as a small cluster[4, 3.

The GP-GPU features of the Jetson Nano boards are baked into the Jetson
Nano hardware and Ubuntu instance already. Since the Jetson Nano and Jetson
Nano 2G both feature a 128-core Maxwell GPU support CUDA programming,
the CUDA drivers come installed by default. The playbooks do not need to
assist in the installation; it is just a matter of leveraging those cores in the code
running on each node. The use beyond the Jetson boards was a neat takeaway,
as it means that the playbooks can help anyone easily configure a small cluster
regardless of the system, as long as it is running Ubuntu or a Debian Linux
environment|[12].

4 Conclusion

The students appreciated being able to develop cluster code for a system they
could see and touch. The playbooks and guide made it far less painful for them
to get started with parallel programming and get a cluster up and running
for themselves. They also liked how Ansible made setting up such a cluster
for personal use relatively straightforward. The playbooks served as a good
starting point that the students could build upon when developing their Jetson
board projects with their local configurations. Students could set up the cluster
with minimal effort since the playbooks took care of all the hard or tedious
setup. Now that newer, less expensive Jetson boards are available, the students
might be even more open to the idea of purchasing such boards. A cluster

28

created for parallel programming could find use in future courses or personal
projects.

If we can get funding, we also plan to take these playbooks and scale them

out to help manage a larger set of hosted Jetson Nano boards, as this would
allow students who do not want to host their own to have access to a cluster.

References

1]
2]
3l
(4]
]

(6]
(7]

18]
9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

https://spark.apache.org/.

Buy the latest Jetson products. https://developer.nvidia.com/buy- jetson.
Delivering a digital foundation for businesses. https://www.vmware.com/.
Google cloud. https://cloud.google.com.

LANL Turns to Raspberry Pi for Supercomputing Solution. https://top500.
org/news/lanl-turns-to-raspberry-pi-for-supercomputing-solution/.
The LINPACK benchmark. https://www.top500.o0rg/project/linpack/.
LLNL and HPE to partner with AMD on El Capitan, projected as world’s fastest

supercomputer. https://www.llnl.gov/news/1l1lnl-and-hpe-partner-amd-
el-capitan-projected-worlds-fastest-supercomputer.

LLNL sierra. https://computing.1llnl.gov/computers/sierra.
Open MPI. https://wuw.open-mpi.org/.

Raspberry Pi. https://www.raspberrypi.org/.

Red Hat Ansible. https://www.ansible.com.

Ubuntu Linux. https://ubuntu.com/.

Pekka Abrahamsson, Sven Helmer, Nattakarn Phaphoom, Lorenzo Nicolodi,
Nick Preda, Lorenzo Miori, Matteo Angriman, Juha Rikkild, Xiaofeng Wang,
Karim Hamily, et al. Affordable and energy-efficient cloud computing clusters:
The bolzano Raspberry Pi cloud cluster experiment. In 2013 IEEE 5th Interna-
tional Conference on Cloud Computing Technology and Science, volume 2, pages
170-175. IEEE, 2013.

Bryan Dixon. Jetson cluster. https://github.com/csuchico-cscibb1/
JetsonCluster.

Kevin Doucet and Jian Zhang. Learning cluster computing by creating a Rasp-
berry Pi cluster. In Proceedings of the SouthEast Conference, pages 191-194,
2017.

Samuel Holt, Andrew Meaux, Jacob Roth, and David Toth. Making the one
cluster per student method of teaching parallel computing financially practical.
Journal of Computing Sciences in Colleges, 33(4):106-113, 2018.

Bruce Tulloch. Raspberry Pi clusters come of age. https://www.raspberrypi.
org/blog/raspberry-pi-clusters-come-of-age/.

29

Godot Engine and Checklist-Based
Specifications: Revising a Game
Programming Class for Asynchronous
Online Teaching*

Paul Gestwicki
Computer Science Department
Ball State University
Muncie, IN 47306

pvgestwicki@bsu. edu

Abstract

This experience report describes the revisions to an undergraduate
elective game programming course that were made in response to the
COVID-19 pandemic. The course transitioned from a lab-based, in-
person class to an online, asynchronous one. This required a change
in teaching technology from Unreal Engine 4 to Godot Engine. The
course expanded its use of checklist-based specifications grading in order
to facilitate student autonomy with minimal reduction in creativity and
motivation. The course revisions required significant time investment,
but the results were positive.

1 Introduction

The pandemic surprised everyone in Spring 2020, and institutions of higher
education were pressed to make radical changes for the coming Fall. Many fac-
ulty put in extraordinary effort to accommodate these changes into our course
plans. This experience report describes changes made to one such course: an
upper-level Computer Science department elective on game programming. The

*Copyright (©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

30

course was traditionally offered face-to-face in a lab environment, but due to
the pandemic, it transitioned to asynchronous and online. This necessitated a
cascading change in the instructional technology, switching from Unreal Engine
to Godot Engine.

This report covers the course changes and their impact. The course itself is
described, followed by discussions of engine selection and assessment strategy.
The complete course plan, which includes all of the project specifications and
assessment instructions, can be found online! and is provided under a Creative
Commons Attribution ShareAlike license.

2 Context

The game programming course under discussion is a three credit-hour elective.
The prerequisites include three semesters of programming-focused courses as
well as a course on discrete mathematics. Most students who take the course
are junior or senior Computer Science majors, although it can also be the final
course taken by Computer Science minors. Formally, the course is not itself a
prerequisite for any other course, although some students use it as preparation
for working on game projects in capstones or multidisciplinary team projects.
The learning objectives of the course cover fundamental techniques and pro-
cesses of game programming, emphasizing technical concerns over matters of
game design. That is, the course is about how to program games, not what
games to make.

The technology, language, and platform are left to the instructor’s discre-
tion. For several years, the course used PlayN [5], a low-level game program-
ming library for Java. When funding from the college allowed for an update to
lab computers a few years ago, the course switched to Unreal Engine (UE4).
UE4 is a “AAA” engine used for games, architectural visualization, realtime
video production, and simulations; it is perhaps most well known to students
as being the engine that runs the popular game Fortnite? and for being used
in the production of The Mandalorian [3].

When teaching in-person or on-campus, students have access to Computer
Science department lab machines that meet the significant hardware require-
ments for developing with UE4. However, not all students have access to such
hardware when taking online courses. Hence, it would not have been feasible
to continue teaching with UE4 in the online Fall 2020 semester, and a platform
with more modest hardware requirements was needed.

Ihttps://www.cs.bsu.edu/homepages/pvgestwicki/courses/cs315Fa20
2https://www.epicgames.com/fortnite

31

3 Modality

It was not just the hardware that had to change but also the mode of instruc-
tion. The Game Programming course had always been taught in a traditional,
face-to-face format, even before the lab was equipped with specialized hard-
ware for game development. The university’s response to the pandemic was to
move many courses into an online asynchronous mode, including the Game Pro-
gramming course along with almost all of the department’s non-introductory
courses.

Many of the traditional teaching methods used in the course were made in-
feasible by the transition to an asynchronous online modality. For several years,
the course design had drawn inspiration from studio-based learning (SBL),
which is an approach in which students create artifacts that represent their
learning and share those, formally and informally, with peers and experts [13].
SBL is built on assumptions of shared space and shared time, neither of which
were available for Fall 2020. The shared space can potentially be simulated
via remote meeting technologies, but working asynchronously means that the
rapid, face-to-face feedback required for authentic SBL is impossible.

In the absence of SBL, let alone any face-to-face or synchronous interac-
tion, an approach had to be adopted that would maximize student autonomy.
What could normally be done with on-the-fly adaptation and intervention had
to become codified expectations and presentation. However, execution ought
not impinge upon student creativity, lest it violate both the spirit of game de-
velopment and the necessary motivational aspects that allow students to get
through the challenging material. From the perspective of self-determination
theory [15], one needs to recognize the importance of intrinsic motivation to
student success.

4 Godot Engine

A game engine is a software system that combines several tools and libraries
that are useful for game development. These are often brought together into
one interface in the same way that an integrated development environment pro-
vides for general software development. Unity, Unreal Engine, and GameMaker
are three popular game engines.

Godot Engine is a game engine with several noteworthy features, including;:
supporting both 2D and 3D game development; running on multiple platforms;
building for multiple platforms, including HTML5 and mobile; tooling for 2D
and 3D animation; and a custom scripting language—GDScript—that is heav-
ily inspired by Python. Godot Engine has significantly more modest hardware
requirements than UE4, satisfying this important constraint. Additionally, the

32

project website at godotengine.org includes extensive documentation specif-
ically to help beginners.

Godot Engine is free and open source software (FOSS), licensed under the
Expat (“MIT”) license. The roots of the engine go back to 2001 according to a
visual history provided by Juan Linietsky [11], and in an interview, co-creator
Ariel Manzur has described the real development as starting in 2007 [18]. In
2014, Godot Engine was released as free and open source software (FOSS).
Software freedom is an important factor when selecting instructional technology
since it preserves the rights of the users to learn and share [17] while also
promoting a culture of creativity and invention [10].

5 Engine Popularity

Godot Engine is one of many that might satisfy the requirements for the course.
Engine popularity is worth considering in addition to fitness for pedagogic
purpose. This issue should be familiar to computing educators: we teach in
Python and Java despite having countless books and papers explaining how to
do it in Pascal.

Unfortunately, popularity is hard to measure. In the absence of any estab-
lished, rigorous analysis of what engines are being used in practice, one can
build an understanding of the field by looking at engines used in game jams.
Kultima [8] conducted a meta-analysis of game jam scholarship and based on
that, defines a game jam as “an accelerated opportunistic game creation event
where a game is created in a relatively short timeframe exploring given design
constraint(s), and end results are shared publicly.” Since the publication of
this meta-analysis, the number of jams appears to have grown dramatically
due to the popularity of itch.io as a hub for hobbyist and amateur game de-
velopers. There had not previously been such a hub, but now, itch.io/jams
regularly lists over a hundred simultaneous jams at any time. It is worth being
aware of these jams since they represent a complex learning environment that
is emerging online outside the influence of computer science educators. Ito et
al. [7] provide a good introduction to informal “new media” learning, while Faas
et al. [2] have described how the emergence of streaming game development
provides new and powerful affordances for learning programming in particular.

Global Game Jam (GGJ) is the world’s largest annual game development
event. Interested readers should refer to Fowler et al. [4] for a history of GGJ.
User-reported data about jam entries is publicly available from globalgame jam.
org. Table 1 shows the relative popularity of game engines used in GGJ sub-
missions in the years 2019-2021. The years 2019, 2020, and 2021 had 9000,
9598, and 6381 submissions, respectively. The dramatic drop in submissions
in 2021 is undoubtedly an effect of the pandemic.

33

Table 1: Game Engine Popularity at Global Game Jam (2019-2021)

Engine or Library 2021 2020 2019

GameMaker 160 2.5% 281 2.9% 337 3.7%
Godot Engine 312 4.6% 358 3.7% 191 2.1%
1libGDX 9 0.2% 12 0.1% 20 0.2%
Processing 8 0.1% 13 0.1% 23 0.3%
Scratch 16 0.3% 33 0.3% 23 0.3%
SDL 16 0.3% 31 0.3% 25 0.3%
Unity 4104 64.3% 6246 65.0% 5852 65.0%
Unreal Engine 547 8.6% 666 6.9% 606 6.7%

Data about popular engines Unity, Unreal Engine, GameMaker, and Godot
Engine are provided along with those for other potentially interesting engines.
While PlayN—the previous library used in the game programming course—is
not tracked in the GGJ database, it is closely related to libGDX, another low-
level Java-based game development library whose data are included. Other
notable engines and libraries include: Processing, which is often used to intro-
duce programming concepts in art schools and visual arts programs, and it is
sometimes found in Computer Science programs as well; Scratch, the venerable
block-based programming environment for beginners [12]; and SDL, which is
not an engine at all but is a low-level, cross-platform library for game program-
ming, often used by students and hobbyists to make games and engines.

In summary, then, while Unity is the dominant force, Godot Engine’s pop-
ularity in jams is on par with other competitors and significantly higher than
some other CS-friendly options. Being FOSS, it manifests the value of software
freedom, which is important as a matter of access and also to prevent unneces-
sary constraints from being imposed on our student learners. Godot Engine is
also used by Indiana University’s game design major, which gives credence to
its fitness for purpose in higher education. With Godot Engine being a good
candidate for a platform, attention must now be paid to the asynchronous
online pedagogy.

6 Checklist-based specifications grading

The course kept its traditional structure of being divided into two roughly equal
parts. The first half of the semester was divided into weekly assignments that
helped students to build fundamental skills. The second half of the semester
was devoted to a final project that was completed in three iterations. Each
iteration involved submitting a formally evaluated increment. In a normal

34

semester, students would share these results in the lab with their classmates
following SBL. For the online asynchronous class, the games were posted to the
Canvas discussion board, where classmates were encouraged to give feedback.

For the past three years, the class has used specifications grading as a
primary evaluation technique. Specifications grading is an implementation of
contract-based grading in which students’ grades are determined by the extent
to which they meet clear, objective specifications [14]. Largent [9] has reported
on the efficacy of specifications grading for Computer Science education. Fol-
lowing this approach, then, the requirements for each project were divided into
criteria for grades A, B, C, and D. Meeting all of the D criteria earned a D, ad-
ditionally meeting all the C criteria earned a C, and so on. The specifications
were designed so as to encourage autonomous practice and maintain intrin-
sic motivation. The increased specificity of the instructions for asynchronous
instruction is manifest in the word count of the project descriptions, which
ballooned from 3,673 in Fall 2019 to 11,632 in Fall 2020.

Checklist-based specification is an original extension of specifications-based
grading in which students self-report their completion of the specifications.
Figure 1 shows the checklist-based specification for the first week’s assignment.
Students found the checklist after a detailed, prose explanation of the week’s
tasks. The technical work for this specific week included completing a standard
Godot Engine tutorial.> The week also familiarized students with other aspects
of the class, including submitting work via URL to Canvas, using the discussion
board to establish a sense of community, proper use of version control, and the
inclusion of project reports with each submission.

While checklist-based grading was used in the past, Fall 2020 also saw the
addition of final project “stars,” which were required for for A and B grades.
Students could earn stars in various ways, rather than being tied to fixed
criteria as shown in Figure 1. Earning an A over a B, then, was a matter
of earning more stars. Readers familiar with Nilson [14] will recognize this as
embedding the “more hurdles” philosophy within the broader context of “higher
hurdles”.

Each submission required a project report in which the student provided
a self-assessment and reflection. The self-assessment comprises a completed
checklist along with a statement of what grade is earned. Given the project
report, then, the instructor’s task is verification of students’ claims rather than
grading each submission from scratch. The reflection has the students share
at least one paragraph describing something that they found interesting or
challenging.

The reflection requirement has two clear benefits. First, it provides some

Shttps://docs.godotengine.org/en/stable/getting_started/step_by_step/your_
first_game.html

35

Figure 1: Sample checklist-based specification for grading

Meeting the following criteria earns a D or better grade; failing to meet
these criteria earns an F grade:

(d D-1: The repository link is submitted before the project deadline.

Meeting all previous criteria as well as the following earns a C or better
grade:

(4 C-1: The tutorial has been completed.
4 C-2: You have introduced yourself on the discussion board.

Meeting all previous criteria as well as the following earns a B or better
grade:

[B-1: Your .gitignore file is correctly specified in the repository.
Meeting all previous criteria as well as the following earns an A grade:

[A-1: The project report is complete as per the instructions, with a
reflection and self-assessment.

36

feedback to the instructor about the challenges students have faced and where
their interests are taking them. This is important because, in an online asyn-
chronous environment, there are few affordances to “learn by looking around.”
This impacts SBL practice as previously mentioned, but it has even broader
implications for software development: Cockburn [1] wrote about our capacity
to process ambient information as a major contribution to the success of agile
software development projects, but the affordance for such activity is the first
that is lost when making a course asynchronous. The reflection therefore ad-
dresses, in part, a major complication of the modality. The second purpose for
the requirement is to inculcate an affinity for reflective practice [16]. That is, it
sends the message that getting the project working is only part of the activity:
they should be thinking about what they are doing while they are doing it.

7 Observations

Checklist-based grading has been used in the course since Fall 2018, and these
continued to work as intended despite the change in technology. The compre-
hensive documentation of expectations, rather than the combination of doc-
umentation and extemporaneous in-person discussion, appeared to yield less
student confusion around weekly requirements. This clarity was especially
useful in the absence of shared lab time. Having large weekly projects meant
that there was a significant amount of material to consider while grading, but
the students’ self-assessments meant that grading was focused on verification
rather than comprehensive review. For example, if a student was satisfied with
submitting C work, there is no need to check whether they have completed the
requirements for an A or B. Furthermore, if a student had checked a requirement
that was not satisfied, feedback could unambiguously indicate this.

Despite the overall successes of the assignment format, a minority of stu-
dents struggled with the seemingly simple requirement that they state what
grade they have earned. There were inevitably multiple students who made
comments indicating that they hoped for a certain grade rather than having
done the work of verifying that they have demonstrated competence. It is not
clear what, if anything, helps them recognize that it is their capacity and re-
sponsibility to do the latter rather than the former. This points to a potential
area for future qualitative research, to better understand the mindset of the
students regarding the balance of responsibilities in higher education.

The “star” system yielded mixed results. It was intended to show students
the variety of valuable activities that they could pursue, but it was clear that
most students simply settled for the ones that required the least effort. It makes
the endeavor seem like a presentation of false choices, which, ironically, is a
common design flaw in game design. Some students did pursue unconventional

37

paths, however, and it’s possible that even those who took the easier path
gained some perspective or insight by reading the options. Again, further
research is necessary here in order to understand all the variables at play.
In the meantime, it seems that little is in presenting more options, even if
engagement is less than ideal.

The course plan is clear about the course requiring nine effort-hours per
week. Successful students clearly abode by this advice, although it broke down
at the end of the semester. The learners made clear progress through the first
and second iterations of their final projects. The final iteration, which spanned
the two weeks after Thanksgiving break, showed markedly less advancement.
Reviewing project history through version control showed that almost all the
project activity took place in the 72 hours before the deadline, which pattern
was not the case in the previous two iterations.

Reviewing students’ reflection essays revealed that this was not a simple
matter of putting off work until the deadline. The majority of students seemed
to recognize that this was not supposed to be work due at the end of two
weeks, but rather, a sustained effort that culminated in a deliverable. How-
ever, it seems the latter is unconventional, and many students seem to default
to a due-date-driven management style: do the work that is due next. Once
again, this merits future qualitative research to better understand students’
perspective. Separately from personal management, however, many students
reported that their reason for lack of progress on the final iteration was actually
the mismanagement of the faculty of their other courses. That is, many re-
ported that their other courses, rather than expecting steady progress through-
out, suddenly assigned additional work in the final two weeks of the semester,
which required inordinate attention. This has not been verified, but it merits
reporting on here, especially in the spirit of providing a snapshot of teaching
during the pandemic. Even if the students’ stories are completely inaccurate
representations of reality, they still represent a widely-experienced perspective.

Finally, it is worth noting that while the course design expected consistent
effort to be applied during the semester, the pedagogy of the final project
did not require it. During in-person sessions, social pressure is enough to
keep students making progress on their projects, since they do not wish to be
embarrassed in front of their classmates. There was no replacement for this
during the final project. Labor logs, such as those described by Inoue [6] for
college writing courses, could be employed in figure courses. They provide both
a record of student activity as well as an instrument for reflection.

38

8

Acknowledgments

David Largent encouraged me to first explore specifications grading and pro-
vided valuable feedback on this aspect of the course design. I am also grateful
to the reviewers who helped strengthen the presentation of this work.

References

1]

2]

13l

4]

5]

[6]

17l

18]

19]

[10]

Alistair Cockburn. Agile Software Development: The Cooperative Game.
Addison-Wesley, Boston, 2006.

Travis Faas, Lynn Dombrowski, Alyson Young, and Andrew D. Miller.
Watch me code: Programming mentorship communities on twitch.tv.
Proc. ACM Hum.-Comput. Interact., 2(CSCW), November 2018.

Jeff Farris. Forging new paths for filmmakers on “The Mandalo-
rian”, 2020. https://www.unrealengine.com/en-US/blog/forging-
new-paths-for-filmmakers-on-the-mandalorian, retrieved March 25,

2021.

Allan Fowler, Foaad Khosmood, and Ali Arya. The evolution and sig-
nificance of the global game jam. In Proc. of the Foundations of Digital
Games Conference, 2013.

Paul Gestwicki. Teaching game programming with PlayN. J. Comput.
Sci. Coll., 31(1):90-97, October 2015.

Asao B. Inoue. Labor-Based Grading Contracts. WAC Clearinghouse, Fort
Collins, CO, 2019.

Mizuko Ito, Sonja Baumer, Matteo Bittanti, danah boyd, Rachel Cody,
Becky Herr Stephenson, Heather A. Horst, Patricia G. Lange, Dilan Ma-
hendran, Katynka Z. Martinez, C. J. Pascoe, Dan Perkel, Laura Robinson,
Christo Sims, and Lisa Tripp. Hanging Out, Messing Around, and Geek-
ing Out. MIT Press, Cambridge, MA, tenth anniversary edition edition,
2019.

Annakaisa Kultima. Defining game jam. In Proceedings of Foundations of
Digital Games (FDG) 2015, 2015.

David Largent. My exploration of specifications grading in a discussion-
based course. J. Comput. Sci. Coll., 33(1):89, October 2017.

Lawrence Lessig. Free Culture. Penguin Press, London, 2004.

39

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

40

Juan Linietsky. Godot history in images!, 2014. https://godotengine.
org/article/godot-history-images, retrieved March 23, 2021.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Eve-
lyn Eastmond. The Scratch programming language and environment.
ACM Trans. Comput. Educ., 10(4), November 2010.

N. Hari Narayanan, Christopher Hundhausen, Dean Hendrix, and Martha
Crosby. Transforming the cs classroom with studio-based learning. In
Proceedings of the 43rd ACM Technical Symposium on Computer Science
Education, SIGCSE 12, page 165-166, New York, NY, USA, 2012. Asso-
ciation for Computing Machinery.

Linda B. Nilson. Specifications Grading. Stylus Publishing, Sterling, VA,
2014.

Richard M. Ryan and Edward L. Deci. Self-determination theory and the
facilitation of intrinsic motivation, social development, and well-being.
American Psychologist, 55(1):68-78, 2000.

Donald Schon. The Reflective Practitioner. Basic Books, New York, 1983.

Richard M. Stallman. Free Software, Free Society: Selected Essays of
Richard M. Stallman. GNU Press, Boston, 2nd edition edition, 2004.

SteamL UG Cast, 2016. Interview with Ariel Manzur, Season 4, Episode 5,
archived at https://steamlug.org/cast/s04e05, retrieved March 23,
2021.

Visualizing Recursion Using Code and
Stack Animation*

Y. Daniel Liang, Jireh Bethely, Gursimran Singh Walia
Department of Computer Science
Georgia Southern University

Statesboro, GA 30458
{yliang, 7524628, gwalia}@georgiasouthern. edu

Abstract

Recursion is an important programming technique, but it is difficult
to learn. Students often struggle to understand how recursion works and
why a tail recursion is efficient. We created a code and stack animation
to demonstrate how a recursive method is executed and another code and
stack animation to demonstrate how a tail recursive method is executed.
Our animations show the call stacks and illustrate interactively how the
call stacks grow and shrink during the execution of a recursive method
and how an activation frame is shared for a tail recursive method. These
code animations enable students to trace the code step-by-step visually
and help students understand the recursion and tail recursion. This
paper presents these two code animations.

1 Introduction

Code animation is a visual tool for tracing the execution of the code. We
have developed more than 240 code animations for Java, C++, and Python.
The code animation have been integrated in the Pearson’s Revel interactive
ebooks [8, 5, 6], which have received positive reviews [1, 2]. In a study [1] con-
ducted at Central Michigan University in 2015, “62 percent of students agreed
or strongly agreed that the animations in Revel that stepped line by line through
code, showing what was happening in the program, helped them better under-
stand how to replicate the coding on their own.” In another study [2| conducted

*Copyright (©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

41

at the University of Louisiana in 2016, “87 percent of students who used the
animations strongly agreed or agreed that they helped them better understand
how to replicate coding on their own.” The second study was conducted after
we added more code animations in the book.

Code animation is effective to help instructors and students to teach and
learn programming. In [7], we demonstrated how the code animation can help
students to learn variables, selection statements, loops, methods, pass by value,
and arrays effectively. Code animation helps students comprehend the code.
More importantly, it illustrates important programming concepts using anima-
tion. Frequently, we have been asked by instructors to develop code animation
for recursion. We listened, responded, and created two code animations for
recursion: one for non-tail recursion and the other for tail recursion.

Recursion is an important programming technique. It is ideal for solving
inherently recursive problems that would be otherwise difficult to solve with-
out using recursion. Recursion is difficult to teach because students have no
idea how recursion is executed behind the scenes. Many researches have been
conducted on teaching recursion [3, 11, 10]. The various approaches for teach-
ing recursion are summarized by Dann, Cooper, and Pausch [3]. Three main
approaches are algorithm animation, program visualization, and using special
software tools. An example of algorithm animation was the GAIGS (Gener-
alized Algorithm Illustration through Graphical Software) package developed
by Naps [9]. Using this system, students can run some prepared animations.
However, this system is not Web-based and the animation does not show the
call stacks. The program visualization is similar to our code animation that
directly shows the execution of the code in the program. However, it does not
show the change of the stack as the method is called or returned. The spe-
cial software tools for teaching recursion use a software such as Alice. These
special software tools do not show the call stacks. All the existing approaches
are not Web-based. Our code animation is developed using HTML, CSS, and
JavaScript. It is platform independent and can be viewed on any device.

It is worth to mention that Guo [4] has created code animation for several
programming languages including Java, Python, and C++. However, his tool
does not read input for Java and C++, does not show the explanation for
each statement being executed, and does not show how a tail recursive method
is called. So, we created the code animation to visualize recursion and tail
recursion.

In the following sections, we will present a code animation to demonstrate
how recursion works and another code animation to demonstrate how a tail
recursion works. We will then present a class test report. The report shows that
these animations help students better understand recursion and tail recursion.

42

2 Recursion Animation

To show how recursion works, we created an animation for computing factorial
using a recursive method. The factorial problem is not a good candidate for re-
cursion, because a non-recursive solution for this problem is more efficient than
using recursion. Nevertheless, it is a simple and intuitive problem for introduc-
ing the concept of recursion and for demonstrating the techniques of writing
a recursive method. Because of this reason, many textbooks use the factorial
problem for introducing students to recursion. You can access the code ani-
mation for this recursive program from https://liveexample.pearsoncmg.
com/codeanimation/ComputeFactorial.html, as shown in Figure 1.

= [m| X
@ Listing 18.1 Animation by Y. Dan' X +

& c O @ liveexample.pearsoncmg.com/co.. @ Y O Q E’nm e @ *» 3 :

<

1 import java.util.Scanner;

2

3 public class ComputeFactorial {

4 /** Main method */

5 public static void main(String[] args) {

6 // Create a Scanner

7 Scanner input = new Scanner(System.in);

8 System.out.print("Enter a non-negative integer: ");
9 int n = input.nextInt();

10

11 // Display factorial

12 System.out.println("Factorial of " + n + " is " + factorial(n));
13 }

14

15 /** Return the factorial for a specified number */
16 public static long factorial(int n) {

17 if (n == @) // Base case

18 return 1;

19 else

20 return n * factorial(n - 1); // Recursive call
21

22}

Figure 1: Code animation for recursion

The animation shows how a recursive method is executed with a stack step-
by-step visually. When the program executes, the main method is invoked (line
5). The animation shows that an activation record is created and pushed to the
stack for the main method. After declaring and reading n, the animation shows
the value of n is stored in the activation record. When calling factorial(n) in line
12, the animation shows that a new activation record is created. To compute
factorial(3), factorial(2) is recursively invoked in line 20. The animation shows
that the activation record for factorial(2) is pushed to the stack. To compute

43

factorial(2), factorial(1) is recursively invoked in line 20. The animation shows
that the activation record for factorial(1) is pushed to the stack. To compute
factorial(1), factorial(0) is recursively invoked in line 20. The animation shows
that the activation record for factorial(0) is pushed to the stack, as shown
in Figure 2. When n is 0, factorial(0) returns 1 in line 18. The animation
shows that the activation record for factorial(0) is removed from the stack.
Now factorial(1) is on the top of the stack, it returns 1 * factorial(0). The
activation record for factorial(1) is removed from the stack. Now the animation
shows that factorial(2) is on the top of the stack, it returns 2* factorial(1). The
activation record for factorial(2) is removed from the stack. Now the animation
shows that factorial(3) is on the top of the stack, it returns 3* factorial(2). The
activation record for factorial(3) is removed from the stack.

@ Listing 18.1 Animation by Y. Dan X + = &
& C (v @ liveexamplepearsoncmg.com/co.. @ Y © Q @n m € @ *» ’»
=1 T <
1 dimport java.util.Scanner;
2
3 public class ComputeFactorial {
4 /** Main method */ Call Stack
5 public static void main(String[] args) {
6 // Create a Scanner factorial(0)
7 Scanner input = new Scanner(System.in); n:0
8 System.out.print("Enter a non-negative integer: "); factorial(1)
9 int n = input.nextInt(); n: 1
10 factorial(2)
11 // Display factorial n:2
12 System.out.println("Factorial of " + n + " is " + factorial(n)); factorial(3)
13 } n:3
14 main
15 /** Return the factorial for a specified number */ n3
16 public static long factorial(int n) {| factorial(0) is invoked
17 if (n == 0) // Base case and pushed to the stack.
18 return 1;
19 else
20 return n * factorial(n - 1); // Recursive call
21
22}

Figure 2: The activation record for factorial(0) is pushed to stack

Finally, when the main method exits, the animation shows that the call
stack is empty. With the help of this animation, students can see how a recur-
sive method is called and tracked using activation records in the call stack.

44

3 Tail Recursion Animation

To show how a tail recursion works, we created an animation for computing
factorial using a tail recursive method. You can access the code animation for
tail recursion from https://liveexample.pearsoncmg.com/codeanimation/
ComputeFactorialTailRecursion.html, as shown in Figure 3. factorial(n,
result) in lines 10-15 is a tail recursive method. The main method invokes
factorial(n) in line 24. Suppose that n is entered as 3, the animation shows
that factorial(n) invokes factorial(n, 1) in line 6. factorial(n, 1) is a tail recursive
method. The animation shows that it invokes factorial(n — 1, n * result) in line
14. factorial(3, 1) invokes factorial(2, 3). factorial(2, 3) invokes factorial(1, 6).
factorial(1, 6) invokes factorial(0, 6). Since factorial(n — 1, n * result) is a tail
recursive, when a new factorial(2, 3) is invoked, the compiler does not create
a new activation record. It will simply reuse the current activation record on
the top of a stack for a tail recursive method. When the tail recursive method
returns result in line 12, the animation shows that the activation record for the
tail recursive method on the stack is removed, as shown in Figure 4.

= m} X
@ Listing 18.9 Animation by Y. Dan' X +

< cC 0O @ liveexample.pearsoncmg.com/codeanima... @ Y« @ Q @n m e @ » 4‘

"

1 dimport java.util.Scanner;
2
3 public class ComputeFactorialTailRecursion {
4 /** Return the factorial for a specified number */
5 public static long factorial(int n) {
6 return factorial(n, 1); // Call auxiliary method
7
8
9 /** Auxiliary tail-recursive method for factorial */
10 private static long factorial(int n, int result) {
11 if (n == 0)
12 return result;
13 else
14 return factorial(n - 1, n * result); // Recursive call
15
16
Call Stack
17 public static void main(String[] args) { ! .
18 // Create a Scanner A
19 Scanner input = new Scanner(System.in); n:3
20 System.out.print("Enter a non-negative integer: ");
21 int n = input.nextInt();
22
23 // Display factorial The program invokes factorial(n)
24 System.out.println("Factorial of " + n + " is " + factorial(n));
25 }
26}

Figure 3: Code animation for tail recursion

45

- o X
@ Listing 18.9 Animation by Y. Dan X +

< C O @ liveexamplepearsoncmg.com/codeanima.. @ Y @ Q @n me @ » §

4

1 dimport java.util.Scanner;

2

3 public class ComputeFactorialTailRecursion {

4 /** Return the factorial for a specified number */

5 public static long factorial(int n) {

6 return factorial(n, 1)§ // Call auxiliary method

7 factorial(3, 1) returns 6 and it is removed from the stack.

8 factorial(3) is on the top of the stack.

9 /** Auxiliary tail-recursive method for factorial */

10 private static long factorial(int n, int result) {

11 if (n == 0)

12 return result;

13 else

14 return factorial(n - 1, n * result); // Recursive call

15 }

16 . .) Call Stack
17 public static void main(String[] args) {

18 // Create a Scanner factorial(0, 6)
19 Scanner input = new Scanner(System.in); n: 0
20 System.out.print("Enter a non-negative integer: "); result: 6
21 int n = input.nextInt(); main
22 n:3
23 // Display factorial

24 System.out.println("Factorial of " + n + " is " + factorial(n));

25}

26 }

Figure 4: The activation record for the tail recursive method is removed when
the method is returned

With the help of this animation, students can see why a tail recursive
method is efficient in space and time, because the activation record is created
only once for a tail recursive method.

4 Evaluation

The idea of creating code animations for recursion was suggested by an in-
structor who has used our code animation for non-recursive programs. We
have created the code animation for recursion and tail recursion in the summer
of 2018 for Java, C++, and Python. In the Fall 2018, we surveyed the students
in a class of 9 students. We used a scale of 1 to 10 for answers, where 1 is poor
and 10 is excellent. The result is as follows:

1. Does the ComputeFactorial.java animation help you understand how a
recursive method is called using activation records? 8.66

46

2. Does the ComputeFactorial TailRecursion.java animation help you under-
stand how a tail recursive method is called using activation records? 8.44

3. Do the animations for ComputeFactorialTailRecursion.java and Com-
puteFactorial.java help you understand why a tail recursive method is
more efficient than a non-tail recursive method? 8.44

The survey shows that students agree strongly that the animations for
recursion and tail recursion help them understand recursion and tail recursion.

We conducted further studies in the Spring 2021 in two classes. Right after
we introduced recursion using ComputeFactorial and ComputeFactorialTail-
Recursion, we tested students in two classes with the following six questions:

Q1: To compute factorial(3), how many times is the factorial method
invoked? Count invoking factorial(3) as the first time. (1 point. Answer:
4 times).

Q2; To compute factorial(3), how many times is the tail recursive facto-
rial(n, result) method invoked? Count invoking factorial(3, 1) as the first
time. (1 point. Answer: 4 times).

Q3: What is the maximum number of the activation records when run-
ning ComputeFactorial with input 3?7 Count invoking the main method
as 1 activation record. (1 point. Answer: 5).

Q4: What is the maximum number of the activation records when run-
ning ComputeFactorial with input 4?7 Count invoking the main method
as 1 activation record. (1 point. Answer: 6).

Q5: What is the maximum number of the activation records when run-
ning ComputeFactorialTailRecursion with input 37 Count invoking the
main method as 1 activation record. (1 point. Answer: 3).

Q6: What is the maximum number of the activation records when run-
ning ComputeFactorialTailRecursion with input 4?7 Count invoking the
main method as 1 activation record. (1 point. Answer: 3).

In Class 1, 17 students studied the materials using the code animation. In
Class 2, 13 students studied the materials without using the code animation.
Table 1 shows the result from the two classes. The table shows that the average
on the preceding six questions is 0.696 for the class using code animation and
0.5 for the class without using code animation.

The test was given immediately after the lectures on recursion and tail
recursion. So, most of the scores are low, because students were just introduced
to recursion. The score for question Q5 is higher than the rest for Class 1,
because we used the question as the example in the code animation for Class
1. Students have fresh memories of that question. Q1, Q3, and Q4 are on
non-tail recursion in Table 1. Q2, Q5, and Q6 are on the tail recursion in bold
in Table 1. Class 1 has a slightly better result than Class 2 on the non-tail

47

Table 1: Test Question Result from Two Classes (tail recursion in bold)

Q1 Q2 Q3 Q4 Q5 Q6 Average
Class 1 0.765 | 0.587 | 0.647 | 0.647 | 0.882 | 0.647 | 0.696
(using

animation)
Class 2 0.538 | 0.615 | 0.692 | 0.615 | 0.307 | 0.231 | 0.5
(without
using

animation)

recursion (Q1, Q3, and Q4) and has a much better result than Class 2 on tail
recursion (Q5, Q6).

The test result shows that the performance for Class 1 is better than Class
2 on average. In particular, Class 1’s performance is much better than Class 2’s
performance on tail recursion. The animation for recursion and tail recursion
was used for Class 1. The animation helps students learn recursion and tail
recursion.

5 Conclusions

This paper presented the code animations for recursion and tail recursion.
These are the effective tools for helping students to learn how recursion and
tail recursion work behind the scenes. Our future work is to establish a frame-
work for creating code animation for recursive programs and create more code
animation for recursive programs.

48

References

1

2]

3l

(4]

(5]
(6]
(7]

(8]
9]

[10]

[11]

Revel educator study assesses quiz, exam, and final course grades at central
michigan university, Fall 2015. http://www.pearsoned.com/results/revel-
educator-study-assesses-quiz-exam-final-course-grades-central-
michigan-university/.

Revel™ educator study observes homework and exam grades at univer-
sity of louisiana, Spring 2016. http://www.pearsoned.com/results/revel-
educator-study-observes-homework-exam-grades-university-louisiana/.

Wanda Dann, Stephen Cooper, and Randy Pausch. Using visualization to teach
novices recursion. In Proceedings of the 6th annual conference on Innovation and
technology in computer science education, pages 109-112, 2001.

Philip J Guo. Online Python tutor: embeddable web-based program visualiza-
tion for CS education. In Proceeding of the 44th ACM technical symposium on
Computer science education, pages 579-584, 2013.

Y Daniel Liang. REVEL™ for Introduction C++ Programming and Data Struc-
tures. 4e. ISBN-13: 978-013466985/. Pearson Education, 2018.

Y Daniel Liang. REVEL™ for Introduction Python Programming and Data Struc-
tures. 2e. ISBN-13: 978-0135187753. Pearson Education, 2018.

Y Daniel Liang. Teaching and learning programming using code animation. In
Proceedings of the International Conference on Frontiers in Education: Com-
puter Science and Computer Engineering (FECS), pages 24-30, 2018.

Y Daniel Liang. REVEL™ for Introduction Java Programming and Data Struc-
tures. 12e. ISBN-13: 978-0135945476. Pearson Education, 2020.

Thomas L Naps and Brian Swander. An object-oriented approach to algorithm
visualization—easy, extensible, and dynamic. In Proceedings of the twenty-fifth
SIGCSE symposium on Computer science education, pages 4650, 1994.

E. Roberts. Thinking Recursively with Java ISBN-13: 978-0471701460. John
Wiley & Sons, Inc., 2005.

Cheng-Chih Wu, Nell B Dale, and Lowell J Bethel. Conceptual models and
cognitive learning styles in teaching recursion. In Proceedings of the twenty-ninth
SIGCSE technical symposium on Computer science education, pages 292-296,
1998.

49

A Machine Learning Approach to
Understanding the Viability of Private
4-Year Higher-Education Institutions®

Kian L. Pokorny
Division of Computing
McKendree University

Lebanon, IL 6225

klpokorny@mckendree. edu

Abstract

For several years there have been warnings of an impending higher-
education crisis in the United States. Clayton Christensen’s 2013 sug-
gestion that half of colleges will close in the next decade still looms [4].
His disruptive innovation theory [2] which considers the impact of online
education coupled with the reduced number of college age students is
now heightened by the COVID-19 pandemic. These factors all play a
role in the economic stress of US higher education institutions. In this
paper, we consider a machine learning approach to investigating trends
in higher education that lead a school to close, be consolidated with an-
other university, or for some reason to no longer exist. The goal is to
understand overall trends and consider factors that indicate an unhealthy
status of a school which precipitates its closure.

Using the IPEDS publicly available data, Private Not-For-Profit 4-
year institutions are examined. The data is sparse in its dimensional
space and highly imbalanced in the classes. Six learning algorithms are
applied, and results are presented. Using an ensemble of four of the
algorithms are shown to provide the best results.

*Copyright (©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

50

1 Introduction

College enrollment has declined for the last 10 years in the United States. In
2011 there were 21,011,000 students enrolled in U.S. higher education. By
spring of 2020, that number had fallen to approximately 19,744,000 [3]. The
decline in the number of “college age” students is expected to continue. Higher
Education in the United States is a competitive business. Schools compete for
a declining number of students and their tuition dollars.

Reduced number of college age students is not the only challenge U.S. uni-
versities face. Due to the COVID-19 pandemic it is estimated that college
enrollment dropped by 2.5% from fall 2019 to fall 2020 [1]. Vedder [5] suggests
seven reasons for the decline of American universities. Declining enrollments,
rising costs of attendance, lower cost vocational training, less government sup-
port for basic research, fewer traditional college age (18-22) people, foreign
universities’ higher prestige and lower cost, and a view of US universities as
being politically left are all suggested as contributing factors to the long-term
decline of U.S. universities [5].

In the book, The College Stress Test: Tracking Institutional Futures Across
a Crowded Market [6] it is recognized that stratifying across sectors (Public
4-year, Private Not-for-Profit 4-year, Private For-Profit 4-year, and Public 2-
Year) is appropriate. Zemsky et.al. [6] found different but similar factors play
a role in scoring the financial health of schools in each sector. Public uni-
versities rarely fail because state and federal government support helps when
enrollments decline. Thus, for calculating a stress score for public institutions,
state appropriations are used as part of the financial health of the institution.
Whereas Private For-Profit institutions are tuition dependent. These institu-
tions have different “missions” than Private Not-For-Profits, and they can come
and go quickly. Private Not-For-Profit institutions can be self-reliant or may
depend on church support. For these institutions endowment plays a role in
calculating the financial component of the stress score.

In this study we identify factors that indicate a university’s potential clo-
sure, merger, or consolidation. For this paper all these situations are classified
as a closure (closed). All other schools are classified as open. We then utilize
several algorithms to predict a school closure. In the section 2, we consider the
data including a description of the data set, data engineering, and feature cre-
ation. Section 3 describes the analysis and results achieved. Section 4 provides
conclusions of this initial study and directions of further investigations.

51

2 Data Source

Here the focus is on Private Not-for-Profit 4-year higher education institutions.
All publicly available data from the Integrated Postsecondary Education Data
System (IPEDS) for the years 2004 through 2018 is obtained. Each year has
approximately 40 tables containing approximately 1800 variables. Private Not-
for-Profit 4-Year schools are extracted for this study. The data includes 933
Private Not-for-Profit 4-year institutions; 39 of these institutions closed be-
tween 2004 and 2018, 8 closed after 2018, and 885 remain open at the time of
writing this paper. These schools represent 2,951,201 undergraduate students
in 2018.

It is determined that the size of the student body at an institution plays an
important role in determining success of the institution. Small schools that are
tuition dependent struggle financially when faced with declining enrollments.
We stratify our schools on size and address the problem with schools that had
undergraduate enrollments of 3500 or less, two years prior to closing. This is
based on 2017 enrollments for schools that remained open at the end of our
study period. The resulting dataset contains 717 schools. 37 of these schools
closed between 2006 and 20018, and 8 of the schools closed after the study
period, in 2019 or 2020.

The data is right aligned so the right-most column represents the final
year open for schools that closed prior to 2019, and each column to the left
represents years prior to closure. For schools that remain open the far-right
column is data for 2018. We then realign the data for the 8 schools that closed
after 2018 to the left so that the dataset provides a consistent representation
for all schools that closed. After properly aligning all data, a total of 45 schools
that closed and 672 schools remaining open are obtained. With 6.3% of the
schools closed the dataset is highly imbalanced.

2.1 Features

Modeling the health of private not-for-profit universities often includes data
in several broad categories; enrollment, retention rates which are highly cor-
related with graduation rates, financial stability including endowments and
long-term investments, and tuition rates. It is also recognized that trends in
the features over time are important. That is, a specific enrollment number
provides different information than increasing or decreasing enrollment over
several years.

After an initial investigation of the available data the features that are cho-
sen for the analysis are listed in Table 1. Several features are aggregates of
IPEDS variables. We use ratios of expenses to revenue which provide a nor-
malized measure across schools. Note that all financial data is adjusted using

52

the GDP deflator. The features End Exp and Price are inspired by Zemsky
et. al. [6]. Price is calculated as the weighted average of the difference between
the advertised price and the average amount of institutional aid, multiplied by
the percentage of students receiving the aid, and advertised price multiplied by
the percentage not receiving institutional aid. This is the price that students
pay, on average, after the discount rate is applied.

Table 1: Model Features Used

Variable Description
0 | FAIL Dependent variable. Current status of the institution.
1 =closed, 0 = open
1 | OBEREG Geographic regions defined in IPEDS
2 | LOCALE Urbanization level of the institution’s location
3 | UndEnroll 2 Total undergraduate enrollment 2 years prior to closure
4 | Enroll1Yr First-year First-time undergraduate enrollment
5 | Retentionlto2 First to second year retention rate
6 | End Exp Endowment to expenses ratio
7 | Price Market Price
8 | TotUNDEnroll Total undergraduate enrollment
9 | AdmitRate Admission rate
10 | GradRatedYr Graduation rate (4 year)
11 | GradRate6Yr Graduation rate (6 year)
12 | StudServ_Rev Student services expenditure to net revenue ratio
13 | TotInst Rev Total instructional coast to net revenue ratio
14 | InstSal Rev Instructional salaries to net revenue ratio
15 | AcadSup Rev Academic support to net revenue ratio
16 | NetAsset Rev Net assets to liabilities ratio

2.2 Data Engineering

Data from five to two years prior to closure is used. Our interest is in predicting
a closure while there is still time to intervene. Thus, the prediction models using
data from two or more years prior to closure is prudent. The rate of change
in the variable from these three years is calculated and used as our features
in the models. For each of the variables 4 through 16 the slope of the line is
calculated from 5 years prior to 2 years prior, which is used as the feature in
the models.

Current enrollment is particularly valuable in determining the health of an
institution. Very small schools have trouble remaining viable when small drops
in enrollment numbers occur. Because current enrollment is very important,
Total undergraduate enrollment (UndEnroll 2) from 2 years prior to closure
(2017 for open schools) is used as another feature. This feature is normalized
by dividing by the largest total undergraduate enrollment value.

53

3 Method

The data is highly imbalanced and sparse in the feature space. This creates
many challenges in obtaining quality classification models. Thus, several dif-
ferent types of learning algorithms are applied to the data. The six learning
algorithms Logistic regression, Logistic Regression with Elastic Net, Random
Forest, XGBoost, Naive Bayes, and K-Nearest Neighbors (KNN) are used to
classify the schools as either 1 = closed, or 0= open. The output of KNN is 0
or 1. The output of the other algorithms is a probability of closure.

Recursive feature elimination is used with logistic regression to help under-
stand feature significance. Table 2 shows the most significant features based
on p-values from the logistic regression.

Table 2: Logistic Regression Features Significance

coef std err P>|z| [0.025 0.975]
Intercept -1.04 -2.074 0.038 -2.022 -0.057
GradRate6Yr -0.876 -1.725 0.084 -1.871 0.119
StudServ_Rev 3.405 1.918 0.055 -0.075 6.886
Totlnst Rev 4.861 2.831 0.005 1.496 8.226
InstSal_Rev -5.703 -1.740 0.082 -12.125 0.720
UndEnroll_2 -5.555 -4.486 0.000 -7.982 -3.128

With logistic regression we normally calculate the odds ratio for an accu-
rate interpretation of the coefficients. However, we can state that because of
the negative coefficient, as UndEnroll 2 increases the probability of failure
decreases. Apart from UndEnroll 2 the features are rates of change obtained
from calculating the slope of the line from five to two years prior to the last
year of the study. Much care in the interpretation of these features needs to
be taken. For example, as InstSal Rev increases the probability of closure
decrease. That is, as the rate of change in the ratio of Institutional salaries
to net revenue from 5 years prior to 2 years prior increases, the probability of
closure decreases. This rate of change in the ratio can be caused by either an
increase in instructional salaries or a decrease in revenues across those years.

The next algorithm is an elastic net with logistic regression which com-
bines L1 and L2 regularization for feature elimination. These regularization
techniques move the coefficients of unimportant features toward zero. Features
in the middle of Table 3 have coefficients closest to zero. Eliminating features
with coefficient values smaller than the absolute value of the intercept’s coeffi-
cient (0.037) yields a set of features that includes the features from the previous
logistic regression, indicating some agreement among these two approaches.

Decision tree algorithms perform automatic features selection. Here we
used random forest and XGBoost algorithms. XGBoost outperforms random
forest in precision. The feature importance for the Random Forest algorithm

54

Table 3: Results for Logistic Regression with Elastic Net

Feature Coefficient
UndEnroll 2 -0.1464
GradRate6Yr -0.1177
GradRatedYr -0.1086
AdmitRate -0.0789
Enroll1 Yr -0.0622
Retentlto2 -0.0573
Price -0.0327
End Exp -0.0047
NetAssetLiab -0.0041
AcadSup Rev 0.0113
LOCALE 0.0178
TotUNDEnroll 0.0202
OBEREG 0.0311
Intercept 0.0371
InstSal Rev 0.0401
StudServ_Rev 0.0550
Totlnst Rev 0.1148

is given in Figure 1 and XGBoost in Figure 2. Here we see similar feature
importance for the decision tree-based algorithms. Note that UndEnroll 2 is
most significant indicator in these models as well.

UndEnroll_2
NetAssetLiab
EnrolilYr
Retentlto2
End_Exp
GradRatedYr
TotUNDEnroll
AcadSup_Rev
GradRate6Yr
Totinst Rev
Price
AdmitRate
StudServ_Rev
InstSal Rev
OBEREG
LOCALE

000 0.05 010 015 020 025
Random Forest Feature Importance Based on Impurity Decrease

Figure 1: Random Forest Feature Importance

The Naive Bayes algorithm implemented with all features listed in Table
1 provides relatively good results. After experimenting with various feature
combinations, K-Nearest Neighbors (KNN) is implemented with the features
UndEnroll 2, TotInst Rev, GradRate6Yr, and InstSal Rev.

Because the data is imbalanced and we are concerned with the minority

55

UndEnroll_2
NetAssetliab
Totinst_Rev
GradRatedYr
TotUNDEnroll
EnrolilYr
Retent1to2
Price
End_Exp
AcadSup_Rev
StudServ_Rev
AdmitRate
InstSal_Rev
GradRate6Yr
OBEREG
LOCALE

0.00 0.02 004 0.06 0.08 010 012 014
XGBoost Feature Importance Based on Impurity Decrease

Figure 2: XGBoost Feature Importance

class (closed=1), recall, precision, and F1-scores are reported for each method.
Table 4 lists the results.

Table 4: Results of the Algorithms

Recall Precision F1-Score
Logistic regression 0.2000 0.5000 0.2857
ElasticNet LR 0.7000 0.1489 0.2456
Random Forest 0.5000 0.2778 0.3571
XGBoost 0.5000 0.6250 0.5556
Naive Bayes 0.7000 0.3043 0.4242
K-Nearest Neighbors | 0.5000 0.3125 0.3846
Ensemble Method 0.9000 0.4500 0.6000

Finally, an ensemble of the Random Forest, XGBoost, Naive Bayes, and
KNN algorithms is built. The output of each of these algorithms is weighted
at 0.34 and summed to produce the ensemble value. All records with a value
>0.499 are classified as 1=closed. This is approximately a majority vote
method. The last row in Table 4 provides results for the ensemble. A re-
call of 0.90 indicates that 90% of the closed schools are correctly predicted. A
precision of 0.45 indicates that 55% of the schools predicted to close, have not
closed. The ensemble method has the highest recall and F1-Score.

4 Conclusions

Higher education institutions in the United States face many challenges. In this
article we investigate data from IPEDS to provide some insight into continued

56

viability of small Private Not-For-Profit 4-year schools. The data is limited in
number, imbalanced, and sparse in the feature space making prediction diffi-
cult. However, we are able to determine features that indicate if a school may
be facing possible closure. Finally, an ensemble of models generated from ran-
dom forest, XGBoost, Naive Bayes, and KNN algorithms were used to obtain
good results. The result from the ensemble shows a marked improvement from
the individual algorithms. In addition to the broad categories mentioned in
section 2.1, the models indicate that the ratios of total instruction cost and
instruction salaries to net revenue play a role in the viability of these schools.

A future study investigates the schools predicted to be closed by these
models that are currently open. One study in progress includes other data
sources to complement the IPEDS data and to gain deeper insight into the
health and viability of higher education institutions in the U.S.

References

[1] M. S. Amour. Inside higher ed: Few positives in final fall enrollment num-
bers. https://www.insidehighered.com/news/2020/12/17/final-fall-
enrollment-numbers-show-pandemics-full-impact##:~:text=The)20finall,
20word%20is%20that , about’%204007%2C000%20students’20this%20fall.

[2] Clayton M Christensen and Henry J Eyring. The innovative university: Changing
the DNA of higher education from the inside out. John Wiley & Sons, 2011.

[3] National Center for Educational Statistics. Digest of education statistics. https:
//nces.ed.gov/programs/digest/d19/tables/dt19_105.30.asp.

[4] D. Lederman. Clay christensen, doubling down. https://www.insidehighered.
com/digital-learning/article/2017/04/28/clay-christensen-sticks-
predictions-massive-college-closures.

[6] R. Vedder. The decline of the american university. https://www.forbes.
com/sites/richardvedder/2020/06/22/the-decline-of-the-american-
university/?sh=76e58£2921f0.

[6] Robert Zemsky, Susan Shaman, and Susan Campbell Baldridge. The college stress
test: Tracking institutional futures across a crowded market. JHU Press, 2020.

57

Python Data Structures for Java
Programmers*

Conference Tutorial

Bill Nicholson , Isaiah Dicrostoforo
University of Cincinnati

nicholdw@ucmail.uc. edu

This tutorial introduces Python data structures such as Lists, Sets, Tuples,
Strings, and dictionaries. It draws connections to data structures in Java.
Attendees will learn how Python data structures differ from and overlap with
similar data structures in Java.

Attendees can participate using open-source tools such as JupyterLab note-
books, the python REPL shell, and online Python fiddle web sites. All materi-
als presented will be available during the tutorial in a public GitHub repository:
https://github.com/nicomp42/CCSCMidwest2021Tutorial

*Copyright is held by the author/owner.

58

A Tutorial on Flutter

Conference Tutorial

Michael P. Rogers
Department of Computer Science

University of Wisconsin Oshkosh
Oshkosh, WI 54901

mprogers@mac.com

Flutter is an open-source, cross-platform development kit from Google that
allows developers to create apps for iOS, Android, and other platforms (web
and desktop), from a single codebase.

Flutter takes a modern approach to app development. The SDK is based
on a declarative Ul paradigm that is widely used in the workforce. Apps are
written in Dart, a strongly typed, easy-to-learn language that reinforces good
coding habits. Development can be done in Visual Studio Code, which students
appreciate for its flexibility and simple interface.

Flutter allows instructors to sidestep the issue of what platform to target:
students with any smart phone and operating system can now participate,
sparing the university from having to provide a development environment. It
provides a vehicle and means for introducing declarative Ul design into the
curriculum, so that when students do see this in industry, they will be prepared
for it.

This technology could be used in a mobile computing class, a software engi-
neering/capstone class, or any other situation where students need to develop
for more than one platform.

In this 90-minute tutorial, participants will be introduced to the language,
tools, and paradigms that drive Flutter, and provided with tips, based on the
presenter’s experience, on how best to incorporate this SDK into a mobile class.

59

Using GitHub Classroom for Assignment
Management and Automated Feedback

Conference Tutorial

Zachary Kurmas
Department of Computer Science
Information Systems
Grand Valley State University
Allendale, MI 49401

kurmasz@qgusu. edu

GitHub Classroom is an instructor-facing tool that automates the creation
and management of GitHub repositories for student assignments. In addition,
instructors can optionally utilize GitHub Actions to provide automated feed-
back to students.

This tutorial/workshop will

e Describe several use cases for GitHub Classroom (i.e., the types of as-
signments that can potentially benefit from the tool)

e Demonstrate how to set up GitHub classroom (including creating a GitHub
organization)

e Demonstrate basic GitHub Classroom usage including

— Configuring starter code as a template repository

Setting up an assignment in GitHub Classroom
— Monitoring student progress and helping students
— Reviewing student submissions and providing feedback

e Demonstrate how to use GitHub Actions to provide automated feedback
to students

e Demonstrate how to write scripts that use the GitHub CLI to automate
the process of managing student assignments (e.g., cloning all repositories
for a given assignment)

60

GitHub Classroom is a web interface provided by GitHub that automates
the process of creating separate GitHub repositories for each student (or group
of students) completing an assignment. Instructors create a GitHub repository
containing instructions and /or "starter code" then set it as a "template" repos-
itory. GitHub Classroom then generates a unique URL that can be shared with
students. Upon clicking on that link, GitHub will clone the template repos-
itory and give the new repository unique name that is a combination of the
student’s github account name and the assignment name.

The repositories created by GitHub Classroom are owned by the instructor
(or, more typically by a GitHub Organization administered by the instructor).
As a result, (1) instructors can ensure that the repositories remain private;
and (2) instructors can see and manage the complete list of repositories. (In
contrast, if students were independantly forking the starter code, then the
only way the instructor would know about the repos is if the students sent an
invitation to the instructor.) Because all the repositories automatically appear
in an account controlled by the instructor, he or she can automate the process
of checking out the code (e.g., to evaluate the assignment).

The student GitHub repositories have access to GitHub Actions which can
be used to provide automated feedback. For example, the instructor can con-
figure an Action that will run unit tests whenever code is committed. The
GitHub Classroom web page displays the list of all repositories for a given as-
signment and shows whether the most recently executed GitHub Action was
successful.

The relatively new GitHub CLI (Command Line Interface) provides a num-
ber of tools that make it easy to manage a group of repositories. Those features
not provided directly by the CLI can easily be added by using the CLI to make
GitHub APT calls.

61

IndianaComputes! Views of a K-12
Professional Development Program*

Panel Discussion

Karen M. Morris
IndianaComputes! Project Manager
Unwversity of Notre Dame
Notre Dame, IN 46556

morris.30nd. edu

IndianaComputes! is a collaboration of Computer Science and STEM fac-
ulty from 12 Indiana public and private colleges and universities to provide
computer science professional development to K-12 teachers. Funded with a
contract from the Indiana Department of Education, this professional develop-
ment program started in June 2020 and has been developed to enable schools
to meet the state law that requires public schools to include Computer Sci-
ence in their science curriculum (K-8 schools) and offer a Computer Science
course each year to students (high schools) by July 1, 2021. This professional
development program is a combination of asynchronous online content delivery
and synchronous sessions (Zoom or in-person) coordinated and implemented
by Computer Science faculty. This professional development design differs sig-
nificantly from traditional teacher professional development programs in that
it is year-long, includes both content knowledge as well as pedagogy, identi-
fies foundational information all teachers should know as well as grade-banded
specific fluencies, and uses only university faculty for instruction.

The Panel Discussion will provide the audience a vision for a long-term pro-
fessional development program from both the K-12 participant and the Com-
puter Science faculty perspectives. A moderator will facilitate the discussion
between four Computer Science Faculty and K-12 teacher pairs about the Indi-
anaComputes! professional development program. Computer Science Faculty
will be our Synchronous Session providers representing the broad spectrum of
colleges and universities involved in this project. K-12 teachers will represent
the grade bands: K-2, 3-5, 6-8, and 9-12.

*Copyright is held by the author/owner.

62

Questions for Discussion will include:

1.

o.
6.

What encouraged you to participate in the IndianaComputes! profes-
sional development program?

. What is your perspective of an online Computer science professional de-

velopment program? What would you say the best and worst parts are?

. What was the most challenging aspect of learning/teaching Computer

Science concepts?

. How did your interaction with your K-12 Teacher/CS Faculty member

support you? What else might you have wanted?
How has this impacted your work in the classroom?
Audience Questions

Computer Science Faculty will most likely attend this session in-person,
while K-12 teachers will most likely attend online. Panelists will include (but
may be changed due to availability):

Higher Education K-12 Teacher

Karen M. Morris - University of Notre Dame | K-2 Teacher: Gaisha Williams- McCullough

(moderator) Academy

Michele Roberts — Indiana University — 3-5 Teacher: Sherry Evert - Indiana Horizon

Bloomington Academy

David Largent — Ball State University 6 -8 Teacher: Sister Mary Jacqueline Oranye-
Stonybrook Intermediate & Middle School

Jeff and Devon Kinne — Indiana State 9 — 12 Teacher: Summer Ehresmann — Center

University Grove High School

Hossein Hakimzadeh — Indiana University —

South Bend

63

Teaching Heterogeneous Parallel
Programming With CUDA*

Conference Workshop

David P. Bunde
Computer Science
Knox College, Galesburg, IL 61401

dbunde@knox. edu

CS faculty have spent the last several years adding parallel computing to
their curricula since essentially all processors sold today have multiple cores. A
typical target system is a multicore processor with identical cores. This is the
configuration for most current desktop and laptop systems, but the technology
continues to evolve and systems are incorporating heterogeneity, with cores or
varying size and specialized processing elements to optimize performance and
power. In this hands-on workshop, I will present modules for teaching about
computational and memory heterogeneity with CUDA, a common approach
to graphics processing unit (GPU) programming. Then attendees will have
time to work on the modules themselves as well as to begin planning how the
modules could be used in their courses. Importantly, these modules can be
done using Google Colab, a cloud environment that provides free access to
GPUs without requiring the purchase or installation of hardware.

The first module introduces CUDA to students with no prior exposure to
CUDA and limited experience with parallel computing. It highlights the main
features of GPU programming, which requires the transfer of data to/from the
GPU and features a SIMD model of computing, where the same operations are
performed on all the data. This module demonstrates both the potential of
heterogeneous computing and the greater effort required to realize that poten-
tial. The application is image processing, giving students a motivating example
with plenty of potential parallelism to unlock.

The second module builds on the first and highlights the heterogeneous
memory types on a GPU. GPUs have several kinds of memory, each with dif-
ferent performance characteristics. In this module, block-level shared memory
is used as a programmer-managed cache, allowing a significant performance

*Copyright is held by the author/owner.

64

improvement. Thus, the module both builds on a previous introduction to
CUDA and reinforces general lessons about the memory hierarchy.

Each module fits within a few days of class time in a standard course. They
are posted online with slides, laboratory activities, and potential homework as-
signments (https://github.com/TeachingUndergradsCHC/modules/). This
repository also contains other modules teaching heterogeneous parallel pro-
gramming developed by our project. These will also be briefly introduced
during the workshop.

65

An Introduction to Tableau as a Data
Visualization Tool*

Conference Workshop

Mary Jo Geise
Department of Computer Science
Unwversity of Findlay
Findlay, OH 45840

geiselfindlay. edu

The connection between data science and computer science is high! Many
of our computer science graduates will find jobs that require data analytic skills
as there is currently a huge shortage of data scientists in today’s workforce. Of
the many skills needed to be a data scientist, being able to visualize data and
tell a data story are considered critical skills.

Tableau is one of the leading products for business intelligence, analytics,
and data visualizations. This workshop will introduce participants to vari-
ous features of Tableau utilizing its drag-and-drop functionality. Workshop
attendees will become familiar with basic Tableau terminology and concepts.
Through a series of hands-on activities, participants will learn how to make a
variety of meaningful visualizations, how to create dashboards from these vi-
sualizations, and how to create data stories from dashboards and worksheets.
Lastly, those attending the workshop will learn how the Computer Science
Department at the University of Findlay has incorporated Tableau into their
curriculum.

Participants of this workshop will need a laptop with Internet access.
Tableau will need to be installed and directions will be provided to registered
participants prior to the conference on how to download a free trial version of
Tableau. No previous knowledge of Tableau is required.

*Copyright is held by the author/owner.

66

Building Regional Community for
Computing Education Graduate Students*

Conference Workshop

Morgan M. Fong, Max Fowler, Seth Poulsen, Vidushi Ojha,
and Geoffrey L. Herman
Computer Science
University of Illinois, Urbana-Champaign
Urbana, IL 61801

{mmfong2, mfowlers, sethp3,vojha3, glherman}@illinois. edu

1 Extended Abstract

This workshop aims to provide a safe space for computing education graduate
students to build community with regional peers, talk about graduate student
life, and discuss and receive feedback on current research projects.

Although the number of graduate students in computing education research
continues to grow, students’ connections are often limited to a handful of grad-
uate students and a couple of faculty at their own institutions. Building a
community with local peers strengthens networks and enables cross-pollination
of ideas and feedback that is beneficial for everyone. These stronger networks
can lead to productive research collaboration. Additionally, having a dedicated
space for rough, initial research ideas is important for graduate students of all
stages in order to build confidence and get early feedback in a low-stakes en-
vironment. Finally, establishing strong regional connections will support the
growth of computing education research in the Midwest.

Current graduate students at any stage are welcome to attend. Due to the
nature of discussions, faculty will not be invited. We plan on having 20 partic-
ipants (not including the facilitators), using our network to recruit from Ball
State University, Indiana University Bloomington, University of Southern Indi-
ana, Purdue University, University of Kansas, University of Nebraska-Lincoln,
Michigan State University, University of Michigan, and Ohio State University.
We are working with SageFox Consulting Group, who have an active research
project on our target audience, to help recruit graduate students who may be
interested.

*Copyright is held by the author/owner.
67

2 Anticipated Agenda

The workshop is organized around the three main themes above: building com-
munity with regional peers, talking about graduate student life, and discussing
and receiving feedback on current research projects. As a result, there are two
main activities for participants outlined below: introductions and discussion of
graduate student life in small groups, and a poster session. All activities will
take place in small groups to allow for newer students to present their work in
a lower-stakes environment and to enable more equal participation.

0:00 | Welcome

0:05 | Small Group Introductions I (Groups of 4-5):

Participants will introduce their name, pronouns, institution, year,
advisor (if applicable), and what they hope to gain from the work-
shop

0:20 | Small Group Discussion of Graduate Student Life I:

Sample conversation starters include getting started with research,
finding an advisor, maintaining work-life balance

0:40 | Shuffle Small Groups

0:45 | Small Group Introductions II:

Same as Small Group Introductions I

1:00 | Small Group Discussion of Graduate Student Life II:

Same as Small Group Discussion of Graduate Student Life I

1:20 | 10 minute break

1:30 | Poster Session in Small Groups:

Participants will submit a poster to the organizers prior to the
workshop. The poster should be formatted as one Google slide that
includes at least the participant’s name, institution, and contact in-
formation. During the workshop, each participant will have 5 min-
utes to present their poster, followed by 10 minutes of small group
Q&A. After the workshop, the organizers will share the posters
with all participants.

2:50 | Debrief

3:00 | End of Workshop

68

Aspects of US-China Competition May
Motivate Students*

Work In Progress

Pradip Peter Dey and Bhaskar Raj Sinha
Department of Engineering and Computing
National University

San Diego, CA 92123

{pdey, bsinhalOnu.edu

Certain aspects of the US-China competition in technology may motivate
students for majoring in computer science and related areas. On March 5,
2021, CNBC reported that “In its 14th five-year plan, China laid out seven
technology areas it will focus research on including artificial intelligence, quan-

tum computing, semiconductors . . .” [1]. In response, the US Senate adopted
a bipartisan bill, the US Innovation and Competition Act of 2021 on July 6,
2021 [2, 3, 4].

Should academia pay attention to these developments? What are the best
ways to deal with aspects of the US-China competition in learning environ-
ments? How do we prepare our students for these areas? US universities,
colleges, NASA, and other organizations have played important roles in de-
veloping innovative technologies and their applications. Millions of Americans
were inspired by President John F. Kennedy’s speech at Rice University on
September 12, 1962: “We choose to go to the Moon in this decade and do the
other things, not because they are easy, but because they are hard, because
that goal will serve to organize and measure the best of our energies and skills,

. The goal, Kennedy mentioned, was achieved in the context of another
competition between the USA and the Soviet Union.

This research analyzes different aspects of the US-China competition, and
suggests ways to motivate students that may require changes in academia in or-
der to prepare students for the 21st century workforce. We are optimistic about
the positive outcomes from ethical participation of students, researchers, sci-
entists, and professionals in the peaceful US-China competition because these
participants would be able to take opportunities for making aspiring contribu-
tions towards innovations in science and engineering with encouraging effects

*Copyright is held by the author/owner.

69

on global developments. One of the consequences of the peaceful competition
would be a new wave of worldwide prosperity and sustainable development.
We hope that conflicts, wars, and other destructive activities may be avoided
if mutually beneficial culture, understanding and rules of completion are prac-
ticed.

References

[1]

2]

3]

[4]

70

A. Kharpal. In battle with U.S., China to focus on 7 ‘fron-
tier’ technologies from chips to brain-computer fusion. https:
//www.cnbc.com/2021/03/05/china-to-focus-on-frontier-tech-
from-chips-to-quantum-computing.html.

Tom Lee and Juan Londono. The United States Innovation and Com-
petition Act (USICA): A primer. https://www.americanactionforum.
org/insight/the-united-states-innovation-and-competition-act-
usica-a-primer/.

Wikipedia. United States Innovation and Competition Act.
https://en.wikipedia.org/wiki/United_States_Innovation_and_
Competition_Act.

Patricia Zengerle and David Brunnstrom. Details of sweeping effort to
counter China emerge in U.S. senate. https://www.usnews.com/news/
us/articles/2021-04-08/us-senate-panel-to-to-consider-major-
china-competition-bill-on-april-14-source.

Developing a Cross-Platform Mobile
Course Using a Multi-Paradigm Library*

Work In Progress

Alisa Neeman
Muskingum University
New Concord, OH 43762

aneeman@muskingum. edu

Cross-platform mobile development enables companies to develop one sin-
gle application that runs on multiple platforms, such as Android and iPhone.
Using web-based languages is one way to accomplish this goal. This talk cov-
ers developing a Mobile course using the React JavaScript Library for cross-
platform apps. React JavaScript apps have imperative, declarative, functional,
object oriented, markup, and scripting language features. Although React is a
JavaScript library, it has its own compiler that enables syntax extensions. The
talk includes discussions of approaches for teaching about React’s unique fea-
tures such as: (1) Classes and functions that are render-able components, with
a mixture of HTML, CSS, and React’s JavaScript extensions, (2) a new syn-
tax for Document Object Model event handling with functional programming
behavior, (3) differences between modifiable state (“state”) and non-modifiable
state (“properties”) for a component, and (4) asynchronous data storage and
access. Course content could also potentially be used to illustrate concepts for
Programming Languages and Operating Systems courses.

*Copyright is held by the author/owner.

71

IndianaComputes! a K-12 Professional
Development Program*

Work In Progress

Karen M. Morris
IndianaComputes! Project Manager
Unwversity of Notre Dame
Notre Dame, IN 46556

morris.30nd. edu

IndianaComputes! is a collaboration of Computer Science and STEM fac-
ulty from 12 Indiana public and private colleges and universities to provide
Computer Science professional development to K-12 teachers. Funded with a
contract from the Indiana Dept. of Education, this professional development
program started in June 2020 in order to enable schools to meet the state law
that requires public schools to include Computer Science in the science curricu-
lum (K-8 schools) and offer a Computer Science course each year to students
(high schools) by July 1, 2021. This professional development program is a
combination of asynchronous online content delivery and synchronous sessions
(Zoom or in-person) coordinated and implemented by Computer Science fac-
ulty. This professional development design differs significantly from traditional
teacher professional development programs in that it is year-long, includes both
content knowledge as well as pedagogy, identifies foundational information all
teachers should know as well as grade-banded specific fluencies, and uses only
university faculty for instruction. For this session, we will share results from
the first program year, and early findings for the second program year, which
includes the incorporation of a faculty-mentored teacher coaching model.

*Copyright is held by the author/owner.

72

Can OneUp Gamified Challenges Boost
Undergrad Student Motivation Plus
Engagement and Supplement Learning in
An Online Introductory Cybersecurity
Course?”

Work In Progress

Ankur Chattopadhyay, Meghyn Winslow, Momoka Kinder
Computer Science Department
Northern Kentucky University

Highland Hewghts, KY 41099
{chattopadal, goodridgem, kinderml}Onku. edu

Motivating undergraduate students for active participation and consistent
performance in online courses on introductory cybersecurity topics can be chal-
lenging. Prior literature shows research studies on using gamification tools
for increasing student motivation and engagement in computer science (CS)
courses. OneUp is one such gamification tool that utilizes proven game design
principles, in the form of digital badge-based incentive driven online gamified
challenges, which motivate students to work on additional course topic chal-
lenges, thus resulting in increased engagement and learning. However, even
though there are research studies on boosting student motivation and engage-
ment using OneUp in CS courses, there is limited research on the benefits of
using OneUp in introductory cybersecurity classes, specifically at the under-
graduate level. This work-in-progress research performs a preliminary study to
determine OneUp’s impact as a supplementary aid in an online introductory
undergraduate course on cybersecurity fundamentals. We build an additional
OneUp layer of gamified challenges for this particular online class to support
the learning process, to supplement the learning environment, and to moti-
vate students for working on beginners’ cybersecurity topic-based challenges.
We develop these supplemental OneUp-based gamified learning components to

*Copyright is held by the author/owner.

73

provide students an incentivized opportunity for engaging beyond the regu-
lar course assignments through optional practice and self- testing via online
OneUp exercises. We study the impact of utilizing OneUp for this course by
comparing the class performances of students, who practiced using the OneUp
challenges created by us, with the course performances of the students, who
did not participate in OneUp. We analyze the initial learner data, collected
by surveying the OneUp participants, to determine OneUp’s potential for en-
hancing student motivation, engagement and performance in this class. This
initial research study is a timely intervention for improving overall student ex-
periences in online introductory cybersecurity classes amidst the current chal-
lenges posed by classes going online due to the COVID-19 pandemic. Looking
ahead, we plan to continue our OneUp experimental studies in future online
introductory cybersecurity courses, so that we can collect more research data
for doing further analysis to investigate the impact and efficacy of OneUp as
a supplementary aid in uplifting the motivation, engagement and performance
of remote students in a distance learning environment.

74

Practical Program Verification with
DAFNY*

Work In Progress

Ramachandra B. Abhyankar, Robert W. Sternfeld
Mathematics and Computer Science
Indiana State University
Terre Haute, Indiana 47809
{R.B.Abhyankar,Robert.Sternfeld}@indstate. edu

It is well-accepted that the single most important requirement of a pro-
gram is “correctness.” Program verification is the process of establishing the
correctness of a program. Despite its importance, the “Correctness Problem in
Computer Science” has remained unsolved, and errors in programs continue to
occur, with often serious consequences, in an increasingly computerized world.

The lack of tool support has required a “pencil and paper” approach to
verification, making it impractical. This has resulted in the use of “testing”
to increase the confidence in the quality of the software. It is widely accepted
that testing cannot establish correctness of programs. Testing can only expose
the presence of errors.

We deal only with the verification of imperative programs; this requires the
use of a formalism like Hoare Logic [3] as well as the ability to perform logi-
cal reasoning in propositional and predicate logic, and in theories of equality,
integers, etc. Theorem provers like OTTER, Isabelle/HOL, Model Builders
like MACE 2, and SMT and SAT solvers, have been employed in the task of
program verification.

Automation of Hoare logic has been attempted in systems like Jape [4] and
HAHA [2]. The development of “Program Verifiers” such as DAFNY [1] rep-
resents a major advance in Verification Technology, which provides a seamless
integration of many of these tools. Using DAFNY, programs can be verified
without users having to leave the DAFNY environment. Tools like DAFNY
are making verification practical. Without a “specification”, one cannot talk
about “correctness.” A specification is often stated as a contract, consisting of
a precondition and a post-condition. “Total Correctness” is defined as follows:

*Copyright is held by the author/owner.

7

If the program begins execution in a state that satisfies the precondition, then
it is guaranteed to terminate in a finite amount of time, in a state that satisfies
the post-condition. “Partial Correctness” drops the termination requirement,
and only demands that the post-condition be satisfied if and when the program
terminates.

DAFNY verifies the static total correctness of a program (that is total
correctness without having to run the program). DAFNY enables users to
enter the precondition using the “requires” clause, and the post- condition using
the “ensures” clause. DAFNY allows users to enter assertions, loop invariants,
and loop variants, using other clauses. These help DAFNY to carry out the
verification. The failure of DAFNY to verify a program does not necessarily
mean that the program is wrong. DAFNY may just need more help in the
form of variants and invariants to establish correctness. On the other hand,
a program verified by DAFNY represents something that testing can never
achieve: a correct program.

Program verification using DAFNY can be taught in several Computer Sci-
ence Courses, such as Programming Languages, Software Engineering, Theory
of Computation, etc.

This talk will provide examples of programs verified in class using DAFNY.

References

[1] DAFNY - a language and program verifier for functional correctness.
https://rise4fun.com/dafny.

[2] Nahid A. Ali. A survey of verification tools based on hoare logic. Interna-
tional Journal of Software Engineering & Applications, 8:87-100, 2017.

[3] José Bacelar Almeida, Maria Jodo Frade, Jorge Sousa Pinto, and
Simao Melo De Sousa. Rigorous software development: an introduction
to program verification. Springer Science & Business Media, 2011.

[4] Richard Bornat. Proof and disproof in formal logic: An introduction for
programmers. Oxford University Press, 2005.

76

Spear phishing attack using Kali Linux*

Work In Progress
Imad Al Saeed

Computer Science Department
Saint Xavier University
Chicago, IL 60655

alsaeed@szu.edu

This assignment is for a course on Cybersecurity for students with no prior
knowledge of social Engineering in terms of phishing and spear phishing email
attacks. The course instructor explains the social engineering, phishing, and
spear phishing attack concepts and the differences between them. The course
instructor explains to the students how spear phishing is highly targeted and
targets a single individual compared to how the phishing attack targeted and
targets hundreds and sometimes thousands of recipients. A spear phishing at-
tack scenario might involve an attacker who is impersonating an organizational
IT consultant that sent an email to one or more employees. Their emails will be
worded and signed the same way as the I'T consultants normally do with their
emails. In their way, the company employees will be deceived into thinking that
these are authentic emails. This assignment requires using a special software
called Kali Linux. The instructor provides the students with the following link
to download the Kali Linux software: https://www.kali.org/. Students should
download the Kali Linux software image and install it through their virtual
box on their machines. In this way, students’ computers setting will not be
affected. In this assignment, each student chooses a partner, communicates
with him/her, and sends simulated phishing emails that contain a suspicious
link to a decoy website, such as Google account site, Twitter, Facebook, etc.
to his/her partner. Upon receiving the signed email, the student’s partner
read the email, click on the link, and try to access a decoy website using their
username and password (fake username and password). This process should
be done in five steps:

Step 1: Creating a web page.
The student should create an HTML page using Notepad software and include
a link to a decoy Google account.

*Copyright is held by the author/owner.

7

Step 2: Initiate the attack.

The student runs the Kali Linux through his/her virtual box, selects the ap-
plications menu, and chooses the “Social Engineering” attack option. A new
menu with the following selections will show up:

Social — Engineering Attack.

Penetration Testing (Fast — Track).
Third Party Modules.

Update the Social — Engineering Toolkit.
Update SET configuration.

Help, Credits, and About.

A

The student should choose the first option “Social — Engineering Attack.”
Inside the social Engineering attack, there are also several options and one of
them is “Website attack Vectors. The student will click on that option, and
then select the “Credential Harvester Attack Method.”

The students can either use “Web Template” provided by Kali Linux or
create their own website and import it. But for this assignment, the student
will go with the “Web Templets” option to save time.

The software will ask the student to enter the Kali Linux IP address. The
student can find their kali Linux IP address by using the (IP address) command.
In this way, the software will be entering the listener mode waiting for the user’s
input.

After that, the student will choose the right website template they want to
use. For this assignment, the student will choose the “Google” template as the
clone website.

Step 3: Capturing the user’s login information.

The student will send an email along with the suspicious link to his/her partner.
The partner will open and read the email, click on the link, and enter his/her
fake username and password, and click on “Sign in” to access their Google
account. At the same time, the Kali Linux listener will record his partner’s
username and password.

Step 4: Change order.
Now, the students will exchange their roles and repeat the process again.

Step 5: Student observations and attack prevention.

Students should write one page of original content to discuss their experience
of the excrement. Also, they should research several ways that might be used
to eliminate or prevent this attack from happening. Student research findings
will be used for the next class discussion as well.

78

Faculty-Advisor Relationship Impact on
Student Pathways to IT
Careers/Education”

Work In Progress

Matthew Cloud
School of Information Technology and Criminal Justice
Ivy Tech Community College of Indiana
Gary, IN 46409

mcloud3@ivytech. edu

How do faculty and academic advisor relationships affect students in their
decision-making process for careers and education choices in I'T? We will ex-
plore findings from interviews of faculty and advisors for 8 Computer Sci-
ence/Information Technology programs at 18 campuses across Indiana in the
Ivy Tech Community College on why students follow the paths they do, as well
as the challenges and successes of advising within a community college.

*Copyright is held by the author/owner.

79

