
The Journal of Computing
Sciences in Colleges

Papers of the 24th Annual CCSC
Northwestern Conference

November 4-5, 2022
Portland Community College – Sylvania Campus

Portland, OR

Baochuan Lu, Editor Sharon Tuttle, Regional Editor
Southwest Baptist University Cal Poly Humboldt

Volume 38, Number 1 November 2022

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 7

CCSC National Partners 9

Welcome to the 2022 CCSC Northwestern Conference 10

Regional Committees — 2022 CCSC Northwestern Region 11

Automation to Soul: Reflections on Tooling Support for
Mathematics and Programming Education — Keynote 12

Peter-Michael Osera, Grinnell College

Alumni as Adjunct Faculty and Mentors for Computer Science I
Students 14

Tammy VanDeGrift, University of Portland

Automatic Assessment of the Design Quality of Student Python
and Java Programs 27

J. Walker Orr, George Fox University

Github Copilot in the Classroom: Learning to Code with AI
Assistance 37

Ben Puryear, Gina Sprint, Gonzaga University

Teaching Software Project Management through Roleplay via
Game Development 48

Nathaniel Kremer-Herman, Seattle University

Successfully Incorporating a Cyber Security Competition into an
Intro to Computer Security Course 58

David Zeichick, California State University, Chico

A Survey of Cloud-hosted, Publicly-available, Cyber-ranges for
Educational Institutions 68

Stu Steiner, Eastern Washington University, Ananth Jillepalli, Daniel
Conte de Leon, University of Idaho

3

Hands-On SQL Injection in the Classroom: Lessons Learned 78
Jens Mache, Carlos García Morán, Nic Richardson, Wyeth Greenlaw
Rollins, Lewis & Clark College, Richard Weiss, The Evergreen State
College

A Systematic Review on the Effectiveness of Programming Camps
on Middle School Students’ Programming Knowledge and
Attitudes of Computing 89

Carla De Lira, Washington State University, Rachel Wong, University
of Tennessee, Olusola Adesope, Washington State University

A Course Model for Enhancing Applied Non-Technical Skills of
Computer Science Students 99

Ben Tribelhorn, University of Portland, Radana Dvorak, St. Martin’s
University

Tutorial on Automating Configuring Parallel Compute Environ-
ments — Conference Tutorial 107

Bryan Dixon, California State University - Chico

An Introduction to MPI Parallel Programming with MPJ
Express Library — Conference Tutorial 109

Xuguang Chen, Saint Martin’s University

Reflective Curriculum Review for Liberal Arts Computing
Programs — Conference Tutorial 111

Jakob Barnard, University of Jamestown, Grant Braught, Dickinson
College, Janet Davis, Whitman College, Amanda Holland-Minkley, Wash-
ington Jefferson College, David Reed, Creighton University, Karl Schmitt,
Trinity Christian College, Andrea Tartaro, Furman University, James
Teresco, Siena College

Bloom’s for Computing: Crafting Learning Outcomes with
Enhanced Verb Lists for Computing Competencies
— Conference Tutorial 114

Cara Tang, Portland Community College, Markus Geissler, Cosumnes
River College, Christian Servin, El Paso Community College

Teaching Web Development Using ASP .Net Core MVC
— Conference Tutorial 116

Razvan A. Mezei, Saint Martin’s University

4

From Torches to Transistor: Using Minecraft to Teaching
Processor Architecture — Conference Tutorial 118

Jeffrey A Caley, Kieran Kim-Murphy, Pacific Lutheran University

Conducting Departmental Reviews and Serving as a Reviewer
— Conference Tutorial 120

Henry M. Walker, Sonoma State

Professionals’ Perspectives on Liberal Arts and Computing Skills
— Panel Discussion 122

Shereen Khoja, Pacific University, Tammy VanDeGrift, University of
Portland

Reviewers — 2022 CCSC Northwestern Conference 125

5

6

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Chris Healy, President (2024),
chris.healy@furman.edu, Computer
Science Department, 3300 Poinsett
Highway Greenville, SC 29613.
Baochuan Lu, Publications Chair
(2024), blu@sbuniv.edu, Division of
Computing & Mathematics, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2023),
hareb@umkc.edu, University of
Missouri-Kansas City, School of
Computing & Engineering, 450E
Flarsheim Hall, 5110 Rockhill Rd.,
Kansas City MO 64110.
Cathy Bareiss, Membership Secretary
(2025),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical
Engineering Sciences, 1001 Bethel
Circle, Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2023), Associate
Treasurer, mullinsj@umkc.edu, UMKC,
Retired.
Michael Flinn, Eastern Representative
(2023), mflinn@frostburg.edu,
Department of Computer Science
Information Technologies, Frostburg
State University, 101 Braddock Road,
Frostburg, MD 21532.
David R. Naugler, Midsouth
Representative(2025),

dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg, IN 46112.
David Largent, Midwest
Representative(2023),
dllargent@bsu.edu, Department of
Computer Science, 2000 W. University
Avenue Muncie, IN 47306.
Mark Bailey, Northeastern
Representative (2025),
mbailey@hamilton.edu, Computer
Science Department, 198 College Hill
Road, Clinton, NY 13323.
Shereen Khoja, Northwestern
Representative(2024),
shereen@pacificu.edu, Computer
Science, 2043 College Way, Forest
Grove, OR 97116.
Mohamed Lotfy, Rocky Mountain
Representative (2025),
mohamedl@uvu.edu, Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Tina Johnson, South Central
Representative (2024),
tina.johnson@mwsu.edu, Department of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308.
Kevin Treu, Southeastern
Representative (2024),
kevin.treu@furman.edu, Furman
University, Department of Computer
Science, Greenville, SC 29613.
Bryan Dixon, Southwestern Repre-
sentative (2023), bcdixon@csuchico.edu,
Computer Science Department, Califor-
nia State University Chico, Chico, CA.

7

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor,
bin.peng@park.edu, Park University -
Department of Computer Science and
Information Systems, 8700 NW River
Park Drive, Parkville, MO 64152.
Ed Lindoo, Associate Treasurer &
UPE Liaison, elindoo@regis.edu,
Anderson College of Business and
Computing, Regis University, 3333 Regis
Boulevard, Denver, CO 80221.
George Dimitoglou, Comptroller,

dimitoglou@hood.edu, Department of
Computer Science, Hood college, 401
Rosemont Ave. Frederick, MD 21701.
Megan Thomas, Membership System
Administrator,
mthomas@cs.csustan.edu, Department
of Computer Science, California State
University Stanislaus, One University
Circle, Turlock, CA 95382.
Karina Assiter, National Partners
Chair, karinaassiter@landmark.edu.
Deborah Hwang, Webmaster,
hwangdjh@acm.org.

8

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Level Partner
Google Cloud

GitHub
NSF – National Science Foundation

Gold Level Partner
zyBooks
Rephactor

Associate Level Partners
Mercury Learning and Information

Mercy College

9

Welcome to the 2022 CCSC Northwestern
Conference Portland Community College

On behalf of the Conference Steering Committee and Northwest Regional
Board, I welcome you to the Twenty Second Annual Consortium for Comput-
ing Sciences (CCSC) Northwestern Regional Conference, held at the Portland
Community College, Sylvania campus. We are very excited to be back on
campus and meet you all in person again this year.

Many individuals and groups helped coordinate and support this year’s
conference and I want to thank them for all their time and effort. This year’s
conference includes 10 papers, 8 panels/tutorials, and the keynote. All papers,
panels, and tutorials went through the regular peer review process. The steer-
ing committee accepted 9 out of 17 papers (53% acceptance rate). We had
colleagues across the region serve as professional reviewers and we recognize
their generous efforts in providing time and guidance in the selection of our
conference program.

Our Keynote speaker, Peter-Michael Osera, Associate Professor and co-
chair of the Department of Computer Science at Grinnell College will talk
about why and how we teach Computer Science more intentionally.

Of course, none of this would be possible without the support of our national
and local partners. A final thank you goes out to you the attendees whose
participation is essential not only to the continuance of conferences such as
this, but also for the continued communication and collegiality you provide
between all of us involved in the advancement and promotion of our discipline.

We are excited to invite you to our campus, and hope you enjoy the confer-
ence and the chance to interact with your colleagues at our annual gathering.

Gayathri Iyer
Portland Community College

CCSC-NW 2022 Conference Chair

10

2022 CCSC Northwestern Conference Steering
Committee

Gayathri Iyer, Conference Chair/Site Chair Portland Community College
Bob Lewis, Program Chair Washintgon State Universtity, Tri-Cities
Razvan Mezei, Papers Chair .Saint Martin’s University
Gina Sprint, Panels & Tutorials . Gonzaga University
Ben Tribelhorn, Partners Chair .University of Portland
Richard Weiss, Student Posters Chair The Evergreen State College

Regional Board — 2022 CCSC Northwestern Region

Shereen Khoja, Regional RepresentativePacific University
Registrar, Registrar . Lewis Clark University
Dan Ford, Treasurer . Linfield College
Sharon Tuttle, Editor . Cal Poly Humboldt University
Mario Guimaraes, Past Conf. Chair Saint Martin’s University
Gayathri Iyer, Next Conf. Chair Portland Community College
Razvan Mezei, Webmaster .Saint Martin’s University

11

Automation to Soul: Reflections on
Tooling Support for Mathematics and

Programming Education∗

Keynote

Peter-Michael Osera
Associate Professor of Computer Science

Grinnell College
Grinnell, IA 50112

We recognize that quality education is challenging to deliver at scale. Tech-
nology has democratized education to a certain degree, e.g., connectivity and
online education, machine learning and intelligent tutoring systems. How-
ever, these technological solutions have always lacked a "human" element that
makes the educational experience special. Such educational experiences are,
ultimately, personal; we meet students where they are and guide them to the
next step on their educational journey in a challenging yet humane manner.

In this talk, I reflect on the lessons I have learned pursuing the dream of
educational tools from the world of programming languages and systems. In
particular, in designing tools that remove some of the barriers to mathemat-
ics education in computer science, I have been forced to confront, perhaps,
the "soul" of our educational endeavors: do undergraduate computer scientists
really need a deep understanding of mathematics to be successful? Have we
set the question: how does mathematical reasoning relate to computational
thinking? Do our assessment methods set students up for success when engag-
ing with mathematics? While I have no definitive answers, I hope to begin a
necessary conversation about these foundational questions as we reflect on our
instruction in a post-COVID era.

Peter-Michael Osera is Associate Professor of Computer Science at Grinnell
College. Peter-Michael’s mission is to help people harness the power of com-
putation in its many forms, in particular, through computer programming. He
does this by working at the intersection of programming languages and systems,
human-computing interaction, and computer science education. Peter-Michael

∗Copyright is held by the author/owner.

12

currently investigates new foundations for constraint-based program synthesis
and how we can use this technology to build tools that fundamentally change
the relationship developers have with their tools. He received his B.S. in Com-
puter Science and Applied and Computational Math Sciences and B.A. in the
Comparative History of Ideas from the University of Washington and received
his Ph.D. in Computer Science from the University of Pennsylvania in 2015.

13

Alumni as Adjunct Faculty and Mentors for
Computer Science I Students∗

Tammy VanDeGrift
Shiley School of Engineering

University of Portland
Portland, OR 97203

vandegri@up.edu

Abstract

As computer science grows in popularity, more faculty are needed
to staff computer science courses. Approval for full-time tenure-track
faculty and permanent instructor positions can lag student enrollment
demands. One common strategy to meet student enrollment needs is to
expand sections sizes. Another strategy is to staff courses with adjunct
faculty. This paper describes the experiences of alumni serving as adjunct
faculty members to teach introductory computer science labs. These
alumni learned introductory programming by completing these labs as
students, and then served as role models for computer science majors by
providing professional and career advice. The paper provides an overview
of the introductory computing labs, ``professions´´ talks the alumni gave
each week, and perspectives from the alumni after teaching the labs.

1 Introduction and Related Work

Computer science education prepares students to enter many sectors in the
technology, engineering, and science industries. The job outlook is strong in
the United States [6, 12, 15]. Collectively, colleges and universities provide
many of the educational pathways to these careers, so increasing undergraduate

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

14

enrollment in computer science over the past ten years is not surprising. Over
half of US high schools now offer computer science at the high school level
[4], so students have the opportunity to try computer science before starting
college. All of these factors lead to increased demand for computer science
courses at the college level [1, 5]. Not only has CS major enrollment increased,
the number of students who want programming skills has increased, creating
more demand for introductory CS courses. Even though the student demand
has risen, the number of tenure-track faculty per unit has not grown at the same
rate, according to the Computing Research report Figure B.4 [5]. Departments
have handled this mismatch by teaching larger classes, hiring visiting faculty,
hiring adjuncts, and using more graduate students as teaching assistants.

The University of Portland has managed enrollment growth by increasing
section sizes and hiring adjunct faculty to teach CS elective courses and CS
labs. Creating larger section sizes adds extra load to faculty, and the University
prioritizes small class sizes. Hiring adjuncts is preferred and can even produce
positive learning experiences. A study from 2004 showed that computer science
adjuncts helped students pass future courses and increased interest in the major
[3]. Engineering programs have also utilized industry adjuncts [2, 7, 9]. A
recent panel at a Consortium in Computing Sciences discussed using industry
adjuncts in a tech-in-residence model [10]. The CS program did not create a
full tech-in-residence model, but adjunct faculty were encouraged to provide
feedback about the labs. Another model is an industry fellow program where
a faculty member and industry professional collaborate in co-designing and
teaching a course [18]. This paper summarizes the experiences of alumni as
adjuncts in the introductory programming lab and workshop. Also, starting
in Fall 2021, the alumni were asked to share about their professional pathway,
their careers, and advice they have for early-college students.

Following the introduction, the institution and introductory computer sci-
ence courses are described in more detail to provide more context. The re-
maining sections provide information about the study, the alumni participants,
results, and a discussion. This paper focuses on the adjuncts’ experience. Due
to paper length guidelines, a separate paper reports on the student experience.

2 Institutional and CS 1 Context

The University of Portland is a comprehensive, private, Catholic university on
the west coast of the United States serving about 3500 undergraduate students,
of which 160 are computer science majors. There are no CS graduate students
to teach courses and labs.

CS majors take a three-credit Introduction to CS course (CS 1) and a one-
credit companion lab (CS1 Lab) as the entry point to the BSCS degree. Most

15

CS majors take the CS1 course/lab during the fall semester of their first year.
However, there are a few common exceptions: i) students who switch to the
CS major after they start at the University take it either fall or spring, and
ii) students who get a passing grade on the CS AP exam and/or earn college
credit for a CS 1 course start in an advanced CS course. The CS1 course and
lab are also required of math, physics, and electrical engineering majors.

CS 1: CS 1 uses the Java programming language with typical introductory
language constructs. The course meets three times per week: 55-minutes on
Mondays, Wednesdays, and Fridays. The CS 1 class meetings typically include
short lecture overviews, code demonstrations, and in-class practice activities.

CS 1 Lab: The CS 1 lab is a one-credit co-requisite for the CS 1 course.
The lab meets for three hours per week (one three-hour block or two 1.5-hour
blocks). There is little time devoted for lecturing during the lab. Students
typically work through lab exercises in pairs or groups of three, using the pair
programming model [8]. The labs are designed to be completed and checked by
the instructor during the lab period. If students do not finish, they can submit
work during the next week. Here are the lab topics schedule by week: 1. Intro
to Java and BlueJ, 2. Strings, 3. Graphics, 4. Selection, 5. Iteration, 6.
Arrays, 7. Arrays continued, 8. Methods, constructors, classes, 9. Debugger,
10. Inheritance, 11. Libraries, 12. ArrayLists and Files, 13. ArrayLists and
Files continued, 14. Review, 15. Coding Exam.

Opt-In CS 1 Workshop: The CS program offers an optional one-credit
pass/no pass workshop to give structured and supported individual program-
ming practice time for students. Students with no programming experience
and students who get poor scores on the CS 1 quizzes are encouraged, but not
required, to take this workshop. The weekly exercises are different than those
given in the CS 1 lab, but the topics are similar.

2.1 Course Delivery in Fall 2021 and Spring 2022

During the covid-19 pandemic, instructional modes varied. CS 1 was taught
by a full-time faculty member in person in Fall 2021 and Spring 2022. The
CS faculty were unsure if students could sit near each other to pair program
and follow social distancing protocols when course scheduling was completed
in March 2021. Thus, the CS 1 lab and CS 1 workshop sections were taught
entirely online using Microsoft Teams in Fall 2021. Eight alumni served as
adjunct faculty for the CS 1 lab and one alumnus taught the CS 1 workshop;
section sizes ranged from five to nine students for lab and workshop. No student
teaching assistants were hired for the CS 1 lab in the fall since each faculty
member had at most nine students. Additionally, one full-time CS faculty
member served as the CS 1 lab coordinator in Fall 2021: he did not teach sec-
tions but he managed the code repository (starter code and solutions), posted

16

materials to the course management site, and managed the grading spread-
sheets. He created short video explanations for each lab to provide consistency
across the lab sections and students watched these prior to attending the lab
sessions. Using video, rather than live, explanations provided about 15 min-
utes of lab time for professions talks (see below). The coordinator answered
questions from adjuncts – technical questions about course outcomes and lab
exercises, university policies such as midterm grades and attendance, and how
to engage with students. Because videos introduced the lab exercises, there
were no formal teaching presentations during the lab sections. The lab exer-
cises were provided to the adjuncts, and the adjuncts were asked to complete
the labs themselves prior to each session. During the lab session, the adjunct
faculty rotated through breakout rooms (in the fall) and in-person groups (in
the spring) to see how students were doing and to review their work.

In Spring 2022, all courses and labs were taught in person, except for the
first two weeks during the omicron spike. One section of CS 1 lab and one
section of CS 1 workshop were offered in the spring. Enrollment in the CS
1 lab was 27 students, with one adjunct instructor and two undergraduate
teaching assistants. Enrollment in the CS 1 workshop was four students.

2.2 Professions and Life Talks

Because students watched short videos to prepare for lab each week, the alumni
replaced these 15-minute blocks per week with career and life advice talks. It is
common for faculty in the CS program to invite guest speakers, often alumni,
to speak in the capstone course and elective courses. In this context, alumni
shared with CS 1 students early in their college education to help them make
the most of college and to prepare for their lives and careers. Figure 1 shows
the weekly profession talk topics the paper author provided to the adjunct
faculty. Social cognitive career theory provided the foundation for developing
these topics [13, 14]. The original theory has three aspects: 1) how academic
and career interests develop, 2) how educational choices are made, and 3) how
academic and career success is obtained. The professions talks were designed
so alumni spoke about all three of these items during the semester. No slides
were expected – these talks could be more informal for students. Because
the course met online in Fall 2021, the alumni recorded this part of the class
session; videos of alumni from all sections were posted to the common course
site, so students could learn from eight different software professionals.

3 Evaluation

All adjunct faculty were invited to complete an IRB-approved survey at the
end of the semester to help answer the following research questions:

17

Figure 1: Profession and Life Talk Topics
18

1. Was being an adjunct a rewarding experience?
2. How did teaching online work or not work (or teaching in person for

spring)?
3. How did students engage with the adjuncts, especially regarding profes-

sional development?

Survey: Survey questions included rating questions (strongly agree to
strongly disagree) and free-text-response questions. The survey questions can
be found in Appendix A. Note that the survey for the workshop adjunct was
altered to use ``workshop´´ instead of ``lab´´. The rating questions were
designed to force agreement or disagreement – there was no neutral rating;
however, there was a not-applicable option for each statement.

Participants: Eight alumni taught the CS 1 lab and one alumnus taught
the CS 1 workshop in the Fall. Demographic information about the alumni
can be found below (subject ID, grad year, gender, prior adjunct experience).

• CS1W1, 2012, Male, Yes; also taught in spring
• CS1L1, 2008, Male, Yes
• CS1L2, 2019, Female, No
• CS1L3, 2020, Male, No
• CS1L4, 2018, Female, No
• CS1L5, 2007, Male, No
• CS1L6, 2019, Male, No
• CS1L7, 2019, Female, No; also taught in spring
• CS1L8, 2020, Female, No

4 Analysis and Results

Figure 2 shows the distribution of ratings for ten surveys (nine from fall and
one from spring). responses were coded into emergent themes [17]. Overall,
adjunct faculty had a positive experience. Their perception of the student
experience was more varied. The free-text

Q1: Rewarding Experience: Was the experience rewarding for the
alumni to serve as adjunct faculty members? Yes. Based on the survey re-
sponses for question 1a, 100% of the alumni would be an adjunct again for
the CS 1 lab or workshop. Additionally, all agreed that they enjoyed being an
adjunct (question 1c) and enjoyed working with students (question 1g).

The free-text answers for question 7 (most meaningful about experience)
resulted in the following themes: i) appreciate opportunity to try teaching, ii)
interacting with students, iii) explaining ideas to others, iv) helping students,
and v) reflecting on own development and growth as a programmer. The
most common theme was getting to interact with students and watching them

19

Figure 2: Survey Results By Question

grow. For example, CS1L2 stated, ``I enjoyed working with the students and
watching them have the aha! moments when they figured out course material.
It was great to watch them grow as programmers.´´ CS1L4 stated, ``the things
I think were most meaningful were the times I was able to explain something
to the students (how to use points to draw a shape, how to use a loop to solve
a problem, etc.), and see that they really got it.´´ Others also commented on
seeing students reach pivotal moments as a programmer.

Q2: Teaching Online vs In Person: The covid pandemic forced online
learning for much of the world. Perhaps teaching some CS courses and labs
online permanently makes sense (greater flexibility for students and hiring ad-
juncts). Did teaching online work or not work for the adjunct faculty? Based
on the ratings for question 1d, most alumni felt that teaching online worked
well for them. However, responses to question 1e show that they were split
(5 agreed and 5 disagreed) about online learning working well for students.
Almost all stated that they would prefer teaching in person versus online.

20

Free-text comments about ratings showed that online teaching had mixed
reviews. CS1L1 stated, ``I got the sense that not everyone loved online classes.
Also, I didn’t monitor the groups at all times, so I don’t know if there was a ton
of collaboration going on between the team members.´´ CS1L2 stated, ``Of-
ten times I found that the students would not work in their groups or work on
the lab during class time at all.´´ CS1L3 stated, ``teaching online was very
convenient considering I have another job, and did not have to commute to
the University, but I feel like I would be more effective at helping the students
if I were in person.´´ CS1L5 stated, ``I felt like online made communication
more difficult because students didn’t have their cameras on, or they were
doing the lab from noisy locations or from the library where they said they
couldn’t talk.´´ CS1L7 thought their section was more interactive and kept
cameras on, but noticed that the small section size limited the group pairings.
Respondent CS1L8 saw both positives and negatives of online: ``The amount
of collaboration in the ‘groups’ was definitely less online than in person, so gen-
eral communication did probably suffer from the nature of the course. Playing
around with the way class was held did help with this (breakout rooms in teams
where I rotated every 10-15 minutes through the rooms worked best). However,
it wasn’t all bad: I definitely felt like some students coded a lot more, and a
lot more independently, than they would have in an in person environment.´´

CS1L7 taught in fall and spring and being in person was much more effec-
tive: ``Being in person was huge. I saw so much more engagement once we
began in person classes this semester. I experimented with longer term groups
instead of changing weekly. Some individuals really thrived in this environ-
ment; others I think would’ve done better working randomly each week.´´

Q3: Student Engagement with Career and Life Advice: Finally,
how did students engage with the alumni, especially during the professions
talks? The alumni enjoyed giving the professions talks each week, but it was
difficult to get student participation in some sections:

• I enjoyed it a lot, but it was hard to get the students to engage. I rarely
got any questions from the students. [CS1L1]

• I enjoyed giving the talks, however most students didn’t ask questions
during the talk period. If someone had a question about the talk topic,
they asked it either to me after the lab period or over chat after. [CS1L2]

• I felt like the student would just tune me out. [CS1L3]
• The topics are things I would’ve wanted to hear about when I was a

freshman, so I thought the topics were good. I’m not sure how valuable
my students found it though. I hope it was valuable for them, but I’m not
sure because they were all very quiet and no one really asked questions
afterwards. [CS1L4]

• This was one of my favorite parts of the class. When I was a student, I

21

definitely did not know what it was like to work as a software engineer,
so I hope I was able to give students some insight into what it is like.
[CS1L5]

• Its something that I do for my interns all the time. I am big on setting
people up for future success. I tell my interns we are first going to build
the toolbox, then start filling it up so they are prepared for their future
career. [CS1L6]

• I really enjoyed giving the talks to the students each week – although I did
enjoy some topics more than others. With being online, it was difficult to
tell how much the students appreciated my insights and advice. I’m very
interested to see the course survey responses so I can get a better idea of
how useful they were. I think because this class is mostly first years and
a couple sophomores, they aren’t actively thinking about internships and
networking yet. For example, I offered to give notes on resumes, and no
one sent me their resume. I enjoyed them a lot more in the Fall when
most the students were CS majors. I found myself not wanting to go
into as much detail as I was worried they would find some of the topics
irrelevant. The first few weeks I got a lot of blank stares during this
portion of my lecture, so these talks got shorter as the semester went on.
[CS1L7]

• Engagement was low, and so I’m not sure how valuable students found
the time. The topics were topics I enjoy talking about, so I didn’t mind
speaking at all, but it’s hard to say how useful it was to the students.
[CS1L8]

• I felt comfortable sharing these topics with students. I tried to give a
unique perspective given the challenges I faced in my 20s. [CS1W1]

The students asked about the following topics: questions about their jobs,
internships, preparing for interviews, resumes, development environments at
work, programming languages at work, why they chose CS, choosing CS courses,
research opportunities, and preparing for the next CS course. Alumni felt that
different talk topics were most meaningful, with some providing more than one
topic to question 4 on the survey: Resumes and internships (4), Interviewing
(3), Debugging (2), and the following each had one response: Typical work day,
Life/career integration, College advice: keeping healthy mental state, College
advice: studying abroad and clubs, Gratitude, First job.

5 Discussion, Limitations, and Conclusions

As an under-staffed CS program, having alumni who can serve as adjunct
faculty is a great and necessary resource. While the program has regularly
hired adjunct faculty for the past seven years, Fall 2021 was the first semester

22

that included the professions talks in CS 1 lab and workshop. The alumni
enjoyed giving these talks, but student engagement with career and life advice
varied across sections. The online evening class format, combined with small
class sizes of five to nine students, may have contributed to the lack of student
participation. It may be more intimidating to ask questions over the screen
than in person. Student maturity may impact participation – the CS majors
were mostly first-year students. The electrical engineering, math, and physics
majors were sophomores to seniors and may not be interested in CS careers.
Perhaps they just wanted to use the lab time to complete the exercises.

Because labs were taught online in Fall 2021, the CS program could recruit
adjuncts in Oregon or Washington (tax laws prohibits recruiting elsewhere).
This provided a much larger pool of adjuncts, especially including a large
alumni presence in Seattle. The adjunct faculty held software engineering
positions for their regular jobs, so the semester stipend of $3333.33 was not
the incentive. The adjuncts took this opportunity because they wanted to
work with students. Also, all labs and the workshop were scheduled to start
at 4:10pm or 7:10pm to accommodate full-time workers’ schedules. While the
online evening format worked well for adjuncts, it seems that both the alumni
and students prefer in person teaching and students probably prefer day-time
lab sections. The students choose the University to have residential community,
small classes, interactions with peers and faculty, so online courses do not seem
to be a great match to the population.

There are limitations to this study and results. The study took place at
one institution and contextual factors may not translate to other environments.
While many of the alumni were new to the adjunct role, they had high levels of
prior engagement with the CS program. The instructional delivery was mostly
online and likely contributed to the effectiveness of the professions talks. In the
future, the CS program may adapt the professions talks topics and continue to
assess the in person effectiveness. Due to staffing shortages, the CS program
could not staff some labs with full-time faculty to run a comparative study, so
there is no control or comparison group in this study.

Overall, inviting alumni to be adjunct faculty has been a positive experience
for the program and the alumni. All agreed they would be an adjunct faculty
member again. This seems to be an effective solution for the staffing shortage
while providing students access to mentors in the profession. As graduates,
the alumni knew the CS curriculum and labs well, and they could answer
questions about the current state of the profession that full-time faculty may
not be able to answer. Forward-thinking students even asked their adjunct
faculty to connect professionally via LinkedIn. Maybe, one day, the adjunct
and student will be working together again.

23

Acknowledgements

This work was supported by a Sweo Faculty Fellowship at the University of
Portland. We thank the donor for the opportunity to conduct this research
study and the alumni who served as adjuncts.

Appendix A: Survey

Figure 3: Survey Questions

24

References

[1] Association for Computing Machinery and IEEE Computer Society
Task Force. Computing Curricula 2020: Paradigms for Global
Computing Education. https:
//www.acm.org/binaries/content/assets/education/curricula-
recommendations/cc2020.pdf. 2021.

[2] C.E. Bakal et al. “Industry Adjuncts: Lessons Learned”. In: Proceedings
of the ASEE Annual Conference and Exposition (2011).
https://peer.asee.org/industry-adjuncts-lessons-learned.

[3] E. Bettinger and B.T. Long. “Do College Instructors Matter? The
Effects of Adjuncts and Graduate Assistants on Students’ Interests and
Success, NBER Working Paper No. 20370”. In: National Bureau of
Economic Research (Mar. 2004). https://www.nber.org/system/
files/working_papers/w10370/w10370.pdf.

[4] Code.org. 2021 State of Computer Science Education.
https://advocacy.code.org/. 2021.

[5] Computing Research Association. Generation CS: Computer Science
Undergraduate Enrollments Surge Since 2006.
https://cra.org/data/Generation-CS/. 2017.

[6] B. Fung. “Tech companies are hiring more liberal arts majors than you
think”. In: The Washington Post (2015).
https://www.washingtonpost.com/news/the-
switch/wp/2015/08/26/tech-companies-are-hiring-more-
liberal-arts-majors-than-you-think/.

[7] T. Gibbons. “Course Guides: A Model for Bringing Professionals into
the Classroom”. In: Proceedings of the ACM SIGCSE Technical
Symposium on Computer Science Education (2012). doi:
https://dl.acm.org/doi/10.1145/2157136.2157172.

[8] B. Hanks et al. “Pair programming in education: a literature review”.
In: Computer Science Education 21.2 (2011). doi: https:
//www.tandfonline.com/doi/full/10.1080/08993408.2011.579808.

[9] C.K. Hobbs and H.H. Tsang. “Industry in the Classroom: Equipping
Students with Real-World Experience A reflection on the effects on
industry partnered projects on computing education”. In: Proceedings of
the Western Canadian Conference on Computing Education (May
2014). doi: https://doi.org/10.1145/2597959.2597967.

25

[10] S.P. Imberman et al. “Strategies for maximizing the value of industry
adjuncts: the Tech-in-Residence Corps model”. In: Journal of
Computing Sciences in Colleges 35.8 (2020). doi:
https://dl.acm.org/doi/abs/10.5555/3417639.3417668.

[11] A.J. Ko and K. Davis. “Computing Mentorship in a Software
Boomtown: Relationships to Adolescent Interest and Beliefs”. In:
Proceedings of the ACM International Computing Education Research
Workshop (2017). doi:
http://dx.doi.org/10.1145/3105726.3106177.

[12] I. Kowarski. “What Can You Do with a Computer Science Degree?” In:
US News and World REport (2019).
https://www.usnews.com/education/best-graduate-
schools/articles/2019-05-02/what-can-you-do-with-a-
computer-science-degree.

[13] R.W. Lent and S.D. Brown. “Social cognitive model of career
self-management: Toward a unifying view of adaptive career behavior
across the life span”. In: Journal of Counseling Psychology 60.4 (2013),
pp. 557–568. doi: https://doi.org/10.1037/a0033446.

[14] R.W. Lent, S.D. Brown, and G. Hacket. “Social Cognitive Career
Theory”. In: Career Choice and Development 4.1 (2002), pp. 255–311.

[15] A. Loten. “America’s Got Talent, Just Not Enough in IT”. In: The Wall
Street Journal (2019). https://www.wsj.com/articles/americas-
got-talent-just-not-enough-in-it-11571168626.

[16] A. Settle, J. Lalor, and T. Steinbach. “Reconsidering the Impact of CS1
on Novice Attitudes”. In: Proceedings of the ACM SIGCSE Technical
Symposium on Computer Science Education (2015). doi:
http://dx.doi.org/10.1145/2676723.2677235.

[17] S. Stemler. “An overview of content analysis”. In: Practical Assessment,
Research and Evaluation 7.17 (2000). doi:
https://doi.org/10.7275/z6fm-2e34.

[18] J. Tenenberg. “Industry fellows: bringing professional practice into the
classroom”. In: Proceedings of the ACM SIGCSE Technical Symposium
on Computer Science Education (2010). doi:
https://doi.org/10.1145/1734263.1734290.

[19] H.M. Walker. “Ways to Help New, Visiting, and Adjunct Faculty”. In:
Journal of Computing Sciences in Colleges 35.5 (2019). doi:
https://dl.acm.org/doi/10.5555/3381613.3381624.

26

Automatic Assessment of the Design Quality of
Student Python and Java Programs∗

J. Walker Orr
Computer and Information Sciences

George Fox University
Newberg, OR 97132
jorr@georgefox.edu

Abstract
Programs are a kind of communication to both computers and peo-

ple, hence as students are trained to write programs they need to learn
to write well-designed, readable code rather than code that simply func-
tions correctly. The difficulty in teaching good design practices that pro-
mote readability is the labor intensiveness of assessing student programs.
Typically assessing design quality involves a careful reading of student
programs in order to give personalized feedback which naturally is time
consuming for instructors. We propose a rule-based system that assesses
student programs for quality of design of and provides personalized, pre-
cise feedback on how to improve their work. To study its effectiveness,
we made the system available to students by deploying it online, allowing
students to receive feedback and make corrections before turning in their
assignments. The students benefited from the system and the rate of
design quality flaws dropped 47.84% on average over 4 different assign-
ments, 2 in Python and 2 in Java, in comparison to the previous 2 to 3
years of student submissions.

1 Introduction

Recently there has been increasing interest in intelligent tutoring systems for
programming instruction. Primarily the focus has been on assisting students by

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

27

giving them helpful hints on how to complete their programming assignments.
There has been a lot of work surrounding the Hour of Code [2], a massively
open online course intended to teach children how to program with a visual
programming language. The visual language contain constructs analogous to
conditional statements but lacks loops. Nevertheless, the project is popular
and there has been significant research into producing a intelligent tutors for
it. Typically the goal of these systems [7, 3] is to suggest edits to a student’s
program to get it closer to correct functionality. Another approach create an
embedding for student programs that could be used to suggest hints on how
to correct their programs [8].

However, becoming a capable and competent programmer involves more
than simply writing functional code, solutions must also be readable and un-
derstandable, following commonly accepted conventions. Even if a program
works correctly when first created, the reality of most software systems is that
of continuous maintenance and development. Unnecessary complexity, con-
voluted logic, and unconventional style will result is mistakes in the ongoing
maintenance and development of software. Naturally, a major difficulty of
teaching the practice of writing readable, well-design programs is the time-
intensiveness of giving quality feedback. Determining if a student’s program
works correctly can usually be assessed with unit or system integration tests.
However, providing feedback on the quality of program design generally speak-
ing requires as close reading of the code which of course is time consuming.

In the professional setting, “linters” are commonly used to check for design
errors and violations of programming conventions. For example, Pylint [9] is
a commonly used “linter” for the Python programming language which does
catch design flaws and bad practices such as the use of global variables. Ad-
ditionally, there is the PEP8 standard and eponymous program that checks
Python programs for violations of the standards. For Java, tools such as Check-
Style [1] applies configurable rules to ensure adherence to convention and code
formatting.

However useful, the needs of an educational setting differ from the pro-
fessional in a few key ways. First of all, they are intended to be used by
professional programmers who are experienced and (hopefully) have a strong
sense of good design. This means that these “linters” are primarily checking for
a short list of less egregious violations. Typically “linters” check code format
and use heuristics to judge code complexity. The notion of “the right tool for
the job” is left up to the discretion of the professional. Some design choices
such as the use of closures may be appropriate in professional setting but are
generally not a good choice for an assignment in an introductory computer
science class. Hence a “linter” may rightfully permit some practices and design
choices that are simply not appropriate for students. Another example is the

28

use of recursion. Recursion is elegant tool in some settings but novice students
can abuse it, for example, by recursively calling a “main” function to repeat the
logic of a program rather than using a while loop. A “linter” typically would
not even check for the use of recursion, but this bad practice can be common in
introductory computer science courses. Students, especially early on, require
tighter constraints to guide them to use simple and direct approaches to rela-
tively simple problems. These types of constraints are not generally considered
in a professional setting. These kinds of very specific design requirements gen-
erally do not occur in a professional setting hence tools such as Pylint, PEP8,
or CheckStyle do not have the ability to check for them.

A recent work targeting the professional setting, DeepCodeReviewer [4]
utilized a database of code reviews to suggest design quality improvements
for C# code segments. It is a deep learning model trained on a propriety data
taken from Microsoft’s software version control system. Likewise, the feedback
it generates is also not particularly relevant to education since it is trained
on professional’s code who likely do not make the same mistakes as first-year
computer science students.

Recently there has been some work using neural networks to assess the de-
sign quality of student programs [6]. Though that system accurately predicted
design scores and gave high-level feedback, there are some limitations both to
that system and to any system based on machine learning. Feedback on the
program level, though shown to be useful, is not as helpful as feedback targeted
at specific segments of the program such as functions or individual lines. More
detailed and specified the feedback will presumably be easier for a student to
understand and remedy.

1.1 Our Approach and Contribution

Our approach is to take design principles, model them by formally represent-
ing the principles as logical rules applicable to an abstract syntax tree. The
design principles were in general each expanded into multiple rules prescribing
syntactic structures that are either best practices or are patterns that should
be avoided. The models were implemented in Haskell [5] since each rule could
be easily be stated in a declarative fashion. These model are the first for the
design quality of Python & Java programs for an educational environment.
The implemented models was then hosted as a web service, allowing students
to evaluate their programs at any time and as many times as they wished.
Finally, data was collected on the number of design quality errors made by
students who had access to the models versus work done by students in previ-
ous years. The data indicates a large drop in the rate of design errors made by
students.

29

2 Method

The development of our intelligent tutoring system was a process that started
with the articulation of our the principles we use to assess good design. Con-
solidating both written policy and practices as well as our general intuition
about what makes the design of a program good was perhaps the most difficult
aspect of creating the system. After these principles were realized and identi-
fied, they were contextualized for both Python and Java programs and more
formally represented as logical rules for the respective syntactic structures.
Next a model was implemented for each language as a program written the
functional programming language Haskell. Though there are rules in common,
Java and Python are very different syntactically so implementing a model was
a more direct and effective approach. Haskell’s declarative nature and history
of use for analysing programming languages made it a natural choice. Finally
the tutoring system was deployed as a web service, allowing students enrolled
in our introductory computer science course to use it at anytime to validate
their programs before the assignments were due.

2.1 Models

After articulating our design principles of our institution, the principles were
contextualized and specified for both the Python and Java programming lan-
guages. The model for these principles are rules represented in first order
logic. Each rule makes use of predicates that express proprieties of abstract
syntax trees (AST). The rules are in effect constraints on the space of ASTs,
eliminating those with or without some features.

The purpose of the models is to detect design errors in a student’s program.
It could be useful to detect segments of a student’s program that are well
designed in order to encourage students by applauding their success. However,
the purpose of this model is to point out mistakes so that they can be remedied
by the student. Also our institution’s existing principles and written policy on
program design focused heavily on avoiding mistakes. Further, the existence of
a design mistake is much more objective and readily identifiable than a good
design quality.

With this in mind, our models are a collection of rules, applied to an AST,
to identify individual mistakes exactly where they occur in a student’s program.
Each rule in model will generate a mistake to be reported to the student if the
condition of the rule is true. The condition i.e. body of each rule consists of
a logical combination of predicates. Each predicate is simply a observation of
the existence or nonexistence of property of the AST. A predicate is simply a
boolean function over “objects” which nodes in the AST which correspond to
either statements or expressions in the source code. A statement is an operation

30

def record_score (h_won) :
global human_score
global comp_score

i f h_won :
human_score += 1

else :
comp_score += 1

(a) Global variables example.

def f i nd (my_list , va lue) :
i = 0

for other in my_list :
i f other == value :

return i

i += 1

(b) Nested return statement example.

Figure 1: Python code segments inspired by student programs.

of a program, for example the assignment of a variable, the definition of a
function, or a “return” from a function. An expression is a computable value,
such as an arithmetic operation, the comparison of two values, or the evaluation
of a function. Generally speaking, every modern programming language can
be broken down into a combination of statements and expressions including
Python. Each expression or statement may be composed of more statements
or expressions hence forming a sub-tree in the AST. Altogether, in our model a
predicate is a boolean function that operates over a sub-tree in the AST. This
allows for great expressive power and the ability to detect any characteristic
that is grammatically represented in the AST.

Consider the example in Figure 1a which contains code making use of a
global variable. Besides the fact that the use of a global variable is widely
considered a bad practice, it is also in violation the principle of using explicit
logic over implicit logic. A rule to capture this is straight-forward,

∀f, s Fun(f) ∧Desc(f, s) ∧Global(s) =⇒ M(f, s) (1)

The predicate Fun(f) determines if f is a function, Desc(f, s) ensures that
s is a descendent of f in the AST, and Global(s) is true if s is a “global”
statement. If all three of these predicates are true, there is a mistake M(f, s)
in function f in statement s which is sufficient information to generate a helpful
message. The head, that is, the consequent of each rule in the model is simply
a mistake predicate, hence no complex inference is necessary. In general, the
models’ rules follow this pattern, the body of the rule consists of AST predicates
and the head of the rule is a type of mistake.

In the previous example the type of mistake could easily be detected with
a simple string search, however identifying the function they are found in is
more difficult. In general, the mistakes our model identifies requires knowledge

31

of the AST. Of particular importance is the ancestor-descendent relationship
captured by the predicate Desc. Consider the example found in Figure 1b
which contains a segment of Python code with a nested “return” statement. In
this example, context is critical since “return” is legitimate and necessary in
general. However in this example, the code violates our principle of one-way-
in-one-way-out as well as subtly contains a bug. If the “value” is not contained
in the list, the value “None” will implicitly be returned. If the code calling the
function always expects an integer return value the an exception will be raised.
Likewise this type of mistake is detected in a straight-forward fashion,

∀f, s Fun(f) ∧Desc(f, s) ∧ ¬Child(f, s) (2)
∧ Return(s) =⇒ M(f, s)

The predicate Child(f, s) determines if s is a direct child of f and Return(s)
is true if s is a return statement. Here the subtly of the nestled “return”
statement is readily captured by the use of the Child and Desc predicates.
A legitimate “return” will be directly under the function declaration in the
AST, while a nested “return” will be deeper in the AST. The contrast between
¬Child and Desc, that is a “return” statement being a syntactic descendent of
a function declaration but not a direct child of it, is exactly the definition of a
nested “return”.

These two examples point out a key aspect of the model, the primary com-
plex predicates needed are Desc and Child, the rest of the predicates simply
identify the type of expression or statement which is immediately apparent
from the AST information.

2.2 Implementation

The models were implemented in the Haskell programming language. While
many languages could be a suitable choice, and some such as Prolog are even
designed for logical deduction, Haskell has several natural advantages. First,
Haskell has support for parsing many common programming languages such
as Python, Java, and JavaScript. One benefit of Haskell is that the syntactic
elements of Python and Java are expressed directly as Haskell data structures.
Functions in Haskell pattern-match on directly on data structures which means
functions can easily be written to check specific parts of an AST. For example,
this means a function can be written to specifically check for errors in Java
method declarations and associated statements. Second, functional program-
ming’s declarative style and high-level functions mean the models’ rules can be
almost directly expressed in the language. The logical rules of the model exam-
ine the AST for the existence or nonexistence of certain syntactic elements or
identify particular relationships between them. Most of these operations have
a corresponding higher-order functions is used to implement them.

32

Because of differences in the Python and Java languages as well as sub-
sequent differences in parsers, we decided to implement the Java and Python
models as separate programs. There are enough similarities that it is pos-
sible unify both programs, however it made more sense practically speaking
to keep them separate. Haskell is so effective at the task of representing our
models, the implementation for Python is only 216 lines long while the Java
implementation is 495 lines excluding comments and empty lines.

2.3 Personalized Feedback

The primary purpose of the system is to provide personalized feedback to
students rapidly. Our rule based model is fast, evaluating a student program in
less than a second on a commodity computer. The model was deployed to a web
server and was made available to students with a simple HTML form. There
was nothing for the student to setup or install on their own computer, since
the tutoring system was available as a web service. Student could very easily
use the system by simply submitting their code via the form. The model was
run immediately when a student submitted their program, producing feedback
on design mistakes. Since the model is fast, there was no need to queue up
submissions or rate-limit the service at all.

Students were able to check their assignments for mistakes as many times
as they wanted. Further, the system was available 24/7, allowing the students
to check their work whenever was convenient before the due date. This meant
the students had rapid feedback on their assignments and a chance to improve
their work before being evaluated by the instructor. Further, this increased
the transparency of the grading process, since the rules are explicitly stated
and the mistakes generated by them are easily understood.

3 Experiments

The effectiveness of the system was evaluated on student programs from mul-
tiple years of introduction to computer science courses. The system was made
available to students during both the first and second introduction to computer
science courses. Students were encouraged to use the system to evaluated their
programs multiple times before submitting their program for grading. This
gave the students an opportunity to correct their mistakes before being graded.
The students were also informed that the output of the system was going to
be used to a guide to instructors to grade their assignments, which provided
incentive to use the system and transparency into the grading processing.

The experimental setup is simple, the Python programs from 2021 and the
Java programs from 2022 are from students who had access to the tutoring
system. Submissions from previous years were used as a basis for comparison.

33

The actual assignments, standards, and requirements remained consistent over
the years, the only difference between experimental year and previous years
is student access to and feedback from our system. The system was used to
quantify errors in the experimental and previous years’ assignments. This data
was used to estimate the rate of mistakes made by students each year. Hence
the experiment compares the error rate of students who had access to the
system versus students from previous years that did not.

3.1 Dataset

The dataset consists of programs from 4 student assignments collected over 4
years, 2 Python assignments taken from a introduction to computer science
course and 2 Java assignments taken from the second semester introduction
to computer science course. All the programs included in the dataset were
syntactically correct, all student submissions that could not be parsed into
an AST simply were not included. The Python assignments were the last 2
assignments of the course and were chosen because they were the most com-
plex and lengthy assignments in the class. The “Craps” assignment involves
implementing the classic casino game as a command-line program. Likewise
the “RPS” assignment is the game of rock-paper-scissors. The number of stu-
dent programs totals to 506, with 109 of them being submitted in 2021. Those
submissions had our system available for feedback. A summary of the Python
data can be found in table 1.

The Java assignments are from the middle of the second semester intro-
duction to computer science course. The “Car” assignment involves creating
a class to represent a Car, its fuel, MPG, and odometer as well as methods
to make it “drive” etc. Similarly, the “Balloon“ assignment involves creating a
class to represent a spherical balloon with its radius and has methods to inflate
and deflate it with cubic units of air. These methods require a mathematical
conversion between radius and cubic units. The total number of student sub-
missions was 298 with 59 of them submitted in 2022. A summary of the Java
data can be found in table 1. We did not record the number of times, if any,
a student used our system to gain feedback.

3.2 Results

The rate of mistakes made by students significantly dropped with the introduc-
tion of our system. For all the assignments, the drop in mistake rate was both
statistically and substantial. For the Python assignments, the comparison in
mistake rates is between the 2021 programs and all previous years. Similarly,
for the Java assignments the comparison in mistake rates was between 2022
and the years 2020 and 2021. The difference between the mistake rates was

34

Program Year Programs Mistakes Rate

RPS (Python)

2018 68 311 4.57
2019 74 285 3.85
2020 70 231 3.30
2021 55 145 2.64

Craps (Python)

2018 65 388 6.0
2019 78 463 5.94
2020 42 210 5.00
2021 54 181 3.35

Car (Java) 2020 - 2021 104 138 1.33
2022 30 8 0.27

Balloon (Java) 2020 - 2021 101 416 4.12
2022 29 74 2.55

Table 1: The statistics of student Python & Java programs. Included are the
number of student program submissions, the total number of design quality
mistakes, and a rate of mistakes. Students only had access to the intelligent
tutoring system during 2021 for Python and 2022 for Java.

compared with a two-sample Poisson test. For all assignments, the difference
was found to be significant with p-values was less than .00002. This is unsur-
prising considering the drop in the mistake rates was 32.31%, 41.23%, 79.70%,
& 38.11% for “RPS”, “Craps”, “Car”, and “Balloon” respectively. The magni-
tude of the improvements clearly demonstrate the effectiveness of the system.
We believe that both the availability of the system along with the fact that it
was used to guide assessment and grading provided the motivation to use the
system and make corrections. Further, the drop in design quality errors was
noticeable for the instructors anecdotally. Also, student appreciated the sys-
tem as well, since it was fast, convenient, and provided additional transparency
into the assessment process.

In the improvements in Java assignments were noticeable for two reasons.
First the dramatic nature of the improvement, as much as a 79.70% drop
in the rate of mistakes. Second, was the fact that all the style guidelines had
been written down specifically for Java and were available to students for years.
Unsurprisingly, students apparently did not read or apply the guidelines despite
being told that their work would be assessed according to them. However
our tutoring system which directly encoded the guidelines, actually got the
students to comply. The difference is likely the dynamic nature of the system,
giving precise, rapid feedback which is easier to utilize than reading an 8 page
PDF of general rules. It is likely far easier for students, especially relatively
inexperienced ones, to respond to specific feedback over general statements.

35

Overall, the system was highly effective and that was only possible because of
voluntary student participation.

4 Conclusions & Future Work

Overall, an intelligent tutoring system was designed based to give rapid feed-
back on program design quality. The model it implemented was derived from a
set of design principles which were encoded as rules over abstract syntax trees
for both Python and Java. The system was fast, accurate, and was highly
effective at delivering feedback to students. As a result, the quality of student
code improved substantially, also indicating their voluntary use of the system.

Though successful there are some types of design quality mistakes that the
tutoring system does not catch. Mistakes such as bad variable names, large
blocks of repeated code, or uninformative comments cannot be identified by
the system but would be a useful extension. These kinds of mistakes are hard
to typify directly with rules, so a machine learning model or other methods
might be needed.

References

[1] CheckStyle. CheckStyle. https://checkstyle.sourceforge.io/.
[2] Code.org. Code.org: Learn computer science. https://code.org/research.
[3] Aleksandr Efremov, Ahana Ghosh, and Adish Singla. “Zero-shot learn-

ing of hint policy via reinforcement learning and program synthesis”. In:
International Educational Data Mining Society (2020).

[4] Anshul Gupta and Neel Sundaresan. “Intelligent code reviews using deep
learning”. In: Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD’18) Deep Learning
Day. 2018.

[5] Simon Peyton Jones. Haskell 98 language and libraries: the revised report.
Cambridge University Press, 2003.

[6] J. Walker Orr and Nathaniel Russell. “Automatic Assessment of the De-
sign Quality of Python Programs with Personalized Feedback”. In: Inter-
national Educational Data Mining Society (2021).

[7] Benjamin Paassen et al. “The continuous hint factory-providing hints in
vast and sparsely populated edit distance spaces”. In: Journal of Educa-
tional Data Mining (2018).

[8] Chris Piech et al. “Learning program embeddings to propagate feedback on
student code”. In: International conference on machine Learning. PMLR.
2015, pp. 1093–1102.

[9] Pylint.org. Pylint - code analysis for Python. https://pylint.org.

36

Github Copilot in the Classroom: Learning to
Code with AI Assistance∗

Ben Puryear and Gina Sprint
Department of Computer Science

Gonzaga University
Spokane, WA 99258

bpuryear@zagmail.gonzaga.edu, sprint@gonzaga.edu

Abstract

Recent advances in deep machine learning have enabled artificial
intelligence-driven development environments (AIDEs). AIDEs are pro-
gramming tools that, given comments or starter code, can generate code
solution suggestions. As the accuracy of these tools continues to in-
crease, one particular AIDE from Github, Copilot, has been gaining sig-
nificant attention for its performance and ease of use. The rise of Copilot
suggests that code solution generation tools will soon be commonplace
in both the industry and in computer science courses, with expert and
novice programmers alike benefiting from using these tools. More specif-
ically for novices, the effects of Copilot on the process of learning to
code are mostly unknown. In this paper, we perform initial explorations
into these effects. Using introductory computer science and data sci-
ence courses, we evaluate Copilot-generated programming assignment
solutions for correctness, style, skill level appropriateness, grade scores,
and potential plagiarism. Our findings indicate Copilot generates mostly
unique code that can solve introductory assignments with human-graded
scores ranging from 68% to 95%. Based on these results, we provide rec-
ommendations for educators to help adapt their courses to incorporate
new AIDE-based programming workflows.

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

37

1 Introduction

In 1967, British scholar Christopher Longuet-Higgins theorized about a
“Computer-Assisted Typewriter” that would improve a programmer’s efficiency
by automatically completing words after only a few characters had been typed.
Over the years, this idea has evolved into the most frequently used program-
ming assistance tool, “code completion” [1]. In addition to completing single
words, intelligent code completion tools, such as Microsoft’s IntelliSense, can
suggest large code blocks to help speed up common coding tasks like writing
constructors or getters/setters. Recently, advancements in deep machine learn-
ing have enabled the next generation of code completion tools, namely artificial
intelligence-driven development environments (AIDEs). AIDEs are program-
ming tools, like code completion, that generate suggested code snippets based
on a description of what code should do, such as a comment or the start of
a function definition. Announced in July of 2021, Github Copilot is one such
AIDE that is already gaining widespread popularity, with some researchers pre-
dicting it will become mainstream in as few as two years [6]. Copilot is based
on OpenAI’s Codex language model and was trained on 159 Gb of data from
public repositories on Github, allowing it to generate code in dozens of dif-
ferent languages, with particular success demonstrated in Python, JavaScript,
TypeScript, Ruby, Java, and Go. [3]. In the one year that Copilot has been
available as a “technical preview” extension for Visual Studio Code, Neovim,
and JetBrains, at least 1.2 million programmers have played with the tool. In
that short time, over twenty research papers have been published investigating
its performance and copyright concerns related to code authorship.

Because Copilot is easy to use and can generate solutions for simple pro-
gramming problems, it will redefine how people learn to code and how educators
teach introductory computer science courses. In fact, Ernst and Bavota stated
“The nature of learning programming will change dramatically with AIDEs.
Whether these assistants will speed up or slow down the learning process is
currently an open question” [5]. The authors further speculated that Copi-
lot might already be able to solve CS1 assignments better than the students
enrolled in the course. To solve assignments, students can provide Copilot
snippets from the assignment specifications and accept Copilot’s suggested so-
lutions. In this case, students may receive passing grades on programming as-
signments without learning how to solve the assignment on their own. Though,
what happens when a Copilot-dependent programmer eventually runs into a
slightly more complicated problem that AIDEs cannot (yet) solve? To help
mitigate this scenario, educators should become familiar with AIDE workflows
and how introductory students use them while learning to program. This pa-
per provides an overview of this process and how educators can begin to adjust
courses to teach skills that include using AIDEs.

38

2 Related work

AIDEs, like Github Copilot (copilot.github.com), TabNine (tabnine.com), and
Kite (kite.com), are products of recent advances in deep machine learning.
As the number of parameters in these deep learning models increases, so too
does the accuracy of these tools. For example, one set of experiments showed
Codex’s solve rate on a benchmark dataset jumped from 59.5% to 72.3% when
the number of model parameters increased from 2.5 billion to 12 billion [3]. Re-
cent research has shown that we can expect AIDEs to permeate the traditional
programming workflow because they offer many benefits for users, such as au-
tomating mundane tasks [5], increasing perceived productivity [6, 9, 10, 11],
and helping with learning to program or learning a new language [6, 5]. De-
spite these advantages, AIDEs are not a replacement for a human programmer
with relevant knowledge and skills. This is because there are several known is-
sues associated with using AIDEs, including the potential for low-quality code,
errors, vulnerabilities, or bias; a compromise in efficiency, documentation, and
adherence to style guidelines; and a weakening of problem solving skills due to
over-reliance [6, 5, 2, 8, 3, 7]. Additionally, speculative drawbacks include legal
issues related to software authorship, copyright, and licensing [4, 8]; how the
programmer-computer interaction and workflow will change [5]; and variability
in performance for different underrepresented user groups [11].

The aforementioned benefits and shortcomings of AIDEs apply to novice
programmers and computer science students in introductory courses who use
the tool as well [5, 6]. AIDEs can assist students with completing code for pro-
gramming assignments, side projects, and technical coding challenges for job
interviews. For example, typically students (and experts) leave their editor to
search Google or StackOverflow for how to solve a problem. With AIDEs, these
results can be curated and presented within the editor and in the context of
the specific problem. Such a use case will likely help students learn to program
because the AIDE is like a partner in pair programming or a chatbot provid-
ing code templates for students to tinker with [11]. As AIDEs continue to
improve, these code templates will likely solve entire assignments. Preliminary
experimentation suggests that Codex-based AIDEs can already generate pass-
ing solutions to CS1 programming assignments [5]. If a student can paste the
requirements of an assignment in an AIDE and produce a solution with little
to no problem solving, code writing, or debugging, what are students learning?
From an educational perspective, perhaps the most important question is: in
an AIDE-prevalent future, what should computer science students be learning?
In this paper, we present the first research in this area that aims to investigate
the effects of AIDEs on learning to program in introductory courses.

39

3 Methods

Our investigation was motivated by our desire to become familiar with Github
Copilot, evaluate its code suggestions, and understand how students can use it
when learning to code. More specifically, we were interested in answering the
following three research questions:

1. Could Copilot be a viable tool for introductory programming students?
2. Could Copilot solutions earn a passing grade score?
3. Could Copilot solutions be flagged as plagiarism?

To answer these questions, we used Copilot to help solve coding assignments
from two in-person courses. The first course, CS0, was a Python course de-
signed to help introduce algorithmic problem solving to students with little to
no programming experience. This course included eight programming assign-
ments (PAs) covering common introductory topics, which are listed in Table
1. The second course was an introductory course in data science, henceforth
referred to as DS1. This course also used Python; however, the students in this
course had either already taken at least CS1 (in C++) or were concurrently
enrolled in CS1. There were seven data-oriented programming assignments
(DAs) in this course. The main topic(s) of each DA are also provided in Table
1. Different from the CS0 PAs, DS1’s DAs used non-standard Python libraries
that are commonly used in data science, including NumPy, SciPy, Pandas,
Requests, Matplotlib, and Sci-kit Learn. DAs also included non-programming
components, such as ethics write-ups and prep work for the final project, which
were omitted from our analyses.

To answer research question #1, a sophomore computer science major
solved the assignments from both courses with and without Copilot enabled.
Copilot solutions were generated by copying and pasting text from assign-
ment descriptions into code comments. The first suggested code snippet was
accepted as the Copilot-generated solution (see the Appendix for an example
using DA1). During this process, code, notes, and screen recordings were saved
to document the workflow. After we acquired preliminary results with both
assignment sets, we further investigated how Copilot’s DA solutions compared
to student-authored solutions from an offering of the DS1 course in the Fall
of 2021 (N = 32 students). We obtained approval from our university insti-
tutional review board to utilize DS1 student code for research purposes. For
research question #2, we utilized the hypothetical grades Copilot DA solutions
would have received if they were turned in as student work. To do this, we
asked the Fall 2021 student grader, a junior computer science major, to score
the Copilot submissions as if they were student-authored.

We were interested in researching question #3 for a few reasons. First,
Copilot is trained on public Github repositories and students (and experts

40

Table 1: CS0 programming assignment (PA) and DS1 data assignment (DA)
descriptions, student perceived difficulty, and Copilot evaluation metrics.
Main Topic(s) Student

Difficulty
Correct
-ness

Appropri
-ateness

Style

PA1 Arithmetic Low 4.2 5.0 5.0
PA2 Functions Medium 4.6 5.0 4.9
PA3 Conditionals Low 3.3 5.0 5.0
PA4 Loops Medium 3.7 4.3 4.0
PA5 Files High 3.3 5.0 4.3
PA6 Lists High 3.6 3.9 4.6
PA7 Strings Medium 4.7 5.0 4.5
PA8 Classes High 3.1 5.0 5.0
DA1 Lists/simple stats Low 5.0 5.0 5.0
DA2 2D lists/CSV files Medium 3.9 4.9 5.0
DA3 Data wrangling High 3.6 4.3 3.9
DA4 APIs/JSON Medium 4.8 5.0 4.5
DA5 Jupyter/data viz High 4.0 4.1 4.2
DA6 Hypothesis testing Medium 4.5 3.9 5.0
DA7 Machine learning High 2.8 3.8 4.1

alike) often search the web for help. Second, because the DS1 course was at
the introductory level, we anticipated Copilot may produce a common solu-
tion that a student would likely come up with on their own. Finally, because
Copilot was available in technical preview during the DS1 course, some stu-
dents were already using Copilot. Of the 32 students, 3 voluntarily stated they
were playing with the Copilot extension in Visual Studio Code. To answer
this research question, we uploaded all the student and Copilot DA solutions
to three software similarity/plagiarism detection systems: MOSS (Measure of
Software Similarity), Codequiry, and Copyleaks. These tools compute the per-
centage of overlapping code between all possible pairs of solutions. Codequiry
and Copyleaks also compare solutions with code found on the web.

4 Results and Discussion

We assessed CS0 and DS1 Copilot solutions using several evaluation metrics.
Regarding research question #1, Table 1 shows the topics and student per-
ceived difficulty of the assignment, then provides scores for Copilot’s generated
code solutions in terms of correctness, style, and skill level appropriateness.
The range for each of these metrics was 0 (low) to 5 (high). In general, we

41

were impressed with how well Copilot solved most tasks in both courses, in-
cluding the later ones in DS1 that used non-standard libraries and/or web
APIs. Except for documentation, Copilot perfectly solved one assignment, the
first and simplest one in DS1. Copilot was unable to solve all the tasks in the
other assignments, even the first few in CS0 on topics such as arithmetic and
functions. Here are examples of incorrect solutions Copilot generated:

1. Using a non-current year when calculating a user’s age
2. Using ceiling when rounding should be used
3. Incorrectly implementing game logic, even when provided the game rules
4. Using a library without importing it
5. Not validating user input in a certain range of correct values

Such difficulties often stemmed from details of the assignments’ contexts,
such as parsing a text file containing stops made on a road trip (PA5). The
format of the file was “custom” to the assignment: road trip stop information
was separated by newlines, with slightly different information available for the
starting location and the destination location.

In general, Copilot used coding syntax and techniques appropriate for the
student’s skill level. Occasionally it would use a technique not covered in the
CS0 course, such as command line arguments or list comprehensions. Fur-
thermore, some of the solutions were not written clearly, such as unnecessarily
opening and closing a file repeatedly or including unreachable code (such as
after a return statement). For style, Copilot generally used consistent nam-
ing conventions and formatting. Regarding documentation, Copilot sometimes
generated inline comments at the top of files, but rarely within code to de-
scribe it. For other aspects of style and “good” coding practices, here are a few
examples of Copilot’s shortcomings:

1. Writing long functions that do not follow a good bottom-up design
2. Missing output formatting details
3. Including grammar mistakes in user-facing strings
4. Failing to add a unique “personality” to interactions with the user
5. Modifying original memory when should be working with a copy

Figure 1 shows results from investigating research question #2 about the
grades Copilot-generated code would have received for DS1 assignments. Note
that some grades in Figure 1 were higher than 100% because each DA in-
cluded one or more bonus tasks. On average, Copilot scored a 84% on the
programming portions of the DAs, with a score on DA3 higher than DA3’s
average student score. Mostly, Copilot did not receive full credit because of
runtime errors (e.g., attempting to compute numeric statistics using string in-
puts), logic errors (e.g., producing incorrect results), incomplete tasks (e.g.,

42

Figure 1: Student (N = 32) and Copilot scores for each data assignment.

Table 2: Copilot-generated data assignment (DA) solutions’ software similarity
and detected plagiarism scores.
DA#MOSS (studen-

t/student max)
MOSS (Copi-
lot/student max)

Codequiry Copyleaks

1 75% 31% 0% 0%
2 55% 8% 0% 0%
3 91% 36% 0% 0%
4 66% 15% 0% 0%
5 80% 28% 0% 5%
6 74% 12% 0% 0%
7 57% 12% 0% 0%

failing to read data from a JSON file), and low adherence to a coding standard
(e.g., not documenting code). The prevalence of Copilot-generated logic er-
rors (about one per assignment), provides evidence that students should begin
learning formal testing techniques in introductory courses. Copilot received a
particularly low percentage score (68%) for DA7 because it struggled to use
linear regression with a common machine learning dataset. This low score was
still considered a passing grade (≥ 60%), indicating Copilot can significantly
help students obtain decent grades on introductory Python assignments with
minimal input from the student.

The software similarity and plagiarism detection results did not suggest pla-
giarism on behalf of Copilot (see Table 2). The highest MOSS Copilot/student
match over all DAs was 36%, which was lower than each DA’s highest studen-
t/student match. Investigating the Copilot/student matches on a case-by-case

43

basis revealed that the matching lines of code were often scenarios where code
was expected to be common among student submissions because there was a
typical solution or there was a need to declare similar variables. For example,
in DA1 students were expected to write their own code to implement simple
summary statistics like mean, median, mode, standard deviation, etc (see Ap-
pendix). In Copilot’s DA1 solution, the following median code was flagged as
a match to student-authored code, though this is a generic solution:
i f count % 2 == 0 :

median = (numbers [count // 2] + numbers [count // 2 − 1]) / 2
else :

median = numbers [count // 2]

Codequiry and Copyleaks detected even lower matches with student code
and with code found on the web. Only Copyleaks detected a 5% match on
DA5, which was due to a common Python dictionary declared to help with
a data cleaning/preparation task. To summarize our conclusions for research
question #3, Copilot-generated code is generally not similar enough to student-
authored code to suggest plagiarism. This suggests that students are less likely
to violate academic integrity policies by using Copilot for help than looking at
a classmate’s code for help; however, as more students start using Copilot,
issues may arise. Even though Copilot suggestions can be different for the
same input, there is likely going to be scenarios where students may turn in
similar solutions using Copilot independently.

Because Copilot is easy to use and can accurately solve a variety of prob-
lems, AIDE functionality will soon become standard in many coding workflows,
including those used by professionals and students of all levels. While novice
programmers should learn industry standard tools, they will still need to un-
derstand the problem and the code generated by the AIDE. Furthermore, all
programmers need to know how to test code for functional correctness and effi-
ciency, and how to adhere to a coding standard, regardless of who/what wrote
the code. Therefore, based on our experience, literature review, and results
presented in this paper, we recommend the following suggestions for educators
to prepare for teaching programming in an AIDE-prevalent era:

1. Describe AIDEs to students, ensuring that all students have equal access
to the tools, not just the ones “in the know”

2. Explain the advantages and disadvantages of using AIDEs
3. Design assignments to have unique contexts and personalization oppor-

tunities that differentiate solutions from commonly written code
4. Teach debugging and testing techniques in introductory courses, such as

unit testing and test-driven development
5. Include assessment methods, like written/oral exams or reflections, that

ensure students can solve problems without relying on AIDE assistance

44

5 Summary and Future Work

In the near future, AIDE-like functionality will likely become the new code
completion standard. In this paper, we explored the possible effects of AIDEs,
namely Github Copilot, in introductory programming courses. Our prelim-
inary results suggested that Copilot is an easy to use and accurate enough
tool that novice programmers can use it to write the majority of the code
required to solve fundamental programming tasks. For an introductory data
science course with Python, we found that Copilot-generated solutions earned a
human-graded score between 68% and 95%. When compared to actual student-
authored code, Copilot had very low code similarity scores. This suggests
AI-generated solutions are unique and difficult to distinguish from human-
authored solutions. For these reasons, we encourage computer science edu-
cators to become familiar with how AIDEs work and begin to design their
coursework and development workflow to incorporate them. Future work in-
cludes observing how novice programmers utilize Copilot and analyzing simi-
larities among code produced by different students using Copilot for the same
assignment.

References

[1] Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini. A Study of
Visual Studio Usage in Practice. In 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 124–134, March 2016.

[2] Owura Asare, Meiyappan Nagappan, and N. Asokan. Is GitHub’s Copilot
as Bad As Humans at Introducing Vulnerabilities in Code? Technical
Report arXiv:2204.04741, arXiv, April 2022.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott
Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mo-
hammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes,
Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Niko-
las Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew,

45

Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
Evaluating Large Language Models Trained on Code. Technical Report
arXiv:2107.03374, arXiv, July 2021.

[4] Matteo Ciniselli, Luca Pascarella, and Gabriele Bavota. To What Extent
do Deep Learning-based Code Recommenders Generate Predictions by
Cloning Code from the Training Set? Technical Report arXiv:2204.06894,
arXiv, April 2022.

[5] Neil A. Ernst and Gabriele Bavota. AI-Driven Development Is Here:
Should You Worry? IEEE Software, 39(2):106–110, March 2022. Confer-
ence Name: IEEE Software.

[6] Ekaterina A. Moroz, Vladimir O. Grizkevich, and Igor M. Novozhilov.
The Potential of Artificial Intelligence as a Method of Software Devel-
oper’s Productivity Improvement. In 2022 Conference of Russian Young
Researchers in Electrical and Electronic Engineering (ElConRus), pages
386–390, January 2022.

[7] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-
Gavitt, and Ramesh Karri. Asleep at the Keyboard? Assessing the Se-
curity of GitHub Copilot’s Code Contributions. Technical report, August
2021.

[8] Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and Li Li. CoProtec-
tor: Protect Open-Source Code against Unauthorized Training Usage with
Data Poisoning. In Proceedings of the ACM Web Conference 2022, WWW
’22, pages 652–660, New York, NY, USA, April 2022. Association for Com-
puting Machinery.

[9] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Pow-
ered by Large Language Models. In CHI Conference on Human Factors
in Computing Systems Extended Abstracts, pages 1–7, New Orleans LA
USA, April 2022. ACM.

[10] Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. In-IDE Code Gen-
eration from Natural Language: Promise and Challenges. ACM Trans.
Softw. Eng. Methodol., 31(2):29:1–29:47, March 2022.

[11] Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh Sittam-
palam, Alice Li, Andrew Rice, Devon Rifkin, and Edward Aftandilian.
Productivity Assessment of Neural Code Completion. Technical Report
arXiv:2205.06537, arXiv, May 2022.

46

Appendix

The following code excerpts are from Github Copilot’s DA1 solution. Com-
ments were student-generated with text copied/pasted from the assignment
specification. Python code snippets were generated by Copilot using the pre-
ceding comments. Note the code has been abbreviated with ... for brevity.

Create a l i s t wi th the f o l l ow i n g numbers : 8 4 . 4 , . . .
numbers = [8 4 . 4 , 75 . 8 , 42 . 1 , 25 . 9 , 51 . 1 , 40 . 5 , 78 . 4 ,

30 . 3 , 47 . 7 , 58 . 3 , 90 . 8 , 50 . 5 , 28 . 2 , 61 . 8 , 25 . 1 , 9 1 . 0]
Add 75.6 to the l i s t
numbers . append (7 5 . 6)
Compute the average o f the numbers
average = sum(numbers) / len (numbers)
Compute the s tandard d e v i a t i on o f the numbers
sum_of_squares = 0
for number in numbers :

sum_of_squares += (number − average) ∗∗ 2
var iance = sum_of_squares / count
standard_deviat ion = var iance ∗∗ 0 .5
. . .
Round the r e s u l t s to 2 decimal p l a c e s
average = round(average , 2)
standard_deviat ion = round(standard_deviat ion , 2)
. . .
Print the r e s u l t s wi th in fo rmat i v e messages
print ("The␣ average ␣ i s " , average)
print ("The␣ standard ␣ dev i a t i on ␣ i s " , standard_deviat ion)
. . .
Prompt the user f o r a s t a r t i n g va lue and an ending
va lue r ep l a c e a l l v a l u e s in the l i s t between the
s t a r t i n g and ending va l u e s i n c l u s i v e wi th 0 and p r i n t
s t a r t = f loat (input ("Enter ␣a␣ s t a r t i n g ␣ value : ␣"))
end = f loat (input ("Enter ␣an␣ ending ␣ value : ␣"))
for i in range (len (numbers)) :

i f numbers [i] >= s t a r t and numbers [i] <= end :
numbers [i] = 0

print (numbers)
. . .
Print the l i s t in r e v e r s e wi thou t us ing r e v e r s e ()
for i in range (len (numbers) − 1 , −1, −1):

print (numbers [i] , end="␣")

47

Teaching Software Project Management
through Roleplay via Game Development∗

Nathaniel Kremer-Herman
Department of Computer Science

Seattle University
Seattle, WA 98122

nkremer-herman@seattleu.edu

Abstract

Providing opportunities to introduce proper software project manage-
ment methodologies in undergraduate computer science programs can be
difficult. This is especially so for programs experiencing struggles includ-
ing it in their curriculum due to either the scale of the program (whether
the number of faculty or students) or breadth of topics already taught.
However, it is invaluable for students to be introduced to these concepts
in a low stakes environment so they may be better prepared for their ca-
reers after graduating. We provide an experience report of a month-long
undergraduate course which introduces key topics in project manage-
ment as a side effect of hands-on experience developing video games. In
groups, students delivered an educational video game from start to finish
for a client (a faculty or staff member outside of the computing fields).
Their client had a real need for their proposed video game, and students
successfully met these needs. We demonstrate an effective environment
to reinforce key project management topics and discuss lessons learned
providing a free range environment for students to learn about project
management.

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

48

1 Introduction

Software project management skills are useful no matter what area of comput-
ing one enters. Many skills make up project management including but not
limited to: identifying client needs, creating prospective development time-
lines, outlining key software features, equitably dividing labor, and providing
actionable metrics for measuring success during project development. Many
methodologies currently exist to help manage software projects such as Agile
[4], Scrum [8], and Kanban [2].

Teaching even one of these methodologies to sufficient depth in an under-
graduate computer science program can be difficult. There is a risk of shoe-
horning project management principles into curricula where it does not truly
fit, minimizing the impact of both the original course content and project
management content. On the other hand, it can be difficult to teach project
management concepts in isolation, especially if there are not sufficient stakes
to make using a project management methodology necessary (such as a real
client, a well-defined project, and/or consequences for missed deadlines). Fi-
nally, focusing an entire course on project management risks consuming avail-
able teaching slots for other courses in a department’s curriculum. This final
point highlights an issue for computer science programs experiencing scaling
pains such as having too few faculty to cover a sufficient breadth of topics or
too few students to offer courses which deviate beyond traditional curriculum.

We present an experience teaching an undergraduate, elective course in ed-
ucational game development which, as an intended side effect, also taught the
core concepts of the Kanban development methodology and required students
to use the methodology in active development of a video game. This elective
course served as an introduction to video game development as it applies to
educational settings (K-12, undergraduate, professional development, and so-
cial outreach). The course introduced students to clients with predefined game
ideas, had them team up to develop a game for their chosen client, and present
their experience designing and implementing the game in a final showcase.

We demonstrate that the game development and pedagogical portions of
the course were an effective veneer for teaching software project management
without compromising the integrity of a course in the core curriculum nor
teaching it in isolation without proper stakes. The class took on the role of a
game development studio to reify the concepts of project management through
hands-on experience. Through this persistent roleplaying, we maintained a
level of adherence to some best practices in the Kanban methodology. The
course consisted of self-assessment activities to track student growth and led
to the successful creation of four educational video games for on-campus clients.
We demonstrate that this experience resulted in significant increases across the
board in students’ self-confidence in key software project management skills.

49

2 Motivation and Related Work

Applying concepts of roleplaying and gamification to project-based courses
have been successful at a variety of institutions. Multiple recent surveys [3, 5]
and literature reviews [7] have noted an upward trend in the adoption of gami-
fication as applied to software engineering education, particularly as it applies
to software projects and software project management. In particular, these
works note a wide diversity of methodologies for implementing gamification to
blend theoretical concepts and hands-on experiential learning. We provide an
experience report of applying roleplay to gamify learning software project man-
agement and provide an evaluation of the course offering’s impact on student
self-confidence in applying key project management skills.

One particularly insightful work applied roleplay throughout the structure
of a video game development course [6]. Students were empowered to make
group decisions like a game development studio: shelving game ideas that were
developmental dead ends, refocusing work toward more successful projects,
and enforcing deadlines. The course was structured around building the, “soft
skills,” typical of professional software development similar to the course of-
fering presented in this paper. We used this work as inspiration for what real
world concepts and structures could be feasibly represented in the classroom.

Another course used roleplaying elements to provide students structure for
measuring their own growth toward skill mastery [1]. Students were provided
character sheets similar to tabletop roleplaying games which contained the key
course skills. As students went through the course, there would be opportu-
nities to improve their skills on their sheets. This was accomplished through
teamwork. We also sought inspiration from this work to encourage students to
put together project groups composed of people with a variety of skills such as
programming, digital arts, and website styling.

3 Course Design and Structure

This educational game design course was offered as an elective course with
no prerequisites in computer science coursework (though an introductory com-
puter science course was preferred). It was offered during a month-long in-
tensive study term at the host institution, and as such this was the only class
students had in their schedules. Its focus was to introduce principles of video
game design and pedagogy as they apply to educational video games. Students
self-selected groups of three to four and chose a project based on a list of game
pitches (a paragraph of descriptive text) which corresponded with a client from
faculty and staff outside of computing disciplines. Chosen games included one
teaching institutional fire safety policies, a physics game about vector fields,

50

a game teaching basic color theory, and a philosophy game demonstrating the
Prisoner’s Dilemma.

During the first week, each group met with their client to better understand
what game they would be creating. They then spent the month developing an
educational video game from start to finish. This involved planning and de-
signing features, weekly client meetings, equitably implementing their selected
features, evaluating the effectiveness of their game as educational content and
as entertainment, and communicating their progress to their peers in class.

Each class session was split into lecture (1 hour) and free work time (2
hours). The lecture portion introduced topics relevant to game design, edu-
cation, and project management. The work time began with a daily standup
meeting within each group followed by a daily report to the class from each
group. During the standup, students consulted their shared Kanban board and
updated it accordingly. Students were then allowed to work for as much or as
little as they felt necessary each day. At the end of the month, every group
successfully completed an educational video game for their chosen client.

Table 1: Educational Game Design Course Information
Course Name Educational Game Design
Prerequisites None
Enrollment 13 of max 16

First Offering 2022
Rotation Every other year
Languages JavaScript, C#, HTML, CSS

3.1 Learning Objectives

This educational game design course introduced education topics such as the
principles of popular educational models, using storytelling/roleplaying as ve-
hicles for learning, and gamification of education. Elements of game design
such as storyboarding, implementing game mechanics, measuring user inter-
activity, and aesthetics were taught to have students create an interactive,
entertaining, and effective educational game. The students were required to
assess their game through playtesting along those three axes. As key course
learning objectives, students were tasked to:

• Communicate and divide work among a team toward a common goal.
• Effectively use project management tools to prioritize work on a deadline.
• Identify the facets of entertainment, educational, and edutainment media.
• Identify best practices for understanding client and user needs.
• Translate a client’s vision into user interfaces and activities.

51

3.2 Key Topics

The learning objectives were reinforced across various topics. Table 2 lists the
key topics introduced during the month-long course. Included are the topic
name, the week it was introduced, and the focus (education, game design,
or project management). The topics are also listed in the order they were
introduced to students. Class sessions were held daily Monday through Friday.

Table 2: Key Course Topics
Topic Name Week Introduced Focus

Principles of Proj. Management 1 Proj. Management
Version Control and GitHub 1 Proj. Management
Identifying Client Needs 1 Proj. Management

Video Game Design Primer 1 Game Design
Educational Games 2 Education
Web Browser Games 2 Game Design

User Interfaces 2 Game Design
User Assessment 2 Education

User Testing and Feedback 3 Game Design
Release/Go-to-Market Strategy 3 Proj. Management
Patches/Continued Support 3 Proj. Management

Case Studies 4 All

Three days in the month were dedicated as solely work time with no lecture
content. Similarly, the final week of the course focused more on work time than
lecture. Instead of lecture, case studies of extant educational game companies
and educational games were discussed to demonstrate the field being a viable
career to students. Additionally, discussions about the line between enter-
tainment and education and the ethics of logging user behavior in-game were
facilitated during the final class week. As such no new topics were introduced.

3.3 Assessments

Assessment of student learning was divided into four categories: client updates,
in-class participation, a final project, and a final presentation. Student groups
were required to meet with their client once a week. Each week, every group
filled out a form summarizing their client meeting. This included summariz-
ing their demonstrated progress, the division of labor, noting client feedback,
stating upcoming targets for the following week, and listing any roadblocks
the group encountered during that week’s development. This assessment was
meant to act as a guide for questions they should ask their client, a layer of
accountability to ensure progress was being made, and a tool for self-reflection

52

of progress made each week.
In-class participation was not graded solely on attendance or discussion.

Whenever a student led their group’s daily standup or provided the class their
group’s daily progress update, they received participation points. Students also
provided other groups peer feedback on the progress of their game as well as
their source code three times throughout the month. Participants in the peer
feedback sessions also earned participation points.

The final project and presentation, though separate assessments, were tightly
coupled. The project was required to be open source, hosted on GitHub, and
be playable with few to no errors. Students also wrote a game manual which
instructed players how to play the game. Also included in the manual was
commentary on the key features of the game as told by the student who took
the lead developing each feature. This added additional self-reflection as well
as insight into the students’ development processes throughout the month.

The presentation was the culmination of the term. Each group was given
twenty minutes to present a slideshow going over their client’s initial vision,
the group’s identified client needs, the key features and mechanics of their
game, conclusions they have drawn about their final product as it related to
their client’s needs, and a live demo of their game in action. After all the
presentations, the class (and visitors) were invited to play the completed games
(and read through printed manuals) for the remainder of the class session. This
open house showcase allowed the students to provide further insight into their
games with their peers and the visiting faculty and students.

4 Evaluation

Evaluation of this course occurred in multiple forms. Students were given a
course pre-test and post-test asking them to rate their confidence in key skills as
well as demonstrate knowledge. Additionally, course evaluations were gathered
on behalf of the institution.

4.1 Course Pre-Test and Post-Test

The pre-test and post-test consisted of rating scale questions and free response
questions. The scale ranged from 0 to 5 (a score of 0 indicated no experience
while a 5 indicated most confidence). Students rated their self-confidence in
tasks related to project management: programming, debugging, group commu-
nication, use of project management tools, prioritization of work, client com-
munication, and translating client vision into features. They were additionally
asked to rate their confidence in their ability to differentiate between educa-
tional, entertainment, and edutainment media. The free response questions

53

included space for students to identify what can make a video game an effec-
tive educational tool, best practices for identifying and understanding client
needs, and methods for ensuring a group completes assigned work on time. All
13 students took both the pre-test and post-test.

We performed a paired Student’s t-test on the rating scale questions to
gauge growth in student self-confidence between the pre-test and post-test.
Table 3 demonstrates the results of the t-test and the mean scores for the mea-
sured activities. The mean score is shown to have increased significantly. Since
each group successfully completed their games, we may infer their successes
demonstrated an overall increased confidence gained during the month in the
tasks referred in the tests.

Table 3: Summary of t-test on Pre-Test and Post-Test
p-value 0.0001

Confidence 95%
t 6.7499

Test Pre Post
Mean Score 3.279 4.332

Std. Deviation 0.764 0.493
Std. Error of Mean 0.212 0.137

Min. Score 2.250 3.375
Max. Score 4.375 4.875
Activity Pre Post

Programming 2.846 3.923
Debugging 3.000 4.000

Group Communication 3.692 4.462
Project Management Tools 2.461 4.077

Work Prioritization 4.000 4.462
Client Communication 3.923 4.462

Understanding Client Vision 2.769 4.154
Entertainment vs. Educational 3.538 4.615

4.2 Course Evaluations

The course evaluations were collected during the final week of classes. Each re-
sponse was anonymous and collected by the institution through a standardized
online form. When asked what was most effective about the course, one student
mentioned, “I think the freedom for groups to just start working independently
on games worked really well for a course meant to be about experiential learn-
ing. It made every little mistake and breakthrough a learning opportunity.”
This was rewarding feedback to receive since this student seemed to truly grasp

54

the purpose of the course. When comparing the course to others, another stu-
dent noted, “Most other computer science classes will create multiple labs or
assignments when this is not necessary. Being able to focus into a project and
have passion about it has been invaluable to my learning experience.” Another
student remarked that using Kanban was especially effective for their learning.

Of the 13 students in the course, 9 filled out course evaluations. All re-
sponded that the course and assignments positively contributed to their learn-
ing. Every respondent also indicated that, after taking this course, their inter-
est in the subject area increased. For the students, this was an irregular course
in the curriculum, and it would seem the course structure was particularly
effective and novel for all who provided evaluations.

5 Discussion

Given the feedback provided by students, it became clear this offering of an
educational game development course was effective in increasing students’ self-
confidence in key skills related to software project management. We consider
this course offering successful in accomplishing its goals. We can attribute this
accomplishment to a few key factors: the majority of learning was experiential,
students were frequently tasked to reflect on their learning, and there were
multiple layers of accountability to keep students progressing.

5.1 Free Range, Experiential Learning

Being a project-based course, the majority of in-class time was devoted to
group projects. This free range approach was effective in shepherding students
toward hands-on learning of course topics. Structure was provided to encourage
students to discuss design decisions with their peers, to share technical struggles
and triumphs, and to work together to successfully apply course concepts. This
took the form of mandatory daily standup meetings, daily progress reports
to the class, and instructor encouragement to share student insights for the
betterment of the class.

5.2 Frequent Opportunities for Self-Reflection

Select in-class activities concluded with a brief self-reflection survey where each
student would have to summarize the purpose of the activity in their own
words, to rate the effectiveness of the activity, and to reflect on what they
liked and disliked about it. This provided in-class time to reflect on learning
at least once per week. Additionally, students were asked to look back on their
progress toward their project each week by filling out their weekly client update
form. Each student had to summarize their own contributions, and the group

55

as a whole needed to determine how far along they believed they were relative
to both their own plan and their client’s expectations.

5.3 Layers of Accountability

Throughout the month students always had multiple layers of accountability to
ensure forward progress was being made on their projects. They were graded
for submitting a weekly client update which summarized the group’s contribu-
tions for the given week. This was submitted to the instructor and the client
for their review, ensuring that the instructor and client were being told the
same thing. Groups were also required to meet with their client once a week
at a time of their choosing. This ensured face-to-face time to clear up mis-
communications, to demonstrate progress to clients, and to encourage honest
dialogue for roadmapping the month.

Additionally, there were also three separate in-class peer feedback sessions.
In each session one student in each group would demo their game progress and
walk through their source code. Students from other groups would visit these
presenters and give feedback by filling out brief feedback forms. This feedback
was collected by the presenters and shared with their fellow group members at
the end of the session. Once the feedback was understood by all in each group,
the instructor collected the forms as part of the course participation grade.

Finally, students were given the option to submit assessments of their fellow
group members at the end of the month. This was a last chance at accountabil-
ity in case group communication had not corrected any inequitable divisions
of labor (taking into account relative student skill level). Only three students
filled out this optional form.

6 Conclusions

An important consideration for the success of this course was its scale. A
class size of 13 is quite small, and there was ample time for student-instructor
interaction in every class session. The enrollment also limited the number of
groups (thus projects to shepherd) to four. It is easy to imagine scaling issues
this course would experience if offered as-is with higher enrollment.

However, the benefit of providing students with real world experience while
still within the safety of the classroom cannot be overstated. In this course of-
fering, students on the whole saw a marked improvement in their self-confidence
across fundamental skills in software development and software project man-
agement. Through the lens of video games (an incredibly popular medium
for typical undergraduates), the students were able to engage with topics that
will benefit them throughout their computing careers: communicating to both
technical and nontechnical audiences, rallying a team around a shared goal,

56

independent programming and debugging, and realizing an idea into software
from inception to release. From their provided self-reflections and course evalu-
ations, it would seem they are also aware how profoundly the free range course
structure allowed them to make the most of this educational experience.

References

[1] Azim Abdool, Daniel Ringis, Aniel Maharajh, Lynda Sirju, and Hannah
Abdool. Datarpg: Improving student motivation in data science through
gaming elements. In 2017 IEEE Frontiers in Education Conference (FIE),
pages 1–5, 2017.

[2] Muhammad Ovais Ahmad, Jouni Markkula, and Markku Oivo. Kanban
in software development: A systematic literature review. In 2013 39th
Euromicro conference on software engineering and advanced applications,
pages 9–16. IEEE, 2013.

[3] Rodrigo Henrique Barbosa Monteiro, Maurício Ronny de Almeida Souza,
Sandro Ronaldo Bezerra Oliveira, Carlos dos Santos Portela, and Ce-
sar Elias de Cristo Lobato. The diversity of gamification evaluation in
the software engineering education and industry: Trends, comparisons and
gaps. In 2021 IEEE/ACM 43rd International Conference on Software En-
gineering: Software Engineering Education and Training (ICSE-SEET),
pages 154–164, 2021.

[4] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, et al. Manifesto for agile software development. 2001.

[5] Muhammad Shoaib Farooq, Ayza Hamid, Atif Alvi, and Uzma Omer.
Blended learning models, curricula, and gamification in project manage-
ment education. IEEE Access, 10:60341–60361, 2022.

[6] Bruce R. Maxim, Stein Brunvand, and Adrienne Decker. Use of role-play
and gamification in a software project course. In 2017 IEEE Frontiers in
Education Conference (FIE), pages 1–5, 2017.

[7] Marek Milosz and Elzbieta Milosz. Gamification in engineering education –
a preliminary literature review. In 2020 IEEE Global Engineering Education
Conference (EDUCON), pages 1975–1979, 2020.

[8] Ken Schwaber and Mike Beedle. Agile software development with scrum.
Series in agile software development, volume 1. Prentice Hall Upper Saddle
River, 2002.

57

Successfully Incorporating a Cyber Security
Competition into an Intro to Computer

Security Course∗

David Zeichick
Computer Science Department

California State University, Chico
Chico, CA 95926

dzeichick@csuchico.edu

Abstract

Competitions incorporated into a computer security class can comple-
ment the theoretical content and enhance the practical material. When
the material is taught in a fun and scaffolded way, computer security com-
petitions offer an invaluable hands-on learning experience for students.
However, experience shows that adding a competition as a supplemental
activity does not necessarily lead to success. The course must prepare
students for the competition, providing them with sufficient background
knowledge to successfully approach the challenges. Additionally, student
success and enjoyment depend upon group collaboration.

This research studied the evolution of an introduction to computer
security class over the period of fifteen semesters, as purposeful enhance-
ments based on student feedback were made to best incorporate the
National Cyber League competition into the course.

1 Introduction and Related work

The goal of selecting a method of instruction is to create a learning environment
in which students efficiently and effectively acquire skills and knowledge in a

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

58

way that is appealing to the student[6]. Over the last few decades, there has
been a paradigm shift in which teachers focus more on student learning than
teaching, giving more control to the student[1]. The idea is that students
independently form knowledge as the instructor acts as a guide through the
process[10].

Many terms have been used to describe this approach, such as flexible learn-
ing[19], experiential learning[2], self-directed learning, and the more apparent
student-centered learning[16]. Student-centered learning has been summarized
as focusing on 1) deep learning and understanding, 2) active rather than passive
learning, 3) student accountability, and 4) student autonomy[11].

Deep learning involves applying skills and knowledge to a real-world prob-
lem[13]. The effectiveness of this approach was demonstrated in a study by
Schwartz et al. that included 8,000 students at 45 universities and found that
the students whose high school science classes focused on depth outperformed
their counterparts whose high school science classes were breadth-focused[18].
For this to work, the student must be able to choose their learning path and
pace while receiving continuous, rapid feedback on their progress[13].

Active learning should focus on what the student is doing rather than what
the teacher does[5]. In the computer science field, cyber competitions such
as Capture the Flags (CTFs) have been used for active learning experiences
for over 20 years[17]. Adding a cyber competition as an activity for students
provides autonomy since students typically work on it at their own pace. Ad-
ditionally, the achievable goals and progress inherently designed into a cy-
ber competition meet the requirement for accountability in a student-centered
learning curriculum[7].

Competitions are instrumental in cyber security due to the complex nature
of the knowledge and skills included in the domain[9]. Adding a competition
to a class is a method of gamifying the curriculum, which has been shown to
make learning more fun, increasing the motivation to progress, and thereby
easing the burden of the complex material[14]. Competitions’ open-ended as-
sessment measures students’ progress and encourages them to freely expand
their skillset, pushing their limits[13]. Students have reported spending many
hours attempting to solve a challenge through their research on the Internet[3].
In fact, students’ motivation to solve challenges was significantly greater than
their effort toward traditional class assignments[3].

A student’s score in a competition is an effective way to measure learning.
Chothia and Novakovic studied the correlation between students’ understand-
ing of cyber security topics and their scores in a cyber security competition and
found that they correlate highly with[4]. Another benefit is that significantly
less cheating was discovered in a class involving a cyber security competition
than in a course involving traditional assignments[4].

59

Cyber security competitions have been in existence for many years; iCTF,
hosted by UC Santa Barbara, is one of the most significant and longest-running
annual events dating back to 2002[4]. The goal of a typical CTF is for a team
to attack an unpatched competitor’s host while at the same time defending
their vulnerable host[9]. An offshoot of this type of competition is CyberPa-
triot which involves high school students attempting to harden Windows and
Linux systems in the quickest[13]. Another type of cyber competition involves
students solving challenges in a jeopardy style where points are awarded for
each challenge solved with more points for more difficult challenges. One of
the largest competitions is the National Cyber League (NCL), in which over
ten thousand high school and college students participate every year.

The NCL is a biannual competition designed for high school through college
students to solve real-world cybersecurity problems[12]. There are four phases
to the NCL: 1) the Gym, which includes step-by-step instructions designed to
assist students in solving the fundamental challenges, 2) the Practice Game,
in which students are allowed to assist each other in solving challenges, 3) the
Individual Game where students work independently, and 4) the Team Game
where up to seven students work as a team. All four phases of the competition
include easy, medium, and hard questions from nine cyber security categories:
cryptography, password cracking, log analysis, network traffic analysis, foren-
sics, web application exploitation, scanning, enumeration and exploitation, and
open-source intelligence. These categories align with the National Institute of
Standards and Technology’s (NIST) National Initiative for Cybersecurity Ed-
ucation’s (NICE) work roles[15].

There are several published pitfalls related to incorporating cyber security
events into a course’s curriculum. First, not everyone likes to compete; trait
competitiveness refers to the extent to which people enjoy interpersonal com-
petition and the desire to win[8]. This problem can be exacerbated through the
use of leaderboards. Studies of leaderboards have been mixed, ranging from
showing favorable to showing adverse effects[8]. It is possible that this discrep-
ancy has to do with how leaderboards are related to the student’s grades for
the competition (this will be demonstrated in the findings of this research).

Next, not all CTFs are designed to encourage novice players[9]. This leaves
new players in a state of frustration; therefore, very little learning takes place.
This has compounding effects on students that are used to a traditional teach-
ing style in which they expect to be taught all that they need to know to solve
a particular challenge and get frustrated when presented with an unfamiliar
challenge[3]. Another related issue is that most competitions don’t include
partial credit; therefore when a student feels like they can’t solve a challenge,
they don’t even attempt it[9]. Lastly, a frustration among competitors is time
constraints[17]. Students who are required to compete as part of a class need

60

to balance the time they invest in a competition with other classwork.

2 Methods

This research studied the evolution of an introduction to computer security
class over fifteen semesters. The metrics used were anonymous surveys called
the student evaluation of teaching (SETs). This was given to all students near
the end of each semester in a required introduction to computer security class
for computer science students at a four-year university. In total, 547 out of 765
enrolled students completed the SET. This is an impressive 72% participation
rate. The same professor taught the class throughout the period studied. It
is important to note that this survey is given to all students at the university
and is not specific to the introduction to computer security class; it is a generic
survey created to apply to all courses at the university and therefore does not
mention anything about security competitions.

The first survey included in this research was from Spring 2013, the first
year the introduction to computer security class was taught. At the time of
inception, a computer security competition was not part of the curriculum.
It wasn’t until five semesters later, in the Fall of 2016, that the NCL was
incorporated into the class.

The class continued with minor changes in grading students on the com-
petition for seven more semesters. In the Spring of 2020, a post-competition
debrief was added, in which students shared their answers and struggles with
the competition with each other. Then, two semesters later, in the Spring
of 2021, major changes to the structure and grading of the class were imple-
mented. This involved rearranging the course material to cover all categories
of the NCL before the start of the competition[20]. Another change was that
students were given a set score to aim for, for a grade (1000 points would give
them an 85% for the lab) when in previous semesters, the students’ grade in
the competition was based on the final average grade across all students in the
class. Finally, the students were not required to participate in all phases of the
competition, leaving the Team Game as optional extra credit.

3 Results and Discussion

The impact of incorporating the NCL into the Introduction to Security class
was measured by analyzing the results of the SETs, which were completed
anonymously by the students each semester. The SETs include both quan-
titative and qualitative information. The quantitative score is based upon a
five-point scale, with one being the lowest and five the highest. The students

61

are also allowed to provide comments about their overall experience of the class.
These comments have been categorized based on any mention of the NCL.

The SETs include various questions about the quality of the teaching, the
course material, and the assignments. All of the SET questions were reviewed
to identify the questions that would be relevant to measuring the impact of
incorporating the NCL into the class. Two questions were found to be relevant:
1) the course assignments contribute to learning, and 2) the course increased
my knowledge of the subject.

3.1 Quantitative Results - SET Scores

The class was first taught in the Spring of 2013, and five semesters later,
in the Fall of 2016, the NCL was adopted. The introduction of the NCL
appears to have made a big impact, reflected in significant jumps in SET scores
for both questions being evaluated; the average score related to assignments
contributing to learning jumped from 4.45 to 4.77, which is a 7% increase, and
the score related to knowledge improved from 3.97 to 4.92, an impressive jump
of 24% (see figures 1 and 2 below). This increase was not maintained over
the subsequent nine semesters. However, the average pre-NCL introduction
to post-NCL introduction across all semesters showed a rise of 5% for the
assignment SET question and 11% for the knowledge-related SET question.
The Spring of 2017 knowledge-related SET question score was an outlier, with
a score of 4.21. After careful analysis of this semester, no reason was discovered
for this lower-than-average score.

Figure 1: SET results on a scale from 1 to 5 for the question about the course
assignments contributing to learning.

Another improvement in the SET score for the question on course assign-
ments contributing to learning occurred in the Spring of 2020 with the addi-
tion of a group assignment designed to disseminate knowledge gained from the
NCL (see figure 1 above). The group assignment involved self-forming groups
of three and describing how to solve one of the NCL challenges. They were

62

Figure 2: SET results, on a scale from 1 to 5, for the question about the course
increasing the students’ knowledge of the subject matter.

to post their solution on a Google Document shared with the entire class so
that the course could all learn from each other. The SET score increased on
average across all semesters by 5% from pre-assignment to post-assignment.

The next significant change to the curriculum occurred in the Spring of
2021. Based on comments from students (see the comments section later in
the paper), the class schedule was revamped to include instruction and labs on
eight of the nine cyber security categories. The only category not covered is
open-source intelligence since it involves the ability for students to Google for
information, a skill they can build on their own. This change involved front-
loading the class in which most of the labs were assigned in the first half of the
semester instead of the second half.

Another change introduced in the Spring of 2021 was how the NCL was
graded. In previous semesters students were graded on doing all three games:
the practice, individual, and team games. However, students commented that
this was too much of a time requirement. To address this issue, the team game
was no longer required and offered as an extra credit lab. The other grading
change was to their grade based on the points they scored. Before this change,
students were graded based on the average score of the class. The average was
constantly changing as students solved challenges. The class average from past
semesters was relatively consistent at 1000 points. Therefore, it was announced
before the start of the competition that for the students to earn a B (or 85%)
in the competition, they would need to score 1000 points. If they scored above
or below that amount, a sliding scale would be used to determine their grade.

The SET scores for both of the SET questions for Spring of 2021 were
the highest since the class’s inception and close to perfect. The score for the
question about course assignments contributing to learning was 4.94 out of 5,
and the question about the course increasing their knowledge of the subject
matter was 4.97 out of 5 (refer to figures 1 and 2 above).

63

3.2 Qualitative Results - SET Comments

The SETs include a section where students can include comments about the
class. In 2013, the prompt for the comments was generic. In the Fall of 2017,
this changed to have two separate comment sections with the prompts “what
did your instructor do to make this class a good learning experience for you”
and “what could your instructor do in the future to make this a better class.”
Therefore, there were two semesters, Fall 2016 and Spring 2017, in which the
comments section differed since the class had adopted the NCL. This change
greatly affected the number of comments that students made, increasing from
66% before Fall 2016 to 89% after. However, this change does not appear to
have affected the percentage of comments related to the NCL.

On average, 54% of the comments made about the class are NCL related. It
needs to be reemphasized that the SET does not mention the NCL by name and
includes the same questions in all courses across the university. So, without
any prompting about the NCL, on average, half of the students’ comments
were related to the NCL. Additionally, 48% of the comments pertaining to
the NCL were purely positive. For example, one student stated, "The NCL
competitions are a huge plus in being able to apply some of the knowledge
learned throughout the class.” Another student went as far as saying that the
“NCL really is the best part of this class. It really helps you get a feel for
security and what it entails.”

As stated above, 48% of the NCL-related comments are purely positive, so
what about the other 52%? The remaining NCL comments have been organized
into the following four categories: 1) the students didn’t feel prepared, 2) the
students didn’t like how the NCL was included in grading, 3) the NCL took
up too much of the students’ time, and 4) they just did not like the NCL. This
last category comprised just 4% of the overall NCL-related comments (5 out of
133 NCL-related comments over ten semesters). Almost a third, 29%, of the
comments related to students not feeling like they were prepared for the NCL.

The percentage of comments about not being prepared drops to 13% and
19% for Fall 2020 and Spring 2021, respectively (see figure 3 below). During
these two semesters, the purely positive comments comprised an average of
66% of the NCL-related comments. This period coincides with COVID and
the move of the class to a completely online format. Since the NCL is already
online, the move for this class and the competition was extremely smooth. The
spike in positive comments could correlate to their appreciation of the NCL
being available to them during the pandemic, while so many aspects of their
classroom and life were forced to change.

64

Figure 3: Percent of comments related to the NCL by category per semester.

4 Conclusions

Including the NCL as a series of labs in the class improved the SET scores for
the question regarding the course assignments contributing to learning and the
question about the course, increasing the student’s knowledge of the subject
matter by 5% and 11% on average, respectively. Unprompted, the students
mention the NCL in just over half of their comments. Almost half of the NCL-
related comments were completely positive, about a third commented about
how they didn’t feel prepared. The remaining either didn’t like how the NCL
was incorporated into their grade, thought the NCL was too time-consuming.
In response to feedback from the students, adjustments to the class were made,
further improving the SET scores (see figure 4 below).

These statistics point to a very favorable attitude towards the NCL. The
students appear to enjoy the NCL and appreciate how it furthers their learning
with applicable computer security-related skills. This is summed up with the
following student’s comment: “The addition of a competition to this class . . .
really allows you to learn a lot. It is clear that the topics in the NCL are a much
more in-depth and complex look at what we learn in regular class time, so if
you want to spend the extra time and learn all about security, this provides a
great opportunity to dive deeper.”

65

Figure 4: Summary of adjustments made to the class based on student com-
ments.

References

[1] Robert B Barr and John Tagg. “From teaching to learning—A new
paradigm for undergraduate education”. In: Change: The magazine of
higher learning 27.6 (1995), pp. 12–26.

[2] Philip Burnard. “Carl Rogers and postmodernism: Challenges in
nursing and health sciences”. In: Nursing & Health Sciences 1.4 (1999),
pp. 241–247.

[3] Martin Carlisle, Michael Chiaramonte, and David Caswell. “Using
{CTFs} for an Undergraduate Cyber Education”. In: 2015 USENIX
Summit on Gaming, Games, and Gamification in Security Education
(3GSE 15). 2015.

[4] Tom Chothia and Chris Novakovic. “An Offline Capture The
{Flag-Style} Virtual Machine and an Assessment of Its Value for
Cybersecurity Education”. In: 2015 USENIX Summit on Gaming,
Games, and Gamification in Security Education (3GSE 15). 2015.

[5] Joy Crosby RM Harden. “AMEE Guide No 20: The good teacher is
more than a lecturer-the twelve roles of the teacher”. In: Medical teacher
22.4 (2000), pp. 334–347.

[6] Melissa Dark. “Advancing cybersecurity education”. In: IEEE Security
& Privacy 12.6 (2014), pp. 79–83.

[7] Juho Hamari, Jonna Koivisto, and Harri Sarsa. “Does gamification
work?–a literature review of empirical studies on gamification”. In: 2014
47th Hawaii international conference on system sciences. Ieee. 2014,
pp. 3025–3034.

[8] Christoph E Höllig, Andranik Tumasjan, and Isabell M Welpe.
“Individualizing gamified systems: The role of trait competitiveness and
leaderboard design”. In: Journal of Business Research 106 (2020),
pp. 288–303.

66

[9] Menelaos Katsantonis, Panayotis Fouliras, and Ioannis Mavridis.
“Conceptual analysis of cyber security education based on live
competitions”. In: 2017 IEEE Global Engineering Education Conference
(EDUCON). IEEE. 2017, pp. 771–779.

[10] David Kember. “A reconceptualisation of the research into university
academics’ conceptions of teaching”. In: Learning and instruction 7.3
(1997), pp. 255–275.

[11] Susan J Lea, David Stephenson, and Juliette Troy. “Higher education
students’ attitudes to student-centred learning: beyond’educational
bulimia’?” In: Studies in higher education 28.3 (2003), pp. 321–334.

[12] National Cyber League. National Cyber League.
https://nationalcyberleague.org.

[13] Daniel Manson and Ronald Pike. “The case for depth in cybersecurity
education”. In: Acm Inroads 5.1 (2014), pp. 47–52.

[14] Cristina Ioana Muntean. “Raising engagement in e-learning through
gamification”. In: Proc. 6th international conference on virtual learning
ICVL. Vol. 1. 2011, pp. 323–329.

[15] NICCS. The Workforce Framework for Cybersecurity (NICE
Framework) Work Roles | NICCS.
https://niccs.cisa.gov/about-niccs/workforce-framework-
cybersecurity-nice-framework-work-roles.

[16] Geraldine O’Neill and Tim McMahon. “Student-centred learning: What
does it mean for students and lecturers”. In: (2005).

[17] Aunshul Rege. “Multidisciplinary experiential learning for holistic
cybersecurity education, research and evaluation”. In: 2015 USENIX
Summit on Gaming, Games, and Gamification in Security Education
(3GSE 15). 2015.

[18] Marc S Schwartz et al. “Depth versus breadth: How content coverage in
high school science courses relates to later success in college science
coursework”. In: Science education 93.5 (2009), pp. 798–826.

[19] Peter G Taylor. “Changing expectations: Preparing students for flexible
learning”. In: International Journal for Academic Development 5.2
(2000), pp. 107–115.

[20] David Zeichick. Incorporating the NCL into an intro to computer
security class. https://express.adobe.com/page/C9rJsqx6cVKaL/.

67

A Survey of Cloud-hosted, Publicly-available,
Cyber-ranges for Educational Institutions∗

Stu Steiner1, Ananth Jillepalli2, Daniel Conte de Leon2

1Eastern Washington University, Spokane, WA 99202
2University of Idaho, Moscow, ID 83844

ssteiner@ewu.edu, ajillepalli@ieee.org, dcontedeleon@ieee.org

Abstract

Creating, deploying, maintaining, and updating cybersecurity hands-
on labs is difficult at best, if not impossible for small to mid-size colleges
and universities with limited faculty and staff. For each faculty member
there is a trade off between creating hands-on labs versus actual instruc-
tion time. Both are important and the individual faculty member has to
make a choice of what is best for their individual students.

In this research we conducted a survey of cloud-hosted, publicly-
available cyber-ranges. This work doesn’t explain how to create a cyber-
range, instead it classifies each cyber-range based on five different cate-
gories including: classroom management, type of labs, number of labs,
supplementary reading materials, and license management. Further-
more, we investigate the cost per student based on a variety of factors.

1 Introduction

There is an increasing global need for workforce ready trained cybersecurity
professionals [3]. Being workforce ready means students are trained with hands-
on exercises [1]. There are several methods for developing and deploying hands-
on exercises for a cohort of students. Select methods include: (i) develop from
scratch, deploy locally [1, 3]; (ii) develop from scratch, deploy on cloud [2];
(iii) curate existing labs, deploy locally [1, 3]; (iv) curate existing labs, deploy
on cloud [2]; or (v) use a cloud-hosted, publicly-available service that has all

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

68

the needed labs for a specific training program. Methods (i) through (iv) are
not the focus of this manuscript; we focus on facilitating use of a cloud-hosted,
publicly-available cyber-range for educational institutions (v). A Cyber-range
is defined as "A computing environment that enables the simulation of dig-
ital devices and their associated networks, including desktops, workstations,
servers and services, mobile and IoT and/or ICS devices, switches, routers,
firewalls, and other digital infrastructure items, with varied levels of complex-
ity and fidelity, and for the purposes of supporting the safe and secure execution
of cybersecurity exercises and experiments for instructional, research, and/or
evaluation purposes.”

Cyber-ranges are useful for instructors who may not have extensive com-
puting infrastructure available, and want to minimize the initial required setup
time. Furthermore, they enable students to access hands-on exercises in a plug-
and-play environment.

1.1 Current Problem

Today, it is a challenge to identify cloud-hosted and publicly-available cyber-
ranges that fit the requirements for a specific cybersecurity course [4]. Several
characteristics of the platform and content need to be considered by the in-
structor to understand which cyber-range service can best achieve their course
objectives.

Our investigatory question was: “Which turn-key and ready-to-use cloud-
hosted cyber-ranges are available for enabling students to perform hands-on
activities for a given cybersecurity-focused course?”

We searched Google Scholar for published works that attempted to address
the question posted above. In our search, we found many articles reporting on
cyber-ranges, but none that addressed the question. Most currently available
articles are descriptions of the design and/or implementation of private research
or educational cyber-ranges. There is a lack of literature describing cloud-
hosted, publicly-available, education-focused, cyber-range services.

1.2 Contribution

In this article our goal is to help the cybersecurity educational community
answer the question above. We achieve this goal by providing enough informa-
tion and resources including a list of available cyber-range offerings. We intro-
duce and classify their characteristics, present the pricing modes and known
pricing estimates, and attempt to estimate the cost per-student, per-semester
for two example courses. The focus of this manuscript is turn-key, ready-to-
use, cloud-hosted cyber-range platforms that require no infrastructure setup or
maintenance, that can be accessed with a web browser.

69

2 Available Cyber-Ranges

We conducted a search for cloud-hosted, publicly-available, education-oriented
cyber-ranges. Our findings are presented in Table 1. This list of cyber-ranges is
valid as of May 19 2022, and may be referred to as service or service providers.

List of Cloud-hosted, Publicly-available
Cyber-Ranges for Educational Institutions

Name CM TL SRM LM NL
CompTIA [comptia.com] N SS BI ISM NA
CyberBit [cyberbit.com] F H NB IM 1300+
EC-Council [eccouncil.org/] N SS BI ISM NA
EDURange [edurange.org] P H NB ISM 8+
Hack The Box [hackthebox.org] F SG NB ISM 90+
Immersive Labs [immersivelabs.com] F H NB IM 1500+
Infosec Learning [infoseclearning.com] F H BI ISM 300+
Jones & Bartlett [jblearning.com] F H BS ISM 120+
NICE Challenge [nice-challenge.com] F H NB IM 70+
Project Ares [projectares.academy] F H NB ISM 400+
RangeForce [rangeforce.com] F H NB ISM 400+
Testout [testout.com] P SS BI ISM 120+
ThriveDX [thrivedx.com] P SG NB ISM 150+
Try Hack Me [tryhackme.com] F H NB ISM 500+
uCertify [ucertify.com] F SS BI ISM NA

Table 1: Displays evaluated cyber-ranges and their characteristics. KEY:
Classroom Management (CM): classifiers N : None, F : Full, P : Partial.
Type of Labs (TL): classifiers SS : Step-by-Step, H : Hybrid, SG : Self-Guided.
Supplementary Reading Materials (SRM): classifiers BI : Book Included,
BS : Book Separate, NB : No Book. License Management (LM): classifiers
ISM : Individual Student or Institution Managed, IM : Institution-Managed.
Number of Labs (NL): classifiers NA: Not Applicable, Number of Labs
Available.

2.1 Characteristics of Available Cyber-Ranges

We characterize service providers using the following five criteria: (i) Class-
room Management, (ii) Type of Labs, (iii) Number of Labs, (iv) Supplementary
Reading Materials, and (v) License Management.

70

2.2 Classroom Management

Classroom Management criteria defines the service provider’s available instruc-
tor ready student management tools. We evaluated the following classroom
management tools including: (i) student progress tracking, (ii) teams creation,
(iii) team progress tracking, and (iv) grade management. Student progress
tracking refers to the ability to provide the instructor with information re-
garding a student’s status in completing lab tasks. Teams creation refers to a
group creation feature that the instructor can use to form teams and assign the
teams a set of lab tasks. Team progress tracking refers to the tools provided
for the instructor regarding a team’s status in completing lab tasks. Grade
Management refers to a module which can be used by the instructor to grade
submitted lab task activities.

The classroom management criteria is classified as: (i) Full, (ii) Partial, and
(iii) None. Full indicates the service provider supports all the listed criteria.
Partial classifier indicates the service provider supports a portion of the listed
criteria. None indicates the service provider does not support the listed criteria.

2.3 Type of Labs

Type of Labs criteria that define the nature of provided lab activities provided
for both the students and the instructor include: (i) Self-Guided, (ii) Step-by-
Step, and (iii) Hybrid. Self-Guided indicates the service provider has activities
that are predominantly student driven, meaning the student is expected to
perform the activities without being given an outright solution. Step-by-step
indicates the service provider has activities that are predominantly driven by
provided instructions, meaning the students are provided a significant amount
of help in performing the activities. Hybrid indicates the service provider
activities are a mix between the self-guided and step-by-step.

2.4 Supplementary Reading Materials

Supplementary Reading Materials criteria defines if additional reading resources
are provided including: (i) Book Included, (ii) Book Separate, and (iii) No
Book. Book Included indicates the service provider issues a print or eBook
textbook to complement the hands-on labs. Book Separate indicates the sup-
plementary reading material can be purchased for an additional fee. No Book
indicates there is no supplementary reading material.

2.5 License Management

License Management criteria indicates the type of license management provided
by the service provider, including: (i) Individual Student and (ii) Institution

71

Managed. Individual Student indicates each student purchases the service
provider software license. Individual licenses are purchased via directly at the
service provider’s website or at an institution’s bookstore.

Institution Managed refers to the department or the instructor purchasing
all the licenses for a class. Once the licenses are purchased, the instructor will
assign each individual a license. Advantages of institution managed licensing
include, some services provide volume purchase discounts, and class roster
changes are easily managed without a cost penalty to a student that drops.
Institution managed licensing can be passed onto the students as course fees.

2.6 Number of Labs

Number of Labs criteria defines the number of lab activities provided by the ser-
vice including: (i) Cloud, (ii) Local Installation Service Provider Software, and
(iii) Local Installation No Service Provider Software. Cloud activities are per-
formed on remotely hosted system environments, and are potentially accessed
via a web browser. Local Installation Service Provider Software activities re-
quire the user to install the activities environment on a non-service provider
local system. Local Installation No Service Provider Software are activities the
user conducts on a local machine without installation of any service provider
software.

3 Pricing Modes and Costs of Available Cyber-Ranges

We discuss pricing mode criteria and costs for the service providers discussed
in Section 2. The information provided in the section lists the pricing modes
and costs for the cyber-ranges listed in Table 1.

3.1 Pricing Modes

In our survey we encountered three types of pricing modes, (i) Ranged, (ii)
Fixed, and (iii) No Cost. Service providers final costs for Ranged pricing mode
are dependent on several factors including number of modules, number of labs,
number of students, type of licensing, and type of classroom management.
Ranged classifiers include: Ranged, based on modules selected; Ranged, based
on the number of students; Ranged, based on the number of modules (labs)
and/or number of students selected; and Ranged, based on the tier selected.
Institutions Service providers final costs for Fixed pricing mode represents a
singular cost. A few services are available at no cost for US-based non-profit
institutions.

72

Approximate Costs of Cyber-Ranges listed in Table 1
Name PM Costs (40 students)
CompTIA RM $180 to $240 /student/year
CyberBit RMS $1200 to $1500 /student/year
EC-Council RM $50 to $1200 /student/year
EDURange NC $0
Hack The Box RT $117 /student/3 months
Immersive Labs RMS $40k to $150k /class/year
Infosec Learning RMS $800 /student/year
Jones & Bartlett Learning RM $100 to $350 /student/year
NICE Challenge Project NC $0
Project Ares RM $15 to $225 /student/month
RangeForce RS $500 /class/year
Testout FC $120 /student/18 months
ThriveDX FC $100 /student/5 months
Try Hack Me RMS $10 to $25 /student/month
uCertify FC $140 /student/18 months

Table 2: Displays the pricing mode and costs for the cyber-ranges listed in
Table 1. KEY: Pricing Mode (PM): Classifiers RM : Ranged, Modules
Selected; RS : Ranged, Number of Students; RMS : Ranged, Number of Modules
and/or Number of Students; RT : Ranged, Tier Selected; FC : Fixed Costs; NC :
No Cost.

3.2 Costs

Costs listed include customized quotes from some of the service providers. Such
customized cost quotes vary from one institution to another due to factors, such
as number of students, number of labs, number of courses, and length of the
contract. We encourage interested instructors to contact the respective service
providers directly without harboring any cost expectations.

4 Two Course Case Studies

In this subsection we introduce two case studies and an estimate of the hands-
on activities for each course. The purpose of these case studies is to allow us
to compare offerings and corresponding per-student, per-course, cost estimates
of using the described cyber-ranges.

As part of the pricing model, most commercial cyber-ranges will provide
customized content for each course based on the cybersecurity objectives of
the course. Furthermore, most of the listed cyber-ranges in Table 1 have some

73

free content that is limited. For example, RangeForce has a free community
edition with a total of 30 modules. These modules provide limited hands-om
labs for Orange Team, Yellow Team, Blue Team, and Purple Team.

The first case study is for a freshman/sophomore course where the students
have no/limited cybersecurity knowledge. The second case study is for a senior
level network security course, that has prerequisites of the course from the first
case study, and networking background.

In order to normalize the student cost/labs across both quarter and semester
schools, the case studies are built on a 12-week course. Furthermore, each
course has objectives that are mapped to the NIST/NICE framework. The de-
tails for each course are discussed below. NOTE: the course numbers and titles
are fictional. The NICE/NIST knowledge units can be found at: https://dl.
dod.cyber.mil/wp-content/uploads/cae/pdf/unclass-cae-cd_ku.pdf

4.1 Case Study 1: Cybersecurity Fundamentals

This course presumes the students have no cybersecurity experience. The
course objectives are aligned with the Center of Academic Excellence in Cy-
bersecurity outcomes of: Cybersecurity Foundations, Cybersecurity Principles,
IT System Components, and Basic Cryptography.

4.1.1 Case Study 1: Cyber Ranges Utilized

The content for this course is built around CompTIA Security+. The students
in this course require significant instruction and significant direction when it
comes to labs. The hands-on labs are structured based on the free version
of Immersive Labs and the paid content of uCertify. The students purchased
uCertify out of pocket as the required textbook.

The Immersive Labs’ free content requires the students to complete a num-
ber of interactive hands-on labs outside of class. Some of the labs are step-by-
step, and a majority of the labs are hybrid. The students create a free account,
they enroll and complete the assigned labs, and they submit a PDF that is a
screen capture of the completed lab in the appropriate Learning Management
System (LMS). The grading is usually conducted on a scale where students
receive a 0 for no submission, a 1 for an incomplete lab, and a 2 for a fully
completed lab. Immersive Labs and uCertify were chosen based on cost and
the combination of step-by-step and hybrid labs.

The uCertify content is all inclusive, including an online textbook, labs that
correspond to the chapters in the textbook, quizzes, and flashcards. uCertify
seamlessly integrates with the popular LMS. uCertify also has multiple pretests,
and post-tests to assess the students’ knowledge and to prepare them for the
actual exam if the students so desire.

74

4.1.2 Case Study 1: Cyber Range Costs

For this course the six month version of uCertify was chosen for approximately
$84 per student. The course was structured around the students reading the
chapter content before class, and then the instructor supplementing the mate-
rial with lecture. The uCertify labs were assigned as both in-class labs, where
the instructor was present to answer questions, and take home labs, where the
students logged in from home on their own time and completed the lab. In
either scenario, once the student completed the lab it automatically updated
in the LMS. Based on the readings, the lectures, and the labs, both uCertify
quizzes and instructor made quizzes were administered.

4.1.3 Case Study 1: Cyber Range Evaluation

The use of Immersive Labs helped introduce the basic concepts. The use of
uCertify then solidified those basic concepts through the uCertify labs. The
uCertify labs were basic and step-by-step; however, since this was the students’
first exposure, the labs satisfied the learning outcome expectations of an intro-
ductory course. One problem was the uCertify access through the web browser
was slow. Another problem was integration of the LMS and uCertify. The
uCertify LMS interface was difficult to use.

4.2 Case Study 2: Network Security

This course presumes the students have extensive cybersecurity experience,
including all the prerequisites. The course objectives are aligned with the
CAE outcomes of: Network Defense (NDF), Network Technology and Protocols
(NTP), and Penetration Testing (PTT).

4.2.1 Case Study 2: Cyber Ranges Utilized

The content for this course is built around traditional network security topics
like the SEED labs [2] and basic penetration testing concepts. The course
usually starts with a review of networking concepts, specifically networking
technologies and protocols, including the protocol weaknesses. The students in
this course don’t require significant instruction or significant direction related
to the labs. HTB was chosen for the cost and the learning academy. The cost
per license was $90 and we paid from course fees. There was no out of pocket
student expense.

The students completed a set number of learning modules from the Academy
subscription. Like the Immersive Labs from Case Study 1, there was no LMS
integration; therefore, students were required to submit a PDF. For the En-
terprise HTB, the students were assigned dedicated boxes that required the

75

students conduct penetration testing based on the Academy learning mod-
ules. The instructor occasionally lectured, usually offering a walk through of
a dedicated box based on the Academy learning concepts. The students were
required to submit a PDF screen capture illustrating their progress on the
dedicated box.

4.2.2 Case Study 2: Cyber Range Costs

The three month subscription to Hack The Box (HTB) was chosen. HTB
requires two different subscriptions. The students are required to purchase
the monthly $18 subscription from Academy HTB. For the dedicated boxes
for the penetration testing portion, the department purchased the Enterprise
HTB licenses for $90 per student.

4.2.3 Case Study 2: Cyber Range Evaluation

One regret we have from this case study is we did not require formalized pen-
etration testing write-ups explaining the processes the students used to pene-
tration test the box.

Responses to the end-of-quarter course evaluation survey showed the stu-
dents found the HTB content to be beneficial in achieving course learning
objectives. The students enjoyed trying to penetration test the box to discover
the hidden flag. The students were split on the Academy learning modules,
based on the required time to read and complete the hands-on labs. For the
instructor there was no LMS integration. The HTB management interface was
easy to use; however, if a student encountered a problem with their license,
trouble shooting was slow and cumbersome due to the time differences between
the US and the United Kingdom. A difficult challenge was finding the correct
balance between lecture and self-study based on the assigned HTB Academy
modules. HTB would be beneficial to students that work well independently
over a lecture based course such as this case study.

5 Conclusion

It is important to disclose that what was presented above is a potential example
of usage. Other courses designed in a different way and/or with different as-
signment of activities would result in a different pricing outcome. We strongly
suggest not to interpret the data shown above as the authors’ recommendation
for any one particular cyber-range. Each of the presented cyber-ranges pro-
vide different offerings with different cost and functionalities and very disparate
pricing modes. The answer to the question of which offering is the optimal of-

76

fering for a given course will depend heavily on the length of the course and
the particular selection of activities.

In this manuscript we investigated, classified and analyzed turn-key, ready-
to-use, cloud-hosted cyber-range platforms that require no infrastructure setup
or maintenance. Our conclusion is, this classification and analysis should be
beneficial to small to medium sized colleges and universities that have limited
faculty, and resources needed to provided sufficient hands-on labs to its cy-
bersecurity students. Ultimately it is the decision of each university on how
the cost per student will be amortized across the student population. Future
work includes a comparative analysis of the listed services as observed during
deployment in additional courses.

It is our goal that this foundation survey benefits every school looking to
incorporate hands-on labs in their courses without having to create, deploy,
maintain and update the labs.

6 Disclosures and Acknowledgements

The authors certify that they are not affiliated with any of the cyber-ranges
described in this article or their sponsoring organizations or companies, other
than having evaluated or used some of these offerings in some of our courses.

We would like to thank staff representatives from services listed in Table 1
for providing us with demonstrations and other relevant information regarding
their respective services.

References

[1] Daniel Conte de Leon, Ananth A. Jillepalli, Victor J. House, Jim Alves-
Foss, and Frederick T. Sheldon. Tutorials and Laboratory for Hands-On
OS Cybersecurity Instruction. Journal of Computing Sciences in Colleges,
34(1), October 2018.

[2] Wenliang Du. Seed: Hands-on lab exercises for computer security educa-
tion. IEEE Security and Privacy Magazine, 9(5):70–73, 2011.

[3] Ananth A. Jillepalli, Daniel Conte de Leon, and Frederick T. Sheldon.
CERES NetSec: Hands-on Network Security Tutorials. Journal of Com-
puting Sciences in Colleges, 33(5):88–96, May 2018.

[4] Vasileios Mavroeidis and Audun Jøsang. Data-driven threat hunting using
sysmon. In Proceedings of the 2nd International Conference on Cryptogra-
phy, Security and Privacy. ACM, 2018.

77

Hands-On SQL Injection in the Classroom:
Lessons Learned∗

Jens Mache1, Carlos García Morán1, Nic Richardson1,
Wyeth Greenlaw Rollins1, Richard Weiss2

1Lewis & Clark College, Portland, OR 97219
{jmache, carlos, nrichardson, wyethg}@lclark.edu

2The Evergreen State College, Olympia, WA 98505
weissr@evergreen.edu

Abstract

SQL injections remain a serious security threat to applications using
databases. In this experience paper, we report on teaching SQL injection
hands-on using the EDURange platform in two different undergraduate
courses, Web Development and Databases. We analyze the results from
a voluntary survey with answers from 17 students who took the Web
Development course and from 8 students who took the Database course.
We focus our discussion around several lessons we learned, including the
importance of guiding questions, covering unions and padding, and how
to deal with the possibility of students adversely modifying the learning
environment.

1 Introduction

Web-facing applications are common targets for attackers who seek to expose
sensitive information such as passwords or credit card information. The list of
the top ten security risks in 2021 at the Open Web Application Security Project
(OWASP) [6] shows injection vulnerabilities as number three. This category
includes SQL injection. Injection attacks can occur when unsanitized user

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

78

input is included in executed statements. These types of attacks are often used
to gain access to sensitive information in SQL databases. Taylor et al. [8] have
surveyed seven popular database textbooks and found that most of them do
not cover this topic adequately. To address this problem, we have developed an
exercise to teach students how SQL injections work and how to prevent them,
which were the learning goals for the exercise we created.

One could discuss SQL injection attacks in class, but hands-on exercises
are critical for learning and engagement. In this experience paper, we explore
hands-on teaching platforms and discuss our experience teaching SQL injection
using the EDURange platform [10, 2]. Our main goal was to explore how to
teach SQL injection and what the obstacles might be.

2 Related Work

Numerous hands-on exercises have been created to aid the teaching of SQL
injection. Yuan [11] describes eight web security labs, three of which deal with
SQL injection. However, they are primarily focused on vulnerability detection
and testing. They found that the “real-world” aspects of the exercises made
the material more interesting to students. Du [3] outlines the labs of the SEED
project, one of which focuses on SQL injections.The EDURange version goes
beyond these attacks and can also run in the cloud or locally. Most important
is that EDURange exercises are extensible by the instructor.

Li et al [4] outline eight security labs that can be played in two modes: war
mode and peace mode. War mode has students work as ethical attackers while
peace mode has students attempt to prevent attacks. However, the war mode
has not been developed for the SQL injection lab.

The Web Application Hacker’s Handbook and the accompanying Portswig-
ger website [7] have an extensive set of exercises. They provide an overview of
SQL injection that includes an injection cheat sheet and a video explanation
of the topic. They also provide injection samples to accomplish different goals
such as retrieving hidden data, subverting application logic, UNION attacks,
examining the database, and blind SQL injection. Alongside the explanatory
information, they provide 16 labs. Each lab contains the author’s solution as
well as community solutions in the form of videos. A few of the labs require the
user to accomplish the same goal on different SQL implementations (MySQL,
Oracle, etc). While focusing on multiple implementations might be appropri-
ate for deeper dives into SQL, this can cause confusion in introductory SQL
exercises. The Portswigger labs [7] require Burp Suite or other tools to com-
plete the later labs. Burp Suite is a web security testing tool with the ability to
intercept and modify HTTP requests made by the client. This capability is re-
quired in order to complete Portswigger’s blind SQL injection labs. However,

79

this could cause unnecessary friction during in-class activities. Portswigger
contains a large body of work and might be too much to be included in Web
or database classes. The EDURange containers provide all of the necessary
software tools and tries to pare down the scope of the exercise while including
some complex but important examples.

Basit [1] created a platform with 12 challenges to introduce students to SQL
injection. Unfortunately, the levels hosted at www.databases.cs.virginia.
edu/sqlinject/ are no longer available. They attempt to structure the levels
in a way that each level builds on the previous. Level one asks students to create
a SQL injection that will expose all usernames contained within a “users” table.
The hint gives students the answer. Level two has the student create a SQL
injection that exposes the names of other tables in the database. This is a big
leap. It requires the student to be familiar with the implementation-specific
SQL table called information_schema.tables. EDURange addresses some of
the problems of bridging the gaps between levels by using guiding questions.
In addition, EDURange is flexible. Instructors can easily modify exercises by
adding their own questions or by inserting/deleting levels based on classroom
data that is collected and student feedback.

3 Levels and courses

The goal of the EDURange SQL CTF (capture the flag) exercise is to teach
students why SQL injections are important, how they work, and how to prevent
them. It applies to any web application with a database back end.

Our exercise has three levels. Students are given the following information:
the queries for level 1 (SELECT * FROM countries WHERE name=’<ARG>’;)
and level 2 (SELECT * FROM books WHERE author LIKE ’%<ARG>%’;),
and a hint for level 3 ("count the number of columns in the table").

Fig. 1 shows level 3 after input without SQL injection. Fig. 2 shows level
3 after a successful SQL injection.

Figure 1: Level 3 after ‘2010’ has been entered.

80

Figure 2: Level 3 after a successful SQL injection.

Students were also given the following guiding questions:

1. What is a "comment" symbol?

2. What boolean operator did you use to dump the table from level 1?

3. What is the flag for level 1?

4. What special character is the LIKE query using in level 2?

5. What is the flag for level 2?

6. What keyword could you use to query two combined tables?

7. What is the flag for level 3?

8. What is the password for user "backdoor"?

In Spring of 2022, we taught SQL injection in two undergraduate courses,
web development and databases, using the EDURange platform. Students in
the database class had spent several weeks writing SQL queries, while those in
web development only had about one week. The same instructor introduced
the same exercise in both classes.

In the web development course, students had an hour long class period on
one day to mostly independently try to answer the questions. They were asked

81

to spend an additional hour after class to continue exploration. The next two
class days provided more time and review, but also introduced another topic.

In the database course, one of the co-authors of this paper (who had been
sitting in the back for most of the term) was invited to give a guest appearance.
The same SQL injection exercise was used. Since the time available was limited
to about 40 minutes of one class day, the instructor showed a guided walk-
through in which the students could follow along.

4 Student survey

In both courses, in an anonymous survey, students were asked six questions
on a 5-point Likert scale. They were also asked the two following open-ended
questions: "What problems did you encounter in completing the lab?" and
"What changes could be made to the lab to enhance your learning?"

Figure 3: Survey results from the web development course.

We received responses from 17 students in the Web Development course
and 8 students in the Database course. Most students in the Web Develop-
ment course found the activity to be interesting and challenging. Looking at
the graph, a theme emerges suggesting students in this course wanted more

82

Figure 4: Survey results from the databases course.

guidance before and during the activity. In the two open-ended questions,
Web Development students reported that they felt confused or “unsure what
to do a lot of the time.”

In contrast, more students in the databases course agreed that the activity
was interesting and helpful to build their understanding of the course material.
The database students’ answers to the open-ended questions suggest they were
less confused about how to complete the exercises. There was a higher demand
for independence rather than guidance during the exercises. One student re-
sponded saying they would have liked “[m]ore time to sit and think about how
to solve the problems, [and] less time spent being told how to do them.”

5 Lessons Learned

5.1 Guiding questions

This feedback from the students helped to inform our lessons learned. Specifi-
cally, it helped to demonstrate the importance of guiding questions in leading
students through the exercises. Where the web development class could have
used better hints and guiding questions, the database students could have ben-

83

efited from more variety in the types of SQL injections used and more time to
solve the problems on their own. It is clear that platforms used to teach SQL
injection must be flexible. Instructors should be able to adjust questions to
match the level of difficulty and guidance which will suit the students best. The
EDURange platform [2] now includes an editable YAML file which instructors
can use to change and rearrange the guiding questions associated with the ex-
ercise. Guiding questions are especially useful for advancing to levels where it
is difficult to get the solution by trial and error, as in the case of padding (to
force matching numbers of columns in an UNION statement).

5.2 UNION attacks and padding

The UNION operator is used to combine the result-set of two or more SELECT
statements. It can be used to spill secrets from tables other than the one in
the original query. However, to use UNION, each SELECT statement must
produce the same number of columns with the same data types. The former
can require padding, a topic that some students may be unfamiliar with and
find difficult to grasp. We have seen multiple approaches to padding. Some
exercises avoid padding altogether by only using a single column while others
try to demonstrate the best methods for finding a table’s dimensions. We
believe that it is important to address padding as it is often needed to display
data on the site that is being attacked. We feel that it is most beneficial to start
with a simplified example using only one or two columns (to avoid the need for
padding), before demonstrating methods to count columns for padding.

5.3 Progression of levels

Level 1 of our exercise introduces comments, quotes and logic. These rudimen-
tary parts of SQL injections are easy to utilize. With this knowledge students
can start to retrieve unintended information and gain unwanted access. After
students have used these ideas, they are ready to bypass common prevention
measures such as blocking all comment symbols. This leads to an opportu-
nity for students to learn that different representations (like ASCII) for these
characters can be used in their place. Next, students can be introduced to
queries that use the LIKE clause and how wildcards can be used to match
common names of tables, columns, etc. After these concepts, students can be-
gin forming injections that query information about the database itself. This
may include the version, table names, and the number of rows or columns. At
this point, padding should be discussed as it is common for the number or type
of columns returned by the injection to not match those of the original query.
It is our opinion these introductory exercises should only use one SQL flavor
as the use of multiple may cause unnecessary confusion. Guiding questions
should be provided for each level.

84

5.4 How to handle "DROP TABLE"

After students learn these new and intriguing techniques, our hope is that they
will get satisfaction out of putting them into practice and experimenting with
new ideas. Unfortunately, the place students may attempt this experimentation
is on our site (that hosts the hands-on exercise). This can cause problems if
the appropriate precautions are not taken. One of the more harsh injections
a testbed needs to be ready for is students attempting to drop tables. This is
something that we experienced during the first iteration of our exercise. Fig.
5 shows the apologetic email we got from a student.

Figure 5: Email from a student.

How to combat this while still giving students the opportunity to exper-
iment with SQL injections? One resource-intensive option would be to have
individual containers or databases for every student. This would allow students
to experience destruction without damaging the learning environment for other
students. In our current setup, we try to detect and prevent the DROP com-
mand and similar statement that alter the state of the database. We do notify
the student when we detect a potentially destructive command. At any rate, it
is recommended to be ready (with scripts) to rebuild the learning environment
to its original state.

5.5 Learning Environment

We believe an important part of a learning environment includes hands-on
activities. Hands-on activities give students many opportunities to actively
participate in the classroom and aid their learning. With interactive platforms,

85

we can allow students to test their knowledge immediately and help them retain
the knowledge and get assistance if needed. Cloud-based learning platforms
eliminate barriers to entry for students as well as many compatibility issues
which could limit students. Often with local environments, a lot of the student’s
time could easily be taken up by attempting to set up the environment instead
of being able to practice the material at hand. Additionally, we believe that
gamification is a very strong way to maintain student interest and help them
enjoy the material. Some common ways we implemented gamification is by
giving the students tasks to find specific information within the site such as
flags and passwords. Future work would be to turn this into a Red Team/Blue
Team exercise by allowing students to modify code.

5.6 Logging student activity

We wanted to log user input within the scenario to see how students were
approaching problems and to identify common misunderstandings or struggles
for students within the testbed. EDURange has the capability to capture
student actions [5]. Theoretically students could be individually identified by
their session. However, this can be blocked by using incognito browser tabs.
Indeed, a browser assigns a new session to each new incognito tab that the
student may open, causing the logger into treating each session as a distinct
user. Once we are able to consistently distinguish between users, we will be
able to assign logged activities to participants accurately. This can help us
improve feedback to students that are struggling with any part of the activity.
In the future, we plan to extend our previous work [9] and use machine learning
to identify these patterns and determine the best time to help students through
the activity with a helpful hint.

Figure 6: Excerpt from the log file showing line number, session id (truncated),
exercise level, user input, output (if any), error (if any), timestamp.

86

6 Conclusion and Future Work

Using hands-on exercises in the EDURange platform, we integrated the security
topic of SQL injection into two different non-security undergraduate courses,
Web Development and Databases. We collected feedback from student activity
logs, a voluntary survey, and from direct communication with the students.

Many students had questions about UNION attacks. These attacks are
often used to retrieve data from other tables, e.g. passwords of users. In
general, one needs to use padding for this. Based on student feedback, we plan
to improve the exercise in two ways. We would add a preparatory level that
uses UNION without padding, and we would add more guiding questions on
this topic.

Even if the exercise doesn’t call for it, curious students may experiment with
the “DROP TABLE” statement and thus destroy the learning environment. We
discussed several ways in which this could be handled.

Future work includes using machine learning to identify students having
trouble, especially with padding and to evaluate which hints to give and when.

7 Additional Information

We contacted our IRB and got exempt status. We plan to make some of the
artifacts available to the community. We would like to especially thank Alain
Kaegi. This work was supported by the National Science Foundation under
grants 2216485 and 2216492.

References

[1] Nada Basit et al. “A Learning Platform for SQL Injection”. In: Proceed-
ings of the 50th ACM Technical Symposium on Computer Science Ed-
ucation. SIGCSE ’19. Minneapolis, MN, USA: Association for Comput-
ing Machinery, 2019, pp. 184–190. isbn: 9781450358903. doi: 10.1145/
3287324.3287490. url: https://doi.org/10.1145/3287324.3287490.

[2] Jack Cook et al. “An authoring process to construct docker containers to
help instructors develop cybersecurity exercises”. In: Journal of Comput-
ing Sciences in Colleges 37.10 (2022), pp. 37–47.

[3] Wenliang Du. “SEED: Hands-On Lab Exercises for Computer Security
Education”. In: IEEE Security & Privacy 9.5 (2011), pp. 70–73. doi:
10.1109/MSP.2011.139.

87

[4] Lei Li et al. “Developing Hands-on Labware for Emerging Database Se-
curity”. In: Proceedings of the 17th Annual Conference on Information
Technology Education. SIGITE ’16. Boston, Massachusetts, USA: Asso-
ciation for Computing Machinery, 2016, pp. 60–64. isbn: 9781450344524.
doi: 10.1145/2978192.2978225. url: https://doi.org/10.1145/
2978192.2978225.

[5] Jelena Mirkovic et al. “Using terminal histories to monitor student progress
on hands-on exercises”. In: Proceedings of the 51st ACM technical sym-
posium on computer science education. 2020, pp. 866–872.

[6] OWASP. 2022. url: https://owasp.org/www-project-top-ten/.

[7] Portswigger. 2022. url: https://portswigger.net/web-security/
sql-injection.

[8] Cynthia Taylor and Saheel Sakharkar. “’);DROP TABLE Textbooks;–:
An Argument for SQL Injection Coverage in Database Textbooks”. In:
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. SIGCSE ’19. Minneapolis, MN, USA: Association for Com-
puting Machinery, 2019, pp. 191–197. isbn: 9781450358903. doi: 10.
1145/3287324.3287429. url: https://doi.org/10.1145/3287324.
3287429.

[9] Quinn Vinlove, Jens Mache, and Richard Weiss. “Predicting student suc-
cess in cybersecurity exercises with a support vector classifier”. In: Jour-
nal of computing sciences in colleges 36.1 (2020).

[10] Richard Weiss et al. “Finding the balance between guidance and inde-
pendence in cybersecurity exercises”. In: 2016 USENIX Workshop on Ad-
vances in Security Education (ASE 16). 2016.

[11] Xiaohong Yuan et al. “Hands-on Laboratory Exercises for Teaching Soft-
ware Security”. In: Proceedings of the 16th Colloquium for Information
System Security Education (2012).

88

A Systematic Review on the Effectiveness of
Programming Camps on Middle School
Students’ Programming Knowledge and

Attitudes of Computing∗

Carla De Lira1, Rachel Wong2, and Olusola Adesope3
1Electrical Engineering and Computer Science

Washington State University, Pullman, WA 99163
carla.delira@wsu.edu

2Theory and Practice in Teacher Education
University of Tennessee, Knoxville, TN 37996

rwong2@utk.edu
3Educational Psychology

Washington State University, Pullman, WA 99163
olusola.adesope@wsu.edu

Abstract

Computer science (CS) outreach during K-12 grades plays a huge role
in students’ interest to pursue computing as a career. With the current
13 percent projected growth of computing occupations from 2020-2030,
the demand for CS graduates has remained steady. Programming camps
provide the ability to engage K-12 students in computing activities with
the hopes of making a short-term program have a lasting impact on their
student attitudes and understanding of the tech field. The main purpose
of this systematic review is to evaluate the current state of program-
ming camps for middle school students and their effectiveness in sup-
porting positive student attitudes and increase in programming knowl-
edge. This review provides connections to current CS education research
and makes recommendations on future reporting of programming camp-
related studies.

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

89

1 Introduction and Related Work

Programming camps are a type of outreach opportunity for K-12 students
to engage with programming and computing concepts via project-based and
experiential-based learning outside of regular classroom hours [3, 15, 21, 23,
25]. Short-term CS opportunities could provide a long-lasting impact on stu-
dents’ perceptions of CS [15, 17]. Although programming camps seem to have
the components necessary to foster interest in CS in a shorter period, much
work is needed to systematically evaluate curriculum and camp organizing de-
cisions on middle school student attitudes towards CS and learning how to
code.

To date, there has been one systematic review of CS outreach programs [7]
that centers primarily on what data has been collected and the general goal
of the outreach program, such as increasing engagement in programming stu-
dents belonging to underrepresented groups. There are no systematic reviews
that outline what programming camp organizing decisions, such as curriculum
and logistics, are most effective in improving student attitudes towards pro-
gramming and programming knowledge. Thus, this systematic review seeks to
evaluate the current state of programming camps for middle school students
and their effectiveness in supporting positive student attitudes and increased
programming knowledge. This systematic review explores the current state of
the literature on programming camps for middle school students through the
following research questions:

1. How effective are programming camps in improving programming knowl-
edge and/or computational thinking skills?

2. How effective are programming camps in improving student attitudes
towards computing?

2 Method

This systematic review utilizes the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) guidelines [8]. PRISMA guidelines were
chosen to promote transparency and reproducibility of article retrieval and
coding process.

2.1 Search Terms Structure

The keywords were structured to ensure sensitivity in retrieving as many pro-
gramming camp-related studies about middle school students as possible:

90

• Included Independent variable (Programming Camp) terms: computer
science camp OR computer science camps OR IT camp OR IT camps
OR programming camps OR programming camp OR code camps OR
code camp OR coding camp OR coding camps OR computing camp OR
computing camps OR tech camp OR tech camps OR technology camp
OR technology camps.

• Included Population terms: middle school* OR junior high school* OR
eighth grade* OR sixth grade* OR seventh grade* OR 6-8 grade* OR
grade 6-8 OR grade 6 OR grade 7 OR grade 8 OR 8th grade OR 7th
grade OR 6th grade

• Excluded Population terms: elementary school OR grammar school OR
primary school OR grade 1 OR grade 2 OR grade 3 OR grade 4 OR grade
5 OR grade 9 OR grade 10 OR grade 11 OR grade 12 OR kindergarten*
OR adult school OR first grade* OR second grade* OR third grade*
OR fourth grade* OR fifth grade* OR ninth grade* OR tenth grade*
OR eleventh grade* OR twelfth grade* OR high school* OR secondary
school* AND preschool* OR early childhood OR 1st grade OR 2nd grade
OR 3rd grade OR 4th grade OR 5th grade OR 9th grade OR 10th grade
OR 11th grade OR 12th grade

2.2 Electronic Databases Search

Articles were retrieved from five databases: ERIC ProQuest, Web of Science,
PsycInfo, ACM Digital Library, and IEEE Xplore Search. Since there was a
previously published systematic literature review on computer science outreach
this search was filtered from 2016 to 2021. All initial articles were retrieved on
September 25, 2021.

2.3 Study Selection

Sixty-five duplicate papers were first removed. Then, studies were screened in
two phases. In phase one, the titles and abstracts were screened by a single
reviewer and 2509 studies were excluded. In phase two, the full-texts of 112
studies were retrieved and evaluated. A total of 14 studies were retained for
inclusion in this systematic review [1, 6, 8, 11, 14, 17, 21, 22, 24, 25].

2.4 Data Items and Collection Process

Eligible papers were coded for programming knowledge/CT skill development
or student attitude change pre- and post-programming camp. The data extrac-
tion focused primarily on programming camp logistics, paper characteristics,

91

and data to answer the research questions. Further coding efforts were made
to create broader categories for each variable for the purpose of analysis.

2.5 Data Analysis

For each coded category, frequencies and percentages were calculated. To un-
cover patterns on several data extracted and coded, fine grade data extraction
columns and filtering were used to identify opportunities for cross variable
analysis and sorting based on subcategories in each variable. For cross variable
analysis, frequencies and percentages were calculated.

3 Results

To answer our research questions, we focused our analysis of 16 within-group
studies on the organizing decision characteristics of programming camps and
the effectiveness of the programming camps on programming knowledge.

3.1 Organizing Decision Characteristics of Programming Camp

Regarding programming camp teaching decisions, such as teaching approach,
project-based was the most common approach in programming camps (n = 8).
This is followed by the hands-on scaffolded approach (n= 4). Three studies uti-
lized a mixed approach. Two of three studies which utilized a mixed approach
implemented project-based learning with unplugged activities. Only one study
did not report their teaching approach.

3.2 Programming Camp Effectiveness on Programming Knowledge

Six studies addressed programming knowledge or computational thinking skills,
while ten studies did not. For the studies that examined these outcomes, five
saw an improvement in programming or computational thinking skills. One
study had inconclusive findings.

Although most programming camps did not focus explicitly on assessing
knowledge or computational thinking skills, there was effective reporting on the
languages and concepts covered. Block programming (i.e., MIT App Inventor
and Scratch) was the most common programming language format (n = 7),
followed by a combination of block and text-based programming languages (n
= 5). Only one study used an offline method through unplugged programming
and one study did not report the programming language or platform used.

Further analysis was done to examine potential patterns between program-
ming languages and any other variables relevant to programming camp logis-

92

tics. Figure 1 provides an overview of programming camp logistics as it relates
to the choice of programming language.

Figure 1: Overview of Programming Language Usage Frequencies

Seven studies did not explicitly report specific programming or computa-
tional thinking concepts. However, nine studies did report concept coverage
for programming and computational thinking, such as variables, loops, control
structures, data structures, debugging, and computational thinking.

3.3 Programming Camp Effectiveness on Student Attitudes

Fourteen studies observed improvements in student attitudes towards comput-
ing. Eight studies saw an increase in positive CS perceptions. All 14 studies
observed an increase in positive student attitudes such as increased interest in
CS, self-efficacy in CS, interest in STEM, and engagement in learning CS.

Figure 2 provides an overview of what programming camp logistics may
have played a factor in the two commonly investigated student outcomes, CS
perceptions and interest.

3.4 Effectiveness on Programming Knowledge

The results on programming knowledge and computational thinking skills pro-
vide directions on how to explore these student outcomes in programming
camps. In general, the 5/6 studies which investigated programming knowledge
and computational thinking saw an improvement. The other eligible studies
only collected pre- and post-camp data to assess programming knowledge or
computational thinking skills. Fields et al.’s study was the only study among
6 which investigated the learning progress of middle school students from their
first day to last day. The main reason why their results were inconclusive

93

Figure 2: Overview of Logistics and Student Attitudes

was their observation data showed peaks of collective understanding of easier
material on day 1 to gradually harder concepts leading up to day 5 of their
programming camp [10]. This suggests that organizers and scholars should
measure programming knowledge throughout the camp to better assess and
improve on curriculum designs for future programming camps.

Many papers provided robust details on programming language and concept
coverage. Block programming is the most used programming camp language,
since it is geared towards novice programmers due to its visual, easy-to-use
interfaces [9, 11, 25]. Surprisingly, the next most common programming lan-
guage approach is a combination of block programming like Scratch [11, 25]
and text-based programming like Python [1]. According to literature, jumping
from block to text-based programming may require time to do [16]. However,
results show that studies that introduced both block and text-based program-
ming took 6-10 days; none introduced them within 1-5 days. Indicative that
programming camps that have middle schools’ students code in both likely run
on the longer side to ensure that students do not become overwhelmed by a
quick transition into text-based programming.

In terms of concept coverage, core concepts like variables and control struc-
tures were covered and reported explicitly in the eligible studies. These are
concepts that have been commonly covered in current introductory courses
or learning opportunities for middle school students [12]. However, computa-
tional thinking skills are not widely introduced in recent programming camps,
and coverage of sub-concepts varied from study to study [10, 24]. Debugging
was another concept that was not widely introduced in recent programming
camps.

94

3.5 Effectiveness on Student Attitudes

Perception of CS was the most assessed student attitude sub-construct among
the eligible studies. All studies that investigated CS perception observed an
increase of positive perceptions. Especially for middle school students [5, 13,
20], this is a promising potential long-term impact on their decision to pursue
CS [15, 17].

The decision for a vast majority of programming camps to utilize a project-
based approach is not surprising. Project-based learning has been shown to
be effective for motivating students to solve real-world problems by creating
apps that impact a community [15] or designing robots to perform useful tasks
[21]. Further, project-based learning thrives in a heavily social environment
[19], which can support students’ perceptions of CS away from the stereotypes
commonly associated with a computer, such as impersonal, intimidating, and
isolating [19].

3.6 On Reporting Studies

Many decisions about organizing the programming camp logistics remain
largely inconclusive due to the lack of information available about basic study
design and context details in the eligible papers. According to a previous
systematic review on CS outreach programs from 2009 to 2015 [7], the au-
thors made several recommendations on reporting outreach details for future
CS outreach studies. These recommendations continue to remain unclear or
unreported for eligible studies since 2016.

From a research standpoint, more readily available descriptive statistics
would provide the ability for researchers to calculate the effect size, which could
then more tangibly and quantitatively measure impact on specific programming
knowledge and student outcomes through a meta-analysis. From an organizer
level, this information would be particularly helpful in managing resources
if programming camp research of middle school students can explicitly map
student outcomes to more specific programming camp logistical decisions such
as length of camp or parent involvement.

4 Limitations

First, there is currently no programming camp study that has stated to be a
randomized controlled trial study. Secondly, both paper selection and coding
papers were done by a single reviewer, and there is likely some bias based
reviewer’s prior experience and expertise level in the field. Thirdly, there were
only 14 eligible papers which met most inclusion criteria with 16 studies, which
can also affect the generalizability of the systematic review results. Fourth,

95

several studies which met nearly all eligible criteria were excluded due to the
participation of mixed middle school and non-middle school students in the
programming camp. Lastly, risk of bias, publication bias, and study quality of
each paper was not assessed.

5 Conclusion

The findings from this study provide a general overview of how recent pro-
gramming camps have assessed the effectiveness in organizing and designing
curriculum to support middle school students’ programming knowledge and
student attitudes. The programming camps’ organizing decisions from eligible
studies have so far aligned with current literature and research on teaching
novice programmers. Of the several programming camp organization decisions
investigated in this review, the high usage of block programming is supported
by research on how it can provide a less intimidating introduction to program-
ming and, therefore, support programming knowledge. Another significant
finding is the high implementation of a project-based approach towards teach-
ing middle school students, which may support the dismantlement of negative
CS perceptions as isolating and impersonal. This review also identified gaps in
reporting programming camp logistical, study design, and descriptive statistics
data, and the importance of reporting clear and specific details for assisting
both future programming camps and research.

References

[1] C. Bryant. “A Middle-School Camp Emphasizing Data Science and Com-
puting for Social Good”. en. In: Proceedings of the 50th ACM SIGCSE.
New York, NY, USA, Feb. 2019, pp. 358–364.

[2] R. Cabrera, M. Ángeles Carrión, and A. Carrión. “Camps IEEE Ecuador:
A proposal to increase children’s interest in STEM areas”. en. In: 2021
IEEE XXVIII INTERCON. Aug. 2021, pp. 1–4.

[3] L. Carter. “Why students with an apparent aptitude for computer science
don’t choose to major in computer science”. en. In: SIGCSE Bull 38.1
(Mar. 2006), pp. 27–31.

[4] S. Cheryan, B.J. Drury, and M. Vichayapai. “Enduring Influence of
Stereotypical Computer Science Role Models on Women’s Academic As-
pirations”. en. In: Psychology of Women Quarterly 37.1 (Mar. 2013),
pp. 72–79.

96

[5] R. Christensen et al. “Longitudinal analysis of cognitive constructs fos-
tered by STEM activities for middle school students”. en. In: Knowledge
Management and E-Learning 6 (June 2014), pp. 103–122.

[6] P.J. Clarke et al. “Impact of Using Tools in an Undergraduate Software
Testing Course Supported by WReSTT”. en. In: ACM Trans. Comput.
Educ 17.4 (Aug. 2017).

[7] A. Decker and M.M. McGill. “Pre-College Computing Outreach Re-
search: Towards Improving the Practice”. en. In: Proceedings of the 2017
ACM SIGCSE. New York, NY, USA, 2017, pp. 153–158.

[8] A. DeWitt. “What We Say vs. What They Do: A Comparison of Middle-
School Coding Camps in the CS Education Literature and Mainstream
Coding Camps (Abstract Only”. en. In: Proceedings of the 2017 ACM
SIGCSE. New York, NY, USA, Mar. 2017, p. 707.

[9] A. Emerson. “Cluster-Based Analysis of Novice Coding Misconceptions
in Block-Based Programming”. en. In: Proceedings of the 51st ACM
SIGCSE. New York, NY, USA, 2020, pp. 825–831.

[10] R. Feldhausen, J.L. Weese, and N.H. Bean. “Increasing Student Self-
Efficacy in Computational Thinking via STEM Outreach Programs”. en.
In: Proceedings of the 49th ACM SIGCSE. New York, NY, USA, 2018,
pp. 302–307.

[11] D.A. Fields, Y.B. Kafai, and M.T. Giang. “Youth Computational Partic-
ipation in the Wild: Understanding Experience and Equity in Participat-
ing and Programming in the Online Scratch Community”. en. In: ACM
Trans. Comput. Educ 17.3 (Aug. 2017).

[12] S. Grover, P. Lundh, and N. Jackiw. “Non-Programming Activities for
Engagement with Foundational Concepts in Introductory Programming”.
en. In: Proceedings of the 50th ACM SIGCSE. New York, NY, USA, 2019,
pp. 1136–1142.

[13] L.S. Hirsch, S. Berliner-Heyman, and J.L. Cusack. “Introducing Middle
School Students to Engineering Principles and the Engineering Design
Process Through an Academic Summer Program”. en. In: INTERNA-
TIONAL JOURNAL OF ENGINEERING EDUCATION 33.1, B (2017),
pp. 398–407.

[14] D.Lusa Krug et al. “Code Beats: A Virtual Camp for Middle Schoolers
Coding Hip Hop”. en. In: Proceedings of the 52nd ACM SIGCSE. New
York, NY, USA, 2021, pp. 397–403.

97

[15] A.-J. Lakanen and T. Kärkkäinen. “Identifying Pathways to Computer
Science: The Long-Term Impact of Short-Term Game Programming Out-
reach Interventions”. en. In: ACM Trans. Comput. Educ 19.3 (Jan. 2019).
doi: 10.1145/3283070..

[16] L. Moors, A. Luxton-Reilly, and P. Denny. “Transitioning from Block-
Based to Text-Based Programming Languages”. en. In: 2018 Interna-
tional Conference on Learning and Teaching in Computing and Engi-
neering. Apr, 2018, pp. 57–64.

[17] C.N. Outlay, A.J. Platt, and K. Conroy. “Getting IT Together: A Longi-
tudinal Look at Linking Girls’ Interest in IT Careers to Lessons Taught
in Middle School Camps”. en. In: ACM Trans. Comput. Educ 17.4 (Aug.
2017), pp. 1–20 17.

[18] B.R. Page et al. “Robotics Education To and Through College”. en. In:
ROBOTICS IN EDUCATION: CURRENT RESEARCH AND INNO-
VATIONS. Vol. 1023. 2020, pp. 101–113.

[19] B. Pérez and Á.L. Rubio. “A Project-Based Learning Approach for En-
hancing Learning Skills and Motivation in Software Engineering”. en. In:
Proceedings of the 51st SIGCSE. New York, NY, USA, 2020, pp. 309–
315.

[20] R. Taub, M. Armoni, and M. Ben-Ari. “CS Unplugged and Middle-School
Students’ Views, Attitudes, and Intentions Regarding CS”. en. In: ACM
Trans. Comput. Educ 12.2 ().

[21] C. Wang and M. Frye. “miniGEMS 2018 Summer Camp Evaluation: Em-
powering Middle School Girls in STEAM”. en. In: 2019 IEEE Integrated
STEM Education Conference. 2019, pp. 149–155.

[22] S. Wang et al. “Introducing STEM to 7th Grade Girls using SeaPerch
and Scratch”. en. In: 2020 IEEE Frontiers in Education Conference (FIE.
Oct. 2020, pp. 1–8.

[23] C. Yang and D.R.R. Smith. “Research Support-Oriented MATLAB
Learning: Tackling Difficult Concepts and Promoting Personalised Learn-
ing”. en. In: New Directions in the Teaching of Physical Sciences 12.1
(2017), pp. 1–6.

[24] D. Yang, Y. Baek, and S. Swanson. “Developing Computational Thinking
through Project-Based Airplane Design Activities”. en. In: 2020 IEEE
Frontiers in Education Conference. Oct. 2020, pp. 1–4.

[25] N. Zamin et al. “Learning Block Programming using Scratch among
School Children in Malaysia and Australia: An Exploratory Study”. en.
In: 2018 4th International Conference on Computer and Information Sci-
ences (ICCOINS. Aug. 2018, pp. 1–6.

98

A Course Model for Enhancing Applied
Non-Technical Skills of Computer Science

Students∗

Ben Tribelhorn1 and Radana Dvorak2
1The Donald P. Shiley School of Engineering

University of Portland
Portland, OR
tribelhb@up.edu

2The Hal and Inge Marcus School of Engineering
St. Martin’s University

Lacey, WA
rdvorak@stmartin.edu

Abstract

This paper presents a course model for changing the mindset of stu-
dents as future leaders in technology-based fields. Research shows that
entrepreneurial education within engineering is an important facet of de-
gree programs; however there are not as many models incorporating this
mindset focus into computer science education. The authors describe a
“Business and Technology Ventures” course that is required for computer
science majors. The topics, outline, and projects are described with po-
tential adaptions so that others can adopt or adapt components of this
course model. One of the specific benefits of this approach is that it in-
creases job readiness by enhancing non-technical skills. This course has
been offered three times, and the instructors are satisfied with students’
achievement of the learning objectives and students’ achievements.

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

99

1 Introduction

According to a survey by the Association of American Colleges and Universities
(AAC&U), employers highly value skills outside of technical competency, in-
cluding teamwork, creative thinking, and communication.[3] Additionally, em-
ployers rate self-confidence third (after work ethic and initiative) for mindsets.
Of these, self-confidence is probably the easiest to improve. Changing demo-
graphics of Computer Science (CS) students means that integrating job skills
of communication, teamwork, professionalism, and leadership are increasingly
crucial for successful teams.

Various models of entrepreneurial education within CS have been investi-
gated in recent years. Often these focus on mindset shifts and appear in Soft-
ware Engineering or Capstone courses.[8] In the same report by the AAC&U,
employers place great value on internships, so students need to be better pre-
pared to get these positions prior to a senior-level experience. This model aims
to help improve students’ preparedness for internships and careers. There is an
opportunity to further focus on developing the mindset skill of self-confidence
and essential non-technical skills as a focal point of a course for CS students.

2 Course Model

2.1 Background

Within engineering programs, Engineering Economics might be a comparable
course to the model proposed. However, these courses tend to focus on learn-
ing objectives mostly relevant to professional certification within engineering
disciplines. Additionally, these courses look at project comparisons but not
particularly concerned with ideation or implementation. Entrepreneurship-
focused courses are a better comparison to address the skills highlighted. To
date, there is no single model for embedding entrepreneurial education within
CS, so the authors propose this model given the considerations at our local
institution.

2.2 University Context

The department’s yearly program review identified the need for creating this
course. We identified multiple issues from lowering rates of career outcomes
at graduation, senior exit survey data expressing a feeling of lack of direct
preparedness for job searching, and dissatisfaction with a requirement of the
major to take an Innovation course in the Business department. University of
Portland CS students are required a course focused on ideation and innovation,

100

which was not perceived as practical enough from a software engineering per-
spective. We decided to adjust the course to meet the needs of the CS program.
Making the course an elective gave students the option to take the required
course from the Business School focused on ideation, or our new course, which
focused more holistically on career readiness.

Secondly, this new focused course filled a gap in our advising work where
we focus on professional development each semester. This course is designed to
be taken in the Spring of the Junior year after taking the CS Seminar course
in the Fall semester which delves into ethical issues within technology.

2.3 Development

The authors both had a variety of past experiences incorporated into the de-
velopment of this course, having founded businesses, liaised with industry, and
worked with external foundations. One goal in developing this course was to
include a comprehensive survey of useful topics and contexts for our students
to be better prepared for any future industry experience.

Course materials were integrated from personal knowledge and sources in-
cluding: cases from Harvard Business School Publishing (HBSP)[7], The En-
trepreneur’s Guide to Business[2], Exponential Organizations[4], Cracking the
Coding Interview[5]. The only textbook requirement is that the students must
purchase the negotiation simulations from HBSP.

2.4 Course Assessments

As our program is ABET (Accreditation Board for Engineering and Technol-
ogy) accredited, we find it helpful to link the course learning objectives to
Program Outcomes[1]. This course aligns strongly with the following three:

3. Communicate effectively in a variety of professional contexts.

4. Recognize professional responsibilities and make informed judgments in
computing practice based on legal and ethical principles.

5. Function effectively as a member or leader of a team engaged in activities
appropriate to the program’s discipline.

The course is organized around the following learning objectives with no-
table mappings:

• Evaluate job offers and rank them based on total value (Economic equiv-
alence)

• Communicate a business goal (ABET 3, 5)

101

• Convey technical knowledge (ABET 3)

• Define and discuss policy (ABET 4, 5)

• Identify and evaluate risk as it relates to law and policy (ABET 4)

• Demonstrate the ability to prepare, describe, and effectively defend a
business plan. (ABET 3, 5)

• Analyze and create value in negotiation scenarios (ABET 3)

• Analyze companies and business ideas to project value and growth po-
tential (Apply engineering economics principles)

Although this course is not a benchmark course, since it functions as an
elective, the mapping to ABET outcomes helps support the inclusion of this
course in our curriculum. In terms of formal assessment, individual assignments
could be selected to track student performance. In the results, the authors will
comment on the qualitative performance of students and their feedback.

2.5 Design

The course design consists of two focus areas: individual professional devel-
opment and a team-based semester-long project. The course is taught three
times a week for 55 minutes. The beginning of the course covers professional
development topics in order to ensure students prepare for the career fair that
occurs before spring break, which includes a graded activity. Then we intro-
duce the group project and cover topics in the context of businesses. The
course schedule is listed in Appendix A.

Individual professional development: The students participate in sev-
eral activities, including resumé reviews, creating a job and skills matrix, job
window shopping, writing cover letters, giving elevator talks, conducting peer
technical interviews, and completing negotiation simulations. These activities
and assignments are supplemented with lectures on personal finance, tactics
for interviews, negotiation, etc. In our capstone course, the following Fall, we
have students complete the 10-year design your life activity (from the Stanford
Design School), which would be appropriate in this class if we didn’t have it
embedded elsewhere.

The students find the negotiation-focused work some of the most useful. In
addition to simulations from HBSP cases, we also give a Multiple Equivalent
Simultaneous Offer (MESO) assignment, which requires the students to prepare
three job offers from the same company with different terms that are equally
appealing. Students find this assignment very challenging as it is difficult to
quantify various job benefits in pure dollar terms (e.g., an extra week of paid
time off vs. a private office).

102

Team-based project: Students spend the semester working in a group
of approximately four ideating and iterating on a business idea in an area of
technology. The project scope is broad in that students are encouraged to
create product ideas that would require additional advances to be commer-
cialized. This allows partially unrealistic business ideas to excite and inspire
students through the business planning work. Students must brainstorm busi-
ness ideas and then complete a lean business plan, a one-page document with
notes on each business plan component. Over the course, each additional topic
is covered in class time to lecture and/or research to complete sections of a
complete business plan. These topics include: product description as a prob-
lem and solution, market analysis (target and competition), revenue sources,
development and operating expenses, business funding, and business opera-
tions (human resources, policy, intellectual property, export law). Ultimately,
students will produce a business plan with several appendices based on these
topics. With additional elevator pitches of the product to the class, they get
feedback to refine their product, culminating in a final venture capital (VC)
pitch to a panel of judges (faculty).

One of the most challenging topics is business funding and how the various
percentages of ownership change. So after showcasing various technology firms’
interesting successes in terms of founder control (Snap, Meta, Alphabet), we
show a Shark Tank episode pausing after each investor makes an offer to see how
each compares. These real-life examples build much deeper engagement and
understanding. Other areas of difficulty include market analysis and ideation.
For the market analysis, students find that Statista1, with access through the
school library, can be useful for finding relevant demographics and numbers.
For ideation, we use a number of brainstorming techniques, some of which can
be found in Thinkertoys[6].

2.6 Adoption

The authors recognize that not every institution could implement an entire
course. We suggest that components of this course could be integrated with
existing courses. The authors believe that a Software Engineering course is a
great place for elevator pitches, presentations, even negotiation (e.g., of soft-
ware requirements). An ethics course could address issues of wages, benefits,
and maternity/paternity leave. Lastly, it would be easy to conduct whiteboard
coding interviews in an Analysis of Algorithms course. A Software Engineer-
ing course is also an excellent place for interview preparation, and a variant of
technical interviewing could include interviewing for team lead which requires
leadership and management skills.

1www.statista.com provides over a million statistics across 170 industries integrating
over 22,000 sources as of July 2022.

103

Many institutions use their Senior Capstone to measure their ABET out-
comes, which is another great place to embed some of these activities. The
MESO assignment and negotiation simulations would be a great fit as these
students should hopefully be about to compare job offers, and this would pre-
pare them for that process. The authors will provide materials from the course
to anyone who makes an email request.

3 Results

This course was piloted in the classroom, with the second offering completely
online due to COVID-19, and the latest iteration back in the classroom. In the
classroom, especially, the course is engaging, and students preferred it to the
previous innovation-focused requirement. The instructors are satisfied with the
achievement of the learning objectives. Students gain considerable confidence
in public speaking through the elevator pitches, interviews, presentations, and
negotiations. The students feel better prepared for industry because they be-
come more familiar with terminology outside of CS, especially when it comes
to business-focused language.

At the end of the semester, students have a complete product idea which
could be developed. Students often learn that some creative ideas might not
be actionable without a large R&D investment. Examples of previous projects
include: ski-goggles that use UV/radar to see through fog and snow, mask
compliance detection camera software for retail, traffic and power grid smart
management software, and quantum high-frequency trading algorithms/soft-
ware. With the open-ended nature of this product ideation, students find that
their collaboration skills have increased. On most teams at least one student
develops leadership skills they didn’t expect as they take the lead on selling
and pitching the product to the rest of the class.

4 Discussion

The instructors find that students leave this class with a more upbeat attitude
towards their careers regarding their readiness to apply and integrate into a
team. The focus on negotiation and individual oral communication skills helps
develop a noticeable mindset shift in the students’ self-confidence.

Combining particular knowledge and skills with a team project balances
the class and helps the students engage. With the large set of topics, not all
student work is of the highest quality, especially in some areas of the business
plans, since they are not experts in finance, accounting, or other business ar-
eas. Despite this, the VC pitches are a real highlight and showcase effective
communication. Ultimately, the course develops three of the five ABET Pro-

104

gram Outcomes for CS students with this course model, and its components
are readily adoptable at other institutions.

Acknowledgements

Thanks to the Donald P. Shiley School of Engineering for supporting this work
and course development.

References

[1] ABET. Criteria for accrediting computing programs, 2021-2022.
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-
accrediting-computing-programs-2021-2022/.

[2] Constance E. Bagley. The Entrepreneur’s Guide to Law and Strategy. Cen-
gage Learning, 5th edition, 2017.

[3] Ashley Finley. How college contributes to workforce success: Employer
views on what matters most. Association of American Colleges and Uni-
versities, 2021.

[4] Salim Ismail. Exponential Organizations. Diversion Books, 2014.

[5] Gayle Laakmann McDowell. Cracking the Coding Interview. CareerCup,
6th edition, 2015.

[6] Michael Michalko. Thinkertoys: A Handbook of Creative-Thinking Tech-
niques. Ten Speed Press, 2nd edition, 2010.

[7] Harvard Business School Publishing. https://hbsp.harvard.edu.

[8] Ben Tribelhorn, Heather Dillon, Andrew M Nuxoll, and Nicole C Ral-
ston. Connecting entrepreneurial mindset to software development. In
2021 ASEE Virtual Annual Conference Content Access, 2021.

Appendix A

See Table 1.

105

T
able

1:
C
ourse

Schedule.
IC

A
=
In

class
activity

M
W

F
D
eliverable

for
next

M

P
rofessionalskills

Job
w
indow

shopping
E
levator

pitch
Job

skills
m
atrix

H
oliday

C
over

letter,IC
A
:R

esum
es

P
ersonalfinance

R
esum

e

IC
A
:interview

s
IC

A
:B

rainstorm
ing

IC
A
:B

rainstorm
ing

C
over

letter

IC
A
:M

arket
analysis

Incorporating
a
business

P
atents

&
IP

T
eam

business
ideas

R
ealestate

T
axes

N
egotiation

T
eam

elevator
pitch

B
enefits

B
enefits,M

E
SO

IC
A
:E

levator
pitches

A
pplied

for
jobs

proof

IC
A
:N

egotiation
1

IC
A
:P

roject
tim

e
C
ontracts

C
ontracts

IC
A
:P

itch
&

project
tim

e
G
loballaw

s,IP
L
ean

business
plan

IC
A
:export

law
F
inancing

businesses
IC

A
:F

inancing

IC
A
:Shark

T
ank

H
um

an
resources

C
orporate

policy

IC
A
:N

egotiation
2

IC
A
:P

olicy
IC

A
:D

ata
&

ethics
B
usiness

plan
draft

IC
A
:P

roject
tim

e
IC

A
:P

roject
tim

e
G
uest

lecture:
Security

policy
W
atch

&
reflect

C
E
O

testim
ony

IC
A
:V

C
P
itch

IC
A
:P

roject
tim

e
H
oliday

C
orporate

security
policy

V
C

P
resentations

V
C

P
resentations

V
C

P
resentations

F
inaldraft

allm
aterials

106

Tutorial on Automating Configuring Parallel
Compute Environments∗

Conference Tutorial

Bryan Dixon
Computer Science Department

California State University - Chico
Chico CA, 95929
bcdixon@csuchico.edu

We presented work at a recent CCSC on how we automated the creation of
small compute clusters for students [5]. This work discussed how we provided
a guide to students to purchase two Jetson Nano boards and a suite of Ansible
playbooks for the students to automate setting their boards up as a compute
cluster [4][1]. We mentioned in this work an unintended consequence: students
were using the playbooks to create multi-node clusters on local and cloud VMs
instead of buying Jetson Nano boards.

These playbooks can work on more than just Jetson Nanos, which led to our
idea for this tutorial. Since we have these ansible playbooks that could work
to set up two or more nodes as a compute cluster on pretty much any Debian-
based nodes. We thought it would be worthwhile walking interested faculty
through step by step how to get a two-node cloud-hosted compute cluster setup
using these playbooks.

This is a hands on tutorial will have the following:

1. Introduce the basic concept, end goal, and applications

2. Get everyone Google Cloud coupons and help them apply them

3. Walk through setting up two GCP virtual machine instances to be used
for our example

4. Get tutorial repository onto a GCP VM instance.

∗Copyright is held by the author/owner.

107

5. Get dependencies for Ansible setup

6. Configure Ansible machine inventory for the VM instances created

7. Run playbooks

8. Use provided test code to validate our cluster works

Computers and the internet will be necessary to engage in hands-on activ-
ities. Google Cloud’s EDU grant folks will be helping to facilitate coupons for
attendees to use so that you can do the tutorial at no direct costs[3]. Google
for Education is a platinum national partner for CCSC [2].

Biography

Dr. Bryan Dixon is an Associate Professor of Computer Science and has served
students of diverse backgrounds for over ten years through various courses, from
sophomore to graduate level. He spent a large part of his recent professional
growth and teaching building systems and tools to help other faculty teach
complex systems or DevOps concepts. He helped found the ACM-W student
chapter at California State University Chico in 2020 and has continued to
promote computing education and career paths for young women.

References

[1] Buy the latest jetson products. https://developer.nvidia.com/buy-
jetson/, Oct 2020.

[2] Google cloud ccsc national partner. https://www.ccsc.org/partners/
google/, Apr 2022.

[3] Google cloud higher education programs. https://cloud.google.com/
edu, Apr 2022.

[4] Red Hat Ansible. https://www.ansible.com.

[5] Bryan Dixon. Automating configuring parallel compute environments for
students. Journal of Computing Sciences in Colleges, 37(4):25–29, 2021.

108

An Introduction to MPI Parallel Programming
with MPJ Express Library∗

Conference Tutorial

Xuguang Chen
Department of Computer Science

Saint Martin’s University
Lacey, WA 98503
xchen@stmartin.edu

Introduction

Parallel computing has been applied in many areas, for example databases, data
mining, real time simulation of systems, financial risk management, climate
modeling, and advanced graphics. As a result, it is becoming more and more
popular in recent years. At present, parallel programming models can primarily
be classified into two categories, which are message passing model and shared
memory model. If the message-passing model is applied, it means that each
task is allocated its private memories, and correspondingly different tasks can
communicate each other via message exchange. Message Passing Interface
(MPI) is a specification primarily focusing on the message-passing model. It
was designed by the researchers from academia and industry. MPI tells the
syntax and semantics of a core of library routines that are used for message-
passing programs and usually are implemented in C or FORTRAN.

Java is an object-oriented and general-purpose programming language that
can be used in various areas, including parallel computing. The compiled Java
code will be able to run on each platform supporting Java. MPJ Express is an
open source Java message passing library, which helps application developers
write and execute parallel applications for multi-core processors and compute
clusters or clouds. This tutorial introduced the basic skills conducting MPI
parallel programming in Java, using MPJ Express library as an example.

∗Copyright is held by the author/owner.

109

At first, the tutorial shows where to acquire MPJ Express Software and how
to install the software on Windows machines and Linux machines. After that, it
explains how to edit, compile, and run an MPI program in Java on a Windows
machine and a Linux machine. Then, the applications of several basic MPJ
Express routines are covered, followed by the examples. These routine are vital
for point-to-point parallel programming and collective communications, such as
send/receive, broadcast, reduce, scatter, and gather operations. Following this,
the tutorial will introduce how to apply MPJ Express library when writing a
Java application communicating with a MySQL database. Finally, the sample
code used in the tutorial will be provided and other materials suitable for
self-study will be described.

Description

The tutorial is focusing on the audience who is a beginner to parallel program-
ming and/or is interested in MPI programming, having basic knowledge of the
programming languages, such as Python, Java, C#, Fortran, and/or C++.
The expected learning outcomes are the followings. After attending the tuto-
rial, the audience should know where to get a copy of MPJ Express and how
to install the software on a windows machine or Linux machine. In addition,
the audience should learn the concepts of MPI, point-to-point communications,
and collective communications. Other than that, how to edit, compile, and run
an MPI programs in Java will be learned. Moreover, the audience should learn
how to implement various basic MPI operations in MPJ Express, especially
basic point-to-point communications and collective communications. At the
end of the tutorial, the audience can be provided the e-version of the lecture
notes, code as examples, and other materials for self-study, if needed.

110

Reflective Curriculum Review for Liberal Arts
Computing Programs∗

Conference Tutorial

Jakob Barnard1, Grant Braught2, Janet Davis3,
Amanda Holland-Minkley4, David Reed5, Karl Schmitt6,

Andrea Tartaro7, James Teresco8

1University of Jamestown, Jamestown, ND 58405
Jakob.Barnard@uj.edu

2Dickinson College, Carlisle, PA 17013
braught@dickinson.edu

3Whitman College, Walla Walla, WA 99362
davisj@whitman.edu

4Washington & Jefferson College, Washington, PA 15317
ahollandminkley@washjeff.edu

5Creighton University, Omaha, NE 68178
DaveReed@creighton.edu

6Trinity Christian College, Palos Heights, IL 60463
Karl.Schmitt@trnty.edu

7Furman University, Greenville, SC 29690
andrea.tartaro@furman.edu

8Siena College, Loudonville, NY 12211
jteresco@siena.edu

The ACM/IEEE-CS/AAAI curricula task force is currently developing an
updated set of Computer Science Curricula guidelines, referred to as CS202X
(since the release date is not yet determined). Information about the task
force and preliminary drafts of the Knowledge Areas that will be included
in the guidelines can be found online at http://csed.acm.org. To assist
institutions in applying the new guidelines, CS202X will also publish a Cur-

∗Copyright is held by the author/owner.

111

ricular Practices Volume. This volume will include an article by the SIGCSE
Committee on Computing Education in Liberal Arts Colleges (SIGCSE-LAC
Committee) that will focus on designing or revising CS curricula in liberal arts
contexts. Liberal arts colleges, and smaller colleges in general, face unique
challenges when designing curricula. Small faculty sizes, limits on the num-
ber of courses that can be required for a major and the need for flexibility
in student programs of study constrain designs. However, these environments
also provide the opportunity to craft distinctive curricula fitted to institutional
mission, departmental strengths, locale, student populations and unique aca-
demic experiences. These challenges and opportunities, combined with the size
of prior curricular recommendations, have often forced smaller programs to as-
sess trade-offs between achieving full coverage of curricular recommendations
and their other priorities.

The SIGCSE-LAC Committee has heard from many faculty that their in-
stitutional and departmental contexts have indeed complicated the adoption of
prior curricular guidelines. While the CS2013 and upcoming CS202X recom-
mendations provide some flexibility for curriculum designers by dividing con-
tent into core and supplemental categories, smaller colleges still face challenges
selecting content and packaging it into coherent curricula. To assist in this pro-
cess, the committee is developing guidance for effectively integrating CS202X
as a part of the design, evaluation and revision of computer science and related
programs in the liberal arts. This guidance will encourage faculty to reflect
on their programs and the role of CS202X, beginning with their institutional
and departmental priorities, opportunities and constraints. Ultimately, this
guidance will be presented in the committee’s article in the CS202X Curricular
Practices volume.

This session will open with an overview and brief discussion of the current
CS202X draft. Participants will then begin working through a preliminary ver-
sion of the committees’ reflective assessment process. This process is framed
by a series of scaffolding questions that begin from institutional and depart-
mental missions, identities, contexts, priorities, initiatives, opportunities, and
constraints. From there, participants will be led to identify design principles for
guiding their curricular choices including the CS202X recommendations. Par-
ticipants will leave the session with a better understanding of how CS202X can
impact their programs and a jumpstart on the reflective assessment process.
Feedback on the process and this session are welcome and will be used to re-
fine the committee’s guidance prior to its publication in the CS202X Curricular
Practices volume.

112

Presenter Biography

Two of the eight co-authors of this session plan to serve as presenters. Janet
Davis is Microsoft Chair and Associate Professor of Computer Science at
Whitman College, where she serves as the department’s founding chair. She
co-organized SIGCSE pre-symposium events in 2020 and 2021 on behalf of the
SIGCSE-LAC Committee. David Reed is a Professor of Computer Science
and Chair of the Department of Computer Science, Design & Journalism at
Creighton University. He has published widely in CS education, including the
text A Balanced Introduction to Computer Science, and served on the CS2013
Computer Science Curricula Task Force.

Other Author Biographies

Jakob Barnard is Chair and Assistant Professor of Computer Science & Tech-
nology at the University of Jamestown. He is a member of the SIGCSE-LAC
Committee and his research involves how curricula has been integrated into Lib-
eral Arts Technology programs. Grant Braught is a Professor of Computer
Science at Dickinson College. He is a facilitating member of the SIGCSE-LAC
Committee, has organized committee events focused on curricula and has pub-
lished widely on issues related to CS education, particularly within the liberal
arts. Amanda Holland-Minkley is Chair and Professor of Computing and
Information Studies at Washington & Jefferson College. Her research explores
novel applications of problem-based pedagogies to CS education at the course
and curricular level. She is a facilitating member of the SIGCSE-LAC Commit-
tee. Karl Schmitt is Chair and Assistant Professor of Computing and Data
Analytics at Trinity Christian College. He has served on the ACM Data Sci-
ence Task Force and various Computing, Technology, Mathematics Education
related committees for the MAA and ASA. His interests explore data science
education, and interdisciplinary education between computing, mathematics,
data, and other fields. Andrea Tartaro is an Associate Professor of Com-
puter Science at Furman University. Her computer science education research
focuses on the intersections and reciprocal contributions of computer science
and the liberal arts, with a focus on broadening participation. She is a member
of the SIGCSE-LAC Committee, and has published and presented in venues
including the CCSC and the SIGCSE Technical Symposium. Jim Teresco
is a Professor of Computer Science at Siena College. He has been involved in
CCSC Northeastern for almost 20 years and currently serves as regional board
chair, and has been involved with the SIGCSE-LAC Committee for 3 years.
His research involves map-based algorithm visualization.

113

Bloom’s for Computing: Crafting Learning
Outcomes with Enhanced Verb Lists for

Computing Competencies∗

Conference Tutorial

Cara Tang1, Markus Geissler2, Christian Servin3

1Computer Information Systems
Portland Community College

Portland, OR 97219
cara.tang@pcc.edu

2Computer Information Science
Cosumnes River College
Sacramento, CA 95823
geisslm@crc.losrios.edu
3Computer Science

El Paso Community College
El Paso, TX 79915
cservin1@epcc.edu

In this tutorial, participants will be introduced to Bloom’s for Computing:
Enhancing Bloom’s Revised Taxonomy with Verbs for Computing Disciplines,
a project of the ACM CCECC (Committee for Computing Education in Com-
munity Colleges). Due for final publication by the end of 2022, the Bloom’s
for Computing report offers a total 57 enhanced verbs across all six levels
of Bloom’s cognitive domain – Remembering, Understanding, Applying, An-
alyzing, Evaluating, Creating. The enhanced verb list is intended to support
crafting more appropriate and less awkward learning outcomes and competen-
cies that express the knowledge, skills, and dispositions required in computing
disciplines. The Bloom’s for Computing verb list and report is not just for
use in future ACM curriculum guideline reports, but is primarily for educa-

∗Copyright is held by the author/owner.

114

tors in computing disciplines who find themselves needing to craft learning
outcomes or competencies – whether for programs, courses, or individual mod-
ules; whether two-year, four-year, graduate, or K-12 level; whether faculty,
instructional designers, or program coordinators.

The presentation and activities in the proposed tutorial session are outlined
below:

1. Introductions – tutorial facilitators and participants
2. Refresher on Bloom’s Revised Taxonomy, its six cognitive levels, and

common verbs lists
3. Interactive discussion on how faculty approach writing learning outcomes

and some of the challenges encountered
4. Bloom’s for Computing: Enhancing Bloom’s Revised Taxonomy with Verbs

for Computing Disciplines

(a) Introduce the project and the verbs
(b) Examples of learning outcomes using the Bloom’s for Computing

verbs
(c) Areas where the Bloom’s for Computing verbs come in particularly

handy

5. Activity where participants write or modify learning outcomes for courses
they teach

6. Share out learning outcomes and thoughts on how the enhanced verbs
might be used

7. Wrap up

Participants will be given a handout to take home with the complete list of
verbs for each cognitive level.

This tutorial is relevant for anyone involved in writing, revising, or updating
learning outcomes for programs, courses, or instructional units in computing
disciplines such as Computer Science, Information Technology, and Cyberse-
curity

115

Teaching Web Development Using ASP .Net
Core MVC∗

Conference Tutorial

Razvan A. Mezei
The Hal and Inge Marcus School of Engineering

Saint Martin’s University
Lacey, WA 98503
rmezei@stmartin.edu

In this tutorial we will demonstrate the use ASP .Net Core MVC to give stu-
dents an introduction to web development. In it, students will not only be ex-
posed to both client-side languages and tools (such as HTML, CSS, JavaScript,
and Bootstrap) but also to server-side ones (C#, Razor Engine) and an object
relational mapper (Entity Framework Core).

There are several important reasons why one should teach such a course
to their students. Firstly, it allows students to develop a medium/large-sized
practical project (a web development) that combines several languages (both
client and server side). It also provides a great playing ground for applying most
of the Object-Oriented concepts (including inheritance, interfaces, dynamic
and static polymorphism, and many other), and expose students to many other
important concepts (such as responsive design, authentication, object relational
mapper, cookies, session information, HTTP verbs, CRUD operations, unit
testing, asynchronous programming, cross-platform development). Lastly, such
a course would also provide practical experience with technologies used by
some large regional employers (several Washington State job posts currently
advertised include this technology [1]).

In this tutorial, we will go over the concepts enumerated above and see how
they are used throughout the course. We will then present some professional
resources that are available online for free (see [2] and [4]). One of these
resources ([2]) can be used as a lab component because it gives learners an
opportunity to see how various concepts can be applied to an existing project.

∗Copyright is held by the author/owner.

116

The other resource ([4]) can be used as a resource to help students better
understand the concepts covered in class (or go deeper) and complete their own
personal project (a Web application using ASP Net Core MVC) based on their
own interests. Individualized assignments can help keep students motivated
and engaged throughout the course as well as “deter cheating or blindly copying
from other students” ([3])

References

[1] Careers.wa.gov. Find a job working for washington state. (n.d.). https://www.
careers.wa.gov/.

[2] Microsoft Docs. Get started with asp.net core mvc. https://docs.
microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/start-
mvc?view=aspnetcore-6.0&tabs=visual-studio.

[3] M. M. Girgis and L. Petry. An effective quiz strategy for enhancing student
engagement while discouraging academic dishonesty. http://people.se.cmich.
edu/yelam1k/asee/proceedings/2018/1/52.pdf.

[4] GitHub. Microsoft learning. https://github.com/MicrosoftLearning.

117

From Torches to Transistor: Using Minecraft to
Teaching Processor Architecture∗

Conference Tutorial

Jeffrey A Caley and Kieran Kim-Murphy
Department of Computer Science

Pacific Lutheran University
Parkland, WA 98447

caleyjb@plu.edu,kimmurkj@gmail.com

Abstract

This tutorial will demonstrate a series of labs which utilize Minecraft
to provide students with a hands-on learning experience about processor
architecture. We will discuss the basics of minecraft, a series of labs that
have been developed to take students from building basic logic gates
all the way to programming an 8-bit computer. We will share lessons
learned during that time and suggest variations to the content to expand
or shrink the complexity for the students.

Introduction

Providing hands-on learning exercises when teaching processor architecture can
be a challenge. Because electricity is invisible, students struggle to ‘see’ what is
going on with physical demonstrations. Simulation software helps students see
what’s going on, but dimensions the ‘hands-on’ learning that benefits students.
This tutorial will demonstrate a third way by utilizing Minecraft, a sandbox
video game, to allow students to build processors from the ground up and
experience how they operate in a 3D environment.

∗Copyright is held by the author/owner.

118

This tutorial will cover everything necessary to run these labs. We will
cover:

1. The basics of minecraft
2. How to setup a minecraft server
3. 7 labs taking students from basic building blocks to programming an

8-bit computer
4. Possible variations in content
5. Lessons learned

Method

Minecraft is a voxel-based sandbox game where players build things 1 block at
a time. By utilizing just a few of the 100’s of different block types, combined in
particular ways, we can build logic gates, generate 1’s and 0’s and wire together
various built components. Given these basic building blocks, we can combine
them to build fully programmable computers.

The series of labs presented in this tutorial covers about 8 weeks worth of
lab work. The labs consist of the following:

1. Learning Minecraft and logic gates: This lab is designed to familiarize
students with minecraft, the 5 main blocks used in computer construction
(redstone, repeaters, torches, switches, pistons).

2. Building an ALU: This lab is a 2 weeks lab where students are told to
build an ALU with a set of 10 instructions. It’s up to the students to
figure out what that looks like. Every ALU turns out unique

3. Building RAM and Register File: Students learn how to build RAM and
a register file. Learn about read/write, input/output of data

4. Addressing with MUX: To make the RAM addressable, the memory lo-
cations are MUXed. Students learn about MUX’s and build one to make
RAM addressable

5. Encoder/Decoder or program memory: The Encoder/Decoder allows the
students to pick how they encode their instructions in binary. This al-
lows the students to store and execute their programs in RAM. Program
memory is a simplified implementation where students ‘program’ their
computer by enabling various gates

6. Wiring everything together: Connecting all the components together and
verifying data correctly flows through the machine

7. Debugging and programming: Work on getting your computer working
and program a simple program

119

Conducting Departmental Reviews and Serving
as a Reviewer∗

Conference Tutorial

Henry M. Walker
Professor Emeritus, Grinnell College

Lecturer, Sonoma State, Napa, CA 94559
walker@cs.grinnell.edu

Many colleges conduct periodic reviews of departments, separate from ABET
accreditation. Typically, the department writes a self study and chooses exter-
nal reviewers, reviewers visit campus and write a report, and the department
responds. In this process, faculty sometimes have questions about how to de-
velop a self study, whom to include on a schedule for the external reviewers,
and how to construct a reviewers’ report. This 90-minute Tutorial provides
guidance for performing each component of the process.

Audience: This workshop has two overlapping audiences:

1. Faculty in programs/departments that are anticipating external reviews
within the next few years, and

2. Faculty who may serve as external reviewers.

Approximate Agenda and Schedule:

§ Planning a Departmental Review (60 minutes)

1. Making the decision to do a review (10 minutes)
2. Gathering data (15 minutes)
3. Developing a departmental self-study document (20 minutes)
4. Selecting external reviewers (5 minutes)
5. Developing an on-campus schedule for reviewers (10 minutes)

§ Serving as an External Reviewer (30 minutes)

6. Tips for reviewers (15 minutes)
7. Writing a reviewers’ report (15 minutes)

∗Copyright is held by the author/owner.

120

Tutorial Format: Following the Approximate Agenda, the Tutorial will con-
tain about 7 segments, each providing background, highlighting approaches,
and offering suggestions. For each segment, discussion will encourage Tutorial
participants to ask questions and brainstorm options for their local campuses.

Acknowledgements

This Tutorial repeats and possibly expands successful workshops held at CCSC
Central Plains 2012 and CCSCMidwest 2014 [3, 6] and at MAAMathFest 2018,
Minicourse # 4 [5]. The session also draws upon resources found in [2] and
expands discussion found in [4].

Biography

Henry M. Walker has served as an external reviewer of 46 departments of com-
puter science and/or mathematics since 1991, Most recently, the CS Program
at Linfield Univ. He is a member of the Committee on Program Review of
the Mathematical Association of America (MAA) [1], a past contributor to the
MAA Committee on Consultants, and a writer of a LaTeX template for reports
of external reviewers for the MAA. He also has actively participated in three
reviews of his own department, in the 1970s, 1995, and 2007.

References

[1] MAA Committee on Departmental Review. Program Review, 2017 (accessed
July 3, 2022). http://www.maa.org/programs/faculty-and-departments/
curriculum-department-guidelines-recommendations/program-review.

[2] MAA Committee on Program Review. Resources for External Consultants: Re-
view Templates, 2008 (accessed July 3, 2022). https://www.maa.org/programs-
and-communities/member-communities/committee-on-departmental-
review/resources-external-consultants.

[3] Henry Walker. Conducting Department/Program Reviews and Serving as a
Reviewer, March 2012. http://www.cs.grinnell.edu/~walker/talks/dept-
reviews-cp-2012/.

[4] Henry Walker. Getting started with a program review. ACM Inroads, 9(2):26–28,
June 2018.

[5] Henry Walker and Rick Gillman. Leading a Successful Program Reviews, August
2018. https://walker.cs.grinnell.edu/talks/maa-minicourse-2018/.

[6] Henry Walker and Joan Krone. Conducting Department/Program Reviews and
Serving as a Reviewer, September 2014. http://www.cs.grinnell.edu/~walker/
talks/dept-reviews-mw-2014/.

121

Professionals’ Perspectives on Liberal Arts and
Computing Skills∗

Panel Discussion

Shereen Khoja1, Tammy VanDeGrift2
1Mathematics and Computer Science Department

Pacific University, Forest Grove, OR 97116
shereen@pacificu.edu

2Computer Science, Shiley School of Engineering
University of Portland, Portland, OR 97203

vandegri@up.edu

1 Summary

Faculty members from two institutions will lead a panel discussion of alumni
who will share experiences about skills and dispositions that have helped them
in their computing professions. The two facilitators have backgrounds in the
liberal arts and computing education: Dr. Khoja is the Director of the Core
Curriculum and Professor of Computer Science at Pacific University and Dr.
VanDeGrift is a Professor of Computer Science and serves on the Core Cur-
riculum Committee at the University of Portland. The panel session will begin
with an overview of the liberal arts and computing curricula at the two institu-
tions. The panel session will include questions, such as: Introduce yourselves
including where you attended university, where you work, and your current role
in the company. Describe the top three skills you acquired through a general,
liberal arts education and how those skills are incorporated into your career.
Describe the top three computing skills you acquired as an undergraduate and
how those skills are incorporated into your career. What skills and experiences
helped you get your first job? What courses, co-curricular activities, or in-
ternational experiences helped you achieve long-term success in your career?
What advice would you give first-year students who are looking ahead to their

∗Copyright is held by the author/owner.

122

university curriculum courses? What advice would you give faculty to prepare
students for the profession?

2 Panelist Biographies

The panel session features the following software professionals:
Alexa Accuardi graduated in 2019 from University of Portland with a

BS in Computer Science and Mathematics. She is an Adjunct Instructor at
University of Portland and a Software Engineer at Digits Financial, Inc. At
work, Alexa focuses on frontend web development in React and TypeScript.
She is also pursuing her MS in Computer Science from Georgia Tech. Alexa
attributes her long-term career success to her participation in the MECOP
internship program and her experience as a Teaching Assistant in college. She
is an active member of the Society of Women Engineers Columbia River Section
and is passionate about mentoring and educating future software engineers.

MacKevin Harrison Fey Jr graduated in 2015 from University of Port-
land with a BS in Computer Science and a BS in Electrical Engineering. He is a
Senior Software Engineer at Microsoft and works on experimentation and per-
sonalization services for website infrastructure. His responsibilities include fea-
ture costing, scoping, design, support, and mentoring junior colleagues. MacK-
evin attributes several things to his successful preparation: the CS curriculum -
holistic approach to problem-solving and hands-on experience; internships and
on-campus jobs (tutor, grader, lab assistant; and getting to meet and work
with a variety of people.

Larry Jensen graduated in 2019 from Pacific University with a BS in
Computer Science. He is a Software Development Engineer at AWS Elemental
in Portland, Oregon. At work, he develops a service that enables streaming
video providers to create linear streams at broadcast quality from video on
demand and live content.

Nicole Peldyak graduated in 2016 from Pacific University with a BS in
Computer Science and minors in Mathematics and Music. She is a Senior
Software Engineer at Garmin in Salem, Oregon. At work she leads a team of
software engineers responsible for designing, implementing, and testing soft-
ware for certified retrofit avionics. Nicole learned many of the leadership skills
needed in her current position from opportunities provided by Pacific Univer-
sity, such as co-founding the Women in Computer Science club and directing
the student-led women’s a cappella choir. She continues to seek out that type
of community at Garmin, where she is part of the leadership team of the Salem
site’s chapter of the Women’s Business Forum.

123

3 For More Information

1. Fung, B. 2015. Tech companies are hiring more liberal arts majors than
you think. The Washington Post.
https://www.washingtonpost.com/news/the-switch/wp/2015/08/26/tech-
companies-are-hiring-more-liberal-arts-majors-than-you-think/.

2. Kowarski, I. 2019. What Can You Do with a Computer Science Degree?
U.S.News and World Report. https://www.usnews.com/education/best-
graduate-schools/articles/2019-05-02/what-can-you-do-with-a-computer-
science-degree.

3. Loten, A. 2019. America’s Go Talent, Just Not Enough in IT. The Wall
Street Journal. https://www.wsj.com/articles/americas-got-talent-just-
not-enough-in-it-11571168626.

4. Walker, H.M. and Kelemen, C. 2010. Computer Science and the Liberal
Arts: A Philosophical Examination. ACM Transactions on Computing
Education (TOCE). https://dl.acm.org/doi/10.1145/1731041.1731043

5. Zander, C., Boustedt, J., McCartney, R., Mostrom, J.E. 2009. Student
transformations: Are they computer scientists yet? In Proceedings of the
5th International Workshop on Computing Education Research (ICER).
https://dl.acm.org/doi/10.1145/1584322.1584337

124

Reviewers — 2022 CCSC Northwestern Conference

America Chambers University of Puget Sound, Tacoma, WA
Xuguang Chen . Saint Martin’s University, Lacey, WA
Donald Chinn University of Washington Tacoma, Tacoma, WA
Janet Davis . Whitman College, Walla Walla, WA
Zach Dodds . Harvey Mudd College, Claremont, CA
Tim Harrison Eastern Oregon University, La Grande, OR
Robert R. Lewis . . .Washington State University at Tri-Cities, Richland, WA
Brad Richards . University of Puget Sound, Tacoma, WA
Ben Tribelhorn . University of Portland, Portland, OR
Tammy VanDeGrift University of Portland, Portland, OR
Steven R. Vegdahl . University of Portland, Portland OR
Richard Weiss The Evergreen State College, Olympia, WA
Howard WhitstonUniversity of South Alabama, Mobile, AL

125

