The Journal of Computing
Sciences in Colleges

Papers of the 21st Annual CCSC
Northeastern Conference

April 12-13, 2019
University of New Haven
West Haven, CT

Baochuan Lu, Editor John Meinke, Associate Editor
Southwest Baptist University UMUC Europe, Retired
Susan T. Dean, Associate Editor Steven Kreutzer, Contributing Editor
UMUC Europe, Retired Bloomfield College

Volume 34, Number 6 April 2019

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing Sci-
ences in Colleges. Printed in the USA. POSTMASTER: Send address changes
to Susan Dean, CCSC Membership Secretary, 89 Stockton Ave, Walton, NY
13856.

Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

Table of Contents

The Consortium for Computing Sciences in Colleges Board of

Directors 7
CCSC National Partners & Foreword 9
Welcome to the 2019 CCSC Northeastern Conference 11
Regional Committees — 2019 CCSC Northeastern Region 12
Reviewers — 2019 CCSC Northeastern Conference 13
How Kiva Robots Disrupted Warehousing — Keynote 14

Pete Wurman, Cogitai

Transform the Era of Health with Blockchain — Keynote 15
Jia Chen, IBM Healthcare Solutions

Teaching Neural Networks in the Deep Learning Era 16
Jeremiah W. Johnson, University of New Hampshire

Student Generation of an Optimal Decision Procedure Using Guess
Who? 26

Chris Alvin, Furman University

Applying Social Media Analysis to Real World Business
Problems: A Course Project — Lightning Talk 35

Di (Richard) Shang, Long Island University

Demystifying Blockchain by Teaching it in Computer Science 43
Alan G. Labouseur, Matthew Johnson, Thomas Magnusson, Marist Col-
lege

Puzzling Through Discrete Mathematics 57
Edmund A. Lamagna, University of Rhode Island

Top-10 Suggestions from a Decade of Managing Undergraduate
Software Teams 70

Weiqi Feng, Mark D. LeBlanc, Wheaton College

Factors Influencing Women Entering the Software Development

Field through Coding Bootcamps vs. Computer Science

Bachelor’s Degrees 84
Sherry Seibel, Nanette Veilleux, Simmons University

Course Redesign to Improve Retention: Finding the Optimal Mix

of Instructional Approaches 97
Sotirios Kentros, Manish Wadhwa, Lakshmidevi Sreeramareddy, Koma-
Ipreet Kaur, Marc Ebenfield, Allan Shwedel, Salem State University

Introducing Students to Computer Science and Programming
using Data Analytics 107
Jorge A Silveyra, Muhlenberg College

Low Code App Development — Conference Workshop 119
Meg Fryling, Siena College

Using NSFCloud Testbeds for Research — Conference Tutorial 120
D. Cenk Erdil, Sacred Heart University

Networking and Distributed Computing in One Course
— Lightning Talk 122
Robert Montante, Bloomsburg University of Pennsylvania

Creating Opportunities in Technology for Young Adults With
Autism — Lightning Talk 124
Darlene Bowman

Partnership with Industry Professionals in the Design of Com-
puter Information Science Course — Lightning Talk 127
Nina Dini, Elham Mahdavy

A Web Based Block Language for Modeling Dynamic Data
Structure Algorithms — Lightning Talk 129
Robert A. Ravenscroft Jr., Rhode Island College

Curriculum design for ‘Introduction to Data Informatics’
— Lightning Talk 131
Saty Raghavachary, University of Southern California

Interdisciplinary Programs — Panel Discussion 133
Yana Kortsarts, Adam Fischbach, William J. Joel, Ting Liu

A Survey of Several Advanced Mathematical Concepts
Implemented in Students’ Computer Science Projects
— Faculty Poster 136

Viadimir V. Riabov, Rivier University

Lessons Learned from Integrating POGIL into a CS1 Course
— Faculty Poster 139
Michael Jonas, University of New Hampshire

DDS: A Web Based Tool for Modeling Dynamic Data Structures
— Faculty Poster 141
Robert A. Ravenscroft Jr., Rhode Island College

The Use Of Virtual Desktop Infrastructures In A Graduate
Computer Science Curriculum — Faculty Poster 144
David Pitts, Viadimir V. Riabov, Rivier University

Making (and Keeping) It Simple: Learning to Find Initial

Problem Simplifications for Incremental Development in a First

Programming Course — Faculty Poster 147
John H. E. Lasseter, Hobart William Smith Colleges

Students’ Misconceptions of Gradient Descent Algorithm in an
Machine Learning Course — Faculty Poster 150
Karen Jin, University of New Hampshire

Open Source as an Extracurricular Activity — Faculty Poster 152
Gregory W. Hislop, Drexel University, Joanna Klukowska, New York
University, Lori Postner, Nassau Community College

Developing and Managing Interdisciplinary Programs

— Faculty Poster 155
Adam Fischbach, Yana Kortsarts, Suk-Chung Yoone, Widener Univer-
sity

Using Jupyter Notebooks in a Big Data Programming Course
— Faculty Poster 157
Roland DePratti, Central Connecticut State University

Identifying Skill Sets for Bioinformatics Graduate Students
- A Text Mining Approach — Faculty Poster 160
Richard Shang, Mohammed Ghriga, Long Island University

Teaching Hands-On Computer Organization and Architecture
Using Single-Board Computers — Faculty Poster 163
D. Cenk Erdil, Sacred Heart University

Challenges and Successes of Offering Computer Science Courses

in Urban High Schools: Perspective of Principals and

Administrators — Faculty Poster 165
Sarbani Banerjee, Neal Mazur, Christopher Shively, Joseph Zawicksi,
State University of New York at Buffalo State

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing
Sciences in Colleges (along with the
years of expiration of their terms), as
well as members serving CCSC:

Jeff Lehman, President (2020),
(260)359-4209,
jlehman@huntington.edu,
Mathematics and Computer Science
Department, Huntington University,
2303 College Avenue, Huntington, IN
46750.

Karina Assiter, Vice President
(2020), (802)387-7112,
karinaassiter@landmark.edu.
Baochuan Lu, Publications Chair
(2021), (417)328-1676,
blu@sbuniv.edu, Southwest Baptist
University - Department of Computer
and Information Sciences, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill
Rd., Kansas City MO 64110.

Susan Dean, Membership Secretary
(2019), Associate Treasurer,
(607)865-4017, Associate Editor,
susandean@frontier.com, UMUC
Europe Ret, US Post: 89 Stockton
Ave., Walton, NY 13856.

Judy Mullins, Central Plains

Representative (2020), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, School of
Computing and Engineering, 5110
Rockhill Road, 546 Flarsheim Hall,
University of Missouri - Kansas City,
Kansas City, MO 64110.

John Wright, Eastern
Representative (2020), (814)641-3592,
wrightj@juniata.edu, Juniata College,
1700 Moore Street, Brumbaugh
Academic Center, Huntingdon, PA
16652.

David R. Naugler, Midsouth
Representative(2019), (573) 651-2787,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Lawrence D’Antonio,
Northeastern Representative (2019),
(201)684-7714, ldant@ramapo.edu,
Computer Science Department,
Ramapo College of New Jersey,
Mahwah, NJ 07430.

Cathy Bareiss, Midwest
Representative (2020),
cbareiss@olivet.edu, Olivet Nazarene
University, Bourbonnais, IL 60914.
Brent Wilson, Northwestern
Representative (2021), (503)554-2722,
bwilson@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.

Mohamed Lotfy, Rocky Mountain
Representative (2019), Information
Technology Department, College of
Computer & Information Sciences,
Regis University, Denver, CO 80221.

Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308-2099.
Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer
Science, Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2020), (530)898-4864,
bedixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These
members are serving in positions as
indicated:

Brian Snider, Associate
Membership Secretary,
(503)554-2778,
bsnider@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.

Will Mitchell, Associate Treasurer,
(317)392-3038, willmitchell@acm.org,

1455 S. Greenview Ct, Shelbyville, IN
46176-9248.

John Meinke, Associate Editor,
meinkej@acm.org, UMUC Europe
Ret, German Post: Werderstr 8,
D-68723 Oftersheim, Germany, ph
011-49-6202-5777916.

Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,
MSC 2615, Pacific University, Forest
Grove, OR 97116.

Elizabeth Adams, National
Partners Chair, adamses@jmu.edu,
James Madison University, 11520
Lockhart Place, Silver Spring, MD
20902.

Megan Thomas, Membership
System Administrator,
(209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus,
One University Circle, Turlock, CA
95382.

Deborah Hwang, Webmaster,
(812)488-2193,
hwang@evansville.edu, Electrical
Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft
Google for Education
GitHub
NSF — National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology
Teradata
Mercury Learning and Information
Mercy College

Foreword

Welcome to the 2019 issues of our journal for the CCSC spring 2019 confer-
ences: Southwestern (March 22-23), Central Plains (April 5-6), South Central
(April 5), Mid-south (April 12-13), and Northeastern (April 12-13).

Please plan to attend one or more conferences, where you can meet and
exchange ideas with like-minded computer science educators. Each conference
covers a variety of topics that are practical and stimulating. You can find
detailed conference programs on the conference websites, which are listed on
the CCSC conferencecalendar: http://www.ccsc.org/regions/calendar.

From January 2019, this journal will be published electronically on the
CCSC website and links to the journal issues will be sent to CCSC members
via email. Those of you who would like hard copies of journal issues can order
them from Amazon. Simply search for “CCSC Journal” to find available issues.
The journal will continue to be available in the ACM Digital Library.

As an author, you may post your papers published by CCSC on any website.
Please make sure to use the PDF versions of your papers with CCSC’s copyright
box. Such PDFs can be downloaded from the ACM Digital Library or extracted
from our electronic journal.

Please feel free to email me directly at blu@sbuniv.edu if you notice any
issue with our publications.

Baochuan Lu
Southwest Baptist University
CCSC Publications Chair

10

Welcome to the 2019 CCSC Northeastern Conference

Welcome to West Haven, Connecticut and the University of New Haven,
for the Twenty-Fourth Annual Consortium for Computing Sciences in Colleges
Northeast Region Conference. The conference is held in cooperation with the
ACM SIGCSE and Upsilon Pi Epsilon Honor Society.

Our program features two distinguished invited speakers, Pete Wurman,
Vice President of Engineering at Cogitai and Jia Chen, Offering Leader of
Blockchain Solutions for Healthcare and Life Sciences at IBM’s Innovation and
Solution Incubation Team. The conference has a diverse and engaging pro-
gram that includes paper presentations, lightning and encore talks, workshops,
tutorials, and faculty and student research poster presentations. On Friday
morning, we are hosting our traditional programming contest. On Friday af-
ternoon, we have two student-focused sessions: a student “unconference” and a
programming problems discussion session to allow participants and organizers
of the programming contest to review and analyze problem solutions.

Our thanks go to a remarkable conference committee and highly invested
board. Their inspiring and diligent work has ensured the success of this confer-
ence. We are also very fortunate to have worked with dedicated and thorough
reviewers, enthusiastic session chairs, and outstanding student and staff vol-
unteers at University of New Haven. The conference continues to be selective;
we accepted 9 of 23 papers for an acceptance rate of 39%. This continues to
ensure the high-quality program of a widely recognized regional conference.

We hope you find the conference informative and engaging, meet new col-
leagues, and get new ideas to contribute to computing education in North-
eastern Region. If you are interested in volunteering for our conference, we
encourage you to attend the CCSCNE Business Meeting on Saturday after-
noon. We also look forward to seeing you next year at Ramapo College of New
Jersey.

Alice Fischer

University of New Haven
Mark Hoffman
Quinnipiac University
Conference Co-chairs

11

2019 CCSC Northeastern Conference Committee

Alice Fischer, Conference University of New Haven
Mark Hoffman, Conference Quinnipiac University
Ed Harcourt, Program St. Lawrence University
Ali Erkan, Papers ... Ithaca College
Yana Kortsarts, Papers ... Widener University
Susan Imberman, Panels The City University of New York
Joan DeBello, Lightning Talks St. John’s University
Bonnie MacKellar, Tutorials and Workshops St. John’s University
Ting Liu, Tutorials and Workshops Siena College
Daniel Rogers, Faculty Posters The College at Brockport
Ingrid Russell, Speakers iiiiin University of Hartford
Mike Gousie, Speakers Wheaton College (Massachusetts)
Karl Wurst, Student Unconference Worcester State University
Jacob Aguillard, Student Unconference Worcester State University
Darren Lim, Encore i Siena College
Sandeep Mitra, Undergraduate Posters The College at Brockport
Liberty Page, Undergraduate Posters University of New Haven
Jim Teresco, Undergraduate Posters Siena College
Aparna Mahadev, Undergraduate Posters Worcester State University
Mark Hoffman, Registration Quinnipiac University
Stefan Christov, Registration Quinnipiac University
Frank Ford, Programming Contest Providence College
Del Hart, Programming Contest SUNY Plattsburgh
Benjamin Fine, Programming Contest Ramapo College
Christopher Martinez, Programming Contest University of New Haven
Tim Chadwick, Career Fair co-CoordinatorUniversity of New Hampshire
Kevin McCullen, Vendorscooiiiiiiiiiiia.. SUNY Plattsburgh
David Benedetto, K-12 Coordinator New Hampshire Department of
Education

Regional Board — 2019 CCSC Northeastern Region

Lawrence D’Antonio, Board Representative ..Ramapo College of New Jersey

Mihaela Sabin, Editor University of New Hampshire at Manchester
Mark Hoffman, Registrar Quinnipiac University
Adrian Tonescu, Treasurercocoiiiiiiiiiiie.... Wagner College
Stoney Jackson, Webmaster Western New England University

12

Reviewers — 2019 CCSC Northeastern Conference

Chris Alvin Furman University, Greenville, South Carolina
Dan DiTursi ...t Siena College, Loudonville, New York
Alfreda Dudley Towson University, Towson, Maryland
Cenk Erdil Sacred Heart University, Fairfield, Connecticut
Michael Filippov Rivier University, Nashua, New Hampshire
Benjamin Fine Ramapo College of New Jersey, Mahwah, New Jersey
Timothy FossumRochester Institute of Technology, Rochester, New York
Seth Freeman Capital Community College, Hartford, Connecticut
Sally Hamouda Rhode Island College, Providence, Rhode Island
William Harrison St John Fisher College, Rochester, New York
Sarah Huibregtse ... Rochester Institute of Technology, Rochester, New York
Jeremiah Johnson ... University of New Hampshire at Manches, Manchester,
New Hapshire

Zach Kissel Merrimack College, North Andover, Massachusetts
Bradley Kjell Central Connecticut State University, New Britain, Connecticut
Lisa Lacher University of Houston - Clear Lake, Houston, Texas
David Levine Saint Bonaventure University, Allegany, New York
Qian Liul Rhode Island College, Providence, Rhode Island
Matija Lokar University of Ljubljana, Ljubljana, Slovernia
Joan Lucas College at Brockport, SUNY, Brockport, New York
Robert McCloskey University of Scranton, Scranton, Pennsylvania
Muath Obaidat City Univeristy of New York, New York, New York
Suhaib Obeidat Bloomfield College, Bloomfield, New Jersey
Pat Ormond Utah Valley University, Orem, Utah
Sofya Poger Felician University, Rutherford, New Jersey
Stefan Robila Montclair State University, Montclair, New Jersey
Thomas Rogers Millersville University, Millersville, Pennsylvania
Nick Rosascocoovvinan. Valparaiso Univeristy, Valparaise, Indiana
Richard Scorce St. Johns University, Queens, New York
JooTano.ooil Kutztown University, Kutztown, Pennsylvania
Giovanni Vincenti University of Baltimore, Baltimore, Maryland
Yueming Yang Baldwin Wallace University, Brea, Ohio

13

How Kiva Robots Disrupted
Warehousing*

Keynote

Pete Wurman, Vice-President of Engineering at Cogitai

Kiva Systems introduced swarms of agile robots into an industry dominated
by stationary conveyor systems. The path from concept through successful
startup and eventual acquisition involved challenges on all fronts. Peter Wur-
man will explain the business problem that motivated the innovation, Kiva
technology and the benefits it brought to customers, and the future of appli-
cations of robotics in warehouses.

Dr. Pete Wurman, Vice-President of Engineering at Cogitai Pete Wurman
is currently Vice-President of Engineering at Cogitai, an Al startup delivering
reinforcement learning as a service. Pete is best known for his work as a techni-
cal co-founder of Kiva Systems, the Boston-based company that pioneered the
use of mobile robotics in warehousing. In May of 2012, Kiva was acquired by
Amazon, and has subsequently deployed more than 150,000 robots to Amazon
distribution centers. Prior to joining Kiva, Pete was an Associate Professor of
Computer Science at North Carolina State University. Pete earned his Ph.D. in
Computer Science from the University of Michigan, and his B.S. in Mechanical
Engineering from M.I.T.

*Copyright is held by the author/owner.

14

Transform the Era of Health with
Blockchain*

Keynote
Jia Chen, IBM Healthcare Solutions

Today’s healthcare system faces several systemic challenges, including com-
plex/inefficient processes, lack of interoperability, data silos, fraud and lack of
transparency. Blockchain technology has the potential to bring industry wide
transformation to the healthcare ecosystem by reducing costs and frictions,
bringing more trust and transparency to multiparty transactions, and even
unlocking new sources of revenue for various constituents. We’ll discuss exam-
ples of leveraging blockchain technology to enhance the fluidity of healthcare
information among key stakeholders, leveraging smart contract to reduce ad-
ministrative costs for value based payment models, and the formation of an
open network to drive digital transformation in the industry.

Dr. Jia Chen is an Offering Leader of Blockchain solutions for Healthcare
and Life Sciences at IBM’s Innovation and Solution Incubation team. She
serves on the IBM Academy of Technology Leadership team. She previously
led technical strategy at IBM Watson Health Innovation, with a focus on data
and Al Prior to that, Dr. Chen was the global leader of Watson Experience
Centers at IBM, responsible for Watson Al client experiences across all Watson
group. She held leadership positions for Innovation and client engagement at
IBM Corporate Headquarters as well as emerging markets. She was formerly
the Director of Health Solutions for Smarter Cities at IBM, and the Director
of Technical Sales & Innovation for IBM’s Growth Market Units. She led
the identification, structuring and execution of first of a kind technology and
business initiatives that provide innovative and sustainable differentiation for
IBM’s clients. Dr. Chen received her Ph.D. in Physics from Yale University.
She was named as one of the top 35 technology innovators under the age of
35 worldwide by MIT’s Technology Review in 2005, the Best Researcher of
the Year by Small Times magazine in 2006 and one of the top 26 tech women
innovators at IBM in 2015. She serves on the Yale Graduate School Alumni
Association Board.

*Copyright is held by the author/owner.

15

Teaching Neural Networks
in the Deep Learning Era *

Jeremiah W. Johnson
Applied Sciences € Engineering
University of New Hampshire
Manchester, NH 03101

jeremiah. johnson@unh. edu

Abstract

This paper describes the design and evaluation of the first iteration
of a standalone course in neural networks aimed at upper level under-
graduates and first-year graduate students. The development of this
course was motivated by recent state-of-the-art results on challenging
tasks in computer vision and natural language processing that have been
obtained using deep neural networks, and the subsequent widespread
adoption of these models for various applications in industry. The course
design emphasizes theoretical understanding and development of appli-
cations following existing best practices. Throughout, many unsettled
aspects of the underlying mathematical theory of deep neural networks
are highlighted, and students are prepared to adapt as current trends
and techniques evolve.

1 Introduction

Neural networks are a type of classical machine learning models often covered
as part of an introductory machine learning course. These models are one of
the earlier ideas in artificial intelligence, dating to the work of McCulloch and
Pitts in 1943 [15]. Since then, the popularity of neural networks has waxed and
waned, as experimental results and development of the underlying theory have
alternately sparked excitement or despair among researchers and practitioners.

*Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

16

The past few years have been a period of notable success for neural networks, as
their use has led to remarkable results on challenging tasks in computer vision
and natural language processing [9, 12, 20, 7]. This has coincided with and
been partially driven by the development of graphic processing units (GPUs)
that enable massively parallel computations ideally suited to neural network
optimization algorithms, as well as the development of high-quality open-source
libraries for research, experimentation, and development with neural networks
[3, 1, 17]. The combination of impressive results, widespread availability of
relatively inexpensive GPUs, and high-quality software has led to pervasive
adoption of these models in industry.

This paper describes the development and implementation of an elective
course in neural networks targeted at upper-level undergraduates and first-year
graduate students. The focus of the course is narrow: attention is confined to
the class of models trainable using backpropagation inside a gradient descent
process. The primary goal of the course is to provide students with the back-
ground necessary to understand and reproduce results from current research
and develop their own neural network models for applications that interest
them going forward.

2 Context

2.1 University

In the past few years, several new programs have been launched at the Univer-
sity of New Hampshire’s Manchester college, including degrees in Analytics &
Data Science in 2015 and a Master of Science in IT degree in 2017. These new
programs, along with the existing undergraduate computer science programs,
are all housed in the same department, and students majoring in any one of the
programs will often take courses from the others. The course described here
sits at the intersection of these programs, and is targeted toward both students
pursuing degrees in data science and students pursuing degrees in computer
science, at both the Bachelors and Masters level. This context informed the
development of the course as a primarily application-driven one that would
prepare students to use modern neural network models and machine learning
best practices. The course does not serve as a prerequisite to more advanced
material in machine learning, artificial intelligence, data science, or computer
science more generally, and it is assumed that students may have very limited
experience with machine learning. Although not a prerequisite for more ad-
vanced material, the course may well serve as an introduction to topics that
could form the basis for a senior-year Capstone course or a Master’s thesis.
Although the students expected to enroll in the course might come from dif-

17

ferent programs, the degree requirements for the target audience insure that
everyone in the course would have had several years programming experience in
at least two different programming languages, mathematics through calculus,
and likely some linear algebra.

Training neural networks is computationally intensive. Most of the neu-
ral network models developed in the past several years have been trained on
GPUs, which dramatically accelerate training times. At the time of this writ-
ing, these cards are for all intents and purposes required to train deep neural
networks in a reasonable amount of time, so student access to such cards was
deemed a necessity. The author and a colleague received a GPU Education
Center Grant from NVIDIA Corp. in 2015 that provided three GPUs for stu-
dent use. In addition, early in 2018 Google Inc. debuted Google Colab, a
cloud-based Jupyter notebook environment for scientific computing. This en-
vironment provides free GPU computing resources to users. Students made
heavy use of Colab throughout the course.

2.2 Neural Networks

In recent years there has been an explosion of research into neural networks
and their applications. A quick keyword search of the Thompson-Reuters Web
of Science database shows that approximately 43% of the publications on the
topic of neural networks from 1900-present were published in the last six years.
Most of the eye-catching results have been obtained using variants of classical
feedforward or recurrent neural network architectures, trained using variants of
stochastic gradient descent. These architectures are not new; they have been
used with mixed results for decades. What has changed in the past few years
is the development of training techniques that are successful at training much
deeper and more complex versions of these models, along with the development
of hardware better suited for this application.

Much recent research has focused on using neural networks to solve ap-
plied problems in disciplines such as healthcare or finance. Rather less recent
work has been dedicated to resolving the thorny unsettled theoretical issues
surrounding neural networks, of which there are quite a few. These range from
long-standing issues of model interpretability and bias to recently noted issues
such as susceptibility to adversarial attacks [13, 23]. In addition, as new tech-
niques are developed, often new questions are raised and left unanswered even
as the techniques are widely adopted. An illuminating example of this is the
case of the Adam optimizer, which was introduced in 2014 and remains widely
used despite known issues of convergence, generalization, and implementation
[10, 14, 18]. A well-designed curriculum for a neural networks course at this
point in time must emphasize that current practices are in flux and are likely
to change rapidly, and must prepare students to adapt to the changes.

18

3 Course Design

One of the first curricular design decisions taken when preparing this course
was to limit the focus of the course to neural networks trainable via backprop-
agation using a gradient descent process. This is only a subset of all the neural
networks one might consider. However, limiting the scope of the course to this
subset has many benefits. Many of the most exciting recent advances have
been made with these neural networks, and the mathematical prerequisites to
understanding backpropagation and gradient descent are relatively low.

The course described here was taught over a fifteen week spring semester
in a hybrid format consisting of readings, online video lectures, and face-
to-face meetings. Approximately two-thirds of the course took place online.
The course broke down into three loosely defined modules with some overlap:
preparatory material, followed by convolutional neural networks and applica-
tions in computer vision, and finally recurrent neural networks and applications
in natural language processing. The final two weeks of the course offered a sur-
vey of recent advances in generative modeling.

3.1 Preparatory Material

The preparatory material in the first module of the course consisted of a re-
view of linear algebra, vector calculus, and fundamentals of machine learning.
The linear algebra and calculus review was fast-paced and non-comprehensive,
intended to insure only that the students had the mathematical tools necessary
to understand backpropagation and gradient descent. Topics included basic op-
erations with matrices and vectors and vector calculus up to the Chain Rule.
Attention then turned to fundamentals of machine learning, including model
metrics and assessment, overfitting and underfitting, and cross-validation. This
portion of the course was approximately four weeks long. At the end of the
fourth week, students were given some starter code and expected to complete
a vectorized implementation of gradient descent for a one-layer perceptron.

3.2 Convolutional Neural Networks

In the fifth week, dense feedforward neural networks were used to solve an
image classification task and a sentiment analysis task. For approximately the
next five weeks, attention turned to convolutional neural networks (CNNs).
Computer vision has been revolutionized by CNNs, starting with AlexNet in
2012, whose top-5 error rate on the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) improved upon that of the non-neural network based
runner-up by more than 10.8% [12]. Only three years later, CNNs brought the
top-5 error rate on ILSVCR below the estimated human top-5 error rate [7].

19

Weeks 5 - 10 formed the heart of the course. During this module the ma-
chine learning fundamentals covered in the first module were brought out of
the realm of theory and put to use. After an introduction to convolution and
pooling, students solved the classical object classification challenge presented
by the MNIST handwritten digit dataset, and then considered CNN-based
approaches to object recognition more generally, up to and including the intro-
duction of residual neural networks in 2015 [7]. Following this, students read
the research paper [24] and then reproduced to the extent possible the model
described therein.

Following the object recognition task, the course took a whirlwind tour of
several other computer vision challenges, including semantic segmentation and
image style transfer [5].

This module also provided a framework in which several additional topics
relevant but not specific to CNNs could be introduced, such as optimization
algorithms and tuning. Momentum and Nesterov momentum were introduced
and discussed [22] as well as adaptive optimization algorithms. Hyperparam-
eter optimization was discussed, as well as overfitting and the current arsenal
of techniques to combat it, such as regularization and dropout [21].

Batch normalization, another widely used but controversial technique to
accelerate training, was also covered in this module. This is another example
of a commonplace method for which the theory is far from settled, but as a
component of many recent successful models, it merited inclusion in the course.

3.3 Recurrent Neural Networks

At the ten-week mark, the application focus shifted from computer vision to
natural language processing and sequence modeling. This section focused on
recurrent neural networks (RNNs) and especially long short-term memory net-
works (LSTMs), a class of RNNs that utilizes gating mechanisms to miti-
gate the so-called vanishing gradient problem [2, 8]. The gated recurrent unit
(GRU), a modern variant of the LSTM, and bidirectional versions of all of the
preceding models were discussed [4, 19].

In addition to RNNs, LSTMs, and GRUs, the natural language focus of this
section of the course provided an opportunity to introduce word embedding
models such as the celebrated word2vec model [16]. This in turn enabled the
use of pretrained word embeddings with RNNs for NLP tasks.

The primary application considered in this section of the course was sen-
timent analysis, though the techniques introduced are applicable to most se-
quential data and other applications, such as time series, were briefly discussed.

20

3.4 Generative Modeling

The last two weeks of the course surveyed two recently developed generative
models: variational autoencoders (VAEs) and generative adversarial networks
(GANs) [11, 6]. The development of GANs in particular has spurred much
novel and exciting research in the past few years. Although these models
are fundamentally different than those considered in the rest of the course,
each utilizes a gradient-based training process that is not much different than
that used in the preceding 13 weeks. That said, VAEs in particular require a
higher level of mathematical sophistication than anything else in the course,
which combined with the short timeframe limited coverage to only a very brief
overview of an area of great interest to the research community.

4 Student Work and Assessment

Students were assessed based on their performance on quizzes, homework, and
projects. No exams were given. Quizzes were designed as brief checks to con-
firm that students were keeping up with the online content and assigned read-
ings in the course, and were automatically graded via course management soft-
ware. Homework assignments consisted of readings or programming problems
with a singular focus, such as a particular model architecture or hyperparame-
ter optimization technique. By the second half of the class a typical homework
assignment would involve reading a recent research paper and attempting to
implement the technique or architecture described therein, perhaps with some
instructor-provided code provided to get started. All programming was done
in Python using the libraries Keras and TensorFlow [3, 1].

The first project in the course was introduced in the fifth week, immediately
after the introduction of the basic convolutional neural network architecture.
This project took the form of a class competition to develop the best model
for classifying a dataset of grayscale glyphs of fonts of the letters A - J. The
competition was hosted on the data science competition website Kaggle.com,
which provided automatic cross-validation and a leaderboard updated in real
time for students to track their ranking. At the conclusion of the competition,
students then submitted to the instructor a Jupyter notebook containing all
of the code necessary to generate their model along with documentation and
explanation.

The second project in the course was assigned in the tenth week, shortly af-
ter the introduction of recurrent neural network architectures. The project was
to classify comments from a database of comments made to Wikipedia edits
into six categories that characterized the ‘toxic’ nature of the comment. This
is a multilabel classification problem; a given comment might fall into none,

21

one, some, or all of the categories. Significantly less support was provided for
this project in terms of validation and assessment, and a slight additional chal-
lenge was posed by using the mean AUC (Area Under the receiver operating
characteristic Curve) as the assessment metric. The AUC is not differentiable
and thus cannot be optimized for directly; moreover, the mean AUC is a com-
plex metric that requires better understanding from the student to correctly
diagnose model failings and improve model performance.

The final project in the course was open-ended; students were asked to
develop a suitable model for an application of their choosing. The project and
model were required to be relevant, and students were tasked with selecting
appropriate metrics and properly cross-validating their model.

5 Discussion & Conclusions

Based on observation, student evaluations, student survey results, and personal
communication, the course described in this paper was quite successful. Over
a fifteen-week semester, students were brought very close to the current state-
of-the-art in neural networks, despite the fact that some started out with only
limited experience with machine learning. This can be attributed to several
factors, the most significant of which was the choice to sharply restrict the
focus of the course to the subset of neural networks trainable via a gradient
descent process. This enabled a much deeper dive into recent work than could
have otherwise been taken. The second important factor that influenced the
success of the course was the recent development of high quality, high-level,
open-source software for developing and training neural networks. The course
as described here could not have existed without such software: instead of
developing applications of CNNs and studying CNN architectures, we would
have had to focus on the technical challenges of implementing convolution, no
trivial feat. No doubt the experience of implementing the basic algorithms is
valuable; but for the purposes of this course coverage was limited to a survey
of implementations and issues surrounding them; students were not required to
code them up. The goals of the course dictated the approach taken here; were
the course intended to serve as a prerequisite to more advanced coursework or
research, this would merit reconsideration.

One of the goals of this course was to insure that students are ready to
adapt when the techniques that they learn in the course evolve and change. To
achieve this, students were quickly steered away from textbooks and towards
original sources as soon as they achieved a basic level of competency with a
given topic. This gets the students in the habit of reading and attempting to
reproduce current research, a necessary skill for any practitioner. The field at
this point in time is unique in that much of the literature is within the reach

22

of students at this level, and much relevant content hasn’t made it in to the
textbooks. Students confirmed their satisfaction with this approach, and often
requested source materials right away if none were initially provided for a given
topic. The success of this approach could be seen in the student’s adoption and
use on projects and homework assignments of various techniques not taught in
class.

The in-class competition was the most successful of the three projects, and is
highly recommended to faculty instructing similar courses. The clear objective
and competitive nature of the project motivated the students, and the hosting
site Kaggle provided a seamless experience, which helped at this relatively early
point in the course. Moreover, the difficulty of the project described was ideal,
which was an important additional motivating factor: students could make
progress on the problem, but it took nontrivial effort to do so. The toxic com-
ments project was perhaps the least satisfactory precisely because the problem
proved quite hard for the students to make progress on, and that led to some
frustration as students flailed away at it without seeing any improvement. The
students would likely have benefited from additional exposure to and experi-
ence with metrics such as AUC prior to this project. The open-ended project
that concluded the course led to numerous interesting applications ranging
from object detection to speech recognition. An initial pre-approval process
was used to filter student projects that might be too easy or too challenging,
but projects on both ends of the spectrum did make it through. This presented
something of a challenge from an assessment standpoint, as the chosen prob-
lems ranged dramatically in how well they allowed the student to demonstrate
their knowledge of the material.

The content of this course was well suited to an online hybrid offering.
In addition, there exists a wealth of high-quality publicly available and lib-
erally licensed content online that an instructor can use to supplement and
enhance their own material. By scheduling the weekly class meeting on Thurs-
day evening, the students were given time to go through the online course
content before coming to class, and this allowed the face-to-face sessions to
serve more as lab than a lecture, which facilitated collaboration and dialogue.

Overall, the course describe here was well-received by students and a plea-
sure to teach, despite the somewhat unique challenges of covering this material
in an era of rapid change. It is anticipated that the course will run again in
the next academic year and regularly thereafter with only minor modifications
to assignments and presentation.

23

References

[1]

2]

24

Martin Abadi et al. TensorFlow: Large-scale machine learning on hetero-
geneous systems, 2015. Software available from tensorflow.org.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEFE transactions on neu-
ral networks, 5(2):157-166, 1994.

Francois Chollet et al. Keras. https://keras.io, 2015.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style
transfer using convolutional neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2414—
2423, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information processing
systems, pages 2672-2680, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770-778, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735-1780, 1997.

Jeremiah Johnson. Neural style representations and the large-scale clas-
sification of artistic style. In Proceedings of the 2017 Future Technologies
Conference (FTC), pages 283285, 11 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiw preprint arXiv:1312.6114, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems

- Volume 1, NIPS’12, pages 1097-1105, 2012.

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

Zachary C. Lipton. The mythos of model interpretability. Queue,
16(3):30:31-30:57, June 2018.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in
adam. arXiv preprint arXiv:1711.05101, 2017.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115-133, Dec 1943.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their composition-
ality. In Advances in neural information processing systems, pages 3111—
3119, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in pytorch. 2017.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence
of adam and beyond. In International Conference on Learning Represen-
tations, 2018.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing, 45(11):2673-2681, 1997.

Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. CoRR, abs/1409.1556, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning Research, 15(1):1929-
1958, 2014.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In In-
ternational conference on machine learning, pages 1139-1147, 2013.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Tan Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv
preprint arXiv:1605.07146, 2016.

25

Student Generation of an Optimal
Decision Procedure Using Guess Who?*

Chris Alvin
Department of Computer Science
Furman University
Greenville, SC 29613

chris.alvin@furman. edu

Abstract

We consider the children’s game Guess Who? as a medium to intro-
duce students in an introductory computer science course to the idea of
expected value and consequently a method to construct a model for op-
timal play. Our pedagogical purpose is to advocate for applied statistics
and abstraction with algorithm development in a first computing course.
We found that students in an introductory setting can generate an opti-
mal abstract algorithm for playing Guess Who? corresponding to a path
in an induced decision tree.

Introduction

As machine learning and the corresponding algorithms become pervasive in
computer science, we continue to see a rise in the popularity of some of the
simpler supervised learning techniques. For example, it is a reasonable ’cap-
stone’ project in a non-linear data structures course to require students to
implement an algorithm such as ID3 [3] for decision tree induction. In this pa-
per, we describe a sequence of classroom activities to (1) introduce students to
expectation and expected value in a binary context, (2) abstract an algorithm
from sample data and observations, and (3) induce the notion of a decision
procedure comparable to a path in a decision tree.

*Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

26

Background: Guess Who? and Decision Tree Models

The game Guess Who? [1] is a question and answer game for children ages six
and up. The game instructions give a brief summary.

Your object is to guess the mystery person on your opponent’s card
by asking one question per turn, and eliminating any faces that
don’t fit the mystery person’s description. Guess your opponent’s
mystery person before your opponent guesses yours and you win!

For clarity, we will refer to these mystery persons as characters and their de-
scriptive characteristics using machine learning vernacular: features. In ’clas-
sic’” Guess Who?, there are 24 named characters. Each character is presented to
the players as a portrait with visually observable features. Sample characters
can be reviewed at the Hasbro website!.

Gameplay is turn-based in which one player refines his/her set of characters
down to a single person by asking questions about the characters with Boolean
responses. For simplicity, players are restricted to eliciting a single fact by
posing simple questions consisting of unary expressions (i.e. questions without
logical connectives). For example, it is acceptable to ask, “Does the mystery
character have a beard?” In contrast, it is not acceptable to ask “Does the mys-
tery character have a beard or is the mystery character wearing a hat?” Players
then keep track of their progress in the game by updating the gameboard of
character faces.

Hair Style Hair Eye Color Facial Hair Facial Other
Has Color Blue Has Facial Attribute Glasses
Partition Red Red Hair Large Earrings
Wavy Hair White Brown Moustache Nose Female
Bald Brown Beard Rosy i
. Cheeks Wearing
Long Hair Blond Hat
Black

Figure 1: Guess Who? Character Features

Guess Who? Character Features. Each character in the game can be de-
scribed as evidencing (or not) a particular facial feature or attribute. In our
analyses we considered the features defined in Figure 1. A fair game of Guess
Who? implicitly requires that the players agree upon a clear set of features.
For example, if a player asks “Does the mystery character look sad?” | the

Thttps://shop.hasbro.com/en-us/product/guess-who-classic-game: 7TDEC61D9-5056-
9047-F55F-FC686C17D23F

27

response is subjective. This imprecision is evident in some of the features listed
in Figure 1. For example, analysis of character noses might result in an ob-
server defining nose as a trinary feature: small, medium, large. This may lead
to player confusion and disagreement.

Decision Procedures. At every step in gameplay, a player must choose a
feature for which formulate a question. That is, which feature is best to use
at each node in the tree? Since each feature results in a Boolean response
for Guess Who?, we will employ a simple expected value computation which
calculates the expected number of characters remaining after asking a question
based on feature X:

E(X) = |X|- P(X) + |X| - P(~X) M

where X refers to the number of characters evidencing feature X and P(X)
refers to the probability of feature X. For example, at the beginning of a game
with all 24 characters under consideration, we note 4 characters have beards.
Thus, F(X = beard) = 4 x4/24 + 20 x 20/24 = 17.3 For inducing a decision
procedure, we will thus greedily choose features based on the smallest expected
value of all features of the remaining characters. We note mathematically that
the smallest expected value arises from feature(s) where entropy is maximized;
that is, when a feature is evident in 50% of the set of characters.

Sequentially computing all expected values would result in a binary decision
tree model. A decision tree [2] is a model for approximating a discrete-valued
function f where the root and each internal node corresponds to a test (decision)
of a feature. Each descending branch from a node corresponds to a possible
value of the feature. Each leaf of the tree then corresponds to a classification in
range(f). In the case of Guess Who?, our analyses will define an exact binary
tree with 24 leaves, one leaf for each character. As is typical in algorithms such
as ID3 [3] and C4.5 [4], we engage in a top-down, greedy procedure.

Project Goals

Our goal is to demonstrate that students in an introductory course in comput-
ing can develop an abstract, optimal strategy for playing Guess Who? That
is, students can take advantage of their innate problem solving abilities and
write an algorithm to play Guess Who? in the most efficient and effective
way possible (in a general sense). In our gameplay and analyses, we assume
that a player may only guess the name of the character when one character
remains. A subgoal is that students in introduction to computing will identify
an algorithm that corresponds to an induced binary decision tree.

28

Background: Target Course and Constituent Stu-
dents

The target introductory computer science course is not a traditional introduc-
tion to programming course. The course is a general education, survey course
for majors and non-majors in computing with the subtitle of “Games and
Artificial Intelligence” (Games and AI). That is, students self-select the course
topic over two other themed sections being offered in the same semester. An
introduction to programming is included in all sections of the course, but em-
phasis is placed on breadth and in the case of Games and AI, the focus is on
algorithms and algorithm development related to games, gaming, and some
essential notions in artificial intelligence (logic, reasoning, probability, and de-
cision making). The class consists of three 50-minute class meeting times and
a dedicated 2-hour lab per week. As a department, the pedagogical philosophy
revolves around student engagement. Games and Al has been designed to en-
gage students in exploring and analyzing concepts beyond the lab time, often
resulting in students participating in lab-related activities during the 50-minute
class periods.

Class Year Major Prior Programming Experience
First Year (8) | Undecided (16) None (16)
Sophomore (9) | Urban Studies (1) AP Computer Science A (2)
Junior (3) Communications (1) | Other Computer Science Experience (3)
Senior (1) Political Science (1)
Biology (1)
Music (1)

Figure 2: Descriptors of Constituent Students in Games and Al

At the beginning of the course, a brief survey was administered to gather
some background information on the students. As is shown in Figure 2, the 21
students in Games and AI are a diverse group in terms of age, background, and
potential interest. Several students expressed in writing that they were taking
the course to fulfill a general education requirement in Mathematical Reason-
ing. Several of the students whom are Undecided will eventually opt to major
in Information Technology (IT) or Computer Science (CS). In fact, 2 of the 16
undecided students have since declared as CS majors with more intending to
follow. Most students have never been exposed to programming; however, five
students have already advertised some experience in programming.

29

Methodology

As an experiential, lab-based course, students are introduced to algorithm de-
velopment and analysis from the outset. The course begins by considering the
game of “Higher or Lower” where after each integer guess, the expert responds
with “Lower” or “Higher” based on the guess with respect to the goal value.
As a means of discussion, we consider a general algorithm for how to optimally
play this game; students are unaware that they are implicitly developing a bi-
nary search technique. For the guessing game, it is emphasized that the player
must implicitly track the current minimum and maximum values constituting
an interval containing the goal value we call a goal interval. Students then
engage in a sequence of lab exercises meant to deepen their analysis of the
guessing game. Using several techniques, students infer that the width of the
goal interval decreases toward a single value: the goal. More importantly, they
infer that the most efficient method to guessing the goal value is using a binary
search technique. This observation is formalized using a logarithmic analysis,
both numerically and graphically. In summary, prior to engaging in an analy-
sis of Guess Who?, students already understand the importance of searching a
space by dividing that space in half and disregarding the irrelevant subspace.
The 21 students in the course were paired randomly (2 groups of 9 and 1 group
of 3) and together worked through a structured analysis of Guess Who. The
structure is summarized as follows:

1. Each pair reads the game instructions. The lab clarifies that students
should ask simple questions (questions without logical connectives). For
the purposes of our analyses, we define the notion of casual and com-
petitive game. A casual game requires students to eliminate all other
characters before guessing the mystery person while a competitive game
allows a player to guess the mystery person at any time.

2. Each pair plays six games with differing specifications: vary the first
player as well as strategies by using questions asking about random fea-
tures or competitive play using a perceived strategy. These games ask
the students to implicitly analyze the game for optimal strategies.

3. For the features in Figure 1, students record feature values for each char-
acter in a feature matrix.

4. Students are then introduced to the idea of expected value using the
example with beards described previously. Students then compute the
expected value for each feature at the start of a new game.

5. Using their expected value computations, students choose an optimal
feature for which to pose their first question.

6. As a means of gauging understanding, students are asked why "beard’ is
not an ideal feature. And as a more meaningful follow-up, students are

30

asked to describe a scenario where beard is the best feature for which to
base a question.

7. Last, students are asked to propose a rule for eliminating as many other
characters as possible each turn.

Although not a requirement, each pair was asked to test their strategy against
another pair. Students then submitted the lab for grading. The lab was not
returned before the main component of this study: algorithm development.
The algorithm development activity was broken into two phases: partner de-
velopment and class development.

1. Phase 1 (20 minutes allotted). Working with a partner (possibly the same
partner as before), develop an optimal strategy for playing Guess Who?.
That is, write an algorithm to play Guess Who? in the most efficient
and effective way possible (in a general sense). You may assume that
your play may only guess the name of the character when one character
remains.

2. Phase 2 (20 minutes allotted). Working with all participants in the room,
construct and communicate an optimal algorithmic strategy for playing
Guess Who?.

Results

In this section, we first report observations from students during game anal-
ysis and second report results of the algorithmic development activity. Due
to absences, there were 18 participants resulting in 9 pairs for the algorithm
development activity. Feature Interpretation Issues. The first task in the lab
was for students to familiarize themselves with the game (prior to considering
the features in Figure 1). Observationally, several groups engaged in intermit-
tent discussions about interpretation of character features. For example, one
pair disagreed about the age of a character (being young versus old). This pair
determined that they needed to implicitly agree on a feature set as well the cor-
responding feature vectors for each character in order to play a non-contentious
game. In anticipation of individual interpretations, student analysis focused
on the feature set in Figure 1. Even with a common feature set, each pairs’
feature matrix was unique among all student pairs. There was often disagree-
ment about features with adjectives: long hair, wavy hair, large nose. We agree
that some characters have ambiguous feature values, but these small issues do
not have an impact on algorithm development. Pair-Based Algorithm Devel-
opment. Observationally, student conversation focused on the feature set in
Figure 1: this demonstrates a lack of abstraction of the problem space; that is,
most student conversations implied that their algorithms would not apply to a

31

game of Guess Who? with 24 new characters and a distinct feature set (e.g. a
Star Wars edition of the game). Discussion also focused on clarifications about
expected value and why it is generally a good idea to cut the space in half as
being optimal. We recorded five unrelated, innocuous conversations during the
20-minute timeframe.

Table 1: Analysis of Pair-Based Algorithms
Contain decision-making based explicitly on the defined feature set.
Contain no reference to the defined feature set.

Contain a reference to the feature set only as an example.
Total

O | W| ot

Each of the nine pair-based algorithms generally espoused optimal play
of Guess Who? by removing as close to half of the characters at each step.
However, the concept of expected value was only used to communicate this split
in two of the nine algorithms; the other seven referred to splitting in half. Table
1 summarizes the results of pair-based algorithm development with respect to
abstraction. Even for those students who have taken AP Computer Science,
it is clear that many students are more comfortable communicating a decision
procedure by referring to concrete features. Of the three pairs who developed
a more abstract algorithm, two of the pairs contained one student with prior
programming experience. This means one pair without prior programming
experience developed an abstract algorithm. Even more interesting is that
three students having programming experience constructed a more concrete
algorithm.

1) Calculate the expected value of each trait, then see which trait has the lowest
value

2) Guess the trait with the lowest expected value

3) Eliminate characters based on your partner’s answer

4) After every guess and character elimination, repeat expected value
calculation until only one character remains on the board

5) Guess the name of the one remaining character

Figure 3: Unaltered Student-Generated Algorithm for Optimal Play of Guess
Who?

Class-Wide Algorithm Development. Coming together into one group, ini-

tial suggestions tended toward specifics to the game (large nose). After some
discussion, it was clear that those pairs who developed an abstract solution

32

were able to convince their peers that algorithms should be more general. Af-
ter a few refinements, the final algorithm developed by the entire class is shown,
verbatim, in Figure 3. This algorithm echoes some of the abstract, pair-based
algorithms with greater refinement due to peer review. The algorithm in Figure
3 reflects the instructions given to the students: develop an optimal algorithm
for playing Guess Who?. We observe that this algorithm describes a path in
a decision tree. Thus, it provides a natural segue for introducing a tree data
structures using a binary decision tree—a follow-up activity in the course.

Discussion and Consequent Activities

This was an activity in which students reported strong, positive sentiment.
No survey was issued to confirm these results; however, reaction was positive.
While we believe that developing an abstract algorithm for optimal gameplay
is a meaningful computing activity, it serves as a quality activity to introduce
trees, binary trees, and decision trees. For introductory computing students,
trees offer a simple, implicit structure and a clear Boolean response at each
node. Constructing a decision tree can be cumbersome, but it provides a
foundation for deeper analyses. For example, students might consider the
notion of a path in the tree with respect to developing a new, unique character.
Also, since greedy decision tree construction does not guarantee a unique tree,
students can compare and contrast their trees. One modification to the game
is to allow a player to use logical connectives. Thus, a player can identify a
character with a single question by constructing an expression that equates to
a Horn clause [5] (and thus a path in a tree).

Pedagogical Benefits

While the overarching goal of the introductory computing course is to motivate
and generate interest in computer science, we believe there are other pedagog-
ical benefits. As data is consistently pervasive, students should be introduced
to some of the tools that analysts, mathematicians, and computer scientists
use to extract meaning. While expected value is a simple statistical notion, it
can serve as a powerful mechanism for decision-making. We also believe this
activity is initial evidence that algorithm development need not be relegated to
upper-level courses. Students implicitly construct algorithms via source code
development although few students pause to write an algorithm in pseudo-code
or natural language unless it is required. This activity forces their hand to ex-
plicitly communicate an algorithm verbally and in writing while also allowing
them to test it via gameplay. Further, students in introductory programming

33

courses are exposed to coding simple algorithms, more complex algorithms are
not often developed without knowledge of the underlying data structures. As
our activity does not require code, it can be viewed as a powerful motivational
and synergistic tool for algorithms and data structures. Our analysis also pro-
vides a basis for discussion of other games. That is, a decision tree structure
is not always appropriate to model many more complex games. In those cases,
we (students and computer scientists) must work to develop other techniques
and frameworks for such analyses.

Conclusions And Future Work

By introducing the notion of expected value in the context of Guess Who?, we
have demonstrated that students can generate an optimal, abstract algorithm
for playing the game. This provides a foundation for introducing the notion of
a binary tree data structure and decision trees in an introductory computing
course. We intend to engage students in these activities and collect correspond-
ing data. On top of our content-based goals, we believe the use of Guess Who?
to be an effective tool for eliciting interest in computer science and recruiting
new majors while also providing a meaningful experience for non-majors.

References

[1] I. Hasbro. Guess Who? (Game). https://shop.hasbro.com/en-us/product/
guess-who-classic-game:7DEC61D9-5056-9047-F55F-FC686C17D23F.

[2] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[3] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

[4] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

34

Applying Social Media Analysis to Real
World Business Problems:
A Course Project”

Di (Richard) Shang
Department of Technology, Innovation and Computer Science
Long Island University
Brooklyn, NY 11201
Di.Shang@liu. edu

Abstract

This paper discusses the benefits of introducing a group term project
to a graduate level computer science course of social media analytics. The
course collaborated with a third-party platform —Riipen.com to connect
student teams with external organizations. These projects gave students
experience in developing applications to solve real world business prob-
lems by utilizing analytical techniques learned in the course.

1 Introduction

Social media analytics courses typically introduce to students the common tech-
niques to obtain, process, analyze and visualize social media data [4]. Tech-
niques covered in the courses include topic classification, sentiment analysis,
network analysis, user/customer profile identification, etc. Meanwhile, in the
real world, analytics is not just a technical exercise for the analytical profession-
als. To be successful, analytics must be also aligned with business strategies as
analytics transforms decision making to a more data driven activity [2]. There-
fore, while social media analytics courses focus on teaching practical techniques

*Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

35

and applications to computer science students, the ability to interpret the re-
sults and make actionable recommendations is also essential to students and
thus should be considered in course designs [3, 1].

In an effort to improve students’ soft skills - communication, teamwork,
and strategic thinking, we implement a group term project in which students
are required to serve as student consultants for external organizations through
a platform called Riipen.com. The collaboration platform supports project-
based experiential learning between students, industry partners, and educators.
In addition to gain real-world work experience and build employable skills,
students can network with employers and earn employment opportunities. To
help guide the analysis, the external organizations provide a list of specific
questions whose answers can be used to discover insights into specific business
contexts. Students worked together on small teams to investigate the real-world
business problems and conduct research. Through the semester, students work
on related data sets and apply analytical techniques to seek potential answers
to the given business problems.

The real-world business problems challenge students to decide on what an-
alytical techniques to utilize, and students are motivated to experiment with
a variety of tools and evaluate their capabilities. Using social media analytical
techniques, students are able to conduct analyses and visualization, and they
present the results on interactive online dashboards. Working with real busi-
ness problems, students not only obtain an understanding of the capabilities
of social media analysis to business, they also experience and learn the limita-
tions associated with those techniques. The feedback from students were very
positive. Students were, in general, more involved in the class and intellectual
development, comparing to our previous course design. Students’ course eval-
uations were higher in understanding and solving problems in related field and
applying the course material to real word issues or other disciplines. In addi-
tion, students had better experience in developing an appreciation for the field
in which this course resides and developing an ability to express themselves in
writing or orally in this field.

In the following sections, we introduce the course methodology followed by
a sample project, and then we present student evaluations and conclude the
paper with our conclusions.

2 Course Methodology and Activities

This course is a survey of applications and techniques of social media analyt-
ics. Topics include social media and its impacts on business strategies, topic
classification, sentiment analysis, network analysis and visualization. Students
analyze real-world data using various applications and methods of text min-

36

ing and network analysis techniques. Besides gaining a good understanding
of prominent social media analytics applications and methods, students who
successfully complete this course will be able to understand how social media
analytics are used to address business problems.

Throughout the semester various social media analysis techniques are in-
troduced, and students apply their knowledge working on weekly assignments.
These weekly assignments help reinforce basic analytical skills and prepared
them for group term projects. The group term project is a major component
of the course and accounts for 40% of the final grade. Groups of four to five
students are established at the beginning of semester and required to develop
group projects throughout the course. Each group apply methods and tech-
niques learned in the course to analyze one social media data set. Students are
required to conduct research on the topic, present topic, trend, sentiment, and
network analysis, and discuss the business implications of their findings. At
the end of semester, student groups submit written reports of their projects.
Students are also required to give formal presentations to report their research,
analysis and findings on an interactive web dashboard developed by each team.
The report is required to consist of the following components:

1. Research on the specific topic (market, brand, product positioning, com-
petitive landscape, consumer behavior, etc.)

2. Data collection and processing

3. Social media analysis (topic, sentiment, trend, customer profile, network
analysis)

4. Visualizations of results and web application development

5. Interpretation of the results from social media analysis

6. Recommendations

In order to gain real-world work experience and build students’ soft skills,
in Spring 2016 we connected students with external organizations through a
collaboration platform - Riipen.com. On the platform instructors post their
course projects, and Riipen makes some edits and sources potential organiza-
tions who are interested in the projects. Figure 1 shows the screen shot of
our term project on Riipen. The tasks of student teams were positioned as “a
group of 3 to 5 student-consultants, specialized in data analytics, will analyze a
social media data set in a business context that is specific to your organization.
The student-consultants will conduct market research, as well as topic, trend,
sentiment, and influencer analyses to provide insights to your organization” .
Student teams were committed to the following tasks.

1. Analyze data relating to the industry to identify customer trends
2. Identify prospective customers or demographics via social media postings

37

3. Identify major influencers on social media who could become advocates
for organization’s brands

The final deliverable of the project to the organizations would be a 20-
minute presentation, with an accompanying 10-page report, which outlines
how consumer insights can be gained from social media in order to benefit the
companies.

= Master's level students & Teamsof5 (© 20 hours of student effort

Summary

Student-consultants will conduct market research, as well as topic, trend,
sentiment, and influencer analyses to provide insights to your organization.

Project Examples

Project Examples

A group of 3 to 5 student-consultants, specialized in data analytics, will analyze a
social media data set in a business context that is specific to your organization.
The student-consultants will conduct market research, as well as topic, trend,
sentiment, and influencer analyses to provide insights to your organization.
Projects could include, but are not limited to:

+ Analyse tweets relating to your industry to identify customer trends

+ Identify prospective customers or demographics via social media postings

« Identify major influencers on social media who could become advocates
for your brand

Qutcomes

Each group will contribute +100 hours of work to your organization, which will
culminate in a 20-minute presentation, with an accompanying 10-page report,
which outlines how consumer insights can be gained from social media in order to
benefit your organization.

Figure 1: Screen Shot of the Project on Riipen.com

After the course project was posted on Riipen, organizations interested in
the projects submitted their requests to the instructors with a brief background
of the organization and a list of specific business problems they wanted to solve
through social media analytics. The instructors could ask for clarity or nec-
essary changes before their final approval of the requests. Organizations were
required to provide necessary data for students to analyze if public data is not

38

available. They also committed to be available for a 1-hour interview (vir-
tual, phone, or in person) in order to make sure our students fully understand
the organization, industry and their specific needs. Through the semester,
the organizations were responsive to periodic emails to answer any questions
or concerns that students might have as they progressed. At the end of the
semester, managers from the organizations were welcome to attend the final
presentations (virtually if not local).

3 A Sample Project

Figure 2: Screen Shot of the Shiny Web Application Developed for the Term
Project

One of student teams was connected with a global company selling apparels
to students and young professionals. The company has US social handles and
promotes brand savings and exclusive member offers across social channels.
The company stated that “our current social media presence consists of In-
stagram, Twitter, Facebook, ---, we’d like to develop a better growth strategy
and triple our following and engagement ...A successful project would result
in a higher following and higher engagement across all social media channels.”

39

Through the project, the company wanted to get a better understanding of
consumer mindsets for its brands and knowing what marketing messages and
social media strategies would be to ultimately grow brand awareness and sales
both in store as well as on web sites. The company suggested that “we hope
to gain valuable insights into how to improve our social media presence and
receive an actionable plan we can implement.”

The company’s questions were challenging, but they motivated students
to research the business context and carefully plan the techniques they would
apply to data analysis. In addition, to make actionable recommendations they
had to examine the business implications of their findings and present only
those can derive valuable insights. 20800 tweets related to the company were
collected from Twitter API. Students experimented the analytical techniques
learn in the course on the data. To get a better understanding of consumer
mindsets for the company, students conducted topic classification and senti-
ment analysis. Network analysis were conducted to investigate the network
structure and identify key opinion leaders. Students also generated customer
profile of the company based on the demographic information and social media
activities collected. At the end of the semester, student developed a Shiny web
application with interactive dashboards to demonstrate their findings, as shown
in Figure 2. Based on the findings, a number of actionable recommendations
were concluded by the student team.

4 Course Evaluations

Students gave very positive feedback of their learning experience of the group
term projects with Riipen. Table 1 shows student evaluations of the same
course in Spring 2015 and Spring 2016 respectively. Students in Spring 2015
had the similar group term project, but they were not connected with external
organizations and did not work on real business problems. Instead, they were
provided social media data and worked on hypothetical business problems. In
Spring 2016, we experimented with Riipen.com and connected students with
external organizations. As shown in the table, having students working on real
business problems resulted in higher evaluation scores on 1) involvement and
intellectual development; 2) understanding and solving problems in the field;
3) applying the course material to real word issues or other disciplines; 4) de-
veloping an appreciation for the field in which the course resides; 5) developing
an ability to express themselves in writing or orally in the field. Since students
enrolled in the two semesters were from different groups, there were many un-
controlled factors that potentially affected the evaluation results. Therefore,
we did not run any statistical testing to claim significant difference.

40

Table 1: Student Evaluation Scores (out of 7)

Evaluation Item Median Score Median Score
(Spring 2015) (Spring 2016)

Your involvement in course 6.6 6.9

General intellectual development 6.5 6.8

Understanding and solving 6.2 6.8

problems in this field

Applying the course material to 6.1 6.8

real word issues or other disciplines

Developing an appreciation for the 6.5 6.8

field in which this course resides

Developing an ability to express yourself 6.3 6.8

in writing or orally in this field

The intellectual challenge presented 6.3 6.9

The amount of effort to succeed 6.2 6.9

in this course

5 Conclusion

Group term projects are good course components to help students master ana-
lytical skills and apply knowledge to practical business problems. In addition,
students improve their communication through writing reports and enhance
teamwork skills by collaborating on the projects. In this paper we discuss the
benefits of a course project design which connects student teams with exter-
nal organizations to utilize analytical techniques to solve real world business
problems.

While the project design did help student gain real-world work experience
and build employable skills, we also recognize a number of limitations asso-
ciated with the design. First, while most organizations have social media
presences, many of them don’t have quality social media data for students
to analyze. As data is one of the most important inputs to the analysis pro-
cess, instructors need to carefully screen the organizations and evaluate their
suitability to the project. Second, students need to conduct in-depth research
to understand the specific business contexts the organizations reside in, which
can be time consuming and challenging for the time limit of one semester. As
shown in the student evaluations, the amount of effort required to succeed in
the course became higher and thus created extra stress to the students. Last,
the business problems of some organizations are beyond the scope of the course.
In certain cases, results from social media analysis may not provide valuable

41

insights into the business, and students are not able to deliver meaningful and
actionable recommendations to the organizations to solve their specific business
problems.

References

[1] Forbes. What are the top five skills data scientists need?
https://www.forbes.com/sites/quora/2017/06/15/what-are-the-
top-five-skills-data-scientists-need.

[2] R. Sharda, D. Delen, and E. Turban. Business Intelligence, Analytics, and
Data Science: A Managerial Perspective. Pearson, 2017.

[3] C. Wilson. It’s more than science: 5 soft skills needed to become a data
scientist. http://blog.syncsort.com/2015/04/big-data/its-more-
than-science-5-soft-skills-needed-to-become-a-data-scientist.

[4] D. Zeng, H. Chen, R. Lusch, and S.H. Li. Social media analytics and
intelligence. IFEE Intelligent Systems, 25(6):13-16, 2010.

42

Demystifying Blockchain
by Teaching it in Computer Science’

Adventures in Essence, Accidents, and Data Structures

Alan G. Labouseur, Matthew Johnson, Thomas Magnusson
School of Computer Science and Mathematics
Marist College
Poughkeepsie, NY 12601

{Alan.Labouseur,Matthew. Johnson, Thomas.Magnussonl}@Marist. edu

Abstract

This paper demystifies the advanced computer science topic of block-
chain by placing it in the context of course and content development. In
presenting suggestions for using blockchain as a tool to teach core com-
puter science concepts, the authors reflect on student-centered, research-
based projects spent understanding blockchain and developing an el-
ementary implementation. Their experiences led to several teachable
moments applicable to many topics across CS curricula including soft-
ware design, algorithms and data structures, and distributed computing.
The authors discuss many definitions of blockchain filtered through the
philosophical lens of essence and accidents, give a precise definition of
“essential” blockchain, and provide insight to understanding blockchain
by presenting several of its structures and their implementation in the
context of those curricular topics.

1 Introduction

As a buzzword, “blockchain” generates gratuitous hyperbole. Regardless of
whether or not it really is “the next big thing”, and in spite of the fact that
it is generally mystifying and resists explanation, blockchain presents a use-
ful gateway into teaching core concepts in computer science. In this paper,

*Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

43

we demystify blockchain by discussing its essence and accidents and making
suggestions for using blockchain as a tool to teach core concepts in computer
science.

1.1 Background

Having enjoyed (and endured) several student-centered, research-based experi-
ences spent trying to understand blockchain and develop an elementary imple-
mentation of it, we encountered several teachable moments. We found that we
could provide intuition to aid students’ understanding by relating blockchain-
specific teachable moments to various areas in traditional computer science
curricula. These curricular areas include Software Design (in terms of defining
the problem and discovering its essence and accidents), Algorithms and Data
Structures (including hashing, linked lists, and trees), Distributed Comput-
ing (with issues like cooperating peers and peer discovery), and others (zero-
knowledge protocols, graph theory, and more).

1.2 Contributions and Outline

Using the advanced topic of blockchain to teach core concepts in computer
science is not well covered in existing literature. This paper — a step towards
addressing that deficiency and demystifying blockchain in the process — makes
the following contributions:

o In Section 2 we discuss some difficulties inherent in reasoning about block-
chain and pose a critical question to motivate its exploration in academic
computer science.

e In Section 3 we provide a precise definition of essential blockchain and
suggest its use as a teaching tool.

e In Section 4 we dig into blockchain’s details by exploring its fundamen-
tal nature through a discussion of the historic “essence and accidents”
software design approach in this contemporary context. We also show
examples of essential blockchain structures suitable for use in teaching
several computer science topics.

Finally, Section 5 provides a brief conclusion, links to our blockchain source
code, and comments on our future work.

2 Blockchain Difficulties

In reviewing the literature, we find blockchain difficult to define, difficult to
characterize, and difficult to classify. It’s frustrating. Yet it is within these

44

difficulties that we also find teaching opportunities.

2.1 Difficult to Define

Block-chain has too many definitions. It has been defined as: “a public
ledger” [17], “a distributed ledger” [16], “a peer-to-peer distributed ledger tech-
nology” [10], “a ledger replication system”, an “incorruptible digital ledger of
economic transactions” [15], “a linked list that is built with hash pointers” [14],
a “terrible [...] database” [7], a “state transition system with a consensus sys-
tem” [5], and a “distributed database of records or public ledger of all trans-
actions or digital events” [6].

How is one to make sense of all these definitions? How can our students dig
through all that noise and arrive at meaningful insight? These are motivating
questions.

2.2 Difficult to Characterize

Blockchain’s characterizations are as varied at its definitions. Blockchain is
“an undeniably ingenious invention” unable to be controlled by a single orga-
nization or fail at a single point [2]. This “disruptive technology...opens the
door for developing a democratic open and scalable digital economy” as well
as presents “tremendous opportunities”. The Bitcoin blockchain “solved fun-
damental problems in a highly sophisticated, original, and practically viable
way” [16].

What does all this mean? Can our students dig through these implications
and still arrive at meaningful insight? These are also motivating questions.

2.3 Difficult to Classify

Just as its definitions are varied and its characterizations wide-ranging, there
are many classifications of many kinds of blockchain. These include “cryp-
tocurrency, private blockchains, permissioned ledgers, distributed tech, or de-
centralized tech” [1]. The common term “Distributed Ledger Technology”
(DLT) further stirs the cauldron of bubbling blockchain brands. Corda, a
“distributed ledger” for financial transactions is a DLT [4], but its whitepaper
explicitly states that, “there is no block chain” instead calling the structures
“notaries” [8]. The Hyperledger Sawtooth documentation, however, claims
that an “enterprise distributed ledger” is the same as a blockchain [9].

Who are we to believe? Is there meaningful insight at all? These questions
add still more metaphorical fuel to the equally metaphorical (and pedagogical)
fire.

45

All of these difficulties led us to ask a motivating question: “What is block-
chain?” But then we distilled it to a more important question:

What is essential blockchain?

3 Essential Blockchain

In the context of blockchain history from Bitcoin to Ethereum to Hyperledger,
we build our definition of essential blockchain by first defining its structural
parts.

Transaction — a container for arbitrary data.

Block — a container for one or more transactions.

Blockchain — an ordered, append-only container for one or more blocks
where the i*" block b; depends on the prior block b;_; to confirm b;’s permanent
stasis where ¢ > 1. (We will revisit this idea in Section 4.2.1.)

Given the above definitions, and after examining many Bitcoin, Ethereum,
and Hyperledger use cases, we find that blockchain is an overloaded term be-
cause it’s more than a data structure, it’s also a consensus network of peer
instances of that data structure. Now we have its essence:

Essential Blockchain — a peer-to-peer network of Blockchain instances co-
operating for consensus.

Let’s have a look at some differences between blockchain as a data structure
and blockchain as a consensus network.

3.1 Blockchain as a Data Structure

Blockchain is a data structure in that it is an abstract structure created to hold
information. Satoshi Nakamoto [13], the anonymous inventor(s) of Bitcoin,
the first instance of a blockchain, created blocks to contain monetary exchange
transactions between entities. Blocks in a general blockchain are not limited to
monetary exchanges. The Ethereum blockchain [5], in addition to holding pay-
ment transactions, also contains “smart contracts” that enforce various rules
about various actions on the blockchain. The Hyperledger Fabric [10] block-
chain stores many kinds of data. As one example, the Everledger project [11]
maintains a Hyperledger blockchain for the Kimberly process of diamond min-
ing, seeking to insure that none of those diamonds are mined unfairly.

The simplest blockchain data structure is the Transaction (Definition 3),
an example of which is shown in the detail cutaway in Figure 1. A Block (Def-
inition 3) is more complex, and is shown in the main body of Figure 1. Trans-
actions and Blocks contain both essential and accidental attributes. (More on
this in Section 4.1.2.)

46

<«—— previous block ‘

[Cro]

header

[o |

prev hash l ‘

‘ timestamp ‘

e] |

data

=y

H(LIR),

S
(o]
o

[rem | [agin

H(LIR), H(LIR)

[rew | [agn | [agw | [e | [agiw H(LIR)

HEEE

E

D

I

pay-
load

Figure 1: Block Data Structure with Transaction cutaway detail

3.2 Blockchain as a Consensus Network

Blockchain is a consensus network in that peers in a blockchain network coop-
erate to agree on which blocks of transactions are valid and which are not. To
achieve this, Bitcoin uses a proof of work! mechanism [13] to ensure that Bit-
coin peers who have performed more computational work have more influence
on consensus decisions. Ethereum, likewise, adopted proof of work consensus,
but aims to transition to proof of stake?, in which those with more currency
have more influence over consensus [5]. Hyperledger aims to have “modular,
plug-and-play consensus” [10], meaning it is left to the developers of specific
Hyperledger instances to choose the consensus method best for their needs.

Regardless of the consensus method, a blockchain cannot be called a block-
chain unless it can also be called a peer-to-peer consensus network.

The duality of blockchain as both a data structure and a consensus network
invites its use in many areas across computer science curricula. The next
section presents a detailed look at a few of those areas.

L Proof of work systems are based on members of the consensus network performing
computationally expensive calculations that are easy to verify to insure the validity of blocks.
This is mining. From Nakamoto’s Bitcoin paper[13]: “The proof-of-work involves scanning
for a value that when hashed . .. begins with a number of zero bits. The average work required
is exponential in the number of zero bits required and can be verified by executing a single
hash.

2 Proof of stake systems are based on certain members of the consensus network (called
validators) pledging a portion of their assets (their stake) to vouch for the integrity of new
blocks. The more they stake, the more blocks they validate, the more assets they have to
lose if their blocks are found to be invalid.

47

4 Blockchain in Computer Science Curricula

Our faculty and student researchers developed a rudimentary blockchain imple-
mentation in Java3, initially as an in-memory data structure, adding file-based
persistence later, and eventually building cooperating peers. In doing so, we
discovered that the duality of blockchain as both a data structure and a con-
sensus network makes it a useful teaching tool in many computer science areas,
including the study of software design.

4.1 Software Design

In his famous essay, “No Silver Bullet” [3], Frederick P. Brooks Jr. addresses
some of the difficulties inherent in software development. He points out that
software development bridges the chaotic world of “arbitrary complexity, forced
without rhyme or reason by many human institutions and systems” with the
abstract, yet precise domain software affords. Thus, complexity is software
development’s proverbial “middle name”, and managing that complexity is a
primary software development challenge.

Motivated by the desire to manage complexity while developing a custom
blockchain implementation, we presented our students a fundamental question:
What problem we are trying to solve?

4.1.1 Defining the Problem

Analyzing the landscape of commonly used blockchain “solutions” is daunting
and difficult. As noted in Section 2.1, there are many definitions of block-
chain. This makes generalization a challenge. The difficulty in characterizing
and classifying blockchain systems only makes matters worse. Having found
that blockchain is a fundamentally distributed system (via Definition 3 and
Section 3.2), we assert that applications of blockchain to use cases that are not
fundamentally distributed are wrong. In other words, if we’re using blockchain,
we should be trying to solve problems where multiple decentralized parties need
concurrency, collaboration, cooperation, and fault tolerance. If that is not the
case then we should not use blockchain and would be better served by an exist-
ing, well-established approach like relational, graph, or even NoSQL databases.
We reached and support this conclusion through an exploration of blockchain’s
essence and accidents.

3The source code is freely available and we invite you to use it. See Section 5 for details.

48

4.1.2 Essence and Accidents

Brooks takes inspiration from the mother of all sciences, philosophy, to ap-
proach complexity. He defines two terms to discuss complexity:
accidents

essence Difficulties inherent in the nature of software.
accidents Difficulties that attend its production but are not inherent.

These ideas are not easy to self-appropriate. Instead of conjuring essence
and accidents from the ground up, it is often easier to take something familiar
and strip away accidents until, like a miner extracting precious metals from
muddy rock, essence emerges.

By way of illustration, consider an instance of a coffee cup, in this case
from Starbucks: it has a green logo showing the famous mermaid; it has a
lid; it is made from a cardboard derivative; and it’s filled (one hopes) with
wonderfully-fragrant, rich coffee. But our Starbucks cup need not have its
logo, nor a lid; those features are accidents of the cup. It need not be made
from cardboard, nor does it need to be filled with coffee, as those features
are also accidents. Removing those accidental features (or properties), we are
left with a cylindrical object with the capacity to contain and ability to pour
liquids. This is the essence of a cup...its “cupness”.

We take the same approach with blockchain. By embracing the difficulties
in defining, characterizing, and classifying blockchain over its short history
from Bitcoin to Ethereum to Hyperledger, we can identify its properties and
categorize each of them as essential or accidental in nature. Table 1 shows the
results of this process when applied to Transaction and Block structures in the
context of Definitions 3, 3, and 3.

We note an interesting meta-question about the Block structure: Is the use
of a Merkle tree (discussed in the next section) an accident or is it essential to
a block? It’s certainly a solution to an essential problem of blockchain, but it
is not the only solution. So is it essential or accidental? (That sounds like a
good essay question for our students.)

4.2 Algorithms and Data Structures

Before we can implement blockchain, we must first become familiar with its
structures and some algorithms that work with them. Understanding these
structures and algorithms, along with their common implementations, helps
build fundamental computer science skills necessary to comprehend emerging
technologies such as blockchain. We begin with hashing.

49

Structure Property Nature

id accidental
. timestamp essential-isha
transaction .
payload essential
id accidental
hash essential
timestamp accidental-isha
block previous block’s hash essential
noncef3 accidental
Merkle tree essential?

« The essential or accidental nature of timestamps is unclear. On the one hand, a
transaction or a block clearly comes into existence at some particular point in time. On the
other hand, it may not be essential to record that.

B A nonce is a value that, when combined with the previous block’s hash, will result in a

new hash that satisfies the proof of work.

Table 1: Blockchain Essence and Accidents

4.2.1 Hashing

Primarily a mathematical concept, hashing requires a hash function, H, that
maps many possible inputs to a smaller number of outputs. There are many
kinds of hash functions. For blockchain, we are particularly interested in cryp-
tographic hash functions. A cryptographic hash function is one that fulfills
these properties [14]:

Collision-resistant It is infeasible to find two values, = and y, such that
x #y, yet H(x) = H(y).

Hiding If a secret value r is randomly chosen from a set of values with equal
probability, then given H(r||z) it is infeasible to find z. (]| represents
concatenation.)

The primary purpose of a cryptographic hash function in blockchain is to
create a “fingerprint” of a given piece of data without revealing any information
about it. This “fingerprint” output from a hash function is commonly called a
digest or a hash.

Most (if not all) blockchains use hashing to achieve the “chain” part of their
nature with hash pointers, which we describe in the next section. Hashing also
provides an efficient method for “confirming permanent stasis” (as noted in

50

Definition 3) because comparing hash values is a fast, easy, and anonymous*

way to detect whether or not content has been altered since its initial hash.

4.2.2 Linked Lists

A useful and concrete definition of blockchain as a data structure states that,
“A block chain is a linked list that is built with hash pointers.” [14]. A hash
pointer is “a pointer to where data is stored together with a cryptographic
hash of the value of that data at some fixed point in time” [14].

Since linked lists are a fundamental topic in virtually all introductory or
intermediate computer science courses, enhancing them with hash pointers to
support blockchain applications makes for a nice modernization. Combining a
cryptographic primitive such as a hash with a basic data structure like a linked
list enables students to learn computer science fundamentals and emerging
technologies simultaneously. Such teachable moments build understanding of
and excitement for computer science. The excitement continues (one hopes)
into discussions of O(n) operations like list (or blockchain) traversals and linear
searches. Once we’ve found a target block, we’ll need to do a tree traversal to
find transactions.

4.2.3 Trees

Instead of storing all transactions in a simple list within a block, Satoshi
Nakamoto used a version of a balanced binary tree called a Merkle tree [12, 13].
A Merkle tree is:

binary Nodes have at most two children.

ordered Nodes maintain some ordering appropriate for the data they carry,
e.g., lexicographic or numeric.

balanced For every node, the heights of its subtrees differ by at most 1.
leftmost All nodes are placed as far left as possible.

cryptographically hashed The root and all internal nodes contain the hash
of the content of their children.

This structure allows all transactions within a block to be validated by
a single hash stored at the root of the Merkle tree and called, appropriately
enough, the Merkle root. The node at #1 in Figure 2 is its Merkle root. Note
that it contains a hash of the content of its (left and right) children. They

4 Anonymous in the “zero knowledge” sense that we can confirm whether or not some
value has changed without knowing the actual value itself.

51

|| |

‘ H(LIR) H(}HRJ ‘ I H(LIR) I I H(LIR) I | H{LIR) H{LIR) ‘ | H(]leR\] ‘ | H(LIR) ‘

Figure 2: Hash Validation of Transactions in a Merkle Tree

in turn contain a hash of the content of their children, and so on all the way
down to the penultimate nodes, which contain a hash of the content of (their
children) the leaf nodes, which are the actual transactions. (See Figure 1 for a
closer look at a Transaction.) In this manner, if any transaction 7 in a block
(i.e., any leaf node in a Merkle tree) is altered (e.g., #2 in Figure 2), that node’s
parent (e.g., #3 in Figure 2) will change as well. This change will propagate up
the tree, level by level, until it reaches the root. The root therefore reflects all
changes in the tree so it is the only datum a block needs to validate to confirm
the permanent stasis of the transactions contained therein.

We constructed a Java class called MerkleTree that satisfies the above
properties and accepts any data and any hashing algorithm. This exercise
might be appropriate in a classroom setting as a bridge from simple binary
trees to more complex data structures. It may also be a good way to teach
the importance of choosing an appropriate abstract structure for the task at
hand and determining which properties it must satisfy before implementing
it in code, as bugs are easier to fix while planning than while programming.

Constructing a Merkle tree from an arbitrarily-sized collection of trans-
actions is fairly interesting. The details of such an algorithm are out of the
scope of this paper, but would be very appropriate in an upper-level algo-
rithms course. As Niklaus Wirth said, algorithms plus data structures equals
programs. Tying algorithms to data structures in this manner reinforces the
link between the two and their importance in programming fundamentals.

4.3 Distributed Computing

The essentially distributed nature of blockchain (Definition 3) serves as a nat-
ural example by which to teach topics of networking, routing, and consensus
algorithms. Our preliminary work used multiple blockchains on one computer

52

running many JVM instances. This makes for a nice simulation of a distributed
system, as each socket requires an IP address and a port. It’s easy to see how,
for example, 127.0.0.1:2007 exchanging messages with 127.0.0.1:2112 is simi-
lar enough to 172.217.10.78:42 exchanging messages with 137.254.120.50:71 as
not to matter. Once we had that working, we moved with ease to multiple
blockchains on multiple cooperating peers (both physical and virtual).

4.3.1 Cooperating Peers

We devised a rudimentary REpresentational State Transfer (REST) Applica-
tion Programming Interface (API) over Hypertext Transfer Protocol (HTTP)
with a handful of endpoints that cooperating peers use to communicate. These
REST endpoints allow peers to request (1) the entire blockchain, (2) a specific
block in the blockchain, or (3) a specific transaction in the blockchain by using
HTTP verbs with the following paths:

1. GET /blockchain
2. GET /blockchain/{block id}
3. GET /blockchain/transaction/{transaction id}

Peers can POST new transactions with the intention that they be accepted
as soon as possible. But POSTed transactions do not immediately become part
of the blockchain. The peer looking to accept transactions into the blockchain
puts them into its transaction buffer, a container for pending transactions. A
peer mines its buffer when another requests it via the POST /mine endpoint.
This triggers the proof of work mining process. When complete, the previously
buffered transactions officially constitute the next block of the blockchain.

4.3.2 Peer Discovery

Peer discovery is accessed through the REST API endpoint GET /friends. It
provides the IP addresses of known peers on the blockchain network. (A friend
is a peer with whom another peer has communication over the network through
the REST API.) When starting a peer for the first time, the user must list the
IP addresses participating in the blockchain network. This constitutes the
initial friend list for the newly-started peer. The network effect of requesting
the friends list of its friends allows peers to discover each other.

While discovering its peers, each node builds a graph of the blockchain net-
work by denoting itself as a from vertex and its friends as one-hop to vertices.
This process is repeated for all of the to vertices, but this time with them as
the from vertex. The result of the whole process is a snapshot of the entire

53

8 largest change in degree

"'-“ vertices with the
(Tlm

Lol
L=
L]

over consecutive graph

Y

‘-’I snapshot pairs:

_‘ Pair , vertexID , change
' . 0->1 , 1, +3
'Tumel‘ 1 1. 3 l->2 2, +5
(2->3 , 3, +3

‘,,"‘ 0->1, 2z, 0

0=>1 , 3, i

_‘ * .].-:"'2 r]. r l:l
'— 1->2 , 3, 0
'('m*;‘ 7 31 3

2->3 , 2, -2
-" 1
'TumeE‘ . 1. d

\ ~ 3

Figure 3: Blockchain network evolution captured through graph snapshots with
output from a query about changing influence

network as a graph. The network will change over time (they all do), provid-
ing a opportunity to visualize and analyze blockchain evolution with a graph
analytics, an example of which is shown in Figure 3.

There is more work to be done, including an implementation of consensus
algorithms as required by Definition 3 and supporting smart contracts. These
are first up in our future work.

5 Conclusions and Future Work

In studying new technologies like blockchain and creating their own imple-
mentation of it, students engage in a holistic learning process bridging theory
and practice that promises to be both challenging and rewarding, not to men-

54

tion demystifying in terms of the new technology itself. We encourage insti-
tutions to promote this kind of learning and to teach core concepts through
emerging technologies like blockchain. To that end, the source code for our
blockchain implementation is available on GitHub at https://github.com/
Marist-Innovation-Lab/blockchain. All are welcome to take it, use it, and
build on it.

We are pursuing two paths in our future work: implementation and re-
search. On the implementation path, we will be programming consensus algo-
rithms and adding support for smart contracts. On the research path, having
achieved a network of cooperating blockchain peers and the ability to capture
snapshots of their evolution over time, we will be simulating common network
attacks (man in the middle, denial of service) and uncommon attacks (Sybil
subversion in peer-to-peer networks) so we can test theories of blockchain’s
security characteristics. Both promise to be fun.

Acknowledgements

The authors wish to thank Daniel Gisolfi and the other students (and faculty
and staff) of the Marist/IBM Joint Study and the NSF-funded SecureCloud
research grant (#1541384). We appreciate their technical and emotional sup-
port. Thanks go out as well to the reviewers for their thoughtful comments.
Writing papers like this, just as with writing software, relies on critical feedback
from external stakeholders.

References

[1] Berkeley Blockchain. What is blockchain?, 10 2016. https://drive.google.
com/file/d/OByBe1QJVC-EJRUJqVWcyY2VNd1U/view. Accessed on 2018-11-18.

[2] BlockGeeks. What is blockchain technology? a step-by-step guide for beginners,
2017. https://blockgeeks.com/guides/what-is-blockchain-technology/.
Accessed on 2018-11-18.

[3] Frederick P. Brooks, Jr. No silver bullet essence and accidents of software engi-
neering. Computer, 20(4):10-19, April 1987.

[4] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda: An
introduction, 2017. https://docs.corda.net/_static/corda-introductory-
whitepaper.pdf. Accessed on 2018-11-18.

[5] Vitalik Buterin et al. Ethereum white paper: A next-generation smart contract
and decentralized application platform, 2013. https://github.com/ethereum/
wiki/wiki/White-Paper. Accessed on 2018-11-18.

55

[6]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

56

Michael Crosby, Pradan Pattanayak, Sanjeev Verma, and Vignesh Kalya-
naraman. Blockchain technology: Beyond bitcoin. Sutardja Center for En-
trepreneurship € Technology, 2:6-10, 2016. http://scet.berkeley.edu/wp-
content/uploads/BlockchainPaper.pdf. Accessed on 2018-11-18.

Trent McConaghy et al. Bigchaindb 2.0: The blockchain database, 2016.
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf. Ac-
cessed 2017-8-21.

Mike Hearn. Corda: A distributed ledger, 2016. https://docs.corda.net/
_static/corda-technical-whitepaper.pdf. Accessed on 2018-11-18.

Hyperledger. Sawtooth introduction, 2016. https://intelledger.github.io/
introduction.html. Accessed 2018-11-18.

Hyperledger. Hyperledger whitepaper. Google Drive, 2017. No specific au-
thors or publish date were given. https://docs.google.com/document/d/1Z4M_
qwILLRehPbVRUsJ30F8Iir-gqS-ZYe7W-LE9gnE/. Accessed on 2018-11-18.

Everledger Ltd. Everledger industry applications, 2016. https://www.
everledger.io/industry-applications. Accessed on 2018-11-18.

Ralph Charles Merkle. Secrecy, Authentication, and Public Key Systems. PhD
thesis, Stanford University, Stanford, CA, USA, 1979. AAI8001972. http://
www.merkle.com/papers/Thesis1979.pdf. Accessed on 2018-11-18.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
bitcoin.org/bitcoin.pdf. Accessed on 2018-11-18.

Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven
Goldfeder. Bitcoin and Cryptocurrency Technologies: A Comprehensive Intro-
duction. Princeton University Press, Princeton, NJ, USA, 2016.

Don Tapscott and Alex Tapscott. Blockchain Revolution: How the Technology
Behind Bitcoin Is Changing Money, Business, and the World. Brilliance Audio,
Brilliance Audio, 2016.

F Tschorsch and B Scheuermann. Bitcoin and beyond: A technical survey on
decentralized digital currencies. IEEE Communications Surveys € Tutorials,
18(3):2084-2123, 2016. https://eprint.iacr.org/2015/464.pdf. Accessed on
2018-11-18.

Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang.
An overview of blockchain technology: Architecture, consensus, and future
trends. In Big Data (BigData Congress), 2017 IEEE International Congress
on, pages 557-564, ., 2017. IEEE.

Puzzling Through Discrete
Mathematics®

Edmund A. Lamagna
Department of Computer Science and Statistics
University of Rhode Island
Kingston, RI 02881

eal@cs.urt.edu

Abstract

An applied, yet mathematically rigorous, course on combinatorial
problem solving is discussed. FEach class begins with a set of puzzles
that introduce and begin to stimulate thinking about the topic for the
day. Students work on the puzzles in small groups for about one-third
of the class period. When puzzles were first introduced, it was thought
that less material could be covered but that this would be outweighed
by an increase in student interest and participation, and that the course
would be more fun. Unexpectedly, all of the original material is still
covered since students are now better prepared and motivated for the
more traditional presentation that follows “puzzle time.” The key to
this approach is selecting relevant, intriguing puzzles for each topic.

1 Introduction

The author teaches an applied, yet mathematically rigorous, junior level course
on combinatorial problem solving. Algorithmic thinking is emphasized through-
out, and the course provides a solid foundation for a follow-on course on the
design and analysis of algorithms. Major topics include sets, logic, probability,
proofs by induction and contradiction, the pigeonhole principle, arrangements,
selections, distributions, binomial identities, inclusion-exclusion, recurrence re-
lations and recursion, and graphs and trees.

*Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

57

Several years ago, the author decided to integrate active learning into the
course. Each class now begins with a set of puzzles (typically four) that in-
troduce and begin to stimulate thinking about the topic for the day. Students
work on the puzzles in small groups of 2-4 individuals for about one-third of
the class period. “Lone wolves” are allowed work by themselves as long as they
spend the time on the puzzles. When puzzles were introduced, it was thought
that less material could be covered but that this would be outweighed by an in-
crease in student interest and participation, and that the course would be more
fun. Unexpectedly, all the original material can still be covered since students
are now better prepared and motivated for the more traditional presentation
of the new material that follows “puzzle time.”

The course carries four credits and meets twice a week for 1.75 hours. The
format of a typical class is: puzzles (30 minutes), homework solutions (15 min-
utes), new material (60 minutes). The topics in the course are highly cumula-
tive, so it is important for students to keep up with the material. Homework
problems are assigned every class period, with about one-third considered easy,
one-third of medium difficulty, and one-third challenging. The assignments are
collected at the start of the next class and are graded. The instructor goes over
several homework problems to illustrate key points, and also takes requests
from students for problems they would like to see. The text, Alan Tucker’s
Applied Combinatorics [4], was chosen for its rich selection of problems and
examples, and the fact that the sections of the book are short enough to en-
courage students to read them. Typically, one section of the book is covered
per class period.

The key to the author’s approach is selecting relevant, intriguing puzzles
for each topic. A sample of problems that have been successfully utilized
are presented in the remainder of this paper. These cover a variety of topics
throughout the semester. The presentation here includes a discussion of the
important pedagogical ideas behind the puzzles and their selection.

2 Mathematical Preliminaries

The first unit of the course provides a broad overview of set theory and math-
ematical logic, probability, proofs by induction and contradiction, and the pi-
geonhole principle. Most computer science students have prior exposure to set
theory, probability, induction, and (to some extent) logic. The unit attempts
to “level the playing field” as much as possible for those who have not seen
one or more of these topics, and also provides a brief review of fundamental
mathematical concepts that are used throughout the course.

Our opening puzzle is an enticing one that is presented in conjunction with
mathematical logic on the first day of class. At first glance, it seems impossible

58

to solve. Raymond Smullyan popularized problems of this nature, setting them
on an island all of whose inhabitants are either knights (Truth Tellers, who
always answer questions correctly) or knaves (Liars, who always give incorrect
answers to questions) [3]. It is important to set the tone for the semester at
the first class meeting and this puzzle admirably fits the bill.

Example 1. A Fork in the Road. You've been out for a long walk on the
island. Unfortunately you’re alone, hopelessly lost, very tired, and it’s getting
dark. You come to a fork in the road. Fortunately you know from the signpost
lying on the ground that one fork leads back home. Unfortunately the other
fork leads to a pit of venomous snakes. Fortunately there’s a native who will
answer one yes/no question for you. Unfortunately you don’t know whether the
native is a Truth Teller or a Liar. What question should you ask to determine
with certainty the way home?

Solution. This puzzle has two un-

knowns: whether the native is telling Is native Left fork Correct
the truth and which road leads home. TruthTeller? | leads home? answer
The four possibilities are depicted in yes yes yes
the truth table shown. We're seek- yes no no
ing a question where a “yes” answer no yes no
tells us that we should take, say, the —
left fork, and a “no” answer tells us o o yes

to take the right fork. Observe that

when formulating the question, “yes” means “yes” and “no” means “no
if the native is a Truth Teller. On the other hand, if the native is a Liar, a
question whose correct answer is “yes” will elicit a reply of “no,” and vice
versa. So we want the correct answer to the question to be as shown in the

third column of the truth table.

Solutions to this problem in the literature are generally given in terms of a
conditional, or “if” operation. The author’s goal is for students to be able to
form queries from an arbitrary truth table in a systematic way using disjunctive
normal form (DNF). A DNF question that will get us home safely is, “Are
you telling the truth and does the left fork lead home or are you lying and does
the right fork lead home?” [J

Ezxample 2. Not So Magic Squares. Can you fill a 6 x 6 matrix with 1s, Os
and -1s so that the rows, columns, and two main diagonals all have different
sums? Find a matrix or prove none exists. Generalize to an n x n matrix.

13 7

Solution. The solution to this puzzle involves a simple yet non-trivial appli-
cation of the Pigeonhole Principle. The greatest sum of six numbers that can
be formed from 1s, Os, and -1s is 6; the smallest is -6. So there are 13 possible
sums that can appear in a row, column or diagonal. But there are 6 rows, 6
columns and 2 main diagonals — 14 sums in all. So at least two sums must be

59

the same! For the n x n case, 2n+ 1 sums can be formed and n+n+2 = 2n+2
sums appear in the matrix so, again, at least one must be repeated. [

Students love magic tricks —— especially ones that they can learn and show
to impress family and friends. The following card trick is based on the principle
of mathematical induction.

Ezxample 3. Perfect Shuffle. The instructor performs a magic trick where he
cuts a standard deck of playing cards and has a student merge the two halves
together with a single riffle shuffle. After shuffling, the instructor takes pairs of
cards from the top of the deck. Amazingly, every pair consists of one red and
one black card! How were the cards prearranged to perform this astounding
feat? Why does the trick work?

Solution. The “set up” is to prearrange the deck so that black and red
cards alternate. When the instructor cuts the deck, it is done so the bottom
cards of each half are of opposite color. It is easy to show by induction that,
for every pair of cards that drop during the shuffle, one is black and one is
red. Consider the three cases: (1) both cards drop from the left pack, (2) both
cards drop from the right, and (3) one card drops from each side. Furthermore,
after each pair of cards drop, the packs still have the invariant properties that
the bottom cards are of opposite color and the cards in each pack alternate in
color. O

This is known as a “Gilbreath shuffle” and has many interesting variations
[2]. Tt is left as an exercise to figure out how to perform the trick so every four
cards include one of each suit, or every thirteen cards include one of each rank.
An even more impressive variation is to shuffle together two decks (one with
red backs, the other blue), count off 52 cards, and discover that both the first
and last 52 cards (with scrambled colored backs) are perfect decks with one
each of the 52 cards in a standard deck!

3 Enumeration

Mastermind is a two-player game of deductive reasoning and logical thinking.
One of the players, called the codebreaker, tries to guess a secret code selected
by the other player, called the codemaker. In the standard version of the game,
the code consists of a row of 4 colored pegs selected with possible repetition
from 6 colors, so 6* = 1296 codes are possible.

The codebreaker cracks the code through a series of guesses, each consisting
of a row of four colored pegs. The codemaker scores each guess with key pegs
revealing how close the guess is to the actual secret code. A black key peg is
scored for each peg in the guess that is the correct color and in the correct
position. A white key peg is scored for each peg that is the correct color but
in the wrong position.

60

The game of Mastermind poses interesting logical thinking challenges and
raises a number of combinatorial counting problems. In class, the students
work to solve a series of progressively more difficult Mastermind puzzles, but
the author’s favorite problem is to have the students analyze a simplified version
of the game. This exercise begins to stimulate the kind of thinking developed
in the course unit on enumeration.

Example 4. Simplified Mastermind. A simplified version of Mastermind
has just three positions and pegs of only three colors. There are three possible
opening strategies:

 playing three pegs of one color (e.g., <red, red, red> or 111),

« playing two of one color and one of another (e.g., <red, red, blue> or
112),

o playing three different colors (e.g., <red, blue, green> or 123).

Fill in the table to show the number of

111] 112 | 123 - i
— 3 1 0 secret codes remaining for every possible re-
0 0 2 0 ply the codemaker can give to each opening.
® 12 6 3 Which strategy is the best in the worst case?
00 0 3 6 Which is best on average?
®0 0 4 6 Solution. The second and third strategies
e 6 6 6 can leave the codebreaker with 6 codes in the
000 | © 0 2 worst case. The second strategy is best with
@00 0 2 3 regard to the average number of codes left.
(XX} 1 1 1 . .
oI > - z Students are always interested when the in-
Avglel | 907 a0 155 structor presents a similar analysis of open-

ings for the standard game of Mastermind.
O

The addition and multiplication principles lie at the heart of the unit on
enumeration. In order to be able to apply these principles successfully, a stu-
dent needs to break a problem into “disjoint cases” that cover all possibilities.
The next puzzle is an excellent exercise in this kind of reasoning.

Example 5. Counting Triangles. How many triangles are
there in the pentagon shown?
Solution. There are seven types of triangles, as illustrated
below.

Each group consists of 5 triangles, one for each rotation of the

pentagon by 72 degrees. So overall, there are 7-5 = 35 triangles.[]

Ezample 6. Rubik’s Cube. How many ways can a Rubik’s cube be scram-
bled?

Solution. There are 8 corner cubes and each can be placed in any of the 8
corners. A corner cube can have one of 3 orientations. Similarly there are 12
edge cubes and each can be placed in one of the 12 edge cubicles. An edge cube
has one of 2 orientations. So a good student answer, and one the instructor
would be very happy to see, is (8!38)(12!2!2). To get closer requires special
knowledge of the mechanics of the cube.

The actual number of permutations is (8!38)(12!2!2)/(3 -2 -2). While
a corner cube can have one of three orientations, once 7 of the corners are
oriented, the orientation of the last is determined. If you remove the stickers
from one corner and paste them back incorrectly, the cube cannot be solved!
As with the corner cubes, once 11 of the edges are oriented, the orientation of
the last is fixed. The other factor of 2 in the denominator is due to the fact
that only “even permutations” can be achieved since each twist of the cube
moves an even number of corners and edges. U

4 Recurrence Relations

The unit on recurrence relations and recursion is an important and useful one
for computer science students. Most of them will take a required course on
the design and analysis of algorithms in the following semester. An important
skill they will need is the ability to set up and solve recurrences. A variety of
divide-and-conquer and reduce-and-conquer recursive algorithms are presented
and analyzed in this unit. Students learn how to solve divide-and-conquer re-
currences via back-substitution (telescoping), and both homogeneous and in-
homogeneous linear recurrences with constant coefficients. From the author’s
experience, discrete mathematics courses taught by computer science depart-
ments differ from those taught by mathematics departments in their greater
emphasis on recursion and recurrence relations.

The next puzzle is the first in the unit on recurrences. It is a good starting
point since, throughout their academic careers, students have encountered sim-
ilar problems asking for the next number in a sequence. Recurrence relations
provide a formal model for solving such problems. With an appropriate recur-
rence, students can generate not only the next number in the sequence but all
subsequent terms as well. Moreover, having a recurrence may lead to a general
formula for the numbers in the sequence. In class, we use the convention that
sequences start with a 0-th element: ag,a;,a9,as, ...

62

UNDERGROUND

Example 7. On the Underground. A few years ago, an adver-
tisement on the London Underground (subway) system read:

If you can determine the next number in each of the following lists before
you arrive at your stop, come in and we’ll offer you a job!

For each of the sequences shown, give both a plausible next entry and
a recurrence relation to calculate the n-th term an from previous terms and
(possibly) a function of a,,.

a) 1,2, 4,8, 16, 32,

b) 0, 1, 3, 6, 10, 15, e) 1,2, 3,6, 11, 20,

c)1,1,2,3,5,8, f) 0, 1, 3, 8, 21, 55,

Solution. a) Students can immediately see that the next number in the
sequence is 64 and computer science students, in particular, see that each term
is a power of two. But how can we express this as a recurrence? Since each
term doubles the previous one, a,, = 2a,,_1.

b) Here students encounter a recurrence with an inhomogeneous part. a;
is one more than ag, as is two more than a1, ag is three more than as, etc.
So anp = ap_1 + n. The sequence gives what are known as the “triangular
numbers” since each term can be depicted as an equilateral triangle of dots.

d) 1, 2, 5, 12, 29, 70,

¢) These are the famous Fibonacci numbers (shifted so the 0-th term is 1
instead of 0). Each number in the sequence is the sum of the previous two, so
Ap = Ap—1 + Gp—2.

d) Each term in this sequence is twice the previous term plus the term two
back: a,, = 2a,—1 + ap—_o.

e) These numbers form a so-called “tribonacci” sequence. Each term is the
sum of the previous three, a,, = ay,_1 + ap_2 + apn_3.

f) These are the terms of even index among the standard Fibonacci num-
bers: Fy, Fo, Fy,... The sequence can be generated by the recurrence a, =
3CLn_1 — ap—9. O

The Tower of Hanoi is a popular puzzle familiar to most computer science
students. It consists of a board with three poles and n disks of different sizes.
The disks are initially placed on the left pole in order of size, with the smallest
at the top and the largest on the bottom. The object is to move all n disks
from the pole on the left to the pole on the right using the middle pole for
intermediate storage. The disks must be moved one at a time, and a bigger
disk can never be placed on a smaller disk.

In class, the students are given a copy of the game and are asked to develop
an algorithm for the standard puzzle, as well as a recurrence for the number
of moves. Since the standard version of the puzzle is well known, we focus
attention on a variant that students are also asked to solve. The same board
can be used as a manipulative to assist in solving both versions.

Ezample 8. Restricted Tower of Hanoi. This version is similar to the

63

standard one except that any move must either place a disk on, or move a disk
from, the middle pole. Develop a procedure to solve this version of the Tower
of Hanoi. Analyze your algorithm to obtain a recurrence relation, including

initial conditions, for the number of moves, then solve.
Solution. The following recursive procedure solves the puzzle
by moving n disks from pole X to pole Y through the middle

‘ pole:
Nt If n =1, move disk 1 from X to the middle pole, then from
-— there to Y.
Otherwise,

Move n — 1 disks from X to Y through the middle pole.
Move disk n from X to the middle pole.
Move n — 1 disks from Y to X through the middle pole.
Move disk n from the middle pole to Y.
Move n — 1 disks from X to Y through the middle pole.

GU o=

The procedure requires three invocations with n — 1 disks at steps 1, 3, and
5. So the recurrence relation giving the total number of moves is a,, = 3a,,—1+2.
The base (stopping) case gives the initial condition, a; = 2. This is a simple
linear recurrence with constant coefficients that students learn how to solve in

the course: a, =3" —1. O
The classic example of recursion is the Tower of Hanoi, but the author’s
personal favorite is the next puzzle. As with the Tower of Hanoi, an inexpensive

)

manipulative, manufactured by Mag-Nif and called “The Brain,” is available
for students to explore the solution.

Ezample 9. The Brain. This puzzle consists of n
numbered switches, or levers. (n = 8 for the version of
the puzzle manufactured by Mag-Nif.) The switches are
all initially in the on position. The rules for manipulating

the switches are:

1. the first switch can always be turned on/off,

2. the k — th switch can be turned on/off only when
the (k—1)-st switch is on and all preceding switches
are off.

How many moves are required to turn all n switches off?

Solution. This is a challenging problem, so students are asked to begin by
solving the puzzle for a small nontrivial case, n = 5 switches. In order to get
at the fifth switch, the first three switches must be turned off with the fourth
remaining on. So from the starting configuration, the switches must be toggled
through a state where the first three are all off.

64

11111 => 00011— > 00010 => 11110

After the fifth switch is turned off, the next goal is to get the fourth off.
But in order to get the fourth off, the third must be on. Similarly, the second
must be on to get to the third, and the first must be on to get to the second.
So we must progress through a state where the first four switches are all on.
This leaves the problem of solving the puzzle for n = 4 switches —— recursion
in action!

Here is the complete sequence of moves to solve the puzzle for n = 5.

0) 11111 6) 00010 12) 10110 18) 01000
1) 01111 7) 10010 13) 00110 19) 11000
2) 01011 8§ 11010 14) 00100 20) 10000
3) 11011 9) 01010 15) 10100 21) 00000
4) 10011 10) 01110 16) 11100
5) 00011 11) 11110 17) 01100

Turn off procedure. Generalizing the above reasoning, in order to turn off
n switches starting with them all on, we have to: (1) turn off the first n — 2
switches, (2) toggle the n-th switch off, (3) turn the first n — 2 switches back
on starting with them all off, and (4) turn off the first n — 1 switches starting
with them all on.

11...11 => 00...011— > 000...010 => 11...10 (now solve for n — 1 switches)

Turn on procedure. In order to accomplish step 3, another procedure is
needed to turn on n switches starting with them all off. By analogous reasoning,
the steps are to: (1) turn on the first n — 1 switches, (2) turn off the first n — 2
switches starting with them all on, (3) toggle the n-th switch, and (4) turn on
the first n — 2 switches starting with them all off.

00...00 => 11...10 => 00...010— > 00...011 (now solve for n — 2 switches)

Let a,, be the number of moves to turn off n switches starting with them all
on, and b,, be the number of moves to turn on n switches starting with them
all off. Analyzing the procedures,

p = Gp_2+ 1+ bn—2 + an—1 and bn = bn—l +ano+1+ bn—2~

Observe, however, that the number of moves to turn off n switches is the
same as the number of moves to turn on n switches. This is true since the se-
quence of moves to solve one problem is the reverse of the sequence to solve the
other. (See the solution for n = 5 above.) So we obtain a single linear recur-
rence with constant coefficients, a,, = a,,_1 + 2a,,_o + 1 with initial conditions
ap = 0 and a; = 1. The solution is a, =2/32"-1/6 (-1)" —1/2 =[2/32"].0

Solving the puzzle involves two mutually recursive procedures: one to turn
n switches off starting with them all on, and the other turn n switches on

65

starting with them all off. The notion of mutual recursion is seldom broached
in undergraduate computer science classes, and that is one reason why the
author likes this puzzle so much. It is a very difficult problem to attack without
mutual recursion.

5 Graphs

The final unit of the course deals with graphs. Topics include basic proper-
ties and applications of graphs, isomorphism, planarity, Euler and Hamilton
circuits, vertex and edge coloring, and trees. As with recurrences, students
will revisit trees, graphs, and graph algorithms in the follow-on course on the
design and analysis of algorithms.

The next puzzle is assigned on the day Euler’s formula is presented and
proven in class. The puzzle motivates the topic and paves the way for the
discussion that follows.

Example 10. Platonic Solids. The Platonic solids are three-dimensional
shapes where (1) each face is the same regular polygon and (2) the same number
of polygons meet at each vertex. There are only five such solids:

V<006

tetrahedron cube octahedron dodecahedron icosahedron

Complete the table by counting the number of vertices and edges in each
of the Platonic solids.

tetrahedron cube octahedron | dodecahedron | icosahedron
faces, F' 4 6 8 12 20
vertices, V 4 8 6 20 12
edges, E 6 12 12 30 30

Can you find a relationship between the number of faces F', the number of
vertices V, and the number of edges E?

Solution. The relationship is Euler’s identity, F' = E — V + 2. The formula
holds for all convex polyhedra and not just the Platonic solids. For planar
graphs, the number of faces F' is replaced by the number of regions R in a
planar depiction of the graph. By appropriately positioning a point in space,

66

a polyhedron can be projected onto a plane to produce a planar graph where
regions in the plane correspond to faces of the polyhedron (see [1], for example).
This transformation is discussed during the lecture portion of the class. [

Two simple graphs play a key role in graph planarity. K5 is the complete
graph on five vertices, with an edge between every pair of vertices. K33 is a
bipartite graph with three vertices on each side, and an edge between every
vertex on one side and all three on the other. Kuratowski’s theorem states
that any non-planar graph must contain either a K5 or a K33 “configuration”
(similar to a subgraph; see Tucker [4] for details). The next puzzle establishes
the non-planarity of K3 3; a similar puzzle (not presented here) shows that K5
is non-planar.

FEzxample 11. Three Utilities. Three houses have to be connected to three
utility companies: water, gas, and electric. Each house must be connected to
all three utilities. Can you do this without the connections crossing? You must
work “in the plane,” and you are not allowed to route cables or pipes through
any buildings.

I A
|

G

[

Solution. On the right, we show a planar depiction of K3, with one of
the houses missing. From Example 10, every planar depiction of this graph
contains three regions (including the outside region). If we try to place the
third house any of the regions, an edge crossing results.

Our final puzzle adds a cute story line to the Seven Bridges of Konigsberg
problem, the classic example for discussing Euler circuits and trails. The author
finds that students are able to discover, on their own, when these properties
exist in a graph by working through the puzzle. Some nontrivial thinking
is involved, but this is precisely why the author introduced puzzles into the
course.

Ezxample 12. Bridges over Troubled Waters. In a faraway kingdom lived
two feuding brothers. On the northern bank of the river that ran through the
kingdom was the castle of the Blue Prince; the southern bank was the home of
the Red Prince. Between the castles was an island on which there was a very

67

popular inn. Just to the east of the island, there was a fork in the river where
the Bishop’s cathedral was located.

a) There was a challenge among the townspeople to walk over each of the
seven bridges exactly once. Many claimed to have done so late at night after
quaffing ale at the inn, but no one had been able to duplicate the feat during
the day. Can you explain why?

b) The Blue Prince devised a plan to build an eighth bridge so he could
start at his castle, walk over each of the bridges exactly once, and end at the
inn to brag of his feat. Where did he build the eighth bridge?

¢) The Red Prince, infuriated by his brother’s actions, decided to build
a ninth bridge so he could begin at his castle, walk over each of the bridges
exactly once, and end at the inn to rub dirt in his brother’s face. In doing so,
his brother was no longer able to achieve the feat from the blue castle. Where
did the Red Prince build the ninth bridge?

d) The Bishop watched this bridge building with dismay since it upset the
peace of the kingdom. He decided to build a tenth bridge that allowed all of
the inhabitants, no matter where they lived, to walk the bridges and return to
their own homes. Where did the bishop build the tenth bridge?

Solution. An Euler circuit is a path that begins and ends at the same vertex
and traverses each of the edges in a graph (or multigraph) exactly once. An
Euler trail is a path, with different starting and ending points, that traverses
each edge exactly once.

The path sought in part a) cannot exist because the degree of every vertex
(landmass) is odd. In order to have an Euler circuit, the degree of every vertex
must be even because each time the path passes through a given vertex it must
enter and leave along a different edge. A graph has an Euler circuit if and only
if the degree of every vertex is even, and the graph, of course, must also be
connected.

An Euler trail exists in a connected graph if and only if exactly two vertices
have odd degree. These are the starting and ending points of the trail. In part
b), the Blue Prince wants the vertices for his castle and the inn to remain of
odd degree, and the other two vertices to be of even degree. So he builds the
eighth bridge between the southern bank and the fork with the cathedral.

68

For part c), the Red Prince wants the vertex with his castle to be of odd
degree and the one with his brother’s castle to be of even degree. So he builds
the eighth bridge between his vertex and his brother’s. Finally, to restore
peace in the kingdom, the Bishop wants all vertices to be of even degree. So
the tenth, and final, bridge should be constructed between the Red Prince’s
vertex and the inn’s. O

6 Conclusion

The introduction of puzzles has undoubtedly improved the author’s discrete
math class. The same amount of material is covered as the puzzles have re-
placed many of the examples that were previously used. Students enjoy solving
the puzzles in groups, and they are definitely better prepared and ask better
questions during the more formal presentation of the material.

The first time the author taught the class with puzzles, the groups wanted
to stay together throughout the semester, and a friendly rivalry developed
between the groups. Several students have mentioned that, although the class
period is longer than most, the time seems “to fly by.”

In addition to the author, four other instructors have taught the course
using the same set of puzzles. Most had equally favorable results and positive
comments about the approach.

References

[1] Benjamin, A., Chartrand, G., Zhang, P. The Fascinating World of Graph Theory.
Princeton University Press, Princeton, NJ, 2015.

[2] Diaconis, P., Graham, R., Magical Mathematics. The Mathematical Ideas that
Animate Great Magic Tricks. Princeton University Press, Princeton, NJ, 2011.

[3] Smullyan, R.M. What is the Name of this Book?: The Riddle of Dracula and
Other Logic Puzzles. Dover, Mineola, NY, 2011.

[4] Tucker, A. Applied Combinatorics. Wiley, New York, NY, 2012.

69

Top-10 Suggestions from a Decade of
Managing Undergraduate Software
Teams*

Weiqi Feng and Mark D. LeBlanc
Computer Science Department
Wheaton College
Norton, Massachusetts

{feng_weiqi, mleblanc}@uheatoncollege.edu

Abstract

Sustaining a multi-year research project with undergraduates is a la-
bor of love that leverages the very best of computer science teaching and
research. We present a decade of software development during which we
led an interdisciplinary research group focused on the implementation
and use of a web-based app for scholars and students who wish to ex-
plore their digitized texts. In our experience, scholars, e.g., those from
the Humanities, who might like to perform computational analysis in
their areas of expertise and/or wish to teach their students how to do
so become discouraged too early in the game. Our research model com-
bines interdisciplinary teaching and recruitment during the school year
with simultaneous scholarly activity and software development sprints
each summer in a blend of graduate school and start-up-like student
experiences. Led by faculty in Computer Science and English, 63 un-
dergraduate researchers have participated. Forty-nine of these students
(40% of those women) have contributed to the software, many assuming
leadership roles over six software releases. Both students and faculty
offer lessons learned and our “top 10” suggestions for sustaining a large
software effort across multiple student cohorts.

*Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

70

1 Introduction

We report on a decade-long, interdisciplinary research group focused on the de-
velopment and use of a web-based app that offers effective practices, workflows,
and tools for scholars across the academy who wish to explore their digitized
texts. This multi-year, iterative work combines interdisciplinary teaching dur-
ing the school year, external and internal grant funding, and software develop-
ment sprints each summer. In the sections to follow, we share our motivation
for building an app that helps scholar-clients view their texts via a computa-
tional lens, we offer from both student and faculty perspectives our “top 10”
suggestions for help managing a long-term project with undergraduates, and
we share what worked and what didn’t when faculty lead a large software effort
across multiple student cohorts.

1.1 Computing Everywhere

Computer science has emerged as a pivotal discipline in interdisciplinary re-
search across the academy and industry, from data science to machine learning,
from web development to genomics where, for instance, the “stuff of life” is
data [15]. At a rapid pace, computational thinking is emerging beyond STEM-
centric fields and is increasingly playing a role in other fields. Our focus here
is on the Humanities [8, 18], where for example Optical Character Recognition
(OCR) efforts from Google et al. are digitizing texts and entire corpora in
a plethora of languages, including rare and ancient texts such as the entire
corpus of surviving literature in Old English [6]. As the “Digital Humani-
ties” (DH) gains access to a wide array of digitized corpora and matures to a
discipline that creatively defines new methods for computationally performing
close and distant readings [19], a growing gap has emerged between those who
apply sophisticated programming, e.g., Stylo In R [7], and those who are new
to the game and need an introduction to the field. Typical of the commu-
nity spirit in DH, significant efforts are underway to bridge this gap, including
web-based tools for entry-level exploration including Voyant Tools [22] and
domain-specific introductions to programming, e.g., text mining in R [12] and
the Programming Historian [3]. Our group seeks to lower the barriers required
for computer-assisted text analysis by developing tools that are easy to use,
encourage effective practices, and are applicable to a wide range of scholars
in various disciplines and written languages. The Lezos app [17] offers tools
within a workflow that highlights the computational methods employed and
the choices made, thereby facilitating the replication of experimental results
[14]. The suite of tools includes pre-processing, segmentation, tokenization,
statistical analyses, and visualizations.

71

1.2 Lexos

We present a decade of work as an interdisciplinary Lexomics Research Group
(English, Computer Science, Statistics faculty, visiting scholars, and to date,
63 undergraduate researchers, 49 who contributed to the software) to build
computational, web-based tools to meet the needs of both entry-level and so-
phisticated scholars who seek to computationally explore literature [9]. Figure
1 reveals our last six summer code sprints (coding hours) since we first moved
to a GitHub repository in 2013, each managed in a scrum-like methodology.

0 Lexos
Coding Hours
250

150 144 o
100 .
50 1 | N - 3

O 0% 10 (o 10\4’16\: PN 1@“-‘0\‘:@\“10\“10\ PN 10‘}’ 20 50% 10\616\616\ 10\3-‘0\6 SO ov 10\1 10\1 10\1 20>

MR @0 v,
e 2 2105510710197 1°
PO\ pod O oo e et Tt "o ot Tget e T pet ot e Toct Toet @@ Tpet Tt ped o

o ge‘o’lw‘ S O o g T pet W o
Figure 1: Total coding hours over six summer sprints [17].

Our group’s model of simultaneous scholarly activity and software develop-
ment each summer ensures that we continuously adapt our Lexos application to
the needs of our core users (mostly scholars and students in Humanities fields)
in an interdisciplinary blend of graduate school and start-up [2]. Beginning
with humble Perl scripts a decade ago, Lezos [16] is presently a browser-based
suite of tools that provides an easy entry to computational text analysis for
scholars and their students (see Table 1 for functionalities provided in Lezos).

In short, the Lezos back-end (server-side) is implemented in Python 3.6
(as distributed in Anaconda 5.2) using the Flask microframework, based on
Werkzeug and Jinja2. The front-end leverages Flask blueprints and uses jQuery
and the Bootstrap 3 framework with a few functions derived from jQuery UI
and DataTables. Visualizations are generated with d3.js and, increasingly, the
Plotly Python library. Much of the statistical processing is implemented with
the Python sckikit-learn module.

Examples of using Lexos with various written languages are discussed more
fully elsewhere, including Old English [5], Old Norse [1], Classical Chinese [21],
and modern English (e.g., a contested Edgar Allan Poe story [14]).

72

Table 1: A summary of tools and methods in Lezos v3.2.0 [13]

Lezxos tool Functionality

pre-processing UTF-8 encoding and options for handling punctua-
tion, case, digits, HTML and XML tags, stop words,
lemmatization, and pre-defined entities

segmenting cutting texts by character, lines, tokens, or user-
defined milestones

tokenization bag-of-words by token or character N-grams, culling
by frequency or by token presence in a percentage of
documents

statistical analysis | corpus-wide filesize anomaly detection, cosine sim-
ilarity comparisons, clustering by hierarchical ag-
glomerative, k-means, and bootstrap consensus tree
(beta), “top words” (prominent term detection by
text, corpus, or class), and content/sentiment anal-
ysis (beta)

visualizations Cluster analysis dendrograms (hierarchical and boot-
strap consensus), k-means clusters of PCA reduc-
tions as Voronoi cells, 2-D, or 3-D Scatter plots, word
and bubble clouds, and “rolling window” plots show-
ing term frequency over the course of a document or
corpus

2 Ten Suggestions for Managing Undergradu-
ate Software Teams

From both the student and faculty perspectives, we offer ten suggestions for
managing a long-term software project with undergraduates. First, we state the
obvious point that most of our undergraduate developers have not worked on a
software project of considerable size. For students, the most important aspect
is that a long-term project is more “realistic” . The work is not homework.
For most, it is the first of what will be many experiences in their career where
their contribution is not “one and done” , a homework “submitted” . We offer
two such experiences. First, 607 issues were opened on our github repository in
the past six years. Most of the issues were bug-solving or project performance
related, the remainder being project management and future plans related. Of
those 607 issues, our student development team resolved 507 of them. Second,
finding, using, and maintaining libraries (both on the front and backends) is a
constant need and challenge. In some cases, it is because the libraries stopped

73

being supported or we found libraries that are faster and the change helped us
to create more efficient code. Our ten suggestions are set in this context of a
large software project for clients who help design and apply our app to their
scholarship, experiences that are vital for undergraduate developers and their
budding careers.

2.1 Recruit actively and iteratively

We employ and encourage a multi-faceted strategy for finding and recruiting a
cohort of undergraduates each year. Finding the right mix of students for a new
team is critical and requires a full-year recruitment mindset (not unlike that of
a coach who recruits athletes). The following list summarizes our recruitment
activities.

(a) Finding funding: External grant funding is not essential but very
helpful. We find that even our unfunded grant applications provide long-range
plans, specifically next steps that are vital for maintaining momentum. The
Lexomics Group benefited from three rounds of National Endowment for the
Humanities (NEH) funding and it helped sustain our decade-long effort. In-
ternally, Wheaton funds one student position per faculty member per summer
($3K student, $3K faculty). In addition, we scour the list of students with
financial awards and leverage our institution’s new guaranteed access to in-
ternship funding, Wheaton typically funding another 2-8 students per summer
($3K each). We consider compensation for students a must. Our experience
dictates that volunteer-only groups do not generate the serious attention to
the mission that is required if the outcomes are highly sought (such as a new
software release).

(b) Recruit in our classrooms: Two faculty team members in Lexomics
teach at the same institution (English and Computer Science) and regularly
teach pairs of connected courses. (“Connected courses” are a graduation
requirement. Students must complete two pairs of connected, interdisciplinary
courses, e.g., “Computing for Poets”is connected to “J.R.R. Tolkien”, “Anglo-
Saxon Literature” , or “Digital Maps”) [15]. Thus, we regularly work closely
with and recruit students during the semester, especially those who show a
passion for research. We have been especially successful with finding students
from the humanities during our connected teaching. Perhaps most importantly,
our students see by example that faculty research does not stop during the
academic year and that undergraduate scholarship is worthy of compensation.

(c¢) Finding student leaders: The success of a large software project
hinges on leadership, in particular on the software skills of very talented stu-
dents, typically one or two per cohort. These students seek opportunities for
leadership and want to implement architectural changes in the systems de-
sign. Deliberate care is made throughout the year to learn of student plans

74

and desires in order to recruit the right leaders. Recruitment efforts for such
multi-year projects should plan to retain at least one student who returns to
the group for a second summer. For example, international students are not
eligible to apply for many national research programs (e.g., NSF’s REU) but
value the summer research experiences.

(d) Finding students who can work independently: We try to provide
an enjoyable research experience for all students, offering options for areas of
interest with flexible timelines. Over the last decade, we map student’s level of
experience onto a range of tasks. We hope all our students enjoy text mining
and desire to learn more about it. Even a novice developer can learn the
software and quickly become an expert tester, often suggesting new features.
Students with more experience are often interested in learning the structures
and systems of the entire repository of code. As we recruit, we pay attention
to the team’s balance of experience. Given a team of 5-10 developers, a best
case is when at least half of the students can work on implementation while
others can take a lead on testing (see below).

2.2 Proceed the initial sprint with a bootcamp

We find a 3-5 day commitment is required in order to acclimate new developers
to their development environment and the Lezos software repository.

(a) Our software development team, like our public servers, use Linux.
Most development software, tools, apps, drivers etc. are supported on popu-
lar Linux distributions and package management on Linux is straightforward,
causing few compatibility issues. Alternatively, on Windows, many Python
packages like Scikit-Bio require Visual Studio code libraries. We train stu-
dents to become increasingly familiar with the shell (e.g., bash).

(b) IDE: We use PyCharm [11] as our Integrated Development Environ-
ment (IDE). The professional version is free to students, it supports the Flask
microframework very well, and PyCharm provides excellent git integration. For
students who has never learned about git, we believe PyCharm provides a most
“breezy way” for them to learn to develop with others in a code repository.
This is especially true when a conflict occurs: PyCharm helps the developer
view any conflicts and merge them as needed. Importantly, sharing PyCharm
configurations is easy, for example, we make sure everyone is using the same
code style settings to ensure consistency [20, 24, 25].

(c) Learning github MarkDown and git practice: Over the years, we find
that our new team members struggle with Git and we automatically factor in
time for practice, for example, we introduce a “toy repo” . Additionally, we
want students to learn GitHub MarkDown: encouraging them to share issues,
communicate with each other, and review other’s code through the github
website. So, early in the bootcamp each summer, we let students work on one

I0)

markdown file together. Each of them receives a specific task to explain one
markdown command, e.g., create a list. When they are done, we let them open
a pull request. Then students review each other’s pull requests. Finally, we let
them merge the pull requests together. After each pull request is merged to the
master, they have to update the next pull request before the merge can happen.
The chances that they have to deal with conflicts are great because they started
to work on an empty file together. So, after dealing with the conflicts a number
of times, everyone gains a basic idea of when conflicts happen and how to resolve
them. This way, they are learning both git and markdown at the same time.

2.3 Use continuous integration (CI) tools

We highly recommend continuous integration tools as a best practice. CI de-
tects integration errors at an early point and provides software leads with a full
view of the project code. CI tools build after running a suite of automated tests
for every commit. Thus, we encourage students to commit regularly after each
small step is done. Instead of fixing one large problem at the end, most issues
can be easily identified and addressed with each integration. A direct benefit is
that CI helps maintain the code quality to ensure that team members produce
well documented and formatted code, a code standard shared by all, thereby
reducing potential friction between team members. Lezos applies Travis CI
(Linux) [23] and Appveyor (Windows) [10], and includes checks for code style,
documentation, and unit tests. In order to help students understand the idea
of CI tools and also to familiarize them with the Lezxos software, we ask stu-
dents to improve function documentation and in-line code comments during
the first one or two days, providing them another chance to read through CI
outputs and gain even more practice with git skills (see 2.8 below).

2.4 Use a good, modularized structure

After six years of development as a web-based app, Lezos is comprised of 20K
lines of Python on the server-side backend (recently refactored to Python v3.6
[26]) and 9K lines of Javascript and 12K lines of HTML/CSS on the frontend.
With this code base, continually training new cohorts of students remains a
challenge. Based on our experience, an average team member spends about a
month prior to contributing to the repo. In response, our recent refactoring has
attempted to make the Lezos software structure as simple as possible. Over
the last two summers, we moved to a hierarchical structure, where each leaf
is a fully functional tool. In particular, we applied a model-view—controller
(MVC) pattern. Each tool in Lezxos has a receiver that accepts and parses
options from the user and passes values on to a model for calculation or graph
rendering. Eventually, a view file renders the result. Based on our experience,

76

we find that most students can explain the idea of the Lezxos structure within
a week of working with the repo.

2.5 Apply unit testing

Writing unit tests is beneficial, helping developers capture bugs early and lo-
cally. Whereas unit tests are carried out by our developers, bugs are likely
spotted and fixed before integration. Since the bugs are found early, unit test-
ing helps reduce the cost of bug fixes. As seasoned developers will note, one
of the hardest steps in debugging is finding a bug’s location. Unit testing
helps developers focus on the function(s) causing the bug. So instead of go-
ing through an entire file or even multiple files, developers only need to deal
with one function. As noted earlier, Lezos has over time had to change some
libraries. Having unit testing in place makes the upgrading steps much easier,
thereby facilitating safe refactoring.

We always want developers, especially those early in their career, to “think
before they start to type.” Writing unit tests before actually coding is a good
programming discipline. Unit testing exposes the edge cases; as shown in the
software engineering literature, considering those cases leads to safer code.
Additionally, unit testing provides a unique documentation-perspective of the
entire system. For example, if a developer finds the documentation of a partic-
ular function too abstract, studying the corresponding unit tests offers a new
view. By looking at “inputs” and the correct output, novice developers are
more apt to understand the functions faster.

2.6 Conduct peer reviews

Peer review ensures consistent design and implementation, a fresh set of eyes
to identify bugs and simple coding errors before integration. Each summer,
the Lexos team appoints a student software lead. All pull requests opened on
GitHub must get approval from the leader before being merged. (Currently,
our group uses the git branch system together with GitHub and PullApprove
[4] to ensure that all the code in the main (master) branch is reviewed by
specific developers). Though we do not ask all students to make suggestions to
pull requests, we do ask them to read through each and leave comments if they
cannot understand what the code does. Sharing comments and reviews with
peers both in writing and orally is a valuable skill. Projects benefit from team
players who can share how comprehension was hindered by unclear variable
namings, nested loops, and/or a lack of in-line documentation. We submit that
peer review is an essential steward of writing readable software. Of course, peer
review is also a great way to have students learn from each other and discuss
their own techniques. We find our team members are willing to learn how to

7

share their own knowledge through peer review and our software product is
better for it.

2.7 Meet in daily stand-ups

Holding daily meetings, in our case, a “stand-up” each weekday morning (10
a.m.) is deceptively simple and ridiculously important. Daily scrums and
weekly sprints require each team member to answer two questions: (i) Where
are you? (ii) What is blocking you? For most undergraduates, peer review
(of code, see above) and daily stand-ups are personally challenging. It can be
challenging to publicly share our work; being subject to even positive criticism
can be difficult. But our experience shows a wonderful willingness to partici-
pate, students marveling at how much can be learned from peers in the group
(not just their professor). In addition to the positive learning experiences,
from a software engineering management perspective, daily stand-ups enforce
“no place to hide” . Knowing the status of each team member leads to wiser
assignments in subsequent sprints.

2.8 Lead toward success: assign easy tasks early

To start new team members off, we ask them to carefully review the warning
messages on our front-end. For students who do not have any experience
with front-end web development, we ask them to simply improve some of the
comments or update some of our testing suites. We believe this step is crucial
because it helps students build their confidence, for example, when using git.
Early on, most students are not confident with directly changing the code base,
often concerned that they are using git in an incorrect way. Our experience
shows that students like to review and perhaps upgrade warning messages and
associated documentation; completing a small set of items being a confidence
boost. In this way, our developers are actively committing and mastering the
mechanics of the development environment, not to mention a new opportunity
for then to be exposed to the CI reports.

2.9 Improve one tool

Due to the time gap between consecutive summers, we often return to Lezos
development and find some functions in our code base which are now depre-
cated. We assign each student one specific tool and ask them to “adopt the
code.” Action items include reading the documentation for the libraries used
and replacing deprecated functions. We argue that this type of learning plays
an important role for programmers. No curriculum can prepare them for the
range of issues, problems, and challenges they will face. Here, we train them

78

how to study by themselves, for example, how to figure out how to find the
most reliable online documentation and importantly, how to extract informa-
tion from questions asked in online communities. This is where self-learning
starts. During the last ten years of development, many students have designed,
suggested, and implemented amazing ideas for the tools as they were fixing
them. For example, a re-designed User Interface (UI), new visualizations, and
optimized algorithms.

2.10 Add new functionalities

This is where some exciting interdisciplinary group work happens. Our “power”
users, humanities scholars, many who are probing ancient texts, often run a
local install of Lezos using large numbers of texts. These users are consistently
requesting new functionalities for the tools. FEach year we follow a goal of
inserting at least one new tool into Lezos. We ask the entire team to work
on this together. This often appears in the second half of the summer sprint.
By that time, students have already figured out their favorite parts and team
strengths are more evident. Each new tool contains three essential elements:
the backend (computational), the frontend (UT), and a testing suite. The
effort affords new opportunities for student leadership on smaller tasks that
are contributing toward a larger, common goal.

We close this section of suggestions with a note on the critical importance
of interdisciplinary teams. Our Lexomics Research Group is a vibrant blend
of scholars of many languages, genres, and time periods who work alongside
software developers. Our clients are our colleagues, many who are experts in
ancient texts and write algorithms on the whiteboard, often participating in
the design of new tools. Spending time together in the same lab is vital. For
a decade, undergraduate developers have been listening to and designing new
tools with their professors and colleagues in the humanities. Unlike classroom
assignments, the energy of building for others, with others, is a most welcome
and refreshing benefit of managing a long-term, undergraduate software team.

3 Pitfalls and Cautions

We share a set of pitfalls and cautions to faculty who might choose to lead a
large software effort across multiple student cohorts.

79

3.1 Managing a long-term software project is not for all
faculty

Faculty must acknowledge that each year a new cohort arrives and training
must take place each summer anew. For untenured faculty with very real pub-
lication pressures, the time commitment is an important consideration and in
fact, managing a team may not be the wisest use of research time depending
on the faculty member and institutional research expectations. We recommend
open discussions with colleagues to help faculty make wise choices. All faculty
leaders in the Lexomics Group have tenure and their research with undergrad-
uates is an acknowledged part of their active scholarship.

3.2 The Problem of Scale

There is a limit of scale when offering research experiences to undergraduates.
No faculty research group can offer experiences to all students and that may
discourage some faculty (we recommend that each faculty member advise at
most 3-8 undergraduate developers per summer). That said, our research stu-
dents laud the experience as a pivotal experience prior to their graduate and/or
industry work and the faculty involved consider it a vital part of their mission
to prepare the next generations of researchers. The truth is that this work does
not scale well to all students.

3.3 Peer review is hard

Tensions can mount when committed code is returned for failing a review,
again and again. This is especially true when the failed review is from a peer.
We might argue that this is part of the lesson; however, we felt we should
acknowledge our mixed success with navigating this issue.

3.4 Interdisciplinary software development is harder

The interdisciplinary team was overall a boon for the project’s ability to es-
tablish a user base beyond its home institution, evolve over time to address
an increasing range of scholarly questions, and to bring students into contact
with disciplines outside their majors. For the computer science students, who
are often given problems and data sets from the STEM disciplines, developing
software to answer questions about the often messier “cultural” data frequently
studied in the Humanities provides a valuable experience, as does designing for
a user base willing to explore, but not accustomed to computational think-
ing. But working in multidisciplinary teams is nuanced and our setup has
not always worked. For instance, the software developers often incorporated

80

options that were built into the scikit-learn module for data science, such as
multiple distance metrics for hierarchical clustering, without regard to whether
these options were useful or meaningful for users. Despite our sharing physical
space and time, more directed communication strategies between the computer
science and Humanities students during the summer code sprints would have
helped address some issues. A related concern was the lack of front-end de-
velopment and data visualization skills in the computer science cohorts, which
made it more challenging for them to address user interface and user experience
issues.

4 Meeting the real need for professional devel-
opment

Computer science is helping drive the entrepreneurial spirit appearing across
the academy. And so, our young discipline assumes new leadership responsi-
bilities on our campuses. We present a multi-year software project that affords
cohorts of undergraduates a very real pulse of the world of software develop-
ment as they build “for others” , specifically, a growing number of literary
scholars who seek computational methods for close and distant readings of
their texts. For computer science students in particular, the experience is in-
valuable. But we do a disservice to the faculty if we fail to acknowledge how
leading such an effort provides “built in” professional development. Unlike
many disciplines, computer science is in a constant state of change and faculty
face unique challenges as they balance teaching load, service, research, and a
need for professional development. We submit that building apps in multi-year
projects for passionate clients can help faculty “learn for life” , including more
than one lesson from our talented students.

References

[1] Berger, R. and Drout, M.D.C. A reconsideration of the relationship between
viga-glims saga and reykdla saga: New evidence from lexomic analysis. Viking
and Medieval Scandinavia, 11:1-32, 2015.

[2] Boese, E.S., LeBlanc, M.D., and Quinn, B.A. . EngageCSEdu: Making interdis-
ciplinary connections to engage students. ACM Inroads, 8(2):33-36, 2017.

[3] Crymble, Adam, Fred Gibbs, Allison Hegel, Caleb McDaniel, Ian Milligan, Evan
Taparata, Amanda Visconti, and Jeri Wieringa. The Programming Historian.
2nd ed. http://programminghistorian.org/., 2016.

[4] Dropseed LLC. Pullapprove. docs.pullapprove.com/.

81

[5]

[6]

[15]

82

Drout, M.D.C. and Smith, L. A Pebble Smoothed by Tradition: Lines 607-61 of
Beowulf as a Formulaic Set-piece. Oral Tradition, 2018.

Drout, M.D.C., Kahn, M., LeBlanc, M.D., Nelson, C. . Of dendrogrammatol-
ogy: Lexomic methods for analyzing the relationships among old english poems.
Journal of English and Germanic Philology, 110(3):301-336, 2011.

Eder, M., Kestemont, M. and Rybicki, J. . Stylometry with R: A package for
computational text analysis. R Journal, 16(1):107-121, 2016.

M.K. Gold. Debates in the Digital Humanities. University of Minnesota Press,
2012.

Lexomics Research Group. Lexomics research group. http://lexomics.
wheatoncollege.edu.

Appveyor Inc. Continuous integration and deployment service for Windows de-
velopers - AppVeyor. https://www.appveyor.com/.

JetBrains. Pycharm. https://www.jetbrains.com/pycharm/.

Jockers, M. . Text Analysis with R for Students of Literature. Springer, New
York, 2014.

Kleinman, S., LeBlanc, M.D., Drout, M., and Feng, W. Lexos v3.2.0. https:
//github.com/WheatonCS/Lexos/doi:10.5281/zenodo.1403869.

M.D. LeBlanc. Toward reproducibility in DH experiments: A case study in
search of Edgar Allan Poe’s first published work. digital humanities. 2017, Mon-
treal, Canada, August 2017. https://dh2017.adho.org/abstracts/027/027.
pdf.

LeBlanc, M.D. and Drout, M.D.C. . DNA and {#i# 5§ (mandarin): Bring-
ing introductory programming to the life sciences and digital humanities. Pro-
cedia Computer Science —International Conference On Computational Science,
51:1937-1946, 2015.

Lexos. Lexos development version. https://github.com/WheatonCS/Lexos/
tree/master.

Lexos. Lexos tools. http://lexos.wheatoncollege.edu.
Alan Liu. The meaning of the digital humanities. PMLA, 128(2):409-423, 2013.
F. Moretti. Distant Reading. Verso Books, 2013.

Lexomics Research Group (n.d.). Python coding style guide. https://github.
com/WheatonCS/Lexos/wiki/Python-Coding-Style-Guide.

Nichols, R., Slingerland, E., Nielbo, K., Bergeton, U., Logan, C., Kleinman,
S. Modeling the contested relationship between analects, mencius, and xunzi:
Preliminary evidence from a machine-learning approach. The Journal of Asian
Studies, 77(1):19-57, 2018.

S. Sinclair and G. Rockwell. Voyant tools. http://voyant-tools.org/.
GmbH. Travis CI Travis CI. Test and deploy with confidence. https://travis-
ci.com/.

[24] Guido van Rossum, Jukka Lehtosalo, and Lukasz Langa. PEP 484 — Type Hints.
https://www.python.org/dev/peps/pep-0484/.

[25] Guido van Rossum, Barry Warsaw, and Nick Coghlan. PEP 8 — Style Guide for
Python Code. https://www.python.org/dev/peps/pep-0008.

[26] Zhang, C., Feng, W., Steffens, E., de Landaluce, A., Kleinman, S., and LeBlanc,
M.D. Lexos 2017: Building reliable software in Python. The Journal of Com-
puting Sciences in Colleges, 33(6):124-134, 2018.

83

Factors Influencing Women Entering
the Software Development Field
through Coding Bootcamps vs.

Computer Science Bachelor’s Degrees®

Sherry Seibel, Nanette Veilleuz
Simmons University
300 Fenway, Boston, MA 02115

{sherry.siebel, veilleur}@simmons.edu

Abstract

The gender disparity in technology related fields is well known and
well documented. Only 18% of computer science undergraduates and
26% of computer science professionals are women. Despite numerous
interventions in the past decade, women are still underrepresented in
the undergraduate pipeline. However, in 2016 35% of post-baccalaureate
“coding bootcamp” participants were women, suggesting these women
may have different characteristics, attitudes, and mindsets than women
and girls who sought a traditional college path. Examining data from 18
interviews, the results show that the bootcamp women entered computer
science as adults after gaining a better understanding of what the indus-
try would require, having familial and peer support, and some positive
experiences in introductory classes and workshops. These women report
being initially deterred from participating in a computer science major
due to a lack of understanding of the discipline, a low mathematical
self-efficacy, the belief they wouldn’t be able to do what was considered
challenging work, and/or, indirectly, anticipating being uncomfortable
when the major was comprised mostly of men. In contrast, the women
who studied computer science in college were exposed to coding earlier
and had a better understanding of what the major would entail. They
also believed they were good at math and were encouraged to pursue a
computer science major.

*Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

84

1 Introduction

The shortage of women in computer science (CS) programs is well known and
well documented. Since 2013, only 18% of undergraduates in the computer
sciences were women [11], despite women earning 57% of all bachelor’s degrees
[15]. Through the early 80s, women in CS appeared close to reaching gender
parity. The number of female CS majors was at a steady increase with women
earning 37% of undergraduate CS degrees [4]. In 1984 a cultural, gendered shift
in computing began permeating college campuses, which resulted in a sharp
decline of female CS graduates by 1987 [17] despite the increase of women
in other STEM fields such as psychology and biological sciences [14]. One
hypothesis for this shift may be the advent of personal computers available
for public consumption, with companies marketing them to boys as videogame
platforms. As a result, most personal computers were owned or accessible to
males, and popular culture perpetuated these views [17].

The gender gap still persists in traditional educational models despite the
growing number of students in computer science majors. However, the num-
ber of women entering the workforce is beginning to shift due to many factors,
including the emergence of coding bootcamps. This study examines the attrac-
tiveness of these bootcamps for women who presumably choose not to pursue
the discipline as traditional college students.

Coding bootcamps are overwhelmingly for-profit schools that provide full-
time, immersive web development education. While many bootcamps offer
online options, this paper will focus on in-person matriculation. Of the 95
operating bootcamps in the United States, the average duration and tuition in
2016 was 12.9 weeks and $11,451 respectively [11]. In 2016, the average age
of the 15,077 coding bootcamp graduates was 30, and 35% of those graduates
were women [7, 11]. In comparison, there were 64,405 university graduates
in the computer sciences (including Information Technology and other related
majors) in 2016 [11] but only 11,592 (18%) were women [12]. If one looks
only at CS majors, 2,392 of 15,633 (15.3%) graduates in 2015 were women
[13]. Coding bootcamps produced an estimated 5,276 women graduates in
2016, slightly more than double the 2015 women CS graduates, and slightly
less than half of all women majoring in any form of the computer sciences.
While 2017 saw 4,696 (29%) women bootcamp graduates, statistics released
by Course Report in December 2018 project 6,833 (37%) women bootcamp
graduates for 2018 [6, 8].

Coding bootcamps were not created with the goal of achieving gender parity
in computing [9]. The concept was informally conceived in November 2011
when Shareef Bishay, future founder of Dev Bootcamp, who initially solicited
six individuals to spend 8 weeks learning Ruby on Rails full-time through the
Hacker News Forum [2].

85

Since then, the industry has ballooned and the volume of women conse-
quently committed to learning programming through bootcamps is unprece-
dented. While the gender ratio of undergraduate CS enrollment stagnates,
coding bootcamp gender diversity is steadily expanding. The central question
of this present study is: why do women, presumably only slightly older and
already college educated, seek to enter a discipline that they avoided when
entering college? Related questions concern whether the bootcamp women see
themselves differently or see the discipline differently. In short, this study seeks
to understand the social motivators behind the larger percentage of women
seeking a career in coding through nontraditional channels with respect to the
participation through traditional college CS preparation. The results from this
study could be used to identify steps towards achieving gender equality in
undergraduate CS programs, or, failing that, in coding professions.

2 Methods and Materials

2.1 Study Population

This qualitative study was comprised of 18 women: 9 were CS graduates and 9
were coding bootcamp graduates. Four coding bootcamp graduates attended
a program in Massachusetts, two attended in New York, and three attended in
Illinois. Three CS graduates went to universities in California, three went to
universities in Massachusetts, and three went to universities in Pennsylvania.
All of the CS graduates were employed when participating in this study.

Six coding bootcamp graduates attended a Ruby on Rails program and all
were employed doing web development at the when participating in this study.
The remaining three coding bootcamp graduates attended a JavaScript pro-
gram. One was employed doing web development and two were not; however,
the two unemployed graduates finished their coding bootcamp two months
prior to their participation in this study, whereas the other coding bootcamp
graduates concluded their programs more than six months prior to their par-
ticipation in this study. The ages of the coding bootcamp graduates during the
time of participation in this study had a mean age of 29.67 years old (25-40,
median: 28), and CS graduates a mean age of 25.7 (21-30, median 25).

2.2 Study Method

Interviews were conducted using a semi-structured instrument to gather quali-
tative data, and all interviewees were given codes to preserve anonymity. Two
interviews were held at an academic institution, two at an interviewee’s home,
one at the interviewer’s home, one at an interviewee’s workspace, and 12 online

86

through Google Hangouts. Two of the interviews were conducted with other
people present with the interviewees’ consent. In both cases the other people
present were family members. The interviews took place between September
2017 and August 2018.

Participants were recruited virtually, verbal announcements, and via word
of mouth. Emails were sent to recent Simmons University CS alumni, a call
for participation was posted on Facebook, and the study was advertised in four
Slack channels: Women Who Code Boston, Boston Ruby Women, RailsBridge
Boston, and the Philadelphia chapter of Girl Develop It. The emails to re-
cent Simmons University alumni and the Facebook post were not successful in
recruitment. The Slack channels yielded one CS graduate and two bootcamp
graduates. Two CS graduates and four bootcamp graduates were recruited
following an announcement at a RailsBridge Boston event. The rest of partici-
pant recruitment was via word of mouth. Participants were asked at the end of
the interview if they knew others who might be interested in joining the study.
Participants who did provided contact information or connect the individual
to the researchers either by Facebook, email, or Slack, allowing for a personal
introduction. This approach facilitated the enrollment of six CS graduates and
three coding bootcamp graduates.

Before each interview commenced, participants signed a consent form and
the recording process was explained in detail. The women were shown the
recording mechanism, told the average length of the interviews, informed they
could skip questions or stop the interview at any time, and encouraged to ask
any questions they might have.

Participants were asked 85 questions about their backgrounds, peer inter-
actions, opinions on math, social motivators and inhibitors, self-esteem, and
industry perceptions. Eight of those questions were structured to gather demo-
graphic data at the end of the interview session. The interviews were recorded
using the password protected VoiceRecorder iPhone app, and ranged from 25-
91 minutes depending on amount of detail the participant provided.

2.3 Data Analysis

Results from the interviews were transcribed and coded by one of the authors
using a Conversational Analysis Codebook. Codebook themes included a) De-
velopmental factors including computer-related background such as childhood
access to computers and coding instruction, b) Previous assumptions and atti-
tudes on software development and the skills necessary in this profession and
¢) Previous assumptions and attitudes on the subject’s ability to fit this pro-
fession, either by the ability to gain the necessary skills (self-efficacy) or ability
to match, demographically, the existing workforce.

87

3 Results

3.1 Developmental Factors

In these results, the two target subject populations will be referred to as Com-
puter Science or CS graduates (those who graduated from a traditional college
CS major or similar background) and bootcamp graduates (those who finished
a post-baccalaureate bootcamp training program).

Except for one CS graduate, all of the participants had access to a computer
as a child, shared with other members of the family. Four computer science
graduates and one bootcamp graduate felt they were the primary user for the
machine. Eight of the nine CS graduates had been exposed to coding before
arriving at college, and all of those eight had formal coding classes before
college. In contrast, five of the Bootcamp graduates wrote some code prior to
college but only one had taken a formal CS class.

As anticipated, the bootcamp subjects were older when they chose to pur-
sue a software development career. The ages at which the coding bootcamp
participants decided to change careers and enroll in a bootcamp were between
22 and 38 years old with a mean age of 26.89. The CS graduates decided on
their majors at ages 12 - 20 with a mean age of 17, consistent with typical
undergraduate major choice. The average age of the nine bootcamp gradu-
ates interviewed for this study were slightly younger than the 2017 and 2018
national average of 29, and the 2016 national average of 30.41[9, 6].

3.2 Attitude towards Computing Profession and Required
Skills

A main contributor to bootcamp graduates’ delay in studying CS (e.g. in
college) appears partially based on belief the major and field are math intensive,
coupled with low mathematical self-efficacy. Only three of the nine bootcamp
graduates considered themselves to be good at math. One subject reported:

So, personally I don’t feel like I'm that good at math. And I also
I don’t like math. And actually, since you bring up math, I do
think that was also maybe part of why I never thought about coding
because I did have this idea in my head that you needed to be good
at math to be a software engineer and in practice, you really don’t.
- Bootcamp graduate

In contrast, while CS graduates also initially believed that software devel-
opment heavily required mathematics skills, seven of the nine computer science
graduates believed they were good at math. Interestingly, none of the grad-
uates from either the computer science or bootcamp programs are currently

88

using post-algebra mathematics in their current jobs, and most no longer be-
lieve a strong math background is necessary. All emphasized logical reasoning
as the main requirement for being a competent coder.

The difference in background, etc. between CS majors and boot
campers who now do the same job, is pretty interesting. It kind of
shows that CS programs could and should do better. Calc is such
bs. - Computer Science Graduate

Only one computer science graduate currently maintains that coders do
need strong mathematical backgrounds to be effective in her job, despite re-
porting that she herself didn’t use complex math in her work. However, the
subject pool did not include women working in artificial intelligence, robotics,
or machine learning specialties that typically would require advanced math and
often advanced degrees.

More generally, subjects reported initially having vague and incorrect as-
sumptions about professional skills and aptitudes required for a software de-
veloper. Only one of the bootcamp graduates, an engineering major, reported
that she previously knew what a computer science curriculum might entail.
Only two of the computer science graduates stated that they understood the
major requirements; however, their university required they specifically apply
and be admitted to the CS program before starting freshman year, so they were
more likely to engage in investigating more closely. One bootcamp subject dis-
cusses her retrospective on the nature of the work that a software developer
engages in:

I thought I was going to do marketing or something creative and I
never thought of software engineering was actually a really creative
field and then now I know, actually it’s extremely creative. I just
don’t think a lot of women or just a lot of people ... have a clear
idea of what software engineering entails. ... I didn’t realize until
like later on when I ended up working in tech ... and realized “oh
wow, it’s actually quite creative and you’re building something every
day.” Yeah, and crafting and something while problem solving. -
Bootcamp Graduate

Most of the participants rated themselves as being more comfortable around
other women. One study of middle school girls showed that when placed in
an environment comprised entirely of other girls, they were more likely to par-
ticipate in classroom discussion, specifically mathematics, than when placed
in coeducational classrooms. They cited an increased comfort around female
peers as the facilitator of this behavior, as well as instilling self-concept as
mathematicians and increasing their ability to learn math [21]. The trend

89

continues into post-secondary classrooms, shown by another paper where un-
dergraduate women were more comfortable and excelled more in introductory
classrooms comprised of mostly other women [5]. Based on the comfort around
other women interviewees from this study expressed, the preference for major-
ity women learning environments seems persistent across age groups. Given
the well-founded belief that most of their workplace colleagues will be men may
have an influence on their decision as well.

3.3 Attitudes towards one’s abilities

As stated above, the bootcamp graduates reported having low math skills self-
efficacy more often than the CS graduates. Most reported not knowing, or
having not had the chance to fully explore, their coding abilities until they
entered either a traditional CS major or a bootcamp. Most subjects expressed
“wishing they had coded earlier” in both populations: eight bootcamp gradu-
ates and six of the CS graduates wish they started coding earlier.

In terms of assessment of their abilities, eight of the bootcamp graduates
were surprised by the ease in which they learned coding. Two bootcamp gradu-
ates likened writing code to writing an essay, and every participant in the study
conceded that most of coding is logic-based, not what they had thought of as
math-based. Three CS graduates were also surprised by their strong coding
aptitude, one because of a negative experience in a high school CS class, one
because she had been exposed to coding at an earlier age than her classmates
and as a result was learning faster, and the third because of her perceptions of
the media’s portrayal of coding.

...my [Discrete Math] TA was fantastic, and she was a computer
science major. And up until that point it really hadn’t even occurred
to me that I could do computer science. Um but watching her be
like, amazingly good at explaining the material that she definitely
understood I was like “oh this is a thing that women can do.” It
hadn’t occurred to me until I saw her. It sounds so ridiculous now.
- Computer Science Graduate, initially a Math major

This surprise reveals the lack of understanding both of the needed skills, as
described above, and of the subject’s assumptions about whether she could ac-
quire such skills, hinting at holding a fixed mindset with respect to these skills.
When some of the bootcamp subjects were actually able to experience coding
in the right environment, they adjusted their assumptions. Five of the boot-
camp graduates attended workshops prior to enrolling in a bootcamp, and four
cited them as catalysts for making their career change to coding. Specifically,
they commented on the supportive environment and helpful instructors.

90

In terms of fitting into the profession, all of the CS graduates and seven
of the bootcamp graduates mentioned encountering “know-it-alls” in either
their CS major or bootcamp, and all mentioned encountering them once they
entered the workforce as professional coders. The effects of “know-it-alls”on the
participants’ psyches ranged from negligible to severe. One interviewee defined
“know-it-alls” who created toxic environments as “knowledge parading” by
confidently exclaiming that a concept was easy or using complicated, although
sometimes inaccurate, jargon. The participants reported the belief that this
tactic was used as a means to belittle others and reported participating less in
classes as a result. While all the women overcame this hurdle, they report the
fear of appearing to have inferior knowledge as a factor still at play in their
professional lives and impacts self-confidence.

I was successful in the class 100% because the class was set up so
“smartasses” who took computer science in high school couldn’t be
better because they solved the problem before. - Computer science
graduate

The importance of a healthy peer group was further highlighted by all
coding bootcamp graduates and seven CS graduates attributing some of their
success to peer support while learning how to code. Three bootcamp graduates
and three CS graduates strongly emphasized that they would not have been
motivated to either sign up and/or stay in their program without other women
peers supporting them. Six bootcamp graduates mentioned at least one woman
as a catalyst for changing careers, whether it was a friend, mother, character
in a book, or desiring to be a good role model to young daughters and girls.

Seven CS graduates were encouraged to pursue the major by their friends,
family and/or significant other after expressing a desire to code, and two re-
ceived mixed feedback. In contrast, three bootcamp graduates were encouraged
to attend a bootcamp by family, friends, and/or significant other after initially
expressing a desire to do so. When asked to rate their self-confidence, comfort
in voicing their opinions, and comfort making mistakes, the women who re-
sponded in both cohorts were on average more at ease in front of women than
men.

4 Discussion

4.1 Developmental Factors

In the past, a hypothesis for the 1980’s downturn explaining the mechanism
for women not entering Computer Science was the lack of childhood access to

91

computers [17]. Only one of 18 participants did not have access to a machine,
indicating other factors are now at play.

No other development factors seemed to stand out as influential in this small
subject pool except for a slight difference in prior coding experience. However,
even those girls who had experienced coding activities before high school (8/9
CS majors and 5/9 bootcamp graduates) did not seem to extrapolate more
accurate information about their abilities or the requirements of the field.

The last developmentally related difference between the CS graduates and
the bootcamp graduates was, of course, age and the expected increase in ma-
turity. It would be difficult to control for this factor since bootcamps are post-
baccalaureate programs. The difference does suggest, however, that the factors
that dissuaded these women from entering the software development field when
younger have been offset. Interestingly, this doesn’t seem to evidence itself with
more complete understanding of their abilities (hence, “surprised at the ease
of coding”) or the field.

4.2 Attitude towards Computing Profession and Required
Skills

There was a general misunderstanding by both bootcamp and CS graduates re-
garding what a CS major actually entails. Only three participants understood
the structure and details of a CS major before enrolling in college. This could
be attributed to how broad CS employment opportunities are, encompassing
areas from developing artificial intelligence and machine learning algorithms to
informatics and networking management. When categorizing degrees, NCES
lists 26 sub disciplines under Computer and information sciences and support
services [13]. This broadness may make a CS major difficult to describe and
therefore hard to envision for young students and, as such, could potentially
deter enrollment for those who don’t naively envision themselves in the field.
Furthermore, the subjects from both cohorts reported not fully understand-
ing the skills required by a software development workplace. Most ascribed
mathematical talent as a higher priority skill than their current work requires.

4.3 Attitudes towards one’s abilities

Low mathematical self-efficacy was related to the subjects’ disinclination to
formally study CS in college. While belief in one’s mathematical competency
may be based on actual aptitude, research shows that there is a significant
cultural confidence gap independent of actual ability in mathematical perfor-
mance [18]. It has been shown that women and men average equal performance
in math. Perceived gender differences in mathematical ability are largely due
to engrained, inaccurate social perceptions, evidenced by a 2017 Google memo

92

arguing biological factors are the reason for fewer women in CS, as well as a
2005 talk given by former Harvard University President Lawrence Summers
[20].

However, despite the lack of mathematics in the bootcamp curriculum,
72% of 1000 interviewed companies believed their bootcamp hires were just
as competent as their traditional CS hires, with 12% believing the bootcamp
graduates were more competent than the CS graduates [19]. Given these two
pieces of evidence, it is perhaps not surprising that many of the study par-
ticipants adjusted their beliefs in the professional requirements (i.e. software
development doesn’t need math) rather than their belief in their own ability
with respect to mathematic facility.

An important step in CS enrollment and recruitment then becomes the abil-
ity to communicate more clearly the work that software developers do, across
the spectrum of applications. While this might still not encourage women to
enter the qualitative heavy applications, there would still be the benefit of
recruiting women into the profession in some capacity.

From this study, one also finds that students who are confronted with hostile
environments in the forms of “know-it-alls”in their classes experience decreased
confidence and therefore may leave the field. It has been recommended that
educators intervene with this potentially toxic behavior [3] [16].

Supportive peer groups have been linked to the retention of CS students,
as has the importance of a passionate educator who encourages a safe space
to ask questions, attend supplemental lessons, and facilitates positive peer
interactions [3]. For example, Harvey Mudd College in California was able
to reach 55% woman enrollment in CS by incorporating group projects to
facilitate peer bonding, placing students with similar programming skill levels
in appropriate introductory courses, instilling asking for help as imperative to
classroom success, and diverting students who dominate conversations [1].

4.4 Prior Coding Experience

An additional, albeit weaker, predictor of CS participation in college was prior,
formal exposure to code. Five of the CS graduates took formal CS courses
before college, and all participants had done some coding before college. This
is consistent with data released from Accenture and Girls Who Code, showing
that early engagement in CS leads to more CS majors, and the best time to
introduce females to coding is before high school. However, introducing women
to CS in college or as adults [10] also has some effect.

The women bootcamp graduates who took courses after college before mak-
ing a career change reported strongly positive experiences regarding the culture
of the courses and comfort with the subject material. Coding workshops before
bootcamp enrollment changed self-perceptions on abilities and changed their

93

understanding of the tech industry. These factors coupled together became the
catalyst for change. Women in this study entered computer science as adults
after gaining a better understanding of what the industry would require, fa-
milial and peer support, and positive experiences in introductory workshops.
They were deterred from participating in a CS major due to low mathemati-
cal self-efficacy, the belief they wouldn’t be able to do such challenging work,
not understanding the major, and, indirectly, being more comfortable around
women when the major was comprised mostly of men. The women who stud-
ied CS in college were exposed to formal CS classes earlier, believed they were
good at math, and were encouraged to pursue a CS major.

5 Conclusions

From this study, one can appreciate the success of BRAID colleges in increas-
ing the number of women CS majors. The use of diverse routes into the major
showcases the broad set of skills needed by a broad set of software develop-
ment application areas. Furthermore, a set of entry paths allow those without
prior experience to catch up free of intimidating “knowledge-parading” col-
leagues. A second, and certainly far more controversial suggestion arising from
this study would require the willingness to diversify the CS curriculum to fit
the needs of different CS application areas rather than trying to provide the
broadest education for all students. This would be challenging for traditional
CS professors who feel strongly that no part of a traditional curriculum should
be omitted, even those aspects that were more useful initially than are perhaps
today. A more appealing higher education CS reform might be to reach out
to career-changing women with second bachelors or Masters’ degrees (e.g. like
Northeastern University’s ALIGN program and others). These more experi-
enced and slightly older women might engage in the decision to enter a software
development field by a willingness to let go of assumptions about themselves
and the field. Finally, by encouraging positive learning environments through
healthy peer interactions and enthusiastic professors, CS becomes less intimi-
dating.

Finally, to address the lack of specific understanding what courses or skills
are most useful in a Computer Science major, colleges might increase awareness
by hosting short, introductory, ungraded workshops for their women students
to try coding.

References

[1] Barker, L. J., Cohoon, J. M. Key practices for retaining undergraduates in

94

[12]

[13]

computing. National Center for Women Information Technology, 2009.

S. Bishary. Tell HN: I want to teach you web development. in 8 weeks. for
free (sort of). hacker news web forum, 11 november 2011. https://news.
ycombinator.com/item?id=3267133.

Indeed Blog. What do employers really think about coding bootcamps? 2 may
2017. http://blog.indeed.com/2017/05/02/what-employers-think-about-
coding-bootcamp/.

ComputerScience.org. Women in computer science. www.computerscience.org/
resources/women-in-computer-science/. Accessed 19 November 2018.

Dasgupta, N., Scircle, M. M., Hunsinger, M. . Female peers in small work
groups enhance womens motivation, verbal participation, and career aspirations
in engineering. Proceedings of the National Academy of Sciences, 112(16):4988—
4993.

L. Eggleston. Coding bootcamp alumni outcomes & demographics report. course
report, 19 dec. 2018. www.coursereport.com/reports/coding-bootcamp-job-
placement-2018. Accessed 20 January 2019.

L. Eggleston. Coding bootcamp market size study. course report, 19 july
2017. www.coursereport.com/reports/2017-coding-bootcamp-market-size-
research.

L. Eggleston. Coding bootcamp market size study. course report, 21 aug
2018. www.coursereport.com/reports/2018-coding-bootcamp-market-size-
research. Accessed 20 January 2019.

L. Eggleston. Coding bootcamp outcomes & demographics report. course re-
port, 19 dec. 2017. www.coursereport.com/reports/coding-bootcamp-job-
placement-2017.

C. M. Ely. An analysis of discomfort, risktaking, sociability, and motivation in
the 12 classroom. Language Learning, 36(1):1-25, 1986.

National Center for Education Statistics. Bachelor’s degrees conferred by post-
secondary institutions, by field of study: Selected years, 1970-71 through 2015-
16. revenues and expenditures for public elementary and secondary education:
School year 2001-2002, e.d. tab. nces.ed.gov/programs/digest/d17/tables/
dt17_322.10.asp.

National Center for Education Statistics. Bachelor’s degrees conferred to females
by postsecondary institutions, by race/ethnicity and field of study: 2014-15
and 2015-16. revenues and expenditures for public elementary and secondary
education: School year 2001-2002, e.d. tab. nces.ed.gov/programs/digest/
d17/tables/dt17_322.50.asp. Accessed 19 November 2018.

National Center for Education Statistics. Table 318.30. bachelor’s, master’s,
and doctor’s degrees conferred by postsecondary institutions, by sex of student
and discipline division: 2014-15. https://nces.ed.gov/programs/digest/d16/
tables/dt16_318.30.asp?current=yes. Accessed 19 November 2018.

95

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

96

National Science Foundation. National science foundation - where discover-
ies begin. edited by Mark K Fiegener, NSF. www.nsf.gov/statistics/2015/
nsf15326/.

National Science Foundation. Women, minorities, and persons with disabilities
in science and engineering. https://www.nsf.gov/statistics/2017/ns£17310/
digest/fod-women/. Accessed 19 November 2018.

Josephine A. Gasiewski. From gatekeeping to engagement: A multicontex-
tual, mixed method study of student academic engagement in introductory stem
courses. Research in Higher Education, 53(2):229-261, 2011.

S. Henn. When women stopped coding. NPR. Morning Edition
www.npr.org/sections/money/2014/10/21/357629765/when-women-stopped-
coding Accessed 19 November 2018.

Hyde, J. S., Mertz, J. E. Gender, culture, and mathematics performance. Pro-
ceedings of the National Academy of Sciences, 106(20):8801-8807, 2009.

H. W. Marsh. Self-concept, social comparison, and ability grouping: A reply to
Kulik and Kulik. American Educational Research Journal, 21(4):799, 1984.

L. H. Summers. Remarks at NBER conference on diversifying the science engi-
neering workforce (2005). ADVANCE Library Collection. Paper 273.

K. Weisul. How Harvey Mudd College achieved gender parity in its com-
puter science, physics, and engineering programs. Inc.com, Inc., 31 May
2017, www.inc.com/kimberly-weisul/how-harvey-mudd-college-achieved-
gender-parity-computer-science-engineering-physics.html.

Course Redesign to Improve Retention:
Finding the Optimal Mix of
Instructional Approaches*!

Sotirios Kentros, Manish Wadhwa, Lakshmidevi Sreeramareddy,
Komalpreet Kaur, Marc Ebenfield, Allan Shwedel
Computer Science Department
Salem State University
Salem, MA 01970

{skentros, mwadhwa, lsreeramareddy, kkaur, mebenfield, ashwedell}

@salemstate. edu

Abstract

Recognizing the key role of Introduction to Programming in the Com-
puter Science curriculum we wanted to improve the course in ways that
will enhance the success of students in the course and the curriculum.
To this end, we launched a three year department wide effort in col-
laboration with the Center for Teaching Innovation. After evaluating a
collection of different academic interventions, we adopted Supplemental
Instruction and added four new laboratory assignments, based on Finch
robots, that have a peer-learning component, inspired from Team-Based
Learning. We are currently on the third year of our project. We have
been evaluating the impact of our interventions in the course retention
and the main learning objectives of the course. Our preliminary results
show reduced D/F/W rates and improved overall student achievement
in the course.

*Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

TThis work was supported in part by the grant Active Engagement of Students in Whole
Course Redesign. The grant was received from the Davis Educational Foundation estab-
lished by Stanton and Elisabeth Davis after Mr. Davis’s retirement as chairman of Shaw’s
Supermarkets Inc.

97

Introduction

In an effort to improve retention on our Introduction to Programming course,
in summer 2016 we started a collaboration with the Center for Teaching Inno-
vation. CSC 110 - Software Design and Programming I is the first program-
ming course in the Computer Science curriculum in our department. CSC 110
is offered as a lecture and lab course, meeting six teaching hours per week
(three for lecture and three for lab). The same instructor offers the lecture
and lab session, which are closely coupled in the material they cover during
the semester. During lecture new topics are introduced, then during lab the
students practice these topics by completing lab assignments which typically
include programming tasks of varying complexity. The work load of the course
is heavy, typically including 10-14 lab assignments, 4-6 homework assignments,
a few quizzes, a midterm and a final.

Recognizing the key role of CSC 110 in the Computer Science curriculum
we want to improve the course in ways the will enhance the success of students
in the course and the curriculum. The goal of our collaboration with the Center
for Teaching Innovation was to explore different interventions on our CSC 110
course in order to increase retention in the class and the program, while at
the same time ensuring and improving the extent to which the key objectives
of the course are achieved. To be more specific, we aimed at reducing D/
F/W(“D?, fail and withdraw) rates, ensuring at the same time that students
that complete the course have further developed their critical thinking and
problem solving skills, have developed an understanding of the basic principles
of object-oriented design and can successfully apply them to solve programming
problems using Java.

Towards this goal in Fall 2016 we examined different interventions in the
three sections of CSC 110 we offered that semester. At the end of the semester
we surveyed our students in order to understand what seemed to work bet-
ter for them. Furthermore the faculty that offered those sections gave their
feedback on their experiences. Through this process we settled on using Sup-
plemental Instruction [10] and implementing four lab assignments with Finch
robots [7] in a team-based format [12]. This tripartite redesign of the course
includes key aspects of active learning that have been shown to increase reten-
tion of information by students, enhance critical thinking skills and improve
student engagement [14]. In contrast to normal lab assignments for CSC 110,
Finch labs are team-based activities that revolve around programming Finch,
a programmable robot to do activities like moving, sensing the environment,
playing music, etc. Introducing the Finch labs has multiple benefits for the stu-
dents. It helps anchor the basic concepts of object-oriented programming, since
interacting with the Finch robot is done by instantiating a Finch object and
performing method calls on the object. This helps students understand many

98

of the object-oriented topics of the course, like object instantiation, method
calls, passing arguments to a method, changing the state of an object, etc.
Furthermore the labs facilitate peer learning in a natural way, since students
team up to work on a physical object. Post-lab reflective activities are used
to help students reflect on their teamwork and reinforce the gravity of the
team-based component of the lab.

The semesters that followed we continued improving the design of the four
Finch labs with a focus on their peer learning aspect. We surveyed students
each semester while monitoring the D/F/W rates of the course. Our surveys
aimed to understand the satisfaction of the students from the interventions as
well as their impact on the learning objectives of the course. Our collaboration
entered its third year in the Fall of 2018. During the current academic year our
goal is to evaluate our finalized interventions both in terms of D/F/W rates
and their effectiveness on promoting the learning objectives of the course. We
are using post-lab surveys and end of semester surveys, as well as comparison
of retention data to this end.

In the background section we are presenting related work on the different
interventions we have considered over the past semesters. In the our interven-
tion section we present in more detail the interventions we did on our CSC 110
course as well as the finalized interventions as they evolved during our two year
collaborative experience. In the preliminary results section we present some
results of our surveys during the first two years of our intervention as well as
D/F/W rate results. We conclude with a discussion of our experience over the
past two years.

Background

In our Introduction to Programming course we explored different academic in-
terventions to decrease D/F /W rates and increase retention of students. Specif-
ically we considered a)the introduction of Supplemental Instruction, b) Peer
Learning approaches and c¢) use of the Finch robot. Next we present related
work on the interventions we considered.

Supplemental Instruction

Supplemental instruction (SI) is an academic intervention that employs stu-
dents who have successfully taken a course, to facilitate peer-learning sessions
for that course. Supplemental instruction has been primarily used in courses
identified as high-risk. The employed students called Peer Leaders or Supple-
mental Instructors, are students who have already taken the specific course,
probably with the same instructor, and performed well in it.

99

Since Supplemental Instruction was developed at the University of Missouri-
Kansas City (UMKC) in 1973 [10], there has been a wide body of research
examining the impact of SI in high-risk courses. The U.S. Department of
Education validated in the 90s three specific claims about the effectiveness of
SI:

e Students participating in SI within the targeted high-risk courses earn
higher mean final course grades than students who do not participate in
SI. This finding is still true when analyses control for ethnicity and prior
academic achievement.

e Despite ethnicity and prior academic achievement, students participating
in ST within targeted high-risk courses succeed at a higher rate (withdraw
at a lower rate and receive a lower percentage of [fail] final course grades)
than those who do not participate in SI.

 Students participating in SI persist at the institution (reenroll and grad-
uate) at higher rates than students who do not participate in SI[9].

Multiple reviews and studies have supported these claims for high-risk
courses [1] and more specifically for STEM(Science, Technology, Engineering,
and Mathematics) courses [13].

Introduction to Programming (CSC 110) is a high-risk course in the Com-
puter Science curriculum. Student performance in it is often an indicator of
whether students will continue in the major. Literature is strongly in favor of
introducing SI in such a course and thus in our intervention we examined the
addition of SI in our Introduction to Programming.

Peer Learning Approaches

As part of our intervention we explored different peer learning approaches,
since these have been shown to increase academic achievement and student
retention [14]. In particular we explored lightweight teams and Team-Based
Learning. Lightweight teams are class teams that have little or no direct impact
on the team members’ grade, but aim to provide a significant component of
peer teaching and peer learning in the course. As an added bonus they may
facilitate the socialization of less socially adept students [6].

Team-Based Learning (TBL) is a collaborative learning and teaching strat-
egy that gives emphasis to the structured process of group learning activities.
Typically students are assigned to teams that persist for the duration of the
semester and work together to apply learned concepts in order to solve prob-
lems collaboratively. TBL is structured around units of instruction, known
as “modules”. Each module consists of the following three-steps: preparation,

100

in-class readiness assurance testing, and application-focused exercise. TBL is
a mature academic intervention which has been studied extensively [4]. In the
context of introductory programming courses, there have been some adoption
attempts [2, 5], although people seem to drift towards modified TBL interven-
tions.

Finch Robots

Numerous research studies have shown that using robots to teach introduc-
tory programming courses increases student motivation, satisfaction and re-
tention [11, 3, 8]. We chose to use Finch robots [7] in our CSC110 —Software
Design and Programming I course. Finch robot’s support for object-oriented
programming was the primary reason for choosing it. Other positive features
of the Finch robots are its simple hardware, ease of use for students and short
learning curve for instructors.

Our Intervention

In Fall 2016 we offered 3 sections of CSC 110. Each section was offered by
a different faculty member and we tried different interventions in them. In
one section we added Supplemental Instruction. In the second section we
introduced added Supplemental Instruction and group work. Students were
placed in 5 groups of 4-5 people from the very first day of the class. They
were required to sit with their group members during class and lab. Groups
rotated on their class positions on a weekly bases. The following class activities
were performed using these groups: a) odd numbered lab assignments (5 lab
assignments, for 50% of regular lab credit), b) lab quizzes, ¢) peer review of
lab reports and d) a post-exam group activity on the mid-term. So in this
section we included a more integrated group learning experience. The primary
goal of the introduction of groups was to facilitate peer learning and create a
peer support structure for students. Although groups worked to a satisfactory
degree, we noticed that the constant interchange between group and individual
work, was problematic, since students would often prioritize individual work,
over group work. The inclusion of SI proved particularly useful and was seen
positively by students in both sections.

In the third section we did not add Supplemental Instruction, but we added
three Finch-based lab activities. The activities were intertwined with normal
lab work. The students had to individually produce solutions for the Finch
lab assignments and work in groups to test them in the Finch robots the
department had available.

101

At the end of the Fall 2016 semester we surveyed our students and evaluated
their reaction to the different interventions. Based on our experiences and the
results of the student surveys we decided to combine approaches and refine
implementation of those that showed promise. In the Spring of 2017 we moved
the group work out of the lecture and into the lab, offered an additional Finch
lab (4 total) and continued the SI. Finch labs facilitate peer learning in a
natural way, since students team up to work on a physical object. The team
based nature of the activity also helps generate a “gravity” to the assignments,
since there is also peer accountability. For the Fall 2017, Spring 2018 and now
the Fall 2018 offering, we have settled on this format of the intervention, having
SI and four Finch lab group activities of increasing difficulty and complexity.
Progressively we have added stricter structure on the group activity elements
of the Finch labs, primarily inspired by Team-Based Learning. For example,
we have added post-lab reflective activities after each lab, styled after reflective
questions in exam wrappers, asking the students to reflect on the topics the
lab addressed and their participation and interaction in the group component
of the activity.

Next we are describing the four Finch labs in a little more detail. In terms
of content covered. As mentioned apart from the Finch labs, students work in
8-10 individual labs. Students use the NetBeans IDE (Integrated Development
Environment) to work on the Finch Labs. In the Finch labs, there were two
categories of tasks: individual and group. These tasks are clearly marked in
the lab document. After completing the individual tasks, students were asked
to run the code, correct any errors, discuss the tasks in the group and when
they were satisfied, they were asked to show the output to the instructor or
peer leader (SI).

The primary purpose of the first Finch Lab is to familiarize students with
the process of writing a program for the Finch robot, compiling, executing the
program and observing the behavior of Finch. The assumption for this lab is
that students are not familiar with the application development environment
of the Finch robot. The individual tasks include: downloading the Finch Net-
Beans software package, opening the Finch project, creating a new package
and going through some demo java classes provided with the software package.
The group tasks are focused on modifying the specific classes by providing dif-
ferent arguments to method calls, that result in different behavior of the Finch,
resulting in changing the color of specific leds and the moving pattern of the
robot.

The second Finch lab, focuses on creating classes and working with instance
variables in Java using the Finch and Netbeans. In addition students learn
how to use the scanner class to take user input. The individual tasks include:
reading and understanding some demo java classes provided with the software

102

package, creating a class with three instance variables and appropriate setter
and getter methods, as well as creating a tester client class. The group tasks
include: answering questions regarding the java classes the students read and
created. For example students need to identify number of objects and instance
variables in the sample code. Then they are asked to compare their individual
code, convince their peers of the better approach to solving the problem, settle
on a final solution, test it and demonstrate it to the peer leader (SI) or the
instructor.

The third Finch lab focuses on making the robot move based on condi-
tions that are implemented using selection (if, if..else) and repetition (while,
do..while, and for) control structures. The individual tasks include: answer-
ing questions on control structures and writing a program to make the robot
display different colors, move and react when there is an obstacle. The group
tasks include: comparing their individual code, convincing their peers of the
better approach to solving the problem, testing it and demonstrating it to the
peer leader (SI) or the instructor.

The fourth Finch lab focuses on using one dimensional arrays and random
number generation. The students have to use arrays to pass multiple color
values for the Finch robot to display. Then they need to go through the values
initially in a sequential manner and then following a pseudorandom pattern,
using random number generation. The lab has no separation of individual and
group tasks. The students need to work on it as a group from the beginning.

As mentioned after each Finch lab students participate in a post-lab ac-
tivity, reflecting on the topics the lab addressed and their participation and
interaction in the group component of the activity. During the Finch labs, we
observed a noticeable interactions, discussions and excitement amongst the ma-
jority of the students. Students generally liked the idea of having a peer leader
(SI) answering the questions, while the group component of the labs helps stu-
dents to learn from team members. Teams also provided an opportunity to
improve communication and interpersonal skills.

Preliminary Results

Next we present some preliminary results from our experience over the past
two academic years. As we discussed, the goal of our intervention was to
reduce D/F/W(“D”, fail and withdraw) rates, while at the same time ensuring
and improving the extent to which the learning objectives of the course are
achieved. In order to evaluate the later, we conducted end of semester surveys
to assess the comfort level of students with the various key topics covered in the
course. The level of comfort of the students was evaluated on a scale with three
levels: very-little, somewhat comfortable and strongly comfortable. A total of

103

11 key topics were considered for the survey namely: performing simple input
and output, primitive types and reference types, top-down refinement, if-else
selection, sentinel controlled repetition, counter-controlled repetition, switch
statements, class declaration and object creation, constructors, declaring class
attributes, and declaring and using static variables and methods.

The table 1 shows survey results for the 11 course topics for the Fall 2016,
Spring 2017, and Spring 2018 semesters. The numbers and percentages shown
under each semester indicate the students who rated their level of comfort as
strong. Unfortunately during the Fall 2017 semester we used a different survey
and as a result we cannot directly compare our Fall 2017 findings with the ones
from the other semesters. As can be seen from table 1, comfort level increased
for 10 of the 11 topics between Fall 2016 and Spring 2018.

H Course Topics \ F16 \ Spl7 \ Sp18 ‘
% # % # %

Static Variables and Methods | 4 25.0% | 7 46.7% | 9 60.0%
Counter Controlled repetition | 7 43.8% | 10 66.7% | 12 80.0%
Sentinel Controlled repetition | 7 43.8% | 9 60.0% | 11 73.3%
Instance variables 7 43.8% | 8 53.3% | 10 66.7%
Class and objects 8 50.0% | 10 66.7% | 11 73.3%
If and If-else selection 10 62.5% | 12 80.0% | 13 86.7%
Constructors 7 438% | 8 533% | 9 60.0%
Simple Input —~Output 12 75.0% | 11 73.3% | 14 93.3%
Switch statements 6 375% |10 67.7% | 7 46.7%
Top-down refinement 8 50.0% | 9 60.0%| 9 60.0%
Primitive vs Reference Types | 9 56.3% | 9 60.0% | 8 53.3%

Table 1: Number and Percentage of Students Who Rated Their Level of Com-
fort as Strong

H Semester \ Very Little \ Somewhat \ Strongly \ Total# H
% # % # %
F16 8 5% 83 47% | 85 48.3% 176
Spl7 3 2% 59 36% | 103 62.4% 165
Sp18 6 4% 46 28% | 113 68.5% 165
Total 17 3% 188 37% | 301 59.7% 506

Table 2: Degree of Comfort Across the 11 Key Topics Covered in the Course

Table 2 presents the degree of comfort of students across the 11 key topics
covered in the course. The values are the number of responses. Fisher’s exact

104

test was used to see if the results obtained are statistically significant or not.
The p-value obtained for table 2 was 0.0002, indicating the results obtained are
statistically significant.

To determine if the teaching pedagogy is improving the course success or
not, final grades obtained by the students were considered. Table 3 presents the
course success rate in terms of the final grades. The second column presents
the D/F/Ws and the last column presents the grades in the range A through
C-. Table 3 compares the grades obtained before our intervention and during
our intervention. Table 3 indicates an increase in the final grades in A through
C- category, and drop in the D/F/W rates.

H DFWs(%) A through C-(%) H

Pre-Intervention (AY 2015-16) 25.6 74.4
During Intervention (F16 through S18) 18.1 81.1

Table 3: Course Success Rate Based on Final Grades

Conclusions

Over the course of the past two academic years, in collaboration with the Center
for Teaching Innovation, we have examined a collection of different academic
interventions for our introduction to programming course. Our main goal is
to reduce D/F /W rates, while ensuring and improving the extent to which the
key learning objectives of the course are achieved. This has been a department
wide effort, since to this point four different faculty have been taking part in our
project. Through end-of-semester student surveys and inter-faculty discussions
we have settled on the interventions to be adopted and during this academic
year, we are concluding our effort, evaluating the finalized interventions in our
course. Preliminary results indicate that our interventions have positive impact
both in reducing D/F/W rates and in improving overall student achievement
in the course.

References

[1] Phillip Dawson, Jacques van der Meer, Jane Skalicky, and Kym Cowley. On the
effectiveness of supplemental instruction: A systematic review of supplemental
instruction and peer-assisted study sessions literature between 2001 and 2010.
Review of Educational Research, 84(4):609-639, 2014.

[2] Ashraf Elnagar and Mahir Ali. A modified team-based learning methodology
for effective delivery of an introductory programming course. In Proceedings of

105

[10]

[11]

[12]

[13]

[14]

106

the 13th Annual Conference on Information Technology Education, SIGITE ’12,
pages 177-182, 2012.

Juan Felipe Garcia Sierra, Francisco J. Rodriguez Lera, Camino Ferndndez Lla-
mas, and Vicente Matelldn Olivera. Inside the maze: Who would find the cheese
first, a robot or a mouse?: Teaching IT using robots. In Proceedings of the First
International Conference on Technological Ecosystem for Enhancing Multicul-
turality, TEEM ’13, pages 297-302, 2013.

P. Haidet, K. Kubitz, and W. T. McCormack. Analysis of the team-based learn-
ing literature: TBL comes of age. Journal of Fxcellence in College Teaching,
25(3-4):303-333, 2014.

Michael S. Kirkpatrick. Student perspectives of team-based learning in a CS
course: Summary of qualitative findings. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’17,
pages 327-332, 2017.

Celine Latulipe, N. Bruce Long, and Carlos E. Seminario. Structuring flipped
classes with lightweight teams and gamification. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, SIGCSE 15, pages 392—
397, 2015.

Tom Lauwers and Illah Reza Nourbakhsh. Designing the Finch: Creating a robot
aligned to computer science concepts. In Proceedings of the First Symposium on
Educational Applications of Al July 2010.

Stefanie A. Markham and K. N. King. Using personal robots in CS1: Expe-
riences, outcomes, and attitudinal influences. In Proceedings of the Fifteenth
Annual Conference on Innovation and Technology in Computer Science Educa-
tion, ITiCSE ’10, pages 204—208, 2010.

D. C. Martin and David R. Arendale. Supplemental Instruction: Improving first-
year student success in high risk courses. National Resource Center for The First
Year Experience, 2nd edition edition, 1993.

Deanna Martin and Sandra Burmeister. Supplemental instruction: An interview
with deanna martin. Journal of Developmental Education, 20(1):22-24, 26, 1996.

Monica M. McGill. Learning to program with personal robots: Influences on
student motivation. ACM Transactions on Computing Education, 12(1):4:1—
4:32, March 2012.

Larry K. Michaelsen, Arletta Bauman Knight, and L. Dee Fink. Team-Based
Learning: A Transformative Use of Small Groups in College Teaching. Geen-
wood Puclishing, Westport, Connecticut, 2002.

Alan R. Peterfreund, Kenneth A. Rath, Samuel P. Xenos, and Frank Bayliss. The
impact of supplemental instruction on students in stem courses: Results from
San Francisco State University. Journal of College Student Retention: Research,
Theory & Practice, 9(4):487-503, 2008.

Michael Prince. Does active learning work? a review of the research. Journal of
Engineering FEducation, 93:223-231, 2004.

Introducing Students to Computer
Science and Programming using
Data Analytics*

Jorge A Silveyra
Department of Mathematics and Computer Science
Muhlenberg College
Allentown, PA 1810/

jreyes—silveyra@muhlenberyg. edu

Abstract

Enthusiasm for learning computer science continues to grow as more
non-computer science students are interested in creating computational
solutions to the problems encountered in their respective fields. Many
of those students, however, are anxious to take traditional computer
science classes given their lack of experience with programming. To dis-
sipate some of those fears, a course that taught students core concepts
from introductory CS classes in the context of data analytics was intro-
duced. Some of those concepts included variables, loops, conditionals,
and dictionaries. In this paper, a detailed description of the course and
the assignments used are delineated.

1 Introduction and Related Work

Computer Science departments are facing a trend of increased interest in their
field from students from all majors [2]. This population is not always inter-
ested in a major or minor in computer science, but they wish to expand their
computational skills in an effort to be more attractive to prospective employers
or graduate schools. This trend has created a higher demand to offer courses
that serve the interest and needs of this population. To address the increased

*Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

107

enthusiasm for these classes, a large number of institutions are incorporating
more accessible courses into their curriculum. Some use specialized software
[6], while others cover computer science topics while teaching a specific topic,
such as biology [9], robotics [16], or media computation [8]. In this document, a
course that concentrates on teaching computer science concepts using problems
commonly solved using data analytics is presented.

There are multiple approaches to teaching data science and data analytics
to majors and non-majors in introductory courses. Gil [7] proposed a course
that was designed to teach data science and big data analytics while covering
fundamental concepts in parallel and distributed programming. Dichev et al.
[4] presented a flipped program pedagogy that introduced students to data sci-
ence with no previous experience in the area. The curriculum of Dichev’s class
intermittently covered topics in statistics and computer science required to
prepare students in data science. Finally, Anderson et al. [1] and Johnson[12]
both presented courses that teach introductory programming using data anal-
ysis problems from real data sets.

The course to be presented here, CS109, is most similar to Anderson’s
course; however, the two courses differ in approach and goal. Most impor-
tantly, CS109 does not cover statistical models or machine learning, and the
primary goal of this course is to help non-computer scientists to become com-
fortable and interested in learning computer science by way of solving data
analysis problems. Other significant differences are that the assignments in
CS109 do not include any starting code, and most of the tasks have a sequen-
tial progression, instead of being entirely different entities. This author does
not intend to claim that Anderson et al. or any other approach is incorrect,
contrarily, the objective is to present a different method to allow educators to
potentially incorporate either program or combinations of to satisfy the needs
of their audience and institution.

2 Description of the class and assignments

Currently, at Muhlenberg College, there are multiple introductory computer
science classes based on different topics: Multimedia, Game Programming, etc.
These courses strive to introduce major and non-major students to computer
science and encourage their interest in the field. These classes usually attract a
large group of students; however, the majority of the time the audience is self-
selecting depending on the topic, i.e., art students take the multimedia class.
The Computer Science Department is interested in expanding the breadth of
the current courses, hence the need for new classes. This new course included
the core introductory computer science concepts presented in the other courses
but by way of a variety of data analysis problems. The problems did not require

108

an understanding or previous knowledge of data analytics techniques and did
not involve advanced statistics.

Furthermore, students did not require any previous knowledge in computer
science but were expected to gain familiarity and proficiency in the follow-
ing concepts: variables, logical statements, conditional statements, loops, lists,
dictionaries, files, and regular expressions. In this course, Python (Anaconda
[11]) was selected given the simplicity of its syntax and its frequent use in the
field of data science. Additionally, Anaconda includes most of the libraries/-
modules required to complete the assignments and a simple GUI (Spyder). It
is important to note that an introductory Python [5] textbook was used in this
class instead of a Data Science textbook. The selection of this book was a
mindful decision aimed to provide students with supplementary aid with those
Python topics present in class. Students were provided with handouts for any
topic not covered in the book. A summary of the topics covered in this class
per week and the concepts studied are presented in table 1. The order of top-
ics presented in the table has been adjusted based on feedback received from

students.

Table 1: Topics covered in class each week

Book Topic Concept(s) studied
Chap-
ter(s)
1,2 Introduction to Algorithms, data science concepts, computational ap-
Computational proaches to solving problems
Thinking
2 Introduction to Python basic syntax, variables, assignments, basic mathe-
Python matical functions, order of operators
3,5 Functions and Boolean operators, truth tables, if statements, functions
Conditionals with/without arguments and return statements
2 Keyboard input Scope and global variables, input from the user, casting
and Scope
5,7 Lists and Ran- List manipulation, basic list methods (length, etc.), basic list
dom algorithms (add all values in a list, etc), random methods
(uniform, shuffle, normal, etc)
4 Repetition and For loops, while loops, menus, load CSV files in Python
CSV files
8,handout Strings and String manipulation, basic string methods, basic string algo-
plots rithms (find number of characters, etc.), pyplot plots
9 Dictionaries Keys and values, dictionaries methods, traversal of dictionar-
ies, difference between lists and dictionaries
9,6 Files Load and write to text files, importance of files, append to a
file
Handout JSON Load JSON in Python, differences between file formats, APIs,
connect to an API using the requests module
Handout Regular Expres- Union, concatenation and closure, regular expressions in
sions Python, Python operators for regex (+, ?, etc.)
Handout Twitter Connect to Twitter API, store twitter data in dictionaries

This class consisted of a lecture and a lab in which students were frequently

109

writing code in pairs or teams of 3 (depending on the assignment). The lectures
were formatted such that there were active-learning activities, live-coding, and
constant coding practice. The labs were always assigned in advance to allow
students to become familiarized with the material to implement the material
in a session later during which the instructor could provide instant feedback.
Additionally, students had access twice a week to a workshop in which senior
students helped them with their assignments. Finally, students were given
homework (25% of final grade), quizzes (10% of final grade) and exams (30%
of final grade), and lab assignments (35% of final grade) to measure their
progress. The following subsections describe each of those course components.

2.1 Homework, Quizzes, and Exam

Most of the homework assignments consisted of problems from the textbook.
These problems had 6 different types of questions: multiple choice, true or
false, find the error, creation, and modification of algorithms, short answer,
and programming exercises. The topic of each assignment was based on the
content covered in class and did not follow the order of the book (See Table
1). In each assignment, the workload was adjusted based on other assignments
(lab, quiz, etc.) pending at a given time.

Additional homework assignments included exercises with the range and zip
functions as well as regular expressions and their usage in Python. These as-
signments included theoretical, practical, and implementation problems. Addi-
tionally, one final assignment consisted of asking students to create a challenge
that could involve any topic presented during the semester. The problems were
submitted to a repository such that all students could see them and answer as
many as possible for extra credit. Some examples of the problems submitted
are: Given a sentence or phrase, reverse the words but keep the same order
(input = "my kitten has four paws", output = "ym nettik sah ruof swap"),
given a dictionary, determine whether a particular argument appears as both
a value and a key (if it does, remove the key).

During the course, two exams and one final exam were given. Considering
that labs were completed in groups, exams intentionally included questions
related to every lab assigned during the semester. These questions were used
to measure every student’s understanding of the central concepts presented in
each lab. Usually, those questions were evaluated by presenting sample code
from a lab and asking students to explain it using their own words.

2.2 Lab assignments

Lab assignments were created to provide students with the opportunity to
fully explore potential applications of the concepts they were learning in class.

110

The first three labs were a sequence of assignments in which the concepts of
variables, functions, lists, and files were the main focus. The fourth lab was
an individual assignment that aimed to provide an opportunity to use and
understand JSON files, APIs, and more complex data structures. The last two
labs were a sequence of assignments that incorporated all concepts covered in
the course as well as introduced the students to the Twitter API and usage of
regular expressions. A detailed description of all assignments follows.

2.2.1 Lab 1: Functions and Python

The first lab was used to introduce students to Python, the Spyder environ-
ment, variables, and functions. Students were required to create multiple func-
tions that calculated basic operations for two or three numerical values, such
as addition, average, min, and max. Some of the functions were intentionally
overloaded to help students differentiate between functions with/without pa-
rameters and void/non-void types. Students had to write a main function in
which multiple calls to each function had to be made and, depending on the
type of function called, they had to print the information calculated by each
one appropriately. The students manually inserted (hard-coding) all input at
this point.

2.2.2 Lab 2: Using lists and random values in Python

The second lab was an expansion on the first one, requiring students to update
their functions to calculate operations with lists and not just variables. Addi-
tionally, students were introduced to the Python random module since the lists
had to be populated with random data obtained using the uniform and normal
distributions. Updating their functions was not a trivial task for them since,
for example, calculating the maximum value from a list is an entirely different
algorithm than obtaining the maximum value from 3 values. These differences
presented a great opportunity to fully explain the functionality of loops in
Python and introduce students to both Pythonic and range-based loops. Fur-
thermore, they had the opportunity to start practicing with graphing since
this lab required students to implement plots using pyplot. The assignment
only presented basic instructions on how to create such plots, and they were
encouraged to explore and experiment with the different options that pyplot
presents (colors, labels, etc.)

This lab also required students to implement new functions that highlighted
the usage of user input. One of those functions computed and displayed a mes-
sage for each number in the list if they were multiples of another value. They
were required to call this function with two versions, using a value entered by

111

the user and hard-coding the input. This particular problem allowed students
to appreciate the importance of obtaining input from different sources.

2.2.3 Lab 3: Crime Investigation

Once students became familiarized with most of the fundamental material (by
week 6), they were presented with labs that explicitly required data analysis
techniques to be completed. The third lab significantly expanded over the
previous ones by introducing real data and a real problem to solve; while
allowing students to practice with while-loops, files, dictionaries, and sorting.
The problem presented in this lab asked students to find multiple characteristics
of the city of Philadelphia related to crime. To complete that task, the students
were required to first collect crime data from the city of Philadelphia at [3] in
CSV format. This data contained various details of each crime, such as the
hour, location and type of crime. Once the data was gathered, students had
to write their first program that included a menu. Menus were an excellent
opportunity to introduce while-loops and the concept of sentinel loops. The
menu ran endlessly until the user selected the exit option. Additionally, it had
multiple options that call a function depending on the selected choice. The
options presented in this lab are depicted in Table 2

Table 2: Concepts studied in Lab 3

Option Concept(s) studied
Load data Load contents of CSV file
Top 5 Crimes Use dictionary to calculate frequencies, sort dictionary by

value, extract parts of the dictionary

Plotting time of crimes Use dictionary to calculate frequencies, aggregate data in
groups by hour, plotting histogram

Best and worst streets Use dictionary to calculate frequencies, sort dictionary by
value, extract parts of the dictionary

Show crimes by date Create a simple search function in a list

Exit Create sentinel loops

Students were particularly excited while completing this lab since it was
their first opportunity to work with real data. It also helped them understand
the importance of using dictionaries, mainly when they are used as repositories
of data to determine frequencies of words. Ultimately, the use of dictionaries
to build histograms made it very clear that it would be challenging to complete
this task with lists or any other structure covered in class before.

112

2.2.4 Lab 4: Star Wars JSON task

The fourth lab introduced more advanced data structures while working with
JSON files. In this lab, students were required to collect information from a
Star Wars API[10] and extract insights from it. To be able to connect to the
API, they used the requests library [14]. This library has a method that receives
an URL as input and returns an object that possesses a method which decodes
the information collected to JSON format and can be stored in a dictionary.
Students had to then write a program with a menu with the options depicted
in Table 3.

Table 3: Concepts studied in Lab 4

Option Concept(s) studied

Print names of all characters = Manipulate strings to change request address, JSON
manipulation

Print the names of all charac- String manipulation, nested loops, JSON manipula-

ters and the movies in which tion
they appear
Print the names of all charac- Submenu creation, JSON manipulation, plotting, dic-

ters by gender tionary of lists

Search for a specific character ~ String manipulation, nested loops, dictionary of dic-
tionaries

Exit Create sentinel loops

All the options that make requests to the API result in data stored in
a dictionary for its proper manipulation. The dictionaries in this lab were
more complex than in previous labs since their values can be lists and other
dictionaries (dictionaries of lists and dictionaries of dictionaries). For example,
the data to obtain the movies in which each character appears is a dictionary
with keys name and films; the key name has a string with the name, but the
key films have a list with the URLs of the movies in which that character
appears. Requesting one of the URLs, it will return a different dictionary that
has a key called title with a string value with the title of the movie. This
intricate arrangement forces students to create loops that make requests to the
different values inside the list providing an opportunity to practice with nested
loops. Once the data was collected and manipulated, they were required to
store all their data into JSON files. This requirement was made to help them
understand the similarities between JSON files and dictionaries and the ease
of how one can interchange from one to the other. This lab was extremely
popular given the interest in the topic.

113

2.2.5 Lab 5: Twitter fun

In this lab, students completed a series of programs that required collecting
information from the Twitter API. The first two programs started with simple
tasks such as reading a small number of tweets from a specific topic, storing
them in a list and JSON file, and opening the JSON file and obtain diverse
information from the tweets such as username and number of favorites.

The other programs included more advanced tasks, such as asking the user
for the number of tweets to read and the topic of the tweets, implementing a
filter to remove curse words, limiting tweets by location, and obtaining tweets
from specific users. To extract the tweets, students first had to create a Twitter
apps account and obtain their 4 keys at [15]. They completed the assignment by
using Twython[13] and its TwythonStreamer API. From that library, they im-
plemented a TwythonStreamer class and used the method stream.statuses.filter
with arguments follow, location and track. This lab was one of the most pop-
ular with the students since they were exceptionally excited to work with the
Twitter API. This excitement overrode the discomfort of working with more
complex data structures.

2.2.6 Lab 6: Regular Expressions to extract Twitter information

The final lab aimed to incorporate all topics covered in the course and adding
regular expressions. Here students expanded their implementation from the
previous lab to create a menu with the options presented in table 4.

Table 4: Concepts studied in Lab 6
Option SubMenu Concept(s) studied

Use file Usage of JSON files
Get new data Read input from user, Twython
usage, JSON file creation

Get Information

Number of tweets with num-
Extract information! bers Regular expressions
Most popular hashtag
Tweets from any place in Cali-
fornia
Plot number of tweets by user
Plot information Plot number of tweets by loca-
tion (PA, NY or other)
Plot number of tweets by
length (< 50 characters, be-
tween 51 and 100, > 100)
Exit Create sentinel loops

Plot creation, dictionary
usage, regular expressions

IStudents created their own options. These are just examples.

114

Students worked in this lab for 2 weeks and displayed great enthusiasm
while doing it. They appreciated the freedom presented in this lab. They
were allowed to incorporate their choices for Extract Information and showed
increased creativity while selecting those features. Furthermore, because they
were free to add additional features, they created exciting plots and extra
features.

3 Results

This class presented many opportunities for the students to encounter obstacles
related to Computer Science concepts and other areas of knowledge. Most
of the difficulties observed were closer to the computer science field than to
the data science material. Students predominately struggled with applying
computational solutions to problems they have solved non-computationally for
a long time, i.e., addition or multiplication of numbers in a list. However,
when students found themselves struggling, many of them visited me in my
office or attended the student-led workshops. During these sessions, students
were not presented with the solutions rather with aid to help them rationalize
and abstract the problem they were trying to solve. It is significant to mention
that the majority of the students that completed an assignment failed them
on very few occasions. Most of the time they were diligent enough to correctly
complete their assignments or ask for help to remove any doubts.

One issue that I found in this class was that some students would not
work as hard as their peers since most labs were given in groups. These type
of assignments resulted in some students obtaining high marks on their labs,
but not on other assignments. I approached this problem by making two labs
individual and including lab-related questions on the exams. It is important
to mention that this problem is not unique to this class, but given the distinct
levels of CS experience in the audience, some students felt less comfortable
with the material than others. I found that implementing these solutions lead
to significant improvement compared to when they were not used.

Students started visiting my office after they received grades for the first
two assignments and realized where they stand in this class. Most of the
students that attended office hours can succeed, but it is not always the case;
especially if they are not consistent with their attendance to class/office-hours.
Furthermore, I did not find any instances in which students struggled with the
technologies provided, i.e., Anaconda, Twython, requests. Contrarily, since
those technologies allowed them to access more exciting sources of data, they
were very motivated to complete the installation steps and learn the commands
necessary to use them.

In general, I found that a vast majority of students were able to complete

115

the work and were highly motivated by the assignment topics. I did not notice
any particular differences among demographics or backgrounds. However, I
did not produce a formal study, and formal research would be required to
determine this accurately.

4 Conclusions

This class is in its 5th iteration and on each occasion in which I have presented
it, students have described it using two words: useful and challenging. The
majority of the students have never taken a computer science class and, for
some, this will be their only interaction with the subject. However, many of
them have mentioned, both personally and via a survey provided at the end of
class, how useful this information has been in their future/current careers. For
example, some students have used the concepts from the class to complete their
capstone projects in biology and marketing. Furthermore, comments provided
in the surveys collected at the end of the semester include: “the material we
covered definitely helps me in my future career since I'm going to do analytics
jobs”; “I like the course because many parts are useful in the future and I
can also practice my logical skills”; “the course feels like it was a great intro to
Data Science and is applicable to nearly any profession”; and “tons of hands-on
experience + practical knowledge gained!”. In the official evaluations, students
have on average? mentioned that they have learned (3.97/5), increased interest
in the topic (3.78/5), felt engaged to the material (4.05/5) and felt challenged
by the material (4.02/5). This information is based on course evaluations,
surveys, and anecdotal evidence; studies to scientifically measure any of those
factors are outside the scope of this paper.

This class presents assignments that can be very intimidating to students,
as evidenced by student feedback “the labs were way too challenging." How-
ever, the majority of the students have not only succeeded in completing the
course but have also gained valuable skills that have helped them in future
endeavors, as evidenced by such feedback as “really hard but useful." Given
the challenging nature of the course, scaffolds such as frequent encouragement
for the students to attend office hours and structuring the course so that labs
could be completed during class time were put into place. This form of scaffold-
ing the course was noted by the students in their survey responses, including:
“very, very, very willing to help students’.

Based on the course outcomes, information obtained from the students who
participated in the course, and the attainment of the course learning objectives,
the course was a success. Ultimately, students received relevant information

2 Average out of the 3 iterations presented at current institution (N=49)

116

that can be used in any other major and were simultaneously introduced to core
computer science concepts. Should any other faculty members be interested in
achieving those objectives, then it is recommended that they try this course at
their respective institutions.

References

1]

[9]

[10]

Ruth E Anderson, Michael D Ernst, Robert Ordéniez, Paul Pham, and
Ben Tribelhorn. A data programming CS1 course. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education, pages
150-155. ACM, 2015.

Tracy Camp, W Richards Adrion, Betsy Bizot, Susan Davidson, Mary
Hall, Susanne Hambrusch, Ellen Walker, and Stuart Zweben. Generation
CS: the growth of computer science. ACM Inroads, 8(2):44-50, 2017.

City of Philadelphia. Crime incidents from the Philadelphia police depart-
ment. https://www.opendataphilly.org/dataset/crime-incidents.
Accessed: 01/19/2019.

Christo Dichev, Darina Dicheva, Lillian Cassel, Don Goelman, and
MA Posner. Preparing all students for the data-driven world. In Pro-
ceedings of the Symposium on Computing at Minority Institutions, ADMI,
volume 346, 2016.

Tony Gaddis. Starting Out with Python. Addison-Wesley Professional,
3rd edition, 2014.

Dan Garcia. CS 10 the beauty and joy of computing. http://cs10.org/
fa16/. Accessed: 01/19/2019.

Yolanda Gil. Teaching parallelism without programming: a data science
curriculum for non-CS students. In Proceedings of the Workshop on Edu-
cation for High-Performance Computing, pages 42—-48. IEEE Press, 2014.

Mark Guzdial. A media computation course for non-majors. In ACM
SIGCSE Bulletin, volume 35, pages 104-108. ACM, 2003.

Steven Harold David Haddock and Casey W Dunn. Practical computing
for biologists. Number 57: 004 HAD. Sinauer Associates Sunderland, MA,
2011.

Paul Hallett. Star Wars API: SWAPI. http://swapi.co/api/. Accessed:
01/19/2019.

117

[11]

[12]

[13]

[14]

[15]

[16]

118

Anaconda Inc. Anaconda: Python data science platform. https://www.
anaconda.com/. Accessed: 01/19/2019.

Jeremiah W. Johnson. Data science and computing across the curriculum.
J. Comput. Sci. Coll., 32(6):187-188, June 2017.

Ryan Mcgrath. Twython: Python library to access Twitter data. https:
//github.com/ryanmcgrath/twython. Accessed: 01/19/2019.

Kenneth Reitz. Requests: HTTP for humans. http://docs.python-
requests.org/en/master/. Accessed: 01/19/2019.

Twitter. Twitter apps. https://apps.twitter.com/. Accessed:
01/19/2019.

Erica Weilemann, Philipp Brune, and Dany Meyer. Geek toys for non-
techies? using robots in introductory programming courses for computer
science non-majors. In System Sciences (HICSS), 2016 49th Hawaii In-
ternational Conference on, pages 31-40. IEEE, 2016.

Low Code App Development*

Conference Workshop

Meqg Fryling
Computer Science and Information Systems
Siena College, Loudonville, NY 12211

mfryling@siena.edu

The average cost of a software development project ranges from $434,000
for a small company to $2,322,000 for a large company[l]. In addition to
high costs, 31.1% of projects are cancelled before completion, 52.7% will cost
89% more than their original estimates, and only 16.2% are completed on-
time and on-budget[1]. Furthermore, recruiting software engineers has become
increasingly difficult as demand is high and supply is low[3]. In a fast-paced
world where organizations are struggling to compete, companies are looking for
quicker and cheaper ways to meet their software needs. In response, no-code
and low-code development platforms (LCDPs) have emerged with the promise
that organizations can hire business professionals with no coding experience to
build applications[2].

This workshop will provide an introduction to the Mendix App Platform,
which uses a visual Model-Driven Development (MDD) approach to rapidly de-
velop applications with little-to-no programming experience. Participants will
learn how to build responsive browser, tablet, and mobile applications starting
with back-end domain modeling. They will also learn about front-end devel-
opment, automating business processes with microflows, and ensuring data is
valid and consistent. The instructor will provide a brief overview of the plat-
form followed by hands-on activities and lessons learned from the classroom.

References

[1] The Standish Group. Chaos report, project smart, 2014.
[2] Alison DeNisco Rayome. Low-code platforms: A cheat sheet. TechRepublic, 2018.

[3] Craig Torres. Demand for programmers hits full boil as U.S. job market simmers.
Bloomberg, 2018.

*Copyright is held by the author/owner.

119

Using NSFCloud Testbeds for Research

Conference Tutorial

D. Cenk Erdil
School of Computer Science € Engineering
Sacred Heart University
Fairfield, CT 065825

erdild@sacredheart.edu

In August 2014, National Science Foundation (NSF) has awarded $20 mil-
lion to two separate testbeds, to support computing applications and related
experiments for research, as part of the NSF CISE Research Infrastructure [2].
Called Chameleon [1] and CloudLab [3], the two testbeds have been in use
since then; and have been awarded a second round of funding in September
2017. Research scientists and faculty in academic institutions, as well as staff
of national labs, independent museums, libraries, professional societies directly
associated with research or educational activities, and other similar institutions
can utilize these testbeds.

Chameleon Cloud is highly reconfigurable experimental testbed spread over
two sites, with more than 550 nodes. According to its website, it is available
to members of US Computer Science research community and its international
collaborators working in the open community on cloud research.

About 15,000 cores constitute CloudLab across three physical sites, with dif-
ferent focus on storage and networking, high-memory computing, and energy-
efficient computing, all available on Internet2. CloudLab stack is based on
Emulab [4], and allows provisioning resources at varying levels, all the way
down to raw access to the hardware. It also interacts with GENI [5] infras-
tructure, another NSF system to support research in networks and distributed
systems.

Both testbeds provide researchers typical web-based, console-style inter-
faces similar to industry cloud vendors, such as Amazon Web Services, Google
Cloud Platform, and others. Moreover, both testbeds also allow researchers
with control and visitibility to go down to bare metal.

More importantly, both testbeds provide no-cost and modern computa-
tional, data, and network infrastructure, and allow the academic research com-
munity to design, develop, and experiment with novel system design on the

120

cloud. A general expectation is that any research performed on these systems
will result in publications in a broadly available journal or conference.

This hands-on tutorial session will provide researchers a quick refresher on
cloud computing if needed, and will focus on classroom application of cloud
computing tools in an academic setting; by providing simple exercises to help
participants understand and create basic cloud instances on these testbeds
provided by National Science Foundation.

Acknowledgements

The development of training material for this tutorial was made possible using
the Chameleon testbed supported by the National Science Foundation.

Biography

Dr. Erdil has joined Sacred Heart University’s School of Computer Science
and Engineering in Fall 2017, and is currently the undergraduate program di-
rector of CS programs. His research interests include using cloud computing as
artificial intelligence infrastructures, cyber-physical systems, computer science
education, and health informatics. He is a senior member of ACM and a senior
member of IEEE.

References

[1] Chameleon Project. https://www.chameleoncloud.org.

[2] CISE research infrastructure: Mid-scale infrastructure - NSFCloud. https://
www.nsf . gov/pubs/2013/nsf13602/nsf13602 . htm.

[3] CloudLab. https://cloudlab.us.

[4] emulab, a time- and space-shared platform for research, education, and develop-
ment in distributed systems and networks. https://www.emulab.net.

[5] GENI: Global environment for network innovations. https://www.geni.net.

121

Networking and Distributed Computing
in One Course’

Lightning Talk

Robert Montante
Bloomsburg University of Pennsylvania
Bloomsburg, PA 17815

bloomu.prof@gmail.com

This talk describes a course that is under development to introduce net-
working topics and coarse-grained parallel and distributed computing topics,
in the context of a small “Beowulf” style cluster assembled from Raspberry
Pi single-board computers. A cluster consists of two to four Raspberry Pis
interconnected by an Ethernet switch, with one node serving as the head node,
DHCP server, and interface to the system console and external systems, and
remaining nodes serving as compute nodes.

The first third-to-half of the course will cover networking topics. The OSI
and TCP/IP networking models are used to describe the communications is-
sue between the nodes. Ethernet topics include 1000BaseT versus 100BaseT
characteristics and their impact on Raspberry Pi communications. IPv4 topics
include subnetting, DHCP configuration, and NAT; and a brief discussion of
routing as it affects connection to external networks. Application-level topics
include client server and peer-to-peer communications, with SSH and netcat
as examples.

The remainder of the course introduces parallel and distributed comput-
ing. Topics will include parallel architectures, shared- and distributed-memory,
message-passing systems, synchronization issues, and GPUs[3]. Theory will be
covered in enough detail to motivate some example applications. Programming
activities will focus on SIMD and MPI-based applications.

A motivation for this course is that ABET accreditation is expected to
include networking and parallel computing topics in the CAC Version 2.0 cri-
teria[1][2], starting with the 2019-2020 accreditation cycle. The course is an-
ticipated as a required course, possibly replacing a current elective networks
course.

*Copyright is held by the author/owner.

122

Dr. Montante teaches courses in C and Assembly, Computer Organization,

Networks, and Python in the Computer Science and Digital Forensics majors
at Bloomsburg University. His professional interests include computer systems
and networks. He serves as the adviser for the program’s student ACM chapter,
the programming-contest team coach, and the faculty director for the univer-
sity’s Freshman Learning Community in Digital Sciences. He has also been a
“Python evangelist” on the campus.

References

1]

ABET. CAC criteria for 2018-2019. http://www.abet.org/wp-
content/uploads/2018/02/C001-18-19-CAC-Criteria-Version-2.0-
updated-02-12-18.pdf.

ABET. Criteria for accrediting computing programs. http:
//www.abet.org/accreditation/accreditation-criteria/criteria-
for-accrediting-computing-programs-2017-2018/#3.

NSF/IEEE-TCPP. Curriculum initiative on parallel and distributed
computing. https://grid.cs.gsu.edu/~tcpp/curriculum/?q=system/
files/NSF-TCPP-curriculum-versionl.pdf.

123

Creating Opportunities in Technology
for Young Adults With Autism*

Lightning Talk
Darlene Bowman

This lightning talk introduces you to several NYC high school students with
Autism in District 75 who participated in filming the documentary “Great Kills
HS —Autism At Work” [2]. Students speak passionately about their strengths,
likes, hopes and dreams for the future. You will be amazed and moved by these
young adults. It is the hope of the author that you will be compelled to help
shape a world that supports these students in their quest to continue CS edu-
cation and other vocational training upon graduation. Advocates, universities,
corporations, teachers, parents and students must collaborate to open doors -
creating opportunities in technology for young adults on the spectrum.

District 75 comprises self-contained schools with highly specialized instruc-
tional support for students with significant challenges including cognitive de-
lays, emotional disabilities, sensory impairments, physical/multiple disabilities,
as well as Autism Spectrum Disorders [1].

Teachers share in the development and dreams of our students and their
parents. Students spend seven years (from ages 14 —21) preparing for life after
high school. When they graduate, there are scant opportunities awaiting them,
especially in computer science. One statistic shows nearly 42% of young adults
on the spectrum never worked for pay during their early 20’s [4].

We must decide as a society to focus on the need for employment opportu-
nities for students with Autism and other disabilities after high school. The au-
thor has founded an innovative program, Ausome-Tech Industries, designed to
support the transition of HS students on the spectrum into adulthood. Drexel
Autism Institutes’ definition of “a successful transition” means a person has
a role to play in society, through employment or pursuit of further education
[3]. This talk is designed to encourage others to actively engage in creating
supportive employment opportunities for people on the spectrum.

*Copyright is held by the author/owner.

124

Speaker Bio

The beauty of working with Special Needs students is that you never
know when their extraordinary talents will shine.

— Darlene Bowman

Darlene Bowman has been working with students with disabilities for close
to 20 years. She officially began her teaching career with the New York City
Teaching Fellows program in 2004.

Darlene earned her undergrad and graduate degrees at CUNY - College
of Staten Island where she is currently an Adjunct Writing Professor in the
English Department.

By day, Mrs. Bowman teaches CS4ALL Software Engineering Program
(SEP) to high school students with Autism. She loves integrating Science,
Technology, Engineering, Art and Math into all academic subjects.

Darlene’s students embody her pioneering spirit and were among the first
in New York City’s District 75 to participate in the “Hour Of Code” in 2013
- and every year since.

Another “first” came when she earned a $75K Software Engineering Pro-
gram Technology Grant through CS4ALL, enabling her school to start the first
Software Engineering Program in a self contained District 75 High School for
students with Autism.

Her students have gone on to participate in Game Design challenges through-
out New York City. The Great Kills HS has hosted Hackathon’s with general
education students from New Dorp - a local high school that also teaches the
Software Engineering program. Darlene and her students even have a Web De-
sign Hackathon currently featured on the CS4ALL Blueprint for all the world
to see. (https://blueprint.csdall.nyc/resources/34/)

The documentary - “Autism At Work” —was filmed at the Great Kills High
School and features Darlene’s students speaking about their aspirations for
adulthood vocations. Two of the students featured in the film took a crash
course in Final Cut Pro to assist with editing.

It is Darlene’s hope to provide paid internship opportunities at top tech
firms to her students through her startup, Ausome-Tech Industries, once they
graduate at the age of 21. She also encourages people in all industries to open
their doors to students like the wonderful young people in the film.

Darlene and her husband James have 4 young adult children, who grew up
loving science, technology and coding!

125

References

1]
2]

3]

[4]

126

NYC Department Of Education District 75. www.schools.nyc.gov/special-
education/schoolsettings.

Darlene Bowman. Great Kills HS Autism At Work. https://youtu.be/
MANpcuKpN1A.

Mental Health Weekly Digest. Reports on autism from Drexel university provide
new insights (parents’ and young adults’ perspectives on transition outcomes for
young adults with autism). http://link.galegroup.com.proxy.library.csi.
cuny.edu/apps/doc/A527109015/A0NE7u=cuny_statenisle&sid=A0NE&xid=
d9276892.

Anne M. Roux, Paul T. Shattuck, Jessica E. Rast, Julianna A. Rava, and
Kristy A. Anderson. National autism indicators report: Transition into young
adulthood. A.J. Drexel Autism Institute, 2015.

Partnership with Industry Professionals
in the Design of Computer Information
Science Course”

Lightning Talk
Nina Dini', Elham Mahdavy?

!Department of Mathematics, Physics and Computer Science
Springfield College, Springfield, MA 01109

ndini@springfield. edu
2Product Manager ISO New England,

1 Sullivan Rd, Holyoke, MA 01040
emahdavy95@gmail. com

Industry—College partnerships are increasingly being recognized as a new
way of providing applied education opportunities for students majoring in com-
puter science. A systems seminar, a capstone course in our computer science
department, is designed for computer science majors to develop a database sys-
tem for managing a small business’ operations and data. They employ skills
and knowledge from systems analysis, database design and management, and
the visual studio programming courses.

Teams of students are assigned real world scenarios, and they use the soft-
ware development life cycle (SDLC) to track the stages of the development
process. Applying their Visual Studio programming skills, the teams construct
a frontend interface for their database system. Teams design and implement
the database system by using the Erwin data modeler, and use the Oracle
Database XE 11.2 to create tables, enter data, and run SQL queries.

Teams collaborate closely with industry professionals, who help them use
IT project management principles to guide the development process of the
database system. The students prepare a portfolio for the project that in-
cludes writing a statement of work, defining the product and the scope of work,
preparing a work breakdown structure (WBS) along with time management to
deliver the product on time.

*Copyright is held by the author/owner.

127

In addition, industry professionals are periodically invited during the
semester to share their experience and knowledge in software development and
assist the students with time management in relation to the SDLC process.

The teams present and submit their final software product and project
documentation, in both oral and written form, at the end of the semester.
Teams are evaluated when they present their database system to an assembly
of faculty, industry professionals and students.

128

A Web Based Block Language for
Modeling Dynamic Data Structure
Algorithms*

Lightning Talk

Robert A. Ravenscroft Jr.
Department of Mathematics and Computer Science
Rhode Island College
Providence, Rhode Island 02908

rravenscroftOric. edu

The web browser based Dynamic Data Structure (DDS) modeling program
is being developed to aid in the teaching of dynamic data structures such
as linked lists and trees. Because it is a browser based application, it can
be widely distributed without the need for installing software. DDS allows
the user build and manipulate graphical models of dynamic data structures
by dragging and manipulating them on the screen, eliminating the need for
the draw-erase-redraw cycle of static media such as whiteboards. Currently,
versions for linked lists and binary trees are available while versions for doubly
linked lists and heaps are in development.

While DDS was originally conceived as a tool to aid in classroom instruc-
tion, current efforts involve the development of features for use as a hands-on
student learning tool. A drag-and-drop block language has been implemented
for the DDS linked list tool and will be added to the binary tree tool. Users can
drag the control structures into their algorithm, then type in the expressions
used within these control structures. It allows a student to build semantically
correct algorithms that can manipulate the linked lists that they modeled with
DDS. As the code executes, or the user single steps through it, they can observe
how each statement affects the linked list.

This block language feature is intended to provide a platform for hands-
on student learning. Students can be provided pre-built scenarios in DDS
on which they can experiment with manipulating a linked list to achieve a
specified goal. Once they gain insight into how they should manipulate the

*Copyright is held by the author/owner.

129

linked list, they can develop and implement an algorithm that achieves the
specified goal. Algorithms can be saved with the DDS model, allowing the
project to be submitted for evaluation.

This talk will present the DDS block language feature, discuss its usage in
teaching computer science, and outline future development plans.

Biography

Dr. Ravenscroft earned his PhD in Computer Science at Brown University. He
did a post-doc with the Symbolic Computation Group at Waterloo University.
He has taught at University of Delaware, University of Rhode Island, and
Millersville University. His interests include developing simple web based tools
for teaching computer science and mathematics.

Supporting Material and Resources. The DDS tools and supporting ma-
terial are available online at http://dsviewer.org/dds/homepage. Current
versions of the DDS tools and tutorial material tools will be available online
at the time of the talk. A short handout or set of slides will be made available
to attendees at the talk.

130

Curriculum design for ‘Introduction to
Data Informatics’ (a New Data-related
Undergraduate Course at USC)*

Lightning Talk

Saty Raghavachary
University of Southern California

Los Angeles, CA 90007

satyQusc. edu

Abstract

Starting Fall 2018, the CS department at USC has begun offering INF250:
Introduction to Data Informatics, a brand new undergraduate course. The
course is offered as a core part of a new Informatics (BA) ‘CS+X’ program,
where X would constitute a suitable specialization area in which Informat-
ics principles can be meaningfully applied (students currently enrolled in the
course, come from areas such as Psychology, Cognitive Science, International
Relations, Social Science etc.). This new CS+X program, and the foundational
core course, have been tailored to meet the growing demand for data scientists
and engineers in a variety of areas, and correspondingly, increased request from
undergraduate students for such a program (it is customary for universities to
offer a data science track at the Master’s level, not Bachelor’s).

This lightning talk will introduce the design principles behind the new core
Informatics course, the syllabus, assignments, and a brief status report on how
the course is progressing. The audience will be solicited for feedback about
the course design and content, and for possible future collaboration. The talk
will benefit attendees who might be planning to offer a similar course, and
others who might want to incorporate a part of it (a few lecture topics and
assignments, for example) into an existing class, eg. on databases.

*Copyright is held by the author/owner.

131

Description

The curriculum design for the course is based on a two-part scheme: a solid
overview of data science principles and theory (including statistics, Big Data,
data mining, machine learning and visualization), and a thorough list of appli-
cation areas that span the gamut of human activity, including health /medicine,
societal needs, environment, agriculture, manufacturing, entertainment, com-
merce, communication. Students are able to learn exactly how theory trans-
lates to practice, by being introduced to case studies from these widely differ-
ent application areas. Orthogonal to the technical aspects such as data mining
algorithms, the syllabus also includes topics on data governance, ethics of em-
powering data-driven algorithms to make decisions, data security and data
privacy. As for assignments, they cover key areas of the data science pipeline,
including exploratory data analysis (EDA), data mining, machine learning, and
information visualization. Also, in keeping with the industry trend, the course
is not heavy on coding from first principles; instead, students use existing tools
(such as WEKA and Tableau) where appropriate, or use Jupyter notebooks
(running locally, or on a cloud environment such as Google’s Colab) to study,
tweak and learn from the richly annotated code contained in the notebooks’
cells.

Biography

Dr. Saty Raghavachary teaches undergraduate and graduate courses on pro-
gramming, databases, data science and computer graphics, in the Computer
Science department at the University of Southern California (USC). Prior to
joining USC full-time, Saty worked at Autodesk for 2 years, and at Dream-
Works Feature Animation for 16 years.

132

Interdisciplinary Programs®

Panel Discussion

Yana Kortsarts', Adam Fischbach!, William J. Joel?, Ting Liu’®
IComputer Science Department
Widener University, Chester, PA 19013
{ykortsarts, jafischbach}Quidener. edu
2Western Connecticut State University, Danbury, CT 06810

joelw@ucsu. edu
I Computer Science Department
Siena College, Loudonville, NY 12211

tliu@siena.edu

1 Summary

Computer science is a rapidly changing discipline and our goal is to pro-
vide opportunities for students to understand the complexity of the modern
world through interdisciplinary learning, explore and make connections to other
fields, and integrate various perspectives to allow for interdisciplinary problem
solving. Integrating interdisciplinary thinking into the computer science cur-
riculum is a challenging but rewarding task that benefits faculty and students.
The panel will present successful experiences developing and managing vari-
ous interdisciplinary programs. Active audience participation is encouraged.
The panel will provide an opportunity for attendees to share their views and
to exchange knowledge during a question-and-answer period that will follow
individual presentations.

2 Yana Kortsarts And Adam Fischbach

We present our experience developing and managing interdisciplinary programs
in computer information systems, computer forensics and digital media infor-
matics —the results of successful collaboration with social science and business

*Copyright is held by the author/owner.

133

faculty. The computer information systems major combines courses in com-
puter science with courses in the School of Business Administration. Students
learn about software development, database design, business management, and
management information systems. The program provides students with a less
theoretical and more applied curriculum, which gives them the foundation to
design, build, and maintain computer information systems. The computer
forensics minor is an interdisciplinary program that integrates criminal justice
and computer science and combines both theoretical concepts and practical
skills to prepare students for a career in the area of information security and
digital forensics. The digital media informatics major is an interdisciplinary
program run jointly by the computer science and communication studies de-
partments. The program provides both broad and targeted perspectives on
the field of informatics and helps students develop unique skills that can be
adapted to the rapidly changing computer and media environment through
four specialized concentrations: (1) audio-visual, (2) graphics, mobile, & web
development, (3) gaming & artificial intelligence, and (4) digital writing. We
describe the various stages in developing the interdisciplinary programs in-
cluding an analysis of competitive academic programs, evaluation of current
resources, qualifications and faculty considerations, the process of developing
the program objectives and learning outcomes, and assessment strategies. We
focus on common issues that arose during the development process such as
the challenge of designing balanced curricula for interdisciplinary programs,
the need for designing new courses and renovating existing courses. We also
discuss the anticipated costs of the programs, required resources, recruitment
strategies, and the administrative approval mechanism.

3 William J. Joel

At WCSU, the departments of Art, Communications, and Computer Science,
recently established a new, interdisciplinary major: Digital & Interactive Me-
dia Arts (DIMA). Unlike other similar degree programs, at other institutions,
DIMA is intended to be an equal blend of all three departments, and as such is
governed by a Steering Committee with representatives from the three depart-
ments. Maintaining such a balance has necessitated such choices as ensuring
that the level to which each discipline is represented in the DIMA core re-
quirements is of equal rigor. Our CS department has five minor, four of which
include, or will include, courses from other disciplines: Security, Digital Media,
Informatics, Web Development. Our Graphics & Interactive Techniques Re-
search Group (GITRG) has drawn students from Art, Music, DIMA, and Math,
as well as CS. GITRG strives to engage students from as many disciplines as
possible in order to foster novel solutions to research problems.

134

4 Ting Liu

At Siena College, we have a new Data Science Program supported by multi-
ple departments, such as Computer Science, Math, Physics, Environmental,
etc. since we believe that Data Science is an interdisciplinary science and re-
quires contributions from different departments. The core courses, including
data analysis, mathematical methods, and machine learning, of our Data Sci-
ence program provides a solid theoretical foundation for students. In addition,
Data Science students need pick 18 credits track courses that can be focused
on one area, such as social science, business, biology, etc to practice what’s
been learned from core courses. We also collaborate with Business school for
teaching computer related courses, such as Management Information System
and database design and application for Business, for their students. Coordi-
nated by Center for Undergraduate Research and Creative Activity (CURCA),
professors from Computer Science department, Physics Department, and Busi-
ness school worked together with our community partner, CARES, Inc (an
organization administrate homeless shelters from 13 counties around Albany
County in New York state) to help improve the quality of homeless data and
build new tools for data analysis.

5 Biographies

Yana Kortsarts is a Professor of Computer Science and Chair of the Digital
Media Informatics program at Widener University and has been actively in-
volved in developing computer a forensics minor and managing a digital media
informatics major.

Adam Fischbach is an Associate Professor of Computer Science and Chair
of Computer Science Department at Widener University and has been actively
involved in the computer science department’s interdisciplinary efforts.
William J. Joel is a Professor of Computer Science in the Computer Science
Department at Western Connecticut State University, and serves on the Steer-
ing Committee for the interdisciplinary degree, Digital & Interactive Media
Arts, as well as being Director for the school’s interdisciplinary Graphics &
Interactive Techniques Research Group.

Ting Liu is an Assistant Professor of Computer Science and Steering Com-
mittee of Data Science program at Siena college. Dr. Liu has been actively
involved in teaching interdisciplinary courses, developing interdisciplinary pro-
gram, and collaborating with other department faculties for interdisciplinary
research engaging with community partners.

135

A Survey of Several Advanced
Mathematical Concepts Implemented
in Students’ Computer Science Projects®

Faculty Poster
Viadimir V. Riabov

Department of Mathematics and Computer Science
Rivier University, Nashua, NH 03060

vriabov@rivier. edu

Mathematics has a vital role in the development of computer science, elec-
tronic systems, and numerous practical applications. The objective of this
poster is to review several advanced mathematical concepts and methods (mod-
ular arithmetic; Galois fields; graph theory; singular differential equations;
strange attractors; fuzzy logic, and projective geometry) that contribute into
the development of applications in cryptography, numerical methods, code
complexity reduction, atmospheric dynamics, expert systems, computational
visualization, and other areas.

The mathematical concepts, algorithms, and codes are examined by un-
dergraduate and graduate students in various courses taught by the author.
These concepts have paved the roads for students’ research projects on various
applications. Each student works on a selected project analyzing algorithms,
creating computer codes (in Python, MATLAB, C/C++ or Java), running
them at various parameters, comparing numerical results with known data,
and presenting the findings to classmates and the research community. Many
students published project summaries in the Rivier Academic Journal [1] and
conference proceedings available from the web [2].

The opinions on why computer science students need general knowledge
of mathematical concepts have been widely discussed in academia [3]. Several
scholars [8] even recommended long lists of mathematical methods and formulas
(ironically named as “Computer Science Cheat Sheets”) that every computer
science student should be familiar with. These “Cheat Sheets” cover mostly
basic mathematical concepts (e.g., series, function-value order definitions, per-
mutations, combinations, identities, recurrences, geometry, matrices, special

*Copyright is held by the author/owner.

136

functions, calculus of derivatives and integrals, Cramer’s rule, etc.). Only a
few complex math methods are mentioned there [8]: brief reviews of the Num-
ber Theory, Graph Theory, and the Master Method for algorithm analyses, but
the advanced concepts (e.g., modular arithmetic and Galois fields; fuzzy logic;
strange attractors; pattern recognition, etc.) are not included in those reviews.

The theory of numbers plays probably a unique role in the theoretical com-
puter science and various applications. Traditionally, the related topics (e.g.,
numerical systems, the Fundamental Theorem of Arithmetic, primes, and co-
primes) are covered in the Discrete Mathematics course. In our pedagogi-
cal practice, the more advanced topics (modular arithmetic, abstract groups,
rings, integer domains, and fields) are covered in the Computer Security elective
course [7], due to the fact that modern encryption methods utilize the modular
arithmetic and Galois field properties framed with the Fermat’s Little Theorem
and properties of Euler’s totient function. Java Applets [7] have been found
as an effective tool to introduce these advanced topics and cryptographically-
secure message digest algorithms. Many students made overviews [1, 2] on the
role of number theory in modern cryptography, coding theory, Advanced En-
cryption Standard, Remote Authentication Dial-In User Service protocol, and
Wi-Fi security issues.

In the Software Quality Assurance course, the structured testing methodol-
ogy [5] and graph-based metrics [6] have been reviewed by students and applied
for studying the C-code complexity and estimating the number of possible er-
rors and the required tests for various networking systems. Comparing different
code releases, it is found that the reduction of the code complexity leads to
significant reduction of errors and maintainability efforts [6].

Many students selected challenging topics for their research projects in vari-
ous computer science courses. Here we only make overviews of a few outstand-
ing students’ projects that have been performed using the mentioned-above
advanced mathematical concepts discussed in class.

David Snogles developed the Personal Encrypted Talk system for his final
capstone project [1, 2]. Its primary goal was to secure Instant Messaging com-
munications between two parties on the Internet. Secondary objectives were
Java Cryptography Architecture research and the practical experience gained
by the student in the development of a scalable Java-based GUI.

Robert Marceau studied Hoare’s quicksort algorithm that has become a
popular sorting algorithm due to the average performance of (nlog2n), lim-
ited use of extra storage (typically (log2n) recursive calls), and better perfor-
mance on average compared to heapsort algorithm. The major drawback in
the quicksort algorithm is the (n2) worse-case performance, which is exhibited
for some initial permutations. Robert studied this performance and offered
modifications to minimize the probability that the worst-case performance will

137

be exhibited [1, 2].

Maxim Sukharev-Chuyan studied a simple basic model of chaotic behavior
in atmospheric layers known as the Lorenz system [4]. He developed a Java
code for an animation of the water-wheel model of the strange attractors for the
Lorenz system [1, 2]. The visualized simulations demonstrate chaotic behavior
of the numerical solution of the Lorenz system of nonlinear ordinary differential
equations [4].

Kevin Gill developed the Living Mars image project [1, 4] that included top-
ics related to computer graphics, software development, and planetary science.
The purpose of the project was to create a visualization of the planet Mars
as could look with a living biosphere. The algorithms and methods used in
generating shadows on digital elevation models were developed in his previous
study [1, 2]. These include formulas that are common in computer graphics
applications and are often provided by specific frameworks (i.e., OpenGL). The
basics of model rendering included the structure of the source data and the in-
terpolation of hypsometric-bathymetric tint colors. The primary algorithm is
based on the calculation of shadows using ray tracing. These methods utilized
the code [1, 2] from the Kevin’s jDem846 open source project.

In the course evaluations, students stated that they became deeply engaged
in course activities through examining the challenging problems related to the
applications of the advanced mathematical concepts.

References

[1] The rivier academic journal archive. https://www2.rivier.edu/faculty/
vriabov/students_publicat.htm.

[2] Rivier students’ articles. https://www2.rivier.edu/faculty/vriabov/
students_publicat.htm.

[3] T. Beaubouef. Why computer science students need math. SIGCSE Bulletin,
34(4).

[4] E. N. Lorenz. The Essence of Chaos. University of Washington Press, 1993.

[5] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineer-
ing, SE-2(4):308-320, 1976.

[6] Vladimir V. Riabov. Methodologies and tools for the software quality assurance
course. Journal of Computing Sciences in Colleges, 26(6):86-92, June 2011.

[7] Vladimir V. Riabov and Bryan J. Higgs. Running a computer security course:
Challenges, tools, and projects: Poster session. Journal of Computing Sciences
in Colleges, 25(6):245-247, 2010.

[8] S. Seiden. Theoretical computer science cheat sheet. ACM SIGACT News, 27(4).

138

Lessons Learned from Integrating
POGIL into a CS1 Course*

Faculty Poster

Michael Jonas
Department of Applied Engineering and Sciences
University of New Hampshire, Manchester, NH 03101

michael. jonas@unh. edu

This work looks at lessons learned from transforming an existing intro-
ductory programming course to using the Process Oriented Guided Inquiry
Learning (POGIL) model [1]. POGIL uses collaborative group learning that is
organized into a set of labs with a rigorous structure in both student interaction
and the material being worked on. The computing discipline is relatively new
to POGIL and work is ongoing in developing lab material for various levels of
course work. The most robust effort, to this point, has focused on introductory
level material. Transforming that material to fit into the existing structure of
a course, i.e. language, tools, platforms, and practices, is the first of many
hurdles one needs to overcome.

In POGIL, the role of the instructor is transformed from controlling flow of
information between teacher and students to facilitating information exchange
among students. It can be challenging to change roles by stepping back to allow
students to discover answers as they work out well structured problems. As fa-
cilitator it is important to balance time spent engaging students with enabling
them to struggle along in a productive manner. Devising sound principles in
promoting collaborative learning will drive student experience. From prevent-
ing strong personalities in hijacking a group, to encouraging gender equality,
to promoting participation of reluctant students, all are challenges to overcome
in order to create a workable environment for POGIL to flourish.

A critical element in developing a productive POGIL lab environment is
creating good student working groups. Different techniques were applied with
each offering their own benefits and shortcomings. Approaches governed how
groups were constructed, either requiring directed student assignment by the
instructor or allowing students to self-choose their preferred group. Both have

*Copyright is held by the author/owner.

139

their pitfalls as either incompatible personalities could be forced to work to-
gether or an imbalance of strengths could be distributed among groups. Ad-
ditionally, student roles in groups are also integral to POGIL and insuring
that each role is fulfilled and that each student takes on every role through
the course of the semester is important. Though seemingly easy to control,
random events such as student absences or withdrawal from the course can not
only change group dynamics but may require reshuffling or combining groups;
doing so without adding too much disruption requires thought.

The most challenging component of successfully integrating POGIL into
an existing introductory programming course is to insure student buy-in. One
characteristic of POGIL that is universal is that the experience can be ex-
hausting to both student and teacher. Activities are timed, roles need to be
accepted and followed, and each activity builds on the previous. This leads
to potential stress for students who may feel rushed, out of their element, or
even bullied by strong personalities within their group. However, with careful
facilitation, these potential pitfalls can be turned into positive experiences were
exhaustion comes from a fun learning environment. This work aims to share
these experiences so that anyone looking to integrate POGIL into their own
curriculum can gain some useful insights.

References

[1] POGIL: 2019. .https://www.pogil.org Accessed: 2019-01-11.

140

DDS: A Web Based Tool for Modeling
Dynamic Data Structures®

Faculty Poster

Robert A. Ravenscroft, Jr.
Department of Mathematics and Computer Science
Rhode Island College
Providence, Rhode Island 02908

rravenscroftOric. edu

Dynamic Data Structures (DDS) is an HTML5 and JavaScript web browser
application that allows the user to interactively model dynamic data structures
such as linked lists and binary trees. DDS was conceived as a modeling tool
to be used when teaching dynamic data structures, eliminating the need to
model them on static media such as white boards. However, DDS is not an
algorithm visualization system. Rather, it provides a platform for the user to
build and manipulate a graphical model of a data structure in a manner of
their choosing. Any action taken by the user corresponds to the execution of
one statement in an algorithm. Only manipulations that are semantically valid
in a language such as Java are allowed. Actions are implemented by dragging
with a mouse (reference assignment, node layout) or by clicking buttons (node
creation, garbage collection).

Tools such as DDS are rare. Even web based algorithm visualization tools
are still uncommon. There are two systems are of interest. Data Structure
Visualizations [1] is a web based package of visualization programs. These
programs are typically command driven. The user enters a data value, presses
a button, and watches how the operation modifies the data structure. Unlike
DDS, they do not allow the user to directly interact with the data structure in
the visualization. JSAV [2][3] is a JavaScript framework for developing visual-
izations. It has been used to develop student exercises that permit manipula-
tion of data models as part of the solution. Some of these assignments provide
user interaction with a data structure model that is similar to that provided
by DDS. However, they are not general purpose data structure modeling tools.

*Copyright is held by the author/owner.

141

The development of the DDS tool is an ongoing research project. The
current versions model linked lists and binary trees and were used in a data
structures course to evaluate their effectiveness as a classroom teaching tool
[5][4]. DDS lived up to expectations in the classroom. Pre-built scenarios
avoided the need to use class time to draw them on the board. With DDS,
there were no concerns with introducing errors when drawing or manipulating
a model. The typical white board draw-erase-redraw cycle was eliminated,
and classroom time was not taken up with frequent attempts to correctly draw
updates to the model as the data structure changed. The data files for the
class examples were posted on the course web site, allowing student access to
the examples after they left class.

Based on classroom experience and feedback from conference presentations,
several improvements and enhancements are underway. Garbage collection of
unreachable nodes has been improved. Layout of lists has been improved. A
stack mechanism is being implanted to model recursion. The option to use
either integer keys or text keys in nodes is in development. A snapshot feature
has been added to the system that allows the user to capture and save an
album of snapshots of the model at various points in time. This feature was
motivated by the desire to use DDS as an active learning tool. The album will
allow a student to maintain a history of manipulations that were used to solve
a problem and then to submit the project file that contains the album. While
DDS was not intended to be an algorithm visualization system, a simple block
language has been prototyped for the linked list version to allow algorithm
visualization. The block language will provide new potential applications of
DDS as a tool for active learning.

Several additional features are under consideration and are likely to be
implemented in one of the next development cycles. Automatic layout of binary
trees needs improvement. An option to store key-value pairs in a node is needed
to model the implementation of the dictionary abstract data type. A tabbed
interface will allow multiple models to be stored within a single project. An
animation feature that allows the user to record a sequence of manipulations
is also under consideration. This would allow instructors to pre-record their
demos. Or, instructors could record class room demos and post them online.
Likewise, students could use the animation feature to record their solutions to
data structure problems and submit them online. Finally, a version of DDS for
doubly linked lists is in design.

This poster will present the current state of the DDS system and the ben-
efits of its usage in the classroom. It will also present information about cur-
rent and anticipated future work on the system. DDS is available online at
http://dsviewer.org/dds/homepage and information will be available on its us-
age. New users are welcome to try it out and use it for teaching and learning.

142

It is hoped that this poster will help boost awareness of DDS and identify
new collaborators to help evaluate its effectiveness as a teaching and learning
tool. Suggestions for new capabilities as well as for improvements to existing
capabilities are also welcome.

References

1]

[2]

D. Galles. Data structure visualizations. www.cs.usfca.edu/~galles/
visualization/, retrieved 9 November, 2017.

Karavirta, V., Shaffer, C. A. JSAV: the JavaScript algorithm visualiza-
tion library. Proceedings of the 18th Annual Conference on Innovation and
Technology in Computer Science Education, pages 159-164, 2013.

Karavirta, V., Shaffer, C. A. Creating engaging online learning material
with the JSAV JavaScript algorithm visualization. IEEE Transactions on
Learning Technologies, 9(2):171-183, 2016.

Robert A. Ravenscroft, Jr. Dynamic data structures, a web based tool for
teaching linked lists and binary trees. Journal of Computing Sciences in
Colleges, 33(6):97-106, 2018.

Robert Ravenscroft. An HTML5 browser application for modeling and
teaching linked lists: (lightning talk, abstract only). SIGCSE ’18: Proceed-
ings of the 49th ACM Technical Symposium on Computer Science Educa-
tion, page 1106.

143

The Use Of Virtual Desktop
Infrastructures In A Graduate

Computer Science Curriculum®

Faculty Poster

David Pitts, Viadimir V. Riabov
Department of Mathematics and Computer Science

Rivier University
Nashua, NH 03060-5086

{dpitts, vriabovl}Orivier.edu

This poster will present the use of and experience with virtual desktop
infrastructure (VDI) [2] in the Masters in Computer Science program at Rivier
University. Many of the advantages of VDI in a university setting have been
described in [3]. This poster will focus on our experience with VDI for Rivier’s
Computer Science graduate program. In addition to reducing hardware costs
and system administration loads, VDIs also provide convenient means for both
students and faculty to access software tools and applications from both home
and the university. For the Computer Science program at Rivier University, the
combination of VDIs and open source software gives us a good way to provide
the students with the necessary tools, both in and out of class, and to perform
the work that instructors expect. VDIs provide a convenient way to create the
specialized Computer Science desktops (CSDs) only for the computer science
students (students in other programs use the standard, “vanilla” desktops).

Rivier University started using VDI about six years ago with an in-house I'T
department and has continued the VDI utilization after adopting an outsourced
IT model. The use of VDI became particularly important during an explosion
of the graduate program due to a large influx of international students: the
program went from around 40 students to almost 600 full-time students at its
peak. The accommodation of VDI allowed us to meet the demands of this
growth gracefully, quickly adding the necessary computer-based classrooms
needed for this larger population of students.

Rivier University’s VDI consists of thin-clients (we use Dell Wyse thin-
clients) that connect to the Rivier’'s VDI server. There is a separate server

*Copyright is held by the author/owner.

144

for on-campus use versus remote use. The connection to the VDI is managed
through the normal Rivier University credentials. Once connected to the VDI,
the user is offered a set of virtual desktop pools. For example, Rivier provides
University Desktops, Computer Science Desktops, and Faculty/Staff Desktop
pools. Selecting of the appropriate pool creates a new virtual desktop for the
user.

The Computer Science and University desktops are not persistent [1]. Each
time a student logs into one of the computer science desktops, the desktop is
created a new VDI. This feature provides some protection against student’s
misadventures and numerous malware dangers (e.g., viruses and worms) that
are ever present. However, at Rivier, faculty are provided with persistent
desktop, allowing the replacement of desktop computers in faculty offices with
a small Dell Wyse thin client.

Another important benefit of VDI is that, through the use of VMWare’s
Horizon View client [4], the Computer Science desktops are available not only
through the Dell Wyse thin clients, but also through the personal devices (e.g.,
laptops, desktops, and even iPhones), allowing access to the computer science
applications at home as well as on campus. Faculty can work on demonstra-
tions and in-class activities at home on exactly the same environment that
students will use during class. Online students, after installing the Horizon
View client, have complete access to the Computer Science desktops. Further,
for faculty, their persistent desktops replace the VPN that was in use at Rivier
University, since the faculty member can connect to her/his persistent desktop
from home and immediately have access to the Rivier network environment
(e.g., file folders, printers, etc.).

Another benefit of VDI that we have not yet pursued is the support of
virtual desktops with different operating systems installed, such as Linux or
FreeBSD. Rather than devoting additional hardware resources or formatting
existing systems as dual-boot systems, a new pool of virtual desktops may be
created.

While there are many benefits to VDI, deployment of a VDI and set of desk-
tops requires some planning. Applications for a virtual desktop are configured
as layers [5], which allow the VDI administrators to install application with
the necessary dependencies and add them to the OS layer for a specific virtual
desktop pool. In the case of Rivier, the “vanilla” University Desktop pool uses
a small number of application layers, while the number of layers required for
the Computer Science Desktops is about 30 layers. The more layers required
by a virtual desktop, the longer it takes to create. When classes of 20-plus stu-
dents attempted to connect to the Computer Science Desktops simultaneously
for a class, the demand on the VDI system can be quite significant. Further,
instructors and IT administrators must carefully plan for licenses required to

145

simultaneously run the large number of virtual desktops.

In conclusion, VDI has been of great benefit to Rivier University, particu-

larly in support of the sudden spike of the number of students in the computer
science programs.

References

1]

[2]

146

N. Maloney. Persistent vs. non-persistent VDI. http://blog.
accessitautomation.com/persistent-vs.-non-persistent-vdi.

Steele C. Rouse, M. and J. Madden. Desktop virtualization. https:
//searchvirtualdesktop.techtarget.com/definition/desktop-
virtualization.

S. A. Vieira. Why virtual desktop at CCRI? finding sustainability for desk-
top support. SIGUCCS ’12 Proceedings of the 40th Annual ACM SIGUCCS
Conference on User Services, pages 81-86, 2012.

VMWare. Horizon 7. https://www.vmware.com/products/horizon.
html.

D. Wilkinson. Citrix application layering —user layers, WilkylT.
https://wilkyit.com/2018/01/16/citrix-application-layering-
user-layers/.

Making (and Keeping) It Simple:
Learning to Find Initial Problem
Simplifications for Incremental
Development in a First Programming
Course*

Faculty Poster Abstract

John H. E. Lasseter
Department of Mathematics
Computer Science
Hobart
William Smith Colleges
Geneva, NY 14456

lasseter@hws. edu

This poster presents the results to date of an initiative to teach novice
programmers the identification of simplifications of a programming problem,
as a first step in an incremental development process. This is part of a broader
work in progress to develop a curriculum for a first programming course, which
teaches an explicit process of programming as an integral part of the course.
The process that students learn to employ draws from the agile programming
principles of incremental development and continual testing. At its core is
the identification of candidate simplifications of a problem as a fundamental
problem-solving strategy. A simplification may be quite radical, but it is chosen
such that the programmer can implement a complete solution, from design
and implementation to testing. The cycle is then repeated with an identified
improvement to the existing program that grows the finished product closer to
a full solution.

Identification of the problem simplification step is taught throughout the
full semester, at varying levels of granularity, including algorithmic problem
solving, functional and/or data type decomposition, and whole program con-

*Copyright is held by the author/owner.

147

struction. At each of these levels, the initial simplification is one that satisfies
the following criteria:

e It should be congruent to the original problem in the sense that it shares
broad stroke characteristics in its interface.

e It should solve a subset of the original problem domain. Concretely, this
requires the co-development of test cases on which the program should
execute correctly.

e The simplified problem should be one that the student clearly knows how
to solve. Specifically, it must be possible for the student to implement a
complete solution of the simplified problem, which passes the (likely very
small) subset of test cases described by the simplification.

Exactly how one finds such a candidate simplification is not obvious, least
of all to be-ginning programmers. This kind of identification is another skill
that students must develop over time. The core strategies that I use to teach it
depend on the granularity of the problem. They fall into three broad categories:
templates and algorithmic patterns, method specification and prototype, and
object-oriented design patterns.

Templates and patterns of algorithm implementation and
whole program construction.

Students begin the first week or so of the course learning a few simple “id-
ioms” of program construction. Their first programs execute straight-line se-
quences from command line arguments, with interactive I/O templates intro-
duced around the third or fourth week of the course. At a smaller granularity,
they learn templates for the basic forms of multi-way conditionals, definite
loops, interactive I/O loops, forward and backward array traversals, and so
on. Although the patterns must necessarily remain abstract, the templates
themselves are working or nearly-complete code examples. Further, the stu-
dents are required to ensure that they produce only working code from these
patterns. At root, this is an adaptation of the agile practices of test-driven
development and incremental growth. The simplification task becomes one of
identifying the candidate program template, which, initially, is drawn from a
very small pool of possibilities. Concomitantly, this involves the identification
of suitable tests. Along with a repertoire of templates and patterns, students
practice relating a chosen pattern to a given problem, identifying the subset of
the problem instances that the basic template solves (and those it does not).

148

Demand-driven method decomposition and rapid proto-
type.

The insertion of a call to an invented method is an effective way of delaying
a programming concern. The corresponding prototype method—implemented
just enough to com-pile—forms the body of candidate simplifications here. This
aspect of problem simplification shares a similar character to the specification
driven “design recipes” advocated in Felleisen et al. It draws heavily on ideas
from design by contract, i.e., the practice of designing methods in terms of
both their type signature as well as their pre and post-condition behavioral
requirements.

Object-oriented design patterns.

Our version of CS1 teaches objects late in the semester, so exposure to more
industrial-scale patterns can prove overwhelming to students. Indeed, the very
concept of this kind of design pattern—standard decompositions into class defi-
nitions that communicate with each other according to a generalized pattern of
interaction—is not at all obvious to beginning programmers, who often strug-
gle with the basic ideas of classes as definitions of new data types. The goal
at the novice level to inculcate in students a sense of the utility of this kind of
decomposition for larger program construction problems. Students learn just a
few simple pat-terns for such things as basic graphics and GUI constructions.
Most of these do not rise to the level of the canonical patterns familiar from
works such as Gamma et al, though I have had success in teaching a spare
version of the model/view/controller architecture.

Validation and Future Work

The success of the template and method prototype approaches was investi-
gated through an analysis of student performance on two exams, whose results
will be part of the poster. The data gives evidence that students were able
to apply a repertoire of templates and patterns to the solution of new prob-
lems. Anecdotally, I observed that the results were significantly better than
exam scores observed for students taught without this emphasis, but concrete
measurements of the latter approach remain as future work. The same exam
results also give evidence that students are able to use some aspects of method
call and prototype to aid in initial simplifications and problem solving. These
results are more mixed, however. Students showed a consistent ability to spec-
ify and use a method’ s type signature, but they showed much less success in
specifying (and implementing) the behavioral requirements of a method.

149

Students’ Misconceptions of Gradient
Descent Algorithm in an Machine
Learning Course*

Faculty Poster

Karen Jin
Department of Applied Engineering and Sciences
University of New Hampshire
Manchester, NH 03101

karen. jinQunh. edu

Machine learning has transformed many areas of computer science. It is
becoming an important topic in computing education, but the knowledge of
how to teach machine learning effectively is limited [1]. Gradient descent and its
variants are one of the most important optimization algorithms used in machine
learning. It is often among the early topics covered in a machine learning
course. The concept of calculating the gradient, or the partial derivative of
a cost function for each input dimension, also applies to the backpropagation
algorithm in training a simple neural network.

In this poster, we present our experience of teaching the gradient descent
algorithm in an introductory-level machine learning course. The course was
taken by graduate students in an I'T major, many of them are IT professionals
with a proficient programming background. When the gradient descent algo-
rithm was first presented, students appeared to understand the algorithm well.
They were able to describe how algorithm work at a high level as well as to
apply the related tools from machine learning toolkits to solve actual problems.
However, when the concept of stochastic gradient descent and backpropaga-
tion were later introduced in the course, students’ initial misunderstanding of
gradient descent became apparent, preventing the students from establishing
a correct understanding of the later concepts.

We describe in detail the students’ main misconceptions about the gradi-
ent descent algorithm and discuss factors that may have contributed to these
misconceptions. We also discuss potential solutions from the teachers’ per-
spective to help students avoid these mistakes. Our experience shows students

*Copyright is held by the author/owner.

150

benefit from working through concrete examples and implementation exercises.
Hands-on active learning activities in a collaborative setting are particularly
helpful for students to learn fundamental machine learning algorithms such as
gradient descent and backpropagation. We also suggest that students should
be prepared with adequate math prerequisite in order to have a solid under-
standing of machine learning algorithms, regardless of their prior programming
experience.

References

[1] Rebecca Fiebrink Ben Shapiro, Peter Norvig. Workshop in Research on
Learning about Machine Learning. ICER, 2017.

151

Open Source as an Extracurricular
Activity”

Faculty Poster

Gregory W. Hislop', Joanna Klukowska®, Lori Postner’
IDepartment of Information Science
Drexel University

Philadelphia, PA 1910/

hislop@drezel. edu
?Department of Computer Science
New York University
New York, NY

joannakl@cs.nyu.edu
S Department of Mathematics,
Computer Science and Information Technology
Nassau Community College
Garden City, NY

lori.postner@ncc. edu

This poster discusses efforts at three institutions to encourage student en-
gagement with Free and Open Source Software (FOSS) projects via extracur-
ricular activities. This approach helps address the considerable student interest
in open source while avoiding the limits of available time in a computing cur-
riculum for new material.

Free and Open Source Software (FOSS) has become a driving force in the
software industry, as exemplified by IBM’ s recent acquisition of Red Hat.
Almost all major technology companies are active contributors to open source,
and surveys indicate that at least 94% of all application systems incorporate
open source [2]. In addition, FOSS has become a leading source of innovation in
software engineering including tools, frameworks, and processes. Humanitarian
FOSS (HFOSS) is open source software that exists to address societal needs
such as healthcare, education, disaster management, economic development,
etc. The openness of FOSS makes real-world computing accessible to students

*Copyright is held by the author/owner.

152

to an extent that is unmatched, and a faculty community has emerged to
develop approaches to HFOSS education.

Mozilla Open Source Student Network

The Mozilla Foundation, known for the Firefox browser, is dedicated to sup-
porting an open internet as a global public resource. The Open Source Student
Network [1] is a Mozilla initiative to encourage and support student clubs that
will help students learn about, contribute to, and create open source projects.
At present this initiative is focused on the United States and Canada, and
includes student club efforts at several dozen campuses.

The Open Source Student Network is designed to be student-led, and stu-
dents can sign up as a step to organizing FOSS activities on their campus.
To help establish an initial cadre of student clubs, Mozilla has run a program
during 2017 and again in 2018 to work with a diverse group of students on
establishing open source extracurricular activities on their campuses.

While the Mozilla initiative focuses on students, there is value in faculty
involvement in fostering FOSS extracurricular efforts. Student clubs typically
require a faculty advisor, and for an area like FOSS where students may have
great interest but little experience, faculty input and guidance may be partic-
ularly helpful.

Initial Experiences

The presenters are faculty involved with HFOSS education at three institutions.
Students from all three institutions participate in the Mozilla program. This
section summarizes experience across the three campuses.

Organization: Each institution has multiple student clubs related to com-
puting, and Drexel and NCC opted to start FOSS as an activity within an ex-
isting Women in Computing club. NYU started a new FOSS club called BUGS.
Adding activities to an existing club is an easier way to start, but doesn’ t
provide as much visibility or focus on open source. The separate club requires
more start-up effort, but has created some campus-wide visibility related to
open source.

Activities: Many students have little understanding or experience with
open source, so there is need for initial activities to be very introductory. All
three clubs started with events that provided an overview of open source, Git,
and GitHub. While most students are already using GitHub, is appears that
many are not comfortable beyond very basic operations. An initial set of
activities from one of the sites is as follows:

153

e Overview of Open Source —description, licensing, impact, FOSS as a ca-
reer

o Git Basics —Use of Git locally for version control, conflict resolution

e GitHub Basics —GitHub basics, workflows, feature branches, pull requests

e Open Source Business Models ~FOSS professionals, why companies con-
tribute

Having outside speakers as part of open source activities seems to be well-
received by students. These speakers have come from FOSS organizations and
also corporations that have significant FOSS efforts.

Sustainability: The demands of other activities and the continual turnover
in student leadership present challenges for every extracurricular activity. The
initial efforts at all three schools are still ad hoc and likely will fizzle out with-
out continued faculty effort. Long term success will require development of a
sustainable program of activities and self-renewing organization and student
leadership. Thus far, none of these clubs has achieved that for open source
activities.

Acknowledgement

This material is based on work supported by the National Science Founda-
tion under Grant Nos. DUE-1525039, DUE-1524877, and DUE-1524898. Any
opinions, findings and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF).

References

[1] Mozilla. Morzilla open source student network. https://opensource.
mozilla.community/ January 2019.

[2] Tidelift Professional Open Source Survey Results. How to make open
source work better for everyone, 9 key insights from the 2018 tidelift
professional open source survey. https://tidelift.com/about/2018-
Tidelift-professional-open-source-survey-results December 2018.

154

Developing and Managing
Interdisciplinary Programs®

Faculty Poster

Adam Fischbach, Yana Kortsarts, Suk-Chung Yoone
Widener University
Chester, PA 19013

{jafischbach,ykortsarts, syoon}Quidener. edu

We present our experience developing and managing new interdisciplinary
programs in computer forensics and digital media informatics —the results of
successful collaboration with social science faculty. The computer forensics
minor is an interdisciplinary program that integrates criminal justice and com-
puter science and combines both theoretical concepts and practical skills to
prepare students for a career in the area of information security and digital
forensics. The digital media informatics major is an interdisciplinary program
run jointly by the computer science and communication studies departments.
The program provides both broad and targeted perspectives on the field of in-
formatics and helps students develop unique skills that can be adapted to the
rapidly changing computer and media environment through four specialized
concentrations: (1) audio-visual, (2) graphics, mobile, web development, (3)
gaming artificial intelligence, and (4) digital writing. We describe the various
stages in developing the interdisciplinary programs including an analysis of
competitive academic programs, evaluation of current resources, qualifications
and faculty considerations, the process of developing the program objectives
and learning outcomes, and assessment strategies. We focus on common issues
that arose during the development process such as the challenge of designing
balanced curricula for interdisciplinary programs, the need for designing new
courses and renovating existing courses. We also discuss the anticipated costs
of the programs, required resources, recruitment strategies, and the adminis-
trative approval mechanism.

Computer science is a rapidly changing discipline and our goal is to pro-
vide opportunities for students to understand the complexity of the modern
world through interdisciplinary learning, explore and make connections to other

*Copyright is held by the author/owner.

155

fields, and integrate various perspectives to allow for interdisciplinary problem
solving. Integrating interdisciplinary thinking into the computer science cur-
riculum is a challenging but rewarding task that benefits faculty and students.
Development of the interdisciplinary programs in computer forensics and dig-
ital media informatics agree with broad recommendations presented in the
2011 Summary Report “What works in facilitating interdisciplinary learning
in science and mathematics” , by the Association of American Colleges and
Universities, Project Kaleidoscope.

The poster will consist of three parts. The first two parts will be devoted to
detailed descriptions of the curriculum and development process for each inter-
disciplinary program, including the anticipated costs of the programs, required
resources, recruitment strategies, and the administrative approval mechanism.
For each program, we will describe the various stages in the development in-
cluding an analysis of competitive academic programs, evaluation of current
resources, qualifications and faculty considerations, the process of developing
the program objectives and learning outcomes, and assessment strategies. The
third part of the poster will focus on common issues that arose during the
development process such as the challenge of designing balanced curricula for
interdisciplinary programs, the need for designing new courses and renovating
existing courses, and various common administrative issues.

156

Using Jupyter Notebooks in a Big Data
Programming Course*

Faculty Poster

Roland DePratti
Department of Computer Science

Central Connecticut State University
New Britain, CT 06053

roland.depratti@ccsu.edu

In a Big Data Programming course, students often need basic instruction
in a new programming language, i.e. Python, Scala, R. Traditional program-
ming language instruction involves a textbook and an Interactive Development
Environment (IDE). In a course that already included two textbooks and in-
struction on Big Data frameworks, the author was looking for an effective way
to deliver instructional text and the interactive development capabilities of an
IDE that would not add additional cost to the student.

Many data scientists and researchers have found computational notebooks
to be a valuable way to centrally capture documentation, code and visualization
of their work. Jupyter Notebooks is a popular, open-source computational
notebook [5]. Researchers have published findings on how Jupyter notebooks
have been used to collaborate and share results [2][1]. Some computer science
educators have studied the use of computational notebooks in the classroom
[3], but the author was not aware of an assessment of students’ views on how
computational notebooks compare to textbooks. This poster describes two
phases of a project to answer that question. The first phase developed and
implemented notebooks, surveyed and analyzed initial findings as part of a
larger study that examined the used of computational notebooks in preparing
students to complete statistics projects used in analytics-based courses [4]. The
second phase analyzed student free-form feedback on the effectiveness of using
the notebooks, identified enhancements to improve shortcomings noted in the
feedback results, and developed a list of implementation architecture choices
when using notebooks.

To capture their views on notebooks versus textbooks, students completed
a survey about their experiences with Jupyter Notebooks and textbooks. The

*Copyright is held by the author/owner.

157

survey asked students, using a Likert-scale, to compare the Jupyter Notebooks
used in class to textbooks on clarity, completeness, usefulness in learning the
material, and required effort to learn the material. Results demonstrated that
students rated the notebooks higher on these qualities. As an example, students
rated notebooks highest on usefulness. Notebooks can provide instructional
material, executable examples, assignments and test out the correctness of the
assignments in the same document.

Students also were able to provide free-form feedback on the course note-
books. Much of this feedback identified topics they would like to have included
in the notebooks, as well as areas where they would like more examples. It also
identified the need for an enhancement in the correction checking mechanism.
The correction checking mechanism was overly sensitive to string formatting
when assignments requested them to return a string. Due to that sensitiv-
ity, it tended to flag some correct answers as incorrect. As the result of all
the feedback, the notebooks have been enhanced to better meet the students’
needs.

Based on this work, the author generated a list of characteristics that others
can use when evaluating the use of notebooks in their courses. These charac-
teristics include:

o An “interactive textbook” for data exploration that students enjoy using.
(Pro)

o Supports a large amount of programming languages and frameworks (114
kernels). (Pro)

o Large open-source community and support. (Pro)

e Large set of add-on tools, i.e. NBGrader that provides auto-grading
capabilities. (Pro)

e Each notebook has its own global memory, careful notebook design is
important. (Con)

o Multiple implementation architecture choices available (Pro)

Overall, Jupyter Notebooks were found to be an effective way to give hands-
on training in a programming language without the need for additional text-
books. As language and framework developers continue to build kernels that
allow them to run in a computational notebook, there is the need for future re-
search to inform educators on best practices in using computational notebooks
and their role in the classroom compared to the tools we have been using for
decades.

158

References

1]

[5]

Eric Shook, Davide Del Vento, Andrea Zonca, and Jun Wang. GISandbox:
A science gateway for Geospatial computing. Proceedings of the Practice
and Fxperience on Advanced Research Computing.

Michael B. Milligan. 2018. Jupyter as common technology platform for
interactive HPC services. Proceedings of the Practice and FEzrperience on
Advanced Research Computing (PEARC ’18).

Ben Glick and Jens Mache. Using Jupyter notebooks to learn high-
performance computing. Comput. Sci. Coll.

Davis, M., Dancik, G. and DePratti, R. Autograding. Interactive tools
for learning R/Python: Preparation for statistics projects. Proceedings
of the 30th Annual International Conference on Technology in Collegiate
Mathematics, (to appear March 2019).

Jupyter. www. jupyter.org.

159

Identifying Skill Sets for Bioinformatics
Graduate Students —A Text Mining
Approach*

Faculty Poster
Richard Shang and Mohammed Ghriga

Department of Technology, Innovation and Computer Science
Long Island University
Brooklyn, NY 11201
{D%i.Shang, Mohammed. Ghrigat@liu. edu

This project proposes a set of skills to serve as a guideline for bioinformatics
curriculum design at the graduate level. Bioinformatics, also known as com-
putational biology, is a burgeoning inter-disciplinary field with a demonstrated
market need for highly trained experts who can analyze biological data with
skills in computation and informatics. Current trends in bioinformatics incor-
porate machine learning, large data set analytics and artificial intelligence in
the diagnosis, treatment and prevention of illness. Students in graduate pro-
grams of Bioinformatics typically expect that courses will prepare them for
future job markets with employable skills. In an effort to identify the skill sets
sought after by employers in Bioinformatics filed, we apply a text mining ap-
proach to analyze required qualifications of Bioinformatics jobs posted online.
Using the keyword “bioinformatics”, we searched on Google Jobs and collected
required qualifications of 38 Bioinformatics jobs. All the jobs indicate that a
master’s degree is required or preferred. Among the job posts, 14 are under
the title “Analyst”, 13 under “Scientist”, and 11 under “Software Engineer”.

We first identify skills in high demand by analyzing the frequency of words
stated in the job qualifications. As shown in Figure 1, among others, “pro-
gramming”, “data”, “Python”, “R” are most frequently mentioned in job posts,
which suggests the importance of computing capability in the field.

We next conduct bigram and word correlation analysis to further identify
the skills required in the job posts. Our analysis suggests besides the bioin-
formatics expertise and computing skills, communication skills are also highly

*Copyright is held by the author/owner.

160

molecular statistical masters
Ie'a'at Sja\fa (‘O‘T]plj er

Frequency

45

ngs_o_ p€£’| S |||Sgenetac§r 40

v28 python %l | £
bioinformatics | & | | I I I

relate

ddata rtools o s
programmlngc L EES58 " E8TEES
one f\!f“-«’“ ,-\CD EQEE% 28 %35 E %
writing ' rlp\' C tg O § E 55 E 3 55 2
strong =) = “ 32
slatisticsdegree research 3 K] 5 £
5 3

Figure 1: Word Cloud and Word Frequency
desired in the candidates for the job positions (shown in Figure 2). In addi-

tion, experience with cloud computing services is preferred in many of the job

positions.

computer science
communication skills
data analysis

python perl

computational biclogy
machine learning
molecular biology
cloud computing
programming language
scripting languages
source code

linux environment

sequencing data

software development _

ioinformatis,
Scences

~

analyai
experience g

equivalent -
malab andor

sciontiic engineerng
L
Ny famiarty
prelered figogical
nderstanding
skills

conpturicalion
mysgl
RUINIAQ, queries
lima ™
£
database >

genome dala

s
andysis 1008

/ “science %
ional
‘solving

vaianl o techriques
compuling
alignment *
dalasetsadvanced ™,
maseq resources
__leaming
maching,

modein
a libranes

.,
/ P
molecular™, services yﬁ
bivlogy 53 SIE
lenguage

el
v
sanl

cloud

avascaipt
programming

reposiiores

Figure 2: Bigram and Word Correlation

Based on the preliminary results from our analysis, we propose a set of skills
which can be essential in the design of Bioinformatics curricula and recommend
related courses to accommodate the need for each skill in Table 1. Bioinformat-
ics curricula are expected to impart students with essential domain knowledge
in biology, computer science and statistics, and proficiency in computational

161

and analytical techniques.

Table 1: Required Skills and Recommended Courses

Required Skills Recommended Courses

Molecular biology; genomics Bioinformatics / Genomics

Python Computational Genomics (BioPython)
Data analysis; R statistical Analysis of Genomic Data (R)
Sequence data; database queries Database and Big Data

Machine learning Machine learning in Bioinformatics
Unix environment; shell scripts ~ Unix for Bioinformatics

Cloud computing Cloud Computing for Bioinformatics
Communication skills Capstone Project

Our findings are based on a small sample of Bioinformatics job postings and
as such should be interpreted with caution. Yet, we believe they do provide
some valuable insights into the skill sets sought after by employers in Bioin-
formatics filed. In our on-going study we plan to crawl a large number of job
posts so that our analysis results can more accurately reflect the job market
needs.

162

Teaching Hands-On Computer
Organization and Architecture Using
Single-Board Computers”

Faculty Poster

D. Cenk Erdil
School of Computer Science € Engineering
Sacred Heart University
Fairfield, C'T 065825

erdild@sacredheart.edu

This work describes details in design and implementation of an upper-level
(core-Tier2) computer organization and architecture course with a hands-on
component. During revising the course, we (re-)aligned it with the Archi-
tecture knowledge area specified in ACM/IEEE joint task force computing
curricula [1], and implemented core bodies of knowledge specified, with re-
spect to computer organization and architecture. In particular, the following
knowledge areas constitute computer architecture curriculum: (i) digital logic
and digital systems, (ii) machine level representation of data, (iii) assembly
level machine organization, (iv) memory system organization and architecture,
(v) interfacing and communication; as well as the following optional knowl-
edge areas: (vi) functional organization, (vii) multiprocessing and alternative
architectures, (viii) performance enhancements.

Computer organization [2, 3], and computer architecture [4, 5] courses are
ideally offered as two separate courses with a prerequisite relationship between,
and typically in Sophomore, and Junior years, respectively. Due to credit
requirements, some computer science departments opt in offering a combined
organization and architecture course.

Based on these considerations in our design, as the sole hardware-focused
course in computer science department of a liberal arts college, this course
was offered as a required course; as part of the four-year undergraduate degree
requirements, in computer science, software development, information technol-
ogy, game design and development programs, as well as an elective course for

*Copyright is held by the author/owner.

163

a masters degree in computer science. After the redesign, it has been offered
first in Fall 2016, and has been continuously offered since then. Data presented
in this paper were collected during the inaugural year of offering the course for
two cohorts: in Fall 2016, and Spring 2017 semesters.

Modules of the hands-on component are based on three particular contem-
porary curricular guidelines: flipped classroom, lead learner, and project-based
learning. Using these main approaches, the laboratory component of computer
architecture course has been designed to complement the theoretical part and
also provide students hands-on skills in working with single-board computers,
as well as a set of sensors, components, and associated programming interfaces
that interact together with the computers.

Another important aspect of this course is to introduce a project component
that bodes well with the theoretical part of the course, and hands-on modules,
and allows students to design and implement an idea based on what they have
learned in class. Students also design and implement a small project with a
mandatory hardware component using a single-board computer. As most of
the students take this course before their senior year, students reacted well to
the idea of designing a small-scale project that would serve as training for their
senior capstone projects.

During hands-on modules that started in the first week of the semester,
students begin to use Arduino-based [6] single-board computers, and learn how
to use small electronic circuits as well as a breadboard and other IC-modules
that second-year engineering students typically experiment in a digital design
laboratory. This has been a positive learning experience for students as the
computer science curricula offered in the department is mostly classical, and
did not focus on computer architecture related knowledge areas to a great
extent, whereas a large portion of the theoretical part in the course assumed
some level of experience.

References
[1] ACM/IEEE-CS joint task force on computing curricula, computer science curric-
ula 2013. Technical report. Final Report, December 20, 2013.

[2] S.P. Dandamudi. Fundamentals of Computer Organization and Design. Texts in
Computer Science. Springer New York, 2006.

[3] O. Garcia. Computer organization and architecture and the laboratory sequence.
Computer, 10(12):91-96, December 1977.

[4] D. C. Hyde. Teaching design in a computer architecture course. IEEE Micro,
20(3):23-28, May 2000.

[5] C. M. Kellett. A project-based learning approach to programmable logic design
and computer architecture. IEEE Transactions on Education, 55(3):378-383,
August 2012.

[6] Arduino Project. Arduino reference manual. https://www.arduino.cc.

164

Challenges and Successes of Offering
Computer Science Courses in Urban
High Schools: Perspective of
Principals and Administrators®

Faculty Poster

Sarbani Banerjee !, Neal Mazur?®
Christopher Shively #, Joseph Zawicki’
IDepartment of Computer Information Systems
?Department of Elementary Education and Reading
$Department of Farth Science and Science Education
State University of New York at Buffalo State
Buffalo, NY 14222

{banerjs, mazurnm, shivelct, zawickjl}Obuffalostate.edu

This research presentation reports on study of the perspectives of principals
and administrators of urban high schools in introducing computer science (CS)
courses in their schools. These schools serve mostly high needs populations,
with more than 70% of students receiving free and reduced-priced lunches, are
located around the city of Buffalo, NY, one of the five poorest cities in the
country. The interviews and surveys are focused on the challenges and suc-
cesses of the principals and administrators of these schools as they successfully
implement or fail to introduce rigorous CS course(s) in their high schools. A
rigorous CS course in high school may extend from a half-year introductory
CS course (e.g. Exploring CS [1] or CS Discoveries [4]) to a pre-AP CS course
or to a full-year AP CS Principles or AP CS A (Java) course.

Many of the teachers of these schools have participated in the Computer Sci-
ence for High Schools (CS4HS) professional development workshops, funded by
Google, that are offered at Buffalo State College since 2012 [9]; these multiple-
track workshops are designed to acquaint participants with introductory CS
curriculum including problem solving, Scratch programming, and Web Design
[1] as well as the new AP CS Principles curricula [2]. A Service Learning

*Copyright is held by the author/owner.

165

)

program at the Computer Information Systems Department at the authors
college sends 15-20 students each semester to these schools to help the partic-
ipating CS4HS teachers either with their CS clubs or in their CS classrooms.
The college students provide near-peer CS teaching and learning for the high
school students of Buffalo Public Schools and Buffalo Charter Schools.

A “Western New York Principals’ Summit’ | attended by more than 65 high
school principals and administrators of the WNY area, was organized by the
authors in spring of 2017 and included invigorating keynote addresses by Jan
Cuny, NSF Program Director and Chris Stephenson, Director of CS Education
at Google. A major goal of the summit was to encourage principals to initiate
and expand CS education in their schools through the interaction with the
keynote speakers and from listening to success stories provided by principals
who have supported strong CS programs at their schools. Since then many
schools in the WNY area have started offering CS courses but progress has still
been slow in the inner-city schools that mostly serve the minority populations
that are underrepresented in computing.

The levels of introducing computer science informally or formally vary
greatly from school to school in the urban areas. Many participating CS4HS
teachers have established computer clubs, imparting informal

CS education, few have been teaching introductory CS courses, and fewer
have started teaching AP CS Principles course since last year. Many schools
have not been able to offer any CS courses despite of the trained CS4HS teach-
ers in their schools and many inner-city schools have never sent their teachers
to any CS professional development workshops.

The initial offerings of the AP CSP course in 2016-2018 saw a doubling
of the number of female as well as underrepresented minority students tak-
ing AP computer science courses/exams from that of the previous year [4].
There is clearly both a strong interest and a strong need for engaging under-
represented populations in CS [5]. In contrast, multiple barriers exist to the
implementation of CS courses in many K-12 settings [7][3][8][6]. An availabil-
ity of up-to-date, functional computer labs, the lack of well-prepared faculty,
adequate time in student and teacher schedules, the status of CS as an elec-
tive, have all contributed to the current dearth of CS courses in many districts.
For this research study, a survey instrument with 34 questions has been de-
signed and was administered to 24 high school principals of Buffalo Public and
charter schools, that enroll inner-city students. Eighty percent of the students
in these schools are from underrepresented populations in CS. The findings
will inform the CS ecosystem at multiple levels. Details, specifically related
to the barriers of CS course offerings will be addressed. Suggestions for and
resources supporting overcoming the challenges will be provided and identified.
The presentation will be arranged to have a prioritized summary and analysis

166

of the principals’ survey and interviews addressing issues related specifically
to offering CS courses, and next steps for schools - including both those who
have implemented a CS course as well as those planning to do so in the future.

References

1]

2]

Exploring computer science. https://csforallteachers.org/
exploring-computer-science.

Astrachan, O., and Briggs, A. The CS principles project. ACM Inroads,
3(2):38-42, 2012.

Century, J., Lach, M., King, H., Rand, S., Heppner, C., Franke, B.,
Westrick, J. (2013). Building an operating system for computer science.
http://outlier.uchicago.edu/computerscience/0S4CS/.

Code.org. https://code.org/educate/csp, Last Retrieved January 2,
2019.

J. Cuny. CS principles professional development: Only 9,500 to go! lessons
learned from our CS10K summer 2013 PD. Proceedings of the 45th ACM
Technical Symposium on Computer Science Education, page 543 —544, 2014.

Google Gallup Report (2015). Searching for computer science: Access
and barriers in U.S. K-12 education. https://services.google.com/fh/
files/misc/searching-for-computer-science_report.pdf.

Jennifer Wang, Hai Hong, Jason Ravitz Sepehr Hejazi Moghadam. Land-
scape of K-12 Computer Science education in the U.S.: Perceptions, access,
and barriers. SIGCSE’ 16, page 645 —650, 2016.

Loewus, L. (2015). Survey: Principals differ on definition of computer sci-
ence. http://blogs.edweek.org/edweek/curriculum/2015/01/survey_
computer_science_lacks.html.

Mazur, N.M., Banerjee, S. and Santa Maria, R. Computer science for all
in western New York: Building a community of practice. The Journal of
Computing Sciences in Colleges, 32(6), 2017.

167

