
The Journal of Computing
Sciences in Colleges

Papers of the 26th Annual CCSC
Northeastern Conference

April 1st-2nd, 2022
Pace University

Pleasantville, NY

Baochuan Lu, Editor Jeremiah W. Johnson, Regional Editor
Southwest Baptist University University of New Hampshire

Volume 37, Number 8 April 2022

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners 7

Welcome to the 2022 CCSC Northeastern Conference 8

Regional Committees — 2022 CCSC Northeastern Region 9

Reviewers — 2022 CCSC Northeastern Conference 10

Developing a Cross–Platform Mobile Course Using a
Multi–Paradigm Framework 11

Alisa Neeman, Muskingum University

Instilling Conscience about Bias and Fairness in Automated
Decisions 22

Sheikh Rabiul Islam, Ingrid Russell, University of Hartford, William
Eberle, Tennessee Tech University, Darina Dicheva, Winston-Salem
State University

An Online Tool for Easy-to-set-up, Visualizer-based, and
Auto-gradable Full Tracing Exercises 32

Wei Jin, David Marshall, Puen Xie, Georgia Gwinnett College

Content-Synchronized Game Development Modules in CS1 42
Xin Xu, Wei Jin, Hyesung Park,Evelyn Brannock, Adrian Heinz,
Georgia Gwinnett College

Cybersecurity Shuffle: Using Card Magic to Teach Introductory
Cybersecurity Topics 52

Preston Moore, Justin Cappos, New York University

Computer Science Case Studies From the Census 62
Christopher A. Healy, Furman University

Porting the APTT MAGMA tool to an HPC environment using
Singularity containers: A benchmark study — Poster Session 71

E.K. Iskrenova-Ekiert, SUNY Brockport, JT Haag, DoD High Perfor-
mance Computing Modernization Program, Soumya S. Patnaik, US Air
Force Research Laboratory

3

A Case Study for a Pilot Data Science Curriculum for Advanced
High School Students — Poster Session 74

Ching–yu Huang, Kean University, Janice Chao, High Technology High
School

User Experience and Visualization of Assistive Technology
Devices — Poster Session 76

Andres Arauz, Ching–yu Huang, Kean University

Discovering Ways to Increase Inclusivity for Dyslexic Students in
Computing Education — Poster Session 78

Felicia Hellems, Sajal Bhatia, Sacred Heart University

Teaching with VS Code DevContainers — Conference Workshop 81
Stoney Jackson, Western New England University, Karl R. Wurst,
Worcester State University

Initial Research: How Does Instructor Identity Change Due to
Supporting Student Involvement in Open Source Computing for
Good? — Lightning Talk 83

Gregory W. Hislop, Drexel University, Heidi J.C. Ellis, Western New
England University

4

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Karina Assiter, President (2022),
(802)387-7112,
karinaassiter@landmark.edu.
Chris Healy, Vice President (2022),
chris.healy@furman.edu, Computer
Science Department, 3300 Poinsett
Highway Greenville, SC 29613.
Baochuan Lu, Publications Chair
(2024), (417)328-1676, blu@sbuniv.edu,
Southwest Baptist University - Division
of Computing & Mathematics, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2023),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill Rd.,
Kansas City MO 64110.
Cathy Bareiss, Membership Secretary
(2022),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical
Engineering Sciences, 1001 Bethel
Circle, Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2023), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, UMKC, Retired.
Michael Flinn, Eastern Representative
(2023), mflinn@frostburg.edu,
Department of Computer Science
Information Technologies, Frostburg
State University, 101 Braddock Road,

Frostburg, MD 21532.
David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Grace Mirsky, Midwest
Representative(2023), gmirsky@ben.edu,
Mathematical and Computational
Sciences, 5700 College Rd. Lisle, IL
60532.
Lawrence D’Antonio, Northeastern
Representative (2022), (201)684-7714,
ldant@ramapo.edu, Computer Science
Department, Ramapo College of New
Jersey, Mahwah, NJ 07430.
Shereen Khoja, Northwestern
Representative(2024),
shereen@pacificu.edu, Computer
Science, 2043 College Way, Forest
Grove, OR 97116.
Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Tina Johnson, South Central
Representative (2024), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308.
Kevin Treu, Southeastern
Representative (2024), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer Science,
Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2023), (530)898-4864,
bcdixon@csuchico.edu, Computer

5

Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor,
(816)584-6884, bin.peng@park.edu, Park
University - Department of Computer
Science and Information Systems, 8700
NW River Park Drive, Parkville, MO
64152.
George Dimitoglou, Comptroller,
(301)696-3980, dimitoglou@hood.edu,
Dept. of Computer Science, Hood
college, 401 Rosemont Ave. Frederick,

MD 21701.
Carol Spradling, National Partners
Chair, (660)863-9481,
carol.spradling@gmail.com, 760 W 46th
St, Apt 208, Kansas City, MO 64112.
Megan Thomas, Membership System
Administrator, (209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus, One
University Circle, Turlock, CA 95382.
Ed Lindoo, Associate Treasurer &
UPE Liaison, (303)964-6385,
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, 3333 Regis Boulevard,
Denver, CO 80221.

6

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Google Cloud

GitHub
NSF – National Science Foundation

Silver Partners
zyBooks

Bronze Partners
Mercury Learning and Information

Mercy College

7

Welcome to the 2022 CCSC Northeastern Conference

We welcome you most enthusiastically to the Twentieth-Sixth Annual CCSC
Northeastern Regional Conference at Pace University! It is so good to be able
to meet together in person for the first time in three years.

The COVID pandemic has truly shaken up how we teach. Everyone has had
to consider new ways of presenting material and keeping students engaged in
an online or hybrid environment. While often difficult, these unusual circum-
stances have allowed many of us the chance to explore some of the promising
new education technologies available today.

Throughout the roller-coaster ride of the past year, our CCSCNE board
and conference committee members have been flexible and optimistic in their
fantastic efforts to see this conference through. We are indebted to a diligent
group of reviewers who have kept the conference program up to its usual stan-
dards. We are grateful for the wonderful support of Pace faculty, staff, and
student volunteers in putting on this event.

All of our presenters have our sincere thanks for the work they have done in
distracting times, and for their willingness to share it with us. There were 10
papers submitted, out of which 6 were accepted. This represents an acceptance
rate of 60%. This year’s program also includes works previously accepted at
recent canceled or virtualized conferences. We look forward to our invited
speaker, Amanda Holland-Minkley, and the opportunity to explore her work
further in one of the conference sessions.

Finally, we thank everyone who has come to celebrate computer science
education in person with us at this conference. We hope you find the experience
rewarding, and that you come away with renewed enthusiasm for our field and
your unique contributions to it.

Rick Kline
Pace University

CCSCNE 2022 Conference Co-Chairs
Lawrence D’Antonio

Ramapo College of New Jersey
CCSCNE 2022 Conference Co-Chairs

8

2022 CCSC Northeastern Conference Steering
Committee

Lawrence D’Antonio, Conference Chair Ramapo College of New Jersey
Richard Kline, Conference Chair . Pace University
Jim Teresco, Program Chair . Siena College
Bonnie MacKellar, Papers Chair . St. Johns University
Yana Kortsarts, Papers Chair . Widener University
Susan Imberman, Lightning Talks ChairCity University of New York
Susan Imberman, Panels Chair City University of New York
Joan DeBello, Tutorials and Workshops Chair St. John’s University
Ting Liu, Tutorials and Workshops Chair .Siena College
Dan Rogers, Faculty Posters Chair . SUNY Brockport
Mike Gousie, Speakers Chair . Wheaton College
Karl Wurst, Student Unconference ChairWorcester State University
Darren Lim, Encore Chair . Siena College
Sandeep Mitra, Undergraduate Posters Chair SUNY Brockport
Alice Fischer, Undergraduate Posters Chair University of New Haven
Stefan Christov, Undergraduate Posters Chair Quinnipiac University
Liberty Page, Undergraduate Posters Chair University of New Haven
Adita Kulkarni, Undergraduate Posters Chair SUNY Brockport
Mark Hoffman, Registration Chair . Quinnipiac University
Rick Kline, Registration Chair . Pace University
Frank Ford, Programming Contest . Providence College
Del Hart, Programming Contest . SUNY Plattsburgh
Kevin McCullen, Vendors Chair . SUNY Plattsburgh

Regional Board — 2022 CCSC Northeastern Region

Lawrence D’Antonio, Board Representative . . Ramapo College of New Jersey
Jeremiah Johnson, Editor University of New Hampshire at Manchester
Mark Hoffman, Registrar . Quinnipiac University
Adrian Ionescu, Treasurer .Wagner College
Stoney Jackson, Webmaster Western New England University

9

Reviewers — 2022 CCSC Northeastern Conference

Chris Alvin .Furman University
Kailash Chandra .Pittsburg
Lawrence D’Antonio . Ramapo College
Jamie Davilla . UMass Amherst
Dan DiTursi . Siena College
Ryan Dougherty . United States Military Academy
Martin Gagne .Wheaton College
Michael Gousie . Wheaton College (MA)
Nadeem Hamid . Berry College
Delbert Hart . SUNY Plattsburgh
Erin Johnson . CodeCrew
Sotiros Kentros . Salem State University
Bradley Kjell .Central Connecticut State University
Daniel Krutz . Rochester Institute of Technology
Sriharsha Mallapuram . Plymouth State University
Robert McCloskey . University of Scranton
Kevin McCullen . SUNY Plattsburgh
Greta Pangborn . Saint Michael’s College
Sofya Poger. .Felician University
Stefan Robila . Montclair State University
Nicholas Rosasco. .Valparaiso University
Ingrid Russell . University of Hartford
Marc Waldman. .Manhattan College

10

Developing a Cross–Platform Mobile
Course Using a Multi–Paradigm

Framework∗

Alisa Neeman
Mathematics and Computer Science

Muskingum University
New Concord, OH 43762

aneeman@muskingum.edu

Abstract

Mobile programming is a popular elective in the computer science
curriculum. The course designer must make choices about platform,
framework, and content from amongst the many capabilities the mobile
platform offers. This work shows students’ understanding of multiple
programming language paradigms and system issues can be strengthened
when using a cross–platform, multi–paradigm framework. The practical
usage of theoretical constructs is a motivating factor in their learning.

1 Introduction

Mobile course designs have often involved a choice between teaching a known
imperative language with a new library, or teaching a new imperative lan-
guage [12, 9, 4], in order to gain native performance. Gaining platform in-
dependence has required teaching web programming [1], or teaching a new
imperative language that compiles to multiple native platforms [3].

This work focuses on the design of a Mobile course using a multi–paradigm
framework, React Native. The React Native library is multi–platform, with
code being compiled to the native mobile platform on which it will run.

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

11

It uses a mixture of JavaScript, CSS and XML markup languages. While
JavaScript supports object oriented programming, the React Native library
compels the understanding of functional programming for the library’s graph-
ical user interface. Additionally, in order to use updating or remote data re-
sources, students used the asynchronous language supports in the JavaScript
language. This work will show that using a multi–paradigm library with
markup, functional, object oriented, and asynchronous threading constructs
in a Mobile Apps course strengthens students understanding of some core con-
cepts across Programming Languages and Operating Systems. The paper also
covers trade–offs involved in pursuing this route.

2 Background

Previous work has revealed some important lessons for Mobile Apps course
design. The work shows the tradeoffs between taking time to learn concepts
or libraries, versus taking time to implement apps.

For starters, teaching Mobile is challenging because the material to be cov-
ered is very broad, including web access, sensors, GPS, database, et cetera [8].
To balance the complexity, this course covered a single asynchronous sensor
(GPS) and used file–based JSON (JavaScript Object Notation) data sources
as a precursor of learning NoSQL queries.

Setting up the development environment is another hurdle [2]. The com-
plexity of a Mobile Apps course can be exacerbated by attempting to cover
multiple platforms. Teaching two mobile platforms can be successful, but a
tradeoff on time for course content will occur [9]. Pure web development for
Mobile is alternative cross–platform approach, but misses out on native per-
formance and full features of the device [1, 3].

The goal of this work is to teach a cross–platform framework with native
performance, achieving the best of both worlds. The trade–off (and benefit)
for using the React Native framework, is the necessity to cover the functional
programming paradigm.

Finally, a Mobile programming course should address system issues such
as security and power management, but there is a tradeoff against time for
practical implementation such as creating a graphical user interface (GUI)
and connecting to device sensors [11]. Although Sung and Samuel posit that
focusing on practical implementation is the most suitable approach for under-
graduates [11], this work shows that students can achieve an understanding of
some systems issues by building an app that requires user permission to ac-
cess sensitive user data (geolocation, in this case), and subscribes to repeating,
asynchronous sensor updates.

12

3 Methods

The Mobile Apps course was a first time offering using JavaScript React Native.
The course was designed for undergraduates who had previously taken some
web programming, but with minimal knowledge of the JavaScript language.

Figure 1: Students experience with web languages prior to the course.

The students reported varying levels of experience in web languages, as
shown in Figure 1, and the first week of the course was focused on strengthening
their basics in HTML, CSS and JavaScript. Emphasis was placed on features
that would translate to React Native such as on–click action handlers, screen
size–independent styling, and the Document Object Model. The remainder of
the course content was ordered as follows:

• JavaScript Concepts (ES6 through JavaScript 2018)

• Setting up the environment and creating basic apps

• Creating your own React Native component, props (parameters)

• Managing state and callbacks

• CSS flexbox layout and adding images

• Stack–based screen navigation

• Maps and asynchronous geolocation tracking

• JSON files and objects

13

• Deployment, splash screen, and app icons

• Introduction to sound and animation

Course objectives focused on the design and implementation Mobile apps,
and mobile specific issues. However, it became clear that some programming
language and operating systems concepts were necessary when using the chosen
framework.

3.1 Functional, Object Oriented, and Markup Features

The second week was spent covering the newest JavaScript language features,
from both the Object Oriented Programming (OOP) and Functional Pro-
gramming paradigms. For OOP, students learned to create both classes and
JavaScript Object Notation (JSON) objects. The functional programming fea-
tures were a subset of those in a typical Programming Languages class, as
shown in Table 1. Arrow function syntax was unique to JavaScript. De–
structured lists were declarative syntax found in JavaScript, Clojure and Python.

Table 1: Comparison of JavaScript Features and Programming Language Cur-
riculum.

A history of JavaScript was included so the students could understand the
reason for the evolution of the language to include functional features. All
of the functional language features were crucial to understanding the React
Native GUI interface documentation.

Finally, students learned JSX, an XML (extensible markup language) exten-
sion to JavaScript, used to build React Native GUI components. JSX was very
intuitive with their web programming background. The Composite design pat-
tern, a pattern for a hierarchy of uniform components, was also presented [5].

14

Figure 2: Puzzle App

The pattern was reflected in the XML
nesting of renderable components. Under-
standing the relationship between JSX com-
ponents and Composite design pattern, how-
ever, was not intuitive for the students, and
took them some time to absorb. Then stu-
dents were ready to learn to build their first
app, a sliding puzzle piece game, shown in 2.
The objectives were to learn file input, UI
layout, screen navigation, and event han-
dling. While assignments were individual,
Scrum project management [10] was used to
manage the work pace, fight fires, and get
feedback on additional course content that

needed to be covered. The practices included effort ranking for user stories
(with discussion of the reason for the chosen rank), choice of amount of work
per sprint, and daily standups where students reported what they had done,
what they intended to work on, and any impediments.

Students learned about props (parameters passed in through JSX elements’
attributes) and state (component–lifetime data). GUI components could be
built either as a function returning a JSX component, or a class rendering a
JSX component.

State was an important concept for components. The state for a React Na-
tive OOP component was initialized in a constructor, whereas a de–structured
list was used for state inside a React Native component function. Table2 shows
the two ways to create state for a React Native component. An interesting ex-
ample of a first class function behavior emerged. React’s useState returned a
function in its de–structured list! The function was a setter for the state vari-
able. However, state mutability meant the component was not a pure function.
Interestingly, a component function definition could contain a nested function
definition. A React Native function component had a structure surprisingly
similar to a class, containing both state and nested function definitions.

3.2 Students Preferred Functional GUI Components

The functional programming constructs gave students something to consider,
having a choice of programming paradigm. When surveyed, 5 out of 6 students
preferred Functional over Object Oriented components. One student reasoned,
regarding functions:

“They are easier to write because they do not require as much code to do the
same thing as a class component (not using the “this" keyword all the time!).

15

Table 2: Two ways to create state for React Native components

They are also faster then class components to render, which does not matter
all the time but there are times where the faster speeds are nice." [sic]

The student preferring JavaScript class components noted the similarity to
Java classes used in CS1, CS2 and Algorithms:

“Using classes that represent the component as a whole helps me visualize
the structure of the component better and I can tell what it is much easier. We
have used classes much more often throughout, using Java in other classes [i.e.
courses], that classes seem much more clean structure wise."

This shows that some students were considering programming language
issues of readability, writability, and performance when given the choice of
paradigms.

3.3 Using Asynchronous Threads

Figure 3: Map
App

The second project was a geolocation tracking app to help
the user find buildings on a campus map, and then find their
way back to their car. Until this point, students had focused
heavily on rendering their user interface, and re-rendering
the UI in response to user screen interaction. The objectives
of the second project were learning to use a device sensor
and understanding issues associated with mobile apps.

New geolocation updates arrived after rendering the UI,
and the UI could not block. Students had previous expo-
sure to AJAX (Asynchronous JavaScript and XML) to asyn-
chronously fetch data in the Web Programming course. For
this course, they instead learned JavaScript’s newer language
constructs for asynchronous updates: async, await keywords,
and Promise objects, which act as proxies for unknown data.

16

Table 3: JavaScript APIs for asnychronous data fetch

The new syntax was simpler to learn and more descriptive of what was hap-
pening, as shown in Table 3. Further, a real world application of asynchronous
threads was a motivating experience for students.

Students’ apps requested map data from a free map tile server. This worked
fine in the iOS simulator, but the Android simulator simply used equivalent
Google map data.

3.4 System Power Optimization and Privacy

Subscribing for continuous updates was slightly more complicated, with pa-
rameters for frequency of polling time, and minimum distance change between
location updates. Without known defaults, students experimented to find the
best numbers to create a nice display of the walking path on the map, while
optimizing battery life. Students also learned to turn off location tracking
when the app was in the background, to preserve battery life. Finally, stu-
dents learned to prompt the user to permit geolocation tracking, raising their
awareness of privacy when using the service.

17

3.5 Deployment and Platform

The only course content having distinct platform differences was in deploy-
ment. Students owned different phone platforms, so this was a concern to
them. Android and iOS had separate directory structures, separate processes
for compiling and bundling the app. Both deployment processes used free na-
tive platform development environments (Android Studio and Xcode, respec-
tively) [6, 7]. The Map service was another deployment pain point. Although
the apps ran well in the simulator, an Android deployment would crash unless
a Google Maps license key was registered.

4 Results

Data was gathered from a class of 6 students at a small liberal arts college.
Five were seniors and one was a junior. A series of surveys captured students’
perceptions of their learning and likes with the course design. The surveys
included Likert scale and reflection questions. Students listed what they found
interesting, in their own words:

“Running apps inside of phone emulators."

“The whole puzzle app in general have been enjoyable[sic]"

“MapView and Geolocation"

Regarding the use of Scrum practices versus a traditional, descriptive program-
ming assignments, half had no preference, and half preferred Scrum (a third
strongly preferred Scrum). Scrum worked well for managing the projects and
tracking issues. It seemed to bolster student motivation, although students are
generally highly motivated in Mobile courses [12, 2].

At the end of the semester, students were surveyed on whether they felt
the course content enhanced their understanding of asynchronous threads, as
shown in Figure 4. All students noted improvement to varying degrees.

Students reported even stronger improvement in understanding of func-
tional programming, as shown in Figure 5.

Students were queried as to whether the Mobile course helped them under-
stand other Computer Science course concepts. Student comments included:
“Examples of javascript code learned in mobile has been applicable to many of
the lessons taught in programming languages. (and Vice Versa)[sic]"
“JSON objects and Javascript concepts (anonymous functions, map).. helped
me understand Database Mgmt and Programming Languages concepts better."

When queried on what key thing(s) the students would remember from the
course, answers were quite varied. One third of students listed asynchronous

18

Figure 4: The degree to which understanding of asynchronous threads changed.

Figure 5: The degree to which understanding of functional programming
changed.

threads, but props, state, arrow functions, component life cycle hooks, JSON
objects, file I/O, and creating and publishing apps were listed. One student
wrote that the bugs of the React Native platform would be memorable.

5 Conclusions

Teaching Mobile using React Native cross platform, multi-paradigm framework
involves some trade–offs. First, it requires some background with web program-
ming languages: HTML, CSS, and a little exposure to JavaScript. Some review
will be necessary before diving deeper into JavaScript. Time must be spent to
teach the constructs from functional programming, although there would be a

19

similar cost to teach a new imperative language for Mobile. Finally, despite
the use of the framework’s ability to translate to native code, deployment is
still platform–dependent.

The benefits include reduced time to teach multi–platform software with
native performance, as compared to teaching two separate platforms. This
work clearly shows the derived benefits in strengthening student understanding
of multiple paradigms: object oriented, functional, and markup, asynchronous
threading, and even a new design pattern.

Scrum further enhanced to students’ engagement with the course while
providing important feedback for the instructor. Games and geolocation proved
to be engaging assignments. Students requested further lessons on adding
sound and animation to apps. Those will be good project topics for future
course offerings, and both can run asynchronously.

References

[1] Peter Alston. Teaching mobile web application development: challenges
faced and lessons learned. In Proceedings of the 13th annual conference
on Information technology education, pages 239–244, 2012.

[2] Kelvin Bryant and Xiaohong Yuan. A course module on mobile program-
ming. Journal of Computing Sciences in Colleges, 31(5):5–11, 2016.

[3] Paul E Dickson. Cabana: a cross-platform mobile development system. In
Proceedings of the 43rd ACM technical symposium on Computer Science
Education, pages 529–534, 2012.

[4] James B Fenwick Jr, Barry L Kurtz, and Joel Hollingsworth. Teaching
mobile computing and developing software to support computer science
education. In Proceedings of the 42nd ACM technical symposium on Com-
puter science education, pages 589–594, 2011.

[5] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Design
Patterns. Elements of reusable object-oriented software. Design Patterns.
massachusetts: Addison-Wesley Publishing Company, 1995.

[6] Google. Android studio. https://developer.android.com/studio.

[7] Apple Inc. Xcode. https://developer.apple.com/xcode/.

[8] Roy P Pargas, Punit Kulkarni, Greg Edison, and Barbara J Speziale.
Teaching mobile app software development is a challenge! In Proceedings
of the 45th ACM technical symposium on Computer science education,
pages 721–721, 2014.

20

[9] Bryson R Payne. Teaching android and ios native mobile app development
in a single semester course. Journal of Computing Sciences in Colleges,
30(2):176–183, 2014.

[10] Ken Schwaber and Jeff Sutherland. Scrum. https://www.scrum.org/.

[11] Kelvin Sung and Arjmand Samuel. Mobile application development classes
for the mobile era. In Proceedings of the 2014 conference on Innovation
& technology in computer science education, pages 141–146, 2014.

[12] David Wolber, Harold Abelson, and Mark Friedman. Democratizing com-
puting with app inventor. GetMobile: Mobile Computing and Communi-
cations, 18(4):53–58, 2015.

21

Instilling Conscience about Bias and Fairness in
Automated Decisions∗

Sheikh Rabiul Islam1, Ingrid Russell2,
William Eberle3, and Darina Dicheva4

1University of Hartford
shislam@hartford.edu

2University of Hartford
irussell@hartford.edu

3Tennessee Tech University
weberle@tntech.edu

4Winston-Salem State University
dichevad@wssu.edu

Abstract

Automated decision-making that impacts human interests, rights,
and lives, in particular different data mining and artificial intelligence-
based techniques, have become an integral part of many high-stakes ap-
plications such as sentencing and bail decisions, credit approvals, hiring,
and predictive policing. However, fairness concerns, such as discrimi-
nation based on race, age, sex, etc., primarily stemming from data and
algorithmic bias, is one of the major and contemporary problems associ-
ated with automated decision-making. In a traditional Data Mining, Ar-
tificial Intelligence, or Machine Learning course, educators usually teach
different automated decision-making techniques but largely with limited
coverage on their ethical concerns such as fairness, transparency, and

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission
to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than CCSC must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

22

privacy. In this paper, we share our experience in building and incor-
porating a fairness module 1 in an existing undergraduate Data Min-
ing course, within traditional content, and evaluate the outcome of the
initiative. The module includes lectures and hands-on exercises, using
state-of-the-art and open-source bias detection and mitigation software,
on real-world datasets. The goal is to help instill the consciousness of
fairness and bias at the very early stage of a potential future developer
of automated decision-making software. The module is easily adaptable,
and can be integrated into other relevant courses including introductory
Artificial Intelligence and Machine Learning courses.

1 Introduction

With the advancements in computing and Artificial Intelligence-based tools
and techniques, the need to analyze large and heterogeneous data has trig-
gered automated decision-making in many real-world, high-stakes applications
such as sentencing and bail decisions, credit approvals, hiring, and predictive
policing. However, fairness is one of the prevailing ethical concerns with auto-
mated decision-making, and is a key stumbling block to advance the confident
use of AI in application areas where the automated decisions impact human
interests, rights, and lives. A few of the recent incidents of “ethical crisis” [9]
in AI include Cambridge Analytica’s involvement in influencing hundreds of
elections globally [7], Google employee protests over military contracts [18],
biased algorithms in Amazon’s hiring processes [14], and racial discrimination
in predictive policing [16]. In the context of decision-making, a fair decision is
free from favoritism or prejudice towards individuals or groups based on their
inherent or acquired characteristics. In contrast, a biased decision is skewed
towards a particular person or group [13]. Data bias and algorithmic bias are
the primary contributing factors for fairness related risks in AI-based decision-
making. A particular group can be disproportionately represented in the data
due to natural or systematic bias in the data collection process; and a group
could be subject to statistical discrimination that is inherent in AI algorithms.

Traditionally, undergraduate Computer Science courses such as Data Min-
ing, Machine Learning (ML), and Artificial Intelligence (AI) cover topics as-
sociated with automated decision-making. These courses are also core and
relevant courses for a Data Science curriculum. At some institutions, these
courses contain overlapping content, while at others, they are blended into one
or multiple courses. However, the concept of fairness is comparatively new and
is sometimes only discussed in details in graduate-level courses such as Ethics
of Artificial Intelligence, and Ethics and Governance of Artificial Intelligence.
In addition, at the undergraduate level, a standalone course on fairness is not

1https://www.dropbox.com/s/4jn88butuveaewc/bias-fairness-module-v1.pdf?dl=0

23

feasible due to the level of difficulty and the many other essential courses that
need to be broached in a university’s computer science curriculum. Therefore,
instead of a standalone course, we have created a concise, high-level concept
module [2] on bias and fairness in automated decisions, with (1) lecture mate-
rial, (2) demonstrations, and (3) assignments (i.e., exercises) using real-world
datasets. The lecture contains some of the prominent cases of discrimination
with automated decision-making that affected human rights. For instance, in
2016, ProPublica, an independent and non-profit news provider, reported ev-
idence of racial inequality in automated criminal risk assessment algorithms.
The demonstration covers a bias detection and mitigation tool. For bias de-
tection, we use Aequitas, and for bias mitigation, we use IBM AI Fairness 360.
In addition, the demonstration is performed with a real-world case, predicting
the risk score of recommitting a crime, with the well-known public dataset
COMPAS. The assignment is related to students’ term project, in this case, in
a Data Mining course, which is a semester-long group project of two members
per group. The assignment asks the students to test their term project for the
detection and mitigation of potential bias and discrimination using the demon-
strated tools Aequitas and IBM AI Fairness 360. Students are also asked to
write their findings as a section in their group’s term project report. In cases
where there is no identifiable protected attribute in a project, they are told
to justify, in the term project’s report, why their project does not have any
fairness related risks.

We included the developed module in an undergraduate Data Mining course
at the University of Hartford, taught in the fall of 2020 and 2021. While the
module was introduced in an undergraduate level course, it can be also in-
troduced in graduate level AI/ML courses. Before starting the module, stu-
dents were requested to take a pre-survey (a Likert scale survey) assessing
their knowledge on fairness and discrimination. Students took the same survey
again as a post-survey, at the end of the semester after they had completed
all the components of the module. We found that the introduced module has
helped to instill the consciousness of fairness and bias in students, and students
found the module helpful and crucial to include in the undergraduate CS cur-
riculum. Due to overlapping content, the module is easily adaptable and can
be integrated into other relevant courses including Artificial Intelligence and
Machine Learning. The initial findings is part of the poster session of SIGCSE
2022 Technical Symposium. In this paper, we describe the fairness module in
Section 3. The demonstration, done with the real-world dataset COMPAS, is
discussed in Section 3.2. The details of our findings are described in Section 4.
In Section 5, we conclude the discussion with some future research directions.
While the student module will be made publicly available, currently the lecture
component of the module is available at [2].

24

2 Background

The integration of AI is commonplace nowadays in various aspects of human
life. With the increase of various ethical concerns, it is time to revisit what
future designers and developers of AI systems are learning when it comes to
AI [8]. It is of paramount importance that future members of the AI commu-
nity, and other stakeholders, understand and embrace their responsibilities to
enhance the benefits of using AI while mitigating potential adverse effects. To-
wards achieving that goal, [8] emphasizes the systematic inclusion of AI ethics
(e.g., privacy, fairness) into the CS curriculum, provides different approaches
to AI ethics, and offers a set of recommendations related to AI ethics pedagogy.

Grosz et. al. [10] present an approach, ”Embedded EthiCS”, to incorpo-
rating ethical reasoning into computer science education. Their module for
an introductory Machine Learning course briefly covers different theories of
wrongful discrimination. However, as the module is developed for multiple
courses, such as Big Data, Machine Learning, Data Systems, and Program-
ming Languages (a few of those at the graduate level), detailed discussions of
covered content, hands-on-exercises, and evaluations are unavailable.

Blair et. al. [6] propose a five-step methodology to incorporate cyber-
security concepts into traditional computer science curriculum without adding
a significant amount of new content [6]. Fiesler et. al. [9] analyze 115 syllabi
from university technology ethics courses that advance the inclusion of ethics in
the computing curriculum. Reich et. al. [15] took a multidisciplinary approach
to develop a new course by three instructors, from philosophy, political science,
and computer science, at the intersection of ethics, public policy, and technol-
ogy, that combines knowledge from humanities, social sciences, and computer
science. They found, from students’ responses, that a deeply multidisciplinary
approach strongly resonates with students. According to Slavkovik et. al. [19],
AI ethics is challenging to teach as the discipline itself is very new and no text-
book has been established. Another challenge is introducing methodologies
and skills from humanity and social sciences to CS students.

From the literature survey, it is evident that there are many prevailing eth-
ical issues in the domain of Computer Science, in particular in the application
of AI or ML which is usually the foundation of automated decision-making
systems. There is no one-shot solution or perfect solution that can completely
address these issues. To address various ethical issues, there is a need for
multidisciplinary efforts and educational awareness.

In this paper, we share our experiences in building and using an interactive
module on fairness in automated decision-making that engages students in
detecting and mitigating bias in real-world applications.

25

3 Fairness Module
The module focuses on both theoretical and practical knowledge. It consists
of three main components:

3.1 Lecture
The lecture component mainly focuses on the theoretical knowledge of bias
and discrimination. The lecture materials [2] can be covered easily within two
individual lectures, each about 50 minutes in duration, although we covered
those in a single session of 75 minutes. Topics covered are as follows: (a)
Various definitions of bias and discrimination, (b) Categorizations of bias and
discrimination, (c) Real-world and prominent cases of discrimination with au-
tomated decision-making, (d) Fairness terms and metrics, (e) Bias detection
and mitigation tools, (f) Details of the COMPAS dataset and a case study with
demonstration.

The lecture starts with the definition and categorization of different biases
and discrimination. According to [13], different kinds of discrimination that
might occur include: (1) Direct discrimination: when the protected attributes
(e.g., sex, race) of individuals explicitly result in a non-favorable outcome to-
ward them; (2) Indirect discrimination: when rather than using protected at-
tributes such as race, non-protected attributes such as zip code are used for
decision making, but the individual can still be discriminated from the im-
plicit effect of the protected attribute. For example, an implicit guess of the
race from the zip code may lead to discrimination in a loan approval decision;
(3) Systemic discrimination: results from flawed policies, custom, or behaviors
(i.e., perpetuating discrimination against certain groups) that are part of the
culture or structure of an organization; and (4) Statistical discrimination: re-
sults from the use of group statistics to judge an individual belonging to that
group.

We then discuss the system COMPAS (Correctional Offender Management
Profiling for Alternative Sanctions), which predicts the risk of a person to
recommit another crime (i.e., recidivism score), and is one of the early high
stakes applications of AI that garnered public attention [13]. A report re-
veals that COMPAS assigns a higher risk score to African-Americans than
Caucasians with the same profile [12]. According to [16], a predictive policing
system deployed in Chicago and New Orleans to forecast criminal activity was
built on systematically biased data (a.k.a. “dirty data”) resulting from unlawful
practices and policies (a.k.a. “dirty policing”).

We also discuss other real-world cases. For instance, a recent report reveals
that native Hawaiians and Pacific Islanders are underrepresented in the census,
due to different systematic barriers and a reluctance to be counted, resulting in
a disproportionate allocation of resources (e.g., public funds) [4]. In addition,
the ongoing COVID-19 pandemic has unmasked significant and longstanding

26

racial and ethnic health-related disparities in the U.S., evidenced by higher
rates of COVID-19 hospitalizations, deaths, or positive cases among blacks,
Hispanic/Latinos, and Native Americans at local and national levels [11]. It
still remains a challenge to escape the legacy of bias and discrimination in any
automated decision-making on the data reflecting systemic bias (e.g. census
data).

Furthermore, we discuss some progress in assessing the fairness measures
available in a tool. Some mentionable tools include: (1) Aequitas [17], which
enables testing of different fairness metrics among different population sub-
groups, (2) AI Fairness 360 [5], which is an open-source toolkit developed by
IBM to examine over 70 fairness metrics and ten state-of-the-art bias mitigation
algorithms developed by the research community, and (3) Google’s Fairness In-
dicators, which enables the easy computation of commonly-identified fairness
metrics for binary and multi-class classifiers [3]. While we resort to Aequitas
for the rich functionalities and usability, any of the similar tools will suffice.

3.2 Demonstration
Aequitas is an open-source toolkit which can be used to audit bias and discrimi-
nation in automated decisions (e.g., Machine Learning or Artificial Intelligence
based decisions), to make informed and equitable decisions. It helps to un-
derstand where biases exist in the model, compares the level of bias between
protected groups, and visualizes different fairness metrics and related dispar-
ities. One has to determine fairness in relation to a reference group, and by
default, Aequitas uses the majority group (e.g., male, white), among different
attribute values of a particular attribute (e.g., sex, race), as the reference group.

In 2016, ProPublica, an independent and non-profit news provider, reported
the evidence of racial inequality in automated criminal risk assessment algo-
rithms [12]. Within the United States criminal justice system, COMPAS is one
of the most widely utilized risk assessment tools to make a decision, such as
how to set bail. It gives a risk score referring to a person’s likelihood of commit-
ting a crime in the next two years. ProPublica used the COMPAS predictions
data from Broward County, Florida, for the investigation, and found that, from
the comparison of prediction versus ground truth, the average risk scores are
higher for black defendants compared to white defendants (.51 compared to
.39).

Aequitas is accessible via a Python Application Programming Interface
(API), Command Line Interface (CLI), and through a web application2 [1].
We demonstrated some of its major functions to students using the COMPAS
dataset. The pipeline starts with uploading the dataset on the Aequitas web
interface, then selecting the protected attributes in the data to consider for a

2http://aequitas.dssg.io

27

fairness test (e.g., age, sex, race), then selecting the interested fairness met-
rics from the available fairness metrics set, and finally, the process ends with
summarized and detailed reports.

While Aequitas helps to detect bias and discrimination, it does not provide
any bias mitigation techniques. Hence, we introduce IBM AI Fairness 360 to
the students, a similar tool but from a different vendor, for demonstrating bias
mitigation techniques. This tool uses different techniques to mitigate bias,
for example, instance reweighing which weighs the examples in each group
differently to ensure fairness before classification.

3.3 Assignment
The goal of the assignment in the proposed module is to provide students
with hands-on experience in assessing an automated decision-making project
for possible bias and discrimination. Since we created the module for the
Data Mining course at the University of Hartford, we used the course term
project for that purpose. The term project is a semester-long project that
requires students to work in groups of two on a data mining project of their
choice using real-world datasets. The assignment asked the groups to assess
their automated decision-making projects for possible bias and discrimination.
Students were told to use the Aequitas and IBM AI Fairness 360 tool for that
purpose, and to write a section on the findings in their term paper. Some
of the projects did not have any protected attributes or any possible fairness
related risks. In those cases, they were told to write a section in the term paper
justifying why their project does not have any fairness related risks.

4 Findings

4.1 Student Composition
The students took a survey before being introduced to the module (i.e., pre-
survey), and another survey at the end of the semester (i.e., post-survey).
While our class size cap is 20 (or a maximum of 25, at the instructor’s discre-
tion), for the Data Mining course, the class size was 23. Table 1 exhibits the
details of the student composition including students’ academic year statistics
for both 2020 and 2021.

Table 1: Student Composition

Criteria Pre-survey (2020) Post-survey (2020) Pre-survey (2021) Post-survey (2021)

Class size 23 23 23 23
Total participants 21 17 20 22

Male 14 11 14 16
Female 7 6 6 5

Sophomore 1 0 0 0
Junior 6 5 10 11
Senior 14 13 10 11

28

4.2 Student Survey Results
The pre- and post-survey consist of eight questions. In the post-survey of Fall
2020, 100% of participants either strongly agreed or agreed that “Automated
decision-making can be biased towards a particular race or gender”, whereas the
percentage was 80.96 before introducing the module to students (pre-survey)
(see Fig. 1). Similarly, the percentages for pre- and post-survey were 80 and
100 in Fall 2021 (see Fig. 2).

Figure 1: Race or gender bias (2020). Figure 2: Race or gender bias (2021).

Similarly, in the post-survey of Fall 2020, 94.12% of participants either
strongly agreed or agreed that “Racial bias might be reflected in the collected
data”, whereas the percentage was 80.95 before introducing the module to
students (pre-survey) (see Fig. 3).The percentages for pre- and post-survey
were 85 and 100 in Fall 2021 (see Fig. 4).

Figure 3: Data bias (2020). Figure 4: Data bias (2021).

Similarly, in the post-survey of Fall 2020, 100% of participants either strongly
agreed or agreed to the question “I think involving bias/fairness related contents
in the course could help (has helped) in instilling a conscience of fairness (i.e.,
equity) in our minds”, whereas the percentage was 90.47 before introducing
the module to students (pre-survey) (see Fig. 5). Similarly, the percentages
for pre- and post-survey were 95.24 and 90.47 in Fall 2021 (see Fig. 6).

29

Figure 5: Instilling conscience of fairness (2020). Figure 6: Instilling conscience of fairness(2021).

Overall, we see a positive impact of the proposed module on the answers of
all questions in the post-survey compared to the pre-survey. So, in summary,
we can say that students believed that there could be algorithmic or data bias,
and the module helped to instill a conscience of bias and fairness in their minds,
as evidenced by the survey results.

5 Conclusion and Future Work
Racial discrimination and disparities among different groups, such as people of
different age and sex, are some of the prevailing problems in society. Because
automated decisions are continuing to impact our lives, interests, and rights
more and more, educating the current generation about the existence of bias
and discrimination and associated implications at an early stage is crucial. The
developed curricular module has the potential, evidenced by the survey, to ad-
vance this initiative. In the coming semesters, besides the Data Mining course,
we plan to introduce the module to other relevant courses such as Artificial
Intelligence and Machine Learning so as to cover a broader group of students.
Going forward, we also plan to introduce this module at other institutions,
collect and analyze student responses. Enhancements to the module will be
made based on instructor and student feedback and on the latest developments
in the field of fairness in automated decision-making.

6 Acknowledgments
Research reported in this work was supported by the University of Hartford,
from the internal program “Grants to Promote Diversity, Equity, and Inclusion
within the Classroom”.

References

[1] Aequitas - the bias report. http://aequitas.dssg.io/, 2021. (Accessed on 5/18/2021).

[2] Fairness module. https://www.dropbox.com/s/4jn88butuveaewc/bias-fairness-
module-v1.pdf?dl=0, 2021. (Accessed on 05/18/2021).

30

[3] Responsible ai toolkit | tensorflow. https://www.tensorflow.org/responsible_ai/
fairness_indicators/guide, 2021. (Accessed on 05/18/2021).

[4] Gabriella Abdul-Hakim and MaryAlice Parks. Pandemic shows need for Native Hawai-
ians, Pacific Islanders participation in census - ABC News, May 2020 (accessed May
29, 2020).

[5] Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie Houde,
Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mo-
jsilovic, et al. Ai fairness 360: An extensible toolkit for detecting, understanding, and
mitigating unwanted algorithmic bias. arXiv preprint arXiv:1810.01943, 2018.

[6] Jean RS Blair, Christa M Chewar, Rajendra K Raj, and Edward Sobiesk. Infusing
principles and practices for secure computing throughout an undergraduate computer
science curriculum. In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education, pages 82–88, 2020.

[7] T Booth. Cambridge analytica controversy must spur researchers to update data ethics.
Nature, 555(7698):559–560, 2018.

[8] Jason Borenstein and Ayanna Howard. Emerging challenges in ai and the need for ai
ethics education. AI and Ethics, pages 1–5, 2020.

[9] Casey Fiesler, Natalie Garrett, and Nathan Beard. What do we teach when we teach
tech ethics? a syllabi analysis. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education, pages 289–295, 2020.

[10] Barbara J Grosz, David Gray Grant, Kate Vredenburgh, Jeff Behrends, Lily Hu, Alison
Simmons, and Jim Waldo. Embedded ethics: integrating ethics across cs education.
Communications of the ACM, 62(8):54–61, 2019.

[11] Norrisa Haynes, Lisa A Cooper, and Michelle A Albert. At the heart of the matter:
unmasking and addressing covid-19’s toll on diverse populations. Circulation, 2020.

[12] Surya Mattu Julia Angwin, Jeff Larson and ProPublica Lauren Kirchner. Machine Bias,
(accessed June 14, 2020).

[13] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. A survey on bias and fairness in machine learning. arXiv preprint
arXiv:1908.09635, 2019.

[14] David Meyer. Amazon reportedly killed an ai recruitment system because
it couldn’t stop the tool from discriminating against women. Fortune. Till-
gänglig online: https://fortune. com/2018/10/10/amazon-ai-recruitment-bias-women-
sexist/(2019-09-27), 2018.

[15] Rob Reich, Mehran Sahami, Jeremy MWeinstein, and Hilary Cohen. Teaching computer
ethics: A deeply multidisciplinary approach. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, pages 296–302, 2020.

[16] Rashida Richardson, Jason Schultz, and Kate Crawford. Dirty data, bad predictions:
How civil rights violations impact police data, predictive policing systems, and justice.
New York University Law Review Online, Forthcoming, 2019.

[17] Pedro Saleiro, Benedict Kuester, Loren Hinkson, Jesse London, Abby Stevens, Ari An-
isfeld, Kit T Rodolfa, and Rayid Ghani. Aequitas: A bias and fairness audit toolkit.
arXiv preprint arXiv:1811.05577, 2018.

[18] Scott Shane and Daisuke Wakabayashi. ‘the business of war’: Google employees protest
work for the pentagon. The New York Times, 4(04), 2018.

[19] Marija Slavkovik. Teaching ai ethics: Observations and challenges. In Norsk IKT-
konferanse for forskning og utdanning, number 4, 2020.

31

An Online Tool for Easy-to-set-up,
Visualizer-based, and Auto-gradable Full

Tracing Exercises∗

Wei Jin, David Marshall, and Puen Xie
Department of Information Technology

Georgia Gwinnett College
Lawrenceville, GA 30043

wjin@ggc.edu

Abstract

Tracing exercises are important tools to help students learn program-
ming concepts. One common format is for students to determine the
final result of a code segment. However, this often lacks specific feed-
back as to what misconceptions have led to a wrong answer. Full tracing
exercises track and check students’ tracing of a program line by line.
Such exercises quickly pinpoint wrong steps and help identify miscon-
ceptions. At present, however, full tracing exercises are either difficult
to set up or time-consuming to grade. As a result, they are used only
sparsely in teaching. This paper describes TracingQuiz, a system that
enables easy-to-set-up and automatic grading of full tracing exercises.
First, a tracing tool was built on top of a popular online program vi-
sualizer pythontutor.com. It automatically injects quizzing questions for
each step of execution. Only after students provide correct answers will
the tool visualize a step graphically. The added benefit from the visual-
ization feature is a more intuitive learning process. Then a mini course
management system was built to make it simple for instructors to set
up visualizer-based tracing assignments. Preliminary evaluation results

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

32

show that over 80% of students surveyed regard visualizer-based full trac-
ing exercises more conducive to learning than full tracing exercises in the
traditional auto-gradable formats.

1 Introduction

It is well-known among computer science educators that introductory program-
ming courses are challenging for students [1, 8]. From our observations, many
students struggle to create correct mental models of how programming con-
structs are executed. To help students with this, an approach used by many
instructors is to demonstrate the execution of a program step by step. The
demo can be done on a whiteboard or using an online tool, such as pythontu-
tor.com, a popular program visualizer. A visualizer not only shows the flow of
execution, but also displays graphically what each line of code does in memory
or in output.

After an instructor’s step-by-step demonstration, ideally students should
follow up with step-by-step full tracing exercises demonstrating what each line
of code does. Hopefully this process will help them identify any misconceptions
they have. Some instructors ask students to “draw” what each line of code does
on paper. Such exercises are only used sparsely since they are inherently time-
consuming to grade. Instead, auto-gradable tracing exercises, where students
determine the final result of a segment of code, are often used. Many question
banks contain such questions, but these questions lack the opportunity for
feedback. For a wrong answer, the system simply marks it as such without
telling the student where in the tracing process they made a mistake.

Some instructors take time to set up full tracing exercises in the traditional
auto-gradable formats, such as fill-in-the-blank or multiple-choice. It takes a
lot of effort and time to set up exercises in a way that does not reveal the
program flow and does not mention what each step does. For example, if line
6 of a program is to be executed next and it changes variable x’s value to 50,
the question cannot mention line 6 and cannot directly ask what the new value
for variable x is; otherwise it would reveal the program flow and hint at what
that line of code does. These constraints make creating full tracing exercises
in the traditional auto-gradable formats tedious and time-consuming. For rel-
atively complicated programs (e.g., programs with if statements or loops), the
flow possibilities and number of steps to trace could be prohibitively high for
instructors to set up questions for all steps. As a result, such exercises often
have to be a scaled-down version of full tracing exercises.

To make it possible for full tracing exercises to be used more extensively,
we built a new tool, TracingQuiz, by augmenting the online program visual-
izer pythontutor.com into an auto-gradable program tracing tool. It requires

33

a student to first determine which line is executed next and then answer a
sequence of auto-generated questions about what that line of code does. Only
if the student correctly answers the questions will the system visualize that
step graphically. The tool assigns a grade for a tracing activity by subtract-
ing points for mistakes. We also developed a mini course management system
that makes it very easy for instructors to set up and deliver full tracing ex-
ercises. The visualization feature provides a more intuitive learning process,
since mental models of how programs execute are often graphical in nature.

The remainder of the paper is organized in the following sections: related
work, the full program tracing tool, the mini course management system, pre-
liminary evaluation results, and conclusion and future work.

2 Related Work

Tracing exercises are often used to help students develop accurate mental mod-
els of how different constructs execute. Vainio and Sajaniemi showed that many
students struggle with these exercises due to fragile understanding of program
semantics [7]. Xie et. al. used a light-weight tracing strategy for paper-based
line-by-line tracing [9]. It helped students score higher on both tracing prob-
lems and the course midterm exam. Hertz and Jump’s approach that centered
around instructor tracing demos and student tracing exercises led to statisti-
cally significant improvements in student grades, decreased drop and failure
rates, and an improvement in students’ programming abilities [2]. To enable
wider use of tracing exercises, Kumar used the template-based technique [4]
and Thomas et. al. used the stochastic tree-based technique [6] to automati-
cally generate multiple-choice or short-answer tracing questions.

Visualization-based program tracing tools have also been proposed and
proven effective for student learning [3, 5]. Kollmansberger developed a tool
that reads each exercise in the XML format and renders the exercise graphically
[3]. The use of this tool led to a 40% increase in course completion. Instruc-
tors could compose a tracing exercise using the XML format, but it could be
a tedious process. In addition, the tool could not handle arrays, objects, and
recursion.

3 Visualizer-based Program Tracing Tool

Since the program tracing tool is built on top of the program visualizer python-
tutor.com, this section starts with the description of the base system. The
visualizer first lets a user enter a complete program in a text editor. After the
user presses the “Visualize” button, the user is presented with the interface to
step through the program (see Figure 1). Below the source code box is a set

34

of buttons to single step forward (Next), fast forward to the end of the pro-
gram (Last), roll the visualization one step backward (Prev), or rewind to the
beginning (First). A red arrow points to the line to be executed next. When

Figure 1: Pythontutor.com Visualizer Interface

the “Next” button is clicked, the result of executing the line is visualized on
the right side.

• If there is a new output, it is appended to the simulated console on the
top right corner of the interface. For the example in Figure 1, 5 was
printed when line 4 was executed.

• Each method invocation will create a new stack frame and all the local
variables will be located inside the frame. In Figure 1, there is only one
frame: the frame for the main method.

• If a new variable is allocated and assigned a value, a box marked with the
variable name shows up in the frame of the current method. In Figure 1,
variable x was created when line 3 was executed.

TracingQuiz has exactly the same interface for a user to enter a program
as that of the base system . Once the Visualize button is clicked, the system
presents a modified interface as shown in Figure 2. All the navigation buttons
(e.g., Next and Prev) are hidden. Users are prompted instead to click a line
which they think will be executed next.

If the correct line is selected, the system presents users with a sequence of
automatically generated questions. It first presents a multiple-choice question
as to the action of that line of code. The choices include new output, new
variable, variable update, Boolean evaluation, method call, method return,
new frame, etc. When the correct action is selected, the system may present a
follow-up fill-in-the-blank question, such as what the new output is, the name

35

Figure 2: Program Tracing Interface

of the new/changed variable and its new value, etc. After multiple wrong
attempts, the correct answer will be displayed, which prevents a student from
getting stuck in one place. Each exercise starts with an initial grade of 100
points. Each incorrect answer results in points deducted.

The system handles both primitive and reference variables, as well as array
indexed variables.

1. A user needs to specify the value for a variable properly according to its
data type. For example, if a variable is of type double, the value has to
be specified accordingly (e.g., 5.0 instead of 5).

2. For a reference variable (including an array variable), the user needs to
specify the “address” of the object. However, for a new array, the user
needs to enter the array content. For example, for the statement “int[] x
= new int[3];”, the user needs to answer “x = [0, 0, 0]”.

3. For an indexed variable, the user needs to specify the indexed variable
name, such as a[2].

Pythontutor.com can handle multiple programming languages, such as Java,
C, C++, Python, JavaScript and Ruby. Since our introductory programming
course is in Java, other programming languages are currently disabled. It will
not be difficult to incorporate them in future versions of our system.

TracingQuiz can be accessed at https://tracingquiz.xyz/visualize.html. Stu-
dents can practice full tracing exercises on programs from a typical introduc-

36

tory programming course. It can be accessed by anyone without a login, very
similar to pythontutor.com.

3.1 Mini Course Management System

To make it possible for instructors to both set up program tracing assignments
easily and have easy access to students’ grades, we developed a mini course
management system, currently deployed at https://tracingquiz.xyz. The system
allows users to self-register. Each instructor can create multiple courses. A
course can be created from scratch or by copying an existing course. A course
can contain multiple sections. A student can choose their section when joining
a course. The grade book also acts as the roster of the class where a teacher
can assign or change a student’s section.

A course contains a collection of questions and assignments (called quizzes
in the system). A question is a program to be traced. All it takes to specify a
question is to provide the source code. The system will check that the code has
no compile errors, and will give a teacher an opportunity to trace the program
before saving the question. A quiz is a tracing assignment consisting of one or
more questions. Each quiz is created by picking from the existing questions.

At present, the system allows a student to work on a question as many
times as they want. The highest grade for an exercise will be recorded in the
grade book. Exam features will be added to the system in the future, such as
only allowing students to work on a quiz for a specified maximum number of
times during a specific period of time.

4 Evaluation

This section presents preliminary evaluation of TracingQuiz in one of the au-
thors’ sections for Programming Fundamentals in fall 2020, spring 2021 and
summer 2021. Throughout the three semesters the system had been improving
continuously with various bugs fixed.

Before TracingQuiz was built, the author set up several step-by-step full
tracing exercises for the first three chapters (basics - variables and basic state-
ments, conditionals and methods) in a learning management system, Desire2Learn
(D2L). These exercises are in traditional auto-gradable formats, such as fill-in-
the-blank or multiple-choice. Based on the effort undertaken to set up these
exercises, we have decided to reuse the same questions across several semesters.

After TracingQuiz was developed, a set of tracing exercises was quickly
added in the new mini course management system. Due to the convenience of
creating tracing exercises in the new system, there were many more visualizer-
based tracing exercises available than those in D2L.

37

During fall 2020, when several issues in the new system were being de-
bugged, students used the full tracing exercises in D2L for the first part of
the semester. They then moved to TracingQuiz when it was stable enough.
Therefore, they were able to experience the difference between the two formats.
The surveys indicated that students overwhelmingly preferred the new visual-
izer format. The evaluation process was repeated for the next two semesters
(spring 2021 and summer 2021) to determine whether the same pattern would
be observed. Note that all the sections were taught by the same instructor.

4.1 Comparison by Semester

Students’ surveys were collected at the end of each semester. Figure 3 shows
student ratings for the usefulness of in-class tracing demos, the full tracing
exercises in the traditional formats in D2L (marked as D2L for simplicity),
and the visualizer-based full tracing exercises in TracingQuiz. The possible
responses range from 1-7, with 7 being Extremely Useful, 4 Neutral, and 1
Extremely Useless.

The average ratings for instructor’s tracing demos are above 6 for all semesters.
For the visualizer-based exercises, the rating increases with each new semester,
as the system becomes more stable and more tracing exercises are added. The
average rating for the visualizer format in TracingQuiz is higher than that of
the traditional formats in D2L for each of the semesters. None of the differ-
ences, however, are statistically significant. Note that the significance tests
mentioned in Section 4 are one-way ANOVA tests unless otherwise stated.

Figure 3: Usefulness of the Tool by Semester

4.2 Comparison by Efforts

Students self-identified themselves into three groups: completed all visualizer-
based tracing exercises (Did All), completed more than half of those exercises

38

Figure 4: Evaluation of the useful-
ness by different groups.

Figure 5: Average rating increases
for different groups.

(Did Most), completed half or fewer of those exercises (Did Half or Less).
Figure 4 plots the average group ratings for the usefulness of tracing demos

and visualizer-based exercises. All the ratings are high. There is a clear trend
that the more visualizer-based exercises students did, the better they rated
both, with the “Did All” group giving an average rating 6.6, where 7 is the
highest rating possible. The differences among the groups are statistically
significant for visualizer-based tracing exercises (F(2, 59) = 4.585, p = .014) as
well as for tracing demos (F(2, 59) = 13.886, p = .000). Turkey post hoc tests
show that the “Did Half or Less” group has statistically significant difference
from both the “Did Most” group and the “Did All” group for both exercises
and demos.

The usefulness rating increase from the traditional formats to the visual-
izer format in TracingQuiz was calculated for each student and then averaged
for each group. Figure 5 shows a clear increasing pattern from “Did Half or
Less” group to the “Did All” group. For the “Did All” group, the average in-
crease is around 0.7, i.e. 70% of one level up. A paired samples t-test for all
samples shows that the difference between the traditional formats and the vi-
sualizer format is statistically significant (p = 0.012). Note that the differences
among different groups might be correlation – students with early difficulties
in completing the exercises may have given upon trying more.

To gain more insights, students were asked to compare the two formats
directly. Figure 6 shows students’ opinion about whether all tracing exercises
should be in the new format. All groups leaned towards the new format. In
fact, 82.3% of all students said that all tracing exercises should be or probably
should be in the new format, with 43.5% definitely yes and 38.7% probably yes.
A similar trend repeats here: the more effort, the more affirmative answers.

39

Figure 6: Groups’ recommended
use of tracing exercises.

Figure 7: Groups’ ratings for which
format is more helpful.

Figure 7 shows which format students regarded as easier to use, more in-
tuitive, and more helpful for learning. All groups again favored the visualizer
format, except that the “Did Half or Less” group was neutral in the easiness
measure. In fact, 74.2%, 75.8%, and 80.6% of all students felt that the visual-
izer format is the choice for the three measures, respectively. Again, the more
exercises students did in the visualizer format, the more they favored it.

5 Conclusion and Future Work

Surveys show that students overwhelmingly preferred TracingQuiz for full trac-
ing exercises. 80.6% of students regarded the new format as more helpful for
learning. Anecdotally, quite a few students commented that they realized the
value of these exercises after completing several assignments. The data also
show that the more visualizer-based tracing exercises students completed, the
more students believed that they were conducive to learning.

Students’ evaluations of the system improved over the three semesters as the
system gradually improved. The system will be continually improved for wider
adoption by the teaching community. The following are some planned new
features: ability to trace more programming constructs (e.g., multi-dimensional
arrays, array of objects, and inheritance), tracing exam features in the mini
course management system, and integration of our system with many widely
used learning management systems, such as Canvas and D2L.

The ease of creating full tracing exercises in TracingQuiz will hopefully en-
able instructors to focus more on creating quality exercises to facilitate student
learning. Several instructors will join the effort in spring 2022 to examine the
current tracing exercises and improve the collection so that they adequately

40

address tricky or difficult concepts for each topic, such as the difference be-
tween multi-branch if statements and multiple separate if statements, the dif-
ference between primitive variables and reference variables, the difference be-
tween static methods and instance methods in terms of the implicit parameter
for instance methods, etc. Furthermore, analysis of student interactions (cur-
rently not logged) with the system will shed light on the concepts that are
difficult and confusing for students. This could help narrow down when and
where tracing code is necessary as well as develop better tracing exercises.

On the evaluation front, the plan is to increase the number of sections and
students participating in the study. In addition to attitudinal survey evalua-
tions, evaluation for whether the tool actually helps improve student learning
will also be conducted.

References

[1] Jens Bennedsen and Michael E Caspersen. “Failure rates in introductory
programming”. In: AcM SIGcSE Bulletin 39.2 (2007), pp. 32–36.

[2] Matthew Hertz and Maria Jump. “Trace-based teaching in early program-
ming courses”. In: Proceeding of the 44th ACM technical symposium on
Computer science education. 2013, pp. 561–566.

[3] Steven Kollmansberger. “Helping students build a mental model of com-
putation”. In: Proceedings of the fifteenth annual conference on Innovation
and technology in computer science education. 2010, pp. 128–131.

[4] Amruth Kumar. “Dynamically generating problems on static scope”. In:
ACM SIGCSE Bulletin 32.3 (2000), pp. 9–12.

[5] Juha Sorva and Teemu Sirkiä. “UUhistle: a software tool for visual pro-
gram simulation”. In: Proceedings of the 10th Koli Calling International
Conference on Computing Education Research. 2010, pp. 49–54.

[6] Anderson Thomas et al. “Stochastic tree-based generation of program-
tracing practice questions”. In: Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. 2019, pp. 91–97.

[7] Vesa Vainio and Jorma Sajaniemi. “Factors in novice programmers’ poor
tracing skills”. In: ACM SIGCSE Bulletin 39.3 (2007), pp. 236–240.

[8] Christopher Watson and Frederick WB Li. “Failure rates in introductory
programming revisited”. In: Proceedings of the 2014 conference on Inno-
vation & technology in computer science education. 2014, pp. 39–44.

[9] Benjamin Xie, Greg L Nelson, and Andrew J Ko. “An explicit strategy to
scaffold novice program tracing”. In: Proceedings of the 49th ACM Tech-
nical Symposium on Computer Science Education. 2018, pp. 344–349.

41

Content-Synchronized Game Development
Modules in CS1∗

Xin Xu, Wei Jin, Hyesung Park,Evelyn Brannock, Adrian Heinz
Information Technology

Georgia Gwinnett College
Lawrenceville , GA 30043

{xxu,wjin,hpark7,ebrannoc,aheinz}@ggc.edu

Abstract

Development of nontrivial games is normally reserved for upper level
courses after students have gained adequate knowledge and skills. This
paper examines the incorporation of development of popular games (re-
sembling Flappy Bird, Snake, TRex, etc.) into an introductory program-
ming course (CS1). A sequence of modules that students follow to build
a game was developed, with each module focusing on one programming
topic. Effort was expended to ensure that the content order of a typi-
cal CS1 course was retained within the modules. This synchronization
hopefully helps students see the relevance of the programming concepts
in real-world applications and improve interest and motivation in learn-
ing. The initial survey results are promising. 86% of the students would
like to have more of this type of workshops. In addition, students’ cu-
riosity and interest in programming increased, especially among female
and African American students.

1 Introduction

Many studies have shown that students in introductory programming courses
have difficulty learning new concepts and writing code[6, 14]. Students often
perceive programming to be dry, labor-intensive, or time-consuming. These

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

42

perceptions can make them lose interest or motivation to continue learning[1].
Students get easily frustrated when they cannot solve a programming problem,
and quickly lose enthusiasm to continue trying. These challenges are reflected
in past studies[5, 16], which found that the average pass rate in introductory
programming courses is a disappointing 67%.

This paper describes an approach that utilizes course-embedded game de-
velopment modules to improve student interest and curiosity in programming.
Development of nontrivial games is normally reserved for upper level courses
after students have gained adequate knowledge and skills. Our approach is to
incorporate some advanced game development seamlessly into an introductory
course. Games, such as Flappy Bird, Snake, TRex, and Circle Dodge, are cho-
sen due to their popularity among students. Familiarity with these games will
help draw students in and improve their curiosity.

Each game is divided into a sequence of carefully designed course modules.
The process of developing a game is utilized as a way to introduce some basic
programming concepts, help students see the relevance of what they are learn-
ing, and increase their interest in programming. Each module focuses on a
specific programming topic and the order of the topics is roughly the same as
that in a typical CS1 course. Dividing a big task into smaller subtasks makes
the workload manageable. Completing a game one small step at a time gives
students a sense of accomplishment along the way, which improves self-efficacy
and motivation.

We also leverage peer modeling to motivate students. A group of students
who recently completed the introductory programming course were recruited
to develop games and course modules and eventually conduct the game devel-
opment workshops. Processing[7] was chosen as the platform because it is open
source, based on Java (the language of our CS1 course), and easy to learn.

This project was implemented in multiple sections of the CS1 course in
Spring 2021. The results are very encouraging. Students showed improved
attitude toward programming, improved curiosity and motivation for learning.
The rest of this paper will present the related work, the project details, the
evaluation results, and finally, the conclusion and future work.

2 Related Work

Game development improves student motivation and engagement, resulting
in the increased attraction of new students[2, 3, 12]. Bayliss and Strout[3]
and Luxton-Reilly and Denny[13] used the strategy of assigning game-themed
homework around the technical topics and reported positive results in achiev-
ing the learning outcomes. Authors of [15] studied the impact of students’
learning outcomes through scenario-based active learning with Unity 3D. The

43

study found that the active learning method with game development helped
students understand different subject concepts. Students also valued game-
based learning and experienced improved learning effectiveness, motivation,
and persistence.

Golding et al. studied the impact of peer modeling and student attitude,
confidence, and academic performance[9]. Chase and Okie reported that the
DFW rate, especially for female students, dropped based on peer modeling
as part of cooperative learning[8]. Many studies showed that peer modeling
improved student motivation and engagement and increased retention[4, 6, 11,
16].

Some studies have also shown that learning different programming plat-
forms in one class produces better results[10]. In this study, Processing was
an additional tool in an introductory programming class. The Processing de-
velopment environment provides an easy-to-use interface, and the Processing
language is based on Java and easy to learn. Starting with simple and easy
steps, students can develop a complex application relatively quickly.

3 Project Description

In fall 2019 and spring 2020, several IT students who recently completed CS1
were hired to develop Processing games and then course-embedded workshop
modules based on these games. To make the workshops engaging, students
chose to develop popular games among young people, including Flappy Bird,
Snake, TRex, and Circle Dodge. Student developers then worked together
with faculty mentors and divided the game development of each game into a
sequence of stages. Each stage completes part of the game and focuses on
one main programming topic. The order of the topics covered by these stages
roughly matches the order that these topics are usually taught in a CS1 course.
A workshop module was developed for each stage and it consists of the following
components:

• Starter code
• A PowerPoint file with detailed step-by-step instructions
• Solution code
• A description of the follow-up homework

The objective was that students would build a sense of accomplishment
through this multi-module approach instead of being overwhelmed by the com-
plexity of the whole project. The homework after the workshop was designed
to foster critical thinking and problem-solving skills. The solution of the home-
work is also the starter code for the next workshop, allowing students without
a perfect solution to proceed further without feeling left behind.

44

The original plan was to have the student developers present the workshops
in class. When piloting the project in spring 2020, one workshop was conducted
by student developers in person. The rest had to be conducted online because
of COVID. Despite the unexpected situation, positive feedback was received
for the pilot study.

In fall 2020, the project was promoted among instructors teaching CS1.
Four sets of game workshop modules based on four different games were shared,
and the strategies for embedding these workshops in the course were discussed.
Four faculty members decided to adopt the game workshop modules in their
sections in spring 2021. The evaluation results presented below are based on
the workshops conducted by faculty members in the online synchronous format.

4 Evaluation of Impact on Student Motivation

This paper focuses on the project’s impact on student motivation. The eval-
uation results provide valuable insight on how to further improve the project.
Evaluation for impact on student learning will be included in the future work.

At the end of spring 2021, students were asked to complete a survey after
each game development workshop. A total of 159 responses were received.
Survey results show that the student body is quite diverse with 30% African
American, 22% Asian, 22% White, 20% Hispanic, and 6% others. For gender
distribution, 77% are male students and 18% female students.

The following are four aspects that the surveys were designed to evaluate:

• students’ overall experience with these workshops
• students’ attitude about a programming course
• the factors that motivate students and make them become more curious

about programming
• the synchronization effect of the game workshop topics with the course

topics

4.1 Analysis of Workshop Experience

Figure 1 shows the survey results for whether the students actively participated
in the workshop, became more curious about programming, learned something
new, etc.

As shown in the left chart of Figure 1, the averages of the responses for
all the questions are above 4.0 for both the male and female group. For the
question “would you like to have more of this type of workshop”, 86% of all
students answered with 4 (Yes) and 5 (Definitely Yes). Female students had
more positive responses than male students for engagement, learning something
new, and the overall experience. However, for “would you like to have more

45

Figure 1: Analysis of Workshop Experience

of this type of workshop”, male students had higher positive responses (4.37)
than female students (4.17). Is it because males are more interested in games
and game development in general? Or were the games used in this project
more male oriented? The response prompts the need for further investigation
to be conducted. For different race groups, results showed that black students
had slightly more positive responses for the workshop experience (see the right
chart in Figure 1)). The differences among either the gender groups or the
racial/ethnic groups are, however, not statistically significant.

4.2 Analysis of Students Attitude

Students were asked to evaluate their attitudes towards programming before
and after the workshop with a Likert scale from 1 to 5 with 1 indicating not
interested at all and 5 indicating extremely interested. As shown in the left
chart in Figure 2, there is a significant increase of interest for both female
and male students but the increase is more for female student (from 3.64 to
4.14) than male students (from 4.03 to 4.30). According to a paired t-test,
the change experiences by both male and female groups are statistically signif-
icant (p <0.0001 for both groups). This indicates that these workshops were
helpful in motivating students and changing their perception of programming,
particularly for female students.

As shown in the right chart of Figure 2, these workshops motivated African
American students (from 3.81 to 4.29) and Asian students (from 3.68 to 4.18)
more than Hispanic students and White students (from 4.13 to 4.28 and 4.29
to 4.37 respectively). The changes for the Asian and Black students are statis-
tically significant according to a paired t-test (p < 0.0001 for both groups).

46

Figure 2: Change of Attitude by Gender and Race

4.3 Analysis of Motivational Factors

To investigate what factors motivated students the most, students were asked
to rate the following statements with a scale from 1 to 5, with 1 indicating not
effective at all and 5 indicating most effective. Feedback from these statements
hopefully could provide some insight for future workshop design.

Table 1: Motivational Factors
Survey Questions Result
It seems not too hard to create a game from scratch 4.22
The tutorial was engaging 4.14
I can be creative with programming 4.31
I’m learning a new technology 4.31
Able to apply programming concepts in a new environment 4.33
This game was developed by a peer student 4.15

Table 1 shows that all the factors received above 4.0 ratings in the scale of 1
- 5, which indicates that all of the factors played important roles in motivating
students and helped them become more curious about programming. Learning
a new technology, applying knowledge in a new environment, and being able
to demonstrate creativity had a slightly higher impact (above 4.30) than the
rest. Further analysis (Figure 3) also discovered that “the fact that these games
were developed by a peer student one or two years ahead of me” had a higher
impact on female students (4.3) than male students (4.1), and, “the fact that
it seems not too hard to create a game from scratch” had a higher impact
on male students (4.23) than female students (4.07). The difference among
different racial/ethnic groups for the motivational factors, however, does not
show any clear patterns.

47

Figure 3: Motivational Factor Analysis by Gender

4.4 Analysis of Degree of Synchronization with Course Content

In spring 2021, without prior discussion and arrangement, faculty members
chose two out of the four sets of workshop modules, one based on Flappy
Bird and another based on the Snake game. For Flappy Bird, each workshop
module was further subdivided into smaller activities better matched to the
programming concepts being introduced in class. Each mini module was used
to introduce students to a specific topic, such as conditional statements and
methods. The finer-grained workshops made the embedded activities more
synchronized with the course content. The highly synchronized approach re-
quired more time and effort for the instructor to adjust the materials to match
the topics well.

Figure 4: Attitude Analysis by Degree of Synchronization

Analysis results showed that the higher the degree of synchronization of the
workshops with course content, the greater the impact is on student attitude.

48

As shown in Figure 4, the highly synchronized Flappy Bird workshops increased
the attitude from 3.87 to 4.33, while the regular workshops only increased
the attitude from 4.00 to 4.27. Paired t-test results suggest that there is a
statistically significant difference in attitude before and after the workshop for
both highly synchronized workshops and regular workshops but the p-value for
highly synchronized workshops (p<0.0001) is much lower than that of regular
workshops (p=0.028).

Students participating in the highly synchronized workshops also gave each
motivating factor a higher rating than that of the regular workshops (see Figure
5). For “not too hard to create a game”, the rating difference is the largest (4.5
vs 4.15) and statistically significant (p=.047).

Figure 5: Motivational Factor Analysis by Degree of Synchronization

5 Conclusion and Future Work

From the analysis of a semester of data from four instructors, the preliminary
results appear to be promising. Three of the motivational factors (creativity
with programming, learning a new technology, and applying programming con-
cepts in a new environment) averaged above 4.3 (out of 5) (Table 1). Female
and African American students reported a better workshop experience than
the other gender and racial/ethnic groups. Female, Asian, and African Ameri-
can students reported a more positive change of attitude towards programming
after these workshops.

There are two candidate dimensions for extending the project. First, more
diverse games and types of workshop modules could be developed to give in-
structors additional freedom of choice based on their pedagogical needs. For
example, instead of a sequence of modules for one game, an instructor could

49

use a module that starts with an almost complete game, with only a single
missing piece that matches to the current specific topic. Data presented in
Section 4.1 led the investigators to examine whether the games chosen cur-
rently are male-oriented. More diverse games may shed light on what types of
games might work better for female students.

Second, more data will be collected for a more rigorous study. Because our
institution has a highly diverse student composition, the authors would like to
gain a better understanding of various motivational factors for different demo-
graphic groups. The authors are also interested in what granularity level of the
workshops could have the most constructive impact on learning. Assessment
for improvement in learning will be included in the future evaluation plan.

6 Acknowledgment

The project is supported by NSF funded (NSF Award ID 1623779) Course-
embedded Undergraduate Research Experiences (CURE) Mini-Grant.

References

[1] Robert L Avanzato. Collaborative mobile robot design in an introductory
programming course for engineers. In 1998 Annual Conference, pages
3–145, 1998.

[2] Jessica D Bayliss. Using games in introductory courses: tips from the
trenches. In Proceedings of the 40th ACM technical symposium on Com-
puter science education, pages 337–341, 2009.

[3] Jessica D Bayliss and Sean Strout. Games as a" flavor" of cs1. In Pro-
ceedings of the 37th SIGCSE technical symposium on Computer science
education, pages 500–504, 2006.

[4] Susan Beltman and Marcel Schaeben. Institution-wide peer mentoring:
Benefits for mentors. The International Journal of the First Year in Higher
Education, 3(2):33–44, 2012.

[5] Jens Bennedsen and Michael E Caspersen. Failure rates in introductory
programming. AcM SIGcSE Bulletin, 39(2):32–36, 2007.

[6] Gregory Bucks and William Oakes. Work in progress-impact of graphical
programming environments on learning and understanding programming
concepts. In 2008 38th Annual Frontiers in Education Conference, pages
F2A–23. IEEE, 2008.

50

[7] Ben Fry Casey Reas. Processing application. https://processing.org/.

[8] Joe D Chase and Edward G Okie. Combining cooperative learning and
peer instruction in introductory computer science. In Proceedings of the
thirty-first SIGCSE technical symposium on Computer science education,
pages 372–376, 2000.

[9] Paul Golding, Lisa Facey-Shaw, and Vanesa Tennant. Effects of peer tu-
toring, attitude and personality on academic performance of first year
introductory programming students. In Proceedings. Frontiers in Educa-
tion. 36th Annual Conference, pages 7–12. IEEE, 2006.

[10] Paul Graham and Troy Weingart. Processing language in introduction
to computer science honors (cs110h). Journal of Computing Sciences in
Colleges, 25(2):72–78, 2009.

[11] Ville ISOMöTTöNEN and Vesa Lappalainen. Csi with games and an
emphasis on tdd and unit testing: piling a trend upon a trend. ACM
Inroads, 3(3):62–68, 2012.

[12] Scott Leutenegger and Jeffrey Edgington. A games first approach to teach-
ing introductory programming. In Proceedings of the 38th SIGCSE tech-
nical symposium on Computer science education, pages 115–118, 2007.

[13] Andrew Luxton-Reilly and Paul Denny. A simple framework for interactive
games in cs1. In Proceedings of the 40th ACM technical symposium on
Computer science education, pages 216–220, 2009.

[14] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Di-
anne Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian
Utting, and Tadeusz Wilusz. A multi-national, multi-institutional study
of assessment of programming skills of first-year cs students. In Work-
ing group reports from ITiCSE on Innovation and technology in computer
science education, pages 125–180. 2001.

[15] Hyesung Park, Sean Yang, and Hongsik Choi. Scenario based active learn-
ing programming with unity 3d. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, pages 1283–1283, 2020.

[16] Christopher Watson and Frederick WB Li. Failure rates in introductory
programming revisited. In Proceedings of the 2014 conference on Innova-
tion & technology in computer science education, pages 39–44, 2014.

51

Cybersecurity Shuffle: Using Card Magic to
Teach Introductory Cybersecurity Topics∗

Preston Moore1 and Justin Cappos2
New York University

New York, New York, United States
pkm266@nyu.edu1 jcappos@nyu.edu2

Abstract
One of the main challenges in designing lessons for an introductory

information security class is how to present new technical concepts in a
manner comprehensible to students with widely different backgrounds. A
non-traditional approach can help students engage with the material and
master these unfamiliar ideas. We have devised a series of lessons that
teach important information security topics, such as social engineering,
side-channel attacks, and attacks on randomness using card magic. Each
lesson centers around a card trick that allows the instructor to simulate
the described attack in a way that makes sense, even for those who have
no prior technical background. In this paper, we describe our experience
using these lessons to teach cybersecurity topics to high school students
with limited computer science knowledge. Students were assessed be-
fore and after the demonstration to gauge their mastery of the material,
and, while we had a very limited set of responses, the results show an
improvement on post-test scores. Furthermore, several indicators affirm
the students enjoyed the lessons and remained engaged throughout the
session.

1 Introduction

When teaching technical topics in introductory courses, it can be challenging
to present information in a way that makes sense for students of varying experi-

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

52

ence levels or educational backgrounds. This is particularly true for information
security classes where an adversarial mindset is required to fully comprehend
the attacks. Thinking in this way may not come naturally to many students,
as evidenced by the continuing success of phishing attacks. What is needed
is a way to relate information security concepts in a manner that is engaging
enough to build an appreciation for the material, yet relatable enough so the
students do not feel lost. To accomplish this, we look towards a pedagogical
technique known as scaffolding in which “students are escorted and monitored
through learning activities that function as interactive conduits to get them to
the next stage [9].” ’

In this paper, we employ card magic as a scaffolding device in a series of
lessons that teach how three types of attacks – social engineering, side channel
attacks, and attacks on randomness – work in the real world. In doing so, we
add a new twist to the success other computer science researchers have had
in using card magic to explain difficult concepts by allowing the instructor to
simulate “attacks” through a non-technical, commonplace activity. In doing so,
these lessons can help students safely interact within these attack scenarios.
Each demonstration was followed by a short PowerPoint presentation in which
the magician makes a connection between the card trick and the very real
consequences of the attack it illustrates.

To test the effectiveness of our lessons, we presented them to a group of high
school students attending a computer science summer program and assessed
mastery using a pre- and post-test. Though our sample size was too small
to draw definite conclusions from them, participant scores did increase on the
post-test for each subject. Furthermore, based on an opinion survey and pre-
senter observations, participants found the lessons engaging, age appropriate,
and helpful in understanding the concepts.

• We create a lesson plan built around three easy-to-perform magic tricks.
By using these tricks, instructors can simulate attacks and thus provide
a scaffold for teaching these somewhat difficult concepts.

• We test the effectiveness of these lessons by presenting them to a group
of high school students in a summer workshop and assessing engagement
and improved mastery of the material.

• We note an improved ability to answer questions related to the attacks
following our lesson, as judged by pre- and post-test evaluations.

2 A Lesson Wrapped in an Illusion

Amagician creates an illusion to hide the secrets of his or her tricks. The lessons
we have developed reverse this situation by using our tricks to reveal the mys-

53

teries behind three cyberattacks. The tricks were chosen because of their rele-
vance to the information security field. Following the principles of scaffolding,
the attacks are presented in order of increasing technical complexity. Video tu-
torials for each of the tricks are available at: https://bitly.com/cybersecurityshuffle.
1

2.1 Social Engineering

In the context of information security, "social engineering" is defined as a
set of tactics to manipulate users into giving away personal information that
can be used to compromise accounts, reset passwords using security questions,
or carry out identity theft. We start with this attack as it is broadly used
and affects arguably the greatest cross-section of victims. In our lesson, the
magician employs two card tricks as a misdirection and a cover to distract from
the amount of personal data he/she is soliciting.

This trick is intended to spark a teachable moment about social engineer-
ing and its dangers. Instructors can use this moment to start a dialog with
students about the types of information attackers might want and how they
could maliciously use it.

2.1.1 From the Audience’s Perspective

Our version of this trick is adapted from a magic classic known as “The Red
and Black Separation Trick [8].” The magician begins by telling the audience
that there is a way to form a psychic bond with a deck of cards. The magician
enlists a volunteer and each shuffles the deck before placing one half on top
of the other. Next, the magician asks the volunteer a few questions, starting
with their birth year, to allegedly “attune” the link between the individual and
the deck. The response is used to select one red card and one black card from
the deck, each with a numeric value equal to one of the last two digits of the
volunteer’s birth year. Next, the magician asks for the volunteer’s birth month
and similarly selects a red card with a numeric value equal to the response
(using the jack and queen for November and December, respectively). Finally,
the magician asks for the volunteer’s birthday and selects a black card with
a numeric value equal to the second digit in this day. The magician lays
these cards out on the table and asks the volunteer to select one red card and
one black card with which they feel most “attuned.” The unchosen cards are
returned face up to the middle of the deck.

Continuing the pretense of a psychic link with the deck, the magician asks
the volunteer to guess the color of each card in the deck. As he/she does so,

1Public domain and GPL-licensed card images used in figures taken from Wikimedia
Commons [13].

54

the magician places each card face down in two piles: red and black. Half-way
through the deck, the two face up cards are switched so the black pile becomes
the red pile and vice-versa. The volunteer continues guessing until all the cards
are placed. At that point the magician turns over the face down cards to reveal
that the volunteer has guessed every card’s color correctly. The magician then
reveals the "misdirection" that abetted the trick’s true purpose – revealing
personal information.

2.1.2 Behind the Scenes

Before the trick begins, the deck has already been separated into red and black
halves. In the initial shuffling the volunteer is merely scrambling cards of the
same color. Therefore, when the two packs are stacked one on top of the other,
the two colors remain separate.

In the first portion of the trick the magician pulls out two red and two black
cards that reflect the volunteer’s answer, and two of these cards are returned
to the deck. The magician must return these cards face up exactly between
the red and black “sections.” This will later signal the magician when all cards
of one color have been dealt.

During the prediction phase of the trick, one pile contains all correct guesses
while the other is completely incorrect. When the midway point is reached
the magician places the red card face up on the black pile and vice versa. An
illustration of this arrangement appears in Figure 1. In the reveal the magician
flips the correct pile horizontally and the “incorrect” pile forward vertically to
reverse the incorrect guesses. The red cards are now paired with the red marker
card and vice-versa to complete the illusion that the volunteer correctly guessed
every card in the deck.

2.2 Side Channel Attacks

As the name implies, a side channel attack strikes a target indirectly by tracking
seemingly unrelated phenomena, such as timing information, power consump-
tion, electromagnetic leaks, or even sounds. To mirror this type of attack, the
trick demonstrates how an attacker can gather information without directly
exploiting a vulnerability. We do so using a deck of cards with a brand logo on
the back. When turned upside-down the logo effectively creates the equivalent
of a “mark,” similar to a “marked” deck of cards. The goal of this trick is to
open the participant’s eyes to the less obvious avenues an attacker might use
to transmit information.

55

Figure 1: Left: Arrangement of cards after guessing concludes in Trick 1. Right: Use of
“random number generator” in Trick 3

2.2.1 From the Audience’s Perspective

The magician opens a new deck of cards, removes the jokers and branding
cards, and legitimately shuffles it. Several volunteers are asked to select a card
from the deck, show it to the audience, memorize it without revealing it to the
magician, and then return it to the deck. The magician then shuffles the deck
before going through it and finding all of the volunteers’ cards. This trick’s
reveal comes when the magician informs the audience that the cards were found
using a secret information side channel present in the deck, opening a door to
explore further side channels.

2.2.2 Behind the Scenes

The key to this trick lies in the magician’s choosing a deck with a logo or text
on the back that tips off a card’s orientation. Because the trick begins with a
fresh deck, all cards are oriented in the same direction. When the volunteers
return their cards to the deck, the magician simply has to orient the deck in
such a way that the returned cards are upside-down. To complete the trick,
the magician finds the card with a differing orientation.

2.3 Attacks on Randomness

True randomness is important in many security-sensitive situations. An at-
tacker who is able to predict or influence the output of a random number gen-
erator may use this capability to circumvent cryptographic security controls.
This trick employs a “forced” card [14] to point out a potential vulnerability
that results from a misunderstanding of hash functions.

56

The purpose of this lesson is to show students the importance of correct
randomness that is “fit for purpose,” or appropriate for security-sensitive appli-
cations. It also shows how an attacker with a small amount of influence, such
as when to stop supplying numbers, can compromise a system.

2.3.1 From the Audience’s Perspective

The trick begins with the magician announcing that it is possible to guess the
value of any randomly selected card in a deck by touch. To prove this point,
the magician spreads a deck of cards on the table face up, shuffles the deck
and deals five cards face down. In order to head off suspicion that the cards
are "fixed," the magician declares a software random number generator will
be used to select which card will be predicted. Students are asked to shout
out numbers to be input into the generator. After a handful of numbers, the
magician cuts off input, generates a number, n, and correctly predicts the value
of the nth card from those dealt on the table.

2.3.2 Behind the Scenes

There are three components that allow this trick to work. First, spreading the
deck on the table allows the magician to memorize one or more of the top five
cards in the deck. Next, the deck is shuffled in a way that ensures the top cards
remain intact [15]. This ensures that the memorized cards will be amongst the
prediction candidates. Finally, the random number generator is engineered to
“force” selection of one of the memorized cards.

To make this trick work, the generator has been built with two vulnera-
bilities. The first is an intermediate output that allows the magician to see
what number would be generated, based on the current inputs. Knowing this
allows the magician to cut off new inputs once a memorized card would be se-
lected. Second, the generator uses a hash function and modulus to produce its
output rather than a cryptographically secure method. This ensures that the
magician’s desired output will appear after a small number of inputs. Figure 1
shows the generator’s use during the trick.

3 Study Instrument and Evaluation

Method The goal of our study was to judge how effective a non-traditional
approach could be in teaching novices about our selected attacks. To do so, we
prepared and presented a 90-minute Zoom session as an optional class for high
school students in a remote-learning computer science summer camp. Using
this particular format was a necessary workaround once COVID-19 restrictions

57

prevented the summer camp from being held live. We discuss the impact of
this format switch on our study later in this section.

Once the true purpose of the trick is revealed, the presenter shared a brief
lesson that named the attack, separated the attackers’ real purpose from the
misdirection stated while the trick was in progress (i.e. "creating a psychic
bond with the deck"), and shared a real-world example. Though presented as
one session for our study, each of the three modules could be the basis of a
single classroom lesson.

To measure any change in the students’ mastery of the material, we designed
an assessment (a portion of which is shown in Table 1) consisting of 12 multiple
choice questions (4 for each topic), 3 Likert-scale survey statements, and a free
response section. The assessment, minus the Likert and free response questions,
was conducted before the lesson to generate a baseline, and was repeated after
the lesson to measure improvement and gather student opinions. In both cases,
the participants completed the assessments online and outside of the workshop.
We purposely avoided collecting demographic information on the respondents
due to the heightened privacy concerns inherent in working with high school
students.

Question Text Correct
on Pre-test

Correct
on Post-test

Q1 Which of the following is the best definition of
social engineering?

3 (60%) 5 (100%)

Q2 The act of creating a scenario in order to extract
information is called:

3 (60%) 4 (80%)

Q3 Which of the following pieces of information are
dangerous to reveal online?

5 (100%) 5 (100%)

Q4 Bad actors can use stolen personal information to
do which of the following:

2 (40%) 5 (100%)

Q5 What is a side channel attack? 0 (0%) 0 (0%)
Q6 Which of the following can give you a hint as to

what a computer is doing?
5 (100%) 5 (100%)

Q7 What is an example of a common real-world side
channel attack?

4 (80%) 5 (100%)

Q8 How could you prevent an attacker from stealing
a password by using a microphone to listen to
keystrokes?

3 (60%) 5 (100%)

Q9 Which of the following is a major use of hash func-
tions?

4 (80%) 3 (60%)

Q10 Which of the following is an important feature of
a good hash function?

4 (80%) 4 (80%)

Q11 When passing multiple items sequentially into a
hash function, which item has the most influence
on the output?

1 (20%) 5 (100%)

Q12 What is the term used when two or more inputs
to a hash function generate the same output?

2 (40%) 5 (100%)

Table 1: Question text and aggregate scores for each assessment question. Q1-Q4 covered
social engineering, Q5-Q8, side channel attacks, and Q9-Q12 attacks on randomness.

58

Results The limited number of assessments completed greatly limits the va-
lidity of our results, but does indicate positive trends. Aggregate scores in-
creased across all categories on the post-test. The results in Table 1 show
scores for the social engineering and attacks on randomness sections increased
by 30%, while the side channel attacks section increased by 15%. The improve-
ment in social engineering scores can be traced to higher scores on Q1, Q2, and
Q4, indicating a better understanding of the topic. Smaller improvements on
Q5 and Q9 suggest a need to improve the lesson materials in these specific
areas, particularly providing better definitions and examples of side channel
attacks real-world use cases for hash functions. On the plus side, accurate re-
sponses to Q11 and Q12 suggest the lesson was an effective scaffold for teaching
two key properties of hash functions.

On the questionnaire, student shared very positive opinions about the
lessons, attesting that the lesson had improved their skills in the covered top-
ics, while also being enjoyable. Free response comments shared described the
session as “fun,” “entertaining,” and “interesting.” The instructor also observed
that a significant majority of students kept their cameras on, and asked or an-
swered questions about the material – two key indicators of engagement during
remote instruction.

Limitations And Future Work COVID-19 restrictions, a remote modality,
and difficulties handling consent forms drastically reduced participation from a
potential enrollment of around 40 students to a group of 15 actual attendees. Of
these attendees, only 10 agreed to participate in the study and just 5 completed
it. The fall off in study completion can likely be attributed to an inability to do
the assessment in person and to follow up about the post-test. It was simply
too easy for students to sign off and forget to respond to the post test. This
limited completion rate prevents us from making strong statistical claims about
the effectiveness of our lessons. However, the positive responses observed by
the instructor strongly suggest this approach could be successful in teaching
cybersecurity topics.

4 Related Work

The idea of scaffolding is to provide a bridge to assist students in mastering
material that may be beyond their reach [16] by bringing it into their “Zone of
Proximal Development [12].” Given the complexity of computer science topics,
it is not surprising that researchers have attempted to “scaffold” these concepts
from a familiar base. In a meta-analysis from 2019, Szabo et al. identified
1283 papers in the field that contain scaffolding-related content [4], while Van-
deryde et al. argues that increasing and more diverse enrollments in computer

59

science call for greater use of scaffolding practices [11]. Stanier also discusses
using scaffolding approaches in higher education to support metacognitive and
strategic skills [10]. All the above suggest our demonstrations could work as
effective scaffolds for introducing security concepts to novices.

Other researchers have already integrated card tricks into computer science
lesson plans, such as using parity bits to detect unintended bit flips, a central
technique in error detection and correction. Bell et al. use a 5 by 5 grid of cards
in an exercise that allows students to generate and detect parity errors. [1, 2].
Greenberg et al. were able to create more advanced versions of the exercise
using larger grids. Other versions of this activity rely on software assistance to
handle more complex computations [7].

In Ferreria et al. a “self-working” card trick called “Are You Psychic?”
is used to explain topics in algorithm analysis and design, such as problem
decomposition, pre- and post- conditions, and invariants [5]. Each of the trick’s
steps are mapped onto a formal description of an algorithm. Garcia et al.
produced three papers describing a variety of magic tricks, along with the
computer science concepts they help teach [6]. Their goal was to help students
construct a mental model of how a computer actually works. Similarly, Curzon
et al. found success explaining computer science concepts to younger students
using magic shows [3].

5 Conclusion

In this paper we present a novel approach to teaching an introductory infor-
mation security that uses card magic to simulate key attacks. By starting with
a card trick, we are able to establish common ground even with students who
have little knowledge of the field. The trick illustrates how the attack works
giving the student a cognitive basis to build upon. After testing this lesson plan
in a real-world teaching environment, we see its potential to foster engagement
and improve students’ mastery of the covered material. We encourage our fel-
low educators to use the tricks we have developed and to work out new ones
as a way to make complex and intimidating material more approachable for
novice students. Doing so could potentially improve not only individual per-
formance, but also, by enhancing comprehension, reduce attrition rates among
computer science undergraduates.

60

References

[1] Tim Bell, Jason Alexander, Isaac Freeman, and Mick Grimley. Computer science
unplugged. The New Zealand Journal of Applied Computing and Information
Technology, 13(1):20–29, 2009.

[2] CS Education Research Group. Cs unplugged: Error detection card flip magic.
https://classic.csunplugged.org/error-detection/\#Card_Flip_Magic.

[3] Paul Curzon and Peter W McOwan. Engaging with computer science through
magic shows. In Proceedings of the 13th annual ITCSE conference, pages 179–
183, 2008.

[4] Claudia Szabo et al. Review and use of learning theories within computer science
education research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education, ITiCSE-WGR ’19, page 89–109,
New York, NY, USA, 2019. Association for Computing Machinery.

[5] João F Ferreira and Alexandra Mendes. The magic of algorithm design and
analysis. In Proceedings of the 2014 conference on Innovation & technology in
computer science education, pages 75–80, 2014.

[6] Daniel D Garcia and David Ginat. Demystifying computing with magic, part
iii. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, pages 158–159, 2016.

[7] Ronald I. Greenberg and Dale F. Reed. Using magic in computing education
and outreach. In 2018 IEEE Frontiers in Education Conference (FIE), pages
1–4, 2018.

[8] Our Pastimes. How to do the red and black separation card trick, 2017.

[9] Raymond and DeCourcey. Cognitive Characteristics. Learners with Mild Dis-
abilities. Allyn & Bacon, A Pearson Education Company, 2000.

[10] Clare Stainer. Scaffolding in a higher education context. ICERI2015
Proceedings:7781–7790, 2015.

[11] James Vanderhyde and Florence Appel. With greater cs enrollments comes
an even greater need for engaging teaching practices. J. Comput. Sci. Coll.,
32(1):38–45, October 2016.

[12] L.S. Vygotsky. Mind in Society: The Development of Higher Psychological Pro-
cesses. Harvard University Press, London, 1978.

[13] Wikimedia Contributors. Svg playing cards, 2021.

[14] Wikipedia contributors. Forcing (magic) — Wikipedia, the free encyclopedia,
2021. [Online; accessed 12-August-2021].

[15] Wikipedia Contributors. Shuffling — Wikipedia, the free encyclopedia, 2021.

[16] David Wood, Jerome S Bruner, and Gail Ross. The role of tutoring in problem
solving. Journal of child psychology and psychiatry, 17(2):89–100, 1976.

61

Computer Science Case Studies From the
Census∗

Christopher A. Healy
Department of Computer Science

Furman University
Greenville, SC 29613
chris.healy@furman.edu

Abstract

This paper describes some innovative assignments for CS 1 and CS
2 classes where students can write straightforward programs that dis-
cover useful facts directly from census data. This information exploits
the geospatial population distribution of the United States. These as-
signments have been used successfully in Java and Python classes at this
level, to reinforce skills in using file I/O and elementary data structures.
In 2021, the U.S. Census Bureau began to release detailed results of
the 2020 Census. This new data presents students with the opportunity
to apply their programming skills to glean quantitative facts about the
geographical distribution of the U.S. population and its diversity.

1 Introduction

Computing and the census share a long history. Every ten years the U.S.
conducts a census of the population, and publishes extensive raw data. Herman
Hollerith, whose firm was a corporate ancestor of IBM, developed a mechanical
tabulator to read punch cards for the 1890 census. In 1946, the Census Bureau
purchased the first commercially available electronic computer, the UNIVAC,
for the 1950 census [2]. With the latest census having being conducted in 2020

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

62

and the results now being released, the time is ripe to consider incorporating the
new data into computer science classes. This paper describes several software
projects that have already been used in CS 1 and CS 2 classes based on data
taken from the last census. By writing their own programs, students do not
need to worry about the limitations of off-the-shelf software such as Excel or
ArcMap.

2 The Data

The first data to be released by the Census Bureau is the data required by law
to support redistricting [7]. For the purposes of disseminating data at various
levels of detail, the United States is subdivided into the following census hier-
archy: states, counties, census tracts, block groups, and blocks [1]. Summary
statistics on these levels is given in Table 1. The averages and standard devia-
tions have been rounded to the nearest integer. Note that only the census tract
and block group have standard deviations that are significantly smaller than
their means. This is because the Census Bureau makes a conscious effort to cre-
ate these areas of relatively uniform size. Census tracts are commonly used by
economists and sociologists to represent the intuitive idea of a neighborhood.
On the other hand, the smallest geographical level in the census hierarchy is
the block. The Census Bureau publishes only the most basic demographic data
for blocks, such as race and sex, and how many people are aged 18 and older
and thereby eligible to vote. For larger geographical areas, additional census
data is available, such as income, educational attainment, and other economic
statistics.

Table 1: Examples of small population areas in the US in 2020
Name of unit Number Mean population S.D. of population

County 3,143 105,456 335,760
ZIP code (2010) 32,948 9,371 13,672
Census tract 83,848 3,953 1,689
Block group 238,437 1,390 682

Block 5,769,942 57 107

The Census Bureau also summarizes data by ZIP codes. These have the
advantage that everyone knows their own ZIP code, while hardly anyone knows
their census tract or block numbers. But there are some disadvantages to using
ZIP codes for demographic analysis. ZIP codes were created for sorting mail,
not for analyzing the population. ZIP codes exhibit a high degree of population
variance, making them less suitable for our purposes. For example, many ZIP

63

code areas have populations of under 100 or over 100,000, making comparisons
difficult. In addition, demographic data on ZIP codes from the 2020 census
have not yet been released, because they are not needed for redistricting. As a
result, Table 1 shows ZIP code data for 2010 instead of 2020. Fortunately, we
do not need to resort to using ZIP codes, as there are online tools where one
can quickly look up a census tract number, for example [8].

The Census Bureau’s downloadable file format can be cumbersome to use
directly by introductory students. The raw redistricting data from the 2020
census contained over 13 GB of data, spread across over 200 separate files.
Therefore, it is recommended that the instructor perform some preprocessing
of the raw census data, in order to create suitable input files for the students.
For example, one input file listing all of the blocks, and another input file listing
census tracts. For example, the modified block file created by the author has
a size of 483 MB (uncompressed) and contains the following information:

• 5-digit state/county code to facilitate sorting
• 2-letter state abbreviation
• County name, truncated to 20 characters
• Tract number, which could be up to 6 digits omitting the decimal point
• Block number, 4 digits
• Population of the block, up to 5 digits
• White, Black, Hispanic, and Asian population of the block
• Latitude and longitutde, to the nearest thousandth of a degree
• Area of the block in acres

Fortunately, the format of the input data in 2020 data is the same as in
2010 [1]. Therefore, the procedure for scanning the 2020 data can be done
seamlessly for 2010, making longitudinal comparisons straightforward.

The format of the modified tract file, having a size of just 7 MB, is analogous
to the block file. Within both files, the fields have a fixed width, so that
students can use a substring function in order to extract individual values,
instead of having to tokenize.

3 Project Ideas

This section describes possible programming exercises, and most of these are
suitable for CS 1.

3.1 Simple Analyses

A simple task to start with is finding a centroid or population center. It is
the mean of the latitudes and of the longitudes, weighted by the population

64

of each area. To check their work, students are instructed to verify on a map
that their answer is plausible. This task can easily be extended by computing
the centroid of part of the U.S., such as a single state.

Next, using the block data, we can find the population density of each
county or census tract. This way, we can classify areas as urban if their density
exceeds 1000 people per square mile. While reading the data, the program
needs to keep track of each tract or county encountered. So, students are
recommended to use a built-in data structure such as the dictionary type in
Python or the analogous Hashtable class in Java.

3.2 Create a Map

The map shown in Figure 1 was created with a program that simply reads
the latitude-longitude locations of all census tracts from the 2020 census. A
Java implementation is less than 70 lines long. The essential computation is
to convert a latitude-longitude pair into a (x, y) pixel ordered pair. However,
some care is needed to avoid creating a map that is upside-down or backwards.
The lowest pixel numbers are in the upper-left corner of the image, while the
lowest latitude and longitude values are in the opposite corner. As a sample
classroom exercise, the author presented the source code to a CS 1 class where
the output map was indeed displayed backwards, and the students were asked
to find the error.

Figure 1: Pixel map of the US based on tract locations

Next, students are asked to modify this program, e.g. to change the reso-
lution of the image, and to use blocks instead of tracts for additional detail.
By reading the racial diversity counts of each block, a color-coded map can be
created. Another use of color in a pixel map is to show areas of population

65

growth and decline. The program reads a second file containing the results of
the previous census for comparison. The Census Bureau provides comprehen-
sive block data for 1990, 2000, 2010, and 2020.

An alternative to a pixel map is to create a KML file that can be read
by Google Earth. The Census Bureau publishes Shapefile data on all census
tracts. Each tract is geometrically defined as a polygon with latitude-longitude
vertices. However, due to the complexity of these shapes (i.e. the large number
of vertices), it may be difficult to render more than one state’s worth of census
tracts in one map. A simpler map could be created by representing each tract
abstractly as a simple shape such as a square.

3.3 Discover Population Clusters

Scanning the census data can answer many questions pertaining to the concen-
tration of population. For example, The U.S. Department of Education pub-
lishes the latitude and longitude of every public school in the country. Since
our census data also locates every block by latitude and longitude, we can find
how many people live within a specified distance from each school. Croft et
al. [4] similarly used census data to determine how many people live within
five miles of a physician. On the flip side, we can also find areas of the country
that are remote. Thus, we can identify populations that are underserved or to
detect possible areas of low light pollution for astronomy.

3.3.1 Radius

In particular, the radius problem asks this question: Determine how many
people live within a fixed radius, (e.g. 10 miles) of some point, such as a
downtown area or real-time GPS coordinates. Note that this problem can be
solved by a single pass of the input file, and that it is not necessary to sort the
tracts or blocks by distance.

Because distance is a critical calculation in the radius problem, there needs
to be an accurate way to estimate the distance between two latitude-longitude
points. It is also necessary to convert from degrees to miles. Students are
given a formula to use in their programs. It is a modified form of the Cartesian
distance formula that assumes that the earth is a sphere.

Once the students understand how to compute the population of some
circular region, the next step is to iterate this procedure for the entire country.
For each census tract t, calculate the population P (t, n) living within n miles of
the center of t. In doing so, it is straightforward to find the population density
within n miles of every census tract in the United States. By scanning the
resulting output, it is then easy to find areas of high or low population density
(i.e. urban versus rural). Many businesses prefer to locate themselves in areas

66

of relatively high population density. Therefore, the program could be run for
a certain value of n, seeking a list of tracts where P (t, n) is sufficiently high.
For example, New York City has many tracts where a 10-mile radius encircles
more than 7 million people.

3.3.2 Cluster

The cluster problem is analogous to the radius problem. The difference here
is that instead of seeking a fixed distance from a certain point, we seek a fixed
population size. For example, from a given point, how far do you need to
go to encompass 50,000 people? This problem can be solved by sorting the
tracts in ascending distance from the point in question. Since it is necessary to
sort the areal units, it is important to use a smaller input file, such as census
tracts, not blocks. Sorting all of the blocks in the United States would be
overkill. If blocks are desired, then these should be limited to a single state or
metropolitan area.

Once the clustering algorithm is implemented, then it too can be iterated
over the entire country. The complete Python program used to perform the
cluster analysis contains slightly over 100 lines of code. For each census tract t,
it computes the radius R(t, p) of the smallest circle centered at t containing a
population a population of p. Then, the output can be scanned to find specific
results of possible interest. To seek areas of high population density, one would
search for a radius below some threshold. For example, if one wanted to find
an area of 100,000 people in an urban density of at least 1000 per square mile,
we need a circular area of area 100 square miles or less. Thus, we need a circle
of radius 5.64 miles or less. Running the cluster program on the 2020 census
data reveals that more than half of the census tracts in the country have this
desired density.

One practical weakness of the radius and cluster programs is that they de-
fine only circular regions. As an alternative, a variation of the cluster problem
is to partition the U.S. into nonoverlapping regions of similar population. This
is similar to the real-world problems of redistricting and even the creation of
census tracts themselves. In theory, the United States needs to be partitioned
into 435 contiguous areas of equal population. In this case, there is also the
added detail that each state is partitioned separately. Students can also focus
on a single state alone to simulate the redistricting of a state legislature.

3.4 The Warehouse Problem

The warehouse problem is a generalization of finding a population center, and
is presented to a CS 2 audience. The purpose of the problem is to find a set

67

of N centrally located points across the United States. The problem can be
stated as follows:

“Company XYZ is in retail trade, and its management would like to build
several warehouses around the country to store merchandise. The locations of
these warehouses should be chosen so as to minimize the distances from these
warehouses to the general public. For each potential customer in the United
States, we wish to estimate the distance from that household to its nearest
warehouse in order to minimize shipping costs. The output is a set of optimal
locations for the warehouses.”

Alternatively, rather than speaking of warehouses literally, the problem
could be stated as seeking to minimize the distance that the public needs to
travel to a location of business. The parameter to this problem is the desired
number of locations. And of course, the scope of the problem can be limited
to one state or metropolitan area rather than the whole country.

It is an optimization problem that selects an optimal sample of census
tracts. Blocks are not used because the run time of the program would increase
by a factor of 69 (the average number of blocks in a tract) for a gain in precision
that we might not appreciate. Inside an urban area, a census tract is often
about one square mile in size, which is sufficiently precise for this problem.
Students are given a pseudocode algorithm that they implement in Java. The
algorithm generates random samples of tracts, and among all the trials it finds
the sample with the minimum average distance. It can be summarized as
follows:

Create an array o f Tract ob j e c t s .
Create array A o f 10 Tracts f o r the optimal s e l e c t i o n .
For t r i a l = 1 to 25 ,000 :

Randomly generate a s e l e c t i o n S o f 10 Tracts
For each Tract t :

d = sho r t e s t d i s t anc e from t to any Tract in S
Compute weighted average o f a l l va lue s o f d

(i . e . weighted by the populat ion o f t)
I f t h i s weighted average d i s t ance < d i s t ance f o r the

array A, then r e s e t A to be the s e l e c t i o n S .
And keep track o f i t s weighted average d i s tance ,
and a l s o the t r i a l number where minimum was found .

I f t r i a l i s a mu l t ip l e o f 200 , p r i n t out the cur rent
va lue o f A and i t s average d i s t ance so that the user
can observe the p rog r e s s o f the a lgor i thm .

Students are given this pseudocode and asked to implement it in Java.
Being able to implement pseudocode is a fundamental skill in computer science.
Most students in the author’s CS 2 class found this to be a nontrivial task.
The two main stumbling blocks were understanding the concise language of

68

the pseudocode, and making sure that no detail was omitted. The run time
complexity of the algorithm is linear in the desired number of warehouses and
in the number of trials. The program is under 200 lines long. In practice, for 10
warehouses and 25,000 trials, students found the program to take about three
minutes. In an upper-level algorithms course, students could explore other
optimization strategies, such as a genetic algorithm.

As a further experiment, once students have written this program, they
can run it on various numbers of business locations in order to discover a
mathematical relationship between distance in miles, d, and the population
size, p, served by each location. In other words, we can develop a rule of
thumb for estimating the average distance that one needs to travel to the
nearest establishment of some type. In our experiments, the regression formula
we obtained was

p = 2481d1.8

For example, if there is approximately one cardiologist for every 14,000 people
in the U.S., we should expect the average American to live 2.6 miles from one.

4 Conclusion

The goal of this work was to make it straightforward for students in CS 1
and CS 2 to write programs that analyze the geographic distribution of the
U.S. population and its diversity at a high degree of detail. The author has
had success over the years at incorporating the 2010 census data into several
different assignments and student research projects, and work has begun on
doing the same for 2020. With the newly released 2020 census data, everyone
now has the opportunity to begin analyzing the most recent demographic data.
Furthermore, this work need not be limited to the U.S. Table 2 shows a short
list of countries that also publish census data online along with corresponding
geospatial data [3, 5, 6, 9]. Thus, all of the programs described in this paper
could also be carried out on these countries as well.

Table 2: Examples of census hierarchies used in other countries
Country Unit Number Mean size S.D. of size
Australia Statistical area 1 53,358 402 165
Australia Statistical area 2 2,149 2,150 6,441
Australia Statistical area 3 333 64,441 40,532
Brazil Sector 310,120 615 354
Canada Dissemination Area 54,963 627 536
Canada Aggregate DA 4,920 7,003 3,965
New Zealand Area unit 2,012 2,108 1,699

69

References

[1] United States Census Bureau. 2020 Census State Redistricting Data (Public
Law 94-171) Summary File Technical Documentation. 2021.

[2] Martin Campbell-Kelly and William Aspray. Computer: A History of the
Information Machine. Westview Press, Boulder, Colorado, 2004.

[3] Statistics Canada. Census profile, 2016 census. http://www12.
statcan.gc.ca/census-recensement/2016/dp-pd/prof/details/
page_Download-Telecharger.cfm.

[4] Janet Croft, Hua Lu, Xingyou Zhang, and James Holt. Geographic acces-
sibility of pulmonologists for adults with copd. CHEST, 150(3):544–553,
2016.

[5] Instituto Brasileiro de Geografia e Estatistica. Censo 2010 resultados.
http://censo2010.ibge.gov.br/resultados.html.

[6] Australian Bureau of Statistics. Census advanced search. http://www.
abs.gov.au/websitedbs/censushome.nsf/home/map.

[7] Congress of the United States. Public Law 94-171. 1975.

[8] Federal Financial Institutions Examination Council Geocoding System.
https://geomap.ffiec.gov/FFIECGeocMap/GeocodeMap1.aspx.

[9] Statistics New Zealand. 2013 mesh block dataset. http://www.stats.
govt.nz/Census/2013-census/data-tables/meshblock-dataset.aspx.

70

Porting the APTT MAGMA tool to an
HPC environment using Singularity
containers: A benchmark study∗

Poster Session

E.K. Iskrenova-Ekiert1, JT Haag2, and Soumya S. Patnaik3

1Department of Computing Sciences
SUNY Brockport, Brockport, NY 14420

eiskrenovaekiert@brockport.edu
2HPC Intern, HPC Internship Program

DoD High Performance Computing Modernization Program
Lorton, VA 22079

3Aerospace Systems Directorate
US Air Force Research Laboratory

Wright-Patterson Air Force Base, OH 45433

This work was conducted during a summer project as part of the Depart-
ment of Defense HPC Internship Program. The project was designed to intro-
duce a Computer Science student to High Performance Computing and working
in a multidisciplinary team of scientists and engineers. The project presented
a challenging real-world problem frequently encountered in computational en-
gineering involving a range of issues: porting a custom-built legacy code to a
new computing environment, evaluating the code efficiency, interfacing differ-
ent simulation packages, and performing large scale simulation runs in an HPC
environment.

Model-based design is a powerful tool in physics-based system engineering
that helps reduce design time and cost. Model-based design of increasingly
complex aircraft thermal systems and architectures requires significant compu-
tational resources and necessitates the use of HPC systems. deploying custom-
built Windows tools in an HPC environment can be challenging and container
virtualization technologies provide a user-friendly solution that is portable.

Docker [7] and Singularity [6] are well-established container virtualization
technologies that allow the researcers to package their custom application to-

∗Copyright is held by the author/owner.

71

gether with all dependencies into a portable container that allows the custom
application to run on a different machine and in a different environment without
new compilation or any adjustments to the custom application. Containeriza-
tion technologies provide new deployment strategies, ease of use, and the ability
to execute applications in diverse computing environments.

Multipoint optimized Architecture Generator for Military Aircraft
(MAGMA) [4, 2] is a MATLAB GUI-based tool, part of the Aircraft Power
and Thermal Toolset (APTT) [5]. MAGMA has been developed to rapidly
generate and analyze power and thermal architectures for aircraft conceptual
design, to identify the best architectures given a set of system components and
constraints. The goal of this project was to port the MAGMA tool to HPC
environment and to carry out large-scale simulation runs that are otherwise
not feasible nor practical on a consumer Windows desktop. We will discuss the
challenges encountered in the course of this project-based learning experience,
the approaches and solutions we designed, as well as, the lessons learned.

The first goal of the project was to create a Singularity container with
an installation of OpenModelica [3] needed for MAGMA runs. Following the
best practices for Singularity container development in HPC environment [1], a
Docker container with OpenModelica v.1.16.5 within the Ubuntu 18.04 OS was
created. On the HPC machine, we used Singularity to pull the container from
Docker Hub. The porting of MAGMA to HPC environment involved adapting
the MATLAB code to be executed at the command line i.e., avoiding the
GUI parts of the code, as well as managing the library paths, since MATLAB
prepends its libraries to the system library path. The third component of the
project was to perform a large-scale production run by creating the appropriate
PBS launch script using the OpenModelica Singularity container. This involved
learning about computing environments on supercomputers and the PBS job
scheduling.

We performed a timing study examining the efficiency of the APTTMAGMA
code and determined the optimal set of parameters needed to perform large-
scale runs. The best practices for performing MATLAB runs in an HPC en-
vironment suggest that the code should be compiled into a standalone app
to eliminate the need for use of MATLAB and MATLAB Parallel Toolbox li-
censes. The code was modified accordingly and a standalone deployed APTT
MAGMA app was compiled for use in an HPC environment with container-
ized OpenModelica. Additional code modifications were needed to allow for
performing the runs in independent segments of user-defined size to help man-
age the size of the results files and to allow for asynchronous evaluation, thus
further reducing the compute time. The standalone APTT MAGMA app was
benchmarked by performing a production run analyzing 22056 hybrid thermal
management system architectures in five segments. Each segment ran on 48

72

CPUs on the AFRL supercomputer Mustang and completed within five hours
of walltime. The compiled MAGMA app was found to run 40% faster than
within MATLAB. The study completed in less than 22 hours of walltime, a
significant speedup compared to a month of runtime on a consumer Windows
desktop.

In the course of this summer internship, we have successfully accomplished
the major goals of the project: a Docker container and a Singularity con-
tainer with OpenModelica v.1.16.5 have been produced and a large-scale APTT
MAGMA study using the Singularity container was successfully carried out.
A procedure for creating an OpenModelica Singularity container has been es-
tablished and tested. The APTT MAGMA code was successfully ported to
Linux and HPC environment and a standalone APTT MAGMA app which
does not require the use of MATLAB licenses, was successfully deployed. A
procedure for carrying out large-scale APTT MAGMA simulations has been
created, tested, and documented. Additionally, this project significantly im-
proved the efficiency of the APTT MAGMA tool and designed a procedure
for compiling the standalone APTT MAGMA app that can be used for other
MATLAB code in the future. Approved for public release, Unlimited Distribu-
tion, Case Number: AFRL-2022-0137.

References

[1] G. Behm. PETTT Singularity Container Development Practices. HPCMP PETT-
T/SAIC, Internal training presentation, 2019.

[2] R. Buettner, D.R. Herber, P.C. Abolmoali, and S.S. Patnaik. An automated
design tool for generation and selection of optimal aircraft thermal management
system architectures. In AIAA Propulsion and Energy Forum (2021), Virtual
Event.

[3] P. Fritzson, P. Aronsson, H. Lundvall, K. Nyström, A. Pop, L. Saldamli, and
D. Broman. The openmodelica modeling, simulation, and development envi-
ronment. In 46th Conference on Simulation and Modelling of the Scandinavian
Simulation Society (SIMS2005), Trondheim, Norway, October 13-14, 2005, 2005.

[4] D.R. Herber, J.T. Allison, R. Buettner, P. Abolmoali, and S.S. Patnaik. Archi-
tecture generation and performance evaluation of aircraft thermal management
systems through graph-based techniques. AIAA 2020-0159, 2020.

[5] E.K. Iskrenova-Ekiert, T.O. Deppen, D.J. Dierker, and S.S. Patnaik. Towards
a common modeling environment for aircraft power and thermal systems design
and optimization: Introducing the simulation platform aptt-sp. In AIAA SciTech
2020 Forum (10.2514/6.2020-2118), January 6-10, 2020, Orlando, FL.

[6] G.M. Kurtzer, V. Sochat, and M.W. Bauer. Singularity: Scientific containers for
mobility of compute. PLoS ONE, 12(5):e0177459, 2017.

[7] D. Merkel. Docker: Lightweight linux containers for consistent development and
deployment. Linux J., 239(Article 2), 2014.

73

A Case Study for a Pilot Data Science
Curriculum for Advanced High School

Students∗

Poster Session

Ching–yu (Austin) Huang1, Janice Chao2

1School of Computer Science and Technology
Kean University, Union, NJ

chuang@kean.edu
2High Technology High School

Lincroft, NJ
janjan4fun@gmail.com

Data Science is quickly becoming one of the fastest growing and most criti-
cal areas in computer science. Extensive research and case studies have shown
that it can significantly benefit businesses across all industries. In turn, the
job market has a high demand for people with skills related to data analytics.
Therefore, it is critical to develop a curriculum that can attract high school
students to study computer science and data analytics and encourage them to
pursue these fields in their career paths. The goal of this research project is
to propose a non-programming curriculum that integrates the basic concepts
of databases, statistics, and data mining for advanced high school students.
This will allow students to experience the data science process - collecting, ex-
tracting, transforming and loading data to a normalized database, and perform
statistical analysis to find the correlation between datasets that are stored in
a database.

This study utilizes free software tools - MySQL database, MySQL Work-
bench IDE, and an online Chi-Square test calculator. Anxiety and skin disorder
datasets were downloaded from the CDC website and converted from XPT to
CSV format. Two tables were created in the database and datasets were up-
loaded to tables using MySQL Workbench. The student learned the basic SQL
SELECT, WHERE and GROUP BY statements through the w3schools.com
website to retrieve data from the database and generate the numbers for the

∗Copyright is held by the author/owner.

74

2x2 table. A free online chi-square calculator was then used to produce the
p-value, 0.038, a significant correlation between anxiety and skin disorder.

After 5 hours of basic instruction on SQL queries, MySQL Workbench, the
Chi-square hypothesis, and the meaning of the significance, the high school
student spent around 20 hours to self-study and practice these topics, in ad-
dition to 5 hours to find and understand the CDC datasets, and another 10
hours to search and review the citations. A total of 40 hours for this curricu-
lum design should be allocated for high school students who already have an
Algebra background. For the database component, the study suggests covering
the basic SELECT, WHERE, AGGREGATE FUNCTION, GROUP BY, OR-
DER BY, INNER JOIN, and CREATE TABLE queries. It is not necessary to
cover advanced topics such as functional dependency, normalization, and E-R
diagrams for the high school curriculum. Overall, the results show this study is
a very successful model that should be easily adopted by other advanced high
school students.

75

User Experience and Visualization of
Assistive Technology Devices∗

Poster Session

Andres Arauz, Ching–yu Huang
School of Computer Science and Technology

Kean University
Union, NJ

{chuang,arauzgua}@kean.edu

As technology constantly emerges, keeping up–to–date with these changes
can be a difficult task to accomplish. Technology has advanced on many fronts
such as web development and user experience among others. The advancements
in technology also include the rapid growth of assistive technology devices that
can be utilized to increase independence in various aspects of a person’s life,
however with the amount of new assistive technologies it has become difficult
for pediatric occupational therapy practitioners to keep up with them. We will
focus in this paper on the use of new technologies for web development in order
to present OT practitioners with a new tool to find new assistive technologies.
Many technologies and frameworks that facilitate web programming have been
developed by many technology companies such as Wix or Squarespace. These
technologies which are vastly used nowadays provide users the availability to
create websites, which facilitates the creation of new markets and informational
sites to exist.

Thanks to the new technologies that facilitate the construction of informa-
tive websites, among other kinds. We decided to use Squarespace in our project
thanks to its reliability and friendly user interface to investigate the usefulness
these technologies present to those who are not tech-savvy while also digging
deeper into new concepts that are involved in web development such as the
benefits of an improved user interface, user experience (UX/UI) and search
engine optimization (SEO).

In this project our goal was to explore these tools for web development and
to understand more elaborate concepts of web development such as UI/UX
while we research current assistive technology devices used by pediatric oc-
cupational therapy practitioners, we aim to give the opportunity for pediatric

∗Copyright is held by the author/owner.

76

occupational therapy practitioners to maintain assistive device literacy in order
to flourish in the robust world of technology. Additionally, we aim to reduce
the time OT practitioners may spend when researching and selecting device
options. By providing practitioners a resource that increases access to assistive
device awareness and literacy, occupational therapy practitioners can further
provide better health care quality and improve treatment outcomes for clients
in need.

By the end of this project, we were able to create an informational website
that is easy to find and use by OT practitioners where they are able to search
by different categories among the many assistive technology devices compiled
into the website. This created a new tool for practitioners to increase their
knowledge about new and upcoming technologies that we hope will be vastly
used in the future.

77

Discovering Ways to Increase Inclusivity
for Dyslexic Students in Computing

Education∗

Poster Session

Felicia Hellems and Sajal Bhatia
School of Computer Science and Engineering

Jack Welch College of Business and Technology
Sacred Heart University
Fairfield, CT 06825

hellemsf@mail.sacredheart.edu, bhatias@sacredheart.edu

The years accompanying entrance into the university system are often char-
acterized by a period of great transformation. These years can also be wrought
with difficulties for many students, difficulties which are often compounded in
students with disabilities (SWD). Reports from the U.S. Department of Edu-
cation show that as recently as 2015-16, 19% of undergraduate students expe-
rienced some form of disability 1. Additionally, statistics show that SWD tend
to have lower post secondary completion rates than their counterparts [3]. A
review of pertinent literature has shown that there still exist gaps within the
field of computing education (CE) for teaching cybersecurity concepts to SWD.
This poster is a continuation of the author’s research into both the identifica-
tion and analysis of the current educational methods in use within the field of
CE for teaching concepts of cybersecurity to SWD. This poster aims at narrow-
ing the scope of that research by performing a specific analysis of CE through
the lens of the post secondary dyslexic SWD demographic.

This work began with a broad review consisting of an analysis of each
chosen disability, followed by a focused literature review in the field of CE
with emphasis placed on identifying current educational methods in use for
teaching cybersecurity concepts to SWD. The criteria for the disabilities cho-
sen for review was predicated upon the greatest impact on a students ability
to both learn and perform tasks fundamental to cybersecurity. The following

∗Copyright is held by the author/owner.
1https://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2021009

78

four disabilities were selected based on this criteria: Visually Impaired and
Blind (VIB), Intellectual disabilities (ID), Autism, and Dyslexia. The initial
review of literature identified two main patterns. The first identified pattern
was related to how the materials were integrated into the curriculum, with
methods falling largely into a short term or a long term model. Short term
models were characterized by the delivery of methods in the form of camps or
workshops that were short in temporal duration. Long term models delivered
materials through amendments to current curriculum, creations of guidelines
aimed at inclusivity, or adaptations to traditional teaching methods. The sec-
ond identified pattern was related to how the materials were implemented into
the curriculum, with prior work largely delivering these methods through the
use of programming/coding or the use of tools. Emphasis in the discovered
work related to teaching SWD concepts of cybersecurity has thus far largely
been placed on VIB individuals with materials being delivered through short
term integration models [2].

The review of literature revealed minimal work done within the field of CE
in relation to methods for teaching dyslexic SWD concepts of cybersecurity.
While there has been research performed in the fields of computing sciences
relating to authentication and dyslexia, there has been little found in direct
relation to CE for teaching SWD concepts of cybersecurity, indicating an exis-
tent gap in research focusing specifically on dyslexic SWD. Dyslexia can cause
negative feelings for students surrounding academic self worth which may in
turn negatively affect graduation rates [1]. Considering that traits of dyslexia
may pose textual comprehension issues and difficulties decoding words, dyslexic
SWD may shy away from cybersecurity studies that are largely textual in na-
ture, such as cryptography [4]. These facts coupled with a need to increase
inclusivity in CE underlines the necessity for further research regarding educa-
tional methods for teaching dyslexic SWD concepts of cybersecurity.

This noted gap in research spurs the authors goal for continued research
aimed at increasing inclusivity for this demographic. Next steps include a
study involving dyslexic SWD to gather statistical data regarding experiences
in learning cybersecurity concepts. Having identified research performed in
CE for teaching SWD involving the use of gamification through programming,
the creation of a program focusing on a gamified assisted acquisition of cryp-
tographical concepts that takes into account traits of dyslexia is underway.
Integration of this gathered data will assist in producing an adequate reflec-
tion of the specific needs of dyslexic SWD in learning cybersecurity concepts.
The adoption of this program in CE delivered through a long term integration
model to ensure continuity of education will aid in not only increasing the pres-
ence of dyslexic SWD within the computing science field, but in maintaining
higher rates of retention for this demographic in post secondary education.

79

References

[1] Maro Doikou-Avlidou. The educational, social and emotional experiences
of students with dyslexia: The perspective of postsecondary education stu-
dents. International Journal of Special Education, 30(1):132–145, 2015.

[2] Jesse R Hairston, Derrick W Smith, Tania Williams, William T Sabados,
and Steven Forney. Teaching cybersecurity to students with visual im-
pairments and blindness. Journal of Science Education for Students with
Disabilities, 23(1), 2020.

[3] Lynn Newman, Mary Wagner, Anne-Marie Knokey, Camille Marder,
Katherine Nagle, Debra Shaver, and Xin Wei. The Post-High School Out-
comes of Young Adults with Disabilities up to 8 Years after High School: A
Report from the National Longitudinal Transition Study-2 (NLTS2). Na-
tional Center for Special Education Research, 2011.

[4] Linda S Siegel. Perspectives on Dyslexia. Paediatrics & Child Health,
11(9):581–587, 2006.

80

Teaching with VS Code DevContainers∗

Conference Workshop

Stoney Jackson1 and Karl R. Wurst2
1Department of Computer Science and Information Technology

Western New England University, Springfield, MA 01119
Stoney.Jackson@wne.edu

2Computer Science Department
Worcester State University, Worcester, MA 01602

Karl.Wurst@worcester.edu

A consistent development environment across students and faculty for a
course, assignment, or a project is desirable to reduce unintended, time con-
suming, and frustrating failures that distract from intended learning goals.
Faculty and institutions have tried various approaches to reduce these distrac-
tions (e.g., labs, laptop requirements, and remote access to servers). These
problems are not isolated to academia. Industry also has also been strug-
gling with these issues and has developed various practices and technologies
to combat them. Most recently, container technology (e.g., Docker [2]) has
emerged as a mechanism for packaging applications into relatively lightweight
containers that isolate each application and its dependencies in a way that can
be easily distributed to others. Visual Studio Code [4], with its Development
Containers [1], has further expanded containers to packaging and distributing
development environments customized for development of a specific applica-
tion. Faculty have begun to leverage this technology to create and distribute
to their students independent, lightweight, customized development environ-
ments for a particular course, example, or assignment [5, 6].

In this workshop, participants will learn how students would interact with
development containers, and observe what it is like to download, install, and
run a development container created by the facilitators. Participants and facil-
itators will have a candid discussion about the benefits and challenges of this
technology. Participants will learn how to build development containers for
their courses, and will build one with support from the workshop facilitators.

The facilitators have been developing open-source projects with their stu-
dents, working with Docker for the past two years and have begun introducing
Docker and development containers into their courses.

∗Copyright is held by the author/owner.

81

Biographies

Stoney Jackson, PhD is a Professor in the Department of Computer Science
and Information Technology at Western New England University, and is a
maintainer for PLCC [3]. Karl R. Wurst, PhD is a Professor and Chair of
the Computer Science Department at Worcester State University. They are
founders and maintainers of LibreFoodPantry, a community of students and
faculty building free and open-source software for food pantries. They are
also members of the NSF-supported OpenPace project whose goal is to enrich
computing education by engaging students in Humanitarian Free and Open
Source Software (HFOSS). Recently, they have helped bring Docker and VS
Code DevContainer technology to these projects and their Capstone, Database
Applications, Programming Languages, and Software Development courses.

Acknowledgements

This material is based on work supported by the National Science Foundation
under Grant Nos. DUE-2012990, DUE-2012999, DUE-1525039, DUE-1524877,
and DUE-1524898. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation (NSF).

References

[1] Developing inside a container. https://code.visualstudio.com/docs/remote/
containers. Accessed: 2021-12-09.

[2] Docker. https://www.docker.com/. Accessed: 2021-12-09.

[3] Programming language compiler compiler. https://github.com/ourPLCC. Ac-
cessed: 2021-12-09.

[4] Visual studio code. https://code.visualstudio.com/. Accessed: 2021-12-09.

[5] Pak Kwan. Let’s dockerize our classrooms: Bringing the docker into the class-
room: Pre-conference workshop. J. Comput. Sci. Coll., 32(1):7–8, oct 2016.

[6] Sander Valstar, William G. Griswold, and Leo Porter. Using devcontainers to
standardize student development environments: An experience report. In Pro-
ceedings of the 2020 ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’20, page 377–383, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery.

82

Initial Research: How Does Instructor
Identity Change Due to Supporting
Student Involvement in Open Source

Computing for Good?∗

Lightning Talk

Gregory W. Hislop1, Heidi J.C. Ellis2
1Computing and Informatics

Drexel University
hislop@drexel.edu

2CS & IT Department
Western New England University

ellis@wne.edu

Instructor identity is the sense of self towards being an instructor that
results from the beliefs and values that an individual holds. Instructor identity
is shaped by how that self interacts with the affordances and limitations of the
teaching and academic context and how that context impacts the sense of self.
Instructor identity is important as it impacts job satisfaction, commitment to
teaching, motivation and more.

One approach to exposing students to Computing for Good is for instructors
to involve students in humanitarian free and open source projects (HFOSS).
With guidance, students interact with open source communities to both learn
about the community and, ideally, to contribute to the project. This use
of HFOSS in education has shown potential to improve student motivation in
studying computing. It also tends to impact instructional approaches including
a push toward active learning, and a shift to mentoring and co-learning.

Instructor feedback indicates that this HFOSS education context has an
impact on instructor identity. Some instructors report that they have changed
their pedagogy as a result of supporting student involvement in humanitarian
open source, with changes including taking on more risk in the classroom and
allowing students to explore more freely [2].

∗Copyright is held by the author/owner.

83

These reports of changes in pedagogy raise interesting questions related to
the nature of identity [1] including:

• How do changes in pedagogy impact instructor identity?

• How does the culture of open source impact instructor identity?

• How do social interactions with open source communities impact instruc-
tors’ identities?

This talk reports on the first steps towards exploring how instructor identity
changes as instructors support student involvement in such projects. Initial
observations will be described and a research plan will be outlined. Possible
opportunities for instructor participation will also be presented.

References

[1] James Paul Gee. Chapter 3: Identity as an analytic lens for research in
education. Review of research in education, 25(1):99–125, 2000.

[2] Lori Postner, Darci Burdge, Heidi JC Ellis, Stoney Jackson, and Gregory W
Hislop. Impact of hfoss on education on instructors. In Proceedings of the
2019 ACM Conference on Innovation and Technology in Computer Science
Education, pages 285–291, 2019.

84

