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Welcome to the 2023 CCSC Northwestern
Conference Eastern Washington University

On behalf of the Conference Steering Committee and Northwest Regional
Board, I welcome you to the Twenty Third Annual Consortium for Comput-
ing Sciences (CCSC) Northwestern Regional Conference, held at the Eastern
Washington University Catalyst Building. We are very excited to meet you all
in person.

Many individuals and groups helped coordinate and support this year’s
conference and I want to thank them for all their time and effort. This year’s
conference includes 11 papers, five panels/tutorials, and the keynote. All pa-
pers, panels, and tutorials went through the regular peer review process. The
steering committee accepted 11 out of 16 papers (69% acceptance rate). We
had colleagues across the region serve as professional reviewers and we recog-
nize their generous efforts in providing time and guidance in the selection of
our conference program.

Our Keynote speaker, Graham Moorehead will talk about what is thought
and how is human thought different from artificial intelligence thought.

Of course, none of this would be possible without the support of our national
and local partners. A final thank you goes out to you the attendees whose
participation is essential not only to the continuance of conferences such as
this, but also for the continued communication and collegiality you provide
between all of us involved in the advancement and promotion of our discipline.

We are excited to invite you to our campus, and hope you enjoy the confer-
ence and the chance to interact with your colleagues at our annual gathering.

Stu Steiner
Eastern Washington University

CCSC-NW 2023 Conference Chair
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The Shape of Thought∗

Keynote

Graham Moorehead

CEO - Pangeon

Computer Science Department
Gonzaga University
Spokane, WA 00528

The study of artificial intelligence forces us to understand our own. What
is thought – how is human thought different from artificial thought?

Graham Morehead is a professor teaching AI at Gonzaga University, and
the CEO of Pangeon. For over 25 years, Graham has been developing AI and
machine learning solutions to difficult problems. His research led to several
TEDx talks and several tech companies. He is currently working to solve
problems related to wildfire, real estate, and linguistics.

∗Copyright is held by the author/owner.
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Position Paper on Teaching Operating Systems
using the Rust Programming Language∗

Bryan Dixon
Computer Science Department

California State University - Chico
Chico CA, 95929
bcdixon@csuchico.edu

Abstract

In the past few years, the Rust Programming Language has quickly
gained adoption in a myriad of applications. This adoption, especially
into the Linux Kernel, is a clear motivation that there may be a rea-
son to have students learn Rust during their computer science studies.
This position paper will discuss a case for why instructors should incor-
porate Rust as part of an operating systems course and how one would
accomplish this.

1 Introduction

The Rust programming language publicly appeared in 2010 and has been a
stable release since 2014[19]. Since its stable release, it has been adopted
by quite a few high-profile companies, including Amazon, Facebook (Meta),
Google (Alphabet), and Microsoft. The popularity of Rust has also exploded
since its release, as it has been the most loved language in Stack Overflow’s
annual Developer Survey for the past seven years[21]. Additionally, that survey
found Rust to be the most wanted technology, indicating that developers have
expressed interest in developing with Rust. Other surveys have listed Rust as

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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one of the top twenty most popular programming languages, including those
from IEEE Spectrum, Redmonk, and Tiobe[5][1][22].

An essential feature of Rust is that it is a memory-safe programming lan-
guage that is provably safe[10]. In lower-level development, security is paramount,
so the memory safety aspect of Rust makes it an attractive choice of language
to move forward on for teaching operating systems. Another critical feature
of Rust is that it has fast and predictable performance. Rust has no garbage
collector, so there are no garbage collection performance losses, as with many
other general-purpose programming languages. Instead, Rust solves the prob-
lem with features inspired by functional programming languages.

The promise of Rust as a safer performant systems language has led to
widespread adoption by quite a few high-profile companies and, more impor-
tantly, adoption into the Linux Kernel itself. This adoption started originally
with Amazon developing containers and system code for their custom cloud
kernels[24]. Amazon made a clear case for Rust, arguing how Rust is nearly as
efficient and performant as C but has added memory protections that C does
not provide. Also noted was a correlation between performance and energy
consumption. Amazon compared the energy usage and performance of 27 dif-
ferent languages and found Rust to be one of the top performers in terms of
energy efficiency[16].

In September 2022, the framework for future Linux Kernel development
was introduced, highlighting efforts to allow Rust modules in the kernel due
to Rust’s memory safety and the potential corresponding stability improve-
ments[18]. Furthermore, Rust started getting committed to the Linux Kernel,
starting with version 6.1 [23][25][2]. A recent development is a consideration
for GNU GCC Compiler to add support for Rust, allowing Rust to benefit
from the entire GNU ecosystem and plug-ins for GCC developed for over 35
years[6].

2 Rust in Education

Outside of Rust forums and other discussion boards like Quora, there is no
evidence schools are starting to swap to teaching introduction to programming
courses in Rust[20][15]. The learning curve for Rust can be more challenging
than that of C or C++, so this may be the reason for the absence of adoption
in introductory programming courses. However, there could still be benefits to
incorporating Rust into upper-division programming courses.

2.1 Rust for Systems Education

There are several examples of both systems programming courses and graduate-
level operating systems course projects that have explored the feasibility of
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applying Rust in their courses[9][14][11][12][13][3]. These Rust use cases are all
graduate-level Rust systems programming projects that one could expect to see
at Ph.D. granting institutions for their graduate operating systems courses. I
have taught our graduate operating systems course numerous times for M.S.
students, and they would struggle with these deep-dive projects.

Before Rust was even stable, a professor at the University of Virginia taught
an undergraduate operating systems course entirely in Rust[8]. They discussed
their Rust-based assignments along with the motivations and flaws of this ap-
proach. The two primary reasons they argued against teaching operating sys-
tems in Rust were its immaturity and learning curve. The entire course in Rust
has shortcomings since so much of the Linux kernel is still based on C. The C
programming language is still the most popular programming language. With
the power of the C Foreign Function Interface (CFFI), teaching C alongside a
more modern alternative such as Rust is likely a stronger approach[4].

3 Teaching Operating Systems with Rust

There are two significant hurdles to teaching an operating systems course in
Rust. The obvious one is that students are unlikely to have learned Rust
in introductory courses, so the course will need to include time for teaching
students the basics of Rust. The second is having assignments that balance
teaching operating systems fundamental knowledge and the benefits of using
Rust for systems programming.

3.1 Rust Introduction Hurdle

Some institutions expect courses to have at least one assignment due before
the add or drop date to help students determine whether to stay in or drop
a course. My institution’s add/drop date is at the end of the fourth week of
the semester. This time window makes creating substantive assignments re-
garding operating system concepts and fundamentals difficult without students
feeling overwhelmed. I have solved this problem with a simple kernel module
authoring assignment that students can start on day one of the course with-
out any additional information. I could replace this kernel module assignment
with lab time introducing students to Rust and getting them started with Rust
programming assignments.

Rust has several novel language features that must be covered in an intro-
ductory set of labs or assignments. Introducing students to these novel features
would be necessary for using Rust and setting students up for success using
Rust in systems programming assignments later in the course. Here is a list of
key topics that should likely be covered:
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• Variables and Mutability
• Data types
• Ownership
• Structs
• Error Handling
• Crates

Numerous other common programming topics exist, like how Rust handles
loops, functions, and other features. However, the most significant bits that
students we have introduced Rust to have gotten tripped up on are mutability
and ownership. Labs may also need additional time regarding Rust-specific
threading and synchronization tools if these are not covered in lectures. Such
tools include covering Rust crates regarding concurrent programming tools not
included in standard Rust like Crossbeam [7].

Some students would benefit from learning Rust through instructional videos
that go beyond reading the Rust documentation alone. The benefit of this ap-
proach is that lecture time does not need to be dedicated to Rust instruction,
leveraging lab time instead. Institutions that do not have operating systems
courses paired with labs could instead have Rust introduction videos avail-
able that students could watch outside lecture time. Developing such tailored
Rust introduction videos would be necessary to ensure the adoption of such a
proposed teaching of OS to a broader set of schools.

3.2 Rust Assignments

The need for some C programming is due to the expectation and need for
students to come out of our operating systems courses knowing pthreads. With
how our operating systems course fits into the curriculum, we could not move
the course to 100 percent Rust. Nevertheless, I could see a pathway for all the
other hands-on assignments in my operating systems course to become Rust-
based. I already offer extra credit for students to re-implement the pthreads
assignment with Rust.

Specifically, these libraries would be extremely helpful in implementing such
assignments:

• nix::unistd - wrapper for standard nix system calls including fork, exec,
setpgid, pipe, sleep, and others

• nix::sys::wait - wrapper for wait, waidpid nix system calls
• signal_hook - Library for easier and safe Unix signal handling
• crossbeam - external library with multi-producer, multi-consumer chan-

nels, and other tools for concurrent programming
• std::sync - standard library with mutexes, conditional variables, and the

rust Atomically Reference Counted (Arc) struct.
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I give students hands-on experience with virtual paging and scheduling
through assignments where students must implement libraries tested via a
simulation. These kinds of assignments would be easier to migrate to Rust;
however, developing the simulator to be just as robust and still have the same
learning outcomes would be a potential challenge.

Some difficulties are inherent in rebuilding these types of assignments from
C into Rust in a way that still makes sense and does not add significant hurdles
to student success. Getting time to recreate these assignments may necessi-
tate someone obtaining NSF funding from an Improving Undergraduate STEM
Education (IUSE) grant like Saverio Perugini did to re-envision a modern op-
erating systems course[17]. The time is necessary since these are such complex
and problematic programs to write while ensuring consistency in their behav-
iors.

4 Conclusion

There is a clear case for moving toward Rust-based development for modern
operating systems. Future students would benefit significantly from an operat-
ing systems course emphasizing Rust development that still covers some core
C functionality. If any such course of materials comes to fruition, it would also
be helpful to see it published as a Course in a Box to make it easier for other
instructors to implement the course independently. The only way we are likely
to see faculty find time to put together such a course is with grant funding
or a sabbatical due to the difficulty of putting together these assignments in a
polished state.
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AI and Society:
Teaching AI to non-STEM Students∗

Pejman Khadivi
Computer Science Department

Seattle University
Seattle, WA 98122
khadivip@seattleu.edu

Abstract

Artificial Intelligence (AI) is a booming technology with a broad range
of applications in almost any aspect of life, technology, science, and soci-
ety. However, despite its popularity, AI education to non-STEM students
is not addressed properly. In this paper, we introduce a new AI course,
named AI and Society, that has been designed for non-STEM students
with very limited knowledge about math and computer science. In this
course, the ultimate goal is to review fundamental concepts of AI and
study the application of AI in major global issues such as healthcare, sus-
tainability, transportation, and digital security. Furthermore, the course
covers ethical issues in AI, and discuss different ethical aspects of AI sys-
tems such as algorithm and technology bias, accountability, and safety.

1 Introduction

Over the past decade, artificial intelligence (AI) has been changed to a ubiq-
uitous technology. AI is now a universally accepted approach to tackle a
wide range of problems with different levels of complexity. With recent ad-
vancements in computer science and engineering, data collection technologies,
robotics, and telecommunications, AI is going to play a crucial role in a wide

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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range of applications from digital security to healthcare. However, while AI is
a ubiquitous technology, students from different fields of study do not receive
appropriate training about AI. Hence, after graduation, their expectations are
not necessarily reasonable, and they may suffer from lack of knowledge about
AI, its capabilities, and the corresponding ethical issues.

Due to the necessity of public education of artificial intelligence, in recent
years there has been efforts to develop curriculum for teaching AI to those
with no background in computer science and math [1], [4], [6]. Akram et. al
in [1] developed a curriculum by combining four major concepts in AI, includ-
ing search, knowledge-representations systems, machine learning, and natural
language processing (NLP). This curriculum is designed to teach AI in middle-
grade classes. In [4] a visualization tool is introduced for exploration of word
embedding in NLP. This interactive tool is designed to facilitate teaching AI
in K-12 programs. The issues of teaching AI in K-12 is also addressed in [6],
where authors focused on AI knowledge, skills, and attitude of students, using
the help of lectures, teachers, and workbooks.

In [2] a game has been proposed to introduce generative adversarial net-
works to middle school students. Norouzi et al. are targeting high school
students in [9], where they proposed a curriculum to teach machine learning
in a one-month period. The course is designed around NLP. The authors then
asked students to submit surveys and analysed the collected responses. Teach-
ing machine learning to K-12 students is also explored in [7].

Teaching machine learning to non-STEM students has been addressed in
[5]. In this paper, Garcia-Algarra mainly talks about the contents of a machine
learning course that has been designed for non-STEM students at Comillas
University, in Madrid, Spain. A brief overview of a course syllabus for teach-
ing machine learning to non-technical students is reviewed in [14]. Long and
Magerko have analyzed AI literacy in [8] in order to design learner-centered
AI courses. In this paper, the major goal of the authors was to coming up
with a definition for AI literacy, by reviewing the interdisciplinary literacy and
extracting AI literacy competencies.

In this paper, we introduce a new course which has been designed for teach-
ing to non-STEM students. In this course, the ultimate goal is to review fun-
damental concepts of AI and to study the application of AI in major global
issues such as healthcare, sustainability, transportation, and digital security.
Moreover, this course addresses the ethical issues in AI. This course is designed
for students with limited background in mathematics, computer programming,
and science. Hence, it is designed so that the course material does not rely on
math and computer programming. Instead, the emphasis will be on demysti-
fying the algorithmic thinking behind various AI algorithms and models and
discussing the application of various approaches on real-world problems.
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2 Course Requirements

At Seattle University, every undergraduate student needs to complete a se-
quence of university core (UCOR) courses. As the university website men-
tions [13], UCOR courses, beside other learning outcomes, are designed to
help the students to "develop academic skills such as writing, critical thinking,
and analysis of information" [13], and to "becoming a strong interdisciplinary
thinkers" [13]. To get their BS/BA degrees, students need to complete 180
credits at Seattle University. The UCOR curriculum is a 60-credit program,
distributed over 12 courses and in three modules:

• Module I: Engaging Academic Inquiry: which contains courses on writing,
quantitative reasoning, creative interpretation, and inquiry seminars.

• Module II: Engaging Jesuit Traditions: which contains courses on theo-
logical exploration, philosophy, and ethics.

• Module III: Engaging the World: which contain courses on religion in a
global context, and global challenges.

The AI and Society course is a natural sciences and global challenges course
which falls under Module III. STEM students are not eligible to register for
this course and hence, all the students in the class are non-STEM. Therefore,
one of the major assumptions in this course is that the students do not have
a strong mathematics background. Furthermore, the assumption is that the
students are not familiar with computer programming.

Students in a natural sciences and global challenges course need to complete
a project or write a term paper, as one of the core learning outcomes is to assist
the students to be effective writers. Moreover, the students need to work on
some global issues in an interdisciplinary setting, from a scientific perspective.
Therefore, having a term project related to a global issue is a major requirement
in these courses.

2.1 Students Sample Distribution

AI and Society is designed for non-STEM students. Therefore, students that
register for the course are coming from non-STEM departments and colleges.
As an example, in one offering of the course, 39% of the students were from
Albers School of Business and Economics (with majors such as finance, mar-
keting, and management), 48% of them were from College of Arts and Sciences
(with majors such as visual arts, psychology, and creative writing) , and the
remaining 13% were from other colleges (with majors such as organizational
leadership, and digital technology).
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Figure 1: Course sections.

3 Course Syllabus

Course sections are illustrated in Fig. 1. As mentioned before, the course is
designed for non-STEM students as a university core course. Hence, one of the
main concerns of this course is to address global challenges from scientific per-
spective. Furthermore, the course is also supposed to address ethical issues of
the AI technology. Moreover, students do not have strong mathematics back-
ground and are assumed that have no background in computer programming.
While many AI algorithms rely on mathematical theories, there are important
AI algorithms that either do not need any math or can be simplified so that
the students with no math background can understand the concepts. Local
search algorithms such as hill-climbing, and nature inspired algorithms such
as artificial neural networks, ant colony optimization, and genetic algorithms
are some examples. For the assignments, students will be asked to apply these
algorithms on simple problems manually, which means that no programming
experience is required for this course.

The course content is designed based on the material from [12], Artificial
Intelligence: A modern approach and [10], Artificial Intelligence in Society
published by OECD. In this section, we introduce different sections of the
course. Breakdown of the topics in each section are shown in Table 1.

In the Introduction section, the main concern is the definition of AI. This
section starts by defining intelligence. Then, the instructor talks about various
definitions of AI. A brief history of AI, Turing test, and rational agents are
also introduced in this section.

In the applications section, the instructor talks about various applications
of AI that are related to some global challenges. In this section, applications
of AI in transportation, agriculture, science, health, criminal justice, security,
and financial systems are explored.
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The AI systems section starts with a crash-course on graph theory, as its
concepts are required in the rest of this section. Then, after talking about
search algorithms, local search solutions, and nature inspired models (such as
genetic algorithm), rule based and case based AI systems, are introduced. This
section also covers logic, and machine learning models.

Section AI and public policies is dedicated to public policy considerations
and economic characteristics of an AI system. We will also introduce human
centered AI concepts to the students.

The last section of the course is ethics in AI, where ethical issues of AI
systems are described. In this section, bias, the importance of human dignity,
and responsible AI topics are described.

Table 1: Breakdown of topics for each section.

Section Topics

Introduction Intelligence and AI, Turing Test, Components
of AI, AI History, AI Applications, Rational
Agents, Task-Environment

AI Applications General Applications, AI in transportation,
agriculture, finance, health, marketing, science,
criminal justice, and security

AI Systems Graph theory, Search for the Solution, Local
Search Algorithms (e.g., Hill Climbing), Nature
Inspired Algorithms (e.g., Genetic Algorithms),
Machine Learning, Knowledge Representation,
Logic and Fuzzy Logic, Rule Based Systems,
Case Based Reasoning

AI and Public Policies Human Centered AI, Transparency, Account-
ability, Robustness, Security, Safety, Economic
characteristics

Ethics in AI Ethical issues, Bias, Human Dignity, Responsi-
ble AI
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3.1 Learning Outcomes

The learning outcomes of the course are as follows:

• L1: Demonstrate understanding of basic artificial intelligence approaches
to problem solving.

• L2: Use algorithms and appropriate representation techniques for solving
problems requiring learning and reasoning.

• L3: Analyze ethical principles relevant to design and usage of various
AI-based systems to address societal problems

• L4: Describe different applications of AI

4 Major Assignments

There are three categories of major assignments in this course, which are de-
scribed in this section. These categories are as follows:

• Bi-weekly online discussions initiated by the instructor,
• Bi-weekly written assignments to demonstrate students’ understanding of

the concepts (e.g., manual tracing of an algorithm on a simple problem,
or selecting an appropriate model for a problem), and

• Course project, which is a quarter-long activity.

Discussions are important assignments in this course as they let students to
have an active participation in the class, share their thoughts with their peers,
and use their prior knowledge to explore an AI question. Example discussion
ideas are illustrated in Table 2. These discussion ideas may be used for in-class
or online discussions.

Written assignments give the students the opportunity to practice on the
concepts, models, and algorithms that have been discussed in the class. As an
example, students may be asked to manually use the BFS algorithm to explore
a graph, or to use cross-over operation in order to generate new chromosomes
from two individuals in genetic algorithms. Three sample questions for written
assignments are illustrated in Fig. 2. Since students are not supposed to
have any programming background, no programming assignment is used in
this course. In some discussions and written assignments, students are asked
to either use an online application, or watch a video. As an example, as part
of the ethics section, students are asked to complete a judgement on the Moral
Machine activity [3]. We also asked them to watch the documentary In the
Age of AI [11], on PBS as part of a discussion (Table 2).
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Table 2: Some discussion ideas.

Title Description
Daily example of AI Think about one of your daily activities and

recommend a way that AI may be used to
improve your experience with that activity.

Self-Driving Cars Safety What do you think about safety, regulations,
and the corresponding ethical issues related
to self-driving vehicles?

Age of AI The documentary, In the Age of AI (Links to
an external site.), talked about promises and
challenges of AI. Pick one of the ethical issues
that have been highlighted in the movie and
express your own opinion about it.

Figure 2: Sample written assignment question: A sample question about the
concept of state and state graph.

4.1 Course Project

Students are required to complete a course project which addresses a global
issue. The course project is interdisciplinary and students should be able to
select a topic from a variety of topics, based on their background. During
the course project, students are able to use knowledge they have learned in
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Figure 3: Sample course projects topics. Word sizes represent frequency of the
topic in the class.

other courses, to solve an AI problem. Examples of course project areas are
illustrated in Fig. 3. The students were supposed to select topics that represent
global challenges. As Fig. 3 shows, the most popular topic was global water
crisis, while application of AI in resource consumption, education, healthcare,
and climate change were also frequently by the students.

After doing the project, students will be required to practice technical com-
munication in three mandatory ways, as follows:

1. Written practice: the students are required to write a "letter to the
editor" of an appropriate magazine. Furthermore, the students have to
write a term paper, reporting the project results and the corresponding
literature review.

2. Oral practice: the students have to present their work to their classmates
through short oral presentations.

3. Social media practice: the students have to come up with a series of signif-
icant number of meaningful and influential social media posts, regarding
their work.

In addition to the term paper and presentation, each student will be required
to submit a reflection questionnaire which not only asked the student to reflect
on their work during the project but on how they have used their previous
knowledge they have learned in other courses.

5 Students Performance and Feedback

The students reaction to the course was positive in general. Homework as-
signments, class activities (i.e., practice problems and quizzes), and YouTube
videos (where AI experts talk about applications, ethical issues, etc.) were
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Figure 4: Letter to the editor assignment.

mentioned as positive points of the course. Students were also interested in AI
applications and ethical issues.

In the final exam, where learning outcomes L1, L2, and L3 were covered,
71.3% of the students had a grade above or equal to 80 (out of 100). In the
midterm exam, where learning outcomes L1, L2, and L4 were covered, 71.4%
of the students had a grade above or equal to 80. Students had the highest
performance on learning outcome L4 (i.e., AI applications), which was expected
as there is no need to work with any algorithms.

6 Conclusions

In this paper, we introduced a new curriculum to teach AI to non-STEM
students. The course covers various AI models and concepts, describes different
AI applications, and talks about ethical issues of AI. The course is designed
for the students with limited dependency on math and no requirement for
computer programming. Ultimately, the goal of this course is not to prepare
students to design a complex AI system. The goal is that students understand
what an AI system is, be familiar with major components of an AI system, have
a clear vision about the underlying algorithms in an AI system, be familiar
with the applications of AI, and understand the global issues connected with
AI. As demonstrated via some examples, these goals can be achieved with no
mathematics, science, and computer programming background.
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Abstract

This paper reports on a series of semi-structured interviews and code
reading exercises conducted with 10 undergraduate students and 11 pro-
fessional software engineers in order to better understand how students
and professionals differ in how they come to understand a codebase that
is novel to them. The goal was to uncover distinctions to help us design
teaching activities to help students know how to read source code whose
call stack spans multiple methods and files. Students had a more dif-
ficult time correctly reading source code than professionals and tended
to lack a clear process for tackling code reading exercises. Professionals
tended to tackle the code reading exercises more methodically, checked
their assumptions, and avoided spending time reading code irrelevant to
the exercise presented to them.

1 Introduction

This paper reports on results of a qualitative study exploring the following
research questions: How do undergraduate students and professional software
developers differ in how they come to understand a codebase that is novel

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

28



to them? This question came to our attention while teaching a new course,
Software Engineering Studio, designed to reduce the time and effort students
take to become effective in their first software engineering internship or job.
The course provides an on-campus internship-like experience for students to
learn key aspects of working in teams in an organization evolving more com-
plex codebases than they have encountered before. We taught this course to
90 undergraduate students for seven consecutive quarters from autumn 2021
through spring 2023.

In this course, students work in teams as they progress through a sequence
of four onboarding badges that progressively a) increase in size and complexity,
b) provide fewer instructions, c) move from individual to team-based work, and
d) require students and teams to take on more ownership of the work. After
doing the core work of a badge, each student creates a portfolio demonstrat-
ing their badge work, and then schedules a 30-minute “badge challenge” Zoom
meeting with one or both instructors. The badge challenge is an interactive
semi-structured interview [1] in which the instructors’ notes from their review
of the portfolio form starting points for a conversation with the student about
their work, processes, mindsets, assumptions, knowledge, and so on. Each con-
versation is unique as instructors meet the students where they are at, probing
to understand precisely what they know, their assumptions, and their current
habits—all in the service of uncovering the particular guidance or informa-
tion suitable for that student. To help stay grounded in facts, students share
their screens showing the exact code, tests, documents, or other work they
had done. These badge challenges sometimes lead into unexpected territory
and sometimes reveal dynamics about our students and curriculum that were
opaque to us instructors despite our decades of teaching in our department.
Over the course of several hundred challenges, some particularly interesting
issues about student preparation have emerged and been the seeds for further
research, such as this paper.

This paper emerged from the second badge students do, whose core work
required students to modify a C# codebase of five files containing 221 lines of
production code, two files of test code, and one JavaScript Object Notation
(JSON) data file. When asked during the badge challenge to explain what a
particular set of lines of code did, only a handful of the 90 students followed
the call stack to see and comprehend what the lines of source code in the
called methods actually did. The rest simply made assumptions about what
the called code did, despite our repeated questions about their assumptions.
They only navigated to the called code when we asked them to, and almost
all needed us to tell them how to do that. Looking at the actual lines of code
implementing a called method appeared to be a novel idea to all but a handful
of the students. We became curious about how to help our students learn
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how to read and understand code, and decided to see how professionals would
perform in this same exercise.

The remainder of this paper is organized as follows. Section 2 briefly re-
views some of the related literature. Section 3 describes our methodology for
gathering and analyzing data from 21 research participants. Section 4 presents
and analyzes the results. Section 5 summarizes our findings and mentions
future work.

2 Background Literature

Reading and understanding each statement of software code that one has not
written is an essential skill for developers. Studies indicate this code reading
can take anywhere from 35-70 percent of a developer’s work time. One study
of 78 professionals across 7 projects over 3,148 working hours found that “on
average program comprehension takes up 58 percent of developers’ time” [9].
Despite code reading’s importance, there appears to be a relative lack of re-
sources dedicated to helping growing developers practice their code reading
skills [11]. This lack of formal education often places new graduates into a
situation where they must quickly try to adapt to the code reading abilities of
their colleagues in the high-pressure environment of a workplace. A large-scale
study at Microsoft found that there is a gap in tool support for reading code,
which puts more pressure on the engineer [8].

Previous studies of code reading revealed that professionals are more pro-
ficient than students when it comes to identifying and retaining relevant in-
formation needed to solve code reading problems [4, 6]. Another study used
functional magnetic resonance imaging (fMRI) to show that the size of the
codebase being examined by a programmer increased cognitive load, perhaps
due to the increased number of identifiers and symbols needed to be tracked for
comprehension [5]. These studies suggest that professionals can process code
more efficiently than students and at a lower cognitive load [6]. Some hypoth-
esize that more experienced programmers can focus on relevant information
needed to read the code in front of them in order to accomplish these tasks
with a lower level of cognitive load [6, 5]. Other studies suggest techniques
like sketching (the act of creating a visualization of a programming state) are
effective at improving novice programmer’s ability to complete code reading
problems by helping to manage cognitive load [2].

3 Methodology

Our study used semi-structured interviews and code reading exercises to gather
data from 10 undergraduate students and 11 professional software engineers
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(see Table 1) during spring of 2023. The first author did all interviews, using
two weekly meetings with the other authors to discuss and adapt the research.
Student participants were recruited from the University of Maryland: College
Park and the University of Washington through social media outreach and the
interviewer’s personal networks. Nine of the ten students had prior software
engineering internship experience, and most students were in their third year
of their undergraduate program. The professionals were recruited via the inter-
viewer’s personal network, and came from a variety of large software companies
such as Amazon and Microsoft. All but one professional (P2) had been working
professionally as software engineers for at least 3 years, and all but two (P3,
P7) had a formal computer science education. All interviews and code read-
ing exercises were conducted remotely via Zoom, and video recorded for later
analysis. Our university’s Human Subjects Division determined that this re-
search qualified for exempt status, and thus did not need to obtain Institutional
Review Board (IRB) approval.

Figure 1: Interviewee demographics. 1Software Engineer (S); Software Engi-
neer II (S2); Senior Software Engineer (SS). 2Years. 3University of Maryland
(M); University of Washington (UW). 4Has graduated from (G) or is enrolled
in (E) a computer science or computer engineering degree program.

3.1 Semi-Structured Interviews

The semi-structured interview [1] consisted of 14 open-ended questions such as
“Can you tell me about how you come to understand code you have never seen
before?” and “What do you find makes it easier or more difficult to onboard to
a new codebase?” These questions were designed to try and understand how
the participant thought about and did code reading, what made the process
easier or more challenging, how participants viewed their own approaches to
code reading in different contexts (e.g. debugging an issue, onboarding to a new
codebase), how those approaches changed over time, and what caused those
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changes to occur. As usual for semi-structured interviews, the 14 questions
served as a set of example questions to guide the interview. The particular
questions asked was decided at the time of the interview, and questions were re-
arranged, re-worded, or not used depending on the direction of the conversation
and thus varied for each interview.

3.2 Code Reading Exercises

After doing two interviews, we added a code reading exercise (E1) to the end
of each interview. The exercise used the code repository from the Software
Engineering Studio course. Participants were tasked with tracing through a
particular unit test to identify what was causing the test to fail, and were al-
lowed to search the internet during their time, and to ask clarifying questions.
Participants could solve this problem by following the execution of the unit
test’s code from the test data file to the class that the test was calling. From
there participants could examine the class’ initialization in the class construc-
tor, as well as the method within it that was subsequently called, to see that
the code read the data file into a global variable of a list of quotes and then
searched the list for the first entry that matched the GUID (globally unique
ID) provided in the test. All a participant would then need to do in order to
find the issue would be to examine the data file itself and see that the infor-
mation in the data file tied to the GUID used in the test did not match the
result that the test was expecting, causing the unit test to fail. If a participant
following the path of code calls they would navigate down two separate call
stacks before encountering the problem.

To help us understand what they were thinking, participants were asked
to talk aloud through their thought process. When participants stopped talk-
ing, they were prompted with questions about their thought process. If a
participant was not making progress after a significant amount of time, the
interviewer provided guiding hints to steer them towards the answer. Partici-
pants that appeared unable to solve the exercise and thus were given specific
guidance towards the answer had their times logged, but were marked as not
completing the exercise unassisted. The interviewer also used the interviewee’s
cursor movement as a supplementary factor to give hints about the partici-
pant’s thought process. The interviewer took notes on all participant spoken
thoughts and behaviors deemed relevant to the exercise. Most notes ended up
focusing on similarities to and deviations from a direct route to the faulty code.

After the 14th interview, we redesigned the code reading exercise to see if
the differences between students and professionals revealed from E1 became
more extreme with a more difficult exercise. Exercise 2 (E2) added another
layer of complexity by asking participants to examine a series of nearly identical
passing tests and to determine how to make exactly one test fail by adding lines
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to a file in the codebase. The starting point for E2 was an additional layer up
the call stack from the starting point for E1, and following the code calls would
require navigating three separate call stacks, which also added to the difficulty
of the exercise. A correct reading of the code would have participants tracing
down to the area where the test data file is read and realizing that the code
searches for the first element in the data file with a matching GUID. The
participant could suggest adding to the start of the data file a new element
with the same GUID as the test they wanted to fail but with different data;
this would cause data to be populated from the new entry, causing the test to
fail while all others continue to pass.

4 Insights From the Interviews

The semi-structured interviews revealed several differences and some similari-
ties between the students and professionals. Both spoke of the importance of
documentation and how it helps improve their ability to read code. However,
students and professionals tended to place greater emphasis on different types
of documentation as being the most helpful. Students tended to emphasize the
importance of “in-method comments” which explain what the next few lines
in a method are designed to do, similar to pseudocode. Professionals more
often used higher level documentation such as official library/package docu-
mentation, one-pager feature design documents, or Swagger pages which were
used to provide context for their reading of lower level code. Professionals also
emphasized the importance of method headers and good method and variable
naming as the key low-level components to their understanding of code.

Students and professionals described different approaches to debugging an
issue in unfamiliar code. Professionals tended to discuss the importance of
narrowing down the bug’s location by examining logs and metrics, and would
only step through the code if the bug cannot be found with logs alone. Students
highlighted a similar high-level approach of narrowing down the search area,
but tended to rely on inserting print statements or making minor code changes
to see their effect on the output, rather than examining error logs. Roughly
half of the students interviewed made no mention of stepping through code
with a debugger, whereas all professionals did so.

5 Results From Code Reading Exercises

Figure 2 charts (a)-(c) show the incidences of three particularly interesting
anti-patterns that we noticed during the code reading exercises: 1) examining
irrelevant files, sometimes apparently randomly choosing different source, data,
and configuration files; 2) not following the call stack through files; and 3)
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making uncorrected misinterpretations of the code. The three anti-patterns
were identified during the first few interviews, discussed by all authors who
also noted that the same anti-patterns were common during student challenge
meetings, and then quantified by the interviewer reviewing the interview videos.
Chart (d) shows the total number of anti-patterns each participant exhibited.
All but one of the 37 anti-patterns instances were from students, and each
student exhibited between 2 and 7 instances.

Figure 2: Differences exhibited between students (“S”) and professionals (“P”)
during code reading exercises as compared to the ideal solution. Gray bars
denote participants who did not finish.

Figure 2 chart (e) shows the time taken to solve the code reading exercises.
For the simpler E1, students on average took longer than the professionals; only
two students (S1, S3) took a few seconds less than the slowest professionals
(P1, P2). For the more complex E2, all five students took longer than the two
professionals. As predicted the more complex E2 took longer to solve.

For E1, participants that appeared more confident in their approach to
the exercise tended to speak up about their thought process unprompted, as
opposed to participants who showed signs of having difficulty with the exercise.
All E1 professionals solved the exercise with minimal deviations from the most
direct path to the solution, including four who had no C# experience. Students
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had varying degrees of difficulty, and all requested assistance. Four out of the
five students did not demonstrate a good ability to trace calls through multiple
files; many scrolled though irrelevant files outside of the code path looking for a
method, or becoming lost and needed assistance finding a method in a different
file. This issue could be for a number of reasons, but we hypothesize that the
likeliest causes are lack of understanding of how the code was structured in
files, and a lack of knowledge of code navigation tools.

Once students found the relevant method the test was calling, four out of
the five students assumed that the global variable holding the list of quotes
had nothing to do with the error and ignored it until given a suggestion to look
deeper into it. One professional also assumed it was irrelevant to the exercise
at hand, but self-corrected within 2 minutes without prompts or hints.

Students demonstrated difficulty in finding relevant information within a
file they were examining if that information was located in another method or
in the constructor. Part of this could be due to the use of a singleton design
pattern to instantiate the class, but it still demonstrates a difference and an
area where education could be useful.

All five E2 students abandoned the code path to explore files irrelevant to
the exercise. E2 students were less likely to misinterpret the code than were
E1 students, despite most of the code being largely the same. This could be
due to the fact that E2 students more frequently searched the internet for
information or asked questions than E1 students, with all but one E2 student
seeking additional information on critical library functions they were unfamiliar
with, even though the function in question was a part of both exercises. On
average, the E2 professionals took 2.1 times longer than E1 professionals, but
never got stuck and always kept track of relevant information throughout the
process.

Professionals appeared more confident in solving code reading exercises than
students and appeared to use a clear methodology. Professionals rarely had
to be prompted to speak what they were thinking, while students were far
more likely to have long periods of silence (e.g., 30 seconds) during which the
interviewer had to prompt them to think aloud. Furthermore, while we have
not analyzed this in detail, professionals tended to use key terms indicating
that they had a conceptual model of how to read code. Professionals stuck to
the flow of code execution and checked any assumptions made for correctness
before proceeding. Professionals that were unsure of a language feature or
outside function always asked questions or looked up documentation rather
than assuming what the thing did. Many of the deviations from this manner
of thinking by students appeared to be a result of lack of knowledge, and
to students appearing to not use a defined methodology to help guide them
through the process.
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6 Conclusion and Future Work

This paper reports on the results of a qualitative inquiry into differences be-
tween how undergraduate students and professional software developers come
to understand a codebase that is novel to them. While our data come from
only 21 interviews (10 students, 11 professionals), Figure 2 demonstrates no-
ticeable differences between how students and professionals solved the two code
reading exercises. Our hypothesis is that key reasons professionals performed
better include that they checked their assumptions about what code did, and
understood how to trace code through the execution stack.

Our next step is to design and test a set of teaching activities, sample
codebases, and tools to make these qualities salient to students and to give
them practice avoiding the anti-patterns shown in Figure 2. Unlike much of
the prior work on teaching code reading that mainly focuses on smaller snippets
of code [10, 3, 7], we aim to create teaching activities to help students read
code in larger codebases like those they will encounter in the workplace. If
appropriate, we may include exercises that rely on a form of trace sketching
[2] in order to help students understand specific patterns in code.

We believe that reading code is a skill that can be effectively taught to
undergraduates by providing them with key simple models of code reading
techniques based upon what professionals do, exercises in which to practice
those techniques, and a summative assessment exercise to see how well the
models and exercises worked to improve students coding abilities. We continue
to mine our interview information to inform the design of this and other work
which we look forward to reporting on in the future.
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Abstract

Undergraduate computer science and software engineering students
benefit significantly from in-depth reviews of their code early and often
in their courses. Performing these reviews is time-consuming for teaching
assistants and professors to complete, consequently impacting the time-
liness and consistency of the provided feedback. When code feedback is
not delivered close to the time of authorship, the utility of the review for
students is diminished. Prior work with Automatic Static Analysis Tools
has shown promise at using artificial intelligence to automate code re-
views, with some success integrating them into classroom environments.
To leverage new advances in Generative Pre-Trained Transformer (GPT)
models, this work reports on an Automatic Review Tool (ART) to pro-
vide timely, automatically generated code reviews. ART was evaluated
in a second-semester computer science course by integrating ART into
the course’s Github-based assignment submission system. A cohort of
student volunteers (N = 74) read the ART reviews and provided feedback
using a survey spanning two of their course assignments. The results of
this pilot study show that students perceived ART was successful at de-
tecting defects and offering style-based suggestions, and students were
receptive to receiving future automated reviews of their work.
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the publication and its date appear, and notice is given that copying is by permission of the
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1 Introduction

The introduction of Generative Pre-Trained Transformer (GPT) systems has
raised serious questions about the role of software developers and code cre-
ation processes, both in industry and in the classroom. The greatest focus
on GPT’s role in software development has been on its use for code synthe-
sis. This tool is able to generate mostly working source code given English
language requirements, which can solve many introductory computer science
course problems [13]. The field of computer science education needs to explore
ways to integrate GPT and other artificial intelligence-based tools into peda-
gogical practices, just as the software development industry is seeking strategies
to leverage GPT-style tools into day-to-day workflows. The modern code re-
view is one such industry practice that lends itself well to automation with
GPT. The code review process discovers code defects [12] and helps train less
experienced software developers on industry practices [5]. However, since code
review is typically done by other programmers, it can be time-consuming to
implement at scale. In this paper, we present and evaluate a custom tool that
integrates the OpenAI GPT 3.5-turbo model with the code review process to
automatically review student code in undergraduate computer science courses.
Outsourcing (via machinesourcing) this traditionally human-performed work
to a GPT model can introduce several risks and issues, especially when used
in an academic setting. This work investigated the following three concerns of
using a GPT model for automated code review in a learning environment:

1. How often does the model deliver correct suggestions, incorrect sugges-
tions, and suggestions beyond the student’s current knowledge level?

2. What types of code review topics does the model successfully address?
3. How much value do the students perceive from having automated code

reviews and do they want the reviews as part of their regular workflow?

To lay the groundwork for our investigation, we designed and implemented a
GPT-based software package called Automatic Review Tool (ART) that was in-
tegrated into the programming assignment workflow used in a second-semester
computer science course. Students voluntarily ran the ART workflow with
their code, received an automated code review, and then provided feedback
regarding the review. The survey questions were centered around the three
concerns above, focusing on suggestion correctness and knowledge scaffolding,
topic coverage, and value to students.

2 Related Works

Software engineers and researchers in the field of Automatic Static Analy-
sis Tools (ASATs) investigating code reviews have primarily focused on what
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makes a ‘good’ code review, how to best teach code review skills in computer
science courses, and how to streamline or fully automate the code review pro-
cess. While the components of a ‘good’ code review are debatable, there are
several key parts that are often cited as valuable [12, 14], such as reviewing for
style, structure, architecture, execution errors, and testing issues.

Given the value of code review in collaborative software development, there
are several recent studies investigating how to teach code reviewing skills in
the classroom. Approaches such as using checklists to guide new learners [4],
utilizing peer-based code review strategies [7], and showing that using code
review in courses improves student outcomes as software engineers [15]. Indus-
try leaders are also continually promoting inclusion of code review training in
academic settings [17]. These works show that students are interested and will
benefit from exposure to code review tools, strategies, and experience.

Due to the cost of the feedback process, software engineers and researchers
have proposed several approaches to automate code reviews in the field of
ASATs [16]. To streamline code feedback, semi-automated techniques have
included using static analysis tools such as linters and plugins to speed up
grading processes [2]. More fully automated [1] tools have shown some success
at grading student code, targeting specific areas such as variable naming sug-
gestions [6], training models on prior student work to generate new reviews [3],
or using large pre-trained networks [11]. These tools have been incorporated
and tested in classroom environments, but are not widely used on a large scale
yet [3, 6, 9, 11].

This paper presents a software package, ART, that scales to learning en-
vironments with large enrollments and to industry environments with large
teams. ART leverages a GPT model [10] built by OpenAI to input student
source code and request a code review as output. Our approach contributes to
the state of the art in researching and deploying ASATs in educational envi-
ronments. Specifically, we report on deploying and evaluating a scalable, auto-
mated ASAT-style code review package in a pilot study with second-semester
computer science students.

3 Methods

To gather feedback about automatically generated code reviews, we conducted
a pilot study with computer science students at a primarily undergraduate
institution. The pilot study was undertaken in the Spring of 2023.

We conducted this study fully online with Github tools and a survey. Survey
respondents were volunteers from two sections (N = 51) of a second-semester
course in computer science. This course included an introduction to algo-
rithm analysis, object-oriented programming, linear data structures (linked
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lists, stacks, and queues), and recursion using the C++ programming lan-
guage. In addition to these fundamentals, the instructor of these sections also
introduced the basics of several software engineering tools, including Git and
Github for version control and Google Test for unit testing. In total, there were
nine programming assignments throughout the semester. Each programming
assignment was submitted via a Github Classroom assignment, which required
the students to learn how to make Git commits and push code changes to a
Github repository. Beginning with programming assignment #3, the instructor
provided starter code with Google Test unit tests for students to run locally to
evaluate their code for functional correctness. Furthermore, as part of an auto-
grading workflow, these unit tests were automatically executed via a Github
Action workflow every time a student pushed their code to Github. Github
Actions is a feature of Github that allows DevOps-style software development
workflows to run on Github when an event, such as a push or issue creation,
occurs in the repository. Students were shown how to navigate on Github to
see the details of the auto-grading Github Action workflow.

Towards the end of the course, we augmented the Github Action usage in
this course to include the ART workflow that students could voluntarily run
as part of an extra credit task on the final two programming assignments, pro-
gramming assignment #8 (an objected-oriented doubly linked list and queues
assignment) and #9 (a recursion assignment). Instructions were provided to
students on how to manually run the ART workflow on the Actions tab of their
assignment Github repository. The workflow launched a self-hosted Github Ac-
tion runner that cloned the student’s code, executed a Python3 script to make
requests to the OpenAI API for reviews of (pre-selected) code files, then dis-
played the code review as an easy-to-read Markdown summary on the workflow
page. A PDF artifact was also generated that students could download and
read offline. The workflow process would take about 45 seconds to complete.

To elaborate on our use of OpenAI’s API in ART, we utilized the GPT 3.5-
turbo model via the official OpenAI Python3 library and web API to generate
a code review of students’ programming assignment work. The Python3 script
pulled the code from the student’s repository and added the prompt options
shown in Table 1 to query the GPT 3.5-turbo model for the code review. Due
to API request prompt/completion token limits for the GPT 3.5-turbo model,
one source file was used in a prompt at a time. The prompt was designed to
strongly reinforce that the generated text should not include source code to
solve the problem for the student, but instead include only prose from a review
of the student’s code.

To receive extra credit points for the assignment, students were asked to
fill out a survey that instructed students to “Please read your generated review
carefully and answer the following questions to provide feedback about the re-
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Web API field Value
system_content You are a helpful code reviewing assistant.
starting_prompt Act as a professional software engineer reviewing code for

an undergraduate computer science student.
Review this code.
Be verbose in your observations.
Do not generate new code.
Do not give suggested code changes.
Do not write revised code.
Do not write explanations.
Do not give updates to the code.
Do not create a revised version with changes.
Format everything in Markdown.
[Student assigment source code]

Table 1: OpenAI web API values passed for ART’s code reviews.

view of your code. Essentially, you are going to review your code’s review!” The
survey design was informed by prior work researching types of defects found in
code reviews [12], code review quality [8], and code reviews performed in higher
education [2, 7, 15], as well as experience reports/blog posts [17]. The survey
included several multiple-choice, Likert-style, and free-response questions. Of
the 51 students in the course, 40 students (78%) opted to complete the au-
tomated code review extra credit task for programming assignment #8, and
34 of these 40 students completed the task for programming assignment #9
as well. In total, our ART pilot study in a second-semester computer science
course with student volunteers provided 74 total survey responses.

4 Results and Discussion

Overall, the students responded quite positively to the automated code reviews
provided by ART. They felt that the ‘reviewer’ had the proper knowledge to
review their code, with 66/74 (89.2%) saying ‘yes’, and 8/74 (10.8%) saying
‘somewhat’. They also felt that the reviewer reviewed the code, and not the
student, with an average rating of 4.54/5. This indicator of impersonal writing
style is important for professional code reviews and good training for the tone
and tenor students should use in their own work performing peer reviews.

The responses visualized in Figure 1a and Figure 1b show the students
agreed and strongly agreed that the reviewer’s prose was supportive and pro-
fessional, which is an important factor to ensure the programmer remains open
to constructive criticism during the code review. The students also agreed
and strongly agreed that they would want the reviewer to inspect their code
again, as shown in Figure 1c, but their desire for a review of this length to be
generated on every code version pushed to Github was more mixed, as seen in
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Figure 1: Student responses to Likert questions regarding various aspects of
reviews generated by the ART software package.

Figure 1d.
When inspecting the results from the survey questions addressing the spe-

cific defects (functional, visual representation, structural, and documentation),
the results are positive in most areas. For visual/style defects (Figure 2b) and
documentation defects (Figure 2d), students agreed or strongly agreed that the
reviewer effectively addressed these areas over 75% of the time. The students
were not as confident in the results about functional (Figure 2a) and structural
(Figure 2c) defects. For these areas of feedback, the students felt the tool did
not address these types of defects (providing a N/A rating), with an overall
average of 15.5% and 17.6%, respectively. This was in sharp contrast to visual
defects’ overall average N/A rating of 8.5% and documentation defects’ overall
average N/A rating of 2.0%. This is likely due to the model only seeing one
source code file at a time, as well as the structure of the student’s work being
relatively simple in a second-semester course, leaving little room for functional
and structural suggestions. It could also be that the GPT model is less effec-
tive at high-level code structure analysis than it is at checking conventions and
making documentation suggestions.
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Figure 2: Student responses to Likert questions regarding code defects.
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Assignment Future ART code reviews ART reviews every commit
#8 3.94 4.03
#9 4.17 3.65

Rating Change +0.23 -0.38

Table 2: Likert responses from students participating in both surveys (boths
group). Scale: 1 - never again/much too short to 5 - every time/much too long.

At a more granular level, there are a few other interesting results from the
surveys. One such result is looking at the estimated time it took the students
to read and use the code review. Within the programming assignment #8
cohort, there are two subgroups of students. One group chose to participate in
both assignment surveys (boths), and the other group only participated in the
programming assignment #8 survey (singles).

The boths group and singles groups exhibited similar responses to the Likert
questions. The one notable difference was how long they took to read and use
the review. The boths group estimated an average of 8.1 minutes to read
their review while the singles estimated an average of 12.5 minutes to read the
review. Taking an average of 50% longer to read the code review might have
been a contributing factor as to why the singles chose not to participate in
the second survey opportunity, despite an overall positive desire to get future
code reviews. We observed another notable outcome when comparing the boths
group survey results from programming assignment #8 to #9. As shown in
Table 2, the students reported an increased desire for code reviews in the
future from ART, but less desire for a review of this length on every commit
to GitHub.

5 Conclusion

GPT models show great promise in providing natural language processing and
generation in the field of Automatic Static Analysis Tools. Integrating these
tools into software development workflows and educational learning frameworks
will be an ongoing area of research and development. This work piloted the
use of a GPT model as an ASAT-style code review package for helping second-
semester computer science students improve their own code and for exposing
them to a professional-style code review process.

Our ART software package demonstrates an efficient way to give timely
feedback during course assignments alongside current teaching assistant/fac-
ulty assignment grading processes. Results from a pilot study with ART showed
a strong interest from students to have these tools in their course support sys-
tem. Specifically, our findings indicated the automatically generated reviews
were mostly within the learned scaffolding of second-semester computer stu-
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dents and addressed most areas expected from professional code reviews. The
students felt the reviews were generally helpful and would want them to be
available for future assignments. Overall, the ART reviews were accurate in
their suggestions and showed promise as a powerful addition to the pedagogical
landscape of software engineering courses.

In the future, we plan to perform additional testing and evaluation of ART.
The next iteration of ASAT-style tools for code review should include a more
in-depth evaluation of code review accuracy and the ability to give structural
suggestions, as well as attempt to normalize the style of the output. These
tools should also be updated to handle custom code style guides so they do not
provide conflicting suggestions compared to the course guidelines. Finally, ad-
ditional work should measure the longitudinal impacts of these tools across the
four-year curriculum and in the early stages of software development careers.
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Abstract

This paper presents a course model for teaching ethics to Computer
Science students without being linked to a technical topic which helps
students think more holistically. The course model proposed allows for
students to build on their philosophy of ethics course from the core and
to focus on current issues in technology. The assignments and topic
generation activities presented can be easily adopted, even into other
courses for institutions that don’t offer technology focused ethics course.
This course assists in aligning the Computer Science major curriculum
with one of the five ABET program outcomes and to align with current
guidance from ACM. The course was evaluated with a student survey to
assess five learning objectives. The initial survey results show that stu-
dents felt they improved on all five, especially in their ability to identify
ethical issues in design decisions.

1 Introduction

Technology and software systems play an ever growing role in our lives. Com-
puter Science (CS) students will inevitably be making design decisions in their
careers that impact large swathes of society. With advances in artificial intelli-
gence, such as ChatGPT, self-driving cars, and more, the choices that may face
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the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
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these students could have large and disparate impacts. These concerns have
motivated a variety of educational approaches for helping to prepare today’s
students for these probable future challenges.

Ethics education and design focused education both appear in Computer
Science curricula, given requirements for ABET accredited programs[1] and
recommendations from ACM’s Curriculum Guidelines[2]. The renewed focus
on these areas is apparent in the CS2023 ACM/IEEE-CS/AAAI Computer
Science Curricula where the Society, Ethics and Professionalism subgroup rec-
ommends 17 hours of core hours and an additional 14 if it is a “Knowledge
Area” focus for a CS program (as of March 2023)[3]. As these are lecture
hours, it is easy to see that this content comes close to being a full course.
Given the importance of these topics, we present our course model for a 2-
credit (semester) course that allows students to thoroughly engage with this
content. We present the results of an IRB-approved post survey to see if the
students reported growth in their abilities to analyze and synthesize.

2 Course Model

2.1 Background

The key topics listed in ACM’s CS2023 are Social Context, Methods for Ethical
Analysis, Professional Ethics, Intellectual Property, Privacy and Civil Liber-
ties, Professional Communication, Sustainability, History, Economies of Com-
puting, Security Policies Laws and Computer Crimes, Equity Diversity and
Inclusion. Fiesler et al. show what we really teach in “Tech Ethics” courses[6]
and it becomes clear that there is a lot of variety in approaches and foci and
the perspectives used are not all all Western as there is global interest in this
area[7]. Given the degree of activity in the field right now, it may be a good
time to revisit approaches to teaching ethics in CS.

Many institutions teach these topics across courses, as there are often nat-
ural places to include discussions of these topics, such as in a Software Engi-
neering course and technical electives. Saltz et al. argue “that ethics content
should be integrated into core computer science classes, as a preferable solution
over simply having a standalone ethics class[10].” Others use a technical course
to focus on these topics, for example Skirpan et al. showcase embedding many
of these in a Human Centered Computing class[12] and Shapiro et al. embed
deeply in their data-focused Human Computer Interaction course[11].

And the third approach is to have a course focus on the deeper context
of ethics education. Raji et al. argue that many current approaches use an
“exclusionary pedagogy,” where ethics is distilled for computational approaches
but fails to connect to epistemological foundations[9]. We favor this argument
because we want our students to be prepared for future unknowns and they
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can only do so if they have worked to develop their own ethical foundation. We
also align with some of Stalz’s argument as our curricular structure includes
two ethics courses, with the second one being CS and technology focused. Our
design also allows for immediate adaption to current topics. Borenstein and
Howard argue that there needs to be AI ethics education[5], and as current
concerns change, so must an ethics focused course.

2.2 University Context

Our institution has a robust core curriculum and all of our students must take
at least one traditional, philosophy of ethics course, and tend to take at least
one perspectives course that focuses on expression and personal foundations.
By the time students are Juniors they usually have completed these courses
and are eligible to take our “Computer Science Seminar” course. It is a 2 credit
semester long course that is required for the CS major and requires Junior
standing. It meets for 2 hours a week for 15 weeks and is typically limited to
not more than 20 students per section. Many other courses in the curriculum
also cover ethical issues, so this course is able to take a non-technical approach
to the topics and focus on design decisions more generally.

2.3 Design

Our course model is a variety of work, to help foster engagement for different
types of learners. We begin the course by going over each assignment type
and participation expectations. Then on the second day of class, we invite
students to generate a list of current issues in technology. Each idea is written
on the white boards by the instructor. After about 30-50 issues have been
identified, the students get three votes to spend on the “most important” ones.
The top ranked issues are then used along with instructor required topics to
generate a topics list for the section. These can range from very specific: “Elon
Musk,” to very broad: “data collection.” Each student is then assigned to
two in class events based on these topics, so that each event covers a unique
topic. In the following we divide the classwork by the primary modality. Most
class periods operate as students presenting or debating followed by group
discussions moderated by the instructor.

An important part of evaluating opinions on an ethical issue is understand-
ing bias. The growing predominance of propaganda in our national discourse
has only strengthened this perception. To this end, one of the early lectures
in the course is focused on this topic. Students learn the CRAAP test [4]
(Currency, Relevance, Author, Accuracy, Purpose) for evaluating the bias in a
given source. Student citations in all their subsequent work are strictly evalu-
ated with the CRAAP test during group discussion and when grading student
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work. Using this method discourages low effort research by students using an
internet search engine (e.g., Google) since such searches often return biased
sources.

Presenting to a group. Students present on an assigned topic in pairs
(or individually), covering at a minimum: an overview, history including non-
technology, current practices, and two topical case studies. The connection to
the history of a practice really helps students think about issues as human con-
cern. We prompt them to think of “not just the last 200 years, but all of human
history.” This connects the students to their prior courses in ethics, philoso-
phy, sociology, and/or history. That foundation helps them contextualize the
case studies where they are required to present both sides of the issues without
taking a stance. Those stances can then come up during group discussion.

Students also are assigned a debate or mock trial where the exact format is
instructor dependent. In the Fall 2022 section, we assigned a mock trial where
the students were assigned a variety of roles: direct lawyer, cross lawyer, and
witness for both the prosecution and defense. In smaller sections this could
be limited to a single lawyer for each side. The lawyers then must agree to a
contentious topic to debate one week ahead of the mock trial. The instructor
reserves the right to assign or modify a debate claim. Before the trial begins,
the whole class rates on a line on the whiteboard where their beliefs are for
the argument. Students then make opening statements, ask questions of the
witnesses, and then make closing statements. After the debate, the whole class
marks a parallel line to see if their beliefs have shifted. In about half of the
debates opinions reverse based on increased knowledge, and the other half they
become stronger based on the increased knowledge. The phrasing the students
pick to argue over is a mix of legally aligned claims and more vague goals.
Examples are arguing for common connectors on phones or regulating AI in
specific ways. When stuck on a topic, there is usually a real conflict between
a pair of companies or a company and government or agency that can be used
or modified.

Finally, students complete two other group presentation activities using
instructor mandated topics. At the beginning of the course, they are assigned
an historical figure in CS that is connected with innovations that have led
to the modern field and also had to overcome adversity to succeed (based on
their race, gender, sexuality, etc.) They present on these issues and amazing
contributions to the field and it helps prime them for candid discussions in the
rest of the course. About mid-way through the course the students present their
results from a “journalism” project. We assign a general topic such as privacy,
and then each team has to pick a specific sub-topic, vetted by the instructor,
to research. After their research, they prepare a set of 3-7 interview questions
and each team member interviews at least three peers that are not computer
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science majors. This forces them to discuss serious issues with less technically-
trained peers and really gets them to push past their comfort. The due dates
for the sub-topic, set of questions, and poster (or 3 slides) are scaffolded so
that they don’t wait to the last second and the instructor can provide feedback
if necessary.

An alternative to the Journalism assignment is a Jigsaw style assignment [8].
Students are organized into small teams. Each team is assigned the same broad
issue (as per the Journalism assignment) that they must evaluate. They then
must prepare a poster that proposes a change to US law (or maintenance of the
status quo) with regard to that issue. The conduct their research on this topic,
meta-teams are formed based on different perspectives (e.g., contemporary
domestic law, international law, united nations recommendations, etc.) Each
meta-team consists of one member from each project team. The meta-teams
prepare a report which is then brought back to each project team for review.
The research and preparation activities span multiple lecture periods. The
final posters are presented in a conference style on the last day followed by a
group discussion.

Written arguments. Students are assigned a short essay that must argue
a contentious issue in technology that was not one they have been assigned to
present or debate (but it could be one assigned to someone else). These require
the students to cite quality sources and limit their prose so that they are able
to make a compelling argument. Upgrades to this assignment could include
requiring a visit to the writing center, multiple drafts, or peer-evaluations. We
have found each to have trade-offs so instructor preference is typically best.
These can be fascinating arguments including the argument that Loot Boxes1
are not ethical and should be banned, AI generated images are theft, hacking
can be ethical, etc. These help the students find an issue they care about and
deepen their rationale for their position. In more than one case, the instructor
has learned that writing the essay actually changed the mind of the student
based on their research!

The second area for writing is in an open everything2 take home final exam,
that encourages students to think about more subtle issues and a variety of
issues that weren’t covered as deeply in the course. These can include questions
on copyright, real world examples of questionable behavior, and more contrived
situations. These help solidify that the students have, hopefully, strengthened
their ability to make judgements and defend them.

Personal development. The students must individually work on their
professional development by completing two different tasks towards that goal.

1Paying real money for random goodies in video games, a process that has similarities
to gambling.

2Open-note, open-book, open-internet, open-classmate, and open-mind.
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This can include reading a CS or technology focused book, applying to jobs
or internships, community service, a coding project, attend a conference or
code-a-thon, etc. The deliverable can be a written reflection or a discussion
one-on-one with the instructor. These get students to engage with the field
outside of the purely academic context. By following what they find important
on this assignment, they are working to shape and understand their values.

The other area that contributes individually is the “participation” which in-
cludes talking in group discussions, assigned readings (and the reading quizzes),
peer-evaluations on the essays.

Overall these three areas help get the students engaged in a wide variety of
topics and a number of methods for communicating about them. This design
ensures that different learning styles are available across the course. The group
discussions are a key component to getting the students to think more deeply
about current issues and their own perspectives. The instructor moderation
often includes asking questions if discussion doesn’t naturally flow. In larger
sections and online during COVID, smaller group discussions were effective to
get the students to talk about their own viewpoints.

We believe that an important part of being an ethical individual is speaking
up. This can be particularly difficult for some students who struggle with
public speaking and would rather passively attend a discussion. To encourage
the practice, the instructor overtly tracks the total number of discussions that
each student participates in and this maps directly to a quantitative grade. Shy
students are encouraged to review the discussion topic beforehand and prepare
remarks. Thus, they can select topics they feel best speaking about and avoid
the anxiety associated with impromptu speaking.

3 Results

The students were given the option to respond to a survey during class time
when the instructor left the room. All students present that day responded,
but only 66.7% of students were present on that day. The survey consisted of
a question to verify the student was a CS major, and then five paired ques-
tions. Each question follows the format “To what extent has your ability to X
increased during this class?” Followed by “Describe a specific example of how
your ability to X increased during this class.” Where the X is the learning
objective listed in Table 1. The final question was slightly different as it asked
“To what extent have your created or modified your personal ethical code of
conduct during this class” and the same change in the associated describe ques-
tion. The extent question used a Likert scale with responses: 1 Not At All,
2 Very Little, 3 To a Small Extent, 4 To a Moderate Extent, 5 To a Great
Extent. The numerical results are listed in Table 1.
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Table 1: Summary of survey results for each learning objective in the course,
n=14 students.

Mean Standard
Learning Objective (n=14) Deviation

Evaluate the impact of design decisions on users of technology 3.50 0.94
Self-reflect on your own ideas 3.29 0.73
Identify ethical issues in design decisions 3.86 1.03
Evaluate design decisions in economic terms 2.57 0.85
Create or modify your personal ethical code of conduct 2.64 1.15

Qualitatively, the students mentioned various specific current events, or
more general scenarios of being more aware of topics/issues when reading or
seeing something. Almost all of the students were able to describe at least
three examples from the five questions, and a majority had an example for all
five. This supports the quantitative result that students self-rated a learning
gain of small to moderate for design decisions and self-reflection. For the
more difficult topics economics terms (a tradeoff to ethical choices in many
scenarios) and creating a personal code of conduct, the reported gains were
smaller. The qualitative responses mirrored this, as some did not see the
economic connection, and at least one student reported they would still take
any job if it paid.

4 Discussion

We described a course model for a Computer Science course focused on en-
gaging students with ethical issues in technology and their role in those issues
with a focus on design decisions. Our approach used a variety of educational
techniques to develop the learning objectives.

The survey results show that the students were able to see how their actions
as technologists might have ethical concerns and think about these concerns
in terms of design decisions. Having this course follow required foundational
courses helps the students apply knowledge learned there to more specific top-
ics in the field they are presumably interested in. The highest rated response
ties into the ABET Program Outcome Recognize professional responsibilities
and make informed judgments in computing practice based on legal and ethical
principles.. This illustrates that this course design is contributing to an impor-
tant learning objective. These results also support delivering an ethics focused
course instead of incorporating all of these topics into smaller units across the
curriculum.
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Given the broad scope of the course these results are promising and suggest
some areas for continued improvement to encourage students to take the time
to focus on their own personal ethical code of conduct. We plan on developing
an assignment to get students to write this out and apply it to some scenarios
to deepen that learning objective.
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Abstract

In this article, we utilize an explainable AI approach, the Explainable
Boosting Machine (EBM), to perform feature analysis on an extensive
Internet of Things (IoT) dataset collected from real-world devices. Af-
ter feature selection and data processing, our training dataset includes
2.88 million traffic data instances, categorized into six classes (DDoS,
DoS, Mirai, Recon, Spoofing, and Benign). The EBM trained on this
dataset achieved a impressive accuracy rate of 99.4% and an F1 score of
92.8%. Using the resultant model, we interpreted its predictions based
on feature importance. The identified feature importance aligned well
with established cybersecurity principles, indicating the model’s poten-
tial. However, our analysis revealed that the machine learning model’s
predictions were strongly tied to the specific characteristics of the train-
ing IoT dataset, thereby raising concerns about the model’s reliability
when applied to real-world attack detection. Future research could ex-
plore the use of more diverse and balanced datasets or the applicability of
the machine learning model in different IoT contexts, aiming to enhance
the model’s generalizability and practical relevance.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Machine learning is progressively becoming a fundamental component of intru-
sion detection systems for the Internet of Things (IoT). Although numerous
studies have shown promising results using machine learning, a common limi-
tation is the lack of depth in explaining their methodologies, posing concerns
about these methods’ real-world applicability. In this article, we harness the
power of explainable AI, specifically the Explainable Boosting Machine (EBM),
to demystify the predictions made by our machine learning model. The EBM
was selected for its robust performance, superior interpretability, and effective
visualization capabilities. EBM, which combines the simplicity of linear or deci-
sion tree models with the precision of complex models like gradient boosting or
random forests, functions as a "glass box" model, allowing both its predictions
and its decision-making processes to be interpretable by humans.

We utilized a comprehensive IoT dataset as our training data[7]. Upon
training the EBM on this dataset, we achieved an impressive accuracy rate
of 99.4% and an F1 score of 92.8%. The feature importance produced by the
EBM facilitated the interpretation of the model’s predictions.

The major contributions of our work are:

• The decision-making of the machine learning model, trained on the IoT
dataset, was interpreted using Explainable AI techniques (EBM).

• We cross-referenced the decisions made by our machine learning model
to verify their alignment with fundamental cybersecurity principles.

• After thorough validation, we underscored the limitations of the machine
learning model, particularly when trained on a specific dataset.

2 Related Work

The detection of malicious activity through internet traffic data remains a com-
pelling avenue in cybersecurity research, with numerous explorations spanning
several years. The evolving complexity of IoT systems has led to an increased
adoption of machine learning techniques in the creation of Intrusion Detection
Systems. The IoTIDs (2020) study assessed the efficacy of diverse traditional
machine learning models, such as Linear Regression (LR), K-Nearest Neigh-
bors (KNN), Decision Tree (DT), Random forest (RF), Support vector machine
(SVM), and Naive Bayes (NB), using IoT datasets[4]. In another work[1], the
researchers developed an advanced deep neural network that outperformed Re-
stricted Boltzmann machine (RBM), Sparse Autoencoder (SAE), and Stacked
Denoising Autoencoder (SDAE) frameworks on an IoT dataset.

Despite extensive research into acquiring comprehensive data from IoT de-
vices and the development of robust machine learning models, a thorough

57



analysis of the trained models is frequently absent. For instance, the authors
of the Edge-IIoTset (2021) ranked the importance of features for each class
without providing any explanatory commentary[3]. The researchers behind
WUSTL-IIOT (2021) determined feature importance based on their impact on
the model’s accuracy rate[12]. Yet, this traditional method’s interpretability
remains somewhat restricted. In another study[6], the authors concentrated
on using feature importance to eliminate redundant features rather than inter-
preting the model.

3 Methodology

3.1 Explainable Boosting Machine

To comprehend the underpinnings of EBM, we first inspect the standard math-
ematical form of Generalized Additive Models (GAM)[5]:

g(E[y]) = β0 +
∑

fj(xj) (1)

EBM can be viewed as an extension of the GAM, where the prediction is
obtained by summing up individual feature functions, fj . Feature functions
encapsulate each feature’s contribution to the overall prediction. In contrast
to models like logistic regression, which presumes linear relationships, EBM
capture non-linear associations, offering superior performance with complex
datasets. Furthermore, by plotting the feature functions, fj , we can identify
and visualize the importance of each feature involved in the prediction[5].

In the mathematical formulation below[5], the algorithm for EBM is further
improved to detect the pairwise interaction between features (i, j):

g(E[y]) = β0 +
∑

fj(xj) +
∑

fi,j(xi, xj) (2)

3.2 Procedure and Evaluation

This study employs a comprehensive IoT dataset, obtained from real-world
devices within a complex network topology[7]. Following feature selection and
data processing, our training dataset comprises 2.88 million traffic data entries,
spanning six classes: DDoS, DoS, Mirai, Recon, Spoofing, and Benign traffic.
We used the utils class from Scikit-learn[8] to calculate the balanced class
weight for each class, incorporating these weights into the EBM’s parameters.

The processed dataset was then classified by the EBM. Table 1 presents
the performance metrics of the resulting EBM model. The model showcased
exemplary performance, achieving an impressive accuracy rate of 99.4% and
a commendable F1 score of 92.8%. The recall and precision rates generally
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Table 1: Results of multi-class classification using EBM
Metric Explainable Boosting Machine

Accuracy 0.9940481456770219
Recall 0.9367583492627487

Precision 0.9204079536958586
F1-score 0.9276943954810214

maintained equilibrium, attributable to our effective data balance methods.
These scores highlight superior predictive capabilities and overall efficiency. A
thorough analysis of feature importance based on the EBM’s outputs will be
presented in the subsequent sections.

4 Results and Discussion

EBM evaluates feature importance through a raw score. In a classification con-
text, the raw score serves as a measure of the evidence supporting a particular
class. A high raw score implies strong evidence in favor of that class, while
a lower score may indicate weaker support. To comprehend the nuances of
feature importance, we must delve into the plots associated with each feature,
taking advantage of EBM’s data visualization tools. In Figure 1, the vertical
axis denotes the raw score, while the horizontal axis represents the feature’s
value. The description of each curve’s color can be found below Figure 1. We
will assess features that significantly influence the model’s prediction.

4.1 Inter-Arrival Times (IATs)

A crucial feature in the dataset, IATs, measures the time difference between
two packets. Our testing designates this as a significant feature, demonstrating
that its removal could reduce the machine learning model’s accuracy by 15%.
The first plot on the left in Figure 1 illustrates the feature importance of IATs.
Data predominantly cluster around three intervals: 0s to 0.04s, 0.0829s to
0.0838s, and 0.1664s to 0.1669s. The first interval, from 0s to 0.04s, can be
analyzed without the need to zoom in on the plot. The DoS attack class scores
the highest, with scores fluctuating between 2.5 and 4, followed by Benign,
with scores approximately 1.4. DDoS and Mirai are the least likely classes,
with scores ranging from -0.8 to -2.2. Feature importance in the 0s to 0.04s
interval is relatively insignificant for the remaining attacks. The second and
third plots on the left in Figure 1 offer a detailed view of the IATs feature
within the second and third intervals. In the 0.0829s to 0.0838s interval, we
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observe a rising trend in scores for Mirai attacks and consistently high scores
for DDoS. Due to the negative feature importance, the machine learning model
is less likely to predict DoS attacks within this interval. Lastly, the third plot
on the left in Figure 1 shows a declining trend for the scores of DDoS, DoS,
and Mirai attacks within the 0.1664s to 0.1669s interval.

These findings can be corroborated with fundamental cybersecurity princi-
ples. During DDoS or DoS attacks, attackers aim to overload a network with
internet traffic, typically involving sending a large volume of packets in a short
span of time. Hence, the IATs during an attack would be exceedingly low,
often nearing zero. Mirai attacks involve remote control and device utilization
in DDoS attacks, implying similar traffic characteristics to DDoS[2]. Given
that these attacks are characterized by shorter IATs, it is improbable for them
to reach a duration of 0.16s. This explains why the DoS class has the highest
score in the lowest interval (0s to 0.04s) and why there are strong positive
scores for DDoS and Mirai attacks from 0.0829s to 0.0838s.

Furthermore, in the second plot on the left in Figure 1, both Benign and
Spoofing exhibit a similar pattern of negative feature importance in the 0.0829s
to 0.0838 interval. Conversely, strong positive feature importance for Recon
suggests a high likelihood of the model predicting this class. In a Recon attack,
the attacker might generate noticeable patterns in the network’s IATs during
scanning. Hence, it is expected to observe high feature importance associated
with certain intervals of IATs. In general, IATs analysis can yield valuable
insights into understanding the decision-making process of the model.

4.2 The Coefficient of Determination (R2)

The first and second plots on the right in Figure 1 illustrate the feature impor-
tance of R2. This feature evaluates the coefficient of determination between
the lengths of incoming and outgoing packets within a flow. It assesses the cor-
relation between these packet lengths and can yield a value ranging between 0
and 1. During standard network operations, the sizes of incoming and outgo-
ing packets often display a certain correlation. This correlation may, however,
change significantly during an internet attack.

The first plot on the right in Figure 1 shows that DDoS, DoS, and Mirai
attacks exhibit similar correlations. The feature importance remains consis-
tently high, around 3.5, when R2 is between 0 and 0.97, but abruptly falls to
-14 when R2 is above 0.97. The model also suggests that a DDoS attack is less
likely if the coefficient of determination exceeds 0.97. This observation aligns
with basic cybersecurity principles. During DoS, DDoS flooding, the correla-
tion between incoming and outgoing packet sizes may decline as the network
becomes inundated with unwanted packets[10].

The second plot on the right in Figure 1 displays the feature importance
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for Recon and Spoofing attacks. Neglecting the outliers, the peak feature
importance of 1.1 for Recon appears when R2 lies between 0.9 and 0.97. Recon
attacks typically involve gathering information about a target system, often as a
precursor to a more direct assault. An adept attacker might endeavor to imitate
the standard packet size distribution of the network to evade detection[9]. This
scenario explains why the feature importance escalates as the coefficient of
determination approaches 1. In the case of Spoofing, the feature importance
score ranges between -4 and -2 when the R2 value is between 0.9 and 0.97. The
correlation between incoming and outgoing packet sizes is not apparent in such
attacks. The machine learning model’s generated negative feature importance
aligns with this observation. In general, R2 serves as a strong indicator for
the machine learning model to distinguish DDoS, DoS, and Mirai attacks from
Recon, Spoofing, and benign traffic.

4.3 TCP Flags (ACK flag and SYN flag)

Transmission Control Protocol (TCP) flags, despite their eight different types,
are not all reliable indicators of attacks. Upon analyzing their influence on our
model’s accuracy, we discovered that the acknowledgment (ACK) and Synchro-
nisation (SYN) flags played a more significant role. The SYN flag, typically
used to establish connections, can also be exploited in certain forms of cyberat-
tacks. The third plot on the right in Figure 1 presents the feature importance
of the SYN flag for each attack. As a categorical variable, the SYN flags are
either 0 for unset (on the left of the plot) or 1 for set (on the right). For the
Mirai attack, a set SYN flag signifies a strong negative feature importance,
approximately -28. The SYN flag’s relevance to Mirai hinges on the types of
DDoS attacks the Mirai botnet implements. Our dataset solely contains three
forms of Mirai attacks - GRE IP Flood, GRE Ethernet Flood, and UDP Plain
attacks. These attacks operate on the Generic Routing Encapsulation (GRE)
and User Datagram Protocol (UDP), which belong to a different layer than
TCP and do not utilize the SYN flag. Additionally, we observe that Benign
and Spoofing also show negative feature importance, with scores of -4.5 and -
2.7, respectively. Similar to Mirai, neither Address Resolution Protocol (ARP)
nor Domain Name Service (DNS) Spoofing involves the SYN flag. In terms of
benign traffic, a high count of SYN packets might suggest malicious activity.
The negative feature importance for Benign is likely due to the interaction the
model identified between the SYN and ACK flags.

The fourth plot on the right in Figure 1 reveals the feature importance of
the total ACK count for each class. Unlike the former feature, the ACK count
measures the total number of ACK flags in a flow and is thus a continuous
variable. The ACK flag is predominantly used in benign traffic to signal the ac-
knowledgment of packet receipt. Both the fourth and fifth graphs demonstrate
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a positive correlation between feature importance and benign traffic. During a
DDoS attack, the attacker inundates the target’s network with excessive inter-
net traffic. Yet, DDoS attacks frequently involve a large quantity of spoofed
SYN packets as opposed to ACK packets. A negative feature importance for a
DDoS attack is expected for high values of ACK count. As mentioned earlier,
DoS and Mirai attacks bear similarities to DDoS attacks; thus, these types
of attacks exhibit similar patterns of feature importance[2]. Regarding Recon
attacks, ACK flags can be employed in various network scans, such as TCP
ACK scanning. The plot also reveals a positive correlation between the ACK
flag feature importance and Recon attacks. Lastly, given that our dataset
does not include instances of ACK Spoofing, we anticipate a negative feature
importance for Spoofing.

In combination with R2, the SYN and ACK flags allow the machine learning
model to classify attacks more effectively. Based on previous features, the
model can segregate classes into two groups: DDoS, DoS, Mirai, and Recon
versus Spoofing and Benign. A set SYN flag eradicates the possibility of Mirai
in the first group and reduces the likelihood of Spoofing and Benign in the
second group. The ACK count assists in identifying DDoS and Recon attacks
while diminishing the chance of Spoofing.

4.4 Discussion

While the EBM yields an impressive accuracy rate of 99% and an F1 score
above 90%, our research still has several limitations and offers potential areas
for improvement. The dataset encompasses 105 IoT devices, which, although
considerable, might only be representative of specific types or categories of
IoT devices encountered in real-world scenarios. Furthermore, it includes only
specific instances of DoS, DDoS, Spoofing, Recon, and Mirai attacks. The
omission of other types of attacks from the dataset, such as Web-based and
BruteForce, could constrain the scope of cybersecurity threats that our research
is capable of addressing.

Additionally, the original dataset does not proportionally represent the in-
dividual methods employed in each attack, which could affect the feature im-
portance’s reliability. For instance, it houses 7 million instances of Internet
Control Message Protocol (ICMP) Flood for DDoS attacks, contrasted with
a scant 29 thousand instances of Hypertext Transfer Protocol (HTTP) Flood.
This unequal representation may skew the EBM’s feature importance, as it
tends to lean towards the majority group. We have ascertained that the spe-
cific characteristics of the dataset heavily influence the predictions made by
the EBM. For example, when examining the Mirai attacks, one feature, the
minimum packet length, has its feature importance peak at 501 to 591 bytes
(the fourth plot on the left in Figure 1). This peak is primarily because our
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dataset only includes three types of Mirai attacks—GRE IP Flood, Greeth
Flood, and UDP Plain—which all display packet sizes within the 554 to 592
bytes range[11]. Other variants of Mirai attacks, like the SYN Mirai attack,
which has a packet size of merely 74 bytes[11], are absent from our dataset.
As a result, the IoT analysis we suggested, based on feature importance, is
limited to the attack types included in our dataset. Encountering new attack
types may significantly undermine the machine learning model’s accuracy rate.
Future research should aim to obtain a sufficiently comprehensive dataset, fea-
turing the most prevalent internet attack forms while maintaining a balanced
representation for each class.

It’s also important to note that a machine learning-based Intrusion Detec-
tion System (IDS) for IoT should be deployed alongside other security mea-
sures, such as encryption, authentication, and access control mechanisms, to
provide a comprehensive security solution.

5 Conclusions and Future Scope

The utility of machine learning-based intrusion detection systems, while promis-
ing, requires careful implementation and evaluation. In our study, we trained
an EBM on an extensive IoT dataset to identify potential attacks. Through an
analysis of feature importance, we were able to interpret the decision-making
process of the machine learning model. Our validation process generally agreed
that the predictions made by the machine learning model align with fundamen-
tal cybersecurity principles. However, there were instances where the model’s
predictions were challenging to explain or did not conform with these principles.
Furthermore, we identified limitations regarding the model’s predictions. Our
analysis revealed that the machine learning model’s predictions were strongly
tied to the specific characteristics of the training IoT dataset, thereby rais-
ing concerns about the model’s reliability when applied to real-world attack
detection.

As we move forward in developing machine learning-based intrusion de-
tection systems, it is vital to ensure the training dataset meets three critical
criteria. Firstly, the network topology for IoT devices should be comprehensive,
mimicking real IoT operations closely. Secondly, the dataset should encompass
a wide variety of attack types, utilizing all prevalent tools and frameworks em-
ployed to execute these attacks. Lastly, the dataset should be balanced not only
across different attack types but also across the various instances of methods
used to execute such attacks. Despite satisfying these criteria, it is important
to understand the limitations of these models in real-world applications. The
system should ideally be applied only to a similar set of IoT devices as those in
the training set, and it should be recognized that attacks not included in the

64



training set may not be detected. By addressing these factors, we believe the
utility and reliability of machine learning-based intrusion detection systems for
IoT can be significantly improved.
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Abstract

In the era of the Industrial Internet of Things (IIoT), Programmable
Logic Controllers (PLCs) are pivotal in diverse industrial processes, in-
cluding assembly lines and power grids. Despite their significance, the
security of these devices is increasingly under examination due to vul-
nerabilities to cyberattacks. This paper explores a specific vulnerability
within PLCs, focusing on a case study examining a PLC network’s ex-
ploitation in a garage door controller system. By illustrating a cyber-
attack and emphasizing the absence of authentication and authorization
in the widely-used Modbus protocol for PLC systems, the research team
underscores a pronounced weakness in PLCs. Using NMAP, an open-
source network scanning tool, and the PyModbus Python library for
read and write operations on Modbus memory, this study emphasizes
the urgent need for enhanced security protocols in PLC systems and
aims to spur further academic research in this field.
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1 Introduction

In the digital era, Programmable Logic Controllers (PLCs) are indispensable
in various industrial applications, controlling diverse functions from assembly
line operations to intricate manufacturing processes. Their critical roles in
vital infrastructures, such as energy distribution and water treatment plants,
emphasize their importance. This significance, however, also makes them prime
targets for cyber adversaries.

Created in the 1960s, PLCs were developed at a time when cyber threats
were not a primary concern. Though strides have been made to address vul-
nerabilities, inherent weaknesses still persist, like CVE-2022-38773[3], enabling
malicious actors to bypass protective boot features, allowing unauthorized
modifications to operating code and data.

Alarmingly, many systems lack robust protective measures. This gap of-
ten arises from the challenges faced by engineers when incorporating security
solutions into legacy systems, leaving many PLCs vulnerable to breaches.

This paper delves into an inherent flaw in the Modbus protocol, particularly
its absence of authentication and authorization. Using a garage door controller
system as a case study, the research team showcases how PLC networks can
easily be exploited due to this fundamental weakness. By highlighting this
vulnerability, the study seeks to foster further research and innovation in PLC
security.

2 Background

2.1 Programmable Logic Controllers and the Modbus Protocol

Programmable Logic Controllers (PLCs) are essential for industrial control sys-
tems, engineered to engage sensor data or inputs, process them, and generate
designated outputs based on predefined logic. The Modbus protocol, a univer-
sal language that almost all industrial devices can utilize for integration, is a
critical aspect of PLC communication.

Initially developed in the late 1970s for PLC communication, Modbus em-
ploys a straightforward master/slave communication methodology. Its variant,
Modbus TCP, was developed in the late 1990s and has achieved industry-
standard status in numerous sectors. Modbus TCP/IP embeds the Modbus
protocol within a TCP/IP network, facilitating Modbus communication over
modern Ethernet networks. This particular variant has gained significant pop-
ularity, primarily due to the broad adoption of Ethernet networks in industrial
automation.

At the core of Modbus TCP/IP are several fundamental elements that
facilitate its operation. The protocol encapsulates Modbus messages within
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TCP/IP networks, a significant shift from the original serial (RS-232 or RS-485)
networks. This encapsulation allows for communication over longer distances
and among a larger number of devices. Adhering to its roots, Modbus TCP/IP
employs a client/server architecture in which a single device, acting as the
client, initiates communication, while other devices, acting as servers, respond.

Communication in Modbus TCP/IP typically occurs over port 502, provid-
ing a standardized avenue for data transmission. While efficient and robust,
the protocol’s inherent limitations, such as lack of built-in security features and
unencrypted data transmission, can pose risks for specific applications.

2.2 The Modbus Memory Map

PLCs and other industrial automation devices typically have on-board memory
crucial for programming. Inputs are often buffered, or stored, in memory before
logic is applied, enhancing the adaptability and maintainability of the PLC’s
program.

Understanding a typical PLC’s memory map, especially when using the
Modbus protocol, is essential. The memory map is neatly segmented into
distinct areas, each serving a specific function. The four primary sections,
namely Coils (1-10000), Discrete Inputs (10001-20000), Input Registers (30001-
40000), and Holding Registers (40001-50000), hold unique functionalities. Coils
manage binary outputs that can be set or reset by the device. Discrete Inputs
are read-only binary inputs. Input Registers, typically housing analog inputs,
are used for reading data from devices. Lastly, Holding Registers are utilized
for both reading and writing data, including output control and configuration
changes.

Figure 1: The Modbus Protocol Memory Map

While this structure fosters an efficient programming process, it also presents
a potential attack surface for cyber threats, which can exploit these stored vari-
ables within the memory. For example, buffer overflows might allow an attacker
to modify register values or cause the device to overflow its buffer, potentially
rendering it unresponsive[2]. Securing these memory spaces against various
forms of exploitation is a vital aspect of industrial cybersecurity.
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2.3 Ladder Logic

Ladder Logic, a graphical programming language for PLCs, evolved from relay
circuit diagrams. A common paradigm is the "Seal-In" circuit, which maintains
a device’s state after the initial input is disengaged, useful for devices like garage
door controllers, as depicted in Figure 2. This function is often employed in
PLC programming due to its ability to control devices that need to maintain
their operating state without continuous input, such as motors, lights, or, in
our case of interest, a garage door.

Figure 2: Example of Simple Seal-in Circuit in Garage Door Controller

For instance, when a garage door opener is triggered, a seal-in circuit allows
the motor to continue operating until the door is fully open, even after the user
releases the button. Similarly, the door will stay open until another input tells
the PLC to close it. The seal-in circuit thus offers a way to control devices in
an efficient and user-friendly manner.

However, the very feature that makes seal-in circuits advantageous also
presents a potential risk. If a threat actor gains access to the PLC controlling
the garage door, they could potentially manipulate the seal-in variable that
controls the motor. By setting this variable to ’true’, the attacker could force
the door to open, regardless of the intended state. This kind of intrusion
underscores the need for robust PLC security.

2.4 History of Programmable Logic Controllers Exploitation

The Stuxnet worm is a well-documented example of how threat actors can
exploit Programmable Logic Controllers (PLCs) to cause significant disruption.
Stuxnet was a sophisticated piece of malware targeting Siemens Step7 software,
commonly used for programming PLCs. It was designed to modify the code of
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PLCs controlling centrifuges that were used for uranium enrichment, causing
them to spin out of control while simultaneously returning normal readings to
the monitoring systems. Stuxnet was launched in 2009 and exposed in 2010,
and it was the first known case of a cyber weapon designed to cause real-
world physical damage[4]. As such, it was a wake-up call to the cybersecurity
community regarding the potential in the field of PLC exploitation.

3 The Activity

3.1 The Scenario

Focusing on exploiting Programmable Logic Controllers (PLCs), essential com-
ponents in modern industrial applications, our methodology began within the
PLC network context. In real-world scenarios, the initial step typically involves
accessing the network. Once access has been gained, further attacks can be
performed on critical system components like PLCs.

3.2 Identifying Programmable Logic Controllers on the Network

Upon unauthorized network access, a threat actor aims to map interconnected
devices and identify potential industrial system controllers, particularly PLCs.
The Modbus protocol is commonly used, and tools like NMAP are invaluable
for this purpose. With Python-NMAP providing programming-oriented capa-
bilities, it was chosen for its efficiency and compatibility with the task[1].

3.3 Scanning for Modbus Devices

To identify devices with an open port 502, a significant port for Modbus com-
munication, we used the python-nmap package. The following pseudocode
details the logic:

Data: Network range
Result: List of devices with open port 502
Initialize PortScanner as nm;
Scan network for port 502 using nm;
Initialize empty list clientsWithPort502Open;
for each host in scanned hosts do

if port 502 is open on host then
Add host to clientsWithPort502Open;

return clientsWithPort502Open;
Algorithm 1: Pseudocode for Identifying devices with open port 502
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The research team utilized this pseudocode to detect devices with an open
port 502. The network range encapsulates the IP address and subnet mask
of the compromised machine. This information is gleaned using the netifaces
module, a Python library tailored for extracting network interface details. The
function’s output is a list of devices with the Modbus port open.

3.4 Profiling Detected Devices

The subsequent objective is to determine the nature of each device at these
addresses. Major PLC manufacturers such as Siemens and Allen-Bradley em-
ploy dedicated function codes for retrieving device information. By utilizing
these function codes, the research team was able to discern the type of device
associated with each address in the list, thereby gaining a more comprehensive
understanding of the network’s structure. This profiling process involves careful
analysis of the device responses, cross-referencing them with known manufac-
turer specifications, and categorizing them based on their functionalities and
roles within the network.

3.5 Reading of the Modbus Memory Map

Once the PLCs on the network have been identified, the next phase involves
reading the Modbus memory map of these devices. This process requires spe-
cific function codes to communicate with the PLCs via the Modbus protocol.
The research team developed a framework designed to read the Modbus mem-
ory map, utilizing specific function codes compatible with different memory
sections, such as coils, discrete inputs, holding registers, and input registers.
The reading operation involves the transmission of specific requests to the
server, allowing for the delineation of the memory structure. This process not
only establishes the foundation for subsequent analysis and emulation but also
enables the extraction of vital information about the PLC’s configurations and
functionalities.

3.6 PyModbus and Integration of Real-world Apparatus

The research team leveraged PyModbus, a Python library that offers Modbus
functionality, to create the reading process. This library facilitated communica-
tion with PLC simulators and real-world PLCs such as a garage door controller,
generously supplied by a fellow student for their project. By using PyModbus
in conjunction with simulators, the team was able to generate and validate the
mapping of the Modbus memory map. This approach ensured the precision
of the data, with simulated values used to authenticate the mapping’s accu-
racy. The actual values within the PLC’s Modbus memory map managing the
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garage door controller matched those used in the corresponding ladder logic
program. The logic for the reading operation can be summarized with the
following pseudocode:

Data: Client, Optional Addresses
Result: Memory Map with Read Values
Initialize sections with configurations for coils, discrete inputs, holding
registers, and input registers;

Initialize empty dictionary memory_map;
for each (section, config) in sections do

Initialize start_address from config;
Initialize num_elements from config;
Initialize read_func from config;
Initialize empty dictionary values;
Create address_range from start_address to start_address +
num_elements;
if addresses is provided then

Filter address_range to only include provided addresses;

for each address in address_range do
response = call read_func with address;
if response is not an error then

if section is coils or discrete_inputs then
Add response bit to values with key as address;

else
Add response register to values with key as address;

Continue to next address;

if values is not empty then
Add values to memory_map with key as section;

Algorithm 2: Reading Modbus Memory Map

3.7 Insights Derived from the Memory Map Analysis

A detailed analysis of the memory map could reveal the configurational char-
acteristics of the PLCs. Armed with knowledge in PLC programming, a threat
actor could deduce the specific functionalities and processes governed by the
PLC within an industrial control system network. Alarmingly, the same ab-
sence of authorization that permitted the research team to send read commands
to the PLC can now be exploited to write to the Modbus memory. Specifically,
the coils and holding registers, allow for write operations, enabling the control
of discrete outputs and analog outputs.
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3.8 Writing to the Modbus Memory Map

After successfully reading the Modbus memory map, the research team began
the last phase, which involves writing to the PLCs using the Modbus protocol.
Specific functions were crafted to handle the writing to different memory sec-
tions, such as coils and holding registers. This process includes selecting the
appropriate write function based on the targeted section, followed by transmit-
ting the desired value to the corresponding address on the PLC. The writing
operation allows for controlled modification and interaction with the PLC’s
memory structure. It also provides a mechanism to emulate and understand
potential manipulations that might be executed by malicious entities. The
ability to write to the Modbus memory map, coupled with memory map up-
dating, strengthens the analysis by extending the scope of understanding and
engagement with the PLC’s behavior, configurations, and potential vulnerabil-
ities. In the context of our research, we specifically focused on writing to the
occupied coils in the Modbus memory map of a garage door controller.

The logic for the writing operation can be summarized with the following
pseudocode:

Data: Client, Section Name, Address, Value
Result: Success or Failure of the Write Operation
sections = [("Coil", write_coil_function), ("Holding Register",
write_register_function)];
for each (valid_section_name, write_func) in sections do

if valid_section_name equals section_name then
response = call write_func with Address and Value;
if response is an instance of ModbusException then

Log "Failed to write to section_name at address";
return False;

else
Update the memory map with section_name and address;
return True;

Log "Failed to write to section_name at address due to exception";
return False;

Log: "Invalid section name";
return False;

Algorithm 3: Writing to Modbus Memory Map
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3.9 Successful Modification

By writing accurately to the ’motor up’ variable in the Modbus memory map,
the research team altered the state of the PLC, triggering the ’motor up’ op-
eration in the garage door controller. This activity resulted in the successful
opening of the garage door, demonstrating the potential impact of such intru-
sions. The demonstration underscores the far-reaching consequences of these
vulnerabilities in real-world scenarios.

Writing to the Modbus memory map allows an attacker to manipulate the
behavior of the PLC, potentially leading to unauthorized or unintended actions.
The ability to control the state of the PLC’s outputs through the Modbus proto-
col poses significant risks in industrial systems. Depending on the application,
unauthorized access to and manipulation of the Modbus memory map could
result in physical damage, safety hazards, or operational disruptions.

The successful alteration of the garage door controller’s behavior highlights
the importance of robust security measures for industrial control systems, in-
cluding PLCs. It stresses the need for adequate access controls, authentication
mechanisms, and intrusion detection systems to prevent unauthorized write
operations on critical Modbus memory addresses.

4 Follow-up Work

In the light of the findings from this study, there are various potential avenues
for future research. They include:

4.1 Exploration of Segmented Network Infrastructures

This research was conducted within a "flat" network infrastructure, where In-
formation Technology (IT) and Operational Technology (OT) networks were
not segregated. Real-world industrial networks often employ a Demilitarized
Zone (DMZ) to separate IT and OT networks, adding an extra layer of secu-
rity. Exploring this structure is crucial to understanding security in complex
industrial environments. Future research could explore hacking techniques that
could potentially breach this security measure, thus expanding the understand-
ing of potential vulnerabilities in these environments.

4.2 Mitigation Strategies

As vulnerabilities and potential threats are identified, an important future
work area involves the development of robust mitigation strategies. This can
include techniques such as advanced firewall configurations, intrusion detection
systems, and regular security audits. Research in this area will play a crucial
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role in maintaining the security of industrial systems in the face of evolving
cyber threats.

5 Concluding Remarks

The rapid progression of cyber threats accentuates the necessity for fortified
and secure industrial control systems. This research underscores that Pro-
grammable Logic Controllers (PLCs), despite their ubiquity in industrial set-
tings, remain susceptible to cyber intrusions. By spotlighting the lack of au-
thentication and authorization in Modbus protocol, this study offers a deeper
understanding of the challenges in industrial cybersecurity.

The findings from this investigation are pivotal for grasping the existing
gaps in Authentication and Authorization mechanisms within many systems.
They also serve as a foundation for the conceptualization and creation of more
fortified systems in the future. We anticipate that this exploration will catalyze
further academic and practical endeavors in the realm of industrial control
system security. As our dependence on these systems intensifies across various
sectors, the imperative to shield them from potential cyber threats becomes
even more critical.
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Abstract

The demand for diversity in the tech industry has been increasing.
However, students from underrepresented minorities and first generation
college students are usually under-prepared and do not have the essential
resources, including time and information, needed to excel in technical
interviews. In this study, we propose a four-week job interview prepara-
tion workshop to equip students with the resources needed to succeed in
job interviews. The workshop briefly covers the different aspects of a job
interview, such as how to tackle different questions, effectively commu-
nicate your solution, and write your code on a whiteboard. The study’s
results demonstrate that students responded positively to the workshop,
reporting reduced anxiety and enhanced preparedness for technical in-
terviews. We describe in details the format of the workshop and discuss
how it can be further modified to accommodate more students.

1 Introduction

In order to land in a technical job, most companies ask for an intrusive technical
interview [5]. Applicants are asked different types of questions that they need
to correctly answer, including real time coding and fundamental knowledge in
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computing questions. They are expected to provide an answer for the given
questions while speaking through their thought process, which proves to be
mentally exhausting [1].

Students are expected to prepare months in advance. However, the cultural
experiences of underrepresented minorities impact their availability to prepare
for the technical interviews in comparison to white students [10]. Taking care of
the family, having health issues, and working are among the factors affecting the
students’ availability. There are many promising programs and books available
to the students [2, 12]. However, students do not usually know about those
programs and they do not understand their effectiveness, especially that they
require a long commitment with family and other work requirements [7].

Students that landed a job, after going through many job interviews, sug-
gested that campuses need to provide more support to students to make them
more prepared to job interviews [11]. The support can be in the form of provid-
ing mock interviews, better advertisements of any opportunities offered through
the different clubs, helping in developing their communication skills, and even
creating core or elective courses to help students prepare for the hiring process.
However, many minorities serving institutions lack resources, hence, limiting
what faculty can do to support their students [13].

To tackle the above issues, in this work, we are proposing a four weeks
coding interview preparedness workshop sessions to introduce students to the
different aspects of coding interviews and how to prepare for them. The goal
of the workshop is to increase the familiarity of the students with the interview
process and encourage them to prepare early for the job interviews. It will not
require a lot of their time and can be offered virtual or in-person. The students
included in this study are all from California State University Stanislaus, which
is a Hispanic Serving Institution (HSI). However, all students in minority serv-
ing institutions face the same challenges and the idea of the workshop can be
used by different institutions to support their students.

2 Related Work

Kapoor et al introduced the idea of adding interview preparation activities to
data structures and algorithm class [8, 9]. They added internships discussions,
mock interview exercises, and short graded programming assignments. The
study included 363 students with 257 as the study group and 106 as the control
group. Students reported that the activities increased their awareness and
preparedness for interviews. Even though the study is important, it included
a large group of students with no direct faculty-students interaction. That
lacks more individualized feedback and more of general feedback given to all
students. Additionally, even though the idea is effective, it takes from the time
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assigned to learn the main materials in the data structures and algorithms
course, thus requiring either attending extra sessions or taking time assigned
to study the course materials itself.

Dillon et al studied the effectiveness of exposing early CS majors to coding
interview practices using white boarding techniques [4]. Unlike Kapoor et al,
The goal of this study was understanding the effect of the exposure rather
than preparing students for job interviews. It showed that students exhibited
anxiety when exposed to those practices.

Griffin et al focused on redesigning and co-developing some courses by in-
dustry professional and CS Professors [6]. They co-taught the courses for an
academic semester. Additionally, the industry partners provided volunteers
to carry mock interviews, assess as mentors, and serve as guest speakers and
panelists. The study showed students gained a lot of experiences and were
more prepared for technical interviews and their cs career. Even though some
aspects of the study can be applied, it is not feasible for some campuses to
redesign courses or offer new ones with the existing limited resources [13] .

3 Workshop Format

Students need to tackle four different aspects to be prepared for job inter-
views: communication skills and how to effectively convey solutions, decent
knowledge of data structures and algorithms, how to solve coding problem in
a white board, and different problem solving techniques [12]. We designed the
workshop to briefly address the mentioned aspects and direct the students to
further study by themselves to become better prepared.

The one-hour-long workshop sessions are designed for CS major students
who have completed data structure and algorithm courses or are currently
enrolled in one. Students from introduction to programming courses are wel-
come to attend the workshop as listeners, rather than active participants. The
primary emphasis of the workshop is to accommodate a small cohort of 2-4
students per group, collaborating with a faculty member, hence allowing for a
more personalized feedback and addressing individual student concerns.

The four weeks start with a discussion about the interview process in the
first week and end with a mock interview in the last week. The second and third
weeks focus on honing problem solving techniques. Meanwhile, students engage
in hands-on practice of various interview skills, including communication and
whiteboard utilization, through solving problems from "Cracking the Coding
Interview" book by McDowell [12].

At the conclusion of each session, every student receives a comprehensive
and personalized feedback highlighting areas for improvement. Moreover, we
actively encourage students to provide constructive feedback themselves. This
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two-way feedback process not only facilitates individual growth but also fosters
a collaborative and supportive learning environment.

For the mock interview, students provide their own question, with each
student alternating in role between acting as an interviewer, applying effective
interview skills, or as interviewee. After finishing the workshop, students re-
ceive a copy of the book to further enhance their preparation for the interview
process.

4 Students Experiences

The workshop was provided for four different cohorts spanning three different
semesters. Two of the cohorts were in-person while the other two were online
through zoom and using google docs. Each cohort consisted of either two
or three students, with a total of 10 students attending the workshop so far.
Students were asked to fill out a survey regarding their experience with the
workshop. The results here are based on the survey answers filled out by six
students.

The survey focused on three main aspects: previous coding interview ex-
perience, job interview anxiety before and after the workshop, and knowledge
gained after attending the workshop. Out of the six students, two indicated
that they had virtual job interviews before attending the workshop. However,
none of the students experienced any in-person interviews (Figure 1).

Figure 1: Job interview experience before attending the workshop.

All students indicated that they had a high anxiety level regarding job in-
terviews. However, their anxiety level improved after attending the workshop,
including the two students who had virtual interviews before (Figure 2). As
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Figure 2: Anxiety level before and after attending the workshop.

Dillon et al discussed, students exhibit a high anxiety level regarding job inter-
views [4]. Our results indicate that even a four week workshop could improve
their anxiety level.

Students were also satisfied with the setup of the workshop and the ma-
terials they learned (Figure 3). Additionally, in a 10-point Likert scale, they
would recommend other students to attend the workshop ( a mean of 9 and
std deviation of 1.15) .

5 Conclusion & Future Work

A lot of minority serving institutions suffer from lack of resources [8]. Adding
a complete course or interview preparation materials to existing courses could
constraint both faculty and students alike due to the limitation of both re-
sources and time. To find a middle ground, in this work, we proposed a four
week workshop to introduce students to technical interviews and equip them
with resources needed to make them better prepared. Even though students
will still need to prepare more for the job interviews after finishing the work-
shop, we wanted to understand if the workshop at least help students to find
the start point and move forward on their own to prepare for job interviews.
Students had a positive attitude regarding the workshop and would recommend
it to other students.

However, One of the drawbacks of the current workshop format is that
it does not allow working with a large group of students, hence, not every
student will gain the same knowledge. Additionally, some students refrained
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Figure 3: Students’ satisfaction level with the workshop and the materials
covered.

from signing up as there was no credit points associated with the workshop.
One way to tackle this issue would be to better advertise for the workshop or
add guest speakers that went through technical interviews before. Additionally,
we can engage local alumni as interview coaches [14, 3].

Some students recommended as well adding more sessions to practice more
problems and mock interviews and cover other types of problem solving tech-
niques. Hence, as a future work, we could study if it is feasible to offer a one
credit semester long course where students meet for one hour weekly. There
are advantages of adding a one credit course over adding more materials to
existing courses, including not taking time from the required core courses and
students receiving credits towards their graduation. On the other hand, this
will require allocating more resources, such as faculty and students assistants.
Other future work will be to follow up with students who attended the work-
shop and see if they applied for job interviews and if they believe the workshop
helped them to become better prepared.
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Abstract
Programming skills are an essential component of computer science

education. CS3, a third-level programming course, is especially challeng-
ing for students, with a “D, F, withdraw” (DFW) rate of 20% to 28% for
students in majors for which this course is required. Here, performance
gaps in the three assessment areas – a Programming Exam, Written
Test and Final Exam – were analyzed for three types of student groups:
by gender, by ethnicity and by teaching modality (in-person vs online).
The performance data from eight semesters was used for this analysis.
Students taking CS3 in person statistically outperformed students taking
CS3 online in all performance categories. In a Programming Exam, there
is a statistically significant performance gap between top performers (all
problems solved correctly on all Programming Exams) by gender and by
ethnicity. There is a statistically significant difference in performance
on a Written Test between in-person students who took a Tutor-Retake
Written Test with up to three attempts and in-person students who were
allowed only a single attempt per test.

1 Introduction

The effective teaching of computer science programming courses requires con-
tinuous refinement of teaching and assessment strategies to boost student mo-

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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tivation and improve performance [5]. Moreover, there is an ongoing effort to
balance gender and racial representations in Computer Science (CS) courses
[3]. Improvements of assessment strategies can foster inclusiveness, equity,
and diversity among students. This records-based project is a retrospective
study that investigates whether two assessment tools, a Programming Exam
and a Written Test, are associated with the performance gap between well-
represented and under-represented computer science students in a CS3 course,
the third level computer science programming course. This is a preliminary
study that can shed light on the need for new strategies in designing Written
and Programming Exams for a CS3 course.

This study aims to answer the following research questions:

Research Question 1: Is there a statistically significant difference be-
tween well-represented and under-represented ethnicity groups in perfor-
mance on the Programming Exams/Written Exam/Final Exam/Overall
Grade.

Research Question 2: Is there a statistically significant difference be-
tween well-represented and under-represented gender groups in perfor-
mance on the Programming Exams/Written Exam/Final Exam/Overall
Grade.

Research Question 3: Is there a statistically significant difference be-
tween Online- and In-Person-taught groups in performance on the Pro-
gramming Exams/Written Exam/Final Exam/Overall Grade.

The objectives and contributions of this study involve evaluating the effec-
tiveness of a Programming Exam and a Written Test; identifying possible
performance gaps between student groups by gender, ethnicity and teaching
modalities; gaining insights into the factors contributing to performance gap(s)
of these two assessment approaches; and proposing recommendations for im-
provement.

2 Background

Programming skills are an essential component of computer science education.
Programming skills can be improved and monitored with weekly programming
assignments and/or programming projects [1]. In addition, programming ex-
ams have been shown to facilitate the learning of programming skills [2, 3].
Programming exams have been used as an assessment method of learning and
teaching [4, 6, 7]. Integration of a programming exam as an assessment method
ensures that students do not share their code with each other, that students
can concentrate on solving problems and logic of implementation rather than
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fixing bugs that can be caught by a compiler, and computer-based program-
ming exams have the same familiar programming environment that students
use to complete their programming assignments.

Consequently, a programming exam was incorporated in CS3 at CSU Chico
since Fall 2018 to give students adequate opportunity to demonstrate their
programming skills and to motivate them to better engage in outside-class and
in-class programming practice. In addition, students were offered opportunities
to retake poorly completed written tests after receiving tutoring from the in-
structor. This research focuses on analyzing whether programming exams and
Tutor-Retake written tests affected performance gaps (if any) between student
groups by gender, ethnicity, and teaching modalities.

3 Methodology

CS3 is the third programming course in a three-course sequence taught in C++.
Students taking CS3 have programming experience in basic C++ constructs,
C++ classes and pointers, and fundamental data structures such as an array,
list, queue, stack, and binary search tree. In CS3, the key topics covered are
time and space analysis, a balanced search tree, and graphs. Three majors —
Computer Science, Computer Information Systems and Computer Engineering
— require all three programming courses.

In this retrospective study, data were used from only these three majors to
reduce potential bias resulting from the motivation to take a required versus
a not-required course. Here, student performance and demographic data for
CS3 were included from eight semesters: (1) the three semesters taught in
person before the COVID pandemic (Fall 2018, Spring 2019, and Fall 2019);
(2) the first half of Spring 2020 taught in person and the second online; (3) the
following three semesters, all taught online (Fall 2020 and Spring 2021 due to
COVID pandemic and Fall 2021 due to the instructor’s medical issues); and (4)
Fall 2022, taught in person following the COVID pandemic campus response.

The pre-existing performance information was collected via Blackboard, an
LMS, as a normal educational practice, and consisted of (1) an average score
on written tests (not including the final exam); (2) the score of the final exam;
(3) a flag indicating that at least one problem on all programming exams was
solved and implemented correctly; (4) a flag indicating that all problems on
all programming exams were completed correctly; and (5) the overall grade in
the course. The demographic data used for this paper was collected as normal
business practice by the university and included (1) age; (2) major; (3) gender;
and (4) ethnicity. Data for students in non-required majors and for students
younger than 18 years old were removed, leaving data for 407 students in the
overall dataset.
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To answer the research questions, a Chi-square with a Yates corrections
test was used, together with a contingency table in which rows represented
groups (gender/ethnicity/teaching modality) and columns corresponded to the
five performance categories. Satisfactory outcome for the average score on all
written tests and the final exam’s score was defined as scores at or above 70%;
and consequently, unsatisfactory outcomes corresponded to scores below 70%.
Satisfactory outcome on overall grade was a score equal to or greater than 73%
(the passing score for the course).

To evaluate students’ performance in Programming Exams, the count of
students who correctly completed at least one problem in all programming
exams and the count of students who finished all problems in all programming
exams were used. The Spring semester of 2020 had one programming exam, and
the remaining seven semesters had two programming exams. Four semesters
had three written tests and the other four semesters had two written tests
covering the same material as the three written tests. The characteristics of
written and programming exams are provided below.

For analyses involving gender, the total number of students was 407 (all
students available) with 367 (90.2%) male and 40 (9.8%) female students. The
analysis by ethnicity excluded students whose ethnicity was unknown and stu-
dents marked with non-resident alien status. The total number of students in
this analysis was 366. White, Asian and the students with two or more ethnic-
ities (non-Hispanic) were considered Ethnicity Majority, with a total count of
279 (76.2%). The remaining students (Hispanic, African American and Native
Hawaiian) were categorized as Ethnicity Minority with a count of 87 (23.8%).
To study students’ performance data in relation to teaching modality (in-person
versus online), the data from Spring 2020 was excluded, since it was split into
two phases by the COVID campus shutdown and used two different teaching
modalities. The total number of students across the eight semesters who were
taught in person was 209(59.4%), and the number online 143 (40.6%), with a
total of 352 used in the analyses.

All analyses were performed on the data both with outliers and without
outliers. An outlier in an average score on written tests category was defined
as a score of 0 on the second or third written test (including students who did
not take one of the tests). For the remaining performance categories an outlier
was a final exam score of 0 (students who did not take the final exam).

3.1 Programming Exam Characteristics

The number of students in CS3 was 50-60 per semester. When a course was
taught in person, a programming exam was conducted during lab time for 1
hour and 50 minutes in the room with 30 computers, the same room where
students had their labs. There were two sessions of lab time on two different
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days, each with up to 30 students. For a single session there were two different
versions of a programming exam, printed copies of which were distributed
alternatively among students so that no two students sitting next to each other
had the same version. The second session had different two versions from the
first session. The students have not seen exact problems before the exam. It
was an open book exam: each student could use any code developed by himself
in this course and any lecture notes. Each programming exam was an individual
assignment, and students were not allowed to ask for help from the instructor
or a lab assistant. Computers were networked and had the access to internet.
During the exam time, the only website that was allowed to be kept open was
the university’s website for submission of programming solutions. For online
teaching, there was a single version of a programming exam and students had
about 2-3 days to complete it. Students were not allowed to look for solutions
online or ask for help from anyone.

The content of both programming exams reflected the course’s learning out-
comes. The first programming exam was on the AVL-tree and the second on
graphs. For the first exam, students had to solve two problems and implement
their solutions. Some code developed previously in the course was provided,
namely, a declaration and definition of an AVL-tree class with basic functions
maintaining balance of a tree. Students had to write member functions for
the AVL-tree class with solutions for the required problems, compile and de-
bug their programs using the provided tests files with different test cases, each
containing an input and expected output files. The first problem was on tree
traversal: students were required to use a specific tree traversal (pre-order,
in-order or post-order) to print out specific data stored at each node of a tree.
The second problem was more difficult: students had to write a function(s)
whose running time is in O(log n). For each problem, the instructor provided
definitions of the involved concepts, description of a problem to be solved,
and an example with a figure of an AVL-tree illustrating the problem and its
solution. The second programming exam had only one problem for most of
the semesters, and two or three problems for Fall 2022. Students were pro-
vided with the code containing a declaration and definition of a class Graph
together with some member functions including bfs (breadth first search) and
dfs (depth first search) functions. The programming exam’s instructions in-
cluded relevant definitions, problem description and an example with a graph
figure and explanation of a solution for this graph. In addition, for the second
programming exam, an outline of a solution for the problem was provided in
English, and students had a choice either to implement the provided solution
or to come up with their own solution. Time complexity was not restricted.
For Fall 2022, the second programming exam contained two or three problems
with one problem similar to the rest of the semesters, and the other problem(s)
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easier. The content of programming exams during online teaching was like the
content during in-person teaching before the COVID pandemic.

The grading policy was carefully explained before the programming exam.
Each programming exam was worth 5% of the final grade. Students were pro-
vided with the files containing different test cases: input and expected output
for each problem. Students were required to write a program that would pass
all test cases for a problem to receive credit for that problem.

Prior to taking a programming exam, students had completed at least two
programming homework assignments on a relevant topic and practiced solving
similar problems during at least two lectures with the solutions explained by
the instructor.

3.2 Written Tests characteristics

There were two written tests for half of the semesters and three for the other
half. Each test was individual work. All tests taken in person were open books
where students could use their own lecture notes or any printed notes provided
via the university’s LMS. Time per test was 75 minutes. The room held all
students in class. The content covered by two tests was similar to the content
covered by three tests. Each test consisted of 8-12 problems related to learning
outcomes of the course. No multiple-choice problems were given. The problems
on a written test were similar to the ones discussed in class, but never identical.

Grading requirements for a written test in CS3 taught in person before
COVID pandemic were the following: in the first semester (Fall 2018), stu-
dents were required to receive at least 70% on the average over two tests (not
including the final exam); and in the remaining two semesters (Spring 2019
and Fall 2019), students were required to receive at least 70% on each test. If
a student did not meet this requirement, they did not receive a passing grade
for the course. To support students in meeting this stringent requirement, two
additional attempts were permitted as long as the student came for tutoring
with the instructor. The grade received on each test was the best grade re-
ceived in all attempts for that test. In Fall 2022, when teaching in person after
COVID pandemic, there was no special passing requirement based on a score of
a written test; hence, students were permitted only one attempt on each test.
During teaching online, the students were given a take-home test and had at
least 8 hours to complete it. Students were not allowed to look for solutions
online or ask anyone for help.

In-person students had 1 hour 50 minutes to complete the final exam, and
online students had at least 6 hours. The final exam was individual work for
both teaching modalities, and consequently students were not allowed to ask
for help. Each student had only a single attempt to finish the final exam.
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3.3 Effectiveness of Tutor-Retake Written Tests

To study the effectiveness of allowing students to retake a written test after
tutoring with an instructor, performance categories were analyzed with two
groups of students: students taking CS3 in person (in a classroom) before
the COVID pandemic and students taking CS3 in person after the COVID
pandemic. The total number of students was 209, with 159 (76.1%) in the first
group and 50 (23.9%) in the second group. The first group of students was
given an option to take a Tutor-Retake written test with up to three attempts,
and the third group was allowed only a single attempt on each test.

4 Results and Discussion

The results of the analysis of the entire data set are shown in Table 1. All
three tables show results in one-tailed p-values. Statistically significant p-
values are shown in bold font. Performance categories "One on PE" and "All
on PE" stand for "At least one problem was solved and implemented correctly
on all programming exams" and "All problems were solved and implemented
correctly on all programming exams" respectively.

According to these results, there are no significant performance gaps by
gender, except for the performance category labeled as "All on PE" in Table 1.
In fact, there is a strong statistically significant association for this performance
category in all groups of data used in this research (by gender, ethnicity and
teaching modality).

Table 1: One-Tailed P Value for Chi-Square Analysis of Entire Data Set

Performance Gender Ethnicity Teaching

Category Modality
With No With No With No
Outliers Outliers Outliers Outliers Outliers Outliers

Written Tests 0.22 0.18 0.01 0.03 0.0001 0.0001
Final Exam 0.08 0.08 0.11 0.31 0.001 0.004
One on PE 0.12 0.1 0.001 0.11 0.14 0.04
All on PE 0.02 0.02 0.0003 0.002 0.007 0.002
Overall Grade 0.19 0.08 0.11 0.47 0.009 0.045

Interestingly, for analysis by teaching modality, the association between
rows and columns of corresponding contingency tables is statistically signifi-
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cant for all performance categories (with no outlier cases). Students taking
CS3 online had access to video-recorded lectures, had more time to complete a
written test, the final exam and a programming exam, and had the opportunity
to ask for help and/or search online for solutions. Nonetheless, it seems that
this group of students performed less well than the students taking CS3 in per-
son. Even though the instructor kept students engaged during Zoom lectures
by asking students questions (students were given points for this participation)
and by requesting that students write training exercises and submit their notes
electronically for points after lectures, online students still did not do as well as
the students in on-site classes. Many different factors could contribute to this
overall weaker performance: (1) it is more challenging to maintain attention
online, or (2) it is more appealing to miss a lecture with plans to watch it later
via a recording but not following through.

When analyzing the entire data set and grouping students by ethnicity,
there was a statistically significant difference in performance on Written Tests.
To investigate this further, the same analysis was performed for the group of
students taking CS3 in person before COVID. This group of students received
extra support on written tests in the form of tutoring and multiple attempts
for each test. Table 2 shows that this support was effective since there was
no statistically significant association between groups of students by ethnicity
and average score on all written tests.

Table 2: Performance Gaps by Ethnicity in the Dataset In-Person
Tutor-Retake Written Tests

Performance Category Ethnicity
With Outliers No Outliers

Written Tests 0.15 0.3
Final Exam 0.15 0.43
One on PE 0.02 0.26
All on PE 0.0073 0.02
Overall Grade 0.24 0.4

While comparing two groups of students, both having taken CS3 in person
but having different requirements and different support for written tests (Table
3), the statistically significant difference is observed in performance on the
written tests category, implying that the Tutor-Retake written test is more
effective. Surprisingly, there was no difference in performance on the final
exam between these two groups. The final exam was a cumulative exam with
problems similar to those on written tests. It was expected that the students
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who received extra support (tutoring and additional attempts on each test)
would have performed better than those who did not get the support. The
analysis showed otherwise.

Table 3: Effect of Tutor-Retake Written Tests on Performance In-Person
Before and In-Person After COVID Pandemic

Performance
Category

With Outliers No Outliers

Written Tests 0.005 0.001
Final Exam 0.27 0.29
One on PE 0.19 0.11
All on PE 0.011 0.001
Overall Grade 0.35 0.39

One explanation might be that by the time students got to the final exam,
they had sufficient training and practice, and had completed a review for the
final exam using similar problems, so that this was enough for them to develop
necessary confidence and skills to perform well on the final exam. Alternatively,
this also might indicate that the final exam was not sufficiently difficult to
distinguish between those students who grasped the concepts at depth, and
the rest of the students.

There was no difference in performance measured by overall grade, except
in the case of online instruction. This might be explained by the weighting
of the overall grade. Students who regularly attended lectures and labs were
better prepared to do well on homework assignments. Moreover, participation
during lectures and labs contributed to the overall grade. In addition, students
had videos that outlined solutions and implementation approaches for many
homework problems, which helped them with the homework assignments. The
requirement to do at least 70% of the work on each project also likely motivated
students to do well on projects that also reflected in the overall grade.

5 Conclusions

The performance category that indicated that students had solved all prob-
lems on all programming exams identified performance gaps in all groups. In
[7], the authors encountered the same situation on one kind of problem for
programming exams, and they concluded that their ambitions were too high,
and that the problem should be changed. This is one possibility – to change
problems that present difficult challenges for most students. Another option
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is to train students to solve problems that involve synthesis skills starting at
CS1 and CS2 and continuing in CS3 (this follows from the fact that the most
challenging problem on all programming exams required synthesis skills).

The present study showed the effectiveness of a Tutor-Retake written test.
Unfortunately, this technique, although very helpful for students, is very time
consuming for instructors, which calls for future development of sophisticated
automated test preparedness tools individualizing the tutoring process for each
student. In general, programming exams are a very effective technique that
allows students to demonstrate their skills in a familiar environment and mo-
tivates them to further develop programming skills. This study showed that
the majority of students managed to solve and implement at least one pro-
gramming problem in a two-hour period. In addition, it demonstrated that
overly-ambitious problems requiring higher levels of thinking probably are not
the best way to assess students during a programming exam.
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Abstract
This paper presents a new heap-based data structure for weighted

random selection with dynamic updates. Our method delivers O(lgN)
selection and weight update in the worst case, but also leverages the heap
property to reduce the average depth of the elements most likely to be
selected, improving performance for heavily skewed distributions. This
method is asymptotically equivalent to and experimentally competitive
with widely used standard library implementations based on a binary
search algorithm for static distributions, while also enabling efficient dy-
namic weight updates.

1 Introduction and Background

Many applications rely heavily on the fundamental operation of randomly se-
lecting an element from a set given an arbitrary discrete probability distri-
bution. This has motivated the development of many algorithms and data
structures for optimizing weighted random selection (WRS) [1] and its inclu-
sion in the standard libraries of programming languages. However, most prior
work assumes WRS from a static distribution, incurring linear or super-linear
costs any time weights are updated. Important applications, like some dis-
crete event simulations, require both efficient selection and efficient individual

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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weight update operations, which we will refer to as dynamic weighted random
selection (DWRS). For instance, to perform a stochastic chemical simulation
using the classic Gillespie algorithm, a simulation algorithm iteratively calcu-
lates “propensities” for each reaction, using them to randomly choose which
reaction will occur next, and updating the state of the system and reaction
propensity values [5]. When scaling up to multicelluar systems, it is common
for simulations to involve thousands of reactions but only require a constant
number of propensity updates on each event. The lack of an efficient, general
algorithm for DWRS motivated the development of ad-hoc optimizations that
were practically effective for specific use cases, despite poor worst-case perfor-
mance in general [2], and the development of alternative simulation algorithms
to avoid WRS entirely [4].

We formally define DWRS as an abstract data type representing a indexed
collection of nonnegative weights wj , with ordinals j ∈ [0 : N), supporting
operations select() and set_weight(i,w). The select() operation must
return an element at random, returning element i with probability wi

wS
where

wS =
∑
j wj . The set_weight(i,w) operation sets the weight of element i

to a new value. We describe a new data structure implementing each of these
operations in O(lgN) time in general, which approach O(1) selection as the
weight distribution becomes more skewed.

We will build our contributions in two sections. Section 2 introduces a
simple complete tree data structure implementing the key DWRS operations
in O(lgN) time. Section 3 extends that concept with a max heap, explaining
how this optimization provides practically relevant performance improvements.
In Section 4, we analytically compare our algorithm to other published work,
identifying how our work captures benefits for relevant use cases without com-
promising generality. Section 5 presents the methodology and results of em-
pirically evaluating an implementation of our method in C++. We summarize
our contributions in Section 6.

2 Random Selection with a Weightsum Tree

We define a weightsum tree as a complete binary tree, where every node x
stores the weight of the element at that node wx, as well as a subtree weight
sum for the subtree rooted at that node, sumx. Given that definition, we can
define algorithms for selection and weight update by Algorithms 1 and 2.

Algorithm 1 is a recursive procedure selecting a node from a tree rooted
at x given a random number in the range [0, sumx]. If the random num-
ber is smaller than the weight of the root node, that node is selected. This
will occur with probability wx/sumx as desired. If the random number is
larger, then the algorithm must instead select a node from one of the two sub-
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Procedure select()
Generate uniform random variable r from the range [0, sumroot];
return selectFromSubtree(root, r);

Procedure selectFromSubtree(x, r)
if wx > r then

return x
end
if r < wx + sumx.left then

return selectFromSubtree(x.left, r − wx);
else

return selectFromSubtree(x.right, r − (wx + sumx.left));
end

Algorithm 1: Weighted Selection

Procedure setWeight(x, v)
w∆ ← v − wx;
wx ← v;
sumx ← sumx + v;
while x is not root do

x← x.parent;
sumx ← sumx + w∆;

end

Algorithm 2: Set weight of item x to the nonnegative value v

trees. In this case, the appropriate probability of selecting a node from the
left subtree should be sumx.left/(sumx.left + sumx.right). Because sumx =
sumx.left + sumx.right + wx, the algorithm makes this selection by subtract-
ing wx from the original random number, yielding a uniform random number
between [0, sumx.left + sumx.right] and choosing to traverse left if it is less
than sumx.left. In the case that the algorithm traverses right, it also subtracts
sumx.left from its random argument, such that in either recursive case, the
passed random variable argument is a uniform random variable in the range
[0, sumx] for the new root. We can therefore inductively conclude that the
algorithm must have the appropriate likelihood of selecting each node in the
tree.

Algorithm 2 traverses up the tree from the node whose weight is being
changed to update the subtree weights of that node and all its ancestors. Since
the height of a complete tree is Θ(lgN), selection and update according to
these algorithms are both O(lgN) operations. A practical implementation will
require several other supporting algorithms, such as initializing the data struc-
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ture from a set of weights, but such methods are straightforwardly implemented
based on the algorithms already described.

3 Heap-ordered Weightsum Tree Optimization

While the simple weightsum tree approach yields asymptotically efficient worst-
case selection and update operations, for some probability distributions it is
possible to further improve the average execution time. In particular, the
amount of work done in selection is proportional to the depth of the selected
element in the tree. For uniform probability distributions, each node is equally
likely to be selected, so there is no benefit to reordering nodes. However,
for heavily skewed probability distributions where a small number of nodes
represent a disproportionate amount of the weight of the elements in the tree,
the placement of those particular nodes in the tree can significantly affect the
performance of the selection operation. To minimize the expected depth of
the nodes of greatest weight in the collection, we can extend the weightsum
tree by adding a max-heap ordering constraint that sorts the nodes with the
greatest weight towards the top of the tree. Supporting this feature requires
two meaningful changes to our prior procedures. First, because elements can
move around in the tree, each node must now also store the element index of the
element currently being held in that position. For efficient weight modification
based on element index, we must also maintain a separate table storing for
each element index the tree position that currently holds that element. With
these changes, our selection procedure is practically unmodified, except that
we return the stored element index of the selected node rather than the node
position itself. Our weight update procedure, however, must be modified to
preserve the max-heap property, as shown in Algorithm 4.

In the worst case, these changes make no difference asymptotically or prac-
tically. In fact, the overhead of the additional storage and additional work
being performed to order the heap may degrade performance for some appli-
cations. However, these relatively small losses in many situations can enable
significant benefits in particular situations that have motivated entirely unique
methods that can be subsumed by this data structure.

One important situation is dealing with highly skewed data distributions.
Because of the heap ordering, the element most likely to be selected is by
definition at the root of the tree and considered first for selection. Even if a
small subset of nodes represent the majority of the weight, those nodes will
collect towards the top of the tree at small depths, making the 87expected
selection time approach O(1) as the probability distribution tends towards a
constant number of nodes holding practically all of the collection’s weight.

Another important consideration is near-static data sets. While truly static
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Procedure swapNodes(c, p)
wδ = wc − wp;
sumc ← sumc − wδ;
sump ← sump + wδ;
swap(elementc, elementp);
swap(wc, wp);

Algorithm 3: Swap the elements and weights of a parent and child node.

Procedure setWeightHeap(a, v)
x = PositionOf [a];
w∆ ← v − wx;
setWeight(x, v);
if w∆ > 0 then

while x is not root AND wx > wx.parent do
swapNodes(x, x.parent);
x← x.parent;

end
else

while x is not leaf AND wx < max(wx.left, wx.right) do
c← larger weighted child of x;
swapNodes(c, x);
x← c;

end
end

Algorithm 4: Set weight of item x the to nonnegative value v

data sets can take advantage of high up-front data structure construction costs
for many repeated selection operations, there are many applications where
distributions are not static, but the magnitude of updates is typically very
small. The cost of updating the weight of a node in the heap is proportional to
the sum of the node’s depth, which determines how many ancestors need their
cumulative weight sums updated, and the distance the node has to move in the
heap given its new value. In a near-static data set, weight updates are small
and unlikely to require moving the node position at all, so the weight update
cost is dominated by the depth of the node yet again. This means that the
heap data structure performs best when the elements being updated frequently
are also the weights most likely to be selected, which can be the case in some
applications, particularly when a weight only needs updating after selection.
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4 Comparative Asymptotic Analysis

Several other methods have been proposed for weighted random selection, in-
cluding methods for dynamic weighted random selection. However, many of
them are optimized for specific use cases such that a generalized mixture of
selection and update operations on an arbitrary distribution are worse than
O(lgN) per operation.

Linear search can be performed with only an additional sum variable by
simply iterating over the weights until the sum of traversed elements exceeds a
randomly generated number in the range [0, sum]. This algorithm is effectively
searching for the first element where the cumulative sum of that element and
all preceding elements is larger than the random selector variable. Prior work
has proposed sorting elements to increase the efficiency of linear search to O(1)
in the case of skewed data distributions [2]. Binary search is a method often
implemented in standard libraries and computes an array of cumulative sums
at construction. This array of cumulative sums is a sorted array on which a
classic binary search algorithm can be performed to find the smallest element
larger than the generated random selector variable. This method is very similar
to ours in terms of selection but requires O(N) updates to the cumulative sum
array when a single element changes. The fastest methods for random selection
are Alias Selection methods which can achieve O(1) selection at the expense
of O(N) data structure construction that does not support efficient incremental
updates [7]. For data distributions that are near-static, there are extensions
to provide expected O(1) selection and update times using a rejection method,
but those methods still require O(N) data structure maintenance any time
elements change too much [6]. Other closely related work includes Fenwick
trees [3], which is another tree structure where nodes store subset sums of
weights and could likely be extended for application to the DRWS problem,
but the properties of heaps are more thoroughly characterized by preexisting
literature.

5 Experimental Evaluation

We implemented the weightsum tree and heap-ordered weightsum tree data
structures in C++, and tested their performance as well as the discrete distri-
bution class in the standard template library. Each test involved generating
a set of weights from a random distribution and then measuring the time to
complete a set of queries. We varied the distributions from which the weights
were drawn to examine how sensitive different implementations were to varia-
tions in weight distribution. Because our weights were drawn randomly, each
of our results is presented as the average across 100 trials to control for ran-
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Selection Update Notes
Linear search O(N) O(1) O(1) selection for skewed

and sorted distribution
Binary search O(lgN) O(N)

Weightsum tree O(lgN) O(lgN)
Heap-ordered

Weightsum tree
O(lgN) O(lgN) O(1) selection for skewed

distribution, O(1) up-
date for skewed and
near-static distribution.

Alias selection O(1) O(N)
Rejection method O(1) O(N) O(1) near-static update

Table 1: Asymptotic comparisons of dynamic
weighted random selection methods.

Uniform Random integers generated uniformly in the range [1− 10]
Normal Random numbers generated from a normal distribution with

standard deviation 2, mean shifted dynamically such that all
generated numbers are non-negative.

Weibull A highly skewed distribution of random numbers drawn from
a Weibull distribution with parameter 0.5

Table 2: Descriptions of weight distributions in test cases.

dom variations in the weight distributions. For static tests, each query was
simply a selection operation, accumulating the selected indexes into a sum to
ensure the compiler did not remove the selection in dead code elimination. Dy-
namic tests involved running an equal number of iterations with each iteration
performing one selection operation and one weight update operation on the se-
lected element, giving it a new weight drawn from the same original probability
distribution.

All applications were compiled by gcc 11.3.0 with the -O3 flag and executed
on an Intel Xeon Bronze 3204, recording the time to execute 106 iterations of
operations. Recorded time was measured with the gettimeofday() function
within the test application. Weights were generated for different experiments
according to the distributions described in Table 2. Software used for these
experiments can be accessed at the URL below.
https://github.com/WhitmanOptiLab/discrete_distribution

Figures 1 and 2 show the results of our experimental tests. The log-scale
axis reveals the expected logarithmic scaling of all tested methods for the dif-
ferent distributions included as nearly linear runtime growth. We can also see
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Figure 1: Performance of selection on a static probability distribution.

Figure 2: Performance of selection and update on a data distribution.
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that for these static distribution methods, all methods perform better on the
skewed distribution, likely because predictability in the path to the selected
item improves hardware system performance in general. However, only the
heap data structure maintained that performance benefit as the dataset size
increased, because the heap ordering kept the elements with the highest weight
easily accessible no matter how big the overall data collection got. We can also
see that as the data sizes increase, the heap data structure performance varied
much more than the performance of either of the other data structures with
the weight distribution, as expected. Our weightsum tree was generally slightly
slower that the binary search method implemented in the standard library.

We did not test the standard library for changing weights, as each modifica-
tion would have required reconstructing the object with a linear-time overhead
and clearly underperformed our implementations. When weights are allowed to
change, both the Weibull and normal tests performed better for small dataset
sizes. This is because when the highest weighted elements get selected and are
reassigned a new value from the distribution, the collection of elements will
skew towards the lower end of the distribution of values. Out of 106 selections,
it is very likely that most elements are eventually assigned extremely low prob-
abilities, effectively skewing the dataset more and more over time. Once the
dataset size grew enough that our fixed number of updates had less effect on the
overall distribution, we can see that only the Weibull distribution maintained
favorable performance over a wider range of sizes. In general, the heap distri-
bution did impose some additional overhead compared to the basic weightsum
tree when the heap ordering had less beneficial impact, but it outperformed in
the skewed Weibull tests over the majority of the sizes. As the sizes reached
the upper end of our test range, we saw across datasets that the heap data
structure started to experience caching issues before the other methods due to
its increased memory footprint.

6 Conclusions

Dynamic weighted random selection has been important to a variety of ap-
plications, but currently available solutions all lack efficiency across a broad
range of use cases. The weightsum tree, with or without heap ordering, is
not best-in-class for most use cases. Static or near-static distributions can be
supported with faster selection algorithms. Highly uniform or highly skewed
distributions could each be tailored to more efficient methods as well. How-
ever, our proposed weightsum tree has no catastrophic worst-case performance
cases, and can, in at least some situations, capture meaningful performance
improvements from those specialized cases.
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Abstract

First impressions are important. The initial environment in which
our computing students express themselves helps shape their founda-
tional understanding of what computing is, what it’s for, and who partic-
ipates. This work distills experiences and insights from offering Comp1
and Comp21 with two different IDEs: Microsoft’s VSCode and Google’s
Colab. We identify and describe several axes along which we compare
our students’ experience of these two. This effort has changed the way we
offer Comp1, a degree requirement of all students at our institution, and
Comp2, an optional follow-up course, required by some computationally-
themed programs.

1 Choosing our hometown?

Our birthplace exerts a powerful and lifelong force[8]. Although it does not
grow roots as deep as our first language, culture, and family, our computing
birthplace – the initial environment in which we express ourselves executably –

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1In this work, Comp1 and Comp2 are generic CS1/CS2 names. At our institution,
Comp1 is a GenEd degree requirement of every student. Comp2 is a choice, required by
some programs.
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has outsized impact on our students’ relationship with computing. As a forma-
tive experience, it echoes long after the syntax - and instructor - of “Comp1"
have faded.

Even for computing identities born elsewhere, we choose a present-day envi-
ronment for our students to share: a computational hometown, perhaps. That
environment sets the stage for shared experiences, community-building, and
students’ computational identity and self-efficacy.

In light of Comp1’s evolution toward the role of universal GenEd at more
and more institutions and programs, this work asks, “How do we decide on a
hometown - or birthplace - for our students?"

2 VSCode and Colab

Let’s acknowledge: the topic of computing environments is fraught! This truth
shows the importance of our computational birthplaces. We may explore - even
settle - in other realms, but we are enduringly shaped by our first.

What’s more, there are many factors that influence the choice of computa-
tional birthplace (or hometown). Not all these factors are under our control.
Indeed, it’s worth asserting that the natural analogy always holds: We don’t
have to decide! Sometimes, holding on as the world spins is all the agency we
have, and we are right to allow ambient forces to decide for us.

Other times, we have more agency. As a part of a consortium of small
schools, we found the opportunity to run our introductory-computing courses,
Comp1 and Comp2, in two different ecosystems: Microsoft’s Visual Studio
Code (VSCode)[6] and Google’s Colaboratory (Colab)[3]. Briefly, VSCode is
a widely-used professional editor/integrated development environment (IDE);
Colab is a widely-used notebook interface supporting interlaced context and
code cells. The next section shares the axes along which we have compared
these two (and other) IDEs for introductory college computing, especially when
a GenEd required of all students.

Our conclusion is not unexpected: There are only good birthplaces.
Yet we find there are also real differences in the specific strengths and draw-

backs a particular IDE conveys as an initial experience. In sharing our (on-
going) journey, we hope these axes can help other schools and instructors as,
together, we invite all students into their computational futures.

3 Our Opportunity Map

Figure 1 shows a large number of code-editors and IDEs across two important
axes: the size of the community of current users and the ubiquity/suitability
for professional settings. There is more than a little subjective judgment along
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both axes. Yet we found these comparisons helpful in conceptualizing the
landscape of possibilities.

Figure 1: A comparison of several editors and IDEs (i.e., computational birth-
places), especially ones that might be used for Python/GenEd, along axes
representing the relative size of the user base (horizontal) and ubiquity/suit-
ability for professional practice (vertical). There is more than a little subjective
judgment here: this provides a conceptual map of a “zeroth-order" landscape
of possibilities.(Seasoned cs’ers and software engineers will appreciate that vim
and emacs share a single point.)

For us, the important features of Figure 1 were (a) that both VSCode
and Colab offer large communities of fellow users, and (b) that they differ in
fundamental purpose. VSCode intends to serve software engineers well. It
does. Colab intends to contextualize and share computational exploration. It
does.

Because both environments are so successful, and because there are so many
considerations that comprise a large, important, and widely shared college
course, we expanded the dimensionality of our space. Figure 2 provides the
twelve criteria, or “axes," along which we have contrasted VSCode and Colab.
They are grouped into four rubrics: (1) sharability, important in establishing
a campus-wide baseline for computing work, (2) suitability, that is, suitability
for college students new to computing, (3) “sanity-preservation," which assesses
logistical support for instructors and instructional realities, and (4) salability,
i.e., how internal and external audiences feel about - and make themselves felt
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through - the interfaces.

Figure 2: An expanded set of axes by which we have compared the characteris-
tics of VSCode and Colab as introductory computing environments for all stu-
dents. The twelve considerations naturally group into categories of sharability,
Comp1- suitability, logistics support (instructors and students), and "salability"
for each.

The next section elaborates on our - and our students’ - experiences along
each of these considerations.

4 Axes to Grind

4.1 Sharing is Caring

Introductory courses provide experiences shared by an entire class – in our case,
an entire class-year. This common experience is important for creating connec-
tions and strengthens the sense of community within the class. Of course, any
commonly used environment serves the purpose of enabling shared work
in subsequent courses. For us, Colab and VSCode both have strong down-
stream proponents, with computational courses leaning toward VSCode and
applied-science courses toward Colab notebooks. Even if there is a bigger-
picture shift between years of changing code editors, the current class still
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shares their introduction to CS experience with all of their peers in their class.
We find this an enormous advantage. On this axis: Toss Up

Sharing is caring and communication of ideas and work products
opens the door to collaborations and community-building. As a Google docu-
ment, Colabs have strong sharing features: multiple people can see and access
a Colab at one time, though only one can edit at a time. As a local editor, VS-
Code does not support this capability out-of-the-box. However, its substantial
library of extensions offers Live Share[4], a capable shared-editing experience
– one we use extensively in CS3, as it requires additional set up/configura-
tion. For our introductory Comp1/Comp2 experiences, the ease of Colab tops
VSCode’s deep bench. On this axis: Colab

The chance to actively personalize/customize one’s environment goes
a long way to establishing a sense of ownership over the work done there.
Both VSCode and Colab offer color themes for tuning the editing experience.
Here, VSCode’s extensions are an accessible plus, with easy opportunities to
try many options. VSCode-pets are an especially wonderful option[7]! Colab
requires extensions for colorful skinning and has built-in surprises like power
mode, a “Colab crab," (with Corgi and Kitty siblings, wandering the menu
bar), and the marquee function. These allow additional connections between
professors/TAs and students; they add elements of fun and elements of control
for the students when learning CS might seem unduly unnatural On this axis:
Toss Up

4.2 Suitability for Intro Computing

We have encountered strong student sentiment that College Computing/
Comp1/Comp2 courses should build different skills – and should feel different
- from learning-to-code sites like Scratch and Tynker sometimes encountered in
(pre)secondary settings. We find students receptive to required computing, as
long as the toolsets and skillsets employed are authentically representative
of today’s downstream work environments along post-comp1 paths. In-
deed, VSCode represents the consensus look-and-feel: its interface is the go-to
background for media conveying “software development." What is more, VS-
Code holds today’s plurality (though not majority) IDE use[5]. Colab, while
not reminiscent of any particular learn-to-code site, is closer to pre-college ex-
periences: its “cushioning," interleaving context with code cells, is popular in
many data-science and natural-science contexts. We believe that Colab will be
the look-and-feel of the future. For the present, on this axis: VSCode

That “cushioning" has a deeper implication: Colab does not offer students
hands-on access to their own filesystems (or a local filesystem, in any case).
VSCode provides access - in fact, insists on access - to the local filesystem, a
conceptual model that is valuable for some future paths, though not only the
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ones with “computational" in their name. In short, VSCode offers a path into
the universe of computing resources; Colab offers a well-padded abstraction of
them. This is where audience-focus will likely carry the day: at our consortium,
it’s where the largest differences hinge. On this axis: Toss Up

In a large class, it is important to consider the difference between present-
ing and creating results. Instructors seek to stage demos smoothly, which is
where Colab shines - it is easy to set up and present results. However, when
creating entire projects, VSCode wins. By having explanatory instructions
intermixed with the executable code, Colab can become convoluted and con-
fusing in demonstration settings. VSCode offers the context in a tab or panel
beside the execution, a juxtaposition our students have come to expect . It is
difficult to declare a clear winner here, as Colab is better for reading results,
and VSCode shines when presenting results. On this axis: Toss Up

4.3 Logistical Axes: Keeping things running...

Whatever future workplaces might use, the constraints of the academic envi-
ronment are important to instructors here-and-now. Grading, regardless of
the philosophy or norms by which it is pursued[2], is a necessary part of a
Comp1/CS1 experience. How do each of these platforms facilitate grading?
Having edited and executed within VSCode, our students typically upload .py
files for review. Autograders are used to grade some assignments, but far
from all. As Colab is online and can be updated - and entirely lost, as does
happen - we have learned to ask students to downloaded a snapshot of their
notebook and submit that, instead of only its URL. This has the added advan-
tage of maintaining a local copy on their own machines! (and ours!) Further,
our Comp1 intersperses reading-responses and other types of content-creating
alongside the software: Colab makes this natural. On this axis: Colab

Our Comp1 does ask students to run executable artifacts from their own
machines. VSCode installation and upgradability has varied in ease over
many semesters, but it has never been painless. Maybe this is a shared experi-
ence of frustration, unifying students and instructor against a common enemy,
or maybe it’s time poorly spent. Either way, Google Colab doesn’t require set-
up, and students can familiarize themselves with Colab as they work through
their first few computational challenges. On this axis: Colab

ChatGPT and other AI-assistants, e.g., github copilot, are currently bet-
ter integrated within VSCode. Given the uncertainty around their incorpora-
tion into academic courses, this may be a plus or a minus. What’s more, we
suspect that sooner rather than later, AI-assistance will be normalized, avail-
able, and configurable in both IDEs. For the moment, on this axis: VSCode
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4.4 Commercial Concerns

VSCode and Google Colab represent not only two different companies, but
two distinct commercial ecosystems and philosophies re: computing’s fu-
ture role. Microsoft owns VSCode, whereas Google owns Google Colab; Google
seeks to become the computational engine that builds bridges from all disci-
plines’ day-to-day work (via Drive and Docs) to support instances where script-
ing can help (via Colab). VSCode is converging to the same place, but from a
software-centric starting point, expanding to embrace their users as they find
themselves, perhaps unexpectedly, in the role of computational exploration.
Bottom-up may not be how educational institutions are organized, but it is
how education, and especially GenEd, is experienced: On this axis: Colab

Where the commercial ecosystems are least hidden is in the editors’ default
behaviors, which are especially important in students’ earliest experiences.
Both Colab and VSCode target an audience with experience, for example,
with default popups that explain the parameters of built-in functions, such as
print. Pedagogically, these are authentic, but unhelpful. The silver lining to
their insistent attention-grabbing is that the vast majority of students auto-
matically and unconsciously tune them out.2 VSCode profiles allow instructors
to smoothly customize their students’ environments. Colab would benefit from
a similar capability. On this axis: VSCode

Accessibility and price are crucial considerations. Not only is the price
important when considering requiring a large number of students to use a par-
ticular platform, but it is also important after the class ends: an expensive
toolset is less likely to be woven into future pursuits, even if it might help[1].
Both VSCode and Google Colab are free, for the moment. Because of their
value to each titan’s ecosystem, it seems likely they will be free for the fore-
seeable future. Both offer paid versions and extensions, whose capabilities are
not important for either a GenEd introduction or, in our experience, anywhere
in the undergraduate curriculum. Rather, they are far more likely to serve as
a natural and familiar bridge to additional compute-resources, if - or when -
those might be needed. The "...you’re the product..." quip does apply, more
for cloud-based Colab than locally-run VSCode. Yet fifteen years of that quip’s
normalization leads us to conclude, on this axis: Toss Up

5 Verdict and Evolution

If we were keeping score across the prior section’s twelve axes, for our institution
and cohorts, VSCode emerges the better choice on three of them, Colab on four
of them, with “Toss Up" the most common categorization!

2Indeed, watching these message-boxes consistently fail to make it beyond their viewers’
retinas is one of the silver linings of their otherwise depressingly quotidian presence.
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For our situation, the experiment with using both Colab and VSCode for
our GenEd Comp1 and its successor Comp2 has resulted in the following out-
comes within our consortium:

• The Comp1 taken by all undergraduate students across all academic
disciplines is best served by using Colab as its “computational home-
town." Colab’s ease of access, immediacy of exploration, and structural
support for interlacing computing with context, explanation, and reflec-
tion – all of these well serve the foundational engagement the institu-
tion and students seek, regardless of the details of their future paths.
For these students, Comp2 is also best served with Colab - or another
jupyter notebook scaffolding, in order to build on the foundation estab-
lished in Comp1. (VSCode offers an exceptionally capable environment
for jupyter-notebooks; Comp2 can be horizon-expanding in platform, as
well as computationally.)

• For the same reason, the Comp1 and Comp2 taken by our consortium’s
masters-degree students and other graduate students – in nominally non-
cs disciplines – is also best served by a Colab-based introduction. In
those programs, computing is not part of the program’s identity, but
a potentially valuable resource, brought to bear on problems and tasks
insofar as it adds value. Here, facilitating and contextualizing exploration
are the crucial criteria.

• On the other hand, the Comp1 taken by all students across all STEM
academic disciplines is better served by a hybrid set of experiences. VS-
Code is our initial foundation for local file-interaction and execution,
supplemented later with Colab-based explorations where that platform
better supports exploration (e.g., turtle graphics) or when communicat-
ing contextualized results. A mix of environments is a challenge, but for a
STEM cohort it is a worthwhile challenge per se: we hear from our sibling
STEM departments that, because they already leverage so many different
systems, their students benefit disproportionately from the adaptability
that comes with successfully picking up new computational-authoring en-
vironments and solving problems in them. This is precisely our approach
- and philosophy for Comp1/Comp2. (Incidentally, it’s also our approach
for CS1/CS2 and all the rest of our CS curriculum.)

It is not a surprise that one size does not fit all: there is no need!
All deliberately scaffolded introductions-to-computing have the opportu-

nity to be positive. The considerations here have helped us converge on this
moment’s deliberate approaches, as we seek to make computing’s Cambrian
explosion as comfortable and positive as possible, for our students and our-
selves.
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6 Perspective

It would seem there is a verdict, but that the verdict is less about the “right”
choice of computational IDEs and more about how rapidly computing’s role
is evolving in higher education. This work’s taxonomy has been prompted, in
part, by the momentum our institutions sense, both bottom-up and top-down,
behind making Comp1 a universal General Education requirement.

As more institutions and students make computational authorship part of
the fundamental literacies students practice in their college/university expe-
rience, the IDEs they use will continue to mature. The axes outlined here,
we hope, will help assess such resources as we all respond, proactively, to the
changes before us.

As computing instructors, we have the opportunity - and responsibility - of
choosing our students’ computational birthplace. Let’s choose wisely!
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Because multi-core systems have become more and more popular in various
application areas, how to leverage multiple processors has become a problem
that must be answered. Parallel and distributed programming skills tradi-
tionally are a topic in a High-Performance Computing (HPC) elective, and
however, have started to be integrated into early CS curricula in recent years.

General speaking, parallel programming models can be classified into two
categories: the message passing model and shared memory model. Open Multi-
Processing (OpenMP) jointly defined by a group of computer hardware and
software vendors is an application programming interface (API) supporting
shared memory model. It can be implemented in various programming lan-
guages, such as C, C++, Java, Python, and FORTRAN, and can be executed
on many operating systems, such as Windows, Linux, macOS, and Solaris.
OpenMP has many advantages. For example, the responsibility of creating
and managing thread traditionally completed by the programmer was removed.
Instead, abstract and preprocessor level directives and clauses in its API are
used by the programmer to write the code performing parallel computing. Cor-
respondingly, OpenMP can make it easier for students to write parallel code,
because students in class can focus more on the concept of parallel computing
rather than low-level threaded code.

Java is an object-oriented and general-purpose programming language hav-
ing been used in many areas, including parallel computing. The omp4j is one
of the attempts bringing OpenMP to Java. It is a lightweight Java OMP-like
preprocessor and written in Java and Scala. This tutorial will focus on the
basic skills conducting Java OpenMP parallel programming using omp4j. At
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first, the tutorial shows where to acquire omp4j software and how to use it on
Windows machines and Linux machines. After that, it covers how to edit, com-
pile, and run an Open program on a Windows machine and a Linux machine.
Then, the applications of several basic OpenMP directives are explained, fol-
lowed by hand on examples. Finally, the sample code used in the tutorial will
be provided and other materials suitable for self-study will be introduced.

The tutorial is focusing on the audience who is a beginner to parallel pro-
gramming and/or is interested in OpenMP programming, having basic knowl-
edge of the programming languages, such as Python, Java, C#, FORTRAN,
and/or C++. The expected learning outcomes are the followings. After at-
tending the tutorial, the audience should know where to get a copy of omp4j
and how to use it on a windows machine or Linux machine. Moreover, the au-
dience will also know the concepts of shared memory model, and the difference
between the message passing model and shared memory model. Other than
that, how to edit, compile, and run an OpenMP in Java will be learned. In
addition, the audience should learn how to implement various basic OpenMP
operations with omp4j. At the end of the tutorial, the audience can be pro-
vided the e-version of the lecture notes, code as examples, and other materials
for self-study, if needed.
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Getting Started on Jetstream2∗
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As research and education advance, so does their need for advanced compu-
tational resources. While some universities are fortunate to be able to provide
these resources in abundance, many may not have free availability to such cy-
berinfrastructure for their research, much less for their instruction. Through
Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support
(ACCESS), advanced computing resources are being shared with educators for
free, among them Jetstream2. This sharing of resources provides access to
educators who normally would not have access to such platforms.

Jetstream2 is an NSF-funded user-friendly cloud computing environment
for researchers and educators running on OpenStack and featuring Exosphere
as the primary user interface. It is built on the successes of Jetstream1 and
continues the main features of that system while extending to a broader range
of hardware and services, including GPUs, large memory nodes, virtual cluster-
ing, and many other features. It is designed to provide both infrastructure for
gateways and other “always on” services as well as to give researchers and edu-
cators access to interactive computing and data analysis resources on demand.
One of the goals of providing such a resource without cost is to be able to
provide colleges and universities access to these resources not only for research
but for instruction, thereby democratizing cloud computing for educators.

Tutorial Proposal

This tutorial targets an audience of educators, researchers, and IT pros. At-
tendees will get an overview of Jetstream2, the ACCESS ecosystem and how
to get on Jetstream2 then will be walked through how to access and launch

∗Copyright is held by the author/owner.
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VMs on Jetstream2 through the Exosphere interface, provide various examples
and use cases of Jetstream2 for instruction, along with other helpful tips and
tricks.

Requirements

• An ACCESS account. Can be created for free at
https://identity.access-ci.org/new-user.

• Also, please let us know your ACCESS username so we can add you to
a special training allocation so you can follow along with the tutorial:
https://forms.gle/WZRNMrdkratTLZ8L8

• A computer with internet access.
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To prepare IT and cybersecurity graduates and meet industry needs, cyberse-
curity courses must introduce current offensive and defensive tools and prac-
tices. Teaching offensive security (penetration testing/ethical hacking) is be-
coming a standard practice in computer science, cybersecurity, and information
technology programs[2, 5]. Penetration testing/ethical hacking allow students
to perform a sequence of different phases to gain the needed cybersecurity
knowledge and skills using current tools. These current offensive cybersecu-
rity tools should be introduced and applied in the different hands-on activities
thus allowing students to gain the needed knowledge of current cybersecurity
best practices[2]. Through a hands-on approach, penetration testing/ethical
hacking courses allow students to develop offensive cybersecurity competency
enabling them later to build layered defenses that hardens the systems to pene-
tration. Teaching penetration testing requires an attacking host that is used to
perform the different phases of penetration testing on vulnerable hosts. Using
an encapsulated virtual environment where the different attacks on vulnerable
hosts can be conducted, reduces the risk to institutional networks and sys-
tems. Attendees will exit the tutorial with an idea of how to create a working
VMware or VirtualBox environment and learn how to perform some of the
phases of penetration testing using a Kali Linux attack host.

Tutorial Description

In this tutorial the presenter will provide an example of how to create a pen-
etration testing environment using VMware Workstation Pro and Oracle VM

∗Copyright is held by the author/owner.
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VirtualBox on laptops or PCs[4, 3]. The virtual environment will include an
Offensive Security Kali Linux VM, a Metasploitable Linux VM by Rapid7, a
Metasploitable Windows 2008 server, and a customized Windows XP VM.

In the tutorial the following will be demonstrated:

1. The structure of ethical hacking virtual environment using multiple hosts.
2. Offensive tools on Offensive Security Kali Linux.
3. Port and operating system scanning using Nmap.
4. Exploitation using Metasploit Meterpreter.

Target audience

Any faculty who desires to incorporate a virtual environment and use it in a
penetration testing/ethical hacking course. Attendees should be familiar with
Linux, networking, and some programming knowledge. It is highly recom-
mended that attendees bring their own laptops with VMware or VirtualBox
and a Kali Linux VM installed [1].
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1 What is computing made of, these days?

Many introductory computer science courses - including ours - focus on the
science and art of programming. In such classes - including ours - the predom-
inant activity is editing: editing one’s electronic documents and editing one’s
conceptual models of computation. Both of these important skills rest on the
foundation of a conceptual model of computation’s physical processes.

Today’s computing interactions rightfully abstract away the switching of
transistors and the cascade of logical circuits. As CS1 finds itself a GenEd
requirement for more and more students and institutions, as is true for us,
experiencing its bigger-picture connections becomes more important. To make
the physical underpinnings of computing accessible to all students, many of
whom will never again touch a transistor or logic gate, we have developed,
tested, refined, and deployed a short activity accessible to all students, re-
gardless of background. This tutorial invites its participants to try out these
activities and materials.

Participants in this tutorial will work through our "transistor and logic
gates" lab, in which they will create (1) a NOT gate from two transistors and
(2) an arithmetic circuit from logic gates. Both are accomplished with low-cost,
off-the-shelf parts, totaling about $10. No specialty equipment - no scopes or
generators - are involved, and the materials are extremely portable. Through
the tutorial, participants will (re)experience setting up their own breadboard
and assembling resistors, transistors, wires, and LEDs.

∗Copyright is held by the author/owner.
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As a GenEd, our course includes assignments not present in every Comp1/CS1,
e.g., hands-on assembly language, (simulated) circuit design, and several "non-
programming" computational models, e.g., FSMs and TMs. We will share how
we integrate this hands-on lab so that prior experience is neither necessary nor
expected – and such that no future experience is anticipated. We will share,
too, the online resources we find complement these paths, e.g., CircuitVerse
and the NAND Game [1, 2].

We are grateful to stand on the shoulders of prior work demonstrating the
value of hands-on circuit design [4]. In addition, we acknowledge the ambition
and scope of courses, such as From NAND to Tetris, that center the technology
stack that is modern computation [3]. For us, practicing software-authoring
is of paramount importance for all students, so this tutorial’s more modest
approach works well.

In such a spirit of adaptation, we will be delighted if participants adapt
this tutorial’s materials to suit their home institutions’ computing pathways.
Plus, whether adaptation is possible or not, we are excited for all participants
to have built a logic gate from physical transistors and an arithmetic circuit
from physical logic gates – and to encounter how accessible such experiences
can be.
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