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Welcome to the 2023 CCSC Northeastern Conference

Welcome to the Twenty Seventh Annual Consortium for Computing Sci-
ences in Colleges Northeast Region Conference held at Ithaca College. We’d
like to thank everyone who has been involved with this conference since its
inception at the University of Hartford in April 1996.

We have two excellent plenary speakers. Reuben Fischer-Baum from the
Washington Post will talk on “How journalists create data visualization,” and
Jon Kleinberg, Professor of Computer Science at Cornell University, will talk
on “Choices and Consequences in Computing.” In addition, there will be a
variety of activities at the conference including paper presentations, workshops,
panels, tutorials, lightning talks, a student programming contest, and faculty
and student posters. A special thanks goes out to the many volunteers who
have worked on our conference. This includes the conference committee, the
CCSCNE board, and the conference reviewers. You will find their names listed
below. We also want to thank the National Partners whose support made the
conference possible: Google Cloud, GitHub, NSF, zyBooks, and Rephactor.
Additional support is provided to the conference for being in cooperation with
the ACM Special Interest Group on Computer Science Education (SIGCSE).

There were 23 papers submitted to this year’s conference, out of which 15
were accepted with an acceptance rate of 65%. There are also 3 pre-conference
workshops, 2 panels, 2 tutorials, 1 lightning talk, 6 faculty posters and 61
student posters. We hope that you enjoy the conference and find it informative
and engaging. We look forward to seeing you in 2024, when the conference will
be held at the College of St. Rose in Albany, New York.

Ali Erkan
Ithaca College

Lawrence D’Antonio
Ramapo College of New Jersey

CCSCNE-2023 Conference Co-Chairs
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PLCC: A Tool Set for Teaching
Programming Languages Courses∗

Conference Workshop

Stoney Jackson1, Tim Fossum2, James Heliotis3
1CS&IT, Western New England University

stoney.jackson@wne.edu
2Professor Emeritus, SUNY Potsdam

plcc@pithon.net
3Professor Emeritus, Rochester Institute of Technology

jehics@rit.edu

This is a hands-on laptop-recommended workshop that introduces partici-
pants to the PLCC compiler-compiler tool set for building Java-based language
interpreters in an upper-level Programming Languages course. One approach
to teaching this course is to show how programming language features such
as language syntax, variable lifetime, procedure application, parameter pass-
ing, recursion, and object-orientation are implemented "under the hood". This
workshop is designed for CS educators who want to explore how PLCC can be
used to support such an approach.

1 How PLCC Works

The PLCC system contains a compiler-compiler (implemented in Python 3). It
also contains a small collection of Java support programs. Input to the PLCC
compiler-compiler is a single specification file with three sections that describe
the lexical, syntactic, and semantic structure of a programming language. The
PLCC compiler-compiler takes this specification and generates Java source files
that implement a self-contained interpreter for the language, including a front-
end scanner, a recursive descent parser, and an evaluation engine including
a read-eval-print loop. The specification file defines language tokens using
simple regular expressions, language syntax using straightforward BNF rules,
and language semantics as Java code segments. These code segments become

∗Copyright is held by the author/owner.
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part of Java classes, built by PLCC, that correspond to each of the BNF rules
in the syntax specification.

2 The Workshop

Participants will be asked to work in small teams so they can learn from each
other and benefit from problem-solving discussions. Each team will share a
laptop computer owned by one of the team members. The laptop will be used
only to log into a workshop-provided server that contains all of the resources
necessary to run PLCC on the workshop examples.

Teams will work through a sequence of examples and problems that illus-
trate, in turn, each of the essential parts of a language specification:

• Lexical specification examples for token recognition
• Lexical and grammar specifications for illustrating syntax recognition
• Interpretation of programs written in simple programming languages

Each example will be presented by (1) describing a worked-out PLCC ex-
ample specification that teams can test on the server; (2) proposing a similar
problem whose solution requires modification or extension of the given example;
and (3) having the participant teams implement the proposed modification on
the server by modifying and testing the PLCC specification file. These exam-
ples will be used as a springboard to illustrate how to implement language fea-
tures, including scope, functional programming, call semantics, object-oriented
programming, type systems, and logic-based programming.

3 Workshop Preparation by Participants

A laptop is not necessary to participate in this workshop. However, the
workshop requires a sufficient number of participants with laptops to allow for
putting together teams of two or three.

Workshop participants will be given access to a PLCC environment via Wi-
Fi and SSH. Participants with laptops will be asked to install an SSH client
(such as PuTTY for Windows; MacOS already has one) before attending.

PLCC requires use of a plain text editor to edit language specification files.
The workshop server environment will contain vim, emacs, and nano.

All of the PLCC workshop materials will be available on the PLCC website:
https://plcc.pithon.net.
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How Do Computer Systems Work?∗

Conference Workshop

Peter B. Henderson, Emeritus
Computer Science and Software Engineering
Butler University, Indianapolis, IN 46208

phenders@butler.edu

This workshop is for computing educators who are challenged with explain-
ing how computer systems work to a wide range of lay audiences. These might
include K-12 students, life long learners, undergraduate or graduate students,
and teachers1. For example, you have been asked by a 5th grade teacher to
explain to his/her class how computers work. Your task is to prepare an in-
teractive, engaging, fun, informative one hour presentation - perhaps like CS
Unplugged activities[1].

If you begin with an online search, maybe "how do computers work kids",
you will discover a broad spectrum of results. However, few explain how com-
puters actually work - e,g., interactions of components, how instructions are
run, how data is shared and processed, etc. This workshop will begin by pre-
senting, and discussing, various educational techniques used to explain how
computers work for various learners. As preparation, prior to the workshop,
participants will do some preliminary research, and formulate their own ideas.

“How Computers Work is very complex,” a post on a computing educational
blog, captures the challenge precisely. Even for specific groups of learners, e.g.,
4th and 5th grade students, computing educators have found this difficult. A
holy grail would be a general, scalable, and visually interactive model, with
kinesthetic activities, which is suitable for diverse audiences who are curious
about how computers systems work2. In this context, scalable means both
adaptable for different groups of learners, and extendable, that is, more ad-
vanced concepts, building on those already understood, can be introduced.
For example, adding an simple integer Arithmetic Unit to a CPU model after
a basic CPU model for simple integer I/O is understood.

∗Copyright is held by the author/owner.
1Many K-12 CS teachers don’t understand how computers work
2One inspirations is Jerome Bruner’s assertion[3] “Any subject can be taught to any one

at any age in an intellectually honest fashion if their level of development is heeded.”
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A proposed general model will be introduced, and opened for discussion.
This model has been used in presentations for Osher Life Long Learning courses
at William and Mary, and for middle school technical courses. Both were
virtual Zoom presentations due to Covid restrictions. Several in-person pre-
sentations for local K-12 classes are being scheduled prior to this workshop.
Here, student activities will include role playing (e.g., input, processing, and
output), where it is very important that the roles closely match those of the
corresponding components in actual computer systems.

Details of the model will not be given here, however, if you are interested
in learning more, including ideas for role playing, you are encouraged to watch
a 20 minute outtake from the middle school Zoom presentation[2].

Bibliography: Dr. Peter B. Henderson graduated with an Engineering PhD in
1975 from Princeton University. His academic career started in the Computer Science
Department at The State University of New York at Stony Brook in 1975. In 2000 he
accepted an offer from Butler University to establish a new department, Computer
Science and Software Engineering. He retired from Butler in 2007.

Dr. Henderson has been active in CS and SE education for many years, with
a focus mainly on promoting the importance of mathematics in CS and SE educa-
tion. He has participated in several CS and SE curriculum efforts, was editor of a
SIGCSE Inroads column "Math Counts," and a SIGSOFT Notes column "Software
Engineering Education" with Mark Ardis.

References

[1] Computer science unplugged. https://www.csunplugged.org/en/. Accessed on
December 15, 2022.

[2] How do computer systems work? video clip. https://blue.butler.edu/
~phenders/SIGCSE_Special_Projects_Grant/. Accessed on December 15, 2022.

[3] Jerome Bruner. The Process of Education, Second Edition. Harvard University
Press, 2009.
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Enhancing Computing Accessibility
Education Using Experiential Labs: A
Focus on Screen Readers and Dexterity

Impairments∗

Conference Workshop

Su Thit Thazin, Kyle Messerle, Heather Moses,
Domenic Mangano, Samuel Malachowsky, Daniel Krutz

Department of Software Engineering
Rochester Institute of Technology

Rochester, NY 14623
{st5626, klm3580, hlm8500, dm9965, samvse, dxkvse}@rit.edu

The Accessible Learning Labs project informs participants on how to prop-
erly address web accessibility guidelines, while also demonstrating the need to
prioritize accessibility in software development. In this session, an overview of
the labs will be provided, along with usage instructions and information for
adopters. This tutorial will be beneficial for a wide-range of participants in the
software engineering field who would like to gain insight into building inclu-
sive and accessible software. All project material is available on our website:
https://all.rit.edu

1 Introduction

To address the lack of accessibility education in computing, we have created
a series of systematically developed educational modules collectively referred
to as the Accessible Learning Labs (ALL). These labs provide a foundational
understanding of computing accessibility concepts and raise awareness among
participants regarding the importance of creating accessible software.

No software download or installation is necessary to use the labs; only a
web browser is required. Due to the labs’ self-contained, web-based nature and
the inclusion of all instructional materials, they enable easy integration into a

∗Copyright is held by the author/owner.
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wide variety of curricula ranging from high schools, undergraduate introductory
computer science classes to graduate courses.

This workshop will allow participants to: I) Learn about our educational
material offerings, II) Provide feedback and insight on methods to enhance
the lab experiences, and III) Share thoughts on common challenges and best
practices for incorporating the topic of accessibility in computing education.
No prior experience in accessibility-related topics will be required.

1.1 Lab Structure

Each lab aims to address one computing accessibility issue and consists of
the following components: I) Relevant background information on the topic
being addressed, II) An example application showcasing the accessibility issue,
III) An activity portion with details on how to fix the issue from a technical
standpoint, IV) Testimonials from people on their real-life experiences with
using non-accessible software, and V) A quiz where the participant is tested
on their acquired knowledge on the topic.

2 Tutorial Session Agenda

Activity 1: Introductions and initial discussion: (30 minutes) We will
give an overview of the labs, their objectives, and the components. This will
be followed by an initial discussion on the topic of computing accessibility.

Activity 2: Screen reader-focused lab: (60 minutes) This lab informs
participants on the importance of screen readers for users with visual impair-
ments, as well as properties of quality user interfaces that are optimized for
screen reader usage. Included in the lab is an activity where the user experi-
ences a series of web pages that are not screen reader friendly. The user then
learns how to address the issue on each page from a technical standpoint.

Activity 3: Dexterity-focused lab: (60 minutes) This lab introduces
students to the concept of making software accessible to users with dexterity
impairments. The exercise tasks involve the usage of a mouse and a keyboard
which aim to mimick difficulties commonly faced by a user with dexterity
impairments. The participant is then shown how to repair the cumbersome
quality of the pages according to certain WGAC guidelines.

Activity 4: Lab feedback: (30 minutes) Participants will share their
thoughts on the presented material and suggest ways to improve the labs.
This feedback will be used to shape the design of future labs.
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Reflective Curriculum Review for Liberal
Arts Computing Programs∗

Conference Tutorial

Jakob Barnard1, Grant Braught2, Janet Davis3,
Amanda Holland-Minkley4, David Reed5, Karl Schmitt6,

Andrea Tartaro7, James Teresco8
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8Siena College, Loudonville, NY 12211
jteresco@siena.edu

The ACM/IEEE-CS/AAAI curricula task force is currently developing an
updated set of Computer Science Curricula guidelines, referred to as CS2023.
Information about the task force and preliminary drafts of the Knowledge
Areas that will be included in the guidelines can be found online at http:
//csed.acm.org. To assist institutions in applying the new guidelines, CS2023
will also publish a Curricular Practices Volume. This volume will include an
article by the SIGCSE Committee on Computing Education in Liberal Arts
Colleges (SIGCSE-LAC Committee) that will focus on designing or revising CS

∗Copyright is held by the author/owner.
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curricula in liberal arts contexts. Liberal arts colleges, and smaller colleges in
general, face unique challenges when designing curricula. Small faculty sizes,
limits on the number of courses that can be required for a major and the
need for flexibility in student programs of study constrain designs. However,
these environments also provide the opportunity to craft distinctive curricula
fitted to institutional mission, departmental strengths, locale, student popula-
tions and unique academic experiences. These challenges and opportunities,
combined with the size of prior curricular recommendations, have often forced
smaller programs to assess trade-offs between achieving full coverage of curric-
ular recommendations and their other priorities.

The SIGCSE-LAC Committee has heard from many faculty that their in-
stitutional and departmental contexts have indeed complicated the adoption
of prior curricular guidelines. While the CS2013 and upcoming CS2023 rec-
ommendations provide some flexibility for curriculum designers by dividing
content into core and supplemental categories, smaller colleges still face chal-
lenges selecting content and packaging it into coherent curricula. To assist in
this process, the committee is developing guidance for effectively integrating
CS2023 as a part of the design, evaluation and revision of computer science
and related programs in the liberal arts. This guidance will encourage fac-
ulty to reflect on their programs and the role of CS2023, beginning with their
institutional and departmental priorities, opportunities and constraints. Ulti-
mately, this guidance will be presented in the committee’s article in the CS2023
Curricular Practices volume.

This session will open with an overview and brief discussion of the current
CS2023 draft. Participants will then begin working through a preliminary ver-
sion of the committees’ reflective assessment process. This process is framed
by a series of scaffolding questions that begin from institutional and depart-
mental missions, identities, contexts, priorities, initiatives, opportunities, and
constraints. From there, participants will be led to identify design principles for
guiding their curricular choices including the CS2023 recommendations. Par-
ticipants will leave the session with a better understanding of how CS2023 can
impact their programs and a jumpstart on the reflective assessment process.
Feedback on the process and this session are welcome and will be used to re-
fine the committee’s guidance prior to its publication in the CS2023 Curricular
Practices volume.
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GitKit: Teaching Git and
GitHub/GitLab Workflow
in an Authentic Context∗

Conference Tutorial

Grant Braught1, Stoney Jackson2, Karl R. Wurst3
1Computer Science
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2Computer Science and Information Technology
Western New England University

Springfield, MA 01119
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3Computer Science
Worcester State University

Worcester, MA 01602
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Version control and workflow skills and concepts are central to modern
software development, a requirement for free and open source software (FOSS)
community participation, and are in high demand [2]. Teaching tools and
concepts such as these can be more engaging and successful when done in
an authentic context, such as an existing, ongoing FOSS project [4, 1]. To
facilitate that we have developed the GitKit, where students learn and practice
git and GitHub/GitLab skills and workflows within an existing Humanitarian
FOSS (HFOSS) project.

The GitKit is an instance of what we call an HFOSS Kit. An HFOSS kit
is a snapshot of an HFOSS project’s artifacts (codebase(s), issues, documen-
tation, communications, etc.) taken at a particular point in time, packaged
with student learning activities, an instructor guide, and possibly a container-
ized development environment. Using HFOSS kits in the classroom has several

∗Copyright is held by the author/owner.
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advantages. While active HFOSS projects change and evolve over time, an
HFOSS Kit enables a stable, reusable educational experience. Student learn-
ing activities and instructor guides are written against the stable project snap-
shot thus the high cost of developing and revising activities and guides can
be amortized as they are reused across multiple semesters. Students are en-
gaged in a more authentic learning experience as they develop their FOSS skills
and concepts using using actual projects and community artifacts. The con-
tainerized development environment [3] facilitates immediate context-sensitive
feedback as students complete assignments. The instructor or the environment
can simulate community interaction.

This tutorial is intended for CS educators of all levels who wish to teach Git
and GitHub workflow in an authentic context. We will demonstrate the GitKit
– what it provides, and how it can be used in the classroom. We will expand
upon the details of the GitKit and the reasons for using it. We will also
briefly discuss our motivation for using humanitarian projects, the technical
architecture of HFOSS Kits, the tools we have developed to capture snapshots
of project artifacts, support for deploying HFOSS Kits, and our future plans.
Attendees will be provided a link to a site that contains the GitKit as well as
other existing kits, their features, suggested classes they can be used in, and
contact information for the developers.

This work was supported under National Science Foundation Grants DUE-
1225738, 1225688, 1225708, 2012966, 2013069, 2012979, 2012999, and 2012990.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
NSF.
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The development of the CS Curriculum Guidelines, CS2023, includes a
parallel and collaborative effort to provide supplemental material that supports
the guidelines. A series of peer-reviewed articles are being created by experts in
various aspects of the design and delivery of Computer Science programs. The
Computing for Social Good committee is developing an article that provides an
international perspective on Computing for Social Good in Education (CSG-
Ed). This article will include an overview of the global efforts in CSG-Ed,
description of models for incorporating CSG into curricula, including examples,
and recommendations and best practices for including CSG in curricula. This
panel will inform the CCSCNE community about the CSG-Ed effort while
also obtaining comments and suggestions about the effort from the computing
education community. During the panel session, the panelists will provide an
overview of the committee’s effort, extracts of content from the article, and
examples of research results related to demonstrating the impact of CSG-Ed.
Ample time will be allotted for discussion, questions, and suggestions by the
attendees.

∗Copyright is held by the author/owner.
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Summary

How do we ensure that the next generation of technologists creates computing
products that are accessible to people with disabilities? As Computer Science
educators, this means raising students’ basic awareness and literacy about Ac-
cessibility principles and teaching more advanced software design principles so
that students are empowered to design hardware and software products that
can be used effectively by people who have difficulty reading a computer screen,
hearing computer prompts, or controlling the keyboard, mouse, or touchscreen,
and more. Accessibility is directly relevant to any course involving human-
facing applications such as web and mobile development, software engineering,
and human-computer interaction.

∗Copyright is held by the author/owner.
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Furthermore, the landscape of Accessibility in CS education is increasingly
active. Accessibility is emerging as a considered topic in accreditation require-
ments and ACM recommended guidelines. A growing list of opportunities can
be found relating to faculty grants, faculty fellowship programs, research and
development, study-away opportunities for students, employer-hosted student
events, various types of academic-industry collaborations, and more.

This panel will represent numerous perspectives of Accessibility subject-
matter experts both within the discipline as well as in the tech industry. Topics
will include curriculum, pedagogy, WCAG standards, pointers to resources,
opportunities, and more. After the panel discussion and subsequent Q&A, we
expect the audience of faculty will have a new or enhanced understanding of
Accessibility’s importance in CS education and have information to pursue the
topic further in making future contributions to this space.

Panel

The composition of the panel will include a CS Professor and Associate Chair,
a CS Professor Emeritus, a representative from industry to offer an employ-
er/practitioner perspective, and a representative from government who can
speak to broader support behind Accessibility in CS education initiatives.

Structure

The panel will consist of a 75-minute program with four speakers participating
in a moderated discussion. The Moderator will summarize panel talks for the
audience and have two to three planned questions to start the audience discus-
sion. Twenty minutes will be provided for audience questions and answers.

Panelists

Stephanie Ludi is a professor and Associate Chair in the Department of Com-
puter Science & Engineering at the University of North Texas. She earned her
Ph.D. in Computer Science from Arizona State University. Her research inter-
est in accessibility involves refactoring software to maximize access by visually
impaired students and programmers. In addition to her work in accessibility,
Stephanie conducts research in Software Engineering education. Stephanie has
led efforts to increase inclusion in K12 Computer Science and robotics cur-
ricula for students with visual impairments via curriculum redesign and tool
support. In addition to curriculum support, Dr. Ludi’s work involves accessible
tool support in areas such as robotics and programming with Lego Mindstorms.
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Other projects include refactoring block-based programming tools for accessi-
bility and designing user interface features to support code navigation and code
understanding for blind programmers.
Richard E. Ladner is a professor emeritus in the Paul G. Allen School of
Computer Science and Engineering at the University of Washington. He earned
his bachelor’s degree in mathematics at St. Mary’s College of California in
1965 and his PhD in mathematics at the University of California, Berkeley in
1971. He has been on the faculty of the University of Washington since 1971.
Although he is not teaching anymore, he continues his research in accessible
computing. He started his career in theoretical computer science, but has
pursued accessibility research for the past 20 years. Since 2006 he has led
AccessComputing, a National Science Foundation funded project with the goal
of increasing the participation of students with disabilities in computing fields.
In 2014, he joined with Andreas Stefik to create AccessCSforAll which works
on developing accessible computer science educational technology and helps K-
12 computer science teachers include students with disabilities in their classes.
He is the winner of a number of awards for his advocacy work including the
2020 National Science Board Public Service Award, the 2015 Richard A. Tapia
Achievement Award for Scientific Scholarship, Civic Science and Diversifying
Computing, the 2008 A. Nico Habermann Award, and the 2004 Presidential
Award for Excellence in Science, Mathematics and Engineering Mentoring. For
his research he is the winner of the 2016 Award for Outstanding Contributions
to Computing and Accessibility and the 2014 SIGCHI Social Impact Award.
He was a Fulbright Scholar and a Guggenheim Fellow. He is a Fellow of the
ACM, IEEE, and AAAS.
Peter Wu is a Principal Software Engineer at Microsoft. He has worked at
Microsoft for 26 years on many products as both a Software Engineer and
Program Manager and as both an individual contributor and manager. He has
been focusing on making PowerPoint a more accessible application for the past
7 years.
Robert Domanski, Ph.D., is the Director of Higher Education for the New
York City Mayor’s Office of Talent and Workforce Development and its Tech
Talent Pipeline industry partnership. Rob oversees the ”CUNY 2x Tech” ini-
tiative – a $20 million dollar investment in the City University of New York
(CUNY) to double the university’s number of Computer Science graduates
within 5 years and connect those graduates to jobs in the field. Additionally,
Rob oversees the City’s tech Academic Council, working with the Presidents
and Provosts of NYC-based colleges and universities to determine how best to
align Mayoral goals with the needs of the City’s academic institutions. Beyond
his work in government, Rob has also taught Computer Science for nearly 20
years at Kean University and the College of Staten Island. His academic re-

27



search focuses on Digital Government, Internet Governance, and the Politics
of Algorithms. He has most recently published on the specific subtopics of
Algorithmic Bias and Artificial Intelligence from technical, policy, and ethical
perspectives. Recently, he also helped launch the CUNY STEM Pedagogy In-
stitute (SPI) which provides faculty with various supports to promote inclusive-
and employment-focused pedagogy in CS classrooms. In 2021, Rob received
the prestigious Hayes Innovation Award in recognition of public service towards
New York City’s pandemic response.
Alexandra Feldhausen (moderator) is the New York City Tech Talent Pipeline’s
(TTP) Director of Insights and Engagement. She oversees the team’s research
and analysis to drive better understandings of programmatic outcomes, assess
gaps across the NYC tech education ecosystem, and evaluate ongoing industry
needs. In addition to this work, she leads the CUNY CS Career Develop-
ment Council which supports Best Practices in tech career development across
CUNY and coordinates tech industry engagement through TTP’s volunteer
network. Alexandra was a Fulbright Fellow and received a master’s degree
from the School of International and Public Affairs at Columbia University.
Her background and research includes an internal audit of gender equity and
mobility at the United Nations, field work on worker’s rights in Brazil, and
reporting on NYC labor, transportation, and homelessness at WNYC radio.
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Abstract

This paper provides options for varying the details of certain topics
from semester to semester in a data structures course that focuses—at
least to some extent—on the implementation of data structures. The
data structures considered are variations on balanced binary search trees
and mergeable heaps (priority queues).

1 Introduction

Congratulations! You’ve just finished teaching Data Structures for the first
time, and it went pretty well. As you begin to plan your second iteration, you
have some ideas for how to teach certain topics better, but you’re not sure
whether to leave everything else exactly the same or to make changes even to
parts of the course that seemed to go well. Here are some suggestions for some
easy changes to make and why you might want to.

Curriculum design often operates at two levels of scale, the collection or
sequence of topics that make up a course and the collection or sequence of
courses that make up an academic major. But there is another scale less often
discussed: planned variations across multiple semesters or years of the same
course. We consider such variations for a Data Structures course.

Data Structures courses differ across a number of dimensions, such as pro-
gramming language used, how much emphasis is placed on object-oriented pro-

∗This paper is authored by an employee(s) of the United States Government and is in the
public domain. Non-exclusive copying or redistribution is allowed, provided that the article
citation is given and the authors and agency are clearly identified as its source.

†The views expressed in this article are those of the authors and do not reflect the official
policy or position of the Department of the Army, DOD, or the U.S. Government.
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gramming, and the balance between designing and/or implementing data struc-
tures versus using data structures provided by some language or library. De-
spite these differences, certain data structures are extremely commonly taught,
including linked lists, hash tables, binary search trees, and heaps. We will focus
on the latter two.

Both binary search trees and heaps offer a similar opportunity. After an
introductory version for which there is very little significant variation (un-
balanced binary search trees and the standard heap data structure[24]), it
is common—at least in courses that don’t focus mainly on the use of data
structures from standard libraries—to progress to a more efficient successor
(balanced binary search trees or heaps with an efficient merge). Pedagogically,
these more efficient successors serve as useful vehicles for practicing working
with non-trivial invariants as well as illustrating analysis techniques, especially
those related to O(log n) running times. However, for both binary search trees
and heaps, there are many possible choices for this successor that work essen-
tially equally well, such as AVL trees[1] or red-black trees[10] (as successors for
unbalanced binary search trees), or leftist heaps[7] or binomial heaps[23] (as
successors for standard heaps).

We suggest varying the choice of successor with each offering of the course,
moving systematically through a cycle of choices several years long. This can
offer a number of advantages, including decreased opportunities for cheating
and increased enrichment for the teaching staff (including teaching assistants,
if any).

On the other hand, teachers assigned to a Data Structures course may not
be experts in data structures and may not be familiar with a wide variety of
alternatives to choose from. In this paper, we provide a curated selection of
such choices and also discuss a number of “mix-ins” that can be sprinkled on
each main choice.

2 Successors for Binary Search Trees

This section describes eight potential successors to unbalanced binary search
trees. For each data structure, we describe the basic ideas—especially any
invariants beyond the usual ordering invariants—and include citations where
more complete details can be found.

For all of the data structures below, the search, insert, and delete operations
run in O(log n) time, either in the worst case (for the first five) or in the
expected case (for the last three).

For the first five alternatives (the ones with worst-case bounds), deletion
is substantially more complicated than insertion and may not be worth the
class time it would take to present. However, for the last three (the ones with
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expected bounds), deletion is surprisingly easy. One tradeoff is that many
students may not have enough background in probability to understand the
analysis behind those expected bounds.
Here are the data structures:

• AVL trees[1][12, pp. 459–464]: AVL trees satisfy the invariant that,
for every node, its left and right subtrees differ in height by at most
one. When that difference becomes two as the result of an insertion or
deletion, the invariant is restored with either a left or right single rotation
or a left or right double rotation.

• 2-3 trees[2]: 2-3 trees contain both 2-nodes (binary nodes with one key
and two children), and 3-nodes (ternary nodes with two keys and three
children). Because of the ternary nodes, these trees are not strictly binary
search trees. A 2-3 tree is perfectly balanced in the sense that all paths
from the root to a leaf are the same length. When an insert causes a
leaf to be placed on a new level, balance is restored either by growing a
2-node into a 3-node or, when a 3-node would otherwise need to grow
into a 4-node, by splitting the would-be 4-node into two 2-nodes with a
2-node parent. In the latter case, the changes continue to propagate up
the tree.

• Red-Black trees[10][15][6, Chp. 13]: In a red-black tree, nodes are
colored either red or black, with the invariants that (1) no red node has
a red child, and (2) every path from the root to a leaf contains the same
number of black nodes. When an insert causes a red node to have a red
child, this can be fixed by a combination of rotations and re-coloring.

• AA trees[3, 20]: An AA tree is a variation of a red-black tree where
a left child cannot be red. This limitation makes AA trees simpler to
implement than regular red-black trees. An AA tree can also be viewed
as a 2-3 tree where a 3-node is encoded as a black node with a red right
child.

• Weight-balanced trees[8]: In a weight-balanced tree, no subtree can
have a weight smaller than a fixed fraction of the weight of its parent
tree, where the weight of a tree is its size + 1. (The +1 makes it easier to
handle empty subtrees.) One advantage of weight-balanced trees is that
the size information stored for balancing is also independently valuable
to users of the data structure.

• Treaps[4]: A treap is binary search tree where every node has both a
key and a randomly-chosen priority. The nodes of a treap are ordered by
keys in the normal search tree ordering, and also ordered by priority in
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the normal heap ordering (a child has a smaller priority than its parent,
but may have a larger or smaller priority than its sibling). The benefit of
treaps is that they are unusually easy to implement (especially delete!),
but the tradeoff is that the running time of the standard operations is
O(log n) expected time rather than O(log n) worst-case time.

• Skip Lists[17][13, Chp. 13]: A skip list is not a binary search tree, but
serves a similar purpose. A skip list is similar to a linked list where
every node has a pointer to its successor. However, a node in a skip list
has multiple pointers to successors at different distances. These extra
pointers allow an algorithm to skip ahead in the list. Like treaps, the
running time of the standard operations in skip lists is O(log n) expected
time rather than worst-case time. Deletions in skip lists are unusually
straightforward.

• Zip trees[21]: A zip tree is a binary search tree that is isomorphic to a
skip list, with algorithms that more closely resemble the operations on
skip lists than the normal operations on search trees. In particular, zip
trees replace the rotation operations used by most balanced binary search
trees with operations for merging (zipping) and unmerging (unzipping)
paths through a tree. Like treaps and skip lists, the running times of the
standard operations are O(log n) expected time rather than worst-case
time and deletions are unusually straightforward.

Important: The data structures above were ordered to emphasize common-
alities between the various alternatives. This order should not be taken as
a recommended order to use the data structures in successive offerings of a
course. For use in a course, it is probably better to choose less related data
structures in successive offerings.

2.1 Mix-ins

Once you have chosen a particular data structure, such as AVL trees, there
are a number of smaller decisions that provide further sources of variation. We
call these “mix-ins”, because you can (mostly) mix any combination of these
into the main data structure. Each choice will have small or large effects on
the implementation.

• Mutable or immutable: Many courses will likely default to mutable
implementations. However, all but one of these eight data structures can
easily be made immutable using path copying[18] because path copying
works very well on trees. The exception is a skip list, which is represented
as a dag rather than a tree. But a zip tree can be viewed as the tree-
version of a skip list and can easily be made immutable.
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• Header node: One common use of a header node is to keep track of the
current root of a mutable tree. That way, even if a particular operation
makes a different node the new root, any part of the code that uses the
header node can “see” the change. This use of header nodes typically does
not apply to immutable trees because each different version of the tree
has a different root. However, even immutable trees might use a header
node to hold overall information about the tree, such as the size.

• Parent pointers: In a binary tree, a node typically includes pointers
to its left and right children and may or may not also include a pointer
to its parent. Parent pointers often allow operations like search, insert,
and delete to be implemented with loops instead of recursion, with search
using one downward loop and insert/delete using two loops: a downward
loop followed by an upward loop. Note, however, that parent pointers
are almost entirely incompatible with immutable data structures.

• Key vs. key-and-value: Almost any binary search tree can be adapted
to represent either a set or a map. For a set, each node would store a
key; for a map, each node would store a key together with an associated
value.

• Lazy delete[22, p. 41]: A simple way to implement deletion in almost
any binary search tree is to set a flag on a node whose element is being
deleted, but to otherwise leave the node in the tree. Navigation through
a flagged node goes left or right in the usual way, but if the key in the
node matches the search key, the search is considered to fail. This scheme
works very well as long as there are relatively few such deleted nodes in
the tree, but degrades if there are too many deleted nodes. One way
to handle this situation is to rebuild the tree whenever the fraction of
deleted nodes exceeds some threshold, such as 50%. The rebuilding step
takes O(n) time to remove all the deleted nodes and usually restructures
the remaining nodes to be perfectly balanced. Despite the fact that the
rebuilding step takes O(n) time, the delete operation still runs in O(log n)
amortized time. (However, this analysis does not apply for immutable
trees.)

• Leaf trees[12, p. 486][11]: All keys (and values, if any) are stored at the
leaves of the tree. Interior nodes contain keys that are used for navigation
only—a key stored in an interior node may or may not also appear in a
leaf node. For example, inserting 3 into a singleton leaf tree containing
1 might result in a tree with 1 and 3 at the leaves and 1 at an interior
node. A search method would go left at an interior node if the search
key was less than or equal to the element at the node. An advantage of
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this scheme is that deletion is greatly simplified because deletion always
involves a leaf node.

3 Successors for Standard Heaps

This section describes five potential successors to the standard heap data struc-
ture for implementing priority queues. Unlike the standard heap data struc-
ture, each of these successors supports an efficient merge operation and is
implemented with nodes and pointers.

All of these data structures share the same ordering invariant: an item in a
parent node has higher or equal priority to items in its children, where higher
priority means a larger value in a max-heap or a smaller value in a min-heap.
Items in sibling nodes have no implied priority ordering with each other.

• Leftist Heaps[7][12, pp. 149–150]: A leftist heap is a heap-ordered bi-
nary tree where every left subtree is larger than its corresponding right
subtree, either in height[7, 12] or in size (number of nodes)[5]. The
height/size is stored in each node, and whenever a right sibling becomes
larger than its left sibling, the two subtrees are swapped. Two leftist
heaps are merged by merging the rightmost paths of the two trees (as
if they were sorted lists) and swapping the children of any node whose
right subtree becomes larger than the left subtree as a result of this
merge. The min (or max) operation runs in O(1) worst-case time, and
the insert, merge, and deleteMin (or deleteMax) operations run in
O(log n) worst-case time.

• Maxiphobic Heaps[14]: A maxiphobic heap is a heap-ordered binary
tree where every subtree stores its height or size. When two heaps are
merged, the root with the higher priority becomes the new root. Of the
three remaining trees (the left and right subtrees of that root plus the
other tree being merged), the two smaller trees are merged and become
one child of the new root with the larger tree becoming the other child
of the new root. The running times of the major operations are the same
as for leftists heaps.

• Skew Heaps[19][13, Chp. 6]: A skew heap is again a heap-ordered binary
tree, but, unlike leftist or maxiphobic heaps, a node in a skew heap does
not store its height or size. The merge operation is similar to the merge
operation of leftist heaps except that the left and right children of every
node in the two rightmost paths are swapped during the merge instead
of only swapping when the right child becomes larger than the left. The
running times of the major operations are the same as for leftist heaps
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except that the bounds for insert, merge, and deleteMin/deleteMax
are amortized bounds rather than worst-case bounds.

• Binomial Heaps[23][13, Chp. 7]: A binomial heap (also known as a
binomial queue) is a collection of binomial trees where each tree has a
unique rank. A binomial tree of rank k is a node with k subtrees of
ranks k − 1 to 0. A binomial tree of rank k has size 2k, creating a
close correspondence between a binomial heap and the binary number
representing the size of the heap. Insertion in a binomial heap is similar
to incrementing a binary number and merging two binomial heaps is
similar to adding two binary numbers. The running times of all the major
operations are O(log n) worst-case time, but the min (or max) operation
can easily be improved to O(1) worst-case time. For mutable binomial
heaps, a closer analysis improves the running times of insert and merge
to O(1) amortized time.

• Pairing Heaps[9][13, Chp. 7]: Pairing heaps are fast and relatively
easy to implement, but are quite difficult to analyze[16]. A pairing heap
is implemented as a heap-ordered multi-way tree, often using the first-
child/next-sibling representation to make it a binary tree. The insert
and merge operations add the the tree with the lower-priority root as the
new first child of the other tree’s root. The deleteMin operation removes
the root and merges its children in two passes: the first pass merges the
children in pairs from front to back, and the second pass merges the
results from the first pass from back to front.

3.1 Mix-ins

Some of the mix-ins for binary search trees still apply to the varieties of heap
structures discussed here, sometimes with minor differences.

• Mutable or immutable: Leftist heaps, maxiphobic heaps, and bino-
mial heaps can be made either mutable or immutable, but skew heaps
and pairing heaps should be considered mutable-only (at least at the
undergraduate level) because the amortized bounds of skew heaps and
pairing heaps are problematic as immutable data structures.

• Header nodes: Because merge combines two different heaps, care must
be taken at the end of a merge to reset one of the two header nodes to
be empty (if header nodes are being used).

• Parent pointers: If either delete or decreaseKey (below) are to be
supported, parent pointers will likely be necessary.
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• Key vs. key-and-value: Either approach can be used with any of these
heaps.

• Lazy delete: See delete below.

• Leaf trees: Not useful for heaps.

Heaps introduce several extra potential mix-ins:

• Access to the minimum (or maximum) element: Because a bi-
nomial heap involves multiple trees, it takes O(log n) time to find the
min (or max). This can be reduced to O(1) time by explicitly tracking
the overall minimum (or maximum) element. (The other kinds of heaps
above already support finding the min/max in O(1) time.)

• Delete: Some heaps support an operation to delete an element that is
not the min/max. However, because heaps do not support searching for
an element, such an operation typically requires returning a handle to
the new node whenever a new element is inserted. That handle then pro-
vides immediate access to the desired node. Working with these handles
typically forces the implementation to be mutable and to support parent
pointers. (If lazy delete is used, parent pointers might not be required.)

• DecreaseKey: Some heaps support an operation to increase the priority
of an existing node. This is used with min-oriented heaps by Dijkstra’s
algorithm, where increasing the priority means decreasing the key. Like
delete, supporting decreaseKey typically involves handles and forces
the implementation to be mutable and to support parent pointers.

4 Conclusion

We have presented a curated selection of data structures for use in a data
structures course as follow-ups to the unbalanced binary search trees and stan-
dard heaps that are studied in most such courses. Rotating between the various
data structures described here provides variety across successive offerings of the
course. This variety will largely be invisible to students within a single offering,
but nonetheless provides at least two benefits across multiple offerings:

• Enrichment: Teaching staff—including TAs—can benefit from exposure
to different data structures than what they learned when they were stu-
dents in a data structures course.

• Reduction in Cheating: With eight variations on binary search trees
and five variations on heaps, it can easily be multiple years between
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repetitions of the same base data structure. Factor in mix-ins that have
a significant effect on the code and it might be a decade between exact
repetitions. The mix-ins also make it substantially harder to find exact
code on the internet. Of course, there is no silver bullet; students can
still cheat, but if they do, it is more likely to be from somebody else in
the same semester, which is easier to detect compared to copying from
an earlier semester or from code on the internet.
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Abstract

Twoville is a platform for making physical objects using both code
and the mouse. The designer writes code to give the object its overall
structure but then uses the mouse to manipulate the drawing directly.
The code editor and drawing canvas are linked so that changes in one
view are immediately visible in the other. Special care is taken to pre-
serve the designer’s original expression structure when parameters are
manipulated. The output of the program is a scalable vector graph-
ics file, which is sent to a fabrication device and turned into a physical
object. This experience report describes the core values that motivate
Twoville’s design, explores its bidirectional editing algorithm, and offers
some examples of how it has been used in summer camps and workshops
in the authors’ local community.

1 Introduction

Computational making is the use of computational and mathematical thinking
in the design and fabrication physical objects. Designers who engage in com-
putational making quantify spatial properties, describe geometric processes,
model repeating patterns, and define objects in terms of abstract parameters.
They use code to iteratively shape their objects on a computer, and then sub-
mit their design file to a fabrication device. The result is a physical artifact.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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Figure 1: The Twoville environment showing a lightning bolt icon programmed
as an ungon, which is a polygon with rounded corners. The code editor on the
left is linked to the drawing canvas on the right. Changes made in one view
are immediately reflected in the other.

A considerable amount of digital design software is driven purely by the
designer’s aesthetic tastes. A curve is smoothed out until it feels right. A
box is nudged to be nearer to its neighbor. At the other end of the spectrum
of design tools are general-purpose programming languages. Such languages
place cognitive load on the designer to mentally interpret the actions of the
code and visualize the result. In this paper we introduce Twoville, a design
tool that sits in the middle of this spectrum. It combines a code editor with
an interactive drawing canvas, as shown in Figure 1.

The Twoville editor supports both indirect manipulation of shapes through
code and direct manipulation via the mouse. When the designer runs the code,
the editor and canvas content are linked together. When the user moves the
cursor in the text editor, the corresponding element in the drawing canvas
is selected, and its direct manipulation handles appear. The user drags on
these handles to alter positions, lengths, and angles. The shape is updated
immediately in both the canvas and the code editor. When the code behind
a spatial property is a complex expression and not just a literal value, the
original expression structure is preserved. For example, if the rotation handle
in Figure 1 is dragged, the value of variable pit is updated on line 1.
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2 Core Values

The syntax, semantics, and user interface of Twoville are shaped by the follow-
ing core values.

Be explicit. The function call circle(5, a, 7.5), as might be used with
many drawing libraries, is implicit. The designer must hold tacit knowledge of
the drawing library to understand the significance of the positional parameters.
In Twoville, shape parameters are always named. For example, to make a circle,
the designer writes this Twoville code:

circle
color = :black
center = [5, a]
radius = 7.5

The indentation indicates that these assignments are applied to properties of
the receiver identified at the start of the block. More complete examples are
shown in Figure 2.

Encourage exploration of parameter spaces. The first iteration of a de-
sign is likely built out of numbers that the designer chooses viscerally. The
cost of editing these values should be as low as possible, and changes should
produce coherent and immediately visible effects. Iterative refinement helps
designers visually explore numerical relationships and develop flexible param-
eterizations. Twoville allows parameters to be manipulated via mouse events
in the drawing canvas.

Support linked views. Editing a design only through text is indirect. Edit-
ing a design only through the drawing canvas is laborious and opaque. Twoville
offers both algorithmic expressiveness and aesthetic sensibility by linking the
code editor and drawing canvas together. Changes in one view are immedi-
ately seen in the other. In some design tools, the code generated by actions
on the drawing canvas quickly becomes incomprehensible to the designer. To
ensure that the designer maintains a cognitive grip on the code, the Twoville
drawing canvas only supports actions that edit existing expressions. No actions
generate new code structures.

Accommodate the ergonomics of small screens. Young learners tend to
access educational software through web browsers on tablets or budget laptops
issued by schools. These devices don’t offer a lot of screen space. Twoville
keeps the code editor and drawing canvas visible at all times. The language
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rectangle
center = [0, 0]
size = [6, 8]
color = :black

circle
center = [0, 4]
radius = 3
color = :black

rectangle
center = [0, -6]
size = [1.5, 4]
color = :black

circle
center = [0, -8]
radius = 0.75
color = :black

(a) Popsicle

x = 2
xx = 2 * x
xxx = 3 * x
path
stroke
color = :black
weight = 1

go.position = :zero
repeat 5
line.offset = [xxx, 0]
line.offset = [0, xxx]
line.offset = [-xx, 0]
line.offset = [0, -x]
line.offset = [x, 0]
line.offset = [0, -x]
line.offset = [-xx, 0]
line.offset = [0, xxx]

(b) Frieze

Figure 2: Two Twoville programs. The popsicle is a Frankenshape, a composite
shape made out of simpler primitives. It requires mathematical understanding
to create, but not deeper algorithmic knowledge. The frieze pattern, on the
other hand, employs variables, repetition, and relative movement.

grammar minimizes the length of lines to reduce horizontal overflow and keep
code visible. For example, in the circle example above, each parameter assign-
ment is required to appear on its own line. This avoids the long lines that may
result from named parameters.

Bridge the virtual and physical divide. Many tools for learning compu-
tation are entirely virtual. The user interacts with a screen to form an artifact,
like an animation or webpage, and the artifact is only ever viewed on that same
screen. The making process is disembodied. In Twoville, the artifact is turned
into a physical object that has a life and utility independent of computers.
Common artifacts include vinyl stickers, acrylic or plywood sculptures, deco-
rated T-shirts, and embroidered greeting cards. These artifacts are fabricated
with tools like vinyl cutters, laser cutters, pen plotters, and embroidery ma-
chines. Twoville serves all of these tools by generating scalable vector graphics
(SVG) files, a format commonly supported by these tools’ control software.
Two-dimensional fabrication devices are generally faster than 3D printers and
CNC routers, and speed is important when serving a classroom full of students.
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Serve the local community. Twoville is first and foremost a vehicle for
bringing humans together in creative computational activity in libraries or
makerspaces. The authors have used it in numerous workshops and summer
camps for youth in their local community. Its development follows the needs
of the teachers and students using it. It is not meant to be a platform that
exists apart from a nearby human teacher.

3 Implementation

Twoville runs in the web browser. It builds extensively on the SVG standard
to render the drawing canvas and export design files for fabrication devices. It
employs a custom lexer and parser because intimate knowledge of the source
code is needed to link the code editor and drawing canvas. Programs are stored
locally using the browser’s local storage API.

The most interesting aspect of Twoville’s implementation is how it supports
bidirectional editing. When the designer drags on a manipulation handle, the
mouse action is used to update both the underlying SVG element and the code
that produces it. One possible approach to updating the code is to replace
the right-hand side of the property assignment with a new value derived from
the mouse position. For example, the assignment distance = 2 * x could be
effectively updated to distance = y, where y is the mouse’s distance from the
starting position. But such a change would violate the syntactic structure of
the designer’s original expression. Instead, Twoville preserves the structure as
much as possible to ensure that the designer retains a sense of ownership of
the code.

The first step in updating the source code is to determine what the new
property value p′ should be. If the manipulation handle is linked to a distance,
then p′ is the distance between the mouse’s current location and the starting
location. If to an angle, then p′ is derived from the mouse’s angular displace-
ment. If to an absolute position or relative offset, then p′ is derived from the
mouse’s Cartesian location.

The second step is to inspect the expression that produced the original prop-
erty p. The bidirectional editing algorithm recognizes the following syntactic
forms when deciding how to update the code:

1. p = variable. The right-hand side of the assignment is not modified.
The algorithm instead recurses to the most recent definition of the vari-
able and updates its source expression. Updating this expression will
indirectly modify other properties that depend on this same variable.

2. p = a ⊕ b, where ⊕ is a binary operator that can be inverted. The
algorithm first decides whether to update expression a or b. The selection
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process favors updating literal numbers, as these likely represent “magic”
values that the designer is wishing to explore via direct manipulation. If
both operands are literals, the rightmost is selected. The designer may
lock an operand from being selected by surrounding it with parentheses.
Once an operand has been selected, the mouse position is used to deter-
mine the desired target value p′. The operation is inverted to solve for
the new operand value. For example, if the operand a is selected, then
its new value a′ is computed as follows:

p′ = a′ ⊕ b

p′ 	 b = a′ ⊕ b	 b

p′ 	 b = a′

3. p = f(. . .), where f is an operation like a function call or mathematical
operation that cannot be easily inverted. The designer’s operation is not
replaced, but an offset ∆ is added to the right-hand side. Its value is
solved for as follows:

p′ = f(. . .) + ∆

p′ − f(. . .) = ∆

4. p = number. The right-hand side is a literal value that cannot be broken
down further. It is replaced by a literal representation of p′.

Bidirectional editing requires considerable runtime support. Each linked
expression must be retained in its unevaluated form so that it can be classified.
The values of the operands must be retained to solve for the modified values.
Each variable assignment must retain the expression that gave it its value.

Some code structures present editing challenges for which the authors have
not yet found satisfactory solutions. Loops, in particular, are problematic in
that they generate multiple properties and handles that link to the same source
expression. A manipulation of one handle may alter the code in undesirable
ways for the other instances.

4 Teaching Experiences

Twoville has been used in workshops and summer camps in the authors’ local
community for several years. Thus far it has only been informally evaluated.
Middle school girls who attended an hour-long Twoville workshop completed
a non-rigorous followup survey administered by the authors’ university. To
the question “What was the coolest thing you learned in this workshop?”, they
offered this sample of responses:
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• “how to rotate shapes with code”
• “That it is super easy to create fun shapes & images with coding & then
you can print them super quickly.”

• “I didnt know that stickers were made with so many intriate shapes”
• “I can make my own waterbottle stickers!”
• “I loved customizing a sticker with code!”
• “How you can make shapes with a grid”
• “Coding isn’t that hard and its very fun”
• “The coolest thing that I learned during this workshop is that you can
code in lots of numbers and make a pretty design.”

• “Finding out the code and effort that goes into this.”
• “Codeing”

To the question “What did you like best about the activity?”, they offered this
sample of responses:

• “seeing my finished sticker”
• “it was very customizable so everyone can pick & create something that
suits them.”

• “I like how we had freedom to make whatever we wanted into a sticker”
• “ALL of it”
• “I got my own sticker!”
• “You got to choose and make a ton of designs.”
• “That I got to make my own sticker.”
• “That we got our own stickers”
• “Designing a sticker”
• “making my own design”
• “I liked being able to make my own sticker that I can keep!”
• “That we got to design our own sticker”
• “Coding.”
• “getting a sticker”

They frequently invoked the notion of creative ownership by using the words
my, our, own, choose, and freedom. They also found the physical artifact
compelling.

Following are descriptions of several activities the authors have developed
that lead to satisfied students and interesting physical objects.

4.1 Frankenshape Stickers

The introductory activity of every workshop and camp builds on participants’
prior knowledge of rectangles and circles. Participants design a Frankenshape,
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rectangle
corner = [50, 50]
size = [3, 2]
color = :black

circle
center = [50, 51]
radius = 1
color = :black

circle
center = [52.75, 52]
radius = 0.25
color = :black

rectangle
corner = [52, 48.5]
size = [1, 1.5]
color = :black

circle
center = [52, 51.4]
radius = 0.25
color = :white

(a) Twoville Program

(b) Sketch (c) Vector Image

(d) Vinyl Sticker

Figure 3: Animal Head

which is a complex shape built out of simpler shapes. In early outreach events,
the instructors began by demonstrating how to piece together a cloud or a slice
of bread from rectangles and circles. After seeing participants flounder under
the combined weight of math and coding, the instructors inserted a precod-
ing activity. Before Twoville is shown, the instructor demonstrates drawing
a Frankenshape on graph paper and revisits the Cartesian coordinate system.
Participants then design their Frankenshape on their own graph paper, label-
ing the coordinates and lengths. By the time they open Twoville, writing the
program feels more like translating than coding from scratch. Examples of
Frankenshapes are shown in Figures 2a and 3.

4.2 Paper Sculptures

Twoville supports many shapes beyond the circles and rectangles used in the
leading Frankenshape activity. These include polygons, polylines, mosaics for
stained-glass window effects, text, piecewise curves, and geometric nets. The
last of these are flattened polyhedra. Fold lines are scored rather than cut by
the cutting tool to produce crisp bends. Tabs are automatically inserted by
Twoville on marked sides so that the shape can be glued back into a solid. Most
shapes may be described through either Cartesian or turtle geometry. They
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path
stroke
color = :black
weight = 0.5

turtle
position = :zero
heading = 0

repeat 5
curl
degrees = 180
radius = 10

turn.degrees = -108
back
turtle
position = :zero
heading = 90

repeat 5
walk.distance = 12
fly.distance = 8
turn.degrees = 72

(a) Twoville Program

(b) Vector Image

(c) Paper Sculpture

Figure 4: Lobed Dodecahedron

can be transformed and mirrored. Figure 4 shows the versatile path command
which is used to trace out a pentagonal path. Each side of the pentagon is
not a straight line but a half-attached semi-circle. Twelve of these shapes slide
together to form a self-locking dodecahedron.

4.3 Knot Design

Mathematical knots seem like an ideal fit for programmatic drawing. They are
aesthetically pleasing, culturally significant, and subtly algorithmic. In early
incarnations of these workshops, the authors showed participants completed
knots and challenged them to reverse engineer what they saw. The results were
generally disappointing. Students struggled to identify the points of repetition
and failed to accurately relate the lengths of stretches of the knot. In more
recent workshops, the authors have pivoted to a different precoding activity:
forward engineering with constraints. Participants are given a pile of paper
tiles as shown in Figure 5a. They piece together the tiles to form a knot. Once
their tiles form a closed curve, they open up Twoville and walk the curve using
turtle geometry. This activity has been used to create the plywood maze and
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(a) Vector Image
(b) Woodcut Maze

(c) Embroidered Card

Figure 5: Knotwork

embroidered greeting card shown in Figure 5.

4.4 T-shirts

Most participants in Twoville events have been delighted to design and take
home a vinyl sticker. This is good because that’s about all there’s time for in
an hour-long workshop. Participants in the week-long summer camps, which
permit more intensive projects, have exhibited a deeper degree of satisfaction
in making their own T-shirts. They create a design in Twoville and cut it out
of vinyl. They keep the positive image as a sticker, but apply the negative
image as a stencil to a blank T-shirt. They then spread fabric paint inside the
stencil. The shirt dries after a day or two, and the partipants head home with
a wearable memorial of their creative coding endeavors. An example T-shirt
design and modeled T-shirt are shown in Figure 6.

5 Related Work

The prior work that has informed the development of Twoville can be clustered
into three main categories: computational making, programming languages for
fabrication, and direct manipulation in user interfaces.

5.1 Computational Making

Rode et al. [14] define computational making as the integration of computa-
tional thinking and several making-related activities and skills, namely “aes-
thetics, creativity, construction, visualizing multiple representations, and un-
derstanding materials.” Learners who engage in computational making inte-
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(a) Vector Image

(b) Painted T-shirt

Figure 6: Bird T-shirt

grate different kinds of thinking, including virtual and physical, algorithmic
and aesthetic, and abstract and concrete. Jacobs and Buechley [8] discuss sev-
eral advantages that computational design systems provide, including precision
and automation, generativity and randomness, and parameterization.

Chytas et al. [5] held a series of workshops on parametric design and ana-
lyzed the participants’ OpenSCAD [13] and BlocksCAD [2] programs to under-
stand the how parametric design contributes to the learning of programming.
Half of the projects did not include any loops, and very few used conditional
statements. These low frequencies can be explained to some degree by a bias
toward novice programmers in experimental environments. The author has
also found that many interesting objects can be made without flow control.
Not every programming language feature is important in the initial stages of
computational making.

A considerable number of projects have engaged learners in computational
making via programmable textiles [14, 3, 11]. In some of these projects, the
constructed object is made of two distinct elements: a programmable embedded
system and a physical housing, like a garment of clothing or a puppet. With
Twoville, the physical artifact is itself the product of the computation. Once
fabricated, the object is no longer tied to a computer.

Other textile projects allow designers to program the designs themselves.
Yu and McCann [17] describe an interface that allows users to see the connec-
tion between lines of code and their associated stitches in a visualization of a
programmed knitting pattern. Twoville offers a similar linked editor. When
the cursor is placed in the code, the corresponding component of a shape is
highlighted in the canvas and can be edited visually.
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5.2 Programmatic Fabrication

A growing but small number of programming environments have been devel-
oped for creating physical artifacts. Some tools confine the design space to two
dimensions. The FlatCAD system of Johnson [10], for example, is used to pro-
grammatically trace out flat shapes that can be laser-cut and assembled into
more complex objects. Turbak et al. [16] describe two blocks languages for gen-
erating design files that can be cut or engraved with laser cutters. Other tools
support fabrication in three dimensions. Beetleblocks [12] and Madeup [9] both
generate printable 3D models using imperative languages inspired by Logo.
OpenSCAD and BlocksCAD provide declarative languages in which complex
models are composed using simpler primitives.

Johnson [10] observes that programming is not always the most natural
means of interacting with a design. A more versatile design tool would addi-
tionally allow sketching and direct manipulation.

5.3 Direct Manipulation

Schneiderman [15] explored direct manipulation across a diverse set of profes-
sional domains and summarized it as an interactive mode of editing where ac-
tions are rapidly executed, immediately observable, and easily reversed. Phys-
ically interacting with the system produces direct, visual results. These prin-
ciples of interactive design have since been applied to integrated development
environments (IDEs) to ease the generation and editing of code.

Adam et al. [1] compared direct manipulation interfaces to text interfaces in
a study of novice programmers. Half of the subjects used a tool that generated
code as they directly interacted with the data. The other half used a text editor.
The direction manipulation group solved fewer programming exercises than
the text group but achieved higher scores on the exercises they did complete.
In exercises involving conditionals and repetition, each editing mode had its
advantages. Adam et al. hypothesize that an ideal interface would combine
both methods of input.

Hundhausen et al. [7] investigated whether direct manipulation makes pro-
gramming more accessible than text and whether the knowledge acquired using
a direct manipulation interface to program transfers to a text interface. They
found that students in an introductory programming course who used direct
manipulation completed coding tasks more accurately and quickly than stu-
dents using text. Further, when this experimental group switched to text for
the final exercise, they continued to outperform the control group. Dual-coding
theory [6], which states that knowledge is strengthened when it is encoded in
multiple ways, may explain this positive result.

The Sketch-and-Sketch project of Chugh et al. [4] and Twoville have sim-
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ilar goals. Both projects are environments for indirectly coding and directly
manipulating vector graphics designs. When a Sketch-and-Sketch program is
evaluated, each visual property of a shape—like size and position—is stored
with a trace, which is an unevaluated representation of the expression that gen-
erated it. This expression is composed of one or more parameters. When the
designer manipulates the shape using the mouse, the new value of the property
and the source expression are used to solve for one of the parameters. The
new value replaces the old value in the source code. Twoville differs in sev-
eral ways from Sketch-and-Sketch. It is an imperative language rather than a
functional language, and it relies on simpler heuristics to update ambiguous or
complex expressions. These adaptations were intentionally chosen to cater to
an audience of computational makers and young learners.

6 Conclusion

Twoville is a freely available web app for learning mathematics and computer
science through the lens of making physical objects. Its development is driven
by a core set of values that reflect the physicality of learners. An interface
driven by direct manipulation permits visceral exploration of parameter spaces.
Precoding activities conducted away from the computer build on learners’ prior
experiences with shapes, turning coding into more of a translation step than a
completely new activity. Twoville’s physical output has a presence that outlives
the computing session, motivating learners who wish for something more than
virtual.

For future work, the authors plan to better scaffold the making process.
Others have demonstrated that sketching is key to developing spatial skills.
While sketching has already been a part of precoding activities, designers some-
times lose sight of their goal while tracing the design with code. The authors
believe they can help designers plan their next steps by adding a sketching
layer to the drawing canvas. The learners will draw a rough outline of their
shape in this layer prior to coding. Additionally, some designers have expressed
a wish to be able to load reference images into the canvas that they can trace.
This need is especially felt when shapes are sculpted with Bézier curves, which
are indirectly manipulated by one or two control points.
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Abstract

Although creating accessible software is imperative for making soft-
ware inclusive for all users, problematically, the topic of accessibility is
frequently excluded from computing education. This leads to scenarios
where students are not only unaware of how to create accessible software,
but also do not see the need to create accessible software. To address
this challenge, we have created a set of educational Accessible Learning
Labs (ALL) that are systematically designed to not only inform stu-
dents about fundamental topics in creating accessible software, but also
to demonstrate the importance of creating accessible software.

1 Introduction

Approximately 20% of the world population has a disability [8]. Unfortunately,
much of the software being developed today is not sufficiently accessible for all
users [12, 14, 15]. Furthermore, research indicates that while many computing
instructors have a desire to include accessibility in their curriculum, they often
lack access to teaching materials to include this important topic [19, 33]. To
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address this limitation in computing accessibility education, we have created
five educational accessibility labs that we refer to as the Accessible Learning
Labs (ALL). Each of these labs addresses a different disability and has the
primary goal of demonstrating the need to create accessible software, while
also providing students with technical concepts for creating accessible soft-
ware. The labs have been systematically designed to be easily integrated into
a wide variety of learning scenarios, affording them the ability to positively
impact a range of learners. One only requires an internet connection and a
web browser in order to access the lab activities and materials, making adop-
tion easy for students, instructors and individual learners. Created labs and
project materials are publicly available on the project website [4]. The labs
each address a fundamental accessibility challenge and contain the following
components: I) Background information on the accessibility issue being ad-
dressed, II) A sample application emulating the accessibility challenge to the
user, III) Empathy-creating supplementary material, and IV) Concluding quiz.

Over two recent semesters, we have included our labs in 16 Computer Sci-
ence 2 (CS2) offerings, with 321 students participating at our university. Ad-
ditionally, we have partnered with instructors in several other computing and
non-computing focused courses, both at our university and collaborating uni-
versities to include our ALL material in their curricula. The material was
included in both conventional and online course offerings.

This publication reports on observations from the inclusion of our material
in these settings. Some of our primary observations include: I) Instructors
enjoyed the à-la-carte nature of the labs, II) The 30-60 minute time required
for lab completion supported their adoptability, III) Instructors and students
stated their appreciation for the hosted, self-contained nature of the labs, and
IV) Accessibility ‘empathy-creating’ material can be a motivating factor for
students. In contrast to existing publications [32, 31] relating to our Accessible
Learning Labs (ALL), this submission differentiates itself by providing insights
and observations relating to the inclusion of our material from the instructor’s
prospective rather than evaluating the labs from a statistical perspective.

To summarize, this work makes the following contributions:

• Introduction to the created educational material: These self-
contained educational accessibility labs are publicly available on the project
website1 and require no special tools or custom configurations for adop-
tion since they may be accessed using only a browser.

• Preliminary instructor observations from the inclusion of the
created material: We describe preliminary instructor observations
from the use of our labs. These observations demonstrate many of the
positive aspects of our material and information for potential adopters.

1https://all.rit.edu
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• Observational recommendations about how to best include the
material: We discuss recommendations from which adopting instruc-
tors and those teaching accessibility-related curriculum can benefit.

2 Related Work

Several projects have developed accessibility-related educational materials, fo-
cusing on various methods of accessibility education [10, 13, 28, 5]. Our labs
differ from this existing material in several ways, including: I) None of these
existing materials offer a complete educational experience for the adopter, II)
Our labs are hosted, making them publicly available using only an internet
connection and browser, and III) Our labs contain empathy-creating material
to motivate participants about the importance of this topic.

There are other educational accessibility materials that are publicly avail-
able. The ‘Teach Access Tutorial’ provides designers and developers with
lessons and exercises that teach basic accessible web development practices [35].
AccessComputing [9] is an alliance that supports students with disabilities to
learn computing. The group helps make computing courses more accessible to
students with disabilities, along with providing assistance to instructors teach-
ing accessibility-related topics. For example, AccessComputing provides cur-
riculum resources (e.g., educational components) that instruct how to create
accessible mobile applications [16]. However, to our knowledge, no existing re-
sources provide a complete educational experience (e.g.,, experiential activity,
lecture slides, etc.) as we have in our Accessible Learning Labs (ALL).

Our material is not the first attempt to integrate accessibility into exist-
ing courses, such as web design [30, 36], HCI [28], and software engineering
courses [26] using various pedagogical methods such as lectures [36], program-
ming activities [16], and projects [28, 26, 23]. Research has found that when
students interact with individuals with disabilities (e.g., project stakeholders),
they better understand and apply accessibility principles in their work [26, 23].
Despite these efforts and previously published work, incorporating accessibility
in computing courses is still an individual effort that is driven by faculty who
have experience in accessibility or a related field, e.g., HCI [29], constituting
only approximately 2.5% of instructors [33]. The self-contained, easy-to-adopt
nature of our experiential labs will support these instructors who are not ac-
cessibility experts in including accessibility into their curriculum.

Our labs utilize experiential learning principles that have been demon-
strated to be effective in computing education [11, 21]. Compared with other
approaches, experiential learning has been shown to be more engaging for stu-
dents [22], and to better support student retention of information [34, 18].

Several of the challenges for teaching and learning accessibility in computing
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education were identified by Lewthwaite et al. [24]. This research stated that
accessibility education in computing creates a set of challenging and unique
characteristics. Our work differs in that we do not focus on identifying specific
challenges in computing accessibility education, but focus on presenting and
evaluating a set of unique experiential educational materials.

3 Lab Structure, Topics and Goals

In the following sections, we will describe the primary objectives of the labs
and their structure.

3.1 Lab Goals

The educational accessibility labs have several primary goals:

1. The labs do not require special software or hardware: Easy adoption of
the material is supported by the fact that all material is hosted on our
project servers, and requires only a browser and internet connection for
usage.

2. Adopters need only basic programming skills: Students possessing a
diverse set of experience levels and skill sets should be made aware of the
importance of creating accessible software and be provided foundational
skills to create accessible software.

3. The labs should fit into already crowded computing courses: Each lab
is designed to take approximately 30-60 minutes, and the instructor may
select the lab components that they would like to utilize in an à-la-
carte fashion inside or outside of the classroom. The succinctness of
the labs will enable them to fit into courses that are already heavily
time-constrained.

4. The labs include all instructional content necessary for adoption: To
support instructors and participants to easily utilize the created mate-
rial, all necessary content (e.g., lecture slides, background information,
activity, quiz, etc.) are provided.

5. The labs should demonstrate the importance of creating accessible soft-
ware: Teaching participants about how to create accessible software is
important, but participants should also be made aware why it’s essential
to create accessible software.

3.2 Lab Structure and Components

Each lab is comprised of several components designed to inform and motivate
students about the topic of accessibility. The steps for lab completion are
described below.
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1. Background Instructional Material: The lab explains the accessi-
bility topic addressed in the activity. The lab introduces the accessibility
guideline that should have been applied to avoid the accessibility defect.

2. Activity: Students interact with the web-hosted lab following these
steps:

(a) Students interact with software: Students interact with the
software without any accessibility emulation feature, experiencing
the software as a person of typical ability would. Students are asked
to perform a simple task in the application.

(b) Students experience accessibility challenges through an em-
ulation feature: Each lab contains a feature to emulate the ad-
dressed accessibility topic as closely as possible. The objective is to
demonstrate the adverse impacts of inaccessible software first-hand.

(c) Details are provided on how to repair the application: Stu-
dents are then provided best practices and guidelines to repair the
encountered accessibility issue.

(d) Students repair the accessibility problem: Students repair
the inaccessible portion of the lab and gain experience of refactoring
software.

(e) Students use the repaired version of the software with the
emulation feature active, but with their modifications: The
student experiences and evaluates the impact of their alterations in
making the software more accessible and evaluates the impact of
their changes. This instills confidence in the student to develop
accessible software.

3. Empathy-creating supplementary material: Empathy-creating
content has been found to demonstrate the importance of creating acces-
sible software [32, 31]. In our labs, this is accomplished through testimo-
nials from people (age 18-22) with the addressed accessibility challenge.

4. Quiz: Each lab contains an optional web-based quiz, providing a read-
ily available mechanism to assess student learning and the completion
of the defined educational objectives. A screenshot of the participant’s
quiz score may also be submitted to the instructor to demonstrate their
completion of the lab activity.

3.3 Lab Topics

The five created labs address the topics of:

• Lab 1: Visual cues to make software accessible to Deaf/Hard-of-Hearing
users.
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• Lab 2: Making software accessible to users who are colorblind.
• Lab 3: Making software accessible to users who are blind.
• Lab 4: Making software accessible to users who face dexterity issues.
• Lab 5: Making software accessible to users with cognitive impairments.

4 Classroom Inclusion Details

4.1 Conventional Classroom Inclusion Details

The created material was used in 16 sections of a CS2 course at our institu-
tion with a total of 321 students participating. Lab #1 (Deaf/HH) was used
in our spring course offerings, while Lab #2 (Colorblindness) was used in the
fall sections. These labs were conducted in 16 single-day class sessions of the
CS2 course, approximately at the week 11 mark of the 14-week course term.
The discussed observations (Section 5) are derived from these offerings. Ap-
proximately one-third of the sections were led by members of the project team,
one-third were taught by a team member in cooperation with the regular course
instructor, and the remaining sections were conducted primarily by the regular
course instructor where feedback on the offerings were provided to the project
team. Lab #1 and Lab #2 were also used in online course offerings at several
collaborating institutions.

4.2 Online Course Inclusion Details

As with most institutions, courses at our university were moved online due to
the COVID-19 pandemic. Our labs were included in a small summer session of
“Ethics in the Digital Era” (DHSS 103) [7] . The primary focus of the course
is to examine various contemporary and global issues of digital citizenship and
new ethical challenges raised by digital technology [3] . This course offering was
entirely online and the activity was completed asynchronously. The inclusion
of our ALL material in this course enabled us to not only evaluate our labs in
an online course format, but also to understand their impact on non-computing
focused students.

5 Inclusion Observations

We describe our observations from the inclusion of our created material, along
with those from collaborating institutions with early adopters of our Accessible
Learning Labs (ALL). The objective of presenting our own classroom inclusion
observations is to assist not only those adopting our material, but also for
others incorporating other accessibility material. We recount observations from
working with other instructors during their adoption of our material in order to
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assist others creating and disseminating experiential education material who
may encounter similar challenges. The discussed observations and findings
are unique from our previous publications [32, 31] in that this work distinctly
focuses on instructor observations and qualitative information regarding the
inclusion of the material.

5.1 Observations From Our Classroom Inclusion

We will next discuss some of the primary instructor observations from the inclu-
sion of our material into 16 sections of CS2 at our institution. This information
is derived directly from instructor observations and student conversations. The
following are several of the primary instructor observations, including student
quotes supporting these observations.

1. Even a brief experiential accessibility activity can spark student
interest in the topic: Before using each of the labs, we spoke with
students about how they felt about the topic of software accessibility.
Many students seemed disinterested in the topic, and even at the notion
of conducting the activity. Soon after beginning the activity, it was easy
to see that students became more interested in the topic and became
more engaged in the activity. It was also interesting to see students
becoming excited about the activity, their inabilities to interact with the
inaccessible software and how their alterations made the software much
more usable. Instructors also recognized a noticeable difference in student
engagement between their conversations before and after conducting the
activity. These conversations also led to many students asking about
future courses in these areas.

2. Each accessibility topic provided similar benefits: Regardless of
the lab topic, we did not observe any discernible difference in the benefits
provided to the participant from either an observational or statistically
significant perspective. This is fairly surprising as RIT is home to the
National Technical Institute for the Deaf (NTID) [27], and is home to a
much larger population of Deaf/Hard-of-Hearing students than is found
at most institutions. Therefore, most students frequently attend classes
and conduct group projects with their Deaf/HH classmates. Due to this
existing familiarity with Deaf/HH students, instructors found it reason-
ably surprising that this activity provided similar benefits as the ‘blind-
ness’ lab did (as students were much less familiar with students from
this population). Before conducting the activity, there was doubt about
whether it could instill empathy due to the existing familiarity with the
Deaf population.
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3. Empathy-creating material is important in accessibility educa-
tion, especially when the student with the disability is a peer:
The empathy-creating component was very helpful in demonstrating the
need to create accessible software. Students also appreciated that this
content came from students of their age group. Instructors noticed that
while student interest in accessibility grew throughout the activity, a
catalyst for this interest appears to have been this empathy-creating ma-
terial, as students became more discernibly engaged after interacting with
it. In conversations with students, they unsurprisingly stated that they
found this content to be much more relatable since it came from their
age group.

4. The 30-60 minute time required to complete the labs made
them easily adoptable in the classroom: As in many introductory
computing courses, including yet another topic in an already crowded cur-
riculum was challenging. The labs required approximately 30-60 minutes
to complete. The concise nature of the labs made it easier to convince
instructors to incorporate them in their curriculum.

5. The à-la-carte nature of the labs supports easy adoption: The
components may be utilized in an à-la-carte fashion among adopters,
allowing them to select various lab components as they desire. We have
found that this is beneficial in several ways:

• When pressed for time, instructors may only select some
components: The adaptable nature of the labs enable instructors
to utilize only specific components if they are already pressed for
time. Foundational computing courses are frequently pressed for
time, making the à-la-carte nature of the labs more imperative.

• The adaptable nature of the labs supports easy inclusion
in a variety of settings: Instructors may choose to assign only
individual components of the lab, enabling them to customize the
learning experience as they see fit. The lab material supports inclu-
sion in classroom settings that are time-limited through the use of
more lab components.

• Instructors can choose the lab components that they feel
are most appropriate for the course: While we only included
our material in a CS2 offering, instructors have stated that they
will be more likely to include the labs in their other course offerings
since they can not only choose the topics that they feel are most
appropriate, but they can also tailor the specific lab components to
the needs of their course.

6. Instructors and students stated their appreciation for the hosted,
self-contained nature of the labs: Since lab content is entirely
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hosted on our servers and requires only a browser and internet connec-
tion for usage, adoption is extremely easy and requires virtually no setup
or configuration time. Students and instructors stated that they ap-
preciated this ease of use and that it made it easy to simply begin the
learning activity without any necessary configurations. Instructors stated
that they felt that this made it much more likely that they would include
these labs in their curriculum, especially since they would not have to
devote any time for preparation or configuration.

7. The self-contained nature of the material made it easier to per-
suade instructors to adopt it: Instructors of courses such as CS2 are
quite understandably not always amenable for including new material in
their curriculum. This is frequently due to time restrictions, or even lack
of confidence in teaching a new area. Although accessibility is a vital
computing topic, it is often excluded from formal undergraduate educa-
tion [20, 6]. When speaking with potential adopting instructors, we found
that while most instructors stated that they recognized the importance
of accessibility, it was the easy-to-adopt nature of the ALL material that
convinced them to allocate course time to the material. While impossible
to completely discern, this was likely due to a mixture of not requiring
the adopting instructor to learn new material, that the content would
only require 30-60 minutes of class time, that it could be incorporated in
the class in a variety of fashions (e.g., in person, online, blended), and
that it did not require the instructors or students to install anything.

These observations are supported by various student quotes collected at the
conclusion of the activity:

“The interactive portion allows better understanding for the need
to consider accessibility when creating software.”

“The colorblindness activity was very informative and provided a
good example of how to easy it is to create something more acces-
sible.”

“I got to actually test the contrast between two colors and see how
a colorblind person perceived the colors. It was eye-opening!”

“I like the new knowledge about color blindness. I have seen the
option in one of my games. Now, I understand why that option
was available.”

“The activity taught me that there are people who could benefit a
lot by taking their deficiencies into consideration in terms of soft-
ware.”
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“I think the awareness that I got about how important it is to
like consider color blindness and how essential it is to know how
to create software which is like considering their condition. This
really gives me something to really research on.”

“I learned how easy it is, and how important it is to take into
account different disabilities that potential consumers might have.”

The labs were included in several ethics-focused virtual course offerings in
the summer of 2020. The fact that the labs do not require substantial techni-
cal background made it much easier for the non-computing focused students
to complete the labs. Due to the small number of participants in the virtual
offering, it was not practical to perform any statistical analysis on student feed-
back. However, informal discussions with students and the adopting instructor
indicated general satisfaction with both the labs and their format. Interest-
ingly, several students began to profoundly question why accessibility-related
problems continue to remain a problem in much of the software created today.
This led to further discussion in the virtually-held ethics class regarding the
ethical implications of inaccessible software.

5.2 Reflections from Interacting with Adopting Instructors

We will next describe some of our observations from working with instructors
not only at our institution, but at other early adopting institutions as well. The
objective of describing these observations is to not only present insights from
those working with our material, but to present some observations that can
help those creating and disseminating other experiential educational material.

While everyone that we spoke to about even possibly adopting our edu-
cational accessibility material agreed that creating accessible software was an
important topic, it was still frequently challenging to convince them that their
courses had enough time and/or resources for the inclusion of accessibility-
focused material. Instructors of foundational computing courses(e.g., CS1 &
CS2) are understandably typically very pressed for time in their classes and
do not have much time for new material. This issue was exacerbated by the
COVID-19 pandemic, due to the new challenges and increased workload being
encountered by instructors across the United States. While instructors were
definitely interested in providing robust educational material to their students,
most were primarily weary of any additional work that they would need to do
to include new material into their courses. This consisted of concerns regarding
the need to learn the material, or technical resources that would be required.

During interactions with collaborating instructors, we frequently found that
their biggest concern was ease of adoption and technical competency for non-
computing students. To alleviate many of the concerns from potential adopting
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instructors, we found that it was even more paramount to discuss the ease of
adoption for instructors. Potential adopters appreciated the hosted web-based
nature of the material that supports its adoption from a technical perspective
since there is nothing that they or their students are required to install. We
found it to be reasonably surprising that few potential adopters were enthusi-
astic about the ability of the material to support out-of-class activities, such
as homework assignments.

5.3 Discussion and General Reflections

We learned several valuable lessons regarding the best practices for includ-
ing accessibility-focused materials in classrooms. These recommendations will
likely prove beneficial for not only those including our created material, but for
those including other accessibility-focused material in their curriculum as well.
Educators should place special relevance on the importance of creating acces-
sible software. As supported by our previous publications [32, 31], this could
come in the form of creating empathy or even from more traditional methods.
For example, the instructor began the session by telling a short story about
inaccessible software to demonstrate the relevance and importance of software
accessibility. Additional discussion points include how the task of ensuring the
creation of accessible software is everyone’s responsibility, and not just those
of accessibility ‘experts’.

Discussions regarding how industry values accessibility and prefers to hire
an accessibility-literate workforce have also been found to be beneficial, espe-
cially with lower division students. Discussions regarding how accessibility is
similar to other topics such as cybersecurity, testing, etc. in being a central
component of software development have also been found to be beneficial. Fi-
nally, creating accessible software is creating ‘inclusive’ software. Software that
is not accessible restricts its usage by any portion of the population and con-
tains both ethical and legal/monetary implications (e.g., less accessible may
mean less customers/users).

Since RIT houses the National Technical Institute for the Deaf (NTID) [27],
we regularly had the opportunity of having many Deaf/HH and other students
with self-disclosed disabilities participate in the sessions that we offered. Dur-
ing these sessions, we made several interesting observations that may be benefi-
cial not only for those utilizing our material, but for those discussing accessibil-
ity in education in general as well. First and foremost, instructors should allow
students to determine their own self-disclosure policy of their disability, and
not publicly identify, or ‘out’, the student with disabilities themselves, even in
cases when it may seem fairly obvious the student has a disability (e.g., they
are using an interpreter). This is due to the need for instructors to take lead in
the creation of an inclusive classroom as well as protecting the student and in-
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structor against possible legal ramifications. Fairly surprisingly, we found that
many students publicly self-disclosed a disability during classroom discussions
of that disability, even when it was not obvious to the class (e.g., colorblind-
ness). They were frequently willing to provide supporting evidence/stories
about how inaccessible software adversely impacted their lives.

One of our goals for the project is to eliminate the misconception that
creating accessible software is ‘for someone else’. It should be demonstrated
to students that all members of the project, regardless of roles, have a part
to play in creating sufficiently accessible software. This ranges from software
designers who should choose ‘safe’ colors [25], to testers who should construct
test plans to check for proper accessibility. One challenge for the construction
and inclusion of our created materials was how to properly demonstrate this
to students.

An unexpected benefit was that the labs fostered discussions and an un-
derstanding of what it meant to be a person with a disability. Unfortunately,
we observed that many students (especially lower division) didn’t even un-
derstand what software accessibility was. We believe that a crucial first step
for developers in creating accessible software is to have a more fundamental
understanding of the needs of their entire target audience, and from a more
fundamental perspective, understand what it means to be a person with a
disability.

We firmly believe that in order to create inclusive software, developers
should have a foundational understanding for the needs of others. While far
from being a perfect or exhaustive activity, we have observed that material
such as ours can help to foster such discussions that will result in a better
understanding of the needs of others.

There is a demonstrated government and public need to create accessible
software [1, 2, 14, 17]. Unfortunately, educators generally do not sufficiently
address these limitations by adequately including topics regarding accessibility
in their curricula [19, 33]. Based on our observations, we believe that the easily
adoptable nature of our lab material is paramount in reducing these limitations
and can help lead the creation of more inclusive software.

We also firmly believe that the adoption barrier of accessibility-focused
educational material should be lowered as much as possible to support the in-
clusion of this crucial and fundamental topic. We found that discussing the
importance of using accessibility practices during every stage of software de-
velopment (ie. requirements, design, development) helped to interest students
who may not have realized the relevance of accessibility in those areas.
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5.4 Analysis Results

In our previous study involving 276 students, our created material and lab
format demonstrated their abilities to both inform and motivate students in
a CS2 classroom about the benefits of accessibility. In this work, a statistical
analysis (t-test) found that our material is more effective in informing students
about foundational accessibility principles, while activities containing empathy-
creating material have a higher universal positive effect on students. Further
details regarding this analysis may be found in our previous, analysis-focused
publications [32, 31].

6 Conclusion
This work provides instructor observations from the inclusion of our Accessible
Learning Labs (ALL) in 16 sections of a CS2 course at our institution comprised
of 321 students, along with the more limited inclusion in several other courses
and institutions.
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Abstract
Liberal arts education provides students with many interdisciplinary

problem-solving skills, but utilizing high-level computational tools like
machine learning (ML) remains largely inaccessible without a significant
background in computer science. We present a course to bridge that gap:
a full-semester undergraduate course that teaches the concepts of ML
and deep learning with emphasis on real-world application and ethical
considerations. The course is low-code, exploring concepts and appli-
cations through a collection of visual tools. Early outcomes show that
after this course students are equipped to learn code-based systems, feel
empowered to understand and identify misunderstandings in popular AI
discourse, and can design ML-based solutions for data-oriented problems
in their fields.

1 Introduction

Computer science has evolved through interdisciplinary application which can
fit naturally within the liberal arts curriculum [17], creating a mutually ben-

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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eficial relationship for both computer science and the liberal arts. Recently,
machine learning (ML) has been applied to many classically liberal arts disci-
plines, such as psychology, biology, philosophy, and linguistics [17]. Without
an understanding of machine learning, it is becoming increasingly difficult to
apply these skills in future careers.

Our course is accessible to non-computing majors by democratizing con-
cepts of machine learning that are prevalent in the professional world. This
course gives students a hands-on understanding of ML via popular ML archi-
tectures and an ethical framework for the use of data and artificial intelligence
(AI). It is based on the main ideas of Deep Learning Practicum at MIT, taught
by Dr. Natalie Lao and Dr. Hal Abelson. Their work demonstrated that ML
can be made accessible for non-experts who use these tools for self guided dis-
covery [9], which we have since adapted for the audience of liberal arts students.

A multitude of resources to teach and understand ML concepts and applica-
tions exist, but these resources are targeted towards an audience with computer
science expertise. This generates a disconnect as two general populations form:
one that understands the implications and concepts of the information in their
field, and another that comprehends the ML applications that can be used to
process that data. This hinders ML development and creates an unnecessary
division between computer science and other fields of study.

Integrating computing into liberal arts pedagogy can result in extensive
interdisciplinary connections which benefit the field by inviting more students
who are not traditionally involved. Inequitable participation stagnates inno-
vation by arbitrarily limiting contribution to the field [5]. We are introducing
students to ML through its systematic impacts rather than just the techni-
cal implementation. Barretto found that cultural implications such as these
would serve as a motivator for underrepresented students to enroll in an AI/ML
course [2]. Our course aims to introduce these underrepresented groups into the
world of AI/ML by meeting students where they are technically and culturally
knowledgeable.

This paper also presents a case study of some of the adaptations for lib-
eral arts students and environment. As we hope this contribution to the field
will help others build similar courses for their institutions, we have published
all of our course materials at https://github.com/Emmanuel-Practical-
Machine-Learning/index.

2 Background

Literature on ML courses for non-majors is slim and mainly focuses on tech-
nical institutions; however, there has been a growing interest in recent years
as students in all disciplines have begun to recognize the importance of ML
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literacy [3]. As a result, current literature such as Sulmont et al. has noted
the dramatic increase of demand for a more versatile approach to ML.

Studies have revealed multiple learning barriers which hinder non-majors’
ability to learn ML. Common examples of these obstacles include the students’
lack of perception on what ML actually entails, math anxiety, and limited
programming experience [14]. Several projects have worked to lower these
barriers, such as Bryan Loh and Tom White’s SpaceSheet [12] and Google’s
Teachable Machine [15]. These resources can help students visualize theoretical
concepts, algorithms, and model structures, which has been shown to help
reduce obstacles related to math anxiety; Sulmont et al. found that students
performed better when interacting with algorithms they could visualize, such
as decision trees or k-nearest neighbors [14]. Resources that eliminate barriers
for students enable them to construct their own model without having to start
from scratch, allowing for a lower barrier to entry [7]. Visual tools and having
limited prerequisites can be specifically helpful in a liberal art environment
and have been shown to motivate and maintain student enrollment throughout
the program. Additionally, assignments based on real world issues engaged
students during class, allowing them to make meaningful connections between
the course and their area of study [16].

Final projects can be an effective affordance for majors and non-majors
alike. In a CS1 course, students reported greater confidence in their skills to
build complex systems after working on a large final project [6]. In another
course, the independence that students experience in choosing a unique final
project allowed them to relate the curriculum to their disciplines and lives [4].

Allen et al. interviewed 10 professors on their experience with teaching ML
to discover what pedagogy has been successful. They found that the most com-
mon responses included using real-world applications and group work which
made students engage with the material, as well as foster a better class envi-
ronment. Teaching about neural networks was identified as a threshold concept
for students, meaning neural networks introduced an accessible way of think-
ing that changed student’s perspective of ML. They hypothesized that neural
networks can help engage students in class since they are comparable to the
human thought processes, something students are somewhat familiar with and
can visualize [1]. Findings also showed that area of study was not a deter-
mining factor in a student’s success throughout the course; rather, the survey
responses suggested that motivation and ability to dedicate time to course
material determined the students academic success [8].
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3 Presenting: Practical Machine Learning in a Liberal
Arts Environment

Like traditional machine learning courses, In Practical Machine Learning at
Emmanuel College, students are taught the fundamentals of AI, ML, and deep
learning. The course aims to teach students how to analyze a problem, choose
the proper artificial intelligence solution, and apply the solution to the prob-
lem. Using pre-lecture readings, in-class discussion, lectures, and assignments,
students gain hands-on access to ML tools. Each reading, discussion, and
assignment is grouped into modules, divided by the eight topics covered in
the course: k-nearest neighbors and transfer learning, multilayer networks,
bias and attacks, convolutional neural networks, generative models, recurrent
neural networks, generative adversarial networks, and reinforcement learning.
Each topic builds off the previous module, giving students a connected basis
of knowledge. Typically, the course spends one to two weeks on each topic,
with readings assigned before the lectures. The course materials are available
at https://github.com/Emmanuel-Practical-Machine-Learning/index.

Differing from traditional ML classes, Emmanuel’s practical machine learn-
ing curriculum adopted Lao’s curriculum from MIT, Deep Learning Practicum
[10]. Lao’s work was chosen with the understanding that she designed it specif-
ically for “non-majors.” That audience at MIT, however, had more background
in calculus and programming than a typical student at a liberal arts college,
though Lao’s initial work did provide a cornerstone of accessibility for our team
to build upon. The most significant difference was the application of informa-
tion. In Lao’s course, the students were expected to use the information and
eventually apply it to a final project of their own. These final projects mir-
rored many of the resources that were used in the class, such as text recognizer,
lyric creator, or image classifier. As later expanded upon, the modified version
made final projects that applied the concepts to everyday life. Changing these
requirements encapsulated the difference in objective between the original and
modified courses: MIT primarily drew students who would use Machine Learn-
ing as an essential part of their field, while non-majors should be understanding
the systems to then apply to their own fields in the appropriate capacity.

The day-to-day lecture structure is flexible to accommodate questions,
ideas, or clarifications, and emphasizes collaboration among students. Lectures
are rarely scheduled to use the entire period, and topics may “float” between
specific dates depending on level of discussion and questions generated from
students. The intention to build a collaborative environment in both lectures
and assignments encourages a “community of practice” [11]. This is also reflec-
tive of professional practice, as engineers often work collaboratively to develop
new ideas or find solutions to recurring problems.

The open-discussion format also allows students to express concerns or opin-
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ions about commonly contested points of ML, such as inherent bias, ethical
uses of certain products, or transfer learning artwork. Demo assignments are
completed throughout the week of lectures and readings. The observation and
write-up portions that follow rarely have a right or wrong answer; rather, they
aim to stimulate thought for the student and provide a baseline to interpret,
observe, and hypothesize about the demo that is being used.

In addition to mirroring a computer science community, this format also
supports the liberal arts mission of Emmanuel College; social justice agendas
are rarely individual work, and rather than forcing the agenda of Emmanuel
to fit a stereotypical machine learning format, our model mimics the style of
non-major courses while teaching machine learning content.

From a technical standpoint, a major obstacle for machine learning at a lib-
eral arts institution is access to resources and tools. After experimenting with
Lao’s work in the Emmanuel setting, it became clear that a significant differ-
ence is the access to high-performance computing, additional teaching support
such as teaching assistants, and math and coding prerequisites to ensure a
baseline of knowledge. While Emmanuel could certainly require these prereq-
uisites, it would be counter-intuitive to force non-majors onto a math-based
academic track for the sake of the minor. Thus, we had to make adjustments
to assignments to ensure that they were accessible from a laptop, and students
could successfully predict and create outcomes that they understood.

A majority of the tools are web-based and visual in nature. This allows
students to visualize mathematically complex ML concepts, which has been
shown to improve student understanding by mitigating math anxiety [14],
while still interacting with real TensorFlow models. The course introduces
a new single-purpose tool every two weeks to demonstrate a specific ML topic.
This gives students the opportunity to interact with actual ML models, and
develop understanding and intuition with their properties, without needing the
programming skills to build these models from scratch.

At this point, we have run Practical Machine Learning for two spring
semesters, and it will continue to run annually. The first year had 10 stu-
dents and ran in the spring semester of 2021. This was during the COVID-19
quarantine, so the class was held fully remotely, and students had to depend
on their personal computers. This was hugely limiting, especially when we
discovered that both Zoom video services and ML training exercises relied on
GPU. While this is not an issue with the curriculum, it did highlight the need
for performant lab computers to overcome technical barriers such as slow pro-
cessing times. The second section of the course ran in the spring semester of
2022 with 10 students. This time, the course was conducted in person and
students had access to a high-performance campus computer lab. The second
year also had the benefit of a peer tutor who was a graduate of the first cohort.
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4 Ethics

Practical Machine Learning was designed with the intention of exploring cur-
rent ethical issues with ML, and reinforcing those issues throughout the techni-
cal aspects of the course. We introduce the ethics discussion in the third unit,
titled “Bias and Attacks.” The center of this unit was an in-class discussion
where students were broken into groups of four to five, and each person was
given a different reading. In small groups, they discuss what each person read
to formulate questions and thoughts in preparation for a class wide discussion.
The readings focus on examples and expert analysis of systematic bias in ML
systems, including recommendations on how to identify and diminish poten-
tial bias. The discussions are structured by prompt questions provided by the
instructor, and the whole class collaboratively writes a “handbook” document
on bias.

The readings in this unit also include ML-specific attack vectors, such as
the 3D-printed turtle that is universally recognized by image classifier systems
as a rifle [13]. These examples, with the examples on bias, seed a robust
conversation on the trustworthiness of ML systems and the importance of fully
understanding their weaknesses when choosing to apply them to situations that
may seriously impact people.

Ethical considerations remain a part of the course from this module forward.
The readings and discussion provide the dialect to easily discuss bias, vulner-
ability, and responsibility on the subsequent examples seen in the course. It is
most strongly reinforced in the final project. In it, students needed to include
a well-reasoned ethical analysis with their system design, including attention
to how they would source their data, how the system would be trained, and
how the system’s inferences would be applied to the real world.

5 Outcomes

5.1 Final Projects

The main learning objective of Practical Machine Learning was to create a
course that applied liberal arts education goals to the study of machine learn-
ing. This objective was epitomized by the final project–an assignment that
allowed students to apply machine learning to any kind of problem or societal
issue. This project aimed to proactively engage students with the material and
promote application to the students’ field of study or their general interests.
There were very few constraints on what could be done, and it focused on the
hypothetical application, rather than proof-of-concept demonstration. Since
many students are non-majors, the final project provided space for students to
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explore the real-life applications of artificial intelligence in their fields, rather
than coding for the sake of coding.

While there was a wide range of topics, the underlying theme among all
was that it paired the student’s interest with what they had learned, pro-
ducing a hypothetical that could be legitimately applied. For example, one
project applied GANs to improve MRI diagnostics, while another used a con-
volutional neural network to teach cursive writing. Radiology and education
are two vastly different fields, yet both students were able to find a common
link between their interests and machine learning. An important requirement
of the final project was to assess possible threats of bias and ethical concerns
in the projects. The bias in an MRI diagnosis versus bias in teaching cursive
are incomparable. MRI machine learning would have implications surrounding
patient information and confidentiality, selection bias, and sample size, which
the students highlighted in their project presentation. In contrast, cursive ed-
ucation using CNNs has fewer threats of bias but ethical concerns such as the
amount of screen usage for children and the standard of education.

The students’ ability to execute a successful final project was dependent on
their ability to use their accumulated of knowledge from the course. During
the course, students used a variety of machine learning tools. While the final
project did not expect them to use these tools, application of the underlying
ideas in a novel context was a feasible way to assess understanding. The final
project was intentionally designed to elicit students to apply the concepts they
had learned through these explorational tools. The final projects highlighted
their competency in the material via a showcase of their transfer of knowledge.

5.2 Post-Survey

We administered a survey to all graduates of the course to gauge their overall
experience, their current comfort with ML, and their feelings of belonging in
the ML community of practice. The survey protocol was granted an exemption
by our local IRB. We emailed 18 students with the solicitation and we received
responses from five students. We attribute the low response rate to the timing
of the survey (summertime) and a limited window of response time. Three of
the authors of this paper are graduates of PML, however none participated in
the survey.

All respondents reported having either minimal experience with program-
ming and machine learning or previous knowledge from other courses within
the Data Analytics minor. When asked about their motivations to enroll in
the course, three students noted the Data Analytics minor, while one men-
tioned a positive relationship with the professor, and the last respondent was
encouraged by a family member. Furthermore, when answering this question
four respondents recognized the importance of ML and data literacy in their
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career. When questioned about their experience with the course, four students
described a positive experience in Practical Machine Learning, and one stu-
dent chose not to respond. Of the four who responded, three said they were
moderately to highly comfortable with the course material, while one said they
had low comfort.

When prompted to explain how their perception of ML changed once taking
the course, four respondents described having a new-found appreciation of ML.
One response specifically noted being able to detect ML models and its impact
in their everyday life and two students noted having a new perspective on their
discipline, as well as an eagerness to continue learning about ML. This echoes
findings from others [4, 6], which is encouraging.

Lastly, students were asked if they felt a sense of belonging in a machine
learning community of practice. The survey, by design, did not define “commu-
nity of practice,” leaving the students to find their own meaning. The responses
identified two communities. The first, and more interesting, was a local com-
munity, identified by one student: researchers and students at Emmanuel Col-
lege who are involved with understanding and applying artificial intelligence to
their work and education. The second was the global community, comprised
of experts and enthusiasts connected by the internet. We acknowledge that
students are less likely to become part of the professional global community,
but two respondents felt that they could engage with the global ML commu-
nity in a meaningful way. One student said they did not know what an ML
community entails and felt disconnected from it due to imposter syndrome.

6 Future Work

While the number of respondents is limited and anecdotal, our post-survey
results suggest that our affordances for accessibility do not hinder a student’s
ability to grasp the concepts of ML. This reflects trends throughout existing
literature which have found that working with theoretical concepts and limited
code can help students engage with the material in a unique and meaningful
way [6]. Similar to Guerzhoy [7] and Sulmont [14], our respondents also found
visual representations of concepts helpful to their understanding by focusing
their time and attention on course goals rather than programming skills which
are outside of the scope of the course. Moving forward, we plan on conducting
a pre and post-course survey to better assess course effectiveness. The pre-
survey will include questions about popular misconceptions towards AI/ML.
We also plan to add to our existing post-survey by asking students if they
could envision themselves applying the concepts learned to their discipline or
major. This will be an attempt to better meet students where they are, letting
us make the course more accessible to our demographic of students.
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7 Conclusion

We developed an accessible course in ML theory and application for liberal
arts students with minimal background in computing. We ran this course
twice so far, and in doing so, discovered many barriers and adaptations to help
overcome them. This work is ongoing, but we hope that our design experience,
teaching experience, and student outcomes will aid other institutions to develop
their own practical ML courses. Our current course materials are available
as a starting point at https://github.com/Emmanuel-Practical-Machine-
Learning/index.

There were significant technical barriers in the first years of this course
that were independent of the learning outcomes. This was partly a result
of the nascent, fast-changing state of ML technology. Most of the technical
barriers were avoided by finding accessible tools that demonstrated, exercised,
and provided student experience with industry-standard ML systems. These
tools were not general, and each module had completely different tools that
expounded a specific ML topic. Having different tools every two weeks may
seem initially to be itself a barrier, but the students were unfazed by this. We
believe the topic order and focus on underlying concepts helped students pick
up new tools easily, as the engine behind the particular tool was the focus.
This is also reflective of the overall goal of the course: to equip students to go
out into the world with the understanding of the workings and nature of ML
such that they can apply that understanding to whatever toolsets are available.
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Abstract

We describe a new curriculum design, termed functional embedding, for
embedding functional programming within a core sequence of courses
taught in a non-functional programming language such as Java. We
present evidence that functional embedding has been successful in prac-
tice, based on a survey of student perceptions and analysis of student
exam performance. An analysis of college computer science curriculums
demonstrates that at least 59% of colleges can benefit from the approach.

1 Introduction

There is wide agreement among computer science educators that it is important
for students to acquire proficiency in a variety of programming paradigms. Of
these paradigms, perhaps the most important are the object-oriented and func-
tional paradigms. Modern computer science curriculums rarely have any diffi-
culty in ensuring that all students are exposed to the object-oriented paradigm,
but the same is not true of the functional paradigm. One relatively common
curriculum design has a core sequence of three or four courses containing no
functional programming. This core sequence of exclusively imperative/object-
oriented content may comprise, for example, CS1→CS2→DSA (where DSA is
a single course covering data structures and algorithms), or CS0→CS1→Data

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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Structures→Algorithms (where CS0 is a course skipped by students with prior
programming experience). This curriculum design typically includes a separate
Programming Languages (PL) course which contains a substantial functional
programming component (say, a minimum of 30% functional—but we observe
up to 100% functional programming in some PL courses). If the PL course is
required for the computer science major, all CS majors are thus guaranteed
reasonable exposure to functional programming.

It is not uncommon, however, for the PL course to be an elective. If the
core sequence is exclusively imperative/object-oriented, this raises an impor-
tant curricular problem: students who do not take the elective PL course can
graduate with no awareness of the functional paradigm. The CS education
community is divided on whether this should be considered a severe problem;
section 5 gives more details on why it may be considered problematic that an
undergraduate computer scientist can graduate with no knowledge of functional
programming. In this paper, we propose a partial solution to this problem and
report on our experiences with it.

The proposed solution is to insert a suitable amount of functional pro-
gramming into the core sequence, without changing the (imperative, object-
oriented) programming languages in which the core sequence is taught. Our
department has experimented successfully with this approach since 2019, by
making alterations to our CS2 data structures course, which is taught in Java.
By reallocating material between our separate data structures and algorithms
courses, we made room for a one-week unit of functional programming mate-
rial. We do not introduce the overhead of studying a truly functional program-
ming language. Instead, we use Java lambda expressions and other features in
Java.lang.function, combined with practical applications for efficient parallel
data processing via Java’s Stream API.

This explains the title of this paper: we teach some aspects of functional
programming, in the data structures course, in Java. The remainder of the
paper will describe the implementation details and results of that approach.
Nevertheless, we believe it would generalize to other situations. For example,
it is certainly possible to create similar units of functional programming in
courses that use Python or C++. And these units can easily be inserted into
courses other than Data Structures, including CS1 or Algorithms. Indeed, one
of our items of future work is to weave functional programming into most other
required courses, now that we can be sure students have seen it before.
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2 Related work and a taxonomy of functional program-
ming curriculums

In this section, we briefly survey other approaches to incorporating functional
programming within the computer science curriculum, and we propose a taxon-
omy of five possible approaches: functional-first, functional-required, functional-
elective, functional-minimal, and functional-embedded.

Many previous researchers have investigated the use of functional program-
ming within the core sequence of programming courses in a computer sci-
ence major. One highly successful and much-studied approach is known as
functional-first [7]: CS1, the first core programming course, is taught either en-
tirely or largely in the functional paradigm. Famous examples of such curricu-
lums include those of Grinnell College [1] and Brown University [4], amplified
by the influential textbook How to Design Programs [3]. The functional-first
approach has numerous well-documented advantages, but it also presents chal-
lenges. Empirically, we find that it has not been widely adopted. For example,
in our sample of CCSC curriculums described later (section 4), we found that
zero out of 29 institutions had adopted functional-first.

As described in the introduction, a common curricular approach is to in-
clude a substantial topic on functional programming within a programming
languages (PL) course. If the PL course is required for the major, we refer
to this as the functional-required approach; if the PL course is an elective, we
describe the approach as functional-elective.

There are some computer science curriculums in which functional program-
ming does not appear to be an explicit goal. Either it is not present at all, or
it makes an appearance as a byproduct of certain elective courses not focussed
on programming languages (such as an AI course that makes use of LISP). We
refer to this curricular approach as functional-minimal.

In this paper, we advocate a new curricular approach to functional program-
ming: a modest but nontrivial amount of functional programming is embedded
into one or more of the courses in the core sequence, such as CS2/data struc-
tures. Moreover, embedded functional programming content is emphasized as
an important topic that will be reflected in other parts of the curriculum. We
refer to this approach as functional-embedded.

3 Method for embedding functional programming in a
Java-based data structures course

In this section we give details of our current approach to embedding functional
programming in a Java-based data structures course. Section 3.1 describes a
low-overhead way of introducing functions as first-class objects, and section 3.2
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describes a practical application for cementing student engagement via the Java
Stream API. We provide these details for concreteness only; we believe many
other approaches could achieve the same goals.

3.1 Rudiments of functional programming in Java

It can be argued that the most important concepts underlying functional pro-
gramming are immutability (lack of side effects) and the treatment of functions
as first-class objects. The brief survey of functional programming described
here focuses on functions as first-class objects, mentioning immutability only
as it applies to existing Java classes such as String and Stream. In prac-
tice, students learn that functions can be: (i) parameters of other functions;
(ii) return values of other functions; and (iii) created and employed as local
variables. Simple demos of these three features can easily be achieved using
Java’s functional programming package, java.util.function, which has been
available since Java version 8 was released in 2014. For example, we can define
the function f(x) = 3x2 + 5 and then evaluate f(2) via the following snippet
of Java:

Function<Integer, Integer> f = x->3*x*x+5;
System.out.println(f.apply(2)); // prints "17"

There is one piece of syntactic ugliness that is unavoidable in the above snippet:
to evaluate f(2) we need to invoke the apply() method on the object f. Thus,
we write f.apply(2) rather than using the more natural notation f(2). This
reflects the fact that Java is not a functional language: one cannot define a
Java object that is a function. Instead, we create an object that implements
a functional interface. The interface includes the apply() method, and that is
how the function must be invoked.

To avoid this potential source of confusion, we prefer to first introduce
the notion of functions as first-class objects using Python. We have found
this works well, even in a course that is otherwise 100% Java and does not
assume any prior knowledge of other programming languages. The syntax of
Python is close enough to standard pseudocode conventions that students with
no knowledge of Python can leap right in. In our experience, they can actively
participate in an in-class, browser-based mini-lab on the topic of functions as
objects after only a few minutes’ explanation by the instructor. For example,
the above Java snippet becomes

def f(x): return 3*x*x+5
print( f(2) ) # prints "17"

The above snippet can be formulated using a lambda expression in Python,
and in our approach students will certainly learn how to do that. But we prefer
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to delay the introduction of lambda expressions until after the idea of functions
as objects has already been demonstrated.

For example, the concept of passing a function as a parameter is always a
challenging new abstraction the first time it is seen by a student. But a hands-
on mini-lab, using snippets such as the following, can help students quickly
adapt to this new idea:

def isIncreasingOn123(f): return f(1)<f(2) and f(2)<f(3)
def add5(x): return x+5
print( isIncreasingOn123(add5) ) # prints "True"
def applyTo9(f): return f(9)
print( applyTo9(add5) ) # prints "14"

Once the idea of treating functions like any other data item is familiar, we
can switch back to Java. We recommend omitting the details of functional
interfaces, instead treating the apply() method as a required piece of Java
syntax that is not explained further. Thus, the above Python snippets become:

public static boolean isIncreasingOn123(Function<Integer, Integer> f) {
return f.apply(1) < f.apply(2) && f.apply(2) < f.apply(3);

}

public static int applyTo9(Function<Integer, Integer> f) {
return f.apply(9);

}

public static void main(String[ ] args) {
Function<Integer, Integer> add5 = x->x+5;
System.out.println( isIncreasingOn123(add5) ); // prints "true"
System.out.println( applyTo9(add5) ); // prints "14"

}

Some further fundamentals of functional programming, including moder-
ately advanced lambda expressions, can be introduced in a similar fashion.
Further details are available in our publicly-available textbook chapter [9].

3.2 A practical application of functional programming: parallel
processing of data streams

It is a well-known educational principle, not just within computer science, that
learning outcomes for a theoretical concept are improved if students perceive
the concept as applicable or useful [5]. We believe, therefore, that it is im-
portant for students to apply their knowledge of functional programming in
Java to some real-world situations. For this, we use Java’s Stream API; this
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is provided in java.util.stream and was introduced by Java version 8, at the
same time as the functional programming facilities, in 2014.

In Java, Stream<T> is an interface for performing operations on sequences of
objects of type T. There are two types of operations on streams: intermediate
operations and terminal operations. In the brief coverage provided in our
data structures course, we explore only eight of these operations: the four
intermediate operations filter(), map(), sequential(), and parallel(); and
the four terminal operations count(), foreach(), reduce(), and sum(). Any
computation based on a stream performs a sequence of intermediate operations
followed by one terminal operation. Because many of these operations accept
lambda expressions as parameters, they are an excellent way to practice the
application of functional programming. For example, the following snippet
counts the number of words in a stream that begin with ‘c’ and end with ‘t’,
by using two filter() operations followed by the count() operation; it employs
two lambda expressions for the filters:

Stream<String> s = Stream.of("cat", "bat", "catch", "chat");
long numWords = s.filter(word -> word.startsWith("c"))

.filter(word -> word.endsWith("t"))

.count(); // returns 2

The Stream API provides opportunities for students to implement realistic ex-
periments from the world of big data, based on only modest guidance from
the instructor—certainly less than one class meeting, in our experience. For
example, students can apply the map-reduce [2] framework to large data sets,
and/or demonstrate the speed-up from using parallel versus sequential streams.
This latter experiment is trivial to implement: one simply prepends the call
“.parallel()” to the sequence of stream operations. Further details are avail-
able in our publicly-available textbook chapter [9].

4 Results

In this section we present results from three investigations which suggest that
the functional-embedded approach (teaching functional programming in the
data structures course and/or elsewhere in the core) is efficacious and suit-
able for incorporation in a substantial proportion of existing computer science
curriculums.
Investigation 1: Student performance. We analyzed the final exam scores
of students in the fall 2021 instance of the data structures course. A total of
25 students completed the course, and all are included in this analysis. The fi-
nal exam included a three-part question requiring students to write code using
the Java Stream API and employing lambda expressions. Students averaged
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28/30 points on this question. On the most challenging part of the question,
which required a non-trivial application of the map-reduce pattern, 22 of the
25 students (88%) scored 13/15 or higher. This demonstrates that a key ap-
plication of functional programming was mastered by a strong majority of
students.
Investigation 2: Student perceptions. We surveyed students who com-
pleted our functional-embedded data structures course, assessing their per-
ception of the 9 topics in the course; 32 students participated in the survey.
They rated each topic based on how “interesting” and (separately) “useful”
they perceived it to be. Ratings employed a 5-point Likert scale, from 1 =
“not at all interesting” to 5 = “extremely interesting” (and similarly for “use-
ful”). Results are shown in figure 1. Functional programming was certainly
perceived as interesting and useful: it averaged 3.7 and 3.5 respectively. That
is, the average response places functional programming between “moderately
interesting” and “very interesting” (and similarly for “useful”). The level of
interest in functional programming was commensurate with most other top-
ics; only the binary search tree/heaps topic received a statistically significant
higher score. However, functional programming was ranked ninth out of the
nine topics in terms of usefulness, substantially lower than classic data struc-
tures topics such as lists/stacks/queues (average 4.4) and graphs (4.3); these
two differences have high statistical significance (t-test p-value < 10−3). The
low ranking of functional programming in terms of perceived usefulness may
indicate that we could do a better job of demonstrating the importance of
functional programming. Or maybe the student perception is correct: perhaps
fundamentals such as stacks, queues, and graphs really are more useful than
functional programming.
Investigation 3: Curriculum survey. We analyzed the curriculums for
the computer science major of the 32 colleges and universities whose faculty
contributed to the four most recent CCSC conference proceedings [8]. Three
institutions that do not offer a four-year computer science major were excluded.
For the remaining 29 institutions, we examined publicly-available requirements
for the major and course descriptions to classify each institution’s curriculum
according to the taxonomy described in section 2. Figure 2 shows the results.

Notwithstanding the well-known examples of functional-first curriculums
mentioned earlier, we find that, in this sample, none of these institutions em-
ploys the functional-first approach. Unsurprisingly, no institutions employ the
functional-embedded approach either: this is the new approach used at our
own institution and which we are advocating in the present paper.

The remaining three categories demonstrate that there is significant diver-
sity in how these institutions cover functional programming: 79% include it
in a programming languages (PL) course, split almost equally between the
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average Likert
score for. . .

topic “interesting” “useful”

Binary search trees/heaps 4.2* 4.3**
Sorting algorithms 4.1 4.4**
Hash tables 4.0 3.9*
Graphs 3.9 4.3**
Lists/stacks/queues 3.8 4.4**
Functional programming 3.7 3.5
Recursion 3.7 4.1**
Algorithm Analysis 3.5 4.2**
Generics 3.1** 3.6

Figure 1: Results of student perception survey. Topics are sorted by the
average rating for “interesting.” Starred values indicate a statistically signifi-
cant p-value for a two-tailed paired t-test comparing the given result with the
result for functional programming: single * for p < 0.05; double ** for p < 0.01.

Approach frequency percentage

functional-first 0 0%
functional-embedded (proposed here) 0 0%
functional-required 12 41%
functional-elective 11 38%
functional-minimal 6 21%

Figure 2: Results of the functional programming curriculum survey.

functional-required and functional-elective approaches. That is, about half of
the 79% with a PL course (41%) require the PL course for the major, and the
other half (another 38%) offer PL as an elective. Finally, 21% of the insti-
tutions employ the functional-minimal approach, meaning they do not offer a
significant amount of functional programming.

We believe these results demonstrate ample opportunity for the functional-
embedded approach advocated here. Certainly, the 59% of institutions where
CS majors can graduate with no exposure to functional programming could
rectify this using functional-embedding. In addition, we believe that the 41%
in the functional-required category would also benefit from embedding a certain
amount of functional programming into one or more core courses such as CS2.
This has the benefit of allowing the functional mindset to start earlier and res-
onate in other parts of the curriculum; perhaps students will view it as a more
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fundamental and integral technique, rather than an approach of mainly theo-
retical interest that has been sidelined to a challenging upper-level course. To
summarize, 100% of the institutions in this sample may benefit from adopting
the functional-embedded approach, and 59% would eliminate the possibility of
students graduating with no exposure to functional programming.

5 Discussion

This paper makes the assumption that it is desirable for undergraduate com-
puter scientists to be exposed to functional programming. It is beyond our
scope to justify this claim, which has been the subject of debate for decades.
Functional ideas have become increasingly important even within primarily
imperative/object-oriented languages, and this is one argument for teaching
functional programming explicitly. Another argument is that the ACM/IEEE
2013 Curriculum Guidelines ([7], page 156) require 7 core lecture hours of
functional programming, equivalent to 2–3 weeks of classes. The more recent
2020 guidelines, known as CC2020 [6], express required content in terms of
competencies rather than lecture hours. The guidelines list 84 competencies,
of which 3 mention functional programming explicitly ([6], page 114; more
details below). This can be converted very approximately to comprehensi-
ble units as follows. In a 10-course major, one of the courses would need to
devote 3/84× 10 = 36% of its time to covering the three functional program-
ming competencies—equivalent to 5 weeks in a 14-week semester. This level
of coverage is probably not a realistic goal for every CS program. But these
curriculum guidelines imply that it is highly desirable for every computer sci-
ence undergraduate to receive some exposure to functional programming ideas.
As discussed in the previous section, our curriculum analysis shows that about
60% of institutions in our sample do not currently achieve this goal, and they
could do so by using the functional-embedded approach.

One potential limitation of our functional-embedded approach is that we
are not teaching the full range of functional thinking: our emphasis is on the
practical use of lambda expressions. It lies beyond the scope of this paper to
debate this in detail, but this is an interesting line of future research. If we are
limited to a very small amount of time for functional programming, what are
the most essential and useful ideas to convey? As a partial justification for the
approach advocated here, we note that reasonable progress towards two of the
three CC2020 functional programming competencies mentioned above can be
achieved using only the material covered in our functional-embedded CS2 data
structures course. In detail, the two competencies covered are PL-A (imple-
ment a function that takes and returns other functions) and PL-D (use oper-
ations on aggregates, including operations that take functions as arguments).
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The competency not covered is PL-E (contrast the procedural/functional ap-
proach with the object-oriented approach).

Another potential limitation is that, at present, we devote only one week to
functional programming in the data structures course. In fact, we have been
satisfied with the level of conceptual coverage, but the one-week timeframe does
seem short for a valuable topic. We do commit to functional programming as
an important concept, listing it in the official bulletin description of the course
and in one of the department-approved learning goals.

Hence, an area of future work is to thread some functional programming
ideas into additional courses. At our institution, students also encounter
lambda expressions in a software engineering course that relies on JavaScript
web frameworks. We believe they could benefit from further exposure in the
required algorithms course and in electives such as artificial intelligence. As a
specific example of this, note that the sorted() function in the standard Python
library accepts a functional parameter for extracting the key from each item.
Hence, the instructor has an opportunity for a quick refresher on lambda ex-
pressions whenever sorting a list in Python. But an important issue for further
investigation is, how can we embed deeper functional programming concepts,
such as immutability?

6 Conclusion

We have described functional embedding, a new curriculum design that teaches
a modest but meaningful amount of functional programming within a core
course taught in a non-functional programming language. An analysis of CCSC
college curriculums showed that about 60% of colleges in the sample do not
currently ensure that CS majors have exposure to functional programming,
and that they could achieve this with relative ease via functional embedding.
We argued that the remaining 40% of colleges may also gain benefits from
functional embedding. A survey of student perceptions shows that functional
programming is perceived as interesting and useful, albeit to a lesser extent
than classical topics in data structures. An analysis of student exam results
demonstrates solid achievement on sophisticated learning goals such as the
map-reduce paradigm, even when only one week of functional programming is
embedded. We hope functional embedding will be adopted at other institutions
and that future work can refine the embedding of functional programming
throughout the typical computer science curriculum.
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Abstract

This paper describes an Arm64 CPU simulator for use in Computer
Organization courses, and student exercises to use it. The simulator is for
the Arm64 Instruction Set Architecture (also known as the AARCH64
ISA), and is written in C so that it can run under e.g. Windows on a
student’s laptop. It implements a sufficient subset of the Arm64 instruc-
tions to simulate execution of some simple Arm64 assembly programs
that have been assembled on a Raspberry Pi 3 or 4/400 that is running
the 64-bit RaspiOS operating system. The simulator is text based, can
step through machine instructions singly or all together, and displays
register contents as desired or after each instruction. Its behavior is sim-
ilar to a debugger such as gdb (although this simulator is much simpler
than gdb).

The simulator has been used in the author’s Computer Organization
course twice. Exercises for it involve running the example executables
and observing the effect on registers, identifying unimplemented instruc-
tions and implementing them, and extending the simulator with addi-
tional instructions. Arm64 executables are included; they range from a
minimal-NOP “program” to assembly-only implementations of the Fi-
bonacci and Factorial series and a basic loop. Source code is avail-
able in a git repository via this https://github.com/bloomu-prof/Arm64-
Simulator.git link.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
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The current version of the simulator implements the CPU’s datapath
only conceptually; advanced exercises (or a new version of the simulator)
might implement a more concrete representation of the “fetch-execute
cycle” or extend the simulator to the NEON instruction set.

1 Introduction

A course on computer organization focuses on computer hardware, which is
uncomfortable for students who are more used to software issues and consid-
erations. Compared to a programming course, there are limited opportunities
for hands-on activities, and most exercises consist of written problems. While
digital design topics offer numerous design and assembly activities, they can fill
an entire semester with “engineering-like” circuit- and component-design ma-
terial; higher-level topics such as pipelining, cache and memory organization,
or multi-core/heterogeneous CPU designs receive less attention.

The author’s computer science program emphasizes software engineering
and most of the students are more comfortable with software issues than
with hardware issues. In addition, most of their experience has been on x86-
architecture systems (usually running the Microsoft Windows operating sys-
tem). The curriculum includes a C programming course as a prerequisite to
a computer organization course, both intended for sophomores who have been
exposed only to Java previously. The computer organization course broad-
ens their experience by examining architectures other than the x86 “CISC”
(Complex Instruction Set Computer) approach. An example textbook for this
course is “Computer Organization and Design: the Hardware/Software Inter-
face” by Patterson and Hennessy [3], which covers “RISC” (Reduced Instruction
Set Computer) architectures in detail. In particular, it develops a pipelined
version of the datapath of a RISC processor such as the Arm or MIPS designs.

This paper describes a simulator for the Arm64 instruction set architecture
(ISA). It reads and parses an executable file, displays the contained memory
image, and simulates the execution of each machine instruction while displaying
the effect on the processor’s registers. As such it can illustrate the behavior
of a processor’s fetch-execute cycle. The simulator itself is written in C, and
structured in such a way as to be readily modifiable or extensible by anyone
who has had a course in C that covers pointers. The code is discussed in detail
below.

Inputs for the simulator are in the form of executable files from a Raspberry
Pi running 64-bit RaspiOS. These programs files include some instructions
that are decoded but lack implementations of their execution. Adding these
instructions to the simulator provides a hands-on programming exercise for
students while encouraging them to work with machine instructions at the
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instruction-format level. Student exercises start with tracing the execution of
very simple programs and proceed to “debugging” them by determining what
instructions are not simulated properly, and then extending the simulator’s
execution function to implement the missing instructions.

A comparable program, the “Graphical Micro-Architecture Simulator” [2],
has been released by Arm Limited. It is closely coupled with the Patterson
and Hennessy book, recognizes that book’s LEGv8 subset, and provides a user
interface that relates instruction execution to the single-cycle and pipelined
datapaths developed in that book. It works with the LEGv8 assembly lan-
guage rather than Arm64 machine instructions, and directly illustrates each
instruction’s effect on the processor’s datapath and registers. It is not clear
how easily the program can be extended to additional instructions beyond the
LEGv8 subset.

2 Arm64 Executables and Exercises

The simulator’s inputs are executable programs written for a Raspberry Pi
running 64-bit RaspiOS. They are written in Arm64 assembly language; simple
C programs could also be compiled and linked statically, but with less control
over which machine instructions to use. The executables so far created use a
fairly small subset of the Arm64 instruction set.

(It should be mentioned that the LEGv8 subset, as defined in the Patterson
and Hennessy, uses a few instruction mnemonics that are inconsistent with the
standard mnemonics for the full Arm64 instruction set. A real assembler that
accepts the LEGv8 mnemonics should still produce machine instructions suited
to the ARMv8 ISA, or to this simulator.)

2.1 Executables

The simplest executable is a “program” that consists of a handful of “NOP”
instructions, two “MOVZ” instructions, and an “SVC” supervisor call. This
“nop” program is sufficient to demonstrate the use of the simulator and serves
as a “hello world” exercise for using the simulator. The supervisor call illustrates
that some instructions are simulated by simply performing the requested action
in non-architecture-dependent way; in this case the supervisor call is a request
to terminate execution, and the Arm64 simulator simply stops trying to process
instructions after performing a “sys_exit” supervisor call.

The “demostr0” executable actually does something – it uses “LDR” memory-
access instructions and another “SVC” service to produce a text-string output.
It also includes some “LDR” instructions that have no effect, but do demon-
strate additional addressing modes. Stepping through this program shows how
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instruction executions affect register contents; using the simulator’s “Run” com-
mand runs the whole program and produces its output.

Another output program, “simplestring”, uses some utility subroutines
to produce output, thereby demonstrating the performance of some branch
instructions. It also produces spurious “garbage” output because on an unim-
plemented instruction. Students must find the unimplemented instruction,
which is trivial as the simulator reports instructions that it has decoded but
cannot execute. They begin extending the simulator by adding code needed to
implement the instruction. The missing instruction is a form of “SUBTRACT”
instruction, and is implemented easily by copying and modifying the imple-
mentation of a different “SUBTRACT” instruction in the simulator’s execution
routine.

The “hexsmall” and “hexbig” programs show output of numeric values as
hexadecimal strings. “hexsmall” correctly displays a 16- to 32- bit value that
is hardcoded in. “hexbig” attempts to do the same for a 33- to 64-bit value,
but requires the “MOVK” instruction to produce correct output. Implementing
this instruction is another student exercise, and reinforces understanding of the
relationship between the 32-bit registers and the 64-bit registers.

The “dialog” program prompts for a text-string input and echoes it back
out. This requires implementing an additional system service, “sys_read”.
When this is implemented, the simulator begins to be capable of running mean-
ingful programs with input and output.

“writeint” displays a numeric value in base 10, which is much more in-
volved than displaying it in hexadecimal. This executable introduces the first
“new” instruction that isn’t just a variation on what’s already implemented,
namely “MADD” (or simply “MUL”). While the instruction requires significant
additional circuitry in a real processor, it is simply another register-operations
instruction from the simulator’s perspective.

Finally, the “factorial”, “fibonacci”, and “averageloop” programs demon-
strate actual computation. Although they are more complex as (recursive)
assembly-language programs, they require no new instructions beyond those
required for the simpler programs. Their correct operation provides a little bit
of “gratification” at getting the simulator to work properly and do something
interesting.

2.2 Exercises

Student exercises are based on the simulator. Building and verifying the simu-
lator serves as a lab exercise. One involves identifying the missing instructions
and adding them to the simulator. This exercise could be split into multiple
exercises, perhaps with additional exploration of the assembly-language code
if desired.
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The first two times this simulator was used in a course, the source code was
provided in the form of web pages that could be copied and pasted into source
files, while presumably being studied. This was done in two steps: the first is
build to a program that can read and parse an ELF-formatted executable. A
successful program will display a report of the ELF-file section contents, and
place the machine instructions into a memory array, and the exercise writeup
asks questions about the output. The second step is to add a fetch-decode-
execute cycle that processes the memory array of instructions. The first two
executables, “nop” and “demostr0”, will run successfully and serve to prove
that the simulator is correctly built. These two steps have been treated as
separate exercises. The Discussion section below addresses this.

The next exercise is to find and implement the missing instructions needed
by the other executables. Students in previous years have had prior exposure to
Arm86 assembly language, and so the executables themselves are not examined
in any detail. Going forward, more time should be spent on the assembly
language for students who have not seen it before.

3 The Simulator

The simulator is organized in two stages, the ELF-file loader stage and the
fetch-decode-execute stage.

Linux executables are kept on disk as ELF files. The “gcc” compiler and the
“as” assembler both produce ELF-formatted files on Arm64 systems as well as
on x86-64 systems. ELF (“Executable and Linkable Format”) is a format spec-
ification for storing executables and other binary information. It starts with
section headers that describe the file’s sections and their contents. Machine
instructions, static data, and blank memory space (“bss” segments, not stored
as such in the file) each get their own section, along with sections to support
dynamic linking information and debugging data. The machine instruction
sections are of course different for each ISA, but the format’s headers are the
same.

The loader stage produces a report on the executable program’s memory
usage as determined from the executable file, and fills a memory array with
the binary contents (machine instructions and data). The memory array is
sized to include space for the heap and stack, as specified by the ELF format.
Optionally the whole memory array can be written as a simple binary data file.

The second stage of the lab exercise adds a “fetch_decode_execute()” func-
tion that runs the executables instruction-by-instruction. This function actu-
ally creates a “read-evaluate-print loop” that processes single-letter commands
from the user’s keyboard; commands execute the next instruction in the ex-
ecutable, display information about the processor’s registers or the program
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memory, and control the simulator itself. If the user commands to run one or
more instructions, the loop first “fetches” four bytes from the memory array,
at an index calculated from the Program Counter’s virtual memory address.
(This index calculation is internal to the memory subsystem, only the pro-
gram’s virtual addresses are used within the processor.)

“Decoding” is done by a helper function which creates a struct representing
the values of the bit fields in the fetched machine instruction. It also contains
the instruction’s corresponding mnemonic, as found from a table of instruction
mnemonics and bit patterns [4]. This mnemonic can be helpful for “disas-
sembling” the instructions in the executable, and is used for convenience in the
“execution” of the instruction. The instruction table is fairly complete although
the Arm architecture’s “NEON” set of SIMD1 instructions is not included. Any
missing instructions can be added straightforwardly by inspecting the table’s
structure in the “opcode_patterns.h” header file.

While “opcode_patterns.h” matches instruction bit patterns to mnemon-
ics, the meanings of the various bits in an instruction is documented by Arm
Limited in on their developer website [1].

3.1 Instruction Execution

“Executing” the instruction is done by another helper function. This function
receives the struct of bit fields and mnemonic, as generated by the “decode”
function. In the simulator’s current version it then performs a large “if – else
if – else” test on the instruction’s mnemonic. When it finds a match, the
corresponding statements do whatever work the instruction requires (doing
arithmetic on register contents, accessing a memory location, branching to a
different memory address, etc.). If no match is found, an error message is dis-
played. It is this error message that informs the user about an unimplemented
instruction. A portion of this “if – else if – else” struct is shown for illustration
in Figure 1.

This is where the student coding activity occurs. Once the unimplemented
instruction is identified, its desired behavior must be understood, then another
“else if” clause can be added to do whatever the instruction needs.

4 Discussion, Further Work

This is “version 3” of the simulator, incorporating the “read-evaluate-print”
loop to provide a text-based user interface. The available user commands
include single-stepping through an executable, displaying information about
the register contents following an instruction, running the entire executable to

1Single Instruction, Multiple Data
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Figure 1: A portion of the “execute()” function.

completion, displaying the executable’s memory usage in hexadecimal format,
verbose operation, help, and quitting the simulator.

The exercise of building the simulator was split into two parts because the
task of reading and manually copying the source code appeared to be more
than one lab session’s worth of effort. The first part built the ELF-file loader
portion and verified it. The second part added the fetch-decode-execute portion
of the program, and then proceeded to ask for implementations of the missing
instructions.

In use, most students did not read the code in any depth before highlight-
ing, copying and pasting it. Only after running it and finding an unknown
instruction did they pay attention to what any of the code did. On the other
hand, the second part of the building process also included running all the
executables, and adding the required instruction implementations to the “if –
else if – else” structure. This made for a long and challenging second exercise.

The exercises can be reorganized to better reflect the amount of effort in-
volved and the distribution of pedagogical content. In its next use the author
will combine building the loader portion and the fetch-decode-execute portion
into a single, larger exercise. This can be combined with more discussion of
an executable’s organization as code (“text”) and data sections, and the way
it is placed into memory. New, minor exercises will be added to explore the
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operation of example instructions, and illustrate the rhythmic nature of “fetch
– decode – execute” by single-stepping through some simple executables. An-
other executable will be written that does a bit more work including some
memory accesses. Adding the unimplemented instructions will be presented
as one or more exercises that explore the assembly/machine language in more
detail, perhaps while examining the decode process.

The simulator itself may be rewritten to more closely emulate the datapaths
described in [3]. This would replace the mnemonic comparisons with operations
based purely on the control signals generated by the decode stage. The next
version of this simulator is planned to operate this way, simulating the various
components of the datapath such as the ALU and its control logic.

5 Conclusions

This Arm64 ISA simulator has been useful in providing hands-on activities for
students in a Computer Organization course. It has been used twice so far, and
students have reacted positively to the hands-on nature of the exercises. Its cur-
rent version is good for demonstrating the overall fetch-decode-execute cycle. It
is available on the github website at https://github.com/bloomu-prof/Arm64
-Simulator.git.
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Abstract

This work describes a Kubernetes framework that can be automati-
cally deployed on CloudLab, a federal cloud resource, to support learning
activities in cloud computing education. The framework enables instruc-
tors and students to study cloud services’ full product development life-
cycle, including aspects such as automated deployment, availability, and
security. This framework is easy to deploy, is freely available to academic
institutions, and can be extended to support more advanced learning sce-
narios. The effectiveness of this framework is demonstrated through two
complex and full-stack student projects.

1 Introduction

The gradual integration of cloud computing in computer science curriculum has
resulted in an extensive set of knowledge areas (KAs) and learning objectives
(LOs) [3]. Delivery of these KAs and LOs are further facilitated through the
availability of cloud resources for education from both industry (e.g., Amazon

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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AWS, Google GCP, and Microsoft Azure) and academic (e.g., CloudLab [17]
and Chameleon [15]). Recently developed cloud courses cover topics such as
fundamental cloud concepts in virtualization of computing resources [8, 14,
21] and everything-as-a-service aspect of cloud computing [10, 19]. In [16], a
course covering both fundamental cloud concepts and cloud-based computing
models were developed. The course includes both infrastructure and service-
related projects, and students carry out work using Amazon AWS resources.
Similarly, [9] combines concepts on cloud computing fundamentals and big data
infrastructures. The work of [5] provides a road-map for a course that can be
adapted for either beginners or advanced students. The syllabus template
leverages Amazon AWS, Google Cloud Platform, and Chameleon Cloud. To
streamline the interaction between on-site, industry-based, and academic-based
cloud resources, a management toolkit called EasyCloud has been developed
[4].

Both industry-based and academic clouds have their own limitations. For
industry-based cloud, resources for educational purposes are limited for and
can require legal agreements at institutional level. These resources are more
often than not proprietary and specific to each platform. Academic clouds
are more freely available, but require more technical efforts to set up open-
source platforms. Our work contributes to the development of cloud com-
puting curriculum contents on academic platforms through the creation of a
Kubernetes-based framework augmented with additional components such as
secured registry, automation servers, traffic ingress, and certification services.
These components support an environment that is conducive to project-based
learning of -as-a-service topics.

The remainder of this paper is organized as follows. Section 2 presents
the design and development of the framework. Section 3 describes how the
framework enabled the development of two students projects. This section also
discusses students’ feedback and experience in using the framework. Section 4
concludes the paper and suggests future applications and improvements to the
framework.

2 Framework Development

The framework starts out as an attempt to create a Kubernetes cluster to
support cloud computing education on CloudLab. Over time, as students’
projects become more complicated, there have been demands for bringing ad-
ditional components, such as private registry and automation servers. The
initial intention was to include these components as part of students’ projects.
However, installing and configuring these components are non-trivial and fre-
quently detract from the primary goal of the projects, which is the develop-
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ment and deployment of cloud services. This motivates the development of the
framework.

The framework is designed to be deployed on CloudLab, an academic cloud.
Funded by the National Science Foundation in 2014, CloudLab was built to
provide researchers with a robust cloud-based environment for next generation
computing research [17]. As of Summer 2022, CloudLab boasts an impressive
collection of hardware. At University of Utah, there is a total of 785 nodes,
including 315 with ARMv8, 270 with Intel Xeon-D, and 200 with Intel Broad-
well. The compute nodes at University of Wisconsin include 270 Intel Haswell
nodes with memory ranging between 120GB and 160GB and 260 Intel Skylake
nodes with memory ranging between 128GB and 192GB. At Clemson Univer-
sity, there are 100 nodes running Intel Ivy Bridges, 88 nodes running Intel
Haswell, and 72 nodes running Intel Skylake. All of Clemson’s compute nodes
have large memory (between 256GB and 384GB), and there are also two addi-
tional storage-intensive nodes that have a total of 270TB of storage available
[18].

With CloudLab, users are able to program the necessary computing in-
frastructures, startup commands, and how they all fit together using Python.
This profile is used to generate a resource description document, from which
the actual cloud-based experiment is deployed. An example profile is shown in
Figure 1.

2.1 Manual deployment

An early implementation of the framework focuses on installation rather than
configuration. It was straight forward to setup automated installation scripts
as part of the CloudLab profile [12]. Students were provided with instruc-
tions to configure Jenkins, an add-on automation server to support continuous
integration/continuous delivery (CI/CD), and Kubernetes.

While this approach lessens the configuration burden, obstacles remain.
Each new CloudLab experiment is randomly deployed on different hardware at
different sites and is only active for 16 hours. This requires students to spend
time to repeat the configuration process. It can take from 45 minutes up to
one hour for this procedure to complete and can be a source of frustration for
students.

2.2 Naive Helm-based deployment

In the next version of the framework, we leverage Helm [6], a package man-
agement framework for Kubernetes, to allow configuration parameters to be
embedded in YAML files. Supporting components are now deployed and con-
figured as Kubernetes pods via Helm. Bash scripts are used to detect the
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Figure 1: CloudLab’s Python-based template and web interface

experiment’s parameters such as hostnames and IP addresses and replace cor-
responding placeholders in the YAML configuration files with this information.

This approach streamlined many configuration process. It reduced the total
amount of time to fully deploy the experimental infrastructure, which include
the Kubernetes cluster and the supporting components, to approximately 20-
25 minutes. However, there remains several limitations, one of which is the use
of Docker Hub, a public container image repository, for the Publish stage of the
automation process. Docker Hub provides users with access token to facilitate
automated publishing. For security purpose, these tokens cannot be included
with the CloudLab profile and have to be entered into Jenkins’ settings after
the experiment is fully deployed. This is yet another error-prone and tedious
configuration step for students.

2.3 Enhanced Helm-based deployment

The current enhanced version of the framework is a result of an attempt to pro-
vide support for projects’ security aspects. From this perspective, all projects’
components are now kept completely inside the Kubernetes cluster (no more
direct mapping to external host port via NodePort). An ingress service is de-
ployed to help manage ingress/egress traffic, and a private Docker registry, in-
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cluding certification managers, is setup. Two enhanced deployment approaches
have been developed.

In the first approach, the Docker registry is manually installed directly on
one of the computers that is part of the experiment and not inside the Kuber-
netes cluster. Certificates for the registry are generated and locally signed via
automated scripts. In order for the Kubernetes containers to recognize the reg-
istry’s self-signed certificates, they are deployed as accompanying DaemonSet
components of all Kubernetes pods.

In the second approach, the Docker registry is now deployed via Helm inside
the Kubernetes cluster. An automated script is developed to launch a certifi-
cate manager as a Kubernetes service. This script also generates a certificate
to be signed by LetsEncrypt [2]. The signed certificate is then uploaded into
the Kubernetes certificate manager and made available to all services. Having
verified certificates reduces the amount of overall setup work because using
self-signed certificates almost always requires a work-around for each piece of
deployed software. Self-signed certs are also not trusted by default in browsers
and may even be blocked by firewalls.

Both approaches include the ingress controller, an important aspect of Ku-
bernetes deployments. Ingress controllers provide an easy way to attach certifi-
cates and route traffic to services. Additionally, by default Kubernetes deploys
services on large port numbers like 30000. Non-standard ports may be blocked
by firewalls. To route traffic from port 80/443 to the ingress controller a simple
Nginx server on the master node was deployed via an automated script.

Both approaches accomplish their intended goal, which is to create a frame-
work on which students can develop and deploy cloud services. The tradeoff
between the two approaches include the placement of the private Docker reg-
istry and the creation of security certificates. In the first approach, a direct
installation on hardware allows the registry to take advantage of resources
like storage and IP addresses. The second approach follows a best practice of
containing everything inside Kubernetes, including the private registry. How-
ever, additional configurations are needed, including the addition of Persistent
Volumes and Persistent Volume Claims to support the registry storage and
complex ingress traffic setup. The self-signed certificates are convenient, and
in the context of a large class with multiple student groups, the risk of reaching
LetsEncrypt certification request limit is low. On the other hand, self-signed
certificates require additional efforts to be recognized by Kubernetes and its
pods/containers. The details of these two approaches are available as public
GitHub repositories [12, 11].
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3 Student Projects

The efficacy and acceptability of the platform is demonstrated through the
following two projects. These are student projects from previous semesters
which could not be fully completed due to the inability to install and configure
the supporting components of Kubernetes on the earlier manual version of the
framework. Incidentally, key members of these projects are among the authors
of this paper, and they provide the motivation for the improvements of the
framework, which in turn, enable further completion of these projects.

3.1 A10dance

The Attendance Tracker (A10dance) is a full-stack web application that was
used to expand the team’s understanding of cloud computing [1]. A10dance
provides an online service where students and professors can create and log
into their accounts for attendance checking purposes. Students may increment
their attendance score when they come to class, and professors can then check
the attendance score of all students. The front-end of A10dance was built using
ReactJS and includes a fully functioning webUI that allows the user to interact
with the back-end and database and display the results of such interactions.
The back-end and database was created using a combination of NodeJS and
PostgreSQL, and they work in conjunction to execute functions such as creating
or logging into an account.

In the beginning, A10dance had a number of minor bugs in the webUI and
was missing some key features such as a functioning check-in button, filtered
attendance list, and appropriate authorization so that professors and students
only have access to specific items. At this point in time, security was not
part of the project’s consideration. While A10dance was able to successfully
deploy on the early Kubernetes framework using DockerHub as the registry
and Jenkins for CI/CD, one major limitation of the project was the manual
process in which the deployment scripts and cluster configuration files need to
be edited any time a new experiment was launched.

The enhanced Kubernetes framework allows the A10dance application to be
deployed in a generic way. The deployment details can be abstracted into en-
vironment variables/secrets. By using the framework, few changes are needed
to deploy the application to CloudLab when compared to a local deployment.
The only changes required when deploying to CloudLab are the addition of se-
crets and the Jenkins pipeline. The project’s major components are complete
and operational. The group is now looking at further enhance the access con-
trol capability of the project by integrating more components such as Keycloak
[20].

104



3.2 Chatbot

The University Chatbot is a full-stack, cloud-native project executed over
CloudLab infrastructure [7]. It will provide users with an interface to make
specific queries about campus events through a chat app, which rely on ex-
isting open-source frameworks for natural language processing. The front-end
is a simple chat interface allowing users to ask about campus-related events.
The back-end involves a deep-learning bot that can process user input and
query a database for information. The database is populated by information
scraped from the university’s related sites. The project displays the utility of
cloud-based development with concepts such as automation, containerization,
and CI/CD. These are implemented through open source tools such as Docker,
Kubernetes, and Jenkins.

Chatbot started out with a fully functional back-end as a proof of concept
for the project. The WebScraper is containerized and consists of a Python
script to scrape data and populate the Database. The Chatbot consists of a
Natural Language Understanding (NLU) processing server and actions server
developed within the Rasa framework for chatbots [13]. The NLU server was
configured to receive a connection from the WebUI while the actions server
is able to query the Database based on requests from the NLU server. Both
servers were containerized and deployed within a multi-container pod. The
front-end WebUI component was not at a functional state. It was deployed as
an Nginx service made accessible through a NodePort protocol. The develop-
ment of a socket.io application to interface with the Chatbot was unsuccess-
ful. Each of the four components were configured for automated deployment
through CI/CD pipelines in Jenkins. However, they lacked automated integra-
tion and required a manual build step.

The original development of the project was considerably slow due to the
hurdle of configuring the infrastructure required for cloud-native development.
A particular shortcoming was the manual setup of the Jenkins automation
server required at the start of each CloudLab experiment. This tedious pro-
cess dissuaded the development team from taking advantage of the benefits of
CI/CD pipelines earlier in the development process, as evidenced by the lack of
an automated build step in the pipeline implementation. The new framework’s
use of Helm to automate the deployment the Jenkins server made the concept
of CI/CD more attainable. The project now benefits from full CI/CD pipeline
integration, making the continued development of Chatbot more efficient. An-
other shortcoming in the original project was the lack of consideration for cloud
security practices. Security deficiencies include the use of a public Docker reg-
istry for application images, the lack of ingress control and certification for the
cluster, and hard-coded configuration values in project files. The inclusion of
infrastructure to handle such security concerns has enriched the development
process to be in line with production level security standards.
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3.3 Discussion

The above framework (including both approaches) provide a secure cloud plat-
form for students to develop and deploy complex full-stack services. By reduc-
ing the amount of efforts needed to install and configure the relevant add-on
components for the Kubernetes platform, the development and deployment
processes become streamlined. As a result, students are able to focus more on
the technical details of their cloud services rather than the cloud platform.

The consistency and reliability of the framework also provides a solid start-
ing point for students that need time to ramp up on their technical skill. In a
discussion, one student said, “having no knowledge on cloud-based applications
before the class, I found that working through the hands-on experiments in my
own time helped me to understand all of the different components that would
be utilized in the project. There are plenty of parts in the project that I still
ask to be clarified, but I understand the main functions each component plays
in making the entire application run ...”. Another stated, “I found the devel-
opment process of a cloud-based application to be very insightful. At work, the
build and deploy process is partially abstracted through layers of automation,
but the project helped improve my ability to troubleshoot build issues...”. In
the end, the framework facilitates the completion of these two projects and
also provides opportunity for students to further improve upon their original
design.

4 Conclusion and Future Work

The enhanced Cloudlab-based Kubernetes framework provides a convenient
and reliable environment for learning to develop and deploy complex cloud
services. The effectiveness of the framework has been demonstrated through
the improvement of two student projects that could not be completed with
an earlier version of the framework that lacked the automated installation and
configuration of several supporting components. There remains many improve-
ments that can be made to improve the framework. These include, but are not
limited to, the followings:

• Additional parameterizations of Jenkins’ credentials and automation of
username and password hash generation to improve security.

• Deployment of load balancer and DNS servers inside Kubernetes.

• Development of rigorous user guide and documentation.

These improvements will contribute toward supporting more complex projects
and have the potential for the framework to approach being a production-level
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Kubernetes cluster. We intend to continue involving students in the implemen-
tation of these improvements in order to facilitate hands-on learning opportu-
nities.
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Abstract

Programming languages courses are an important component of com-
puter science curricula that aim at building students’ transferable skills in
learning new languages. These courses tend to come in two main flavors:
the interpreter/compiler style on the one hand, with a focus on language
definition and implementation, and survey courses on the other hand,
which compare languages through the features they support. Typically,
interpreter/compiler courses are narrow and deep in their focus, while
survey courses favor a broader coverage. In this paper, we report on our
experience in teaching a course that is neither centered on programming
language implementation, nor based on a comparison of multiple lan-
guages. We believe that our course offers a good depth/breadth balance,
avoids pitfalls common to the more classic approaches, and nicely com-
plements the larger needs of a standard computer science curriculum. We
see our approach as the result of a trend in modern, general-purpose pro-
gramming languages, notably the emergence of a common set of features,
and the arising of so-called hybrid or multi-paradigm languages.

Keywords: Programming languages, language features, paradigms, upper-level un-
dergraduate education.
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1 Background

1.1 Overview

An important component of a student’s computing education is the ability to
work with new programming languages. It is well-known that novice learners
have difficulties transferring their knowledge from one language to another [7,
8]. Programming languages courses are often used to introduce language fea-
tures and programming paradigms to help students build transferable skills
that facilitate the learning of new languages.

Our institution offers an upper-level course designed primarily for Com-
puter Science undergraduates and titled Programming Language Concepts and
Features. Among students and faculty, it is universally known as the Program-
ming Languages course. This may seem like a reasonable contraction, but it
changes the grammatical quantity of the word language from singular to plural.
Given that the course is currently taught using a single programming language,
this shift is matter for reflection. This article discusses the apparent contra-
diction of a “programming languages” course (PL course, in short) that uses a
single language. The paper describes the motivations behind the design of the
course in its current form and discusses what we believe to be the major ben-
efit of our approach—namely, an extensive coverage of essential programming
paradigms in a hands-on fashion that prepares students for the complexities of
modern programming languages. The discussion draws on more than twenty
years of experience teaching the course—using one or multiple languages.

1.2 Illustration

Alexis and Brady are two students. Alexis enrolls in a PL course that uses
Java, Python, and JavaScript as its sample languages. In this course, students
are given the exercise of implementing a solution to the following problem:

Fill an array of N random integers between 0 and 99. Count how
many integers in the array are less than 50.

Alexis, whose background is in Java, quickly produces a first solution:
Java

var nums = new int[N];
for (int i = 0; i < N; i++)

nums[i] = rand.nextInt(100);
var count = 0;
for (int i = 0; i < N; i++)

if (nums[i] < 50) count += 1;

110



Alexis then moves on to JavaScript and writes code that, except for the use
of a non-integer random generator, is not very different from the Java version:

JavaScript

const nums = []
for (let i = 0; i < N; i++)

nums[i] = Math.floor(Math.random() * 100)
let count = 0
for (let i = 0; i < N; i++)

if (nums[i] < 50) count += 1

The final program is written in Python, where the loop looks a little differ-
ent, and code blocks are structured using indentation:

Python

nums = list(range(N))
for i in range(N):

nums[i] = rand.randrange(100)
count = 0
for i in range(N):

if nums[i] < 50: count += 1

Brady takes a different course, in which students are asked to solve the same
problem in Scala. Brady’s first program also builds on a Java background:

Scala
val nums = new Array[Int](N)
for i <- 0 until N do

nums(i) = rand.nextInt(100)
var count = 0
for i <- 0 until N do

if nums(i) < 50 then count += 1

Students are then taught about higher-order functions, lambda expressions,
and for-comprehensions, and then asked to rewrite their programs, leading
Brady to produce the following code:

Scala
val nums = Array.tabulate(N)(i => rand.nextInt(100))
var count = 0
for n <- nums do

if n < 50 then count += 1

111



Later, the course covers lazy evaluation, η-abstraction and more higher-
order functions, after which Brady writes yet another Scala variant:

Scala
val nums = Array.fill(N)(rand.nextInt(100))
val count = nums.count(_ < 50)

Alexis is left with the feeling that programming languages are similar, and
that it is relatively straightforward to learn a new language. Brady understands
that programming languages define numerous constructs, and that there is
more than one way to crack an egg. Both lessons are valuable. Programming
languages do share a lot of syntax and semantics, and experienced programmers
often switch languages seamlessly. But modern languages also offer powerful
features that can improve productivity and code quality. Programmers are
expected to adapt and to repeatedly transfer programming skills from one
language to another, and skilled programmers know what features to look for
in a new language and how to use them effectively.

As it happens, Brady takes on a developer job in Python after gradua-
tion, and soon faces the programming problem already solved in class. After
browsing the Python documentation with Scala in mind, Brady writes this
implementation:

Python

nums = [rand.randrange(100) for i in range(N)]
count = len([n for n in nums if n < 50])

Note how this code is arguably superior to Alexis’s variant despite Brady
having learned no Python in the PL course.

2 A Modern PL Course

2.1 Flavors of PL Courses

Established Computer Science curricula (e.g., [2]) prescribe the coverage of
programming languages, usually in terms of outcomes. In practice, the range
of courses vary, but most can be fit into one of two categories:

• Programming languages definition and implementation. These courses
have a strong focus on the creation and implementation of programming
languages: parsing, semantic analysis (including type-checking) and code
generation. They often involve an interpreter or compiler project, as in
a typical “write a Scheme interpreter in Scheme” course.
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• Programming languages survey and comparison. By contrast, these cour-
ses sidestep implementation issues to focus on the practical use of a va-
riety of languages. Assignments typically involve writing programs using
programming languages that illustrate distinct styles, or paradigms. A
typical course covers functional, logic and object-oriented programming.

In all cases, the course’s broad objective is to help students become better
programmers. Implementation courses are founded on the idea that many
students have a better grasp of a concept if they have some understanding
of its implementation. These courses tend to have a deep but narrow focus
on the essential aspects of a language—subprograms, scoping, type-checking,
exceptions, garbage-collection, etc.

On the other hand, survey courses consider languages from the standpoint
of a user—a programmer. The goal here is to understand what programming
language constructs are available, what they do, and how they can be used
effectively when writing programs. How the features are implemented is pe-
ripheral.

There are strengths and weaknesses to each of these approaches, and schools
may use one, the other, or both in their effort to improve their students’ pro-
gramming skills. If one has to choose—given how much a typical computer
science curriculum needs to cover, one indeed often has to choose—we would
advocate against courses centered on programming language implementation.

Our main objection is that the approach is not cost effective. Because they
discuss each programming language aspect in great detail, these courses tend
to cover fewer features than usage-based courses. They are also limited to sim-
plified variants of features, easy enough for students to implement, but which
do not necessarily reflect the reality of a modern programming language [10].
Furthermore, this simplification can give students a false sense that they know
exactly what real compilers and run-time systems do, and lead them to shape
their program accordingly, resulting in ineffective “optimizations” and overall
worse code quality.

Most programmers can use a whole range of language features without
knowing how they are implemented. Programming languages are abstractions,
designed to insulate the programmer from machine-specific details. Being able
to deal with abstractions is an essential skill that we need to teach our stu-
dents. One cannot expect programmers to restrict themselves to features they
understand because they have implemented them.

Recommendation: Focus on effective use of programming language fea-
tures and leave language design and implementation issues to electives, such
as courses on formal semantics or compilers.
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2.2 Programming paradigms

It has long been observed (e.g., [4, 3]) that typical curricula have shifted from
programming languages to programming paradigms. If the course taken by
Alexis is limited to the imperative paradigm—using various languages such as
Java, Python, and JavaScript—it won’t be a very good course.

The object-oriented paradigm has long been mainstream, and students are
often exposed to it in multiple courses, besides the PL course (e.g., an intro-
ductory objects-first course, and/or a software engineering course that covers
object-oriented design). Depending on other courses in the curriculum, a PL
course may still discuss some aspects of object-oriented programming, while
safely assuming that others have already been covered. The same argument
obviously applies to the imperative paradigm, unless students move directing
from a functions-first introductory course to the PL course, which is unlikely.

Almost all PL courses include the functional paradigm, which has recently
been gaining a lot of attention. Unless a curriculum includes an entire core
course on functional programming, this paradigm ought to be thoroughly cov-
ered in a modern PL course.

The last traditional paradigm is logic programming, invariably discussed
in the context of Prolog. The intent here is to expose students to the no-
tion of declarative programming. However, logic programming is only one very
specific flavor of declarative programming. It is doubtful that their experi-
ence with Prolog—which is arguably more a search engine than a program-
ming language—will help students deal with the other forms of declarative
programming they may encounter (e.g., database query with LINQ or SQL,
XML processing using XSLT, or any particular Domain Specific Language).

Some courses have begun to include concurrent programming as one of
the standard paradigms. Several curriculum standardization bodies [2, 6, 1]
now emphasize the importance of parallel and distributed computing in the
undergraduate curriculum. Although many related concepts are often covered
in other courses, such as operating systems or networks, a PL course can also be
a place where students gain practice in concurrent or distributed programming.

Finally, event-based or reactive programming is a paradigm that is becom-
ing crucially important (and is listed explicitly in [2]). There are overlaps
between this paradigm and both functional and concurrent programming, but
it increasingly deserves its own coverage in a modern curriculum.

Recommendation: Depending on its place in the curriculum, a PL course
may assume basic understanding of imperative and object-oriented program-
ming, and then focus on their more advanced features. Functional, concurrent,
and reactive programming are becoming a must; logic programming can be
skipped in favor of more current flavors of declarative programming.
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2.3 Programming languages

The choice of languages in a typical survey course is driven by the need to
cover multiple paradigms. Object-oriented programming is often covered in a
mainstream language like C++, C# or Java, or in a purer language like Smalltalk
or Eiffel. Functional programming is usually presented in the context of Lisp,
Scheme, Haskell or an ML variant such as SML or OCaml. As mentioned
earlier, logic programming is always in Prolog. As for concurrent programming,
courses may rely on mainstream language with threads, like Java, or more
specialized languages like Erlang, Ada or Go.

In [5], the author makes the interesting remark that, while instructors fo-
cus on concepts and features, students are very much focused on languages,
and learn the concepts through the languages. There is a risk, however, of
them associating the features with the syntax, and of confusing languages with
paradigms [9]. It would be a crippling mistake for a student to assume that a
functional program necessarily uses deeply nested parentheses, or that a con-
current program must use symbols like wait, ! or ?. Even if Alexis’s course
continues with a functional programming assignment in Scheme, there remains
a danger that students will associate functional programming with Scheme ex-
clusively and not realize that some of these functional patterns can also be
written in Python, JavaScript or Java.

Fortunately, the advent of so-called hybrid or multi-paradigm programming
languages has made it possible to discuss multiple paradigms within the same
language. Writing imperative, object-oriented, functional, concurrent and/or
reactive programs with the same syntax can help differentiate the features from
the languages. As an added benefit, limiting the number of languages reduces
the number of “context switches” students need to make in terms of syntax,
idiosyncrasies, development tools and ecosystems.

Recommendation: Use fewer languages than paradigms and practice with
multiple paradigms within the same language as a way to avoid a one-to-one
mapping of languages to paradigms in students’ minds.

2.4 Scope

Many students think of programming languages primarily in terms of syntax.
While it is understandable that beginners might regard learning new syntax as
a hurdle, the syntax of a programming language is not where difficulties lie and
should certainly not be a focus of teaching. It has been observed (e.g., [10])
that the barrier some experienced programmers face with today’s increased
use of functional programming has very little to do with syntax, but stems
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from a failure to understand the fundamental principles underlying functional
programming.

There is a danger, in a PL course, to overly focus on the language and
its features and to neglect the purpose and proper use of these features. For
example, the concept and syntax of a lambda expression in a particular lan-
guage is uninteresting in itself. Power comes from using well-chosen lambdas as
arguments to well-chosen higher-order functions, a skill that requires learning
functional programming principles, at least at an introductory level. Similarly,
coverage of support for concurrent programming—e.g., locks, semaphores, fu-
tures, promises—cannot be narrowly limited to programming language con-
structs, but ought to include a broader discussion of fundamental aspects of
concurrency like asynchronicity, non-determinism, and race conditions.

Without becoming a full-fledged object-oriented programming, functional
programming or concurrent programming course, a PL course must cover
enough of these programming paradigms to help students make sense of sup-
porting language constructs.

Recommendation: Include an introductory coverage of language-independent
programming paradigms in the scope of a PL course.

2.5 Level

Although the author of [10] argues, like we do, against using simplified, toy
languages in teaching, he also warns that hybrid languages are too complex for
teaching purposes, and that they could result in overly high cognitive loads. A
counter-argument, however, is that programming languages are becoming more
complex, and that PL courses have not always kept up with this trend. Many
current and future mainstream languages will incorporate multiple paradigms,
and their complexity makes it all the more necessary that students be prepared
for them. Kotlin, for instance, a popular emerging language with support
for object-oriented, functional, and concurrent programming, will be easier
for students to learn if they already understand the concepts involved in its
programming constructs. Even venerable Java defines constructs like Stream
or CompletableFuture that mix functional and concurrent patterns in non-
trivial ways. We believe that a mastery of modern programming languages
requires a solid grasp of concepts that deserve to be included in our curricula.

Recommendation: Do not shy away from advanced features of program-
ming languages, as these tend to be the most difficult for students to learn on
their own at a later time.
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2.6 Assignments

It is an undisputed fact that students find it easier to understand the code
they read in class than to write their own. Students who know enough of a
programming language feature to read code that uses it, may not understand
that feature well enough to choose it and apply it effectively when faced with
a particular programming problem. For example, most students have no diffi-
culty with the mechanics of encapsulation, or recursion, or polymorphism, but
many struggle with the proper use of these features. The time spent in class
to explain the syntax and semantics of a particular language feature is usually
dwarfed by the time needed for in-class examples and homework practice.

In some ways, PL courses face challenges similar to that of introductory
courses. Instead of students discovering basic features of imperative program-
ming, as they would in a typical first-year course, they are now learning new,
more advanced features, which feel to them just as new and confusing as loops
or conditionals were in their first programming course. The same hands-on
approach is needed for students to become familiar with the new features and
to know when and how to use them.

Recommendation: Practice, practice, practice.

2.7 Performance consideration

The discussion of code performance issues with students is always delicate. On
the one hand, we want to avoid students obsessing over performance. This
is often pointless—“optimizing” the implementation of a deficient algorithm
will have little effect on performance—or counterproductive, resulting in code
that is harder to read and maintain. On the other hand, modern, feature-rich
programming languages, while they can increase a programmer’s productivity
and improve software quality, also have the potential to lead to very inefficient
code, in CPU or memory usage. There are just more ropes to hang yourself
with, performance-wise, in Java or Kotlin that there are in C or FORTRAN.
Students need to be warned of such dangers, lest they unfairly dismiss powerful
languages as being “slow.”

Recommendation: Forewarn students of potential pitfalls and penalize them
for blatant inefficiencies, such as quadratic implementations of functions that
should be linear.
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3 Conclusion

In a magical world of infinite credit-hours, a PL course could combine the
strengths of Alexis’s course—exposure to multiple languages—with the out-
comes of Brady’s class—understanding and proper use of advanced features—
and even include a discussion of implementation concerns. In reality, however,
courses will have to choose what to cover.

We believe that students are best served by a course that covers a large set
of features, along with the important programming paradigms that underpin
them—imperative, object-oriented, functional, declarative, reactive and con-
current programming. A focus on feature-rich, multi-paradigm languages, like
Kotlin or Scala, makes it possible for a course to teach advanced concepts in a
practical, hands-on manner. These concepts tend to be out of reach of courses
that rely on simpler (or even “toy”) languages. They also would be the hardest
for programmers to learn on their own and therefore deserve to be included in
a modern curriculum. The principles and structure we advocate in this paper
can be used as a template for such a course.
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Abstract

Computer Science is being taught in more K-12 classrooms nation-
wide than ever before. Teachers must have the tools and be trained to
assess student understanding and ability. The lack of high quality, read-
ily available assessments makes the problem even more difficult. Our
research uses a concept map task as a classroom assessment. The task
can be administered online and is scored structurally by a computer
program. The study uses Code.org CS Discoveries Units 2 and 3 in
two different classrooms: one with a teacher at an urban school who
was newly trained in computer science and the other with a veteran
computer science teacher at a suburban school. We found evidence of
correlation between the traditional assessments and the scores generated
by the concept map task. Alternative assessment methods benefit all
students. With our results we believe that our assessment is a practical
complement to other irreplaceable forms of assessment such as writing
code.

1 Introduction

As more and more students across the country are learning about computer
science, it is putting a strain on teachers who likely were not trained in this

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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subject. According to a 2016 survey study of computer science teachers in K-
12 in the US, “the lack of access to quality computer science assessment tools
makes it difficult for them to accurately gauge what students are learning”
[37]. Some of the teachers in the study reported that a book or resource with
effective questions about topics or concepts, such as looping or if statements,
would be very helpful.

Furthermore, the students come from varied backgrounds and levels of
preparation. One of the major thrusts of computer science at all levels is
to increase the participation of these diverse learners. It benefits students
and instructors alike to have access to alternative means of assessment. The
students gain because they have more opportunity to demonstrate what they
know. Instructors can ignite creativity, inspire confidence and have more tools
at their disposal to measure student success.

Concept maps have been fairly thoroughly studied in the literature for
assessing student knowledge. A barrier to their adoption has been the difficulty
in reliably scoring them. The contributions of this work are the following:

• to use concept maps as assessment in the computer science K-12 class-
room for the first time,

• to offer an automated scoring program to easily and reliably score concept
maps, and

• to suggest their inclusion in the computer science classroom as an alter-
native and supplementary assessment.

2 Related Work

2.1 Novak’s Concept Maps

Concept Maps are graphical tools to organize and represent knowledge [25].
They consist of concepts and the relationships between concepts. The con-
cepts are drawn in ellipses and the relationships are drawn as lines linking two
concepts with a word or short phrase. The combination of concept, linking
phrase and concept forms a proposition, which should be a true statement.
The concepts should be arranged in a hierarchy, with general or broad con-
cepts at the top, and more specific ideas nearer the bottom of the graph. In
order to give context to the concepts, a focus question is provided. An example
of a concept map made by a student in this study is shown in Figure 1.

Concept maps have successfully been used to summarize complex informa-
tion in a compact and efficient way [25, 27], for increasing reading comprehen-
sion and learning, for facilitating note-taking, for acquiring a foreign language,
and for summarizing knowledge [32, 36, 24]. Some of the concept maps were
created as a pre-writing activity, something authors did to help them summa-
rize their knowledge and enhance organizational thinking before beginning to
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write. Concept maps have also been studied for use as an assessment tool,
chiefly in science classrooms [22, 19, 31, 21, 28].

Despite these positive studies using concept maps as assessment tools in sci-
ence classrooms, as [29] points out there are some barriers to their widespread
adoption. Concept maps need to be shown to be valid assessments, applicable
to the domain being assessed. Showing validity and applicability is made more
difficult due to the variations in the concept map task and the consistent and
reliable scoring of the maps. From an educator’s point of view, a task typically
involves writing a prompt and providing several concepts and linking words
associated with that prompt.

This study responds to the barriers mentioned above. The validity and
applicability are addressed by correlating concept map results with traditional
assessments in the classroom. The concept map task is specific to the curricu-
lum being used. Similar task creation and concept map scoring are handled by
automating these jobs. Computer programs ease the burden on the classroom
teacher and allow for consistency and reliability in scoring concept maps.

There is significant literature concerning the evaluation of concept maps
[35, 19]. Scoring methods can be divided into three broad categories: holisti-
cally, with emphasis on concept map quality [7, 23], qualitatively [8, 20], and
quantitatively [29, 19, 21]. Many of the quantitative scoring algorithms focus
on the structure and components of the concept map itself. Several computer
programs, Cmapanalysis [26], C-Tools [15], COMPASS [13] and CRESST [16],
exist with some automatic assessment tools or used a tool to score the maps
[2]. Other studies suggest a weighted map, [9], closeness index to some expert
map [1, 20], and hybrid approaches, combining some or all of these techniques
to derive a score.

Indeed, at least one study suggested that the concept maps of students can
be qualitatively evaluated by the teacher and taken as a snapshot of under-
standing and used primarily for formative assessment [4, 34], removing the need
for scoring at all. There has even been interest in some interactivity during
concept map construction, either with teachers, peers or the computer. [36, 5,
18, 17]

Our approach to automated scoring is discussed in Section 3.6.

2.2 Related Work in Middle School Computer Science Assessment

Several studies have examined assessment in middle school computer science
in recent years.

The research work by Boe et al. [3] introduces an automated process to
gather information about Scratch programs. It does this by performing a
static analysis, that is, it counts the number of instances of particular blocks
of Scratch code. One good point raised in the paper is the inherent difficulty
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of evaluating performance based scripts and codes. Though not limited to
Scratch, it is a feature of Scratch that the programs are written in blocks and
the way to evaluate the code is by running the program and exploring the
possibly different paths of execution. Running each script, possibly several
times, is a process that can be time consuming since the action of the script
should be witnessed as opposed to the script producing text output. If a
correct text output existed, then a line by line file comparison could be easily
done1. A given Scratch project may not have such a static solution file. The
main idea of the paper is to provide some automatic project evaluation to
assist in Scratch script assessments. Boe et al. admit that their automated
assessment framework is meant to supplement the manual scoring of projects.
The weakness here is that the framework is limited to counting the blocks of
code written in Scratch. Particular Scratch elements will need to be present in
a script in order for it to be correct, but how it is used, that is, if it is correctly
used is not determined by the tool. For example, if an assignment requires the
use of conditionals then counting the if-statements would be of some limited
use.

Salac et al. [30] take a closer look at how to assess Scratch code made by
elementary school students. They developed an automated system to search
student code and identify candidate code snippets that can be extracted to
make multiple-choice, fill-in-the-blank and open-ended questions. The main
thrust was to see if students did better when asked about generic code or about
code they had written themselves. The authors hypothesized that knowing
what the code does, the function of it, can be known when others’ code is
reused, but understanding how the code works, or its structure, is necessary
if the student wrote the code himself. The findings were that when students
answered questions about their own code in its original context, they answered
correctly more often than when presented generic code. However, if their own
code was used, but the question put it in a new context, the students performed
worse. It seems the students were remembering what they did more than what
the questions were necessarily asking. The conclusion was that students were
more likely to answer explanation questions about their own code, but were
less thorough with the explanation than those who had to explain generic code.
The contribution of this work is the automated program that can find candidate
code in the student projects that could be used in a personalized assessment.
There is great value in a personalized assessment, however, it seems that most
of the students simply remember what it is that they wrote rather than have
an understanding of how or why it works.

The traditional methods of assessing computer science concepts and pro-
gramming ability are expert created multiple-choice, fill-in, and free-response

1For instance, with the use of the standard Unix file comparison program diff.
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style questions, interviews with students and inspection of artifacts, statically
or by executing code. These are effective, but they are time intensive and rely
on instructor expertise.

3 Methodology

This study uses the CS Discoveries curriculum as a basis for Computer Science
concepts and measures them with a concept map assessment task. Details
about CS Discoveries are given in Section 3.1. To address the concerns about
validity and scoring the current work proposes to

1. create and administer unit tests in line with the CS Discoveries curricu-
lum,

2. have students complete assessments made and scored by their classroom
teacher,

3. create a concept map task that students can use to make concept maps
about the units, and

4. score the concept maps with a computer program.
Finally, look for a correlation in the scores of the first two types of assessment
and the concept maps.

3.1 CS Discoveries

The Code.org CS Discoveries (CSD) curriculum launched around 2017 and is
geared toward students in grades 6-10. It provides excellent resources and links
the learning objectives back to the Computer Science Teachers’ Association and
the K-12 Framework for Computer Science for guidance [11, 6, 10]. The cur-
riculum has projects and meaningful checkpoints for informal and formative
assessments, but when it was first introduced, did not provide summative as-
sessments beyond the projects [10]. The data for this study were collected at
that time. Since then, Code.org has added a summative assessment to the end
of the units.

CSD Unit 2 invites students to create and share their own web pages. It also
presents an excellent opportunity for students to think carefully about what
information they are sharing with the world and the importance of privacy.
Code.org has built a tool called Web-Lab that runs in a web-browser and
allows users to type HTML and CSS tags into files in one window frame and
see the results in another window frame.

CSD Unit 3 is about drawing with the computer, programming interactive
animations and creating games. The Game Lab is a Code.org built program
that turns a web-browser into an interactive drawing program to aid in teaching
coding. The Game Lab is divided into two panels, one for the code and a second
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that displays the results of the code’s execution. The students do the actual
coding using a subset of javascript.

3.2 Creating Unit Tests

The unit tests created by the researcher were made to be in line with the
Code.org curriculum and the Computer Science Teachers’ Association (CSTA)
standards. Each of the questions can be traced to the curriculum lesson and
also uses the materials from the class. Therefore the material should be familiar
to the students and cover the relevant parts of the curriculum. There is an
example question from the Unit 3 test shown in Figure 2. The content validity
traces are detailed in [12].

3.3 Establishing the Concept Map Task

A researcher in Germany used concept maps to measure knowledge of incoming
Computer Science undergraduates [24]. The work involved collecting large
numbers of concept maps using an online tool called CoMapEd, developed by
the researcher, Professor Mühling. The tool works in modern web browsers and
allows an investigator to set the desired parameters of the concept map task
such as the focus prompt students see and whether students may create their
own concepts or must use those provided. A 6-digit hex number identifier is
generated when a student begins creating a concept map that allows the map
to be revisited in another session at a later time. We asked Professor Mühling
for permission to use his tool to collect our data and he graciously granted us
access.

Some possible concept map tasks include filling in blanks in concepts or
in links on completed concept maps [31]. Other tasks involve having students
choose from a bank of concepts [24] or having students segment and structure
concepts [17]. In fact 739 possible concept map tasks were outlined in [33]
by varying the component pieces of concept maps and what mappers must do
with them.

For our study, the concept map task is made up of a focus question and a
set of concepts. The concepts were taken from the curriculum materials and
selected by the researchers based on their relevance to the goals of the lessons.
The concept lists for Unit 2 and Unit 3 are shown in Tables 1 and 2. The
students must then connect related concepts to form propositions and add a
linking word to label the connection. The students are not allowed to add
concepts, nor can they remove them.

For the Unit 2 concept map task, 34 concepts were selected and listed in
Table 1. After reviewing Chapter 1 from CSD Unit 3, we extracted 38 concepts
to be used in the concept map task as shown in Table 2.
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Table 1: Complete list of 34 concepts extracted from CS Discoveries Unit 2.

Websites Webpages Content HTML Structure
Text Tags Headings Personal Expression Images
Red CSS Ordered List Unordered List List Element
Citation Bug Comment Indentation Whitespace
Maintenance Navigation Hyperlink Publish Style
Rule-sets Green Information Search Engines RGB
Trustworthy Privacy Blue Colors

Table 2: Complete list of 38 concepts extracted from Chapter 1 of CSD Unit
3.

Boredom Problem Computer Entertainment Self-expression
Shape Rectangle Ellipse Height X- Y- coordinates
Stroke Color Parameter RandomNumber Variable
Value Sprite Properties Location Animation
Grid Width Label Counter Pattern Keyboard Input
Visible Draw Loop Size Debugger Debug
True Mouse Input Else Clause Boolean Conditional
False Fill Boolean Expression Expression

3.4 Recruiting Classroom Teachers

The researchers recruited two classroom teachers to help us in the study. One
was from School A, an urban school with a teacher new to computer science.
The other was an experienced computer science teacher from a suburban school
we are calling School B. Both teachers were new to CS Discoveries and attended
Professional Development given by the researchers.

3.5 Research Study

The teacher from School A taught Unit 2 for a quarter. The final project was
to create a Personal Web Page. The teacher also administered the unit test
created by the researchers and the concept map task. The concept maps were
provided and test scores were reported to the researchers as anonymous data,
that is, without any student names or other information.

School B instead taught Unit 3 and similarly administered the unit test and
concept map task. This teacher also made a vocabulary test and reported the
scores for both assessments along with the students’ concept maps as anony-
mous data.

The demographics are then treated in aggregate and in total, there were
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189 students in the study, all in the 8th grade, between 13 and 15 years old,
98 girls and 91 boys.

3.6 Scoring the Concept Maps

The concept maps were scored using a computer program developed by the
researcher. The scores are based only on the structure of the maps themselves,
that is, the propositions found in the concept maps. The program takes as
input a scoring rubric for each unit to be scored along with all the concept
maps. In order to generate the scoring rubrics, the researcher evaluated all
possible propositions available from the pool of concepts. Each proposition
was given a rating, {−1, 0, 1, 2, 3} where −1 means the relating the concepts is
a misconception, a 0 means the concepts are unrelated and the strength of the
relation increases up to 3 which is a strong relation.

Assigning the actual point values for the propositions in the concept map
was inspired by previous work in the literature. For Unit 2 the inspiration came
from Novak and Gowin’s 1984 work [14]. In it, they show a scoring method
that grants 1 point for valid relationships, 5 points for a valid hierarchy, and 10
points for each ‘crosslink’ or proposition constructed of concepts from different
hierarchical branches. They also score 1 point for each example a student
correctly lists. In our work, we don’t allow students to add concepts, and we
aren’t able to track hierarchies. Therefore, we say ‘inspired by’ this scoring
method because we grant 1 point for weakly related concepts, 5 points for
related concepts, and 10 for strongly related, 0 points for unrelated concepts
and −1 for misconceptions.

An idea of the scoring used by Rice [28] was that students should be pe-
nalized for missing what was important. This lead us to try a different points
assignment for School B. Concept maps from this school scored 1 point for any
positive relationship, and −1 for unrelated concepts or misconceptions.

In all cases, the linking words in the propositions are not considered for
scoring.

4 Results and Discussion

The results are shown as scatterplots in Figure 3 and numerically in Table 3.
There is evidence of correlation in most of the cases. For School A, the Personal
Web Page project correlated with the concept map task much better than the
unit test, which doesn’t have much evidence of a correlation. In School B, both
the unit test and the vocabulary test had good evidence of a correlation.

There is good evidence that the concept map task can offer similar outcomes
to a traditional test or a class project. There could be several reasons for the
unit test at School A not being as strongly correlated with the concept map
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Figure 2: This is an example question from the Unit 3 Test.

score. It was the first time through a new curriculum for an inexperienced CS
teacher and the unit test was made by someone outside the classroom. It is
entirely possible that the students were not prepared for the kinds of questions
the test posed. Asking students to provide HTML code directly from memory
during the test is a more rigorous test than the one offered in the Code.org
updated curriculum. The students were able to build web pages in class, so it
is our conclusion that students could reference key words while building their
sites, but likely didn’t have such a reference available when taking the test.

Students are not currently familiar with concept maps or how to construct
them. The classroom teachers in this study were shown how to use the online
tool to create their maps and also instructed their students. Adding concept
map creation as part of the curriculum would help students to be more com-
fortable making maps.

4.1 Threats to Validity

Any time a study is done with students and teachers taking measurements with
assessments there are threats to validity. The questions we want to answer
when addressing this topic are: 1) Did we measure what we intended to
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Table 3: Summary of the Correlation Statistics for both Schools and both
assessments, showing the correlation coefficient and P-Value for all cases.

School Test Coefficient P-value

A Unit Test 0.14354681 0.209911893
A PWP 0.5181389 7.070 608× 10−5

B Unit Test 0.3796854 2.377 383× 10−7

B Vocab. 0.3998293 9.166 005× 10−9

measure? and 2) What does the numerical score mean? There is also the
question of what to do with the results of the assessment.

What the concept map task actually measures is not precisely known. This
study would be only the first of a series of studies to establish what is measured
with some certainty. The positive correlation with tests and other assessments
provides some evidence that the concept map task measures student knowledge
and understanding about the CS Discoveries Units. There is also a case to be
made that the concept map task also measures the amount of effort a student
put forth in the task. The more propositions made, the higher the score in
general. Since more than half of the possible propositions result in no points
or negative points, this is not simply a measure of effort exclusively.

The numerical scores themselves provide an indication of the number and
quality of propositions that can be stated by a student relative to his peers.
In all cases in this study, the higher the score the better. It doesn’t stand
to reason that a certain number has any specific meaning or that a threshold
could be established to claim a certain level of understanding. The study was
not constructed to be able to make these kinds of statements. This is the main
reason why this work shows that the concept map task would make a good
supplement to other forms of assessment.

The unit tests themselves were constructed to be valid assessments. How-
ever, they would need to be tested carefully in several studies to be able to
make such a claim. There is some evidence from their construction and also
from the scatterplots in Figure 4 that the students performed comparably on
the teachers’ assessments as on the tests.

4.2 Potential Benefits to Alternative Assessments

There are several potential benefits to using the concept map tools and as-
sessments in the classroom. Students who are learning English or who have
difficulty with language can benefit from this task because required language
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Figure 3: Scatterplots showing the scores students achieved in four different
traditional assessments versus the scores they achieved on a concept map task.
The concept map scores are shown along the y-axis and the different traditional
test scores are across the x-axis.

skills are minimal. It is easy to subtitle or translate concepts.
The task can be administered entirely online. This makes the assessment

distance learning friendly. In addition, it can be quite easy to detect students
sharing answers because it is unlikely for two students to generate the same
map. Dishonesty can be easily addressed by changing a few concepts for each
map in the class, a process that itself can also be automated.

5 Conclusion and Future Work

This study addresses one of the chief concerns in adopting concept maps as an
assessment, how to score them. We have used a computer program to score
the maps and shown that a concept map task can give scores that correlate to
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Figure 4: Scatterplots showing the scores students achieved in teacher made
assessments versus the scores they achieved on the researcher made unit tests.
The teacher test scores are across the x-axis and the unit test scores are shown
along the y-axis.

student performance on other assessments.
It is our recommendation that these assessments be used as an alternative

and a complement to other kinds of assessment. An inexperienced teacher
can quickly and easily make, administer and score a concept map task. This
can help ease the burden on already overworked teachers. An instructor with
more experience can also use the maps themselves to find areas where stu-
dents have misconceptions about how topics and concepts are related. These
function essentially as a knowledge inventory and can offer insight into student
understanding.

Future work includes more studies to help establish the validity of the con-
cept map task and scoring approach. The scoring schemes could be varied to
uncover how much impact the assignment of points to concepts can have on the
total map scores. Additionally, nothing was done with the linking words in the
propositions in this study. The links could be studied for semantics and their
sentiment analyzed and incorporated into the final score. A more sophisticated
scoring algorithm could also be used to award points for groups of concepts
that were emphasized in the lessons.
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Abstract

This paper introduces an open-source BinaryGame that assists stu-
dents learning reverse engineering. The game consists of ten levels that
increase in difficulty, help pages on GDB, and supports three flavors of
assembly language. Work on the BinaryGame is ongoing; for our initial
study, we used the BinaryGame to introduce students in a computer sys-
tems & organization course to Arm assembly. These students had prior
knowledge of x64 assembly, but no prior knowledge of Arm assembly;
our goal was to boost our students’ confidence in learning unfamiliar as-
sembly languages. Our results suggest that the BinaryGame increased
student confidence in their a.) general reverse engineering abilities; b.)
ability to reverse engineer programs in an unfamiliar assembly language,
and c.) ability to reverse programs in Arm assembly. We believe that the
BinaryGame can help students build their reverse engineering skillset.

1 Introduction

The BinaryGame is a open-source resource designed to help students learn re-
verse engineering at their own pace through an iterative, guided design. The
notion of creating a game or other executable to teach reverse engineering has
existed for nearly twenty years. The earliest known example is perhaps "Dr.
Evil’s Binary Bomb" (a.k.a., Bomblab) [5], initially developed by educators at

∗Copyright © 2023 by the Consortium for Computing Sciences in Colleges. Permission
to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the CCSC copyright notice and the
title of the publication and its date appear, and notice is given that copying is by permission
of the Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish,
requires a fee and/or specific permission.
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Carnegie Mellon University, and distributed as part of the seminal text, Com-
puter Systems: A Programmer’s Perspective [4]. The original Bomblab was an
executable compiled for x86 systems and was used as part of classroom labo-
ratory assignment at CMU. The bomb consists of six phases. Students have
to enter the correct string for each phase; if the incorrect string is entered,
the bomb "explodes" (e.g., prints out a string that says "Boom!"), causing
a student to lose points. In the intervening years, many other bomb-like ex-
ecutables/games were developed [3, 13, 15] and used to teach basic reverse
engineering concepts at conferences across the country, including Defcon and
Black Hat, the premier conferences for hackers. The source code (and compiled
binaries) to these custom re-implementations are typically not shared across
institutions to reduce the likelihood that solutions “get out into the wild",
either through code-sharing utilities (e.g., GitHub, Pastebin) or detailed walk-
throughs on YouTube. The proliferation of online solutions prevents instruc-
tors from reusing (or sharing) otherwise well-designed assessments that took
considerable time and effort to create.

A key novelty of our work is that the BinaryGame is open-source, allowing
instructors to modify and reuse the source code as a teaching aid in their own
courses. The BinaryGame is not designed to replace Bomblab-like assessments,
but to supplement them. In their 2016 paper, Shashidhar and Cooper [15]
advocate for the use of hands-on lab activities to "level the playing field"
when teaching malware analysis, prior to introducing a more free-form "grand
challenge" assignment. In their course, Shashidhar and Cooper use Portable
Executable (PE) files to first introduce students to the principles of malware
analysis in a laboratory setting. The Bomblab assignment is then discussed as
a potential "grand challenge" assignment to provide a "less structured learn-
ing environment... where leadership and direction comes from the student as
much as the instructor" [15]. Our creation of the BinaryGame supports the
model curriculum laid out by Shashidhar and Cooper by freely providing a
hands-on lab activity to introduce students to reverse engineering prior to the
introduction to a larger "grand challenge" assignment.

Wile the literature strongly supports the use of simple exercises to build
reverse engineering skills, there are very few readily-available resources for in-
structors to use in their courses. Shashidhar and Cooper [15] do not describe
nor provide any of the lab activities they use. Aycock et al. [1] discuss a series
of exercises they developed to teach reverse engineering, though not with suf-
ficient data to fully reproduce all of them. While Stricklan and OConnor [16]
discuss a framework for creating "diversified challenges" for a reverse engineer-
ing course, the challenges themselves are not provided. Like Aycock et al. [1],
the BinaryGame contains levels that build on each other and increase in dif-
ficulty as a user advances through the game. Like the method discussed by
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Stricklan and OConnor [16], the BinaryGame includes options for compiling
to distinct architectures and enables the generation of multiple unique binary
executables. Like Bomblab, the goal for each level is to input a string that will
allow the user "pass" to the next level. Unlike prior work, the BinaryGame
also includes introductory guides on GDB and different flavors of assembly,
and suggests readings in the free online textbook, Dive into Systems [12].

Work on the BinaryGame is ongoing and community contributions are wel-
come. For our initial evaluation of the BinaryGame, we focus specifically on
its ability to introduce students to an unfamiliar assembly language, namely
Arm assembly. The Arm architecture is one of the fastest growing and widely
used computer architectures today; as of 2021, over 200 billion chips using the
Arm architecture are used in a variety of mobile devices [14]. Unlike Stricklan
and OConner [16] who use Qemu [2] to generate Arm binary executables, we
deploy the BinaryGame on a Raspberry Pi. Our decision to use the Raspberry
Pi in lieu of a hardware emulator was manifold: first, prior work strongly sup-
ports the use of the Raspberry Pi to teach cybersecurity concepts [6, 17, 7,
8]. Next, researchers have also used the Raspberry Pi to teach topics like C
programming [18], Arm assembly [9, 10], and parallel programming [10], all
which are common topics in a computer systems course, a natural place to use
the BinaryGame. Lastly, using the Raspberry Pi allowed us to hide the code
to generate new binaries on the Pi’s file system, enabling the user to generate
novel, playable binaries of the BinaryGame at will on their Pis.

2 Overview of Game

The BinaryGame includes ten levels that increase in difficult and scope, mod-
eled after concepts covered in each of the first nine sections of the Assembly
chapters in the free online textbook, Dive into Systems [11, 12]. The levels
are: (0) predefined C functions; (1) basic string matching; (2,3) arithmetic
operations; (4,5) loops; (6) recursion; (7) arrays; (8)matrices; and (9) structs.
The goal of each level is to identify a unique string that will enable the user
to continue on the following level; there is no penalty for incorrect answers. In
the event that students are unable to pass the level and need assistance, they
have the option to receive a hint, which encourage students to refer to specific
portions of Dive into Systems and provide other clues for solving the level.

The BinaryGame is designed to be used in conjunction with the GNU De-
bugger (GDB), which typically represents a steep learning curve for students.
As a result, the BinaryGame includes several help pages that provide an en-
try point to GDB and basic assembly concepts. In addition to GDB, there
are separate help pages that provide basic information on Arm assembly, IA32
assembly, x86-64 assembly and a general introduction to the game.
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The BinaryGame is written in C and includes a Python wrapper that gen-
erates multiple version of the binary executable. Giving students access to
this variability allows them to harden their skills through increased repeti-
tions. For the purposes of this study, the BinaryGame was compiled directly
on a Raspberry Pi 4B; we have verified that the BinaryGame works with the
Raspberry Pi 3B+ and 3B. We note that a 64-bit version of the operating
system is preferable to ensure the assembly matches the coverage of Dive into
Systems. To prepare the devices for classroom use, the instructor flashed a
number of Raspberry Pis with an image that had the BinaryGame source code
hidden in a directory on the file system. We wrote a custom shell script (called
refesh-game) that generates a new version of the Binary Game executable,
and replaces the BinaryGame directory in the user’s home directory with this
new version, deleting all solution files that students may have created in that
directory. This allows the instructor to "refresh" the game directory between
labs without reflashing the Pis. Instructors can access the BinaryGame source
at: https://github.com/suzannejmatthews/binaryGame.

3 Methods

The surveyed students were primarily juniors majoring in computer science
or cyber security. All students were enrolled in a required computer systems
& organization course at West Point, which is the first course that students
are introduced to reverse engineering. The BinaryGame was deployed as a lab
exercise on Arm assembly fairly late in the semester. While the lab represents
students’ first exposure to Arm assembly and the Raspberry Pi, all students
had previously completed a 10-lesson unit modeled after the first nine sections
of the x86-64 assembly chapter in Dive into Systems. Our goal in having an
Arm assembly lab in a course that otherwise covers x86 assembly was to build
our students’ confidence that their reverse engineering skills can translate to
an ISA that they are unfamiliar with. We concentrated on two main research
questions. First, RQ1: "Does the BinaryGame improve student confidence in
their reverse engineering skills?". Second, RQ2: "Does BinaryGame improve
student motivation to continue learning reverse engineering?"

To analyze the effect that the BinaryGame had on student’s confidence in
their reverse engineering skills, we asked participants to rate their current level
of confidence on a Likert scale on three topics related to reverse engineering on
the pre- and post-surveys:

• C1: Confidence reverse engineering programs in some ISA (e.g. x64)

• C2: Confidence learning an unfamiliar assembly language

• C3: Confidence reverse engineering programs in Arm assembly
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Here, a score of 1 represented "very unconfident", 2 represented "some-
what unconfident", 3 represented "neither confident/unconfident", 4 repre-
sented "somewhat confident", and 5 represented "very confident".

To assess the impact that BinaryGame had on students’ motivation to
continue learning reverse engineering, we asked students to rate their current
level of motivation on Likert scale on the pre- and post-surveys. For this
question, a score of “1 represented (“very unmotivated") to 5 (“very motivated")
to learn reverse engineering" on the pre- and post-surveys.

Since this lab was our students first exposure to the Raspberry Pi, we spent
a few minutes at the beginning of the lab period discussing the ubiquity of Arm
processors in mobile and embedded computing and discussed how malware may
increasingly target the architecture in the future. We also discussed how cyber
professionals need to be comfortable switching between multiple instruction set
architectures, and how this lab was designed to help them gain confidence that
they can quickly "pick up" a new ISA (namely Arm). After giving a quick
overview of the features of the BinaryGame, the students were given the rest
of the lab period to play through the game on their own. At the end of the lab
period, we asked them to complete the post-survey which contained identical
questions to the pre-survey, plus additional questions on various aspects of the
game. We use a paired sample student t-test to measure the significance of the
difference of the means of each population. For each question, we reject the
null hypothesis when the p-value is less than 0.05. No identifiable data was
collected on students; however, the pre- and post-surveys for students were
distributed together to enable us to correlate student responses.

4 Results

We surveyed students over two semesters of the computer systems & organi-
zation course, which together had an enrollment of 58 students. Of these 58
students, only 33 students (56.9%) opted to participate. Of the 33 students,
one student failed to complete the pre-survey and another failed to complete
the post-survey. To ensure we could conduct a paired sample t-test between the
two populations, we omitted these two students from our analysis. As a result,
there are 31 students (n = 31) in our final analysis. We used the ttest_rel
statistic in the Python SciPy stats module for the paired difference test.

4.1 Effect on Student Confidence

For RQ1, our null hypothesis is that students would not experience a significant
improvement in their level of confidence in their reverse engineering skills. We
reject the null hypothesis when the p-value is below 0.05 for each confidence-
related topic. Table 1 depicts the mean scores and corresponding p-values of
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Table 1: Summary of Confidence Results
Question Pre-Survey Post-Survey p-value

n = 31 n = 31
C1 2.71 3.452 4.519× 10−06

C2 2.581 3.29 3.181× 10−06

C3 1.823 3.323 8.053× 10−09

Figure 1: Distribution of Student Confidence on Pre- and Post-Surveys.

our three topics assessing student confidence related to reverse engineering.
Figure 1 illustrates the distribution of scores from the pre- and post-surveys.
Our data strongly suggests that our students experienced a statistically sig-
nificant increase in confidence in in their ability to reverse engineer programs
in some ISA, learn an unfamiliar assembly language, and reverse engineer pro-
grams in Arm assembly.

For example, only 19.3% of respondents expressed some level of confidence
that they could reverse engineer in some assembly language on the pre-surveys,
with a large number of students (45.2%) feeling neither confident or unconfi-
dent. In the post-surveys, the majority of students (53.2%) indicated some
level of confidence in reverse engineering in some assembly language, with only
33.9% feeling neither confident or unconfident.

Similarly, students experienced a statistically significant increase in confi-
dence in reverse engineering in an unfamiliar assembly language (C2). In the
pre-survey, only 16.1% of students expressed some level of confidence that they
could reverse engineering in an unfamiliar assembly language, while 38.8% ex-
pressed some level fo confidence in the post-survey. However, a large percentage
of students expressed that they were neither confident or unconfident on both
surveys. Perhaps unsurprisingly, students experienced the largest increase in
confidence in reverse engineering in Arm assembly (C3). We do note that while
a large number of students (45.1%) expressed confidence in the post-survey, a
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Figure 2: Distribution of Student Motivation on Pre- and Post-Surveys.

significant number (41.9%) still expressed ambivalence on the post-survey, with
12.9% expressing a lack of confidence.

While the increase in confidence across C3 is perhaps expected, the increase
in confidence in “reverse engineering in some assembly language" (C1) is inter-
esting. First, while our students had prior exposure to an in-course 10-lesson
unit on reverse engineering in x86-64 prior to taking the Arm lab, nearly 35.5%
of the course expressed that they felt some level of confidence about reverse en-
gineering in some assembly language on the pre-survey. While the BinaryGame
lab covered Arm reverse engineering, their overall confidence in reverse engi-
neering in some assembly language increased, suggesting that process of using
tools like GDB (even in the context of an unfamiliar assembly language) helped
them improve their general skills in reverse engineering. Given our results, we
reject the null hypothesis, and conclude that the BinaryGame had a statisti-
cally positive impact on the surveyed students’ confidence levels in their reverse
engineering abilities.

4.2 Effect on Student Motivation

Lastly, our pre- and post-game surveys asked students to assess their motivation
for learning reverse engineering. For RQ2, our null hypothesis is that students
would not experience a significant change in motivation in learning reverse
engineering as a result of the BinaryGame lab. We reject the null hypothesis
when the p-value is below 0.05.

Figure 2 shows the distribution of scores on the pre- and post-surveys. The
y-axis indicates the percentage of students who indicated that they were: 1
("very unmotivated"), 2 ("somewhat unmotivated"), 3 ("neither unmotivated
or motivated"), 4 ("somewhat motivated") or 5 ("very motivated") to learn
reverse engineering on the pre- and post-surveys. The pre-survey average was
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3.419, while the post-survey average was 3.613. While 48.4% of students indi-
cated that they were motivated to learn reverse engineering on the pre-survey,
71% of the students indicated some level of motivation on the post-survey.
While students did experience a modest increase in motivation for learning
reverse engineering between the pre- and post-surveys, the difference between
the means was not statistically significant (p = 0.2805). Therefore, we accept
the null hypothesis for RQ2.

We asked some additional questions of students on the post-survey to gauge
the perceived usefulness of the BinaryGame to learn reverse engineering. While
81.27% of our students rated the game as being "useful" or "very useful" for
learning Arm assembly, an additional 12.5% felt neutral about the game. Stu-
dents who liked the game mentioned that the "difficulty scales well", and that
it was a "great start" for learning reverse engineering in Arm assembly. How-
ever, students also noted that "the levels past level 3 felt almost the same",
with one student complaining that problems could be easily solved by "putting
a break-point at the cmp instructions and reading out what the inputs had to
be" We feel this is valid criticism; it is hard to create meaningful reverse engi-
neering exercises. However, we feel heartened that many students appreciated
the level of difficulty.

5 Conclusion

This paper focused on introducing an unfamiliar (Arm) assembly language
to a population of students who were already exposed to reverse engineering
concepts. Our results suggest that the BinaryGame not only helps increase
student confidence in using Arm assembly, but in their existing skillset as well;
by seeing the same concepts applied to a novel architecture, students gained
confidence in their general abilities to reverse engineer.

Future assessment will focus on the effectiveness of the BinaryGame to
introduce reverse engineering concepts to students who are largely unfamiliar
with any assembly language, and to include larger populations of students.
The BinaryGame is still being actively developed, and we continue to refine
the complexity of levels and modalities for deploying the game. Community
contributions are welcome!
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Abstract
We describe the use of the Wheaton College’s Makerspace through

three example projects in three different courses: Computer Organization
and Assembly Language, Theory of Computation, and a student-defined
Independent Study. The two regular courses show how a Makerspace
project can be incorporated into a traditional computer science class,
while the Independent Study shows how a group of computer science
students can use such resources to facilitate their own service-learning
projects. In each case, the projects enhance traditional course skills by
adding real-world and/or interdisciplinary components.

1 Introduction

Makerspaces are becoming ubiquitous on college campuses, with many promises
of more student collaboration, building fabrication skills, experiential learning,
and more. However, as Rogers asked in [18], what do we make of Makerspaces
as they pertain to post-secondary computer science education? Beyond the
building of digital circuits (which may occur in purpose-built labs rather than
general Makerspaces), there seems to be little connection between computer
science and such collaborative spaces. In this paper, we discuss how a Mak-
erspace can be used in conjunction with three different courses: Computer
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requires a fee and/or specific permission.
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Organization and Assembly Language, Theory of Computation, and an Inde-
pendent Study based on a student-defined project. In each, the use of the
Makerspace is for a completely different purpose, even as some of the tools are
used in common across the multiple courses.

2 Use of Makerspaces

The use of Makerspaces in various fields in higher education, such as design,
engineering, physics, and others, is generally regarded as a positive develop-
ment in fostering student collaboration, communication, critical thinking, and
developing fabrication skills. Furthermore, students can get real-world, hands-
on experience in addition to theoretical concepts learned in the classroom [16]
However, there is little actual data to support the idea that Makerspaces are
fulfilling this mission, although attempts have been made [3, 5]. Adler-Beléndez
et al. provide a comprehensive literature review on assessment issues [1].

There is a dearth of literature on the use of Makerspaces as it pertains to
courses in computer science specifically. The one common exception to this is
the building of physical circuits, which often takes place in a lab run by the
physics department or program. However, those that do not have such a lab
may incorporate this functionality in a Makerspace [4]. Many have looked at
how to design functional spaces, using traditional technologies [15] or develop-
ing special-purpose hardware and software, as in the Smart Makerspace [12],
among others. Still other projects determine how to foster and/or test the
efficacy of Makerspaces for supporting student collaboration [2, 9].

Another large area of research centers around the use of Makerspaces for
K-12 education. One such example attempts to assess the learning that de-
velops from the use of Makerspaces incorporated in STEM fields [6]. In [13],
they describe a program to educate teachers to be more effective in the de-
sign space. Scheppegrell et al. [19] designed lessons integrating a Makerspace
for second grade children to foster computational thinking; a similar idea ap-
plied to an after-school program is reported in [21]. Yet another program built
a Makerspace on a college campus for use by K-12 students, especially from
underserved populations [11].

3 Examples and Results of Incorporating a Makerspace
into Computer Science Courses

The Makerspace at Wheaton is housed in a purpose-built space in a newly ren-
ovated science building. It contains such equipment as a small milling machine,
several FDM (Fused Deposition Modeling) and SLA (StereoLithography Ap-
paratus) 3-D printers, a larger laser cutter, large, flat work tables, and assorted
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hand tools. Next door is the machine shop housing larger equipment such as
3- and 5-axis CNC mills, a lathe, and assorted drill presses and saws. Any
student on campus has access to these spaces and equipment during regular
open hours, supervised by a full-time director.

We now describe each of the three computer science courses and how the
Makerspace was used in each. The resulting output and/or results are also
discussed in each section.

3.1 Computer Organization

A required course for all computer science majors is Computer Organization
and Assembly Language. Among other things, students learn about the dat-
apath, the route that instructions take from first being read from memory to
their execution. This is done at the bit level, with many components shown
as “black boxes” that perform the desired operation (for example, the program
counter). Thus, the students are attempting to learn the datapath in a sort
of “virtual” way; they are not using actual wires and electronic circuits. Even
in that more realistic realm, there is no way to “see” the zeros and ones “mov-
ing” from one component to another. One way to help students understand
the datapath is to use a circuit simulator. In such a system, the student can
see how wires/circuits change from 1 to 0 and vice-versa through the use of
coloring of the components. To further strengthen the students’ grasp of data
moving through the datapath, we hold the annual Comp Org Crazy Model
Expo [8], a somewhat whimsical but nevertheless helpful way for students to
visualize what is happening at the hardware level within circuits. The goal
of the Expo is for pairs of students to build a model of some portion of the
datapath without using any electronics, the idea being that they should show
how the data flows through and is changed by various components. Students
do this by modeling 0’s and 1’s as marbles, Hot Wheels cars, water, etc. In
addition, they must create a poster describing exactly how their model mimics
the real circuit(s). While the project can be a bit whimsical, the poster should
be of a high standard as if presenting at a conference. Finally, the students
present their model to the class during the Expo. The class votes on the best
presentation/model, and the winners receive prizes such as stickers and squishy
toys. The competition can be quite fierce!

After a group’s idea is approved by the instructor, they have about two
weeks to complete their project and poster. There are numerous good examples
of these projects running the gamut from building with cardboard and tape
to 3-D printing. Students have access to the college’s Makerspace whenever
there are open hours. A full-time staff member is present at these times to help
with student projects. The Makerspace is also available for regularly scheduled
classes, some of which are geared especially to “making.”
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Figure 1: Students presenting a wooden
binary-to-decimal converter.

Figure 2: A working 3-D
printed binary counter.

For but one example, students created a 6-bit binary-to-decimal converter.
They built a wooden ramp with six tubes that held from one to 32 marbles,
respectively. Each tube represents a bit position in the 6-bit value, or 20 to
25. At the start, each tube is “closed,” representing zero at each bit position
and thus zero for the represented value. If the “valve” for one of the tubes is
opened, that represents a one at that bit position, and the appropriate number
of marbles roles down into a long tube. If the fifth position is opened, for
example, 16 marbles would roll out, representing 24. Thus, the correct number
of marbles will roll out for any combination of valves (bit positions) that are
opened. This is shown in Figure 1. The Makerspace was used to cut and glue
the wood, as well as cut the tubing. Our Makerspace has scraps of spare wood
available for free that was sufficient for a project of this size.

Another example is shown in Figure 2, a working 3-D printed model of
a binary counter. Once the pendulum is set in motion, it meshes with the
external gear which, in turn, turns an internal gear that moves the four binary
counter wheels. Our Makerspace has several 3-D printers available, including
free materials.

Figure 3 shows a student explaining his group’s project via their poster.
They built a working binary adder comprised of two half-adders. Their model
was rudimentary, made of cardboard, but the thought put into it is the same no
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Figure 3: A student explaining a
project using his group’s poster.

Figure 4: Another example of a
poster, this time showing a flip-flop.

matter what the materials are. Even using simple materials, the Makerspace
gives students a great space with large flat tables to work on their models. On
the other hand, another group built a working model of an SR flip-flop out
of sheet metal, using the tools available in the Makerspace. The model had a
lever such that it forced one output to represent “1” and the other to represent
“0” or vice-versa. Figure 4 shows the poster and one of the presenters. Other
common projects involve pipelining, incrementing the program counter, and
modeling the workings of multiplexers.

3.2 Theory of Computation

Students need to write programs that are more extensive and use and/or gener-
ate more realistic data in upper-level computer science courses. In this project,
students use a Bracketed L-System, a type of context-free grammar (CFG), to
generate two- or three-dimensional virtual trees or plants [17]. Using such a
grammar produces fractal, or self-similar, plant structures, a common exam-
ple being a fern. The output of the program is a file that can be displayed
graphically using any number of free viewers. Furthermore, the generated files
can be used to create two-dimensional cutouts or etchings using a laser cut-
ter, a piece of equipment that is becoming more widely available in colleges
with the advent of Makerspaces. This project offers these experiential learning
components that are not usually associated with a computer science theory
course.

The project in more detail:

• Students define a Bracketed L-System grammar that can be used to gen-
erate a plant. For example, such a grammar might have the alphabet
= [S,B, x, y, “[”, “]”,+,−], where
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S is the start symbol,
B is a non-terminal representing a branch. A branch can be thought
of as a 3-D rectangle, or rectangular parallelepiped,
x, y are scale factors in the horizontal and vertical directions, re-
spectively,
[ means push the current position onto a stack,
] means pop the stack,
+ denotes a counter-clockwise rotation by a constant number of
degrees,
− denotes a clockwise rotation by a constant number of degrees.

• Using the above grammar, a production rule(s), called the input string,
is created:

B → BB − [−yB + xB] + [+xB − yB]

In other words, this sample string defines a plant that begins with two
straight branches, followed by a “subtree” which is rotated clockwise and
consists of a branch to the right and one to the left, followed by another
subtree that is rotated counter-clockwise in its entirety. This forms the
basic outline of a plant. The degree of rotation and the scaling parameters
can be changed to yield differently shaped plants with the same branch
structure.

• Iterating over the production rule recursively “grows” the plant, yielding a
larger and more filled out tree. Iterating the above rule 15 times produces
the plant shown in Figure 5.

• This output is stored in the STL file format. This format stores 3-D
objects as a set of planar triangles. Thus, the rectangular branches of
the plant produced above are triangulated to be stored in this format.
A small portion of an STL file that describes two triangles is as follows:

facet normal 0 0 0 outer loop
vertex 0.000000 5.000000 1
vertex 1.000000 5.000000 1
vertex 1.000000 10.000000 1
endloop endfacet
facet normal 0 0 0 outer loop
vertex 1.000000 10.000000 1
vertex 0.000000 10.000000 1
vertex 0.000000 5.000000 1
endloop endfacet
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• The STL file can then be viewed on any number of free online viewers,
such as www.viewstl.com.

• To create a laser-cut plant, the STL file must be converted to the Scalable
Vector Graphics (SVG) format. Many online viewers can export an STL
file to SVG; alternatively, online applications can convert an STL file to
SVG. The SVG file can then be used as input to a laser cutter. For the
tree above, Figure 6 shows the final product etched onto a piece of wood.

Following the steps above, students see how one can go from a virtual
description of a plant to a standard data file to a physical model. The use of
the Makerspace makes the entire process more “real” for the students, as they
experience how a virtual description of a physical object can become a reality.

Figure 5: Tree de-
fined by a Bracketed L-
System grammar.

Figure 6: Tree etched onto a wood
panel by a laser cutter.

3.3 Independent Study

The Independent Study course was taken by a group of three students. It came
about as a (partial) solution to the problem of public access to art objects in
possession of the college. As gallery space is severely limited, most of the art is
in storage. This project endeavored to digitize 3-D art objects so as to display
them via an interactive web page. As this was an interdisciplinary project, a
professor in the Department of Art History was also involved in the course.
While efforts to digitize art have been attempted before ([20, 7, 10, 14] to cite
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just a few), most of the techniques require either expensive equipment or take
an inordinate amount of time. In this project, both of those problems were
mitigated.

The general steps of the implementation of the project were as follows, with
notes as to what skills/equipment were needed:

1. Take video that captures all sides (except the bottom) of the object.
(Smart phone, Makerspace, art handling and cataloging techniques)

2. Extract individual frames from the video file. (Programming)

3. Generate 3-D model using photogrammetry software. (Using sophisti-
cated software)

4. Upload file to server and add link to web page. (Web design/develop-
ment)

Step 1 above is often a bottleneck in the process. Here the Makerspace was
used to build a turntable out of laser-cut wood and a 3-D printed housing and
gear for a small motor. These pieces yielded a turntable as seen in Figure 7
such that the art object would be rotated at a constant speed while taking a
video with a common smart phone. The combination of basic materials and
the use of a regular phone kept the costs to approximately $60.

Figure 7: Turntable showing laser-cut wood gear and 3-D printed motor hous-
ing and gear.

While the other steps are beyond the scope of this paper, it is instruc-
tive to see how all of the interdisciplinary portions of the project use differ-
ent skills. Specifically, computer science was broadly applied, from writing
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a Python script for extracting frames (which reduced processing time im-
mensely), to learning what photogrammetry is and how the software works,
to writing HTML and CSS in a custom-designed web site that allows for the
real-time rotation/scaling and viewing of a 3-D image, and finally to posting
work on GitHub.

The results were rather extraordinary considering the minuscule cost of the
project. Figure 8 shows a wood sculpture called Tree of Life. The 3-D rendering
of the object is shown in Figure 9. The amount of detail is quite good for using
an ordinary phone camera. This object, and others, can be seen on the web
site at http://cs.wheatoncollege.edu/whedomain/.

Figure 8: A photo of the
Tree of Life sculpture on
the turntable.

Figure 9: The 3-D rendered
version of the Tree of Life as
shown on the web page.

4 Conclusions and Future Work

We have presented three scenarios in which a Makerspace plays a part in a
computer science course. In the Computer Organization course, students use
creativity and imagination to turning hardware concepts that can not be readily
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“seen” into physical models. Even though these may be whimsical, students
must still understand the real hardware in order to explain their model and
present a professional-looking poster. In Theory of Computation, what seems
like an abstract concept is turned into a model of a plant etched into a piece
of wood. This shows that theoretical courses are not just that, but, through
the use of real-world file formats, can create physical objects. Finally, various
ideas in computer science can come together in student projects, as shown
with an example of digitizing art objects. The students applied various skills
in an interdisciplinary service project that helps the public access art that
otherwise is not generally available to view. Not only did the students use
the Makerspace, it was also true experiential learning as they had to master
art handling techniques in a real-world setting. In all of these courses, the
Makerspace played an essential role in turning virtual ideas into actual physical
objects, or, in the case of the Independent Study, a physical object into a virtual
one.

For future work, it would be instructive to determine if physical models
such as created in the Computer Organization and Theory of Computation
courses actually increase student understanding. As the same instructor has
taught the Computer Organization course for many years, there is some data
before and after the “crazy models” were introduced. Anecdotally, scores on
the final exam question pertaining to the data path have improved since the
inception of the Expo, but a more rigorous study is warranted.
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Abstract

In the context of conventional Computer Science curricula, the time-
lessness of a Discrete Mathematics (or Discrete Structures) course and
the difficulties of engaging enrolled students stem mostly from the same
reason: the focus on the mathematical underpinnings of the discipline,
which appears distant from the hands-on learning appreciated by our
students. Consequently, CS education literature contains numerous pa-
pers outlining creative ways to address the engagement matter without
diluting the contents of a fundamentally important topic. In this paper,
we outline our departmental attempts to utilize spreadsheets to address
this very problem.

1 Introduction

Discrete Math/Discrete Structures (referred to as DM from here on) is one of
the rare constants in the continuously evolving landscape of Computer Science
education. As new systems, new languages, and new paradigms are created,
the mathematical underpinnings of our discipline do not get swayed. If any-
thing, the rising focus on concurrent algorithms, machine learning, real-time
systems, and so on increases the need for a strong mathematical backbone.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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Yet DM remains a difficult course to teach because, unlike coding, it takes
multiple semesters for students to realize the usefulness of the subject matter.
As discussed in [9], even the determination of the ideal time to teach DM is
not trivial when student appreciation factors are weighted in.

To increase the effectiveness of the DM course taught at our institution, we
had been seizing a number of low hanging pedagogical fruits such as switching
to an online textbook (with built-in engagement exercises), keeping our class-
sizes small, making class time interactive, and pointing out the connections
from DM topics to their applications in upper level courses. And we had been
seeing reasonably good student performance as well as reasonably good course
evaluations. However, during a seemingly unrelated assessment exercise in one
of our senior level courses, we noticed a peculiar situation. “Algorithms +
Organization = Systems” is a research-paper driven capstone course of ours
to highlight the prevalence of algorithmic principles in the design of networks,
operating systems, and architecture [7, 8]; it is a multifaceted context where
students see the continuity between areas they may otherwise consider to be
disconnected. A pre-post survey done in this course revealed that the connec-
tion between DM and any area under the umbrella term of “systems” was not
sufficiently apparent to our students. In particular, as shown in figure 1, the
impact/relevance/importance of DM was the only one out of a number of de-
partmentally prioritized measures that had not changed after students spent a
semester studying systems. This was initially surprising since all of the topics
we had covered explicitly depended on DM topics such as summations, func-
tions, relations, expected values, discrete probability, and modulo arithmetic.
But we then realized that we were in fact witnessing a lack of “deep learning.”

Deep learning is defined as relating information to previous knowledge,
working to structure the content, and applying the content in new ways. Its
formation is not easy even when students are seemingly effective at reading
a textbook [14, 13]. Given its importance in education in general, deep-vs-
shallow learning has been the focus of a multitude of studies over a range of
disciplines [19, 20, 12, 6, 25].

Our efforts to address this deficiency started with a literature search reveal-
ing, as expected, that DM has been the focus of many studies: [26, 23] focus
on motivation via highlighting application areas, [1, 4] consider instructional
assistance, [24, 15] advocate programming to increase engagement, [2, 21, 16]
outline pedagogical alternatives and innovations, and [11, 5] discuss curricular
aspects. For a comprehensive survey up to 2011, please see [18].

Based on the particular problem that had motivated us and the work that
had been done before us, we identified two specific goals to address deep learn-
ing: we wanted our students (i) to have a stronger sense of intuition for the
associated mathematical ideas, and (ii) to test their comprehension in a lab
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environment akin to the lab hour of a conventional CS1 and CS2 course. As
primary constraints, (i) we did not want to take out topics to make room for
experimentation, and (ii) we did not want to compromise class time by having
to teach one or more complex tool(s) for experimentation. Although the idea
of incorporating coding exercises initially seemed enticing, we decided to use
spreadsheet-based hands-on exercises.

2 Spreadsheets in Discrete Math

The use of spreadsheets in CS education is not unprecedented, with early ex-
amples exploring the suitability of the idea in a CS-1 environment [22, 10].
Recent instances tend to focus on illuminating specific topics such as complex-
ity [17], finite state modeling [3], and encryption [27]. Our own work led us
to the realization that spreadsheets can indeed be used to cover a wide range
of topics in a conventional DM course. We also observed that students are
readily on board with this idea because they consider increased spreadsheet
competencies to be a net gain for their professional and personal future.

We structured our four-credit course to have three lectures and a lab. Unless
an exam was scheduled, students were asked to complete spreadsheet-based
exercises based the topics of the most recent lectures. We exclusively used
Google Sheets due to its simple and streamlined user interface and its ability
to host multiple students on the same sheet (in case the exercises required group
work). Even though most students already had some elementary knowledge of
spreadsheets, we assumed that they were starting from scratch and identified
short instructional videos through YouTube or Lynda.com; these were assigned
as homework so that we never lost more than a few minutes of lab time to teach
the use of the tool. With what they learned, students were able to construct
most (if not all) of the content of the spreadsheets on their own.

We first designed a set of intuition exercises to assist (rather than assess)
comprehension (section 3). For example, in the context of discrete probability,
many students get confused as to when they should be multiplying vs adding
measures of probability. In particular, if we tell them that we are tossing
three fair coins and ask them the likelihood of getting three tails (i.e. an
outcome of ‘TTT’), many do not immediately conclude that the correct answer
is 1

2 × 1
2 × 1

2 = 1
8 . The conventional way to address this problem is to draw the

underlying probability tree to enumerate all eight outcomes of equal likelihood
which then leads to the correct answer. But this still happens to be analytical
thinking and does not necessarily provide intuition. The spreadsheet we see in
figure 2, on the other hand, tries to provide that very missing piece. Here, rows
2, 3, and 4 represent the tossing of three fair coins 32 times and observing how
often they all turn out to be tails. While this particular instance has five cases
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of ‘TTT’, any edit action on the spreadsheet triggers the regeneration of random
numbers to produce a new batch of 3×32 = 96 coin tosses. After a statistically
significant number of repeats (i.e. ≥ 20), we see that the average number of
Y’s on row 3T tends toward 4; since 4

32 = 1
8 , this observation scaffolds students

into seeing why multiplication (as opposed to addition) must be the correct
operation for the problem. Furthermore, since the coin toss formula refers to
cell ‘A1’, students also explore the consequences of biasing coins. Finally, we
also see that even though genuine randomness does not preclude the occurrence
of long repetitions of the same side (shown in gray in figure 2), the probability
of seeing three tails always converges to the mathematically predicted value.

We then designed a second group exercises to test students’ comprehension
of topics; we classified these as explorations (section 4). One specific explo-
ration we completed after our trial semester proved to be particularly effective
in showing the versatility of spreadsheets: integer addition of two fixed-length
binary numbers. As a digital circuits application of truth tables, most DM
books show the construction of a half-adder (a simple device that takes two
binary digits to produce a sum digit and a carry digit) using basic logic opera-
tors. Figure 3a shows the realization of this logic in a spreadsheet while figure
3b confirms its correctness for all the additions it supports: 0 + 0, 0 + 1, 1 + 0,
and 1 + 1. Two half-adders can then be coupled to create a full-adder which
adds three binary digits (two input bits as well as the carry bit of another
single digit addition); we see an instance of this in figure 3c. Adding two N
bit numbers then becomes a matter of using a bank of N full-adders; figure
3d shows this in action for calculating 001 + 010 = 001, 011 + 010 = 101, and
011 + 110 = 001. Note that the last case demonstrates how an incorrect result
emerges as a consequence of having a fixed number of digits.

3 Intuition Exercises

We collected student feedback for the following intuition exercises:

• Truth tables: To construct a truth table with n Boolean variables,
students create a spreadsheet with 2n rows where the first n columns
specify the n independent variables and the remaining columns calculate
any desired Boolean function using ‘=and()’, ‘=or()’, and ‘=not()’. For
example, ‘=or(A1,and(B1,C1))’ means a ∨ (b ∧ c) were ‘A1’, ‘B1’, and
‘C1’ are the cells that contain the a, b, c values.

• Conversion to base 10: Students encode base-conversion algorithms
where the base in saved a particular cell. Students observe the universal-
ity of the algorithm by changing the base value and observing that the
new result remains correct (figures 4 and 5).
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• Summations: Summations of the form
∑b

i=a f(i) initially appear illu-
sive to students as they do not readily understand the iterative nature
of the calculation. By spelling out the expanded forms of particular in-
stances such as

∑10
i=0 i,

∑10
i=0 2i,

∑15
i=5 2i in a spreadsheet and calculating

their sum with ‘=sum()’, students internalize that Σ is just a multi-term
addition (figure 6). This sets the stage to understand the consequences
of changing the range of the i iterator, multiplying the summed term
by a constant, etc, as well as initiating the proofs of the equalities of∑b

i=a kf(i) = k
∑b

i=a f(i),
∑b

i=a f(i) =
(∑b−1

i=a f(i)
)

+ f(b), etc.

• Cartesian product: For A×B, students enumerate the members of sets
A and B as row/column headers (respectively) and create the elements
with ‘=concatenate()’ over header combinations. ‘=flatten()’ then
“flattens” this table into a single row to calculate (A×B)× C.

• Logarithms: Many students have brittle comprehension of the novel
properties of the logarithm function and thus benefit from producing
“tables of confirmations” in a spreadsheet. For example, for log

(
a
b

)
≡

log (a)− log (b), students produce two tables, one for the left side of the
equivalence and one for the right. A third table of equality assertions
(as in ‘=A1=K1’ that produces a ‘True’ iff the contents of cells ‘A1’ and
‘K1’ are the same) then shows that no matter what value pair students
choose, they cannot create a ‘False’.

• The “choose” function: Students typically miss two important aspects
of the choose function

(
N
r

)
. First,

(
N−1
r

)
+
(
N−1
r−1

)
is an efficient way of

calculating
(
N
r

)
. Second, there is symmetry in the values of

(
N
r

)
as r goes

from 0 to N . Students witness both in a spreadsheet (figure 8 and 7).
• Discrete Probability: It is not uncommon for the terms “outcome” (an

element of the sample space) and “event” (a subset of the sample space) to
be confused with each other but spreadsheet exercises can contrast them.
Figure 9 shows different events defined over flipping three coins: (i) seeing
exactly two heads, (ii) seeing anything other than exactly two heads, (iii)
seeing at least two heads, and (iv) seeing at most two heads. Based on the
formulaic definitions of these events, students use conditional formatting
to highlight outcomes that count toward satisfying each. The trivial
recalculation of all probabilities also allow students see how biasing coins
influence the occurrence of events.

• Expected Value: By eliminating time-consuming hand calculations,
spreadsheets allow students to cover a greater number of examples to
internalize the purpose of this function. Spreadsheets also facilitate the
convergence of expected values over infinite sample spaces.
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4 Exploration Exercises

We collected student feedback for the following exploration exercises:

• The birthday problem is a classic complementary-thinking exercise where
the likelihood of having at least two people having the same birthday is
one minus the probability of everyone having distinct birthdays. How-
ever, due to the combinatoric aspects present in this problem, the changes
of the sought probabilities as “the room gets more crowded” is not linear.
We therefore have an exploratory exercise where students first try to un-
derstand these dynamics and subsequently propose an analytical solution
that explains their numeric and chart results.

• Most networking books contain a classic frequency division multiplexing
question: if a particular connection can simultaneously deliver N packets
and if we have M (which is > N) virtual connections willing to use that
connection each of which is p% likely to transmit at any moment in time,
how many virtual connections can be admitted if we can afford to lose at
most 10% of the packets? We have in the past not been able to bring our
students in our DM course to solve this problem. However, when we re-
skinned it to a health-care/medical-person-assignment version1, we were
able to guide students to experiment with the problem in a spreadsheet.

5 Student Feedback

At the end of our trial semester, we had 43 students fill out a survey with 15
assertions each of which had to be responded using a seven-level agree/disagree
scale. In order to classify responses as a function of their performance, we also
had students self-report a letter grade that best represented their comprehen-
sion of the concepts covered in class. These results are shown in figure 10.
If we look at the averages, we can see that students responded positively to
every statement; in fact, except for two points for the A/A- cohort, all averages
are above the “somewhat agree” level. We consider this to be an encouraging
bottom-line for our work.

When we look at the left-most 10 stops on the x-axis, we see that the
responses from the three letter-grade levels do not always correlate with each
other. For example, the highest average for the C-/C/C+ cohort was the
intuition exercise of coin-tossing; this also happened to be a low-point for the

1We are responsible for dispatching social workers; we have a probabilistic measure that
indicates the likelihood of an individual needing a social worker; our task is to make sure
that 90% of the time, someone who needs a social worker gets one at the time of need;
assuming each social worker needs $X per years, what budget do we need to satisfy the
stated constraints?
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A-/A cohort. In fact, the latter group was typically not too impressed with our
most straight-forward intuition exercises. On the contrary, the exercises that
intrigued the A-/A cohort most were the challenging exploration exercises.

When it came to the use of spreadsheets enhancing the control, en-
gagement, understanding, and enjoyment dimensions of learning, the
B-/B/B+ and C-/C/C+ cohorts responded more positively than the A/A-
cohort; it would be safe to guess that A/A- students probably score high on
these dimensions regardless of what enticement factors are being used in class.
Interestingly, when it came to the importance of spreadsheets for their future,
it was the C-/C/C+ cohort that trailed the pack.

Since the effectiveness of our interventions appears to be a function of co-
horts, we also did a Pearson correlation between the three; the results are
shown in figure 11. The top table shows that in terms of benefiting from the
spreadsheet exercises, the greatest correlation appears to be between the A/A-
and B-/B/B+ cohorts. The bottom table leads to the same conclusion by even
a greater margin. This means that as we explore ways to increase the depth
of learning in our DM course, even though we have evidence to suggest that
a spreadsheet based lab component makes a difference, this intervention will
have to be served differently to our A/B students vs our C students.

6 Conclusions

After the completion of our trial semester, more polished versions of the men-
tioned spreadsheet exercises (as well as a few others) are currently being tested
for a second time. Therefore, our most immediate goal is to see whether the
conclusions we have reached from the student feedback of the trial semester
will improve. We are particularly interested in retrying the assessment ex-
ercises of the Algorithms + Organization = Systems course during its
next offering; after all, a general lack of realization of the importance of DM
in the context this capstone course was what had started us in the experience
we reported.

We were happy to see that spreadsheets can indeed serve as a powerful and
generic lab tool for a mathematical course without the need for programming
or topic specific tools/animations. Furthermore, we were able to confirm that
these advantages do not come at the cost of class-time. We are happy to share
all instructional materials (such as list of videos on Google Sheets, lab instruc-
tions/problems, solutions) with the educational community upon request.
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Figure 1: Gains in cross-cutting curricular goals as a result of tak-
ing our “Algorithms + Organization = Systems” course: The dark
segments on the left sides of the bars represent students’ responses from the
pre-test while the lighter segments represent the gains we saw from our post-
tests. “Importance of discrete math in system” was the only measure where
students’ perception had not changed for the better.

Figure 2: The emulation of tossing three coins 32 times: The prob-
ability of getting heads is set by the value in cell A1. Rows 2, 3, and 4
are the outcomes of the coins; row 5 is the indicator for when all three
joins turn up tails. The emulation of each coin toss is based on the formula
=if(rand()<=A1,"T","H") while the detection of all three coins being tails

is based on the formula =if(and(B2="T",B3="T",B4="T"),"Y","") .
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(a) Formulas implementing a half-adder

(b) All four cases for a half-adder

(c) A full-adder from two half-adders

(d) Adding two three-bit binary numbers: 011+010=101

Figure 3: Implementations of half-adders and full-adders in a spread-
sheet: In all figures, we use ‘a’ and ‘b’ to represent input and ‘c’ and ‘s’ to
represent carry/sum. Part 3a shows the implementation of the conventional
half-adder circuit using ‘AND’ and ‘NOT’ operators. Part 3b shows the correct
operation of this half-adder for all possible input configuration. Part 3c shows
the conventional construction of a full-adder from two half adders; as expected,
the carry digit of the first half-adder is connected to the first input of the second
half-adder. Finally, part 3d shows adding two three-digits binary numbers.
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Figure 4: Converting base 2 to base 10...

Figure 5: Converting base 3 to base 10...

Figure 6: Expanded forms of three summations...

Figure 7: Calculation of
(
N
r

)
values based on

(
N−1
r

)
+
(
N−1
r−1

)
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Figure 8: Revealing the symmetry of
(
N
r

)

Figure 9: Illustration of the sample space for tossing three coins and
the definition of four events over this sample space. Spreadsheet formu-
las and conditional formatting show how a particular outcome would determine
which events have occured.
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Figure 10: Student responses to using the spreadsheet exercises out-
lined in this paper: The y-values for the leftmost 10 points on the x-axis
correspond to statements of the form “Exercise <name> was beneficial to my
learning”. The y-values for the next four points on the x-axis focus on the im-
pact of using spreadsheet exercises on four significant dimensions of learning:
control, engagement, understanding, and enjoyment. The rightmost
point shows the degree to which students consider spreadsheets to be important
for their future. Responses were based on a seven-point Likert scale of “Strongly
disagree” (-3), “Disagree” (-2), “Somewhat disagree” (-1), “Somewhat disagree”
(1), “Agree” (2), and “Strongly agree” (3). We lower-bounded the y-axis at 0.5
since none of the averages fells under this limit (i.e. all the averages were in
the “agree” side). 43 students filled out the survey. Letter-grade partitioning of
the students was based on the their self-reporting of their competence level in
Discrete Math (i.e. the survey was anonymous).

Figure 11: Calculation of the Pearson correlation coefficient between
the three cohorts defined on self-reported letter-grades. The left table
is on all spreadsheet exercises; the right table is on students’ responses to the
control, engagement, understanding, and enjoyment dimensions.
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Abstract

This paper presents the GenCyber Teacher Academy (GTA), a unique
professional development program that provides Connecticut’s high school
teachers across various STEM disciplines with opportunities to explore
cybersecurity concepts and incorporate them in their curriculum. Partic-
ipating teachers experienced inquiry-based learning, focused classroom
discourse, and collaborative learning that centered on GenCyber Cy-
bersecurity Concepts. Results indicate GTA enabled teachers to reflect
on best practices in incorporating cybersecurity concepts while promot-
ing online safety. Moreover, GTA established a sustainable GenCyber
Teacher Academy Teaching Learning Community of high school teachers
supported by a community of practitioners that will collectively shape
the future of cybersecurity in Connecticut.

1 Introduction

The importance of cybersecurity education in Connecticut became clear when
the Board of Education developed the Position Statement on Computer Sci-
ence Education for all K-12 students. In 2015, a bill was passed requiring all
high schools to offer Computer Science (CS) and Cybersecurity courses. How-
ever, this bill did not provide funding for professional development programs
and curricula development and support [1, 2]. Therefore, cybersecurity is still

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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marginalized throughout education in Connecticut [3]. Additionally, Connecti-
cut has a distributional problem with cybersecurity in high schools [4]. The
demand for teachers and for increasing diversity in the teacher workforce is
concentrated in school districts that are already challenged in recruiting and
retaining teachers [5]. These districts, designated Opportunity Districts, are
the 10 lowest performing districts in the state based on the accountability in-
dex [6]. They serve large urban areas with a community of students that is
historically underrepresented and under-served, especially women, minorities,
and students from economically disadvantaged backgrounds. There is an ur-
gent and critical need to focus on high schools in opportunity districts and
strengthen their capacity to reliably produce valued cybersecurity education
outcomes for diverse groups of students, educated by prepared and supported
teachers.

There is clear evidence to support the benefits of a diverse teacher work-
force, including its positive impact on strengthening schools and resulting in
better outcomes for students of all races/genders/ethnicities [7, 8]. However,
in 2019-20, Connecticut’s teacher workforce was made of 9.6% of educators of
color while more than 45% of the state’s students identify as people of color [4].
It is sadly acknowledged that women, students of color are underrepresented
in cybersecurity learning opportunities [9, 10]. Addressing the diversity issue
in the high school teacher workforce in Connecticut is a lengthy and complex
process. However, training teachers on diversity helps them rapidly create
a sustainable inclusive environment where all students including underrepre-
sented minorities can thrive.

The goal of this project is to meet the rising need for highly-skilled, outside-
the-box thinking cybersecurity professionals to protect the nation and support
its governmental workforce. To this end, the University of New Haven provided
Connecticut’s first GenCyber Teacher Academy (GTA) program that trains
and supports high school teachers to promote cybersecurity and online safety.

The GTA program is a learner-centered, hands-on, intensive program with
a focus on GenCyber Cybersecurity Concepts Framework designed to
train 9th-12th grade STEM high school teachers. The program activities in-
clude lectures, games, labs, lesson plan design and development, with evalua-
tion supported by a K-12 pedagogy and curricula expert. A series of daily Cy-
bersecurity Seminars featuring guest speakers from industry, government,
academia, and non-profit organizations to increase awareness of post-secondary
opportunities and careers in cybersecurity. The program is complemented with
monthly GenCyber Teacher Academy Learning Community (GTALC)
follow-up events in the fall offering continuous professional development, men-
toring and coaching support to participating teachers.

The goals of our GTA program are: 1) Design, develop, and implement a cy-
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bersecurity professional development program. Culturally responsive teaching
and how it applies to teaching cybersecurity will also be addressed throughout
the program; 2) Design, develop and validate cybersecurity lesson plans and
associated teaching and assessment materials. 3) Build a sustainable GenCy-
ber Teacher Academy Learning Community of high school teachers supported
by a community of practitioners that will collectively shape the future of cy-
bersecurity in Connecticut.

The remainder of this paper is organized as follows: Section 2 provides
an overview of the GenCyber program. Section 3 highlights the GenCyber
Teacher Academy structure. Section 4 details the curriculum design, learning
outcomes, and assessment techniques. Section 5 presents the results of the
GTA program. Section 6 discusses the program and future work.

2 Background

The GenCyber program provides cybersecurity experiences for students and
teachers at the secondary level. The GenCyber program strives to be a part
of the solution to the Nation’s shortfall of skilled cybersecurity professionals.
Ensuring that enough young people are inspired to utilize their talents in cyber-
security is critical to the future of our country’s national and economic security
as we become even more reliant on cyber-based technology in every aspect of
our daily lives. To ensure a level playing field, GenCyber camps are open to
all student and teacher participants at no cost. The GenCyber program is
financially supported by the National Security Agency, the National Science
Foundation, and other federal partners on an annual basis.

3 GenCyber Teacher Academy

3.1 Program Overview

The proposed GTA program focuses on the GenCyber Cybersecurity Concepts
framework. As we target STEM 9th-12th grade teachers with no prior knowl-
edge in computing, our GTA and associated curriculum has been designed and
will be delivered to a beginner audience. The GTA is organized into five
modules: (1) Network Fundamentals, (2) Python Programming & Scripting,
(3) Cybersecurity Awareness, Ethics & Trends, (4) Cryptography, and (5) So-
cial Engineering Attacks & Prevention. These concepts are important topics
for cybersecurity training because they provide a comprehensive understand-
ing of the cybersecurity field. Understanding computer networks is crucial for
cybersecurity professionals because it enables them to understand how data
is transmitted across networks and identify potential security threats, such
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as network attacks and network intrusions. Python is a popular program-
ming language that is widely used in the cybersecurity industry for writing
scripts and automating various cybersecurity tasks. Knowledge of cryptogra-
phy is necessary to understand how encryption algorithms work and how to
secure communications and data transmission. Cybersecurity awareness train-
ing helps individuals and organizations identify and avoid potential security
threats, such as phishing attacks, social engineering, and malware. Social en-
gineering is a technique used by attackers to trick individuals into revealing
sensitive information.

By studying these topics, cybersecurity professionals can gain the neces-
sary skills and knowledge to help protect organizations and individuals from
potential security threats, as well as educate others about the importance of cy-
bersecurity. Each day, a new module is presented, and the associated activities
are performed under the assistance and support of the lead instructor, the mod-
ule instructor, the K-12 pedagogy expert, and the teaching assistants. Each
module aligns the scheduled activities including presentations, labs, games, as-
sessment, seminars, lesson plan development, and participant discussions and
reflections. The modules have been selected in close collaboration with our K-
12 pedagogy and curriculum specialist, University Computer Science (CS) and
Cybersecurity faculty, and a selection of representatives made up of partnering
high school teachers. The program includes series of Cybersecurity Semi-
nars scheduled daily during lunch. Guest speakers leverage their knowledge
and experience to share their vision and perspective on cybersecurity challenges
and opportunities. The purpose of these seminars is to expose participants
to cybersecurity career paths and emerging threats. To meet the GenCyber
Teacher Academy program objectives, the proposed work was mapped to the
tasks shared in Table 1.

Table 1: GTA Program Timeline and Phases
Phases 2021 2022 2023

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3
T1: Announcement & Marketing

⊗ ⊗ ⊗

T2: Teacher Recruitment
⊗ ⊗

T3: Teacher Selection
⊗

T4: Pre-Program Outreach
⊗

T5: Summer Program Execution
⊗ ⊗

T6: Post-Program Outreach (GTALC)
⊗ ⊗ ⊗ ⊗

T7: Program Reporting
⊗ ⊗ ⊗
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3.2 Pre-Program Outreach

The pre-program outreach aims to cover the following topics: (1) participants
on-boarding, (2) multidisciplinary groups organization, (3) introduction of Gen-
Cyber Cybersecurity Concepts, (4) cybersecurity awareness self-assessment, (5)
interactive discussion forums. First, participants are introduced to the detailed
schedule of the GTA program and the associated detailed pre, post and summer
program activities. An introduction from our GTA team members is provided.
Participants are invited to introduce themselves and share their background,
experience, interest in cybersecurity, and career objectives. Next, participants
are organized in multidisciplinary groups that consider diversity, STEM back-
ground, and experience factors. Online presentations and learning materials
are shared introducing each GenCyber Cybersecurity Concept. Various forms
of assessments with helpful feedback from the GTA team are used. First, sys-
tematic cybersecurity concepts self-assessment quizzes. Second, a reflection
assignment demonstrating the understanding of these concepts is required. A
total of eight-hour self-paced online learning is required to complete the pre-
camp outreach activities.

3.3 Post-Program Outreach

Continuous professional development is central to our GTA program. We
strongly believe participant-participant and participant-instructor interactions
should take place continuously, suggesting that participants should have con-
sistent encounters after the GTA summer camp. Our GTA program is com-
plemented with monthly GenCyber Teacher Academy Learning Community
(GTALC) virtual follow-up sessions offering mentoring and coaching support
to participating teachers during the fall. The proposed GTALC is a connec-
tion and exchange virtual space dedicated to high school teachers to share their
experiences, seek advice from experts and practitioners, access resources, and
gain knowledge and skills in inquiry-based pedagogy in cybersecurity that is
inclusive for all students, particularly URM and women. GTALC is led by
our K-12 pedagogy expert and facilitated by a community of practice which
includes the rest of the GTA team members, representatives from our collab-
orators CSDE and CSTA as well as practitioners from K-12 educational insti-
tutions and experienced educators and professionals. A total of twelve-hour
learning is required to complete the post-camp outreach activities.
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Table 2: GenCyber Cybersecurity Concepts Framework Mapping
Networks Python Cybersec. Cryptog. Social Eng.

Keep it Simple X X
Defense in Depth X X
Think Like an Adversary X X
Confidentiality X X X
Integrity X X X
Availability X

4 GenCyber Teacher Academy Curriculum

4.1 Curriculum Design

Learning will take place through experiential learning modules and hands-on
laboratory exercises. The complete list of Cybersecurity Concepts will be cov-
ered and the learning outcomes will mainly be limited to knowledge and
comprehension levels on the Bloom’s taxonomy [11]. We strongly believe
teachers must have a level of knowledge beyond remembering, recall, and un-
derstanding to deliver meaningful instruction on cybersecurity. They must have
a well-formed idea of what and when they teach new cybersecurity lessons in
their K-12 curriculum and how they connect these new lessons to the other
content being taught to students.

4.1.1 Module 1 - Network Fundamentals

This module covers the underlying principles and techniques for network and
communication security. Practical examples of security problems and principles
for countermeasures are presented. Organization: Module 1 is broken down
into three units. Each unit is associated with laboratory exercises. Unit 1 in-
troduces networking and TCP/IP protocol. Unit 2 presents computer network
security. Finally, unit 3 presents WiFi networks & security. Units and labora-
tory exercises focus respectively on network modelling and scanning, building
firewalls, configuration of intrusion detection systems (IDS) and practical work
with analyzing the SSL/TLS protocol. This module promotes group work and
multi-user cooperative and competitive activities that will be mainly used in
laboratory exercises. Tools: Module 1 will use Packet Tracer which is a cross-
platform visual simulation tool that allows users to create network topologies
and imitate modern computer networks. It supports simulation of endpoint,
router, switch, firewall and DDS systems [12]. Packet Tracer is free of charge
for academic purposes making it easy and convenient for participants to teach
network fundamentals and security course plans. Learning Outcomes: At the
completion of this module, participants will be able to (1) Explain basic net-
working concepts, (2) Compare and categorize network media and topologies,
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(3) Apply security standards to WiFi networks.

4.1.2 Module 2 - Python Programming & Scripting

This module is intended for learners with no or very little prior programming
experience. It covers a range of topics, such as data types, control flow, func-
tions, and object-oriented programming. When learners finish this module,
they will be able to create Python programs for a variety of applications. The
module includes a Caesar Cipher group-based project implementation. Or-
ganization: This module will include the following units: (1) introduction to
python and data types, operators and flow control statements, (2) data struc-
tures and object-oriented programming, (3) Project implementation of Caesar
Cipher. Module 2 also provides a cyber ethics overview of the ACM Code
of Ethics and Professional Conduct, the IEEE Code of Ethics, and the Com-
puter Ethics Institute’s Ten Commandments. Tools: This module will use
Replit.com, a free online editor allowing learners to code, collaborate, com-
pile, run, share, and deploy Python from a simple web browser [13]. Learning
Outcomes: Upon successful completion of this module, learners will be able
to write Python programs involving basic variable types, common operators,
and operator precedence; apply control structures and import libraries and
use functions and methods; and use object-oriented programming principles to
write code that is easy to read and maintain.

4.1.3 Module 3 - Cybersecurity Awareness

This module addresses the rise in reliance on digital equipment and programs
to manage our daily lives, including the transmission and storage of personal
information. It demonstrates how an effective cybersecurity awareness is one
of the most important steps toward increasing online safety. Organization:
Module 3 is organized in three units. Unit 1 contains interactive components
that include an overview on cybersecurity and sensitive information, informa-
tion storage, sanitation and disposal, breaches, incidents, and reporting. Unit
2 includes the Rules of Behavior (RoB) and highlights avoiding phishing at-
tacks, email encryption, device locking,and secure mobile connectivity. Unit
3 presents common cybersecurity breaches, incidents and reporting. Tools:
This module uses slides, questions bank, scenarios, videos, printable handouts,
infographics, and links for open access reliable external websites and materi-
als. Learning Outcomes: After completion of this module, participants can (1)
discuss the unique challenges in the field of cybersecurity that differentiate it
from other design and engineering efforts; (2) identify the goals and summarize
the overall process of threat modeling; (3) predict and prioritize some potential
threats (who might attack it and how) and the human impacts of those threats.
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4.1.4 Module 4 - Cryptography

Cryptography is an indispensable tool for protecting information. In this mod-
ule participants will learn the inner workings of cryptographic systems and
how to correctly use them in real-world applications. The module begins with
a detailed discussion of how two parties who have a shared secret key can com-
municate securely when a powerful adversary eavesdrops and tampers with
traffic. Next, it discusses public-key techniques that let two parties generate a
shared secret key. Throughout the module participants will be exposed to many
exciting open problems in the field and work on fun programming projects. Or-
ganization: Module 4 is organized in the three units. Unit 1 introduces stream
and block ciphers. Unit 2 presents message integrity and authenticated encryp-
tion. Unit 3 highlights basic key exchange and public-key encryption. Tools:
Module 4 will use teaching materials, examples, games and assessment artefact
from the popular textbook: Introduction to Modern Cryptography [14]. Learn-
ing Outcomes: After the completion of this module, participants will be able
to (1) describe basic principles of cryptography and general cryptanalysis, (2)
recognize the concepts of symmetric encryption and authentication, and (3)
compose, build and analyze simple cryptographic solutions.

4.1.5 Module 5 - Social Engineering

This module explores the human side of cybersecurity: how social engineering
attacks work and why they are important to a good threat model. It encour-
ages participants to think about how they verify identity and truthfulness over
different communication channels and how those different verification processes
can be manipulated by someone who wants to run a scam. Organization: This
modules is organized in three units. Unit 1 provides an overview on social
engineering. Unit 2 introduces common phishing techniques. Unit 3 outlines
malicious software. Tools: Module 5 will use teaching materials, videos, exam-
ples, case studies, simulated attacks. Learning Outcomes: Upon completion
of this module, participants can (1) define social engineering and the types of
attacks associated with it, (2) recognize the techniques to avoid such attacks.

4.2 Learning Outcomes Assessment

The assessment of the participating teachers’ learning is an essential means
of demonstrating each participant has met the goals of our GTA program
and identifying areas for improvement in the proposed curriculum. Our GTA
assessment plan a is a three-tier structure that includes: (1) formative, in-
terim, and summative assessments. Formative assessment occurs in the short
term with prompt feedback from instructors. Example of activities supporting
formative assessment include self-assessment quizzes, essay assignments, and
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discussion forums in the pre, post, and outreach phases. During the summer
camp, daily warm-up and wrap up sessions are used. These sessions improve
learners’ retention of covered concepts and highlight their relationship with
the new module. Moreover, reflection session scheduled at the end of each day
of the summer camp allow for engagement with learners through discussions
facilitated by the lead instructor and the K12 pedagogy expert. The interim
assessment aims to give learners the opportunity to demonstrate understanding
of material and concepts. Each module includes a set of hands-on laboratory
exercises, homework assignments, and group-based projects implementation.
The prompt feedback from instructors helps identify gaps in instruction and
participants’ learning. In addition, the participating teachers engage in course
planning and design, development, and validation during the summer camp.
Feedback from the lead instructor and the K12 pedagogy specialist help im-
prove their course plan and increase the success of their implementation. Sum-
mative assessment is performed by the GTA team, upon the completion of the
summer camp, to identify strengths and weaknesses of the proposed curriculum
and potential future improvements. Examples of summative assessment include
the presentation of the produced course plans elaborated by the participants
during the summer camp and refined in the post outreach program supported
by our GTALC events. To conclude, our integrated assessment plan aims to
build participating teachers’ confidence and readiness to teach cybersecurity in
high schools.

5 Results

Guided by the recommendations of Creswell [15], a survey approach was used
to investigate the impact of the week-long GenCyber Teacher Academy on
the technology, pedagogy, and content knowledge of the participating grades
9 to 12 teachers. Survey research was the preferred method of data collection
because of its economy, rapid turnaround time, and the standardization of the
data [16]. Participating teachers completed pre-program, summer program,
and post-program surveys. Figures 1, 2, 3, and 4 contain relevant entry and
exit survey results.

5.1 Evaluation

The GenCyber Academy took place from August 8-12, 2022, on the campus of
The University of New Haven in Connecticut. Twenty-five participants, twelve
men and thirteen women, participated in the program and were selected from
an applicant pool of 78 current high school teachers. The program ran daily
from 8:00 AM to 5:00 PM and all participants were present each day. The
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majority of each day was used for instruction and hands-on activities, with the
remainder used for the participants to plan lessons for their classrooms.

All participants completed a pre-camp survey to ascertain their knowledge
and experience with topics in cybersecurity, the relevant data is shown in Fig-
ures 1 and 2. The participants then completed five asynchronous modules
through the learning management system site prior to the start of camp. After
the five in-person days of camp, participants completed an exit survey to assess
knowledge and learn about their perceptions of the camp experience.

Figure 1: Entry Survey - Mastery of Cybersecurity Concepts

Figure 2: Entry Survey - Mastery of GTA Curriculum

One of the primary goals of the GenCyber program was to ensure that
the selected high school educators (participants) learned the six cybersecurity
concepts. The expectation was that at the conclusion of the camp the partici-
pants would be able to name the concepts, define them, and teach them to their
high school students. As the entry-survey in Figure 2 shows, only seven of the
twenty-five participants were “somewhat familiar ” or “very familiar ” with the
principles and their definitions. At the conclusion of the program all twenty-
five participants were confident that they could name, define and teach them
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to their high school students. This was further shown throughout the week by
their performance on Kahoot [17] quizzes and in conversations in which the
participants named and applied the principles. Several participants also cre-
ated lesson plans to help their own high school students learn the principles and
recognize how they were critical to maintaining cybersecurity. Initially, eleven
out of the twenty five participants were unsure or disagreed with the statement
“I can share information about careers in cybersecurity with my students.” At
the conclusion of the camp all the participants agreed or strongly agreed with
that same statement.

Overall, the participants showed gains in their confidence in teaching the
different concepts they learned about during the week. Figure 3 shows they
reported the most confidence in teaching Cybersecurity and Ethics and Social
Engineering and the least confidence in teaching Networking. The module
Network Fundamental was consistently the area that the teacher participants
reported being the least confident in understanding during the camp and as
the most difficult concept. In the open response section several participants
thought that the Networking day was difficult to follow as the material was
complex, very in depth and moved too fast for novice learners. This module
is being revised for 2023 to simplify the content and add a hands-on lab that
requires no technology. In reviewing overall participant attitudes about their
experience, the results indicate that the GTA program was successful. All but
one participant agreed or strongly agreed with the statement “I learned a lot
about cybersecurity.”

Given this data, it is clear the participants valued the experience, felt that
they had learned a lot, and would participate in more cybersecurity activities
and would want others to have a similar opportunity. Participants felt that
they learned enough about careers in cybersecurity to help their high school
students prepare for a career in the field, could help them decide if cyberse-
curity is a good career path, and believe that cybersecurity is a good career
option for their students. To further validate the self-reported data of gains in
confidence in cybersecurity topics, the team reviewed two detailed lesson plans
from each teacher to ensure content was accurate, relevant and aligned with
teaching the concepts of cybersecurity. The depth of knowledge gained was
evident in lesson plans as many teachers wrote lesson plans that incorporated
basic Python programming, the six cybersecurity concepts, and case studies
shared throughout the week. Teachers adapted content and activities from the
GTA camp to use in their classrooms and demonstrated their new understand-
ing by describing these lessons and later sharing their implementation results.
Additionally, they demonstrated their new understanding by creating their own
lessons for their classroom, which provided evidence of their learning. Besides
the Likert scale questions, teachers were given an opportunity to answer some
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open-ended questions to provide feedback to the program facilitators. Partic-
ipants most enjoyed the lessons on cryptography including using the Scytale
cipher and learning how to pick locks. They also enjoyed learning about social
networking. A small number of participants reported that Python was their
favorite activity of the week. When asked to report something they learned
that they believe everyone should know the common themes were that people
need to know how important cybersecurity is, how best to protect yourself (or
your business/company) from cybersecurity breaches, and how common cy-
bersecurity attacks are. Many participants also mentioned that others should
understand social engineering and how it impacts humans and their behavior.

Figure 3: Exit Survey - Participant Confidence in Teaching

Figure 4: Exit Survey - Participant Experience and Knowledge

184



5.2 Future Improvements

Several recommendations arose throughout the week and on the surveys that
can help improve the program for the future. One recommendation is that
on the day that Python programming is taught it would be helpful to break
the teachers into two or three groups based on their experience and knowledge
of coding. Participants that were familiar with Python or other coding lan-
guages became default tutors to those with no experience and felt that they
did not learn much in this session. On the other hand, those new to coding,
programming, and Python felt the day was very challenging and moved too
quickly. Small groups based on ability could also be used on the day net-
working is taught. Some felt it was overwhelming and moved too quickly, and
others would have liked to go deeper and move faster. Another suggestion that
can be implemented is to give students more opportunities to mix and mingle
with each other. Throughout the week students sat in pods of five that stayed
consistent day to day. In the future, students could change groups a few times
throughout the week.

Participants had some additional ideas that would make the program even
more beneficial. The access to the learning management system was helpful
to have all the course materials. They recommended that a running list of
resources that come up throughout the week be kept somewhere in Classroom
so that they can refer to it in the future. Additionally, allowing participants
to add resources that may not be mentioned but are related would be helpful.
Participants also asked if they could, in the future, have access to each other’s
lesson plans. Since all the teacher participants wrote at least two lesson plans,
they would have access to a bank of fifty lessons.

6 Conclusion and Future Work

In conclusion, the GenCyber Teacher Academy at The University of New
Haven was successful. Participants felt that the camp was worthwhile, demon-
strated learning of cybersecurity concepts, and put their learning into practice
by designing lesson plans for their classes. Concrete, feasible recommendations
were made to improve the program for the future.

GenCyber Teacher Academy will contribute to advance cybersecurity cul-
turally responsive educational practices and address the critical shortage of
qualified high school teachers in Connecticut and nationwide. It will establish
a sustainable and scalable learning community and assess its impacts within,
between and across schools to continuously improve cybersecurity education in
Connecticut and the rest of the United States.

Our GenCyber Teacher Academy Learning Community (GTALC) initiative
is well aligned with the Connecticut Computer Science/Cybersecurity State
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Plan [18]. This plan has been defined by our partners, the Computer Science
Advisory Group in close collaboration with the Connecticut Council for Edu-
cation Reform - ReadyCT and EdAdvance. It provides a statewide vision to
assist in the coherent implementation of K–12 cybersecurity instruction and
opportunities for all Connecticut K–12 students to engage in high-quality cy-
bersecurity education.

To conclude, the GTA program will continue to enhance and promote the
development of cybersecurity curricula in low-performing high schools and de-
velop a diverse, globally competitive cybersecurity and computing workforce.
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Abstract
We describe a Liberal Arts undergraduate Robotics major. We see

Robotics as an emerging and innovative field that provides excellent ca-
reer opportunities, as well as the potential for graduate work. Within
our state college system, a Liberal Arts Robotics program is a unique of-
fering. Regionally, strong Middle School and High School level Robotics
competition teams provide a pool of potential students. With these mo-
tivations, our institution implemented a Robotics major that is a joint
effort between the Physics and Computer Science departments.

The program is built on a foundation of experiential and project
work that utilizes single-board computers and microcontrollers such as
the Arduino and Raspberry Pi. Consumer and maker-grade hardware
is inexpensive and (often) open source or open hardware; however there
are functional limitations, support is often crowdsourced, and reliabil-
ity can be problematic. The utilization of custom designed 3-D printed
components for robots increases the range of problems that can be solved
while keeping costs low. The cornerstone of the experiential approach is
the inclusion of four project courses, one per year. These project courses
increase in sophistication and difficulty, focus on hardware/software in-
teraction, while solving non-textbook and unique problems. We report
on the composition of the curriculum, with special attention to the inter-
disciplinary nature and cross-departmental cooperation; the hurdles of

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

188



putting together the curriculum at a Liberal Arts institution, the peda-
gogical challenges of working with consumer and maker-grade hardware
and open software, and a robotics platform to address these challenges.

1 Demand for Robotics

There is a robust and growing market for Roboticists, with over 132,000 open
jobs [1]. FIRST (For Inspiration and Recognition of Science and Technology)
runs five different levels of robotics competitions for ages 4 through 18, and
had 679,000 student participants in 2019-2020 [3]. In 2020, it was estimated
that there were 2.7 million industrial robots in use worldwide [6]. That does
not include robots seen outside an industrial context. With robotic french-fry
cooks, pool cleaners, vacuum cleaners, and self-driving cars, there are very few
aspects of our lives that are not touched by robots.

But what is a Robot? Definition number two from Merriam-Webster [5]
captures best the subject area for our major:

1. "a device that automatically performs complicated, often repetitive tasks
(as in an industrial assembly line)"

2. "a mechanism guided by automatic controls"

A major in Robotics offers an opportunity to address a relatively new and
growing STEM field, and one that many students find interesting and excit-
ing. However, Robotics is typically seen as a field of Engineering, while we are
at a Liberal Arts school. Our challenge was to define and implement a non-
Engineering Robotics major. By "non-Engineering" we mean that we carry
Middle States Accreditation, rather than ABET (Accreditation Board for En-
gineering and Technology). This is largely dictated by the constraints placed
upon our school by our state college system, as we are not one of the designated
Engineering schools in the system.

Key enablers of our major were the pre-existing 3+2 engineering program,
hardware and software oriented Robotics minors, and the growth of inexpensive
and widely available sensors, servos and motors, and single-board computers.
We were able to utilize these stepping stones to create a Robotics major within
a Liberal Arts college.

Robotics and AI are very useful in creating effective learning environments.
These environments motivate students to learn the necessary skills and knowl-
edge.

Through the completion of robotics projects, students understand “the so-
cial construction of integrated networks of authentic Science, Technology, En-
gineering, and Mathematics (STEM) knowledge centered around “Big Ideas”
of and about STEM” [9]. Involvement of students in robotics activities also
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plays an important role in bringing students from marginalized community to
college, in general, and to the STEM fields in particular.

2 History

Our institution has an existing 3+2 Physics and Engineering program, con-
ducted jointly with several neighboring engineering universities. Upon comple-
tion of three years at our school and two years at the collaborating institution,
the students are awarded a Bachelor of Arts degree in Physics from our school
and a Bachelor of Science degree in Engineering from the partner institution.

The Physics and Computer Science programs offer two minors in Robotics,
one with an emphasis on Physics and one with an emphasis on Computer
Science. The common piece of both minors is a four credit Introduction to
Robotics course and a three credit course in Artificial Intelligence, both at the
Junior level. Common prerequisites for the minor includes Calculus I, Calculus
II or Linear Algebra, Physics I, Discrete Mathematics, and Introduction to
Programming (Python).

3 Cross-Departmental Cooperation

The expertise to offer a Robotics major does not fit neatly into any existing
department [11]. The Physics department had existing offerings in design (as
part of the 3+2 program), as well as circuits and electromagnetics, and digital
logic. They also were more experienced at developing, staffing, and funding
hands-on laboratory courses. The Computer Science department had existing
course offerings that were typical for a software oriented program (i.e. not a
hardware focused Computer Engineering curriculum).

Both programs needed to develop new courses to complete the program.
One of the key enablers was the collegial cooperation that went into this pro-
cess. Some courses could conceivably have been offered by either department.
Skills and available resources made it relatively easy to decide which depart-
ment would offer which course. It was understood from the beginning that
some faculty would cross-over to teach courses as needed.

The courses developed on the Computer Science side included an Embedded
Systems course (using the Raspberry Pi), an introductory (100 level) Physical
Computing course (using the Arduino), an Image Processing course, and a
Distributed and Autonomous Systems course.

On the Physics side, an Introduction to Robotics course already existed.
Additional courses developed included Advanced Digital Design, Sensors, Con-
trol Theory, and Robot Kinematics and Dynamics.
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The cooperation between the two departments has been a key factor in
our success. It helps in that there are faculty with common backgrounds, and
prior experience working as engineers before moving into academia. When the
university reorganized space to accommodate growth in the Computer Science
department, the Physics and Computer Science departments were moved from
separate buildings, together into adjacent hallways. It was also helpful that
both departments had faculty who had pre-existing interest in Maker culture;
such as the Raspberry Pi, Arduino, and 3-D printing; and FIRST Robotics
competitions. These Maker tools form the backbone of the hands-on compo-
nents of the curriculum.

4 Needs of a Robotics Curriculum

In constructing a curriculum, you have to establish the parameters of what
a student needs to learn, and what skills the student needs to acquire. Some
fields, such as Mathematics or Electrical Engineering, have long established ba-
sic curriculums. Compared with many STEM subjects, Robotics is a relatively
new field, sitting at the intersection of multiple STEM disciplines [11].

The Robotics curriculum consists of Mathematics, Mechanical Engineering,
Industrial Engineering, Electrical Engineering, and Computer Science .

The fundamentals of Robotics, in the plan-compute-implement loop, place
an emphasis on sensing, computation, and actuation. Small micro-controller
based kits (such as the Arduino [2]) can be purchased for under $50, and include
all of the necessary pieces to sense (such as a photodiode and temperature
sensor), compute (a microcontroller), and act (servos and LEDs). The ability
to go from "zero to blinky lights" very quickly with these systems makes them
engaging and interesting [21].

A robot senses; our curriculum needs to teach the fundamentals of sensing,
the limitations of sensors, precision versus accuracy, and topics such as analog
to digital conversion. A robot computes; robotic calculations span a range from
simple for-loops on inexpensive micro-controllers to ROS (Robot Operating
System) [17] simulations. A robot acts; the robot may be driving actuators,
moving in 2-D and 3-D spaces, estimating and tracking its location (for example
monitoring wheel encoders). The robot may be sensing while acting, which
may be computationally expensive. The physical world looks very slow to a
computer, but the hardware platform used for an inexpensive product may be
"just fast enough" to keep up, requiring a different set of programming skills
than building a webpage in Javascript.

A Roboticist needs to have a clear understanding of both hardware and
software: the power and limitations of the hardware components (sensors, ac-
tuators, etc.); the ability to write software that interacts with the physical
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world efficiently, accurately, and effectively; and skills need to be cultivated
in software development, ranging from low level programming in resource con-
strained environments to machine learning and vision in high performance en-
vironments. The curriculum needs to address all of these factors, and it needs
to provide ample opportunity to apply them in practical projects. Experience
is the best teacher. A robot that continues to fail at its task because a key
subsystem is using too many resources is a valuable and important lesson.

The taxonomy of Robotics that we worked with revolves around the com-
mon view that Robotics includes a loop that senses the environment, plans or
computes an action, and then implements the action that changes the envi-
ronment. The planning may be individual or collective (swarm); autonomous
(algorithmic or through machine learning) or interactive (person-in-the-loop).
The sensing may be passive or active, it may be local or remote. The action
may be individual or collective, local or remote, physical or simulated.

5 Our Robotics Curriculum

Liberal Arts or Engineering? There has been, in recent years, a great deal of
discussion of this topic. The argument over whether you need "liberal arts
thinkers" instead of people focused on STEM has been described as a "false
dichotomy" [10]. In The New York Times, Vivek Wadhwa states that "In the
two companies I founded, I was involved in hiring more than 1,000 workers
over the years. I never observed a correlation between the school of graduation
or field of study, on one hand, and success in the workplace, on the other" [23].

The "S" and "M" portions of STEM have long been associated with Liberal
Arts programs and degrees. Robotics arguably falls squarely into the "T"
and "E" portions of STEM. This could be viewed as a distinction without a
difference. A Liberal Arts Robotics major can be constructed that has the same
depth and breadth as an Engineering Robotics major. The key is defining the
contents of the curriculum and having the resources to offer that curriculum.

Shibata et al.[18] looked at the question of what courses comprise a Robotics
curriculum. They looked at 19 Robotics programs in Japan, and categorized
courses by title. In their Table II, they identified the top 15 common categories
(those offered by 10 or more programs). Our program includes seven of them
(including the last, which arguably includes the others):

• Controls
• Programming
• Electronic or Electrical Circuits
• Sensors
• Artificial Intelligence or Intelligent Systems
• Robot Vision
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• Robotics

Several courses have ambiguous titles that may or may not match our cur-
riculum. The ambiguous topics include "Mechanism", which may map to our
Kinematics course; and "Technical drawing/design" which may map to our
Fundamentals of Engineering Design course. Our program does not require
courses such as Strength of Materials, Mechatronics, Material Processing, Fluid
Mechanics, Instrumental Engineering, or Simulation Engineering.

How does a Liberal Arts Robotics program differ from an Engineering
Robotics program? The clearest distinction is the General Education Foun-
dation course requirements. As a Liberal Arts program, our students must
complete a substantial set of courses that includes history, social sciences, arts,
writing, and others. The science and math requirements of the major easily
exceed the General Education requirements.

That means that students in the program have fewer free electives to work
with. For that reason, we only offer a Bachelor of Science degree, not a Bach-
elor of Arts. For a student with good mathematics preparation, the General
Education requirements will be approximately 30 to 34 credits. The Robotics
major itself includes 67 to 76 credits (nominally 70 credits). The remainder of
the 120 credits (in the range of 10 to 23 credits) are free electives. In order to
keep the number of required courses (and prerequisites) to a reasonable num-
ber, some math concepts, particularly in differential equations and systems
engineering, are covered within the courses that require them. Those planning
to pursue graduate studies are directed by advisement to take the equivalent
higher level math courses.

The curriculum contains two tracks: Hardware Application and Program-
ming. Each year includes a project based (experiential) course. Each
track contains four unique courses. These courses are annotated as such in the
sample schedules shown in Tables 1 and 2). 1

The "Advanced Electives" include the courses in the opposing track, plus:

• Computer Organization
• Artificial Intelligence
• Distributed and Autonomous Systems
• Image Processing

The longest path through the major terminates at the Robotics Senior
Project course. This path requires a minimum of six semesters. As a rela-
tively small school, limitations on course frequency leave very little slack in
the schedule. Students without prior math preparation who are unable to take

1The C Programming course shown in the tables is one credit, all others - except Calculus
I/Trigonometry - are 3-4 credits
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Calculus I in their first semester may find it difficult to complete the program
in the correct order in four years (without deviations or exceptions).

6 The Role of Single Board Computers (SBCs) and a
Robotics Teaching Platform

SBCs are key to the robotics curriculum. They allow for an inexpensive, com-
pact, wireless, and energy efficient platform that the majority of our robots are
based upon. These advantages are mitigated somewhat by the disadvantages
such as low computational power and the use of cheaper electronics that can
cause stability issues.

To leverage this in a robot one must either use a robot platform from a
vendor or develop your own. We tried vendor platforms but found each had its
own limitations. Using a Pololu Zumo [14] did not give us an easy addition of
computer vision. In 2015 we tried to use a BrickPi [4], which at its heart is a
Raspberry Pi with a I/O motor shield, as the core of our platform. It allowed
students to make their own robots using LEGO parts, sensors, and motors,
but it was missing simple things like the ability to accurately use encoders.
After evaluating several vendor platforms (Pololu Zumo [14] and BrickPi [4]),
we decided to develop an internal platform leveraging our ability to design
and 3-D print robot bodies and the parts needed to attach various motors and
sensors to them. This also meant the addition of a microcontroller to replace
the I/O motor shield that was a part of the BrickPi.

The teaching robot platform that was developed, KIF (Keep It Fun), Figure
1, is based on the Raspberry Pi [13]. It is constantly in revision as necessitated
by hardware cycles and parts availability. KIF can be customized for each
class if needed. The downside of developing a custom robotics platform is that
you are your own technical support. Each revision takes time to test and vet
solutions. To help mitigate this frustration, keeping the current build focused
on the pedagogy to be delivered is necessary. This focus limits the scope and
helps keep the pedagogical goal in the center.

The Raspberry Pi installed on KIF runs Raspberry Pi OS, which is a port
of Debian, with the full GUI desktop installed. To log in wirelessly, RealVNC
[16] is activated which is included with the port of Debian. The current version
of the Arduino IDE, used to program the microcontroller, needs to be installed.
Also required are the corresponding hardware libraries for the various motors
and sensors to be included in KIF’s particular build. For computer vision,
OpenCV [12] is installed for the current version of Python. This used to be
an arduous task involving many hours of downloading and compiling different
pieces of the library, but now there is a version that is a ready-to-install Python
library. For AI and machine learning, PyTorch [15] and TensorFlow [20] are
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Figure 1: KIF: Keep It Fun

also installed.
These last pieces of software highlight the lack of processing power of the

Raspberry Pi. Running tasks like a sprite search in an image can take seconds
to a minute to finish depending on the problem’s complexity. This needs to
be taken into account when attempting “real time” applications. In the above
circumstance, the students were allowed time to do the calculation, the robots
all moved for five seconds, then the next processing phase took place. The
principles are the same as with faster computers, so pedagogically they are
still learning the same objectives, just the timeline must be adjusted to allow
for the limitations of the SBC.

Traditionally KIF used an Arduino Mega 2560 [2] as its microcontroller.
This was selected for the abundance of analog and digital I/O as well as the
larger amount of memory. The problem with the Mega is that it is very slow
and does not handle using interrupts on multiple channels very well. KIF,
configured with motors and encoders, would tax the ability of the board. That
is why KIF historically ran with stepper motors, since they do not need to
use interrupts. To allow for the use of motors with encoders, KIF replaces
the Arduino Mega with either an Adafruit Feather [8] or a Teensy [19]. Both
these microcontrollers are fast enough to handle the multiple interrupts while
doing other things like getting data from sensors or making calculations on
where the robot is. The current KIF uses an Adafruit Huzzah32 Feather as its
microcontroller. In 2021-2022, shortages of Raspberry Pi systems, led to more
use of the Adafruit Feather for the main processing component.
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7 Experiential Courses

The four experiential courses form a natural progression of increasing difficulty
level.

Physical Computing focuses on the use of the Arduino with simple sensors
and servos. The course content lies between the "CS0" and "CS1" content as
defined by the ACM and IEEE [7]. Students begin with the basics of making
an LED blink and progress through a series of hands-on projects that introduce
the basics of C programming, wiring components together, working with simple
electrical components, reading sensor values, and driving servos. While the
course currently uses the Arduino UNO with a kit of components [22], there
are a number of components that could be used. The limited memory on the
UNO (32KB of Flash, 2KB of SRAM) helps prevent pedagogical scope creep.

Introduction to Robotics focuses on autonomous robotics using a basic KIF
as the robot platform. Topics covered at a basic level are sensors, control theory,
motion planning, machine vision, localization, deep learning, and kinematics.
Each topic is explored using KIF except kinematics which uses a small robot
arm. The techniques build throughout the semester. The final project con-
sists of showing KIF a sign and having KIF move from sign to sign, moving
in the correct direction based upon the signs’ content until KIF reaches the
appropriate end point.

Intermediate Robotics Lab is a group project-based course. Teams of stu-
dents are given a challenge, and they focus on that challenge throughout the
semester. Some of the previous challenges have been robots playing zombie
tag, reading a map to follow the “roads” that are allowed while avoiding ones
that are forbidden, and running a line maze using information from the en-
vironment to finish the task in the allotted time. These projects are picked
to highlight different aspects of robotics, trying to give students a choice of
following their interests. Here KIF is modified with custom pieces to help the
students complete the tasks. Many times, the students will do their own CAD
designs and 3-D print the needed parts.

Robotics Senior Project is where the student defines, with approval of their
mentor, what they are attempting to complete for the semester. This allows
the student to further refine the skills they hope to showcase on their graduate
school application or resume/job interview. This is an intensive course leaving
a lot of room for the students to explore what they are capable of doing. A fast
try/fail cycle is encouraged. Typically, the student will not get as far as they
had planned since they are usually ambitious with project scope. The grade is
based on following good engineering principles and remaining focused on the
task at hand.
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8 Conclusions

We are a predominantly undergraduate institution, a Liberal Arts state college,
and a non-Engineering school. We serve a student body that is very diverse
with a high population of first-generation students. We offer an entry point to
Robotics for a different population than R1 engineering schools.

The major was approved in early 2018, too late for the 2018-2019 academic
year. Enrollment was 18 students in Fall of 2019, 21 students in Fall of 2020,
24 in the Fall of 2021, and 16 in Fall 2022. The numbers for 2021 and 2022
are likely impacted by reduced admissions during the two years of Covid. To
date, the program has graduated 10 students, placing several in the Robotics
industry and one in graduate school studying robotics.

We continue to fine-tune the curriculum structure and course content. Stu-
dents have overwhelmingly chosen the hardware track, and there has been
some discussion of focusing the programming track on Machine Learning and
Artificial Intelligence, and renaming the track to emphasise the ML/AI focus.

Students with less prior math preparation face a challenge, and we continue
to seek ways to increase the flexibility in the major.

We would like to explore ABET accreditation in the future, but not at this
time.

Development continues on KIF, with a plan of making it freely available as
an open educational resource.
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Abstract

Research has demonstrated that much of the software being created
today is not sufficiently inclusive, unbiased and equitable. This has been
found to frequently result in real-world implications such as prejudice
against women or people of color, and software that is inaccessible to
people with disabilities. Preliminary research has found that empathy-
focused experiential educational activities can be beneficial for not only
creating empathy, but in advancing the participant’s interest and knowl-
edge retention over traditional non empathy-building interventions. This
work will provide a foundational background on the current research in
the intersection of experiential learning and empathy-building interven-
tions in computing education. We will also present several important
questions that still must be explored, thus serving as the foundation for
future work in this area.

1 Introduction

Research demonstrates that we continue to be deficit in creating inclusive and
equitable software [9, 16, 18, 56, 79]. Despite the prevalence and demonstrated
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Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
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capabilities of experiential education [4, 38, 48, 88] and foundational demon-
strated benefits of empathy-building interventions [6, 84? ], the intersections of
these topics have not been sufficiently explored. Specifically, we need to inves-
tigate and create educational empathy-building interventions to better inform
and motivate students to create more inclusive and equitable software. There
are several key areas that require further exploration. These include:

1. Understand the benefits and impacts of empathy-creating interventions
in experiential computing education.

2. Recognize appropriate methodologies to include empathy-creating inter-
ventions in experiential computing education.

3. Understand if experiential empathy creating interventions can help to
reduce bias.

Improved knowledge regarding empathy-creating interventions can directly
benefit computing education while exponentially benefiting society through the
creation of more fair, unbiased, and inclusive software used by the general pop-
ulation [64, 72, 82]. Potential benefits of empathy-building experiential educa-
tion modules can contribute to the foundational understanding of experiential
education from a theoretical and practical perspective, benefiting a variety of
topics in computing education (e.g., general computing, accessibility, artificial
intelligent/machine learning, autonomy, software engineering, HCI, etc.).

The rest of the paper is organized as follows: Section 2 provides the mo-
tivation and guiding theory, while Section 3 presents related works. Section 4
discusses several important crucial questions to be addressed and Section 5
provides a conclusion.

2 Motivation and Guiding Theory

Motivations from Education: Experiential empathy-creating interventions
have been explored in various non-computing domains such as in medicine [33,
46, 58, 86], and for creating tolerance in social situations [21]. Unfortunately,
the application of these benefits in experiential computing education is inhib-
ited by a lack of understanding regarding: I) A proper implementation frame-
work [78], II) Their specific pedagogical advantages, and III) The most appro-
priate pedagogical and technical methods for integrating these into computing
curriculum [59]. The potential benefits of empathy-building interventions in
experiential computing education has been demonstrated in foundational, pre-
liminary research . Despite these encouraging results, there is currently a lack
of knowledge that inhibits the implementation and benefits of empathy-creating
interventions at institutions across the United States [40, 64].
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The application of empathy-building interventions in experiential comput-
ing education has been inhibited by both pedagogical and technical limitations
. The hypothesis that creating empathy can increase student interest is sup-
ported by the PI’s preliminary work in this area. Deeper pedagogical questions
also exist, such as appropriate intervention inclusion methods and their impacts
on empathy’s subprocesses (‘mentalizing’, ‘experience sharing’, ‘empathic con-
cern’) [6, 27, 42, 84, 90]. Additionally, technical obstacles must be overcome
such as how to properly create an empathy-building experience and how to suf-
ficiently emulate the experiences of other users (e.g., accessibility challenges,
racial bias, etc.).
Motivations from the Community: A lack of empathy among software
developers has been attributed to the creation of biased, inequitable soft-
ware [9, 26, 59]. This necessitates the creation of high-quality empathy-creating
educational interventions to support the next generation of software developers
in creating more equitable software for society. Research has demonstrated that
increasing empathy can lead to software that is developed in a more accessible,
inclusive and equitable manner [10, 87? ]. This prior work provides confidence
that improving empathy in computing students can yield similar benefits and
help them to understand the necessity of creating inclusive software. Unfor-
tunately, there is a lack of an understanding of how to most effectively teach
students empathy-related concepts to construct inclusive software. While bias
may be created due to unconscious developer actions or by non-human factors
(e.g., incoming data in AI/ML [26, 76]), an objective should be to better un-
derstand how participants can more appropriately become cognizant of, and
properly address biases when developing software.

Recent US government legislation has called for software that is more inclu-
sive and unbiased [1, 2, 3, 26, 76]. There is also a stated educational demand
for easily adoptable interventions that will support the creation of more eq-
uitable software, such as software that is created with a greater amount of
empathy [9, 20, 62]. Increased empathy is expected to result in the creation of
software that is more inclusive, equitable and unbiased [59], while also having
a positive impact on the developer’s career [44]. Empathy is being seen as a
greater necessity due to the increasingly globalized nature of society [59]. The
demand for software with these attributes will continue to grow as more inter-
actions and tasks are performed online [15, 68]. Preliminary observations have
demonstrated that the proposed work has the capability to directly contribute
to accomplishing these goals.
Guiding Theory: Research demonstrates that we continue to be deficit in
creating inclusive and equitable software [9, 16, 18, 37, 41, 56, 79]. Prior work
has demonstrated that increased empathy can lead to software that is developed
in a more accessible, inclusive and equitable manner [10, 87? ]. Empathy
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can be developed, frequently through experiential activities [6, 23, 47, 84, 85];
however, there are no known efforts to examine the integration of experiential
learning to create empathy in computing education [? ]. Existing works have
demonstrated both the capabilities of experiential learning [4, 38, 48, 88] and in
empathy creation [6, 23, 47, 84, 85]. It is surmised that this increased empathy
will increase the student’s ambition to create more equitable and inclusive
software.
General Scientific Barriers: A key challenge is how to accurately create ex-
periential empathy-creating interventions for both instruction and evaluation
in a variety of computing courses, ranging from foundational to more special-
ized courses. While initial work demonstrates the foundational capability of
empathy-creating interventions in several offerings of a CS2 course, it has not
been widely attempted in other computing curriculum. Although there are
various proposed empathy measuring evaluations [34, 35], there do not appear
to have been any significant efforts for measuring empathy in computing edu-
cation, representing another challenge that must be addressed. Ensuring that
interventions create empathy and not pity for specific users is another challenge
that must be considered.
Preliminary Efforts: Foundational work has demonstrated the potential
benefits of experiential empathy-creating interventions. Using a pre-and post-
lab survey analysis involving 276 Computer Science 2 (CS2) students, de-
pendent t-tests indicated that empathy-creating interventions increased stu-
dent feelings that developing accessible software is important. While far from
a definitive study, this observation demonstrates the foundational capability
of empathy-creating interventions in experiential computing education. Ex-
isting works have demonstrated both the capabilities of experiential learn-
ing [4, 38, 48, 88] and in empathy creation [6, 23, 47, 84, 85]. However, there
are no known significant efforts to examine empathy-creating interventions in
experiential computing education.

3 Related Work

3.1 Experiential Education

Experiential learning is commonly used in many educational topics [4, 38, 48,
88] and has routinely demonstrated its benefits [12, 50, 51]. Experiential learn-
ing provides a complete learning experience for the student, one where they
both understand the concept behind an idea and interactively learn about
it [13]. Compared to alternative teaching approaches such as lectures, experi-
ential learning has been demonstrated to be more engaging for students [55],
and supports student retention of information [43, 77]. The four stages of
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Kolb’s Experiential Learning Cycle [52] include ‘Concrete Experience,’ ‘Reflec-
tive Observation,’ ‘Abstract Conceptualization,’ and ‘Active Experimentation.’

3.2 Empathy-Building Interventions

Research demonstrates that people frequently fail to empathize with a particu-
lar target group because they are unwilling to empathize [73, 89]. Fortunately,
research suggests that empathy can be developed, frequently through experi-
ential activities [6, 23, 47, 84, 85]. An identified challenge in driving people
to empathize are ‘avoidance motives’ which make empathizing more of a dif-
ficulty [31, 49, 53, 60]. An example of an avoidance motive is when people
believe that addressing empathy-created concerns will be too costly [19, 66, 74]
or painful [28]. Therefore, when striving to create empathy, it is imperative
to demonstrate how empathy will align with, and not obstruct the project’s
goals [39, 74]. There are generally at least three related, but distinct sub-
processes that comprise empathy [84]. ‘Mentalizing’ is the ability to draw
inferences about a target’s feelings and thoughts. ‘Experience sharing’ is when
a person vicariously experiences another person’s emotional state [42]. ‘Em-
pathic concern’ focuses on a perceiver’s desire to alleviate the target’s dis-
tress [5]. There are several forms of empathy, including cognitive, emotional,
affective, and somatic [22, 45, 61, 75]. This work will primarily focus on cogni-
tive empathy since it is the form that is most amiable to a computing-oriented
experiential environment.

There are two primary forms of empathy interventions, Experience-based
and Expression-based interventions. Experience-based interventions often al-
low the perceiver to encounter a scenario through the target’s perspective using
either a hands-on or theoretical activity. This form of intervention has been
traditionally used to build empathy through a deeper understanding of the tar-
get’s thoughts and feelings [84]. Examples of such interventions involve medical
students staying in a hospital overnight to experience a hospitalization from
a patient’s perspective [86], or asking participants to imagine life and feelings
of a member of a stigmatized group [7]. Expression-based interventions teach
participants to recognize the internal states of the participant and respond ap-
propriately. These interventions are frequently implemented in scenarios where
it is difficult to identity distress in others, or when a perceiver is impaired in
conveying empathy for a target [84]. Expression-based interventions have been
used in a variety of areas, such as in medical students identifying when a pa-
tient is in pain [8, 70], and helping autistic adolescents improve their affective
empathy by recognizing emotional traits in others [25, 36].
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4 Open Questions

There are several key questions that should be addressed in order to better
understand the intersection of experiential learning for building empathy.
1. Understand the benefits and impacts of empathy-creating in-
terventions in experiential computing education: Although there
have been a large amount of existing research that demonstrates the ben-
efits of experiential learning [4, 38, 48, 88] and empathy-building interven-
tions [6, 23, 47, 84, 85], there is far less work that examines the intersection of
these two important topics, especially in computing education. We hypothesize
that empathy-creating interventions in experiential computing education will
increase student interest, motivation and information retention, which are cru-
cial for retention and encouraging students to pursue STEM careers [57, 83].
We also hypothesize that increasing empathy for diverse users will support
students in understanding the need to create more equitable software. An ad-
ditional question to be explored are the potential benefits of experiential vs
expression-based interventions.

A better understanding of the potential benefits of empathy-creating in-
terventions in experiential computing education can be attained using short
interventions and t-tests. Measured variables may include motivation, interest
and knowledge retention. A primary consideration is to ensure that a prop-
erly diverse group of students (e.g., demographics, experience levels, etc.) are
included in any such evaluation.
2. Recognize appropriate methodologies to include empathy-creating
interventions in experiential computing education: There are several
potential methodologies that may be taken to both evaluate and include ex-
periential empathy-building interventions in computing education. We argue
for small, self-contained and easily adoptable modules and interventions that
can be utilized at institutions across the United States. We hypothesize that
these short interventions will support the inclusion and subsequent evalua-
tion of these topics, as short self-contained interventions have demonstrated
their effectiveness in numerous other computing educational areas [65, 71, 80].
We believe in reasonably brief (i.e., ≈ 30-60 minute interventions) since foun-
dational computing courses are typically already packed with topics and that
many institutions (especially those that are resource constrained) will not have
the ability to develop entire courses focusing on this area.
3. Understand if experiential empathy creating interventions can
help to reduce bias: Forms of bias include prejudice, stereotypes, affective
reactions, and discrimination [32]. Bias comes in many shapes and forms rang-
ing from overtly bias human beings, to algorithms that unintentionally contain
bias [26, 76]. The adverse impacts of bias continue to be detrimental, despite
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the cause.
There has been a substantial amount of work to address bias and preju-

dice [17, 24, 54, 69], and studies that demonstrate the potential benefits of
experiential-based interventions in addressing bias [14, 63, 67, 81]. However,
there are no known significant efforts to evaluate or demonstrate the impact
of empathy-creating interventions in computing education in addressing prej-
udice.

A primary challenge will be how to effectively measure bias since it occurs
both unconsciously and intentionally [11, 29]. Additionally, even if a student
does recognize their own bias, they may be unlikely to truthfully admit any
notions of this on a survey instrument. To address this challenge, a partici-
pant’s bias could be implicitly measured, using mechanisms such as understand-
ing affective reactions using Likert-scales to measure the range of experienced
emotions [30], along with evaluating the produced artifact (e.g., source code,
algorithm, etc.) for aspects of bias or prejudice. These measurements could be
evaluated in settings such as conventional classrooms, outreach events or small
group activities using instruments such as pre-post test measures.

Despite the challenges of measuring bias, we believe that this continues
to be an important and worthwhile area that warrants further exploration.
This is due to the potential benefits that can be provided from the knowledge
produced from further understanding how to reduce bias.

5 Conclusion

Experiential education has demonstrated its benefits in a wide variety of appli-
cation areas. Additionally, empathy-building interventions have demonstrated
their foundational capabilities in preliminary research. Unfortunately, there is
a significant amount of research in important areas that intersect these topics
that still need to be explored.
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This research aims at designing and evaluating the use of a chatbot ded-
icated to supporting students in their learning of the Python programming
language. By delivering on-demand guidance and tailored feedback, AI-based
education chatbots have the potential to support students in their learning.
They also have the possibility to be scalable and serve numerous students at
once, making them accessible and productive learning tools. Python is a pop-
ular language in many disciplines, from computer science to data science and
digital humanities. Learning Python is currently an excellent way to increase
employability and career opportunities.

The chatbot we propose is dedicated uniquely to supporting students in
learning Python. It is developed using the reformer methodology, which is
based on the reversible transformer. We have experimented with GPT, BERT,
and sequential models to develop this special-purpose chatbot. The sequential
model, too simple, did not provide good results. The transformer model took
more time and memory during training. The chosen reformer model can fit up
to 1 million tokens on a 16GB GPU and handle context windows of up to 1
million words. It combines two techniques to solve the problems of attention
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and memory allocation. Reformer uses locality-sensitive hashing to reduce the
complexity of attending over long sequences and reversible residual layers to
efficiently use memory.

We built our own dataset of more than 800 questions. The dataset con-
sists of intents from the Python topics which include: Generalities, Arithmetic
Operations, Data Types, Variables, Input and Output functions, Operators,
Control Structures, File I/O Operations, Functions, and Modules. We crowd-
sourced intents from students and wrote the answers, including using expert
knowledge from the Python.org open platform. The comprehensive documen-
tation from Python.org is reusable for educational purposes.

Having high accuracy is not enough for a model, we still need to have
it evaluated by users. Students from the undergraduate course CIS101 (In-
troduction to Computer) and graduate course CS661 (Python Programming)
evaluated the chatbots in terms of the overall experience, usability, learning
satisfaction, and engagement, with approval from Pace University Institutional
Review Board (IRB). An experiment was set up for students to attempt Python
problems and use the chatbot for help. We collected all questions the students
asked the chatbot during the two-hour session and administered a survey to
obtain students’ feedback. The survey contains questions about students’ back-
ground in Python, first impression of the chatbot, learning experience, user
interface, and improvement needs.

The poster presents the design of the chatbot, the experiment, and the
evaluation of the chatbot. It also presents the potential and limitations of such
a special-purpose chatbot in the context of the popular ChatGPT general-
purpose chatbot.
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Recursion is one of the central ideas of computer science but also one of
the most challenging concepts for students to understand and use. So teaching
recursion is an important and challenging task. In this poster, we propose a
hybrid approach for teaching recursion and compare it with some traditional
methods, such as tracing recursion. The results have shown that traditional
tools for teaching recursion like tracing recursion are mechanical to some de-
gree. Almost 40% of the class could not reasonably analyze a new recursive
problem. Compared with tracing recursion, a better percentage (more than
75%) of students could solve recursive problems independently using our pro-
posed approach. Furthermore, the proposed approach provides a way to visu-
alize recursion, which could be helpful to the students.
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Proof Buddy is an online browser-based tool designed to teach proof writ-
ing to beginning computer science students. It has been designed from the
ground up with educational purposes in mind and has been used successfully
with hundreds of students since January 2022 at Drexel University. The tool
helps students build and check proofs in a variety of systems. It is capable of
doing Natural Deduction, both Boolean logic and first order logic, and is be-
ing extended to handle Equational Reasoning. Important instructor-centered
features include that the teacher can create assignments of proof problems,
which the software can auto score and have results uploaded into their school’s
LMS. Additionally, the tool allows proofs to be saved and exported and used
as new rules. When this feature is used by the instructor, it permits a cus-
tomization of the allowable rules. When this feature is used by the students,
it allows them to create their own lemmas which reduces the cognitive load
of a more intricate proof. Logic plays an important role in computer science,
but use of formal logic has often proven to be a stumbling block for students.
Formal proofs have become more important to computer science students with
the resurgence of program verification and proof assistant suites. Professional
grade proof assistant and theorem proving tools which handle this subject mat-
ter (such as Microsoft’s LEAN, Lamport’s TLA+, or Coq) are too complex for
beginning programmers. Proof Buddy addresses this need for a more pedagogi-
cally minded tool. This poster showcases some of the most well-used features of
Proof Buddy, as well as presents some tentative answers to research questions
now tractable via the tool, including the ultimate goal of establishing a connec-
tion between mathematical proof and programming. Proof Buddy is especially
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effective in discrete math and cs logic courses. Instructors teaching an intro-
ductory proof class within a computer science context would be particularly
interested in Proof Buddy, especially if their course content includes Boolean
Algebra or Logic. While we have been using the tool at the sophomore/junior
college level, it is also appropriate for introducing the mathematical founda-
tions of computer science to advanced high school students. Proof Buddy is a
boon for teachers who are searching for a way to reach beginner programmers
who are struggling with their first forays into proofs. Moreover, our tool goes
beyond what others offer by providing an instructor interface which allows as-
signment creation and automated scoring. The axiom system is also extensible
by instructor and student created lemmas. Unlike other proof assistants, Proof
Buddy allows the teacher to create missing parts of proofs, with the choice of
either the code/mathematical expressions or the formal rule justifying that line
to be filled in by the student. Additionally, the proof creation mode is flex-
ible with the order of construction: the tool supports students working from
the top-down (i.e. the formal order of going from assumptionstotheconclu-
sion)or fromthebottom-up(working"backwards"fromtheconclusion).Ithas been
designed with a framework that allows extension to different theories and per-
mits data collection of student work which can be analyzed for common mis-
takes. The beta version of Proof Buddy has already been successfully used by
hundreds of students at Drexel University over the past year and received very
positive reviews in surveys. The poster will include some of the preliminary
results we have obtained from analyzing data collected via the tool, as well as
a QR code for the viewer to try Proof Buddy out for themselves and adopt it
for their own classroom!
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The purpose of this study is to explore the efficacy of using technical com-
munication principles to teach beginner programmers how to improve the read-
ability of their source code. Technical communication principles are typically
used to help students in technical fields improve their writing, but our hypoth-
esis is that these same principles could be applied to the process of writing
readable programs. This study is designed as a case study that will explore
pedagogical approaches and outcomes associated with our hypothesis. The
study utilizes an existing technical writing course that is required by some ma-
jors and is one of a set of options for others. Most of the traditional technical
writing activities are replaced with ones that focus on improving code read-
ability from three perspectives: the algorithm, the module, and the system.
Each perspective explores technical communication principles as they relate to
coding standards, approaches to commenting, and visualization techniques. To
enroll in the course, students ideally would have completed at least one three-
credit programming course. As the study is being done at a small campus, to
ensure there would be sufficient enrollment for the course to execute, we also
permitted students who were concurrently taking a three-credit programming
course to participate. As a result, this course focuses on improving existing
code rather than being concerned with creating it. Further, given the limited
experience of the students (n=6, five of which are concurrently enrolled in a
CS1 course), we focus primarily on the readability of the code and limit the
discussion of code efficiency.

∗Copyright is held by the author/owner.

219



A Web App for Writing With Mathematical
Logic∗

Poster Abstract

Bruce Char, Steve Earth, and Jeremy Johnson
Drexel University

Philadelphia, PA 19104
{charbw,se435,johnsojr}@drexel.edu

Logicwriter Actual is a web app (https://www.cs.drexel.edu/~bchar/
logicwriter/standardConfig/web/index.html) designed for freeform entry
and linear display in Unicode of text combined with symbolic logic charac-
ters such as ≡, ∃, ∧, =⇒ , λ, and Ω. It is designed for the writing done
by students or instructors in foundational-level (second year) courses intro-
ducing mathematical reasoning: elementary formal or informal proofs often
involving commonplace situations or computer science contexts such as pro-
gram behavior. Rather than being a scaffolded practice harness [1], or an
automated reasoning tool/proof checker [2, 5], the goal of Logicwriter Actual
is just to make it easier for students to practice more mathematical writing.
The WYSIWYG result can be copy/pasted into most document processors (for
submitted or shared work), Discord or Slack channels (for chat conversations),
email, code editors, etc. It is designed to be immediately usable by browser-
and laptop-savvy students, so more convenient to use in a foundational course
than available alternatives (word processors, LaTeX, LyX, keyboard entry of
Unicode indices, Math Jax plugins, etc. [3, 4, 6]) It is designed to need mini-
mal computer resources (runs in browser, can be delivered from any web page
server), and instructor time (for student training, or tech support). Because it
is just a writing tool, it is compatible with most instructional approaches that
ask students to write their own proofs and explanations. Assessment is under-
way through student survey of usage experience and effects, and by instructor
survey/interview.to see if there are perceived benefits to its approach to text
entry and style of implementation as a web app.
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Most programs in computer science undergraduate programs have evolved
from a mathematics program, an engineering program, or some other combi-
nation. In computer science education, we will often exploit problems from
mathematics with computational solutions to introduce and develop a deep
understanding of computational concepts and skills related to program devel-
opment and analysis. However, it needs to be clarified the degree to which
students in undergraduate computer science programs see this connection be-
tween what they are learning and the role that mathematics can play in in-
creasing the understanding of that learning. Do they view the mathematics
they encounter as one of the unavoidable burdens that the major makes them
endure to get a degree but will not need much after graduation? Or do they
see mathematical learning and inventive thinking as something that they will
need to do on a continuing basis even after graduation? The authors developed
an instrument that could be used to gather evidence to understand better how
our students look at the role of mathematics in their computer science courses
and projects. Beginning in the fall of 2021 a survey instrument was developed
and administered to students primarily at Haverford College. Students who
completed the initial prototype survey were enrolled in an accelerated CS1-CS2
course where they had experience with programming before attending college.
It is also assumed that they have been exposed to mathematics throughout
their education. It should also be clear that in this context mathematics is

∗Copyright is held by the author/owner.
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defined expansively to include algebraic and other numerical manipulations of
data, as well as problem-solving techniques to divide and conquer complicated
problems, appreciating and understanding the use of abstraction [2], reasoning
about the state of various parts of computation through the out the execu-
tion process, as well as this distinction between verification by proof versus
testing. At Drexel University, students in computer science are required to
complete courses in calculus. Meanwhile, at Haverford College students are
required to complete a course in discrete mathematics as well as one of two
choices between analysis of algorithms and theory of computation. At each
school, other courses either directly or tangentially related to mathematics are
taken by students to increase their understanding and prepare them for courses
that apply to computing. The obvious fields are computer science and math-
ematics, but also include machine learning, data science, scientific computing,
and computational linguistics. Perhaps we should have expected, responses to
the prototype to have indicated that students have a variety of impressions
about the role of mathematics in their studies for computer science. Some of
them may impact the development of persistent robust self-regulated mathe-
matical thinking and learning even after entry into the workforce. We suspect
that students in computer science do not perceive how mathematics is used in
the field and thus either delay or avoid mathematics or leave the field of com-
puter science. Perhaps students find mathematics irrelevant, unengaging, we’re
simply too difficult, our goal with this project is to identify first if this discon-
nect between math and computer science exists we’re not. Our intention is to
identify obstacles and suggests approaches to help computer science educators
provide this mathematical foundation for computer science students [3]. We
plan to continue this study to get a clearer picture of how students look at the
role of mathematics. We believe that a sound foundation in math contributes
positively to those in computer science [1, 4].
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