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Welcome to the 2021 CCSC Rocky Mountain Conference

Welcome to the 30th annual conference of the Rocky Mountain (RM) Re-
gion of the Consortium for Computing Sciences in Colleges. This is our second
virtual conference due to COVID-19. The CCSC RM region board members
are grateful for the authors, presenters, speakers, attendees, and students par-
ticipating in this year’s conference.

This year we received 17 paper submissions on a variety of topics, of which
11 papers were accepted for presentation in the conference. Multiple reviewers,
using a double-blind paper review process, reviewed all submitted papers and
tutorials for the conference. The review process resulted in a paper acceptance
rate of 64.7%. In addition to the paper presentations, there will be three
tutorials/workshops. We truly appreciate the time and effort put forth into the
reviewing process by all the reviewers. A special thank you goes to Submission
co-chairs Mohamed Lotfy and Karina Assister. Without their dedicated effort,
none of this would be possible.

The CCSC RM region board would like to thank our national partners:
Turing’s Craft, Google for Education, GitHub, the National Science Foun-
dation (NSF), Codio, zyBooks, the National Center for Women Information
Technology (NCWIT), TERADATA University Network, Mercury Learning
and Information, Mercy College, and the Association for Computing Machin-
ery in-cooperation with SIGCSE. We hope you enjoy the conference and take
the opportunity to interact with your colleagues and leave both enthused and
motivated. As you plan your scholarly work for the coming year, we invite you
to submit a paper, workshop, tutorial, or panel for the 31st CCSC RM region
conference, serve as a reviewer or on the CCSC RM region board. Please en-
courage your colleagues and students to participate in future CCSC RM region
conferences.

Mohamed Lotfy and Dan McDonald
Utah Valley University

Conference Chairs
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Towards Evaluating Ethical
Accountability and Trustworthiness

in AI Systems∗

Radana Dvorak1, Hayden Liao2, Sarah Schibel2,
and Ben Tribelhorn2†

1School of Technology & Computing
City University of Seattle, Seattle, WA

dvorakradana@CityU.edu
2Donald P. Shiley School of Engineering
University of Portland, Portland, OR

{liao21, schibel21, tribelhb}@up.edu

Abstract

Intelligent systems, also referred to as Artificial Intelligence, are rapidly
expanding with direct consequences and impacts. Given that the media
focuses more on reporting "disasters" involving these systems, and due to
both the complexity and often black-box nature of these systems, there
is a need for the non-technical audience to understand the impacts given
the speed of their adoption.

This paper proposes a process for describing and rating ethical ac-
countability of intelligent systems in order to allow non-experts to con-
trast and evaluate the trustworthiness of an intelligent system. The
output of the application of this framework enables domain experts to
assess components of these systems in a public sphere akin to peer re-
view allowing for discussion and discovery of trust issues. Secondly, this
output is designed to be understood by the general public, motivating
creators of intelligent systems to improve the quality of their systems.
Similar methods are utilized, with positive effect, in domains such as
public health grades, charity rankings, the equality index, and many

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

†Corresponding author.
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more. This process helps to answer the need for accountability in the
deployment of intelligent systems by both public and private entities.

Finally, we report on a survey of Junior Computer Science students
about how they would rank various components of a trust evaluation.
This preliminary survey helps support our call to action for transparency
in intelligent systems and supports the design of our proposed framework.

1 Introduction

Artificial Intelligence (AI) is a well known and wide field of application and
research. Colloquial definitions of AI may include fantasy-based connotations.
In this work, we define an "AI System" or intelligent system as any computer
program that has the ability to impact people through action, inaction, deci-
sion, or data collection. With this broad definition, much of the realm of public
and privately deployed software would be considered an intelligent system.

Popular media has been reporting incidents of poorly behaved intelligent
systems for years, including incidents with self-driving cars, judicial review
systems, facial recognition, and job applicant selection to name a few. There
is obviously a need for a detailed evaluation of intelligent systems. It is clear
that this evaluation is strongly supported by the ACM Code of Ethics as that
is based on ensuring the public good is a central concern, specifically calling for
moral imperatives of "avoid harm to others," "be fair and take action not to
discriminate," "respect the privacy of others," and "foster public awareness and
understanding of computing, related technologies, and their consequences."[1]
This effort is a step towards these goals.

Given this need for understanding and accountability, this work extends
the development of using experts to analyze intelligent systems towards an
output that can be understood by a lay audience, specifically the public. In
order to ground our selection of important topics, we presented a survey to a
class of Junior Computer Science majors in a required course to see what these
"experts" value in the evaluation of trust in intelligent systems. Although
we were unable to complete the post-survey due to the global pandemic, we
present preliminary data to motivate discussion and future work.

2 Background

There is a social contract between members of the public and corporations
and governments when interacting. As many of the functions of these entities
become enhanced or replaced with intelligent systems, there is a clear need
to maintain this expectation. Considerable thought work has been done in
this area from Rawls[15] to more recent scholarship that calls for ensuring
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that algorithms governing our lives are transparent, fair, and accountable.[13].
We define trustworthiness in this article to espouse these ideals, but from
the perspective of a citizen of the world as opposed to a rigorously defined
metric. As each person may perceive these qualities differently, the authors
believe that a focus on all of them will inevitably yield accountability and
trustworthiness. Fairness however, may prove illusive as many definitions can
be formulated. Researchers are creating precise notions for fairness of decisions
processes, e.g.[8, 12, 7]. Ultimately, there are methods for evaluating fairness
properties of a system using post-processing such as the work shown on the
COMPAS dataset.[3] However, trust is based on an individual’s expectations
of the social contract not on an absolute measure of fairness. This is further
supported by a recent and comprehensive literature review[18] shows that we
need to move to an accountability relationship that includes the use, the design,
the implementation, and the consequences of algorithmic systems, in addition
to the socio-technical process. This work is a proposed component of this
important process.

Governments, non-governmental organizations, corporations, and researchers
are all invested in moving towards achieving trustworthy AI, each lens brings a
unique perspective. Recent efforts from a legal perspective (generative & com-
pliance) were published by the EU.[4] In describing key values, The Alan Turing
Institute lists: "fairness, accountability, sustainability and transparency."[9]
Major corporations focus on bias, for example IBM lists over 180 different
possible human biases that could appear in AI. Additionally, issues of "Ac-
countability, Value Alignment, Explainability, and Fairness" are listed as key
concerns by IBM.[5] Recent work by Google focuses on accountability from the
perspective of internal audits.[14] Obviously, each entity has a goal in achiev-
ing trustworthy AI; this work aims to move towards a simple framework that
respects the expected social contract and integrates the various perspectives
with a focus on the public good as motivated by the ACM Code of Ethics.

This work leverages prior effort in clarifying intelligent systems, especially
ones where machine learning (ML) models are used. The artistry required to
build successful models means there is a large value to entities keeping their
models and data proprietary. However, work has been evolving into recon-
structing models from explanations and behaviors.[10, 17] This suggests that
even in proprietary cases, some information can be used to evaluate the intelli-
gent system. Ultimately, there is considerable literature support for improving
the explainability of intelligent systems[6] and many methods exist for achiev-
ing some level of explanation based on the system components.

Clearly, assessment of individual components of an AI system is a daunting
task, but fortunately there are considerable prior efforts. A great effort was re-
cently presented focusing on the data and training of a model to be detailed in a
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"Model Card".[11] These model cards include sections such as: Model Details,
Intended Use, Factors, Metrics, Evaluation Data, Training Data, Quantitative
Analysis, Ethical Considerations, and Caveats and Recommendations for data.
Model Cards are still limiting as they require considerable technical knowl-
edge to understand. Within the data, prior work has investigated trade-offs in
opening proprietary data, and one group proposes an integrated legal-technical
approach provided by a third-party public-private data trust designed to bal-
ance these competing interests.[19] However, this work assumes that given the
complexity of such systems, trust can still be established without direct access
to the data (a less desirable case to be sure). We believe that trust can be
gained by knowing some limited information about the data used in training
the model similar to the level of information contained in the aforementioned
model cards.

When applying these models, many deployments of models are not for end
users affected by the model but rather for machine learning engineers, who
use explainability to debug the model itself. Therefore there is a predicable
gap between explainability in practice and the goal of transparency, since ex-
planations primarily serve internal stakeholders rather than external ones.[2]
Some of this prior work is very comprehensive, including Explainability Fact
Sheets[16], but with a focus on the developers it misses an important facet of
accessibility to those impacted by intelligent systems.. This work addresses the
need for a external analysis and explanation of these intelligent systems to the
public and in a non-technical format that can be understood by a lay audience.

Finally, this work is unique in its centering on the edge between domain
experts and the non-expert public. Similar to the global consensus around
the handling of dangerous materials through the dissemination of Safety Data
Sheets (SDS)1 which are available to employees and users of dangerous chemi-
cals, AI’s impact is equally dangerous, if not so immediate or visible. This work
does not require a formal definition of fairness, but investigates the variable
levels of trust based on an expectation within the social contract.

3 Methods

Based on an evolving consensus described by researchers, including publicly dis-
closed efforts by government agencies and corporations, we propose to evaluate
intelligent systems under the following categories which are well supported by
prior research: 1) Intent and Limitations, 2) Data, 3) Explainability, 4) Safety
& Robustness, 5) Auditability and Accountability. Within these categories a
series of questions for expert analysis are offered (see Tables 1-2). No specific

1The SDS format is based on the UN’s Globally Harmonized System of Classification
and Labelling of Chemicals (GHS).
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scoring is offered as the domain of application would require weighting each
question differently. However, for a non-expert, a short analysis from each
question would allow them to understand and contrast the trustworthiness of
intelligent systems. What follows is a brief explanation of each category in
terms of the motivation for inclusion with related question numbers in paren-
theses. The results section includes commentary on the application of the
questions for specific real world examples.

Intent and Limitations: The first set of questions seeks to inform the
context of the system to verify that it has been appropriately designed for its
actual use. This includes questions to verify that the system shows respect
for human autonomy (1.1). It also looks for clear uses including legal compli-
ance (1.2-1.4), and transparency in application (1.5-1.6). Finally, if the system
includes technology or code re-use that should be acknowledged (1.7). Ulti-
mately, some technology firms are leading the argument that systems should
include details of their development, deployment, and maintenance so they can
be audited throughout their software life cycle. Note that a negative score is
appropriate for failures to disclose. So an answer of Unable to Ascertain (UTA)
is considered as bad as purposeful obfuscation. Additionally, we do not address
the issue that a system’s legality may vary by jurisdiction.

Data: Data is the linchpin to many intelligent systems as the resulting
models created by machine learning algorithms are determined by the input
data, which can be drastically impacted by data collection (2.1-2.2), data pro-
cessing (2.3), and the model design (2.4). Much of the prior work in this area
focuses on the impacts of these details on the applications of machine learn-
ing. The focus on these questions is on achieving a level of equity and fairness
which requires that training data and ML models be, mostly, free of bias to
avoid unfair treatment of specific groups.

Explainability: Both users and developers need to understand intelligent
systems, but often from different perspectives. Users, as the source of trust,
need to believe that they understand a certain amount of the behavior of an
intelligent system. This relates to the personification of AI which implies an
expected code of conduct of these systems. Often some form of "fairness" is
the expectation. We focus on the behavior compared to humans (3.3) and
efforts to analyze the system for bias (3.1-3.2). These questions are based on
a practical consensus that fairness is too difficult to specify to the satisfaction
of all stakeholders, so by analyzing systems on the axis of human biases, we
can place intelligent systems in context with the human-based processes they
augment or replace.
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Safety & Robustness: Companies are very highly focused on this area
while governments seem to place less weight on it due to the nature of their
"customers" being often unaware or unable to opt out. Ultimately, high qual-
ity software is something users demand more and more. The system needs to
have a path for recovery from failures (4.1-4.2) and be resistant to tampering
and the data secure against being compromised (4.3-4.4).

Auditability and Accountability: Something that we propose is to gen-
erate trust by establishing processes to continually observe the intelligent sys-
tem after deployment (5.1-5.2). Especially as modern intelligent systems con-
tinuously collect data and use that new data for future decisions or actions, this
process seems critical to building ongoing trust. As efforts from governments
show, public transparency of processes will be required to generate trust.

4 Results

The authors chose to demonstrate this framework with a simple unweighted
scoring of percent of questions answered in the affirmative (with half credit
applied for partial scores). Future work should focus on appropriately weight-
ing the questions, however this limited methodology produces a notable result.
The authors used publicly available information as of March, 2020.

We choose to investigate two competitors in the area of self-driving cars
as this is a very current technology of concern to the public given its rapid
evolution and frequency of mention in the news and periodicals. The two most
referenced companies were Tesla and Waymo, so we completed this question-
naire for each. With this simple scoring, and some discussion amongst the
authors, we arrived at an unweighted score of 62.5% for Tesla’s intelligent sys-
tem and 85% for Waymo’s. Weighting each question equally the reader might
think of this as an initial trustworthiness score based on a checklist. What
is most notable, the authors were surprised by this difference between the
companies, and as part of the process to research them found that we gained
trust (independently) in the technological system produced by Waymo and in
contrast to the result we found for Tesla, the authors did not increase their
baseline trust in that technological system. We believe this shift in perception
(trust) was caused by the extra clarity and transparency in the presentation of
the information on the system detailed by Waymo. This warrants additional
studies to confirm a change in trust.

4.1 Educational Intervention and Expert Survey

Each domain of application might weight various components of this framework
differently. In order to address the importance of various areas of this frame-
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work, we surveyed a class of junior computer science students in a required
course at the University of Portland. These students could be considered mi-
nor experts given their training in computer science, although they are not
domain experts in machine learning. The authors intended to report a pre-
and post-survey looking at the change in the perceptions of trust in these stu-
dents to inspire initial weighting of the framework. However, given the global
pandemic and switching to online teaching, the intervention, described briefly
below, was incomplete. The results we report are only from the pre-survey.

The educational intervention was focused on exposing the students to the
ethical issues surrounding AI within the business and professional context. This
work would have included attempting to define fairness in intelligent systems,
analyzing their own intelligent systems from the course project, and creating
a policy document relating to the intelligent system. Showing differences in
perception after this exposure could suggest a need for the creators of intelligent
systems to educate their users more to build trust. However, as we cannot
support this claim, we offer a sample of computing expert opinions on general
perceptions of trust.

Table 3 shows the survey results for six questions on disclosure about "AI
Systems." The small survey of 17 students shows that the average trust is
small to moderate when some information is known. In general, as one might
expect, Computer Science students are comfortable interacting with intelligent
systems. The variance in standard deviation for the questions hints that some
of these areas are less clear to the students. Based on qualitative responses,
this shows that terms like fairness are the least clear and subject to many
assumptions. Contrast this to the lower variance in responses to the question on
purpose, suggesting for experts who create software this is a clearer component
to understand. It is possible that a wider sample of the public would not show
as much agreement.

Finally, we asked the students to rank twelve terms by their importance for
having trust in an AI system (personally). Using a Borda count to combine the
rankings for 15 respondents, we generate the following ranking from highest to
lowest: 1) Intent, 2) Safety, 3) Data transparency, 4) Accountability, 5) Data
model (system design), 6) Respect for human autonomy, 7) Explainability,
8) Legal Compliance, 9) Fairness, 10) Data processing, 11) Limitations, 12)
Auditability.

What is particularly notable, these software developers ranked auditability
the lowest, which suggests that without an imposed process this is unlikely
to be well implemented at the outset for new intelligent systems. Also no-
table, fairness ranks as lower importance, presumably given the difficulty in
both specification and evaluation. With the number one ranked element being
intent, we posit that the creators and distributors of intelligent systems can

19



gain the most trust by clearly educating users of the software’s intent, this is
covered by our framework in question 1.2. Ultimately, our framework covers
each of these issues, so this kind of data could help inform the development of
a weighting for the questions. Given the small survey size, the authors prefer
to leave this as future work.

5 Discussion and Future Work

Using this framework to analyze intelligent systems should be grounded more
deeply in society’s perspective. Specifically, the weighting of each category
should reflect the needs of society and the evolving failures of AI. The authors
believe that there is room for non-governmental entities to engage with this
need. In other fields, non-profits work towards similar goals in transparency
and improvement; with this field’s rapid growth it calls out for a similar inter-
vention. This framework is a place to begin third party review of the systems
that will continue to impact and shape our world.

The authors have presented this framework as a model checklist for cre-
ators, designers, developers, and owners of intelligent systems that the public
could reference to assist the trust building process. Clearly described systems
that score well qualitatively on this survey are ones that inspire more trust.
This framework is specifically shortened for accessibility to a lay audience and
grounded in the expectations of the social contract. This work helps to re-
frame the need for the components of trust including fairness and explainabil-
ity around those impacted by intelligent systems. Our framework is unique in
its focus on the user rather than the creators or owners of intelligent systems.
Ultimately, this helps reinforce the social-contract.
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Abstract

Students can benefit greatly from working with real databases in their
first Database course. A database for a university is a common textbook
example, in part due to its familiarity, but privacy and other consid-
erations typically preclude course access to this and many other large,
meaningful databases. This paper reports on two semesters’ experience
using the University of California Santa Cruz Genome Browser [6] in a
Database course, allowing mid-level computer science undergraduates to
gain hands-on experience with a large real-world database. Anonymous
survey feedback from students in both semesters was positive for both
engagement and increased knowledge. The activity described within can
easily be adopted by others, requires no software installation, and can
be adapted to the desired length and difficulty level.

1 Introduction

Undergraduate database textbooks (e.g. [7, 10]) commonly provide examples
that they believe will be familiar or understandable to their audience, such as
the prevalent university example. While textbook examples go beyond that,
many of the fully fleshed out instances provided are small, highly contrived,
simplistic in some form, or fail to generate enthusiasm among students. Though

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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texts often provide a discussion of implications for large data and various real-
world scenarios, students can leave a Database course feeling like they never
worked with a database that they would encounter ‘in the wild’.

The lack of the use of large real-world databases in a classroom setting can
stem in part from the challenges that faculty can face in gaining easy access
to such a database for a variety of feasibility and logistical reasons. Data
privacy, IT concerns or limitations on software availability, and the need to
keep assignments with a particular scope are some of the anecdotal reasons
that have been shared for relying on small or simplified databases.

The University of California Santa Cruz (UCSC) Genome Browser [6] avail-
able at https://genome.ucsc.edu/ provides an easy solution to many of the
hesitations. For over two decades, the UCSC Genome Browser has provided
thousands of users “a mature web tool for rapid and reliable display of any
requested portion of the genome at any scale” [3]. With daily hits from the
early years exceeding 50,000 [3], and ongoing maintenance and updates includ-
ing COVID-19 human annotations and the SARS-CoV-2 viral genome [6], it
provides a large, meaningful database for exploration.

The author was introduced to the Genome Browser in a 2017 workshop
aimed at biologists at her institution. In Spring 2018, when the author first
used the Genome Browser in their Database course, there was a SIGCSE work-
shop on Introducing Bioinformatics Algorithms in CS courses [5] aimed at
CS1/CS2/Algorithms courses; the associated handout [4] illustrates the use of
the Genome Browser visualization tool only. A paper from the same technical
symposium reports on the use of the Genome Browser to bring computational
thinking into an introductory biology course [8], again using the web interface.
The author is unaware, either anecdotally or in the literature, of other educa-
tors using the Genome Browser in a Database course or with direct MySQL
interaction. This paper reports on two semesters of such usage in a Database
course, in ways that can be easily adopted and extended by other educators.

2 The Course and the Genome Browser Lab Activity

There is a single Database course at the author’s institution, an elective typi-
cally offered every two years, with a prerequisite of the CS II - Data Structures
course in Java. The enrollment is predominantly computer science majors but
also some minors and other majors, ranging from sophomores to seniors. Ac-
cordingly, their CS experience varies greatly, as does their biology background,
with many not having taken a biology course since high school.

Normally one of the two weekly class periods is dedicated to hands-on lab
activities designed to allow students to practice skills they are learning in the
course. This lab is done in the early weeks of the semester, before students
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have become proficient with SQL. Because Google Cloud Platform is used
more extensively later in the course, Google Cloud Shell (https://cloud.
google.com/shell/) is used to interact with the UCSC Genome Browser.1
Though other options are available, a convenience of Google Cloud Shell is
that all activities can be done in the browser from a variety of devices with no
software installation required. As an introductory lab, some of the goals include
helping students feel comfortable no matter their level of prior experience,
encouraging the exploration of connections both within and beyond computer
science, executing MySQL commands on the shell, and scratching the surface
of what can be done with a large real-world database, leaving opportunities for
additional exploration.

The activity guides students through a mixture of precise and open-ended
questions, a combination that allows many students to work at their level
while executing commands, discovering new resources, making connections,
and drawing insights. After a quote from Adleman [1] highlighting the intercon-
nection between biology and computer science to help contextualize the activ-
ity, students are provided numerous specific links to pages within the Genome
Browser domain along with direction for some guided exploration. They re-
view the provided abstract from a recent version of the Genome Browser’s
preferred citation for the data (see https://genome.ucsc.edu/cite.html);
for the Spring 2018 course offering described, that was the 2017 update [11].
Though only a single paragraph, the abstract brings in terminology familiar
to many computer scientists including phrases such as open source platform,
command-line utilities, and mirror site, as well as a lexicon more familiar to
biologists, such as genome assemblies and long-range chromatin interaction
pairs. Students pick three least-familiar CS terms to define, providing details
about any sources used. The activity is then repeated with biology terms.

After some in-class discussion of these terms and an overview of the Genome
Browser, students are pointed to the source code [2]. Since git is not used in
first-year courses at Southwestern, students are given guidance about how to
figure out what languages are used in the Genome Browser and in what propor-
tion. The author has found this exercise beneficial in motivating students to
value a variety of languages, especially those who would have assumed Python
was a larger component. (Note that language percentages vary from semester
to semester as the code changes; telling students that explicitly may promote
academic integrity.)

Instructions about public access to the MySQL database for the Genome
Browser are then discussed, including the details from the FAQ about the

1The author is not affiliated with Google (nor UCSC nor any school in the UC system),
but does get credits from the Google Cloud Teaching & Learning credits program (https:
//cloud.google.com/edu/faculty) widely available to United States college faculty.
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allowable hits per day. The basic lab described within easily stays within those
restrictions, with students connecting to the MySQL server running on the
UCSC site, having no need to compile or run anything locally. Guidance about
“How to: create a partial UCSC genome MySQL database” [9] is provided for
reference should it be desirable for future exploration.

Students are instructed to connect to the MySQL server with the provided
instructions, which include a flag of -A that is typically unfamiliar to even stu-
dents with more command-line experience. They are asked to determine what
that flag means and consider why it might be used here. They then execute
the use hg19; command, reporting what happens and what they can learn
about hg19 from the browser. After next executing show tables; students
are prompted to find, for example, the row right after wgRNA, and report
what it is, looking up any acronyms or unfamiliar terms encountered. A phras-
ing of the italicized form allows the lab to be slightly modified each semester
to accomplish similar goals but yield different results.

Next, students run the code in Listing 1, often their first encounter with
MySQL queries. They then consider how the results align with what they
recall (or have looked up) about the number of human chromosomes. They
also deduce what they can about the query syntax itself, and try variants
to see if their hypotheses seem to hold, often quickly learning some of the
idiosyncrasies of MySQL as compared to other programming languages with
which they are familiar, including the extent to which case matters.

Listing 1: MySQL query to provide chromosomes of a given format
SELECT *
FROM chromInfo
WHERE (chrom LIKE 'chr_' OR chrom LIKE 'chr__')
ORDER BY size
DESC;

Afterwards students explore the Genome Browser’s visualization tool, with
some guided questions related to one of the chromosomes from the previous
query. The activity concludes with open-ended questions about what a com-
puter scientist should keep in mind when designing a tool and database like
this, features desirable to end users, and frustrations to attempt to avoid.

3 Results from Classroom Usage

Data was collected from student submissions in Spring 2018 and 2020, with
approval from the Southwestern University Institutional Review Board. Due
to space limitations, some reported results are from 2018 while others are from
2020. Students who consented to participate completed an anonymous survey
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after the lab activity had been completed and submitted. Figure 1 reports on
the Spring 2018 responses to the survey questions “How much did the activity
increase your knowledge of {biology, databases}?”, with 1 representing none, 3
moderately, and 5 massively. When viewed individually, all but two students
reported an equal or greater increase in their database knowledge than their
biology knowledge from the activity, with 16 reporting one step higher for
databases than biology. One student who reported a larger increase for biology
made a notation on the database knowledge portion that “It more secured the
things we have learned.” A majority (19 of the 26 students) had not taken a
college biology course. Breaking down the results by gender (17 male, 7 female,
1 nonbinary, 1 no answer) did not provide any particular insight.

Figure 1: Reported increases in biology and database knowledge from Spring
2018 students after the lab activity.

The survey also asked: What aspects, if any, of this activity would you retain
for the next time this course is offered? Why? Almost all Spring 2018 responses
would keep the activity, with one student saying “Using a large and relevant
database from the real world ... helped me stay engaged with the material. I’d
like to see this database extended to other projects.” Perhaps the most critical
comment was from a student with no reported prior biology experience (high
school or otherwise), who wanted “a completion of the assignment on a different
subject so we know what we’re doing.” Other suggested changes recommended
in the anonymous survey were generally supportive of the activity, requesting
“more detailed instructions for how to connect to the MySQL server,” additional
and more complicated queries, or an optional video on the genome to gain
background knowledge on the biology aspects.

Figure 2 highlights commonalities in student responses to what computer
scientists should keep in mind when designing a tool like the Genome Browser.
Popular themes included efficient access to the data given its size, and ensuring
that all users were able to understand relevant terminology.
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Figure 2: Word cloud illustrating commonalities in what students in the Spring
2020 course indicated computer scientists should keep in mind when designing
a tool like the Genome Browser. Larger words occurred more often.

4 Conclusion
Faculty need not be biology experts to bring a biology database into a computer
science course and use it effectively. Using the UCSC Genome Browser serves
as a good reminder to faculty of how students may often feel in the classroom,
with some knowledge but still much to learn. In a course where students enter
with a wide range of prior experience and preparation, activities like this can
encourage a cooperative and collaborative atmosphere. Student engagement
with the activity and responses to an anonymous survey in two semesters of
classroom usage suggest that it was overall effective and engaging.

The activities described within are fully reproducible by others, requiring
only a web browser and a means of establishing a connection to the Genome
Browser. Though the queries described within are of an introductory nature,
instructors can easily customize them to their desired length and difficulty
level. A variety of activities, ranging from highly structured to open-ended
are possible, including allowing for semester-long student-directed projects,
perhaps with collaborators in biology or other departments on campus. In the
coming semesters, students and faculty alike may be interested in the SARS-
CoV-2 viral genome and other coronavirus-related explorations.

Though the author found it easy enough to experiment with the use of the
UCSC Genome Browser, had smooth experiences in the classroom, and recom-
mends its use to others, a caution remains that like any actively maintained
site, the content can and will change. For example, the paper abstracts change
for the various updates of the database as published in Nucleic Acids Research
so instructors are advised to ensure clear guidance is given to students about
what abstract to read, or to provide the text explicitly for students. Likewise,
while the UCSC links have largely remained stable, it is worthwhile reviewing
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those each semester. However, overall the changing nature is beneficial, can
lead to larger conversations about the impacts of such change, and highlights
that the interactions are in fact with a real-world database.
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Abstract

It is a widely held belief among computer science researchers that
studying computer science enhances critical thinking, problem solving,
and creativity; and it should be a part of the K-12 classrooms. Our home
state has joined other states in mandating the latter. Issues of curricu-
lum development, teacher preparation, pre-service and in-service train-
ing, funding and logistics, are all important. Over several years, we have
developed a novel approach to using computer programming to explic-
itly teach mathematical generalization and abstraction. In this study,
we applied this instructional model to pre-service elementary teachers
(PSETs). PSETs participated in four days of explicit instruction where
students wrote mini programs designed to push them towards general-
ization of statistics concepts found in the elementary classroom. Along
with instruction, PSETs were given information regarding the important

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
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contributions of computer science and abstraction in their future ele-
mentary classrooms. Results showed that PSETs did show improvement
in conceptual understanding and also showed that some of the teachers
were initially unconvinced that the curriculum was relevant to them or
to their future classrooms. The instruction improved PSET attitude and
showed that training to meet new computer science (CS) standards in
K-6 can and should address this reluctance.

1 INTRODUCTION

A growing body of research supports the conclusion that studying computer sci-
ence teaches critical thinking and problem-solving skills, creativity, and work-
ing collaboratively and that computer science should be employed in an inte-
grated curriculum[4]. George Forsyth, credited by Donald Knuth as founding
the discipline of computer science, wrote in 1968 that “The most valuable ac-
quisitions in a scientific or technical education are the general-purpose mental
tools which remain serviceable for a lifetime. I rate natural language and
mathematics as the most important of these tools, and computer science as a
third”[10, 11]. In one state, the state department of education has formally
adopted a computer science and digital literacy course of study that begins
in kindergarten and goes through 12th grade [1]. This standard requires com-
puter science topics to be incorporated into the high school curriculum starting
in the fall of 2020, middle school in 2021, and finally elementary school and
kindergarten in 2022. Additionally, according to code.org, 93% of parents want
their child’s school to teach computer science and a Google/Gallup survey of
that state’s school principals indicated that 69% think computer science is just
as or more important than required core classes[2].

Given what is a preponderance of both strong beliefs and research results
supporting the importance of integrating computer science into K-12 curricu-
lum, there is a concerted effort by education administrators, educational lead-
ers, and teacher professional development programs to infuse CS topics into the
K-12 curriculum. Many pre-service teacher preparation programs are also en-
gaged in addressing this issue. However, several barriers exist to the widespread
adoption of computer science topics in K-12, including teacher CS knowledge,
the belief that other topics (notably, reading and mathematics) will suffer as
a result, and lagging financial support for new educational initiatives. One
barrier that is less frequently mentioned is that teachers are often reluctant to
utilize computer science concepts or practices in their classroom[7, 3, 6].

As a group of mathematics and computer science education researchers, we
have seen hesitation to incorporating computing into mathematics lessons in
our PD work with K-12 teachers. Our experience has been illustrative of the
widely observed pattern where teachers are often initially hesitant, but their
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students are eager. We designed a PD approach where teachers work with
their students to demonstrate the efficacy of the instructional model. They
learn along with their students to employ an instructional strategy with com-
puter programming activities that provides explicit instruction that promotes
development of abstract representations of specified mathematical concepts. In
addition to utilizing our instructional model with in-service teachers, we have
also tested it with undergraduate computer science students and pre-service
secondary education math students[13, 9, 8]. We have recently begun inves-
tigating the effectiveness of our model with PSETs[9]. Whether elementary
students are able to engage in authentic computer science activities and if it is
beneficial to them is an active area of research. In 2017, Rich et al. investigated
what we can expect most elementary school students to accomplish in terms
of computational learning trajectories[12]. Their study starts with empirical
data and builds and establishes the relative difficulty of various computer sci-
ence concepts and detailed learning goals for elementary age students. Their
research shows evidence that the computer science concepts of sequence, repeti-
tion, and conditionals can be incorporated into elementary curricula effectively
and that students can benefit from the approach.

Given that there is widespread support for incorporating computer science
into the K-12 curriculum, it is important that PSETs believe that computer
science is relevant or useful to them. Guzdial notes in [5] that he observed
at the 2020 CUE.NEXT workshop that “lots of education faculty think CS is
going to go away”. While presenting our Instructional Model (IM) that guides
students through writing mini computer programs in order to push them to
make generalizations over statistics concepts in the elementary classroom, we
observed that many of the PSETs were not initially convinced that computer
science topics would benefit them. We disclosed that state departments of
education were mandating it, that it had proven pedagogical advantages, and
that their career prospects were improved by incorporating computer science
activities into their teaching. In this paper, we present data collected through-
out our study showing evidence PSETs were initially reluctant to incorporate
programming in their future classes and that this type of lesson can improve
these attitudes for future teachers.

2 METHODOLOGY

This study took place in an undergraduate PSET statistics course with a to-
tal of 19 students at a regional four-year university. There were four days of
instruction using our IM, that is an explicit method for teaching abstraction
and generalization through writing mini computer programs. PSETs explored
statistics concepts that are part of the course of study in the elementary class-
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room. The students were introduced to Python and shown how to use variables,
print statements, and a while loop. The objective was to use programming ex-
ercises to explore the general expressions associated with the mean of an arith-
metic sequence of numbers. Students completed a pre-test, response sheets,
and a post-test during the study. Students also completed survey questions
to investigate their attitude towards learning to program in the context of ex-
ploring a mathematical concept. Free response questions were asked following
each lesson to discover the students’ reactions to our instructional model. These
questions were focused on investigating how students felt about the addition of
computer programming in their PSET math course. The following is a descrip-
tion of the lesson activities for days 1-4. On day one, PSETs were informed
of the recent change in the state’s course of study requiring computer science
topics in K-12, the importance of computer science and programming in the
world today, and the benefits programming could bring to their job prospects
after graduation. Students were given Python code with a simple loop to print
out consecutive numbers in a given range. The first range explored was [1..3],
using the loop below:

Students were asked to predict the output, consider how the code achieved
the output, and experiment with the loop to observe the results. Students
were provided debugging assistance. They explored other ranges, such as [0..3],
[1..5], and [3..6]. They did this by changing the initial value of i and chang-
ing the right operand in the conditional expression to the new terminal value.
Students were asked to explain to their peers what was occurring in the pro-
gram. The code above was modified through interaction between the teachers
and students to produce a range of even numbers. For example, [2..8], would
produce 2, 4, 6, 8. This range was represented by the following code:

It is notable that students could have achieved the column of even numbers
by simply initializing i to 2 and increasing the step size in the statement “i = i +
1” to “i = i + 2” without altering the print statement. The goal, however, was
to employ the use of the mathematical general expression of an even number
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by observing its behavior in the program. Since we want the students to begin
to recognize the notion of an even number as 2n, the general expression shows
up in the code as 2*i in this program. After their first programming activity,
students were asked to take a blank sheet of paper and draw a representation of
what was happening in the program. They were asked to think about what the
computer was doing and illustrate their mental model of the computer’s actions
to produce the output. On the second day, the code from day one to print the
range [1..3] was repeated and reviewed. In addition to the review, the students
were asked to trace the code to count how many times the loop executed. A
counter variable was added to the code to set the stage for computing the
mean. The counter variable implemented the students’ manual action in the
previous code tracing exercise. The code displayed below depicts the loop with
the counter added. Students experimented with various ranges for i.

During the next phase of the lesson, the students were asked to use the
Python interactive shell to execute simple, one-line statements and search for
numeric patterns:

Students continued this process all the way up to 10. They noted patterns
they discovered, discussed the patterns with peers, and shared them with the
group. Next, students attempted to generalize the patterns they observed for
consecutive integers in the previous exercise. They modified their program to
use the counter and sum to calculate the mean.
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The modified code is illustrated here:

The students were asked to modify the previous program to produce the
mean of consecutive even integers. The modified program is shown next:

On the last two days, students returned to the classroom and summarized
what they had observed in their programming activities. They were asked to
describe general expressions for consecutive numbers and general expressions
for consecutive even numbers. They worked together to relate these general
expressions to the code they had written. They spent time writing conjec-
tures regarding the mean of 3 consecutive numbers, writing the conjectures
using general expressions, then writing convincing arguments using the general
expressions.

For example, students conjectured and proved the following: Let 3 numbers
x1, x2 and x3 be consecutive. If we let x1 be any number a, then x2 = a+1
and x3 = a+2. Summing the 3 numbers we have x1 + x2 + x3 = a + (a+1)
+ (a+2) = 3a + 3. To find the mean of the 3 numbers, we divide by 3 so
the mean of x1, x2, x3 is (3a+3)/3 = 3 (a+1) / 3 = a+1, which is the middle
number x2.

This was followed by a conjecture and convincing argument about the sum
of 3 consecutive even numbers like this: Let 3 numbers e1, e2 and e3 be con-
secutive even numbers. If we let e1 be any even number, then there exists a
number b so that e1 = 2b, then e2 = 2b+2 and e3 = (2b+2)+2. Summing the
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3 even numbers, we have e1 + e2 + e3 = 2b + (2b+2) + (2b+2)+2 = 6b + 6.
To find the mean of the 3 even numbers we divide by 3 so the mean of e1, e2,
e3 is (6b+6)/3 = 3 (2b+2) / 3 = 2b+2, which is the middle number e2.

On the final day, students were asked to write about the generalizations they
had observed over the course of instruction. They were asked to conjecture and
write convincing arguments for the sum of 3 consecutive odd numbers. Finally,
they were asked to write a general expression for the mean of any 3 numbers.

3 RESULTS

Our instructional methodology is based on APOS (Action, Process, Object,
and Schema are the concept mastery levels) theory, which utilizes a genetic
decomposition to analyze mathematical understanding [5]. We developed a
genetic decomposition for the mean of an arithmetic sequence and used it to
score the student responses. All responses were scored by all four of the re-
searchers. After individual analysis, final scores were assigned to each response
based on agreement. When there was not agreement, researchers discussed the
score until there was agreement. Additionally, disposition questions were asked
to determine how students perceived the programming activities and the call
for generalization. There were free response and Likert scale responses.

The pre-test revealed that even though most PSETs could describe the for-
mula for computing the mean, hardly any of them could think about and apply
the formula in general terms. For example, student S14 describes computing
the mean correctly but when asked to describe the mean of three integers x1,
x2, x3, she said “I can’t do this because of the letters.” It is tempting to say
students did not know how to deal with general expressions, but all of them
previously passed a pre-calculus algebra course.
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As shown above, most students began at the action level as evidenced by
attempts to make the pre-test question about numbers. Some students even
converted the variables to numbers, x1 to 1, x2 to 2, and so on. Overall,
students progressed during this instruction, as five students ended up at either
the process or object levels.

PSETs initially expressed frustration with the programming. S3 com-
mented, “The mean was quiet [sic] easy, but figuring where to put things
whether it was inside or outside the loop was very difficult.” Some also felt
it would be difficult to teach programming to elementary students. S11 said,
“I believe that it is too difficult for young children to be able to understand.”
Overall, the lesson addressed and improved these feelings. PSETs began to feel
more comfortable as typified by S7 and S9’s comments. S7 commented, “I am
very unfamiliar with computer programs so the first day was a little confusing
for me. My brain tends to work a little slower when it comes to computers and
numbers. However, I was getting more comfortable with the program towards
the end and looking forward to learning more today.” Later S7 added, “I defi-
nitely understand the program better on day 2. I think this day was beneficial
to me because I was more familiar with Python. Finding how many times it
looped was still difficult, but I understood the mean better.” S7 modeled the
changing sentiment of the class, “I am familiar with these concepts now and
I appreciate you taking the time to teach this because it will help me help
my future students”. Similarly, S9 exemplifies observed improvement, “At first
I did not understand the material, but I quickly caught on! I liked how the
program printed 3-4 consecutive numbers. I enjoyed the interactive shell to
discover patterns of the means and sums. The program worked great.”

4 CONCLUSION

The objective of our instructional design used computer programming to push
the PSETs to generalize and abstract about the mean of an arithmetic sequence
of numbers. Our research has shown that if students write mini programs that
iterate over a sequence of numbers to explore a mathematical concept, then
students learn to see the general expression in the program and translate or
transfer that to the problem under investigation. The overall instructional
model was successful, even though the computer programming activities were
met with initial resistance. Learning even introductory computer science is no
small feat. There are many ways learners of computer science must scale to
master concepts. Teaching computer science topics across the K-12 curriculum
poses many challenges including teacher preparation, curriculum development,
training in-service teachers, and logistical issues such as funding and equip-
ment. This study began as an application of the IM to a new group, PSETs.
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Early in the project, however, it was evident that attitudes were impacting
student success in programming; so, we addressed them, and they improved.
Even though a small number of the PSETs held on to initial beliefs, most of the
PSETs showed improved attitudes from their pre-test. To successfully prepare
PSETs for new state CS standards, it is beneficial to acknowledge and address
these attitudes during teacher training.
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Abstract

A longitudinal study (2014-2021) of the Bachelor of Science in Com-
puter Science degree requirements specified by 380 computer science pro-
grams in the United States is presented. Specifically, the study data
surveyed the average number of required and elective computer science
course credits and the average percentage of fifteen computer science
courses required to complete the degree. An analysis of the significant
and trending requirements changes between the start and end of the sur-
vey is also presented with a discussion or what factors may be accounting
for these changes.

1 Introduction

Interest in the relation between desired curriculum, “the talk ”, and the actual
courses required by universities to satisfy a computer science degree, “the walk ”,
has a long history within undergraduate computer science education. Two arti-
cles in the education-focused April, 1964 issue of Communications of the ACM
nicely exemplify this distinction. In the first, Keenan is motivated by the “de-
sire to understand what courses should properly be given and how they can
relate to each other in a well-formed curriculum”[11]. In the second, Atchison
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and Hamblen present the results of a survey focused on the computing degrees
offered by ninety-three universities in 1963[6]. Despite their differences, the
two approaches used in these “historic” articles are motivated by the desire
to provide students with an appropriate computing education. More specif-
ically, Keenan’s approach stemmed from the position that while “established
disciplines can cite course content as a means of defining the substance of the
field ... this method is inadequate in a developing field...”[11], which computer
science certainly was in 1964. Alternatively, Atchison and Hamblen’s focus on
curriculum stemmed from the position that “it behooves us all to do what-
ever we can to see that good sound programs will continue to develop from
the already fertile ground” of existing programs[6]. As members of the ACM
Curriculum Committee on Computer Science, Atchison, Hamblen, Keenan, and
others subsequently contributed to the first published undergraduate computer
science curricular recommendations, Curriculum 68. These recommendations
included both topical and course focused requirements[2][3].

Since Curriculm 68, undergraduate computer science curricular recommen-
dations have been published approximately every ten years by the ACM, and
then Jointly with the IEEE Computer Society since 1991. Dziallas and Fincher
provide a nice overview summarizing how the pedagogic perspective of these
recommendations shifted from a primarily course-based expectation to a cur-
ricular body-of-knowledge focus[9]. They also provide a characterization of
the "committee members’ assumptions and perceptions about how a report
will be used" including curriculum as prescription, the talk, and actual use by
universities, the walk [9]. Be it the focus on courses suggested in the earlier
curricular reports or the body-of-knowledge in the later reports, it is easy to
find and track the history of specified recommendations, again the talk, in the
published literature available on the internet via the ACM Digital Library.

Alternatively, it is not easy to find an historical walk of courses required
by computer science programs. Knowledge of such course requirements can
provide faculty developing curricula and courses within an undergraduate com-
puter science program further context, or “fertile ground”, for understanding
the current state of undergraduate computer science education, as represented
by how other universities are approaching curricular recommendations. Ad-
ditionally, this context can be used as additional input into the development
of the next curricular recommendations, which at the time of this writing are
identified as CS’202X[5]. The description of the Core Tier-1, Tier-2, and Elec-
tive topics in CS’13 states that curricular committees are well aware of “the
ever increasing pressure to grow the core ... and impossibility of doing so
within the short-time-frame of an undergraduate degree”[4]. Consequently, an
understanding of how universities are addressing requirements can be helpful
and utilized, as needed, by university and international curricular committees.
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Towards this end, the remainder of this article presents a 2014 to 2021
longitudinal study of the courses and credit hours required by various Bachelor
of Science in Computer Science (BSCS) programs within the United States. An
analysis of changes over the length of this study is also presented. Specifically,
the longitudinal nature of the study makes it possible to test a null hypothesis
that assumes the average credit hours required to graduate from a BSCS degree
hasn’t changed. Furthermore, the data allows testing hypothesized requirement
changes in any of the 15 courses from the 2014 study. It would be expected
that historically required courses, such as Operating Systems, are required at
the same levels, but newer courses, such as Web Development, are increasing
(i.e. required by more BSCS programs in 2021 than in 2014).

2 Background

In 2014, a document analysis survey of the course and credit hours required by
388 BSCS programs in the United States (U.S.) was conducted[7]1. Specifically,
credit hour requirements for required and elective computer science courses was
collected. These credit hours did not include required non-computing courses,
such as mathematics, natural sciences, or undergraduate core requirements.
Additionally, information as to whether 15 different computing courses were
required to complete the BSCS degree was also collected. These courses in-
cluded those identified as being part of an initial sequence, beginning with a
CS0 or CS1 type course and ending with a CS2 or CS3 course. Additional fre-
quently occurring undergraduate computer science courses were also included
in the survey. Likewise, information on required Discrete Structures/Mathe-
matics course requirements was also collected, but not included as part of the
required computer science course credits (i.e. they were treated as a mathe-
matics course despite which department offered the course). Relevant results
of this analysis are presented later in this article, as part of a comparison be-
tween the previous 2014 and the current 2021 survey. The 2014 survey was
motivated by the growing body of knowledge in computer science and presented
ten design patterns used by BSCS programs to handle this growth within the
fixed time constraints associated with completing a degree. These patterns
included, for example, combining the topics from two courses into one, such as
Web and Database Development, creating elective specializations, such as The-
ory versus Security concentration, and spawning new degrees, such as Software
Engineering.

1Document analysis is a research procedure for reviewing or evaluating documents[8]
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3 Methodology

In May 2021, curricular course and credit hour data was collected via a doc-
ument analysis survey[8] of the degree requirements for BSCS programs, as
specified in 380 (N=380) university catalogs.

3.1 Sample Population

The BSCS programs selected for analysis in 2021 correspond to those ana-
lyzed in a the previous 2014 survey[7]. In both surveys, all computer science
programs in the U.S. accredited by the Computing Commission of the Accred-
itation Board for Engineering and Technology (ABET) in 2014 were selected.
The U.S. Institute of Educational Science Universities (IESU) list was also
used to select additional computer science programs by including in the sam-
ple every state university with a name, such as, “The University of Arkansas”,
“Arkansas State University”, and “Arkansas Technical A&M University”. Fi-
nally, additional public and private programs were randomly selected from the
IESU list for inclusion in the sample. The reduced size of the current survey
(N=380 vs. N=388) reflects the fact that several universities switched from
offering a BSCS degree to other computing degrees including a Bachelor of Arts
in Computer Science or Software Engineering, which are not included in the
study, or universities that no longer offer a BSCS degree. Also, two universities
merged into a single university. The sample is also limited to those universities
whose catalogs can be found online. In the 2021 survey, approximately eight
BSCS programs were included per state (µ=7.73, σ=4.56).

3.2 Procedure

For each BSCS program in the sample population, the university’s published
online catalog was used to determine the credit hours for required and elec-
tive computer science courses. As the credit hours in this article are based
on a semester system, the reported credit hours for universities on a quarter
system were converted to semester hours by using the common practice of div-
ing by 1.5 to convert, for example, a 180 quarterly credit hour requirement
to 120 semester-based hours[10]. The computer science credit hours include
computing-focused courses, even if offered by another department. For exam-
ple, a required Database course offered by a different Computer Information
System (CIS) department is included as a computer science course. Required
writing courses were not included in the credit hours, unless they were specifi-
cally offered by the computing department granting the degree. Additionally,
Discrete Structure/Mathematics courses designated as a computer course were
counted as mathematical credits. Credit hours associated with required courses
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focused on social, ethics, or legal issues, Knowledge Area Social Issues and
Professional Practice (SP) in CS’13, were only included as computer science
credit hours, when offered by the same computing department granting the
BSCS degree. Finally, a handful of BSCS programs have switched from using
any non-required computing course as an elective to requiring specific comput-
ing courses as part of a required concentration (i.e. random elective courses
cannot be mixed). These required concentration credit hours were included in
the required hours, as opposed to in the elective hours.

Next, in order to determine the portion (percentage) of specific courses
required to satisfy a BSCS degree, a tally of each required computing course
within a degree was also kept. As listed in Table 2, tallies were collected for
the fifteen courses reported in the 2014 survey. Generally, the names of courses
were used to distinguish them; though, course descriptions were used when a
course name could not be used to determine its topical matter for classification.
The following distinctions were used when collecting the course tallies:

• CS0 - a course was only considered to be a CS0 course, if it was a pre-
requisite of a subsequent CS1 programming course.

• CS3 - a course was only considered to be a CS3 course, if it immediately
followed a CS2 course and was followed by a subsequent advanced Al-
gorithms and Analysis or advanced Data Structures course later in the
curriculum. Hence, if a program only contained a single non-CS2 data
structures and algorithms course, it was not classified as a CS3 course,
but instead, as an Algorithms and Analysis course.

• Software Engineering - capstone and senior projects that specifically in-
cluded “software engineering” in the course title or software engineering
outcomes in the course description were included in the Software Engi-
neering tally. However, the credit hours were not duplicated in the tallies
(i.e, a six-credit SE course counted as a single course in the required per-
centages, but as six credits in the required computing credit hours).

• Computation Theory - formal language, automaton, or theory courses
were only included as a Computation Theory course, if the they addressed
Turing Machines and decidability results, such as the halting problem.

• SP - social, ethical, and legal focused courses were included in the tally,
as long as they were specific to computing and technology, even if offered
by a Philosophy department (i.e. they were not included, if they were
part of a required core education general ethics course).

• Concentrations - while elective concentrations were included as required
credit hours, the courses in these concentrations were not included as
required courses in the percentage tallies since a student could select a
different concentration with a different set of required courses (hence,
specific courses within a required concentration are, in fact, elective) .
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4 Results

This section presents the results of the 2021 survey. To facilitate comparison,
certain results from the 2014 survey are also reproduced in this section.

4.1 Credit Hours

As shown in Table 1, the average number of required, elective, and total com-
puter science credit hours increased between the 2014 and the 2021 surveys.

Table 1: Average Required Computer Science Credit Hours

Year Required Elective Total
2013 36.88 11.14 47.91
2021 39.63 11.59 50.92

Three independent sample t-tests were conducted to compare the average,
M, number of required, elective, and total computer science credit hours be-
tween the 2014 and 2021 surveys (i.e., a null hypothesis ofH0 :M2021 =M2014).

1. There was a significant difference (increase) in the average number of
require CS credit hours for the 2014 (M=36.99, SD=8.25) and 2021
(M=39.64, SD=10.71) surveys t(766)=4.01, p<.001.

2. There was no significant difference in the elective CS credit hours for
the 2014 (M=11.14, SD=6.10) and 2021 (M=11.59, SD=7.4) surveys
t(766)=0.92, p=.36.

3. There was a significant difference (increase) in the total number of CS
credit hours for the 2014 (M=47.91, SD=8.79) and 2021 (M=50.92,
SD=9.93) surveys t(766)=4.45, p<.001.

These results suggest that the the number of required computer science
focused credit hours required to satisfy a BSCS degree has increased during
the period from 2014 to 2021, as a result of required computing courses.

4.2 Required Course Percentages

Table 2 give the percentage of courses, P, required by BSCS degrees in the 2021
survey. For comparison, Table 2 also gives the percentage of courses required
by BSCS degrees in the 2014 survey (the bold font is explained below).

For each of the courses appearing in the 2014 and 2021 samples (Table 2), a
two-population proportion z -test was conducted to compare the percentage of
BSCS programs requiring a specific course between the 2014 and 2021 surveys
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Table 2: Proportion of Required CS Course Comparison

Course 2014 2021 Course 2014 2021
CS0 .16 .16 Prog. Languages .63 .69
CS1 .99 .99 Comp. Theory .46 .40
CS2 .99 .99 Database .36 .39

CS3 Data Structs. .65 .46 Networking .25 .32
Alg. Analysis .61 .86 Web .10 .09
Computer Arch. .83 .86 AI .06 .07
Operating Sys. .78 .76 HCI/UI .04 .02
Software Eng. .64 .73

with the null hypothesis (H0 : P2021 = P2014). The following courses were
found to have significant differences at the p = .001 and .01 levels and a slight
significance at the .05 level (indicated with bold font in Table 2):

1. There was a significant difference (decrease) in the percentage of required
CS3 courses for the 2014 (N=61, P=65%) and 2021 (N=179, P=46%)
surveys z=4.98, p<.001.

2. There was a significant difference (increase) in the percentage of required
Algorithms and Analysis courses for the 2014 (N=238, P=61%) and 2021
(N=328, P=86%) surveys z=-7.86, p<.001.

3. There was a significant difference (increase) in the percentage of required
Software Engineering courses for the 2014 (N=250, P=64%) and 2021
(N=279, P=73%) surveys z=-2.69, p<.01.

4. There was a significant difference (increase) in the percentage of re-
quired Networking focused courses for the 2014 (N=98, P=25%) and
2021 (N=128, P=32%) surveys z=-2.56, p<.05.

While not statistically significant at the p<.05 level, the Programming Lan-
guages course percentage showed a strong trending increase and the Computa-
tion Theory course a slight trending decrease. The specific results are:

1. There was a strong trending difference (increase) in the percentage of
required Programming Languages courses for the 2014 (N=245, P=63%)
and 2021 (N=264, P=69%) surveys z=8.17, p=.06.

2. There was a slight trending difference (decrease) in the percentage of
required Computation Theory courses for the 2014 (N=177, P=46%)
and 2021 (N=151, P=40%) surveys z=1.65, p=.09.

No significant differences were found for the other nine courses in Table 2,
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5 Discussion

The availability of course names and descriptions in online university catalogs
facilitates the type of document analysis survey presented in this article. The
historical nature of course names, along with their descriptions, provides a
strong indication of the topics taught within a particular course, which allows
a reasonable understanding of the computing material that computer science
students are exposed to (on average) in their BSCS degree. Though requiring
several weeks of data collection, this document analysis approach balances the
additional effort that would be required to gather more in-depth topical infor-
mation from course syllabi, which are not readily available on the internet. It
also trades off against an approach using survey requests to individual depart-
ments, where response rates less than the close to 100% of catalog availability
would be expected. Despite certain limitations in the survey procedures (see
below), the longitudinal data provides a means to evaluate the evolution of
BSCS degree requirements over the seven period of the study. Consequently,
the credit hour averages and percentages of the fifteen courses required to
satisfy the BSCS degree requirements provides an informative view into how
computing departments are actually addressing the evolving curricular require-
ments associated with the walk via the courses they require, the talk.

As suggested by the survey results, the number of computing courses needed
to satisfy a BSCS degree has increased by one three-credit computing course
over the seven-year period from 2014 to 2021. Furthermore, this increase re-
sulted from the addition of a named, required computing course specified by
the program (instead of an increase in an elective courses that may be selected
by a student). This increase suggests that departments may be responding to
the increasing body of computer science knowledge by presenting additional
curricular material as a new course. Given the premise of the 2014 study,
which assumed a fixed number of credit hours, this result is somewhat surpris-
ing since it suggests a simpler design pattern than those previously presented.
Namely, an increase in coverage of material, as opposed to, for example, adding
material to existing courses. While this type of increase is a natural way to
handle such an increasing body of knowledge problem, it is important to realize
that every credit hour increase within a major results in an equivalent decrease
elsewhere in the degree since university credit hours tend to remain fixed or
are decreasing[12].

Although the course comparisons given in Table 2 show that decreased re-
quirements occurred in only four required courses, of which one was significant
and one trending, there does not appear to be a single course or two that has
contributed to the three-credit hour increase in required credits. Instead, the
evidence suggests that various courses added by different programs appear to
be contributing to this increase. Such a spread of increase across courses can
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be accounted for by observing that various institutions are at different initial
starting places for courses that have not been part of the historical curricular
recommendations, such Operating Systems.

Furthermore, the significant decrease in the percentage of required CS3
focused data structures courses, in conjunction with the significant increase
in Algorithms and Analysis courses, suggests faculty believe that intermedi-
ate and advanced data structures and algorithms including intermediate and
advanced complexity analysis, where ”intermediatiate” implies beyond arrays
and linked lists, are sufficiently covered by two courses beyond the introduc-
tory CS1 course, instead of three. More specifically, by coverage of material
in the CS2-Data Structures and Algorithms and Complexity courses. Anecdo-
tally, this is the approach the author’s department has moved to, where data
structures and elementary complexity analysis are covered in the CS2 Data
Structures course and intermediate and advanced algorithms and complexity
analysis in a subsequent Algorithms and Analysis course. For example, topics
such as the Master’s Theorem and Big-Omega (vs. Big-O) in the advanced
course.

It is further hypothesized that the significant increase in required Software
Engineering courses result from an ongoing shift away from the more theo-
retical focus of computer science in the past to a practical ability of students
to develop software applications. Evidence for this hypothesis is further sup-
ported by the decrease trend in the percentage of BSCS degrees requiring a
Computation Theory focused course. During the data collection, it was found
that many programs have a concentration theory track that allows students
to take, for example, either an advanced algorithms or computation theory
course, or even courses such as security, whose topics are completely different,
even if theoretical in nature.

The recent shift in the Computing Commission of ABET curricular cri-
teria to require “a major project that requires integration and application of
knowledge and skills acquired in earlier course work”[1] may also be contribut-
ing to the increased percentages in Software Engineering courses since many
required capstone and senior project courses were found to include software
engineering in the course name or software engineering topics in the course
description. A similar shift in ABET criteria may also be contributing to the
increase in Networking courses since "exposure to networking and communica-
tion ... and parallel and distributed processing" are now also required by the
ABET criteria[1]. It would be interesting to explore in future research how
much the ABET accreditation criteria are contributing to changes in degree
requirements, when compared to CS’13 recommendations and non-accredited
program requirements.
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The lack of increases in Web and AI courses is somewhat surprising since
the percentage of programs requiring such courses remains low with no increase
as a required course observed. This data suggests these courses are still being
treated as elective courses. This is especially true for the Web-focused courses,
which represent a relatively new CS area, when compared to the traditional
courses of CS1, CS2, Computer Architecture, and Operating Systems, which
date back to the inception of CS curricular recommendations[3].

There are three course types for which credit hour information, but no tally
information, was collected (an unfortunate oversight by the author). The first
are introductory type CS0 courses that are not a prerequisite of a subsequent
CS1 course (prerequisite CS0 courses were tallied). The second are Digital
and Boolean Logic focused courses and the final type are systems programming
type courses. It is believe these courses are required by less than 10% of all
programs. Clearly, insights provided by the survey are restricted by the course
tallies collected. While the longitudinal nature of the current 2021 study was
restricted by the courses originally examined in the 2014 study, future surveys
should categorize and tally all courses required by a BSCS degree.

Future research could also attempt to further discriminate the types of
courses used to satisfy a degree by categorizing similar programs. For example,
comparing degrees that require a CS0 or CS3 course against those that do
not. It would also be possible to compare external curricular influences, such
as, whether the program is ABET accredited versus those programs that are
not. Purely external criteria could also be used to compare programs, such as,
whether a granting university is private or public. The current data could also
be used to determine what courses were added/deleted by a specific program
since the non-averaged raw-data for each program contains this information.

It is hoped that the actual course offerings and longitudinal data provided
in this article, the walk, along with available curricular recommendations, the
talk, helps to provide better insight into understanding what constituents a
computer science education and how universities are handling this understand-
ing. Such insight can also contribute to, and further spur, additional conver-
sations and debate as to the direction of computer science education.
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Abstract
Over the last five decades, with numerous advances in medicine and

changes in patient payment models, the nursing profession has evolved.
We analyzed 26,705 abstracts from three different nursing journals that
spanned five decades, including the 1970s, the 1980s, the 1990s, the
2000s, and the 2010s. We extracted the research topics from the ab-
stracts and aggregated them by decade. We compared research topics
by decade and looked for dependencies between decades. We also looked
for common research topics that spanned all five decades. With nursing
research increasing in sophistication and quality, we looked for a greater
focus on research within the journals. Finally, we looked for increasing
coverage of nursing education in the research. We found that any decade
of research topics was most like the following decade of topics. We also
found a common core of topics that were shared across all five decades
that included topics such as nurses, patients, diseases, injuries, and med-
ical providers. Finally, we found a growing trend for research-related
topics in the later decades and a declining trend for topics related to
continuing education, education degrees, and education credit.
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1 Introduction

In 2020, we celebrated the 200th year anniversary of the birth of Florence
Nightingale. The Nursing profession has changed a lot over the last five
decades. To work in hospitals, nurses are now required to get more educa-
tion than ever. Where licensed practical nurses (LPN) or licensed vocational
nurses (LVN) worked in the past, registered nurses (RNs) with a Bachelor of
Science in Nursing degree are now required. More opportunities have opened
for advanced practice registered nurses over the decades as well. In 1965, the
first formal graduate certificate for nurse practitioners was created[9, 3]. In
1971, it was recommended that nurse practitioners be able to work as primary
care providers[5]. In 2012, discussions between national certifying bodies, state
boards of nursing, and accreditation agencies began to address the possibility
of requiring a Doctor of Nursing Practice (DNP) degree as the minimum re-
quirement for NP licensure.

We propose analyzing a sample of nursing research abstracts from the last
five decades, including abstracts from the 1970s, 1980s, 1990s, 2000s, and 2010s.
We will extract common nouns from the abstracts and combine them into
categories or topics by decade. From there, we will analyze the changes in
topics researched by decade. We will start with a brief literature review and
then list our research questions. We will then discuss how our analysis was done
in the methodology section. Finally, we will share the results of our analysis
and make some conclusions.

2 Literature Review

Over the years, there have been several papers that looked at topics or trends in
nursing research. Moody et al. analyzed nursing research specifically between
the years 1977-1986. They found an increased use of sophisticated research
methods and an increasing use of conceptual models[8]. In 2000, Choi, Song et
al. examined research published in the Journal of Korean Academy of Nurs-
ing for 30 years. They analyzed many research-related areas including who
conducted the research, who were the research subjects, what were the main
themes, to what degree were empirical research methods used and how common
was qualitative research. They found a definite methodological development
over the time, but a lack of theory development. In 2020, Im, Sakashita et al.
identified six themes in nursing research across five countries. The themes were
demographic alterations, increasing diversities and globalization, technology in-
novation, individualized or personal care and population health initiatives and
health policies and regulations, and nursing workforce changes[4].

Compared to what we reviewed in the literature, our research will span a
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greater time frame and include more abstracts in the analysis. Different from
other research, we will limit our analysis to research topics only and not look
at methodologies or research subjects.

3 Research Questions

In looking at the research topics from the five decades, we propose the following
four research questions:

1. Do topics trend over decades with adjacent decades having more topic
similarities or are decades mostly topic independent?

2. What are the common topics across all decades?
3. Choi, Song et al. found an increase in the quality of nursing research over

30 years they studied[2]. Has there been an increase in research topics
related to the research process?

4. As nurses have been required to get more education, has there been an
increase in research topics related to nursing education?

4 Methodology

To conduct our topic research, we first identified nursing journals with a long
publication history that continued to the present. Next, we accessed the
PubMed abstracts for all the published abstracts from the selected journals.
We then extracted all the topics from each research abstract and aggregate the
topics by decade. Finally, we compared the topics between decades to answer
our research questions.

4.1 Selecting Journals

There are some great resources for identifying nursing-related research. The
Nursing and Allied Heath Resources Section (NAHRS) of the Medical Library
Association created a selected list of nursing journals to assist librarians[10].
This list of 212 journals is extensive, but includes many specialized journals
that are focused on specific topics such as plastic surgery, mental health, ortho-
pedic nursing, pain management, vascular nursing, etc. Such focused research
would make combining topics from the different journals less meaningful. The
journals were also published from various countries, which would complicate
our analysis. Finally, many of the journals were not in publication during the
1970s or 1980s, which makes the analysis of five decades impossible.

In 2006, Allen and Levy in “Mapping the general literature of American
nursing” analyzed the core literature cited by “general” or popular United
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States nursing journals. The three journals they used were American Jour-
nal of Nursing (AJN), Nursing, and RN[1]. In 1987, Skinner and Miller noted
1987 circulation numbers of 511,600 for Nursing, 330,428 for AJN, and 275,000
for RN. In their study, the three journals were the most commonly read jour-
nals by staff members at two different hospitals[11]. All three journals also had
a substantial number of abstracts in the PubMed database. Of the nursing
journals, AJN and Nursing had the fourth and fifth most abstracts in PubMed
and RN had the sixteenth most out of 411 different nursing journals.

The three journals also had abstracts that mostly spanned the five decades.
RN did not have anything for the decade of 2010. Table 1 shows the number
of abstracts by decade for each of the three nursing journals. The journal RN
has the least representation with 5,489 abstracts. The decade with the fewest
abstracts overall is 1970-1979 with 4,447. The three journals together over the
five decades have a total of 26,705 abstracts on PubMed.

Table 1: Nursing Abstracts by Decade and Journal

Decade Nursing RN AJN Total
2010-2019 1,920 0 2,803 4,723
2000-2009 2,304 1,149 2,457 5,910
1990-1999 2,662 1,470 2,104 6,236
1980-1989 1,852 1,582 1,955 5,389
1970-1979 857 1,288 2,302 4,447
Total 9,595 5,489 11,621 26,705

4.2 Downloading PubMed Abstracts

The authors downloaded 1,062 baseline files and 53 update files from the
PubMed FTP site. The files were gzipped XML files. The authors wrote a
program in Python to decompress the gzipped files, which were around 35 MB
a piece, process the XML in the files, and insert the data into a SQL Server
database.

Each compressed XML file contained around 30,000 PubMed citations. In-
stead of inserting all attributes of each citation into the database, the follow-
ing nine attributes were extracted from each citation and added to a MS SQL
Server table: ISOJournalAbbrev, abstractText, abstractTitle, authors, coun-
try, fileSource, journalTitle, language, and pubYear. With all the abstracts
in MS SQL Server, the authors could use SQL to query specific journals over
specific years.
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4.3 Reading Abstracts and Extracting Topics

The authors used SQL to query the table of abstracts and extract the PMIDs
that matched those from each of the five decades. The PMIDs were kept in
five different text files. To process the abstracts for a particular decade, the
text file was read, and the database was queried for each abstract in the list.

Each abstract was processed using our content tagging algorithm[7]. The
tagging process uses an extensive dictionary of over two million word-tag en-
tries. This tag dictionary has been augmented by previous research[6]. After
tagging, the text is processed several times more to combine tags into topic cat-
egories. The topic categories are part of a large category hierarchy. There are
over 5,000 different noun categories in the hierarchy into which terms (words
or phrases) can be assigned.

For each decade, the authors extracted the noun topics from the abstracts.
There were many different topics from each decade and the frequency distri-
bution had a very long tail. To focus on the main topics for each decade, the
authors focused just on the topics that accounted for 80 percent of the nouns
from the abstracts. Table 2 shows the number of topics extracted from each
decade and the number that was included in the analysis. For example, in the
decade of 1970-1979, a total of 206 topics accounted for 80.47 percent of all
the nouns. From that decade a total of 888 topics were extracted from the
abstracts.

Table 2: Total Topics Extracted by Decade

Totals 1970s 1980s 1990s 2000s 2010s
Total topics extracted 888 914 950 1105 1184
Topics to analyze 206 212 227 264 229
Percent of total nouns 80.5% 80.2% 80.2% 80.2% 80.4%

4.4 Performing Topic Analysis

To answer our first research question about whether there is any topic depen-
dency between decades or whether each topic is topically independent, we will
utilize a variation of the information retrieval formula term frequency multi-
plied by inverse document frequency: tf x idf. For this calculation, we will
use the categories that accounted for 80 percent of the nouns in the abstracts.
Furthermore, we will not include the noun topics that are included in every
decade, such as the NURSE topic and PATIENT topic. In total, there are 259
topics across the five decades excluding those that appear in every decade. If
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two decades have an overlapping topic, then the term frequency will be 1 mul-
tiplied by the inverse of the total number of decades that contain that topic.
For example, the topic of ROUNDS is only contained in the 1970s decade and
the 1980s decade. The ROUNDS topic will contribute .5 to the similarity of the
decades given the calculation of 1 x ½. The document frequency is 2 because
the ROUNDS topic only occurs in two different decades.

To address our second research question, we will look at the top 10 topics
from every decade that are shared across all five decades within the top 50
percent of nouns. In other words, we want to focus on topics that are very
common within a decade, but also very common across decades. For four
decades the top 10 topics are shared across all the decades. For the decade
of 2010, there are two topics in the top 10 that are not shared across all the
decades, RESEARCH and LITERATURE.

For research question three, we will analyze the trends related to increasing
focus on topics related to the research process across the five decades. The
topic tags we will focus on include the following topics: RESEARCH, LIT-
ERATURE, QUESTIONNAIRE, INTERVIEW, AUTHOR, PUBLICATION,
and DATA COLLECTION.

For research question four, we will analyze the research trends related to
nursing education, both initial degrees and continuing education. The topic
tags we will focus on include the following topics: EDUCATION, SCHOOL,
CONTINUING EDUCATION, NURSING EDUCATION, EDUCATION DE-
GREE, and EDUCATION CREDIT.

5 Results

The results of our similarity analysis between decades of topics provided some
evidence of dependence between decades. For example, for any decade, the
most similar decade was the decade immediately following it. Table 3 shows

Table 3: Most Closely Matching Decades by Topics

Decade Most Similar Decade Similarity Score
1970s 1980s 14.53
1980s 1990s 17.03
1990s 2000s 20.70
2000s 2010s 24.12
2010s 2000s 24.12

the most similar decade to each of the five decades and their corresponding
similarity scores.
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Of the top five highest similarity scores, all were between adjacent decades
except for one. The decade of 2000s had a similarity score of 15.37 with the
1980s decade. This high similarity score likely results in part because, as shown
in Table 2, the decade had more topics in it than any other (a total of 264), at
least 35 more topics than the next closest decade.

The top 10 topics from each decade that are shared across all five decades
within the top 50 percent of all nouns are shown below, ordered by number of
occurrences. There are 18 total topics that make up the top 10 topics from
each decade. The top topic across 4 of the 5 decades is PATIENT, followed by
NURSE, ROLE, DISEASE, AILMENT, and then NURSING.

• PATIENT: Patient(s), cancer patients, difficult patients, delicate patient,
cardiac patient, elderly patient(s)

• NURSE: Nurse(s), RN, R.N., psychiatric nurse, clinical nurse, assertive
nurse, registered nurses

• ROLE: Elderly, diabetic, student(s), specialist, assistants, graduates,
consultant, advocate, expert, colleague, employee, victim, supervisor

• NURSING: Nursing, nursing care, nursing practice, ambulatory nursing,
orthopedic nursing, primary nursing

• DISEASE & AIDS: Diabetes, leukemia, rheumatoid arthritis, scoliosis,
Hodgkin’s disease, cerebral palsy, Parkinson’s disease, emphysema, car-
diovascular disease, renal disease, COPD

• AILMENT: Stress, dysrhythmia, frostbite, hypertensive, decubitus ul-
cers, hyperalimentation, cardiac defects, hydrocephalus, psoriasis tox-
emia, glaucoma, dermatitis, kidney stones, diarrhea, diabetic coma, ane-
mias, headache(s)

• PERSON: Clara Maass, Billy, A. Frank, Peter, Katie, Michael, Karen,
Lisa, Jill, Jim, Janet, Willie, Harry, George, Brian

• SURGERY: Surgery, ostomy, cardiac surgery, total hip replacement, tra-
cheostomy, open-heart surgery, mastectomy, vasectomy, craniotomy, coro-
nary bypass, amputation

• TREAT: Drug therapy, treatment, hemodialysis, blood therapy, dialy-
sis, immunotherapy, chemotherapy, radiation therapy, therapeutic touch,
peritoneal dialysis

• CHILD: Child, children, kids, troubled child, foster child, hyperactive
child

• PROBLEM: Problem(s), crisis, trouble, pitfalls, dilemma(s)
• CARE: Care, burn care, respite care, trach care, hospice care, cataract
care, physical care, post-op care, private care, self-care, preventive

• INJURY: Burn(s), injuries, pressure sores, wound(s), trauma, spinal cord
injury, gunshot wounds, draining wounds

• INSTRUCT: Instruction, teaching, tip(s), lesson(s), lectures, order(s)
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• MEDROLE: Physician, practitioner, pharmacist, caregiver(s), nutrition-
ist, doctor(s), clinician, surgeon, therapist, psychiatrist, midwife, epi-
demiologist, pediatrician(s), anesthesiologist

• MEDICINE: Pill, medicine, geriatric medications, penicillin, nitroglyc-
erin, prescription, ketamine, Levodopa, Rx

• PAIN: Pain, suffering, intractable pain, low back pain, chronic pain, leg
pain severe pain, chest pain, menstrual discomfort, lumbar aches

• GROUPING: Series, group(s), focus group(s), support group(s), state
nursing groups, activity groups

From the above list, there is insight into what nurses do based on the top topics
in the research. Nurses help ailing patients that are in pain with ailments,
diseases, and injuries. Nurses provide all kinds of care and treatment to the
patients and do so in cooperation with other medical professionals such as
doctors, pharmacists, and other practitioners. In addition, nurses administer
all kinds of medicine and give instructions to patients in how to care for their
medical conditions.

To address the third research question, the authors looked at the follow-
ing seven topics: RESEARCH, LITERATURE, QUESTIONNAIRE, INTER-
VIEW, AUTHOR, PUBLICATION, and DATA COLLECTION. Table 4 shows
whether the topics were within the top 80 percent of noun occurrences in the
five decades.

Table 4: Research-Related Topics Over the Decades

Topic 1970s 1980s 1990s 2000s 2010s
RESEARCH 1 1 1 1 1
LITERATURE 0 0 0 1 1
QUESTIONNAIRE 1 0 1 1 1
INTERVIEW 0 0 1 1 1
AUTHOR 0 0 0 1 1
PUBLICATION 0 0 0 1 1
DATA COLLECTION 0 0 0 0 1

While the topic of RESEARCH is covered in all five decades, the preva-
lence of other research-related topics such as LITERATURE, INTERVIEW,
AUTHOR, and PUBLICATION really don’t show up until the later decades.
There is some evidence that there is an increasing focus on research in the
nursing journals we analyzed.

To address the fourth research question, the authors looked at the following
six topics: EDUCATION, SCHOOL, CONTINUING EDUCATION, NURS-
ING EDUCATION, EDUCATION DEGREE, and EDUCATION CREDIT.
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Table 5 shows whether the topics were within the top 80 percent of noun
occurrences in the five decades. The results are a bit mixed in the education-
related topic area. While the general topic of education is consistent across
the decades, it does include things like “sex education” and “diabetes educa-
tion”. On the other hand, specific references to continuing education, education
degree and education credit seem to be decreasing. Perhaps with the educa-
tional standards established early, the need to continually address the topics
decreased. There is some evidence that the focus on nursing degrees and school
credit have gone down over the decades in the journals we analyzed.

Table 5: Education-Related Topics Over the Decades

Topic 1970s 1980s 1990s 2000s 2010s
EDUCATION 1 0 1 1 1
SCHOOL 1 0 0 1 1
CONTINUING EDUCATION 1 1 0 0 0
NURSING EDUCATION 1 0 0 0 1
EDUCATION DEGREE 1 1 0 0 0
EDUCATION CREDIT 0 1 0 0 0

6 Conclusions

We analyzed 26,705 abstracts from three different American-based nursing
journals that spanned five decades. We found that topics from a decade were
most like the topics from the decade that followed. We also found a strong core
of common nursing topics across all five decades that depicted well the concern
of nurses. We found some evidence that the focus on research topics is in-
creasing over the decades and the focus on educational degrees and continuing
education in research topics is decreasing.

In future research, we want to analyze how topics are related through co-
occurrence algorithms and display the relationships in a graph to visualize the
relationships.
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Abstract

School counselors are expected to perform a wide range of tasks to
improve student outcomes but are oftentimes limited in the resources
needed to perform these tasks. The lack of resources, including time and
the knowledge needed to complete tasks effectively, may contribute to
unnecessary stress and possible burnout. This research uses a modified
systematic literature review process to explore knowledge sharing tech-
nology in school counseling and presents a proposed model for future
research adapted from Alavi’s Model of Knowledge Transfer among Indi-
viduals in a Group. The findings of this study outline the current state
of research and are relevant to research and practice.

1 Introduction
The roles and responsibilities of the modern school counselor are vast and
extensive. The services they provide range from ensuring students are college
and career ready to support their social and emotional well-being. In addition,
school counselors use data to promote equity in the services they offer students
and strive to improve learning for every student in the school population[23].

Given the quantity and significance of these responsibilities, it is not sur-
prising that many school counselors experience stress, which can lead to job dis-
satisfaction and burnout[11]. Many school counselors who choose to not return
to their jobs report not only more stress but also report a lack of resources[10].
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a fee and/or specific permission.

61



Because it is unlikely that the demands of school counselors will decrease, Mc-
Carthy[10] proposes that increasing resources may reduce the stress of school
counselors.

According to the Knowledge-Based Perspective of the Firm Theory, knowl-
edge is the most strategically significant resource of the firm. Knowledge is
information possessed in the mind of individuals. It is personalized informa-
tion related to facts, procedures, concepts, interpretations, ideas, observations,
and judgments[2]. Knowledge sharing occurs when individuals are willing and
able to collaborate with others[6].

Although educators are seeking to understand how they can be more effec-
tive in collecting, disseminating, sharing information, and seeking better ways
to transform knowledge into effective decision-making[17], little research has
been done on knowledge sharing in education, specifically in school counseling.
This literature review will explore this topic and answer the call from infor-
mation systems academics for further exploration and the barriers impeding
knowledge sharing[6].

2 Methods
In this paper, a simplified literature review process has been adapted from
Okoli[15] to help extract literature from these databases so that only the most
relevant literature is used and to ensure all identified published research is rele-
vant to the research question, “How can knowledge sharing in school counseling
be improved using technology?”

To help identify previous research on this topic the terms, “knowledge shar-
ing” with “school” “counseling” were used to find published peer-reviewed ar-
ticles within the last five years in the following databases: Google Scholar,
ProQuest, and ACM Digital Library. There were 110 articles identified in the
search process.

The protocol for the search is to identify published journal articles relating
to the research question using the above-mentioned key terms, as shown in
Figure 1. Publications that did not include these terms in the title, abstract
or subject/key terms were excluded from the results. Additionally, duplicate
articles were also excluded from the results. Eight published papers remained
for the final analysis of this literature review.

3 Results
Conducting a full textual analysis assists in appraising the quality of the pub-
lications as well as synthesizing the studies as proposed by Okoli[15]. The re-
maining articles revealed the recent research areas of knowledge sharing prac-
tices among school counselors. Simons[21] discussed theories and knowledge
sharing practices among school counselors drawing upon previous research[20]
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Figure 1: Extraction process to identify relevant publications

also examined this topic. Wilkes, Nobe, Clevenger, and Cross[10] described
how knowledge gaps impact counselors’ ability to offer guidance related to cer-
tain careers. These researchers propose a program to specifically address this
issue, with the first phase of the program focusing on knowledge sharing.

Social processes and communities have also been extensively researched.
Brayton[5] discussed perceptions of knowledge sharing in higher education,
finding social processes facilitated significant engagement in knowledge sharing
activities, and subsequent knowledge development. Additionally, Phusavat,
Delahunty, Kess, & Kropsu-Vehkapera[18] explained how educators become
more motivated by participating in communities that support knowledge shar-
ing.

Technology facilitating knowledge sharing practices has also been studied
and developed to support counselors in their responsibilities. StressMon[27]
is a stress and depression detection system that leverages single-attribution
location data sensed from the WiFi infrastructure. This technology can assist
counselors by improving awareness of mental health issues and provide better
workflow management. One of the major features of this system is the total
time spent on an activity and the number of times a user engaged in that
activity per day. Knowledge sharing is listed as a domain-specific workgroup
activity. LEAP[25] facilitates conversation and the exchange of knowledge
around a given topic with access to learning material. Users of this system
exhibit benefits of collaborative learning in terms of positive interdependence
on each other and the use of interpersonal skills.

Two other articles were identified in the search process, and while the con-
tent did not directly relate to school counselors, the results of the research
could indirectly inform future research. Shepherd and Cooper[19] explored the
factors influencing knowledge creation and knowledge sharing in a high ve-
locity, networked environment. Although the environment in this study was
not school counseling, the results may still pertain to school counseling, where
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counselors must be able to develop constructive and cooperative working rela-
tionships with others and maintain them over time[14]. Muro, Stickley, Muro,
Blanco, and Tsai[12] offered clarification and a description of simple shared re-
sources by providing shared personal experiences and exploring relevant issues
relating to the collaboration between schools. While this article also did not
directly relate to school counseling, the sharing of resources and collaboration
is essential to knowledge sharing.

4 Theoretical Development
It is clear from the review of the articles that more research is needed, specif-
ically to understand the role technology plays in knowledge sharing practices
amongst school counselors to reduce their stress. To guide future research en-
deavors, it is essential to have an understanding of pertinent theories relating
to knowledge sharing and the unique characteristics of the target population.

According to Lazarus and Folkman[8], when life demands are encountered, a
cognitive balancing act ensues, in which perceived demands are weighed against
the resources one has for coping with demands. In other words, stress results
from an imbalance of perceived demands and resources available. One of the
most abundant and important resources a school counselor has is knowledge.

The knowledge-based theory of the firm is an extension of the resource-
based theory of the firm[16] and focuses on problem-solving and knowledge
formation by continually discovering new knowledge or new solutions that come
from combinations of existing knowledge[13]. In this theory, managers choose
problems while identifying knowledge sets or existing technology that are po-
tentially useful in searching for solutions to that problem. This theory has
been useful in explaining how organizations can gain a competitive advantage
by effectively applying the existing knowledge to create new knowledge.

Creating this new knowledge requires knowledge transfer. Alvani[2] pro-
posed a framework to explain knowledge transfer. In this model, arrows repre-
sent the process of knowledge application, learning, or new knowledge creation
that occurs when individuals apply knowledge and observe the results. Trans-
fer of knowledge occurs at various levels, between individuals, from individuals
to explicit sources, from individuals and groups, across groups, and from the
group to the organization. Once individual A transfers knowledge to individual
B, individuals B’s knowledge processes may be triggered, leading to knowledge
creation. Individual B can then chose to apply the knowledge, consult with
other members, or record the knowledge.

Even though studies have shown the importance of knowledge sharing, of-
tentimes, knowledge sharing processes do not occur, and there is a lack of
research exploring these barriers[6]. Studies have shown, however, there is a
significant and positive association between knowledge sharing processes and
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information technology[1]. Azari and colleagues[3], found technology was one
of the independent predictors of knowledge sharing behavior, which may prove
problematic for school counselors.

While technology can assist in knowledge sharing practices among school
counselors, many are cautious of incorporating new technology within their
profession[23]. One possible explanation for this resistance is the lack of com-
fort and skill school counselors have learning and using technology[26, 22],
resulting in low levels of self-efficacy.

Self-efficacy[4] is a person’s belief in their ability to succeed in a particular
situation. Unless school counselors believe they can produce desired outcomes
by their actions, they have little incentive to act, or in this case, use technology.

Figure 2: Proposed model for future research adapted from Alavi (2001)

The model proposed in Figure 2 extends Alavi’s[2] framework by adding two
additional constructs, self-efficacy, and available technology, to increase knowl-
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edge transfer among school counselors. Although knowledge sharing may im-
prove school counselor’s stress levels, they may not participate in this beneficial
practice if the technology is not available or self-efficacy using the technology
is low. This model can guide future researchers in understanding knowledge
sharing practices in school counseling.

5 Evaluation

To evaluate the proposed model, researchers need to understand the role and
availability of technology to facilitate the knowledge sharing process in school
counseling, as well as counselors acceptance of the technology. While research
alludes to the idea that counselors have low self-efficacy when it comes to
technology, more can be done to understand why that is still the case and if it
impedes the knowledge sharing process. Future research questions may include
the following:

• How are counselors currently sharing knowledge?
• How can knowledge sharing reduce the stress of school counselors?
• What are the design principles needed for technology acceptance of school
counselors?

• What technology is available for school counselors to share knowledge?

6 Discussion & Conclusions

Knowledge is one of the most important resources a school counselor has to deal
with stress effectively. According to Pfeffers [7], individual success in organi-
zations is quite frequently a matter of working with and through other people,
and organizational success is often a function of how successfully individuals
can coordinate their activities.

However, despite the benefits of knowledge sharing, it is rarely implemented
in school counseling. This paper explores recent studies relating to knowledge
sharing in school counseling. Despite the amount of research, further studies
are needed to improve the knowledge sharing processes in this unique popula-
tion. In this paper, a review of previous literature was presented with areas for
future research identified, specifically research focusing on technology accep-
tance and availability. Using the extension of Alavi’s [2] Model of Knowledge
Transfer among Individuals in a Group presented in this paper can guide future
researchers in this endeavor and advance the discussion in the information sys-
tems community about the next generation of knowledge sharing technologies.
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Abstract

In response to COVID-19 pandemic measures, universities mitigated
the instruction delivery mode overnight. The transformation brings sev-
eral difficulties for faculty to teach and students to learn. This research
aims to present the different mitigation strategies in instruction deliv-
ery and identify the benefits and challenges of student learning in the
pandemic. The traditional instruction model is unsuitable in the pan-
demic. A-Zoom-enabled virtual classrooms are suitable as most students
are willing to attend classes from home for their safety. A survey data
with an 88.8% response rate is synthesized and categorized various bene-
fits and challenges of remote learning. Educators benefit from the results
on how to design and deliver their classes in the pandemic.

1 Introduction

Despite the advances in the technology and medical fields, human beings are
still vulnerable to an outbreak of novel pathogens. One such example is the
recent outburst of the coronavirus (SARS-CoV-2) that affected many people
worldwide. This health emergency crisis hit the educational institutions at
all levels, from pre-school to the post-graduation. The administrations offer
a wide variety of instruction modes, including the face-to-face and hybrid in-
struction delivery methods [7]. At a university level, the instruction mode
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selection depends on various factors such as class size, student classification
(freshmen, sophomore, junior, senior, graduate), and the nature of the class
(theory, hands-on programming, laboratory setting, tool-based). Instructors
must also accommodate students’ education needs in quarantine and isolation
due to infectious diseases’ vulnerability. Therefore, the transition is not easy
[13] and has several challenges for students to learn and educators to teach
and maintain student engagement [5, 15]. Also, there is no single mitigation
strategy that operates for the entire education system. It entirely depends on
the number of cases reported in that location and the local governments’ rules.

In the literature, researchers focused on general online learning and teach-
ing higher education issues [9, 11, 14, 18] and their impacts [6] on students.
However, there is a need to concentrate on the various modes of delivering
instruction to computer science students other than existing techniques. This
paper’s contribution is two-fold in reporting the survey results. (i) Students’
experiences in the pandemic, who enrolled in hands-on programming and tool-
based courses. (ii) Instructors’ experiences designing, developing, and teaching
those courses in the pandemic.

2 Related Work

Researchers presented their experiences and lessons learned in their online ped-
agogy of cybersecurity [1] introductory Computer Science [16], and software en-
gineering [10] courses when compared to traditional classroom pedagogy [2, 3].

Bai, Gao, and Goda [1] lessons learned from teaching cybersecurity classes,
pointed out that the students cannot perform their internships and are re-
placed that requirement with ‘jobs related skills’ course as a temporary ad-
justment. Also, challenges were raised in teaching networking labs, and they
were conducted in a segregated mode. Chhetri [4] in the study of community
college students, presented that students showed interest in remote learning
with benefits such as video conferencing and class recordings. At the same
time, they experience challenges with self-learning and staying on track of due
dates. However, assessments are another challenge for instructors to evaluate
students’ performance fairly. In their survey study, Motogna, Marcus, and
Molnar [10] administered the questionnaire to instructors worldwide. Their
results showed that the instructors’ efforts are increased due to the transfor-
mation of online learning. They also observed that there is a trend in reducing
the exams and growth in project-based evaluations. Seeling [16], in their in-
troductory programming classes, experienced that students’ participation has
reduced in completing the ZyBook examples for more difficult concepts.

Digital multimedia technology tools [12, 14] for video conferencing (Zoom,
Microsoft Teams, Google Meet, Cisco Webex) [18] and learning management
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systems (Canvas) [8] plays a significant role in this COVID-19 pandemic. The
transition from traditional education experiences to virtual environment [17]
has psychological [6] impact on the students. However, these studies lack the
specifics of the modes of instruction delivery methods remote teaching and
learning. This research address the modes of instruction delivery methods re-
mote teaching and learning in computer science courses and present the benefits
and challenges of students’ experiences.

3 Modes of Remote Instruction

At the beginning of the pandemic in March 2020, the university administration
provided options to adapt one of these instruction delivery modes to the faculty
as COVID-19 teaching mitigation strategies. The same methods are used in fall
2020. It is up to the instructors to choose the appropriate mitigation technique
for their classes. Overall, in all the mitigation strategies of instruction delivery,
students’ attendance policy is relaxed without class participation points, such
as surprise quizzes, bonus points for attending classes, etc.

• Alternating attendance – synchronous: Alternating attendance in which
students attend one day in-person and participate in the course remotely
using Zoom (or other technology) at the class time.

• Alternating attendance – asynchronous: Alternating attendance in which
students attend one day and participate in the course remotely using
Zoom (or other technology) within a time frame established by the in-
structor (asynchronous).

• Split sections: Divide one larger section into two. For example, split
sections would be taking one section of 50 students and changing it into
two sections of 25 students each. There would be no load change for
faculty.

• Multiple locations: Multiple locations would be taking a section of 50
students and having 25 students meet in one room and the other 25 in
another room, but at the same time. The faculty member can only be in
one place at a time and might Zoom to the other room or go back and
forth. Again, no-load change occurs.

• No change: Face-to-face delivery each day with face covering and main-
tain six feet social distancing. “No change” often meant a lenient atten-
dance policy and enabled Zoom during the class session. This effectively
looked a lot like alternating attendance – synchronous, but without struc-
tured alternating attendance.
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• Online: The online-only classes that were taught before the pandemic.
For other courses and zero credit hour labs to teach online, Provost’s
approval is necessary.

4 Research Method

The author administered a concise survey in two different classes — object-
oriented programming, and data visualization. The first course is hands-on
programming requires demonstration and execution of source code. Data vi-
sualization is a tool based course also requires demonstration for connecting
data sets, visualizing appropriate charts, and exporting the results.

Google forms and spreadsheets are used as survey instrument tools. The
survey is not part of any assignment, and below are the two simple survey
questions given to students. To avoid bias, the authors gave this survey after
students complete the instructor course evaluations. The response rate of the
survey is 88.8% (40 responded out of 45 students).

1. What are things that worked out well in the learning and teaching ma-
terials in the pandemic?

2. What are the things that can be improved in teaching the course in the
pandemic?

5 Results and Discussion

At the beginning of the fall semester, the authors adapted alternating atten-
dance – synchronous mitigation strategy. The students attended alternate days
for the first couple of weeks, and then, due to quarantine and isolation, stu-
dents started connecting through Zoom. Whenever students attend classes
in-person, the faculty member recorded the attendance and the student’s lo-
cation in the classroom for future contact tracing. As the semester moving
forward, more students are attending through Zoom. The following are the
changes for remote teaching compared to the traditional classroom pedagogy.

• Learning outcomes: The learning outcomes of the courses are not mod-
ified. The author did not alter or compromise the outcomes related to
communication and teamwork. However, there is an obvious modification
in assessing students.

• Assessments: All the replaced in-person classroom closed book exams
with take-home exams and increasing the number of assignments and
projects. As a result, the grading time has also increased.
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• Student engagement: The goal is that students gain a similar interactive
experience of in-person classroom participation. To achieve this, we in-
corporated threaded discussions, breakout sessions, and chats in Zoom.
Padlet is used to organize student’s interactions in affinity diagrams. We
also used in-class responsive software such as Poll Everywhere and Men-
timeter to grab students’ attention in remote teaching.

• Team Projects: The author helped divide tasks individually for each
team member and guided teams to finish their projects successfully. Fi-
nally, students recorded their presentations. Mentoring course projects
remotely takes a significant amount of time, which increases the faculty
workload.

• Delivering lectures: The author delivered lectures through Zoom in the
classroom with students who wanted to attend in-person classes. The tool
demonstrations and program executions were prerecorded and uploaded
to YouTube for student’s reference.

Table 1: Benefits and Challenges of Remote Learning

Benefits Challenges
• Online YouTube videos • Lack of resources
• Virtual Meetings • Assessments
• Motivation • Student engagement
• Collaboration • Keeping track of schedules
• Gaining new skills • Lack of introducing new topics
(writing and multimedia)

The survey data is synthesized using coding techniques in ground theory
[19] and presented the benefits and challenges of remote learning in a tabular
format in Table 1.

5.1 Benefits of Remote Learning

This subsection presents the instructor’s reflection on each benefit and a few
selected responses from each category’s survey data. The rationale for giving
these categories is that more than 50% of the students recognized these benefits.

1. Online YouTube videos: The prerecording of the demonstrations of var-
ious types of charts in Tableau/Excel1 and the executions of core Java2

1https://www.youtube.com/playlist?list=PLu3nilPxiKYEQLj2EmRciqX8KH095HOox
2https://www.youtube.com/playlist?list=PLu3nilPxiKYE5xT6OIuWYmpC9fQVE2ARO
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and Java Spring Boot3 programs helped students finish their assignments.
Those videos are uploaded to YouTube channel. Students can view them
at any time.

“The instructional YouTube helped a lot because they walked me through
each demo.” “The video examples/tutorials went well. Mainly because
I’m more of a visual learner, so that helps a lot.” “Watching the videos
and following along in Excel/Tableau.”

2. Virtual Meetings: Students recognized the importance of virtual Zoom
meetings and appreciated for conducting them.

“Virtual meetings and recorded sessions were good.”

3. Motivation: Interestingly, at least three student teams self-motivated for
team projects and completed their tasks in visualizing real-time data or
streaming data. Streaming data is the current topic and not covered in
the class in detail. The instructor role is to mentor the teams and assign
specific tasks to students.

“The best is the Data Visualization project. Myself, I have Improved,
implemented, and learned new skills(Kafka). Searched and explored new
possible solutions to complete the tasks.”

4. Collaboration: Virtual Zoom enabled sessions helped students to collab-
orate and finish their projects. Students observe that virtual team meet-
ings encouraged them to meet with team members and work together by
sharing screens.

“Working as a team for a project without even meeting teammates di-
rectly which was thought impossible became possible”

5. Gaining new skills: The learning outcomes related to communication is
not compromised in remote learning. Students are required to record
their presentation work and upload it to Canvas or YouTube. Students
recognize the importance of making and editing videos. Also, for learning
from the home environment, writing skills are essential to communicate
with others.

“I have learned a lot in this course. Even with few online meetings and
new learning methodology, the course was effective, and I have obtained
good amount of knowledge through this class. I have also learned to
communicate through mails which is very important in my future.”

“We have improved a lot in writing emails as most of the communication
went through emails. And the other thing that worked out well in this

3https://www.youtube.com/playlist?list=PLu3nilPxiKYE1W2-8jrP8_AAapRIrPub6
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pandemic is digitizing things. We familiarized with many tools related
to attend the meetings, etc.”

5.2 Challenges of Remote Learning

This subsection presents the instructor’s reflection on each challenge and a
few selected responses from each category’s survey data. The rationale for
giving these categories is that more than 50% of the students recognized these
challenges.

1. Lack of resources: A few students found it time-consuming to watch and
perform the executions as they do not have extra monitors other than
laptops. Some students face internet connection issues, as well.

“It is hard to watch videos and work simultaneously as we don’t have
dual monitors.”

2. Assessments: Due to the pandemic, we have replaced closed book exams
with increased assignments and take-home exams. A few students do not
want to do more projects; instead, they suggest having multiple-choice
tests.

“Different variety of assignments, the Excel and Tableau assignments were
fine, but I think maybe a couple more discussion assignments or multiple
choice assignments would help students understand the material better.”

3. Student engagement: To mimic in-person classroom engagement in re-
mote learning, instructors added threaded discussion assignments. Stu-
dents faced issues that a few students are not contributing significantly.

“Felt like it was a pretty straight forward class, but I guess discussions
were kind of awkward in my opinion. Mainly because once someone
already has answer the question with the exactly same answer that you
were going to say, it becomes either an I agree or finding some other way
to answer the discussion situation.”

“More in person Zoom classes to promote student engagement.”

4. Keeping track of schedules: It is a common challenge that students face
in traditional face-to-face classes. Students faced problems keeping track
of deadlines and due dates in the remote class setting. A majority of
students want to have flexible deadlines for their assignments.

“It would be helpful to know of all assignments ahead of time. It is hard
to keep track of the schedules and deadlines.”
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5. Lack of introducing new topics: Students expect the currently trending
topics or tools to be taught in classes. However, due to remote instruc-
tion, lecture materials for such topics are limited.

“More demo examples on sorting and collections frameworks”

“Some advanced techniques need to cover as part of the curriculum such
as drill-down and drill-up techniques etc.”

“Introduction to more tools other than PowerBI and Tableau”

6 Limitations

Students’ involvement in remote learning depends on various factors such as
previous learning experience, specific future anticipations from the course out-
comes, course design, delivery method, and availability of resources (textbooks,
hardware, software, etc.). A large extent of the survey to be conducted for sta-
tistically significant evidence. However, this research presents the preliminary
results of the impact of remote teaching and learning.

7 Conclusion

The benefits and challenges from the students’ learning experiences will help
the technology educators teach in unprecedented situations. The traditional
model of instruction and the mitigation techniques presented in this article are
not suitable. The alternating attendance synchronous style turned into Zoom
enabled virtual classroom as most students were willing to attend classes from
home due to COVID-19. The survey data shows that uploading videos of the
source code executions and the concept demos into YouTube helped students
watch them at any time to finish their assignments. Students encountered
challenges of not having flexible due dates, extra assignments & projects, and
longer take-home exams. Future work involves conducting a comprehensive
survey and reviewing the student’s and faculty’s insights in learning and teach-
ing computer science and information technology courses in the pandemic.
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Abstract

Teaching penetration testing is becoming integral in cybersecurity
education. In this paper, the structure and design of a senior-level
competency-based penetration testing course that had to be offered on-
line due to COVID-19 are presented. Lessons learned from teaching the
course online and requiring students to build their own virtual environ-
ment are shared. Student course evaluation and what helped them to
learn the most are presented and discussed. Analysis of student overall
course evaluation responses showed that despite the course offerings were
online, the course content, having a personal virtual environment, video
facilitated hands-on experience with common penetration testing tools,
detailed assignment feedback, and timely faculty responsiveness enabled
students to acquire the different offensive cybersecurity skills.

1 Introduction

The computing field is moving from knowledge-based to competency-based
computing education. According to IT2017 and CC2020 curricula guidelines,
competency-based computing education should connect the knowledge (know-
what), skills (know-how), and dispositions (know-why) dimensions regarding a
specific context to accomplish a task[7, 2]. “In today’s world, graduates must
be able to perform in the workplace with appropriate technical skills and hu-
man qualities in addition to subject knowledge”. Computing degree programs

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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should be organized around the knowledge, skills, and dispositions dimensions
to enable student’s career readiness. The security technology and integration
knowledge area is considered of medium to high importance in the computer
science (CS), cybersecurity (CSEC), information technology (IT), and software
engineering (SE) programs[2]. In addition, IT2017 and CC2020 identified “Im-
plement systems, apply tools, and use concepts to minimize the risk to an or-
ganization’s cyberspace to address cybersecurity threats. (Tools and threats)”
as a required IT competency in the ITE-CSP cybersecurity principles section.

In recent years, teaching offensive security in CS, information systems (IS),
IT, and CSEC programs became central in cybersecurity education[1, 8]. Of-
fensive Security, through penetration testing/ethical hacking courses, allows
students to gain the needed knowledge of how systems and data networks are
built and maintained, and learn the needed skills of how to attack and access
them using current tools[5, 3, 4]. Connecting the systems and data networks
knowledge with how to perform penetration testing skills, and thinking like
a hacker within a specific context enables students to develop and gain cy-
bersecurity competency. In addition, the penetration testing/ethical hacking
hands-on assignments let students develop the needed cybersecurity capabili-
ties thus enabling them later to build layered defenses that harden the systems
to penetration.

Penetration testing phases include information gathering through passive
reconnaissance, systems and data networks scanning, vulnerability analysis,
exploitation, and post-exploitation. Open-source tools are used in the different
phases. Teaching penetration testing requires an attacking host that is used to
perform the different penetration testing phases on different vulnerable hosts.
Using an encapsulated environment where the different attacks on vulnerable
hosts can be conducted, reduces the risk to institutional networks and systems.
To allow students to gain hands-on penetration testing experience, some insti-
tutions use on-campus cybersecurity labs that use a segmented network while
other institutions use a cloud-based lab environment[5, 9, 10].

At Utah Valley University, the IT3700 Information Security–Network De-
fense and Countermeasures competency-based cybersecurity course has been
taught face-to-face in a 16-week semester format. The course examines ad-
vanced information security concepts through an applied viewpoint using a
hands-on application of real-world techniques and the use of current cyberse-
curity software. Students attending the course are seniors in the IS and IT
programs. Due to the COVID-19 pandemic, all face-to-face offerings in the
fall 2020 and spring 2021 semesters moved to online delivery using the Can-
vas learning management systems. In the face-to-face delivery, on-campus labs
were used to conduct the hands-on assignments. Due to the online delivery,
students had to install VMWare Workstation on their laptops or PCs and build
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a virtual environment to complete the required assignments/labs.
In the remaining sections, the structure of the Network Defense and Coun-

termeasures online course as well as the course assignments and the used tools
are presented. Student evaluation and feedback of the course are shared fol-
lowed by a discussion on the findings and lessons learned from offering the
course 100% online.

2 Course Structure

The delivery of the online IT3700 course involved video recordings, presen-
tations, demonstrations, hands-on learning activities, and assignments. The
course Canvas shell included the course information, course syllabus, grade
book, calendar, course materials/modules, video lectures, assignments, labs,
exams, quizzes, a discussion forum, etc. Quizzes were given on each topic
covered and completed in the Canvas course shell. A midterm exam and a
comprehensive final exam covering the assigned readings and labs were also
completed in the Canvas course shell. Table 1 provides the course grading
weights.

Table 1: Course Grading Weights

Hands-on Labs 65%
Quizzes 10%
Exams 25%

To conduct the hands-on assignments, students were required to install
VMWare Workstation Pro, offered free through VMware Academic Software
Licensing Program with the university, on their laptops or PCs and build a
virtual environment. The virtual environment included an Offensive Secu-
rity Kali Linux, textbook author’s Ubuntu Linux, Metasploitable 2 Linux by
Rapid7, a customized Windows XP, CentOS server, Security Onion 16.04.7.1,
and Telekom-security tpotce — a honeypot. Table 2 shows the structure and
software/tools used in the course.

In the first two-thirds of the course, students performed different tasks
in the penetration testing phases. In the last third of the course, students
implemented defensive strategies to secure the hosts and servers. The hands-
on assignments are constructed to allow the student to use and apply the
knowledge from the readings, videos, online resources, etc., to develop the
penetration testing skills within different scenarios/contexts.

Each assignment, provided in the assignment module/page, was very de-
tailed with descriptions and instructions to enable the student to perform the
different tasks. Each assignment module/page included four areas, the pur-
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Table 2: Course Weekly Structure

Week Hands-on Assignment Software/Tools used

1 Verizon Data Breach Report Setup VMWare environment
Cybercrime Laws Install Kali Linux

2
Information Gathering Maltego, Shodan,
and Passive Reconnaissance Report theHarvester, dig, whois,

Netcraft, MetaGooFil

3 Port and OS scanning Nmap and Zenmap
Scan your Home Network

4 Port and OS scanning Nmap
Packet capture WireShark

5 Vulnerability Assessment Nessus

6 Enumeration rpcclient, enum4linux,
and smbclient

7 Exploitation Nessus, Nmap,
Metasploit Meterpreter

8 Social Engineering Software Engineering
toolkit (SET)

9 Passwords Hash Gathering Nmap, netcat
Metasploit Meterpreter

10 Password Cracking John the Ripper,
HashCat and ophcrack

11 Server Hardening CentOS VM and Nmap

12 HIDS System Installation Security Onion VM
ICMP packet detection-snort rules hping3 and Squill

13 Honeypot server Installation tpotce VM

14 HIDS TCP Packet Detection Security Onion VM
Xmas, SYN, FIN, Null-snort rules hping3 and Squill

15
Attacking a Honeypot Nmap, Nessus,
detecting the different attacks Metasploit, tpotce
on the GUI dashboard Kibana

pose and goals of the assignment, the needed VMs and software tools, the
tasks that should be performed, and the expected deliverables. The deliv-
erables were written documents or technical reports showing screenshots of
accomplished tasks with reflection on the lesson learned. To enable students to
acquire the needed competency and achieve the course outcomes, the faculty
provided detailed feedback on each graded assignment. The provided feedback
explained what the student did well, what did the student miss, how the stu-
dent used the tools to meet the assignment/lab requirements, any additional
resources or tools that should have been used, and how the assignment fits in
the penetration testing phases.

83



To keep students on track, announcements were posted at the beginning of
each week detailing all the needed work — readings, quizzes, and assignments.
Also, recorded videos showing why and how to use the different tools to conduct
the penetration testing tasks were posted weekly in the announcements as well
as the course media folder. The faculty conducted student hours for two hours
on three different weekdays using the course Microsoft Teams channel. In
addition, student emails during the weekends were answered in less than 24
hours.

A Q&A discussion forum was available for the students to ask questions
and clarifications about assignments, course materials, and/or assessments.
Students were encouraged to use the course MS Teams channel and the weekly
discussion Q&A forum to answer each other’s questions and provide help if it
is not a quiz or exam-related. In addition, the course calendar was populated
with all the assignments and their due dates.

3 Student Course Evaluation and Feedback

At the end of each course, students were provided an online course evaluation
form. Table 3 shows the results for the IT3700 Fall 2020 and Spring 2021
overall course evaluation. The same faculty taught the courses and graded all
the assignments.

Table 3: Overall Course Evaluation Results

SA(%) A(%) N(%) D(%) SD(%) Avg StdDev
Fall 2020 (N=23)
Q1 61 30 9 4.52 0.65
Q2 57 30 9 4 4.39 0.826
Q3 55 36 9 4.45 0.666
Q4 61 30 9 4.52 0.656
Spring 2021 (N=28)
Q1 61 29 7 4 4.43 0.90
Q2 64 21 11 4 4.43 0.94
Q3 57 25 14 4 4.32 0.97
Q4 57 25 14 4 4.32 0.97

The overall course evaluation area used a five-point Likert scale to answer
the following questions:

Q1: I learned more about the subject as a result of taking this class.
Q2: I learned how this subject can be used to address issues outside of the
classroom.
Q3: This class challenged me to think in new ways.
Q4: I developed one or more essential skills as a result of this class.

84



Students were also given the chance to answer the following open-ended
question, “What helped you learn the most?”. The following were the writ-
ten responses provided by the students who opted to answer the open-ended
question. Each bullet represents the whole received response from each student.

Fall 2020

• “Having my own virtual environments to play around in.”
• “The lab videos were a great resource to have.”
• “I learned a lot about network traffic in this class and ports, packets, etc. The

’exploit’ assignments were very helpful to me.”
• “Just being able to do hands on work.”
• “Once we started having video lectures, the class got a lot easier to understand.”
• “Professor was very helpful, he would made videos walking us through each

assignments which was great.He was always responding to emails on time and
would give you feedback after you complete each homework. Great Professor.”

• “The extra walk-through videos really helped me along.”
• “The hands-on with software and videos that demonstrated how the software

was being used.”
• “The recordings of the tech used in the class.”
• “The videos because that class was online.”
• “Watching the videos provided by the professor to explain what was going on

in the assignments.”
• “Posted video walk-throughs helped a lot.”
• “Video walk-throughs.”

Spring 2021

• “Being shown the way with the challenge to go beyond the scope of the assign-
ment, that little bit of extra effort.”

• “Doing the labs.”
• “The content itself was very valuable and I learned that way.”
• “The feedback I received after each assignment was very helpful and insightful.”
• “The lecture videos, book, assignments, and other sources helped me under-

stand and learn the material The feedback after every assignment was incred-
ibly helpful as well! Not many instructors give feedback. Great class overall.
Learned a lot of new things! Thank you for the awesome semester.”

• “The structure of the assignments combined with the high quality narration/
explanations as well as the professor responsiveness to questions helped the
most.”

• “The videos were pretty helpful in understanding how to do the labs.”
• “The videos were very helpful.”
• “The walkthrough videos.”
• “Watching the videos posted and trying to follow along helped me understand

the most. Visualizing what the professor is talking about at the same time
helps me learn the most.”
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• “In class demonstrations and lectures.”
• “Practical lessons and video walk though on how to do it. Good feedback on

all graded assignments.”
• “The online research for commands.”
• “Video tutorials.”

4 Discussion

The submitted graded student work showed that the students applied the
learned knowledge and gained the needed skills to perform the penetration
testing phases in different scenarios/contexts demonstrating the use of com-
mon offensive security tools. Also, the student graded work showed that the
students understood why each tool was used and why the tool usage fit the
penetration testing task within the provided scenario/context.

Student response to the course evaluation questions showed that 91% of the
students in the fall of 2020 and 82% of the students in spring 2021 developed
one or more essential penetration testing skills. Also, 91% of the students in
the fall of 2020 and 90% of the students in spring 2021 learned more about
penetration testing as a result of taking the course. Students learned how
penetration testing can be used to address outside the class issues, 87% in the
fall of 2020 and 85% in the spring of 2021. Lastly, 91% of the students in
the fall of 2020 and 82% of the students in spring 2021 agreed that the course
challenged them to think in new ways.

All students managed to install VMware Workstation Pro on their lap-
tops and PCs, set up the required VMs on NAT, and complete all the as-
signments/labs. Student written comments, in section 3 above answering the
open-ended question, showed that the hands-on experience in their own virtual
environment enabled them to learn the different offensive cybersecurity skills,
which is similar to what [4, 6, 10] had found. Some students had to reduce
the VMs allocated RAM size and number of CPUs which slowed their VMs
response. The Security Onion IDS and tpotce honeypot VMs ran many visu-
alization services to capture and display the elastic stack data, which for some
students slowed their systems to a halt. After stopping most of the unneeded
visualization services, the impacted students managed to complete the Security
Onion and tpotce assignments/labs.

Most students responding to the open-ended question mentioned that the
weekly provided walk-through videos helped them to learn the most. Some stu-
dents highlighted the value of the detailed feedback on the graded assignments
on their learning. In addition, some students found the faculty’s quick respon-
siveness an enabler to learning. The practicality of the penetration testing
course content was another element that allowed students to learn the most.
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The following is a summary of the lessons learned:

• Competency-based penetration testing/ethical hacking courses can be
offered 100% online allowing students to gain and acquire the needed
knowledge and skills.

• The hands-on experience in the students’ own virtual environment en-
abled them to learn the different offensive cybersecurity skills and how
to apply them.

• Weekly detailed walk-through videos showing how to use the different
penetration testing tools facilitated student learning.

• Detailed assignment/lab instructions coupled with detailed feedback in-
cluded in the graded assignment increased student learning.

• Timely faculty response to student questions and emails is important to
support student learning in online courses.

5 Conclusions

Penetration testing/ethical hacking courses provide advanced cybersecurity
and information security concepts through an applied viewpoint using a hands-
on application of real-world techniques using current cybersecurity software and
tools are an integral component in current computing education. In this paper,
we provided the structure of a penetration testing course that had to be offered
online instead of face-to-face due to the COVID-19 pandemic. Learned experi-
ences and student overall evaluation of the two online iterations of the course
were shared. Analysis of student overall course evaluation and qualitative
responses showed that despite the course offerings were online, the course con-
tent, having a personal virtual environment, hands-on experience with common
penetration testing tools facilitated with walk-through videos, detailed faculty
feedback, and timely faculty responsiveness enabled students to acquire the
different offensive cybersecurity skills.
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Abstract

As more people turn to discretionary online tools to learn new skills
such as computer programming, exploring how to better support a wide
range of learners is becoming increasingly essential to train the next gen-
eration of highly skilled technology workers. In our prior work, users
with high learner autonomy complained that most online resources they
used to learn more programming did not provide them with the flexibility
they preferred to navigate through learning materials, locking them into
a set sequence of topics/concepts. To explore this, we implemented a
level-jumping feature into an online educational programming game. We
tested it with 350 new users, tracking their progress through the game
for 7 days each. We found that those with high learner autonomy did
use the level jumping feature more than those with low learner auton-
omy. We also found that males were more likely to use this new feature,
regardless of learner autonomy level, compared to their female counter-
parts. Finally, we found that those with low learner autonomy ultimately
completed more levels than their high autonomy counterparts, and that
this was particularly true of female learners (who completed the most
levels overall). Based on these findings, we believe that autonomous-
supportive features such as flexible navigation may be beneficial to all
users of online educational tools, and that encouraging its use by a wider
group of users (particularly females), may increase positive effects.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction and Related Work

With the continued influx of individuals turning to discretionary online learn-
ing learning resources such as Massive Open Online Courses (MOOCs), tuto-
rial sites, and educational games, learning more about how to support a wide
range of people with different preferences, experience, and learner autonomy,
is essential to train the next generation of highly skilled technology workers.
According to educators and researchers, learner autonomy — the ability for
one to control their own learning [6]—plays a vital role in developing lifelong
learners [3].

In order to gain a better understanding of their autonomy, our past work
explored the experience of Computer Science (CS) learners’, particularly about
learning CS both online and in the classroom [14, 17]. We found that learners
who showed a high level of autonomy felt that they were not supported by
the educational system(s) or teachers. For example, they complained that the
online systems they used did not give them enough freedom to explore on their
own, and that their teachers often failed to help them achieve their learning
goals. On the other hand, we found that learners who showed a low level of
autonomy felt that they needed extra guidance from their teachers and curricu-
lum. Interview results also indicated some patterns, for example, that learners
with more subject-area experience showed higher levels of autonomy than those
with less experience, and learners with a higher level of autonomy preferred to
study using an autonomy-supportive system while those with lower levels of
autonomy preferred to study using a non-autonomy supportive system [13, 17].

Considering these past results and the role learner autonomy plays in devel-
oping lifelong learning, we believe that it is important to address the needs of
CS learners with different levels of learner autonomy. In particular, we found
in prior work [13, 16] that autonomy-supportive features (i.e., the freedom to
freely navigate to any portion of a course’s curriculum) in learning systems were
consistently requested by those with high learner autonomy. This was in con-
trast to those with low learner autonomy, who preferred much more structured
and linear pathways through a curriculum.

In order to test how an autonomy-supportive feature might affect learners
(based primarily their level of learning autonomy), we implemented a level-
jumping feature into an online educational programming game (see Figure 1).
This is in contrast to most online learning curriculums and MOOCs that we
have encountered, which are often locked to a specific sequence where later
parts of the course are inaccessible until earlier parts are completed. We tested
the game with this new level jumping feature with 350 new users, tracking
their progress through the game for one week (7 days) each, spanning a total
of 1.5 months.
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Figure 1: A screenshot of the Gidget introductory programming game.

2 Method

2.1 The Gidget Educational Game

We modified our free introductory coding game, Gidget (www.helpgidget.org),
for this study. Gidget has a total of 37 core levels in its curriculum, where each
level teaches a new programming concept (e.g., variable assignment, condition-
als, loops, functions, objects) using a Python-like, imperative language [8, 10].
The objective of each level is to fix existing code to help the game’s protagonist
pass 1–4 test cases (i.e., statements that evaluate to true) after running the
code. Each level introduces at least one new programming concept, becom-
ing progressively difficult in subsequent levels. Therefore, users are exposed
to more programming concepts the farther they progress through the game.
Finally, the game also includes a set of help features to help players overcome
obstacles while coding on their own [7, 10]. This includes a frustration detector
that provides encouraging hints/messages to those that are struggling with a
level [9], and also auto-generates additional levels covering the same concept(s)
to provide additional practice [8].

Normally, the game follows a specific order of levels (i.e., curriculum), build-
ing on content from previous levels. While the user interface shows the se-
quence/map of all core levels in the game (and indicating the players’ current
level; see top of Figure 1), it only allows the player to jump back to any previ-
ously completed level (at any time during game play). Players can also jump
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forward to the last level they have reached sequentially, but no further. All
levels are visualized on the map as circles, with completed levels shown as solid
circles, incomplete levels shown as hollow circles, and incomplete exam levels
(explained in [10]) shown as hollow circles with a check mark. Finally, the
currently loaded level is indicated with the Gidget character (see Figure 2).
Hovering the mouse cursor over an incomplete level does not show any visual
change, and clicking on an incomplete level does not do anything.

For this study, we modified the level-selection interface to allow players to
jump to any level in the game, regardless of level completion status. Placing the
mouse cursor on any other level grays out the current level’s Gidget character
and places a solid Gidget character that slowly rocks back-and-forth on that
level marker. Clicking on the rocking character immediately jumps the player
to that level. In addition, to keep the overall experience consistent across
all users of this study, we disabled the game’s auto-generated extra levels (as
described in [8]). This was to prevent cases where someone might jump to a
difficult level, trigger the frustration detector, then offered multiple additional
practice levels covering the same concept(s). Finally, we specifically pointed
out this level-jumping feature in the game’s introductory on-boarding tutorial
(which all players see the first time they load the game), explaining the user
interface, interaction method, and the level-jumping feature.

Figure 2: Closeup of the level selection map. The current level shows Gidget,
completed levels are solid circles, uncompleted levels are hollow circles, and
uncompleted exam levels are hollow circles with a check mark.

2.2 Participant Recruitment

Our goal was to observe if and how players would use the level-jumping features
within the game. We evaluated our system with a group of 350 new users of
the game. The sign-up screen asked users for their age, gender, e-mail address,
a checkbox indicating whether they have prior programming experience, and a
checkbox (with link to consent form) asking if they were willing to participate
in a research experiment. We intentionally did not define "programming" or
"programming experience" as we determined in past studies [14, 15] that using
a specific definition could potentially confuse or discourage participants who
might consequently miscategorize themselves or self-select out of participation
even though they meet our eligibility criteria. Mirroring a previous study [14],
we asked those who indicated that they had prior programming experience
two additional questions: how many years of programming experience they
had (rounded up to the nearest .5 or integer), and how they would rate their
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programming experience level on a four-level scale (beginner, intermediate,
advanced, and professional). We used these two measures to assign each player
a learner autonomy score from 1 (low learner autonomy) to 3 (high learner
autonomy) based on our prior work [14], which showed that these two measures
were significantly correlated with learner autonomy. This prior study combined
subsets of the Learner Autonomy Scale created by Macaskill and Taylor [11]
and the E-learning Autonomy Scale developed by Firat [5], and demonstrated
that more years of experience and higher self-rating in programming experience
has a positive relationship with autonomy level.

For this study, we only selected users that indicated they were 18+ years
and willing to participate in a research experiment. Adapting the methodology
from our prior studies [8, 9], we set the observation time to 7 days (168 hours)
per user to have a consistent evaluation window for all users. To promote quick
account creation, we did not collect other demographic information such as eth-
nicity, geographical location, or education level. Participants were required to
read and digitally sign an online consent form that briefly described the study.
We were intentionally vague in our description of the level-jumping feature,
stating that we were "testing new navigational features" to minimize potential
leading or biasing of participants to pay attention more to that specific part of
the interface. However, we debriefed all participants of the study procedures 7
days after the end of their individual observation window, by e-mail.

3 Results & Discussion

We report on our quantitative results comparing our participants’ outcomes—
split by demographic and experience features—using nonparametric Wilcoxon
rank sums tests, Chi-Squared tests, or simple linear regression, with a con-
fidence of α = 0.05, as our our data were not normally distributed. For all
post-hoc analyses regarding gender data, we use the Bonferroni correction for
three comparisons: (α = .05/3 = 0.0167).

The study included 350 participants (aged 18–58; median 20). As a whole,
our participants were composed of 180 females (51.4%), 161 males (46%), and 9
‘not listed’ or ‘decline to state’ (2.6%). In addition, 255 (72.9%) indicated that
they did not have any prior programming experience, and 95 (27.1%) indicated
that they had at least .5 years of prior programming experience (latter’s range
.5–33; median 2). We operationalized our key dependent variables, engagement
and jumping, as the number of levels completed and the number of times the
jumping feature was used, respectively.
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3.1 High Learner Autonomy Players Use Jumping Feature More

We found that all learners used the level jumping feature at least 2 times,
regardless of having low learner autonomy (range 2-17; median 3) or high
learner autonomy (range 2-37; median 8). Looking at the data more closely, we
found that there was a significant difference in the number of levels participants
completed by autonomy level (W = 26703, Z = 12.370, p < .05), with the high
autonomy learners using the feature more than their counterparts.

We believe that all learners jumped at least two times because this feature
was specifically mentioned in the on-boarding game tutorial, and at the mini-
mum, someone using the feature to jump forward (first jump), would need to
jump back to their original level (second jump). Next, our finding that high
autonomy learners use the jumping feature more often than their low autonomy
counterparts verifies our hypothesis (based on our previous work in [14]) that
those with more experience (and therefore higher learner autonomy) would use
and benefit from this jumping feature. Unlike low autonomy (inexperienced)
learners, who do not necessarily know much about the topic and therefore
would be better served learning programming concepts in a sequenced curricu-
lum, the goal of high autonomy (experienced) learners may be to review or
improve on their existing programming skills, and/or to look for programming
resources. Therefore, they may be more likely to use the jumping feature to
browse through the different parts of the curriculum quickly, being more in
control of their learning.

3.2 Males Use Jumping Feature More

We found a significant difference in usage of the jumping feature by gender
(χ2(2, N=350)=17.226, p<.05). Doing post-hoc analysis with the Bonferroni
correction, we found that males used the jumping feature significantly more
overall than their female counterparts (W=42.307,Z=4.109,p<.05/3). This
result was independent of low learner autonomy (χ2(2,N=255)=6.1464, p<.05)
or high learner autonomy (χ2(2,N=95)=6.1583, p<.05) in programming.

This result was not too surprising, as prior research [2] has shown that
compared to females, males are statistically more likely to use selective in-
formation styles (following the first promising information, then potentially
backtracking) [12], have lower risk aversion (be less wary of consequences) [4],
and more willing to tinker (playfully experiment) [1]. Based on this, we be-
lieve that our male players were more likely to use the jumping feature simply
because it was available in the interface (and also mentioned in the tutorial).
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3.3 Low Autonomy (Female) Learners Complete More Levels

Next, we explored if there was a difference in the number of levels participants
completed. This is not a completely fair comparison, as everyone may have
encountered levels in a different sequence (with later levels being considerably
more difficulty than earlier levels) because of the jumping feature.

We found that low autonomy learners completed significantly more levels
compared to their high autonomy counterparts (W = 15002.5, Z = −1.987, p <
.05). Further analysis revealed that there was a significant different in the
number of levels completed by gender within the low autonomy group (χ2(2,
N=255)=43.3806, p<.05). A post-hoc analysis with the Bonferroni correction
showed that the low autonomy group females completed significantly more lev-
els compared to their male counterparts (W=-61.579,Z=-6.655,p<.05/3). We
calculated a simple linear regression to predict level completion based on jump-
ing behavior. Within the low autonomy group, we found a positive relationship
between these variables (F (1, 253) = 255.290, p < .05), R2 = .502). Examining
this more closely, we found that that this affect was strongest with females,
where females in the low autonomy group who jumped more often completed
more levels (F (1, 144) = 206.433, p < .05), R2 = .589).

This result supports our hypothesis discussed in Section 3.1. The goal of
high autonomy (experienced) learners may be to review or improve on their
existing programming skills, and/or to look for programming resources. If high
autonomy learners were using the level jumping feature primarily to explore
what programming concepts the game curriculum covered, it would explain
why they did not necessarily stay to solve/complete those levels. On the other
hand, a low autonomy (inexperienced) learner’s aim in playing a programming
game is more likely to learn new things, and most or all of the programming
concepts would be new to them. Therefore, whether or not they jump through
the curriculum, less experienced learners have more incentive to complete levels.
Perhaps those low autonomy learners that jump around the levels have a better
idea of what is coming next (and also gain additional insights from the broken,
starting code each level provides), and therefore more successful in completing
levels. Most surprisingly, although our female participants were most likely
not to use the jumping feature, those that did went on to be the individuals
that completed most (or all) of the game levels. Females who did decide to use
the jumping feature may have jumped back and forth between levels as a com-
prehensive information processing problem-solving strategy [2, 12], where they
used the jumping feature to preview what was coming up, thereby gathering
fairly complete information about the entire system before proceeding.
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4 Conclusion

Our findings show that both high and low autonomy learners (particularly
males), used the level-jumping feature, with the former using this feature sig-
nificantly more than the latter. We also found that high autonomy learners
tend not to complete the levels they jump to, and that they complete signifi-
cantly fewer levels overall compared to their low autonomy counterparts. We
also found that the few low autonomy female learners who used the jumping
feature readily, also ended up completing more levels than any other group.
Designers for online resources teaching programming may benefit from allow-
ing all users to skip around and explore the curriculum, instead of locking them
into a specific sequence. They may also do well in encouraging more of their
learners (especially females) to use these types of jumping features to have
them preview and better prepare for what is coming later in the curriculum.

We have several limitations to our study. We recruited participants who
opted into a research study while signing up for an educational game. These
participants may already have high motivation, and therefore may not be com-
pletely representative of the larger population. Next, we asked participants to
self-report their years of programming experience and also to rate their own
programming expertise. Participants may have different criterion for these se-
lections and therefore may have led to inconsistencies in our user groupings.
The groupings themselves may not account for all the different nuances of expe-
rience and/or learner autonomy. For future work, we could use more objective
measures such as quizzes to test the skill level of participants as an alternative
measure to experience. In addition, we could use pre-post tests to measure
how this new jumping feature affects players’ learning outcomes, and collect
qualitative data from participants through questionnaire or interviews.

Our study results show that both high autonomy and low autonomy learners
use the level-jumping feature (presumably to preview levels), and that although
low autonomy users are less likely to utilize this feature, those that do are es-
pecially successful in completing more levels (particularly females). Our future
work will examine these outcomes in more detail, and gather complementary
qualitative data, to isolate the features that are causing these effects.
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Abstract

Teaching introductory Artificial Intelligence (AI) courses in under-
graduate institutions presents a unique set of challenges due to the ever
increasing content areas of AI. The goal of an introductory course is to
provide a broad introduction to the field, but in an undergraduate setting
where this may be the only AI course a student encounters, equipping
students with tangible AI skills to apply in their careers after graduation
is also highly desirable. This paper presents an experience report that
discusses the rationale and methodology used to redesign a standard,
introductory course into a more versatile version, and provides high level
student evaluation data over an eight year period to assess the efficacy of
this course redesign. The key idea in this redesign is to allow a significant
portion of the content area to vary from one course offering to another.

1 Introduction

Artificial Intelligence (AI) is an important and dynamic field of computer sci-
ence. Most computer science programs offer either required or elective courses

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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in this area. The field of AI is one of the broadest in computer science and
encompasses topics as diverse as classical AI search, symbolic and probabilis-
tic reasoning, machine learning, and multiagent systems, to varied application
areas such as Natural Language Processing (NLP), robotics, computer vision,
etc. Covering all of these areas in a single semester course is impossible, and
generally each of these areas warrant their own dedicated course. This creates
a dilemma for the instructor when deciding the breadth and depth of topic
coverage. This paper describes the experiences at the University of Wisconsin
Oshkosh (UWO) in redesigning the AI course taught there.

Due to the vast content area of AI, an ideal coverage of it would require
a multi-course sequence rather than a single introductory course. Typical AI
sequences, in addition to a broad introductory course, would include courses on
machine learning, and specific application areas. Most undergraduate programs
do not have the enrollment to fill all these various courses, nor do they have the
credits to devote to entire AI course sequences in a standard computer science
major. Undergraduate colleges generally offer AI as a single course, with the
number of credits devoted to it generally being three credits. There is usually
not enough enrollment for a higher level AI elective, or perhaps the program
has too many credits allocated to other courses, without instructor coverage for
these higher level AI courses available. Yet it is universally acknowledged that
AI plays an increasingly important part in student careers after graduation,
especially with deep learning currently being seen as a possible panacea to most
complex computing problems in industry.

So, the question we tried to address in our course redesign was how we can
design an introductory course in AI that gives students not only the broad
exposure to the field but also the specific and relevant knowledge that allows
them to use AI techniques in their jobs right after graduation.

2 Background

There is much literature devoted to the study of AI courses in the EAAI,
SIGCSE and ITiCSE conferences, and a few references in the Journal of Com-
puting in Small Colleges.

Some courses focus on a specific area of AI[1], or on a different student
audience such as those in middle school[3], or non-computer science major
students[2]. Others focus on using a specific area such as Games to teach AI
[4]. But to the best of our knowledge, none attempt to redesign an introductory
AI course in the manner we describe.
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3 Methodology

First, UWO offers only one course in AI that is an optional elective in the
Computer Science (CS) major, which requires approximately 52 major credits,
with 12 of those credits being electives. The AI course has generally been
very popular among students, but limited teaching credits preclude adding
additional, more advanced AI courses, beyond this introductory course. The
old version of the introductory AI course, offered through 2012, had its course
description as follows:

“This is an introductory course in Artificial Intelligence. A ten-
tative list of the topics we will cover, in varying degrees of detail,
include: Introductory overview of AI, agents and state spaces; Un-
informed and informed search; Constraint satisfaction problems;
Adversarial search; Introduction to logic, propositional and predi-
cate calculus; Machine learning including neural networks, decision
trees and naïve Bayes learning algorithms.”

The course focused roughly a third of the topic coverage on classical search,
a third on logic, and the last third on some machine learning and other assorted
topics. The prerequisites for this course were essentially only a CS 2 course.
This meant that students might not have seen either propositional or predicate
calculus (generally covered in a discrete mathematics course) or even Data
Structures. While this prerequisite structure increased the course accessibility
to students fairly early in their study, a considerable amount of course contact
time was spent in reviewing these fundamentals.

Overall instructor experience in teaching this course was that the logic com-
ponent of the course, with time spent on introducing propositional and pred-
icate calculus, in addition to covering symbolic logic was not an effective use
of course time. Considerable time was also spent on classical search explaining
the fundamentals of Data Structures. Consequently, two major changes were
implemented in 2013.

First, the prerequisite structure was changed to now require Data Struc-
tures. This allowed the classical search coverage to proceed much more effec-
tively. Discrete Mathematics was still not required, so students could still take
AI without having completed that course. This preserved some measure of
student course accessibility early in their plan of study.

Second, a reexamination of what were the “essential” topics of AI that
belong in an introductory course was conducted, and the determination was
that the AI course should be composed of the following three components:

1. Classical Search: Any introductory course should lay out the chal-
lenges that AI faced at its onset and the evolution it went through. Conse-
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quently, the topics covered here include uninformed and informed search,
local search, game search (including Expectiminimax and Monte Carlo
search) and constraint satisfaction. Details of the algorithms involved
and programming projects that involve solving application problems us-
ing these algorithms are covered here.

2. Machine Learning: A third of the course is devoted to covering Ma-
chine learning, recognizing its importance in every domain today. While
this would normally be covered in a course devoted to machine learn-
ing, our restriction in having a single AI course required the significant
coverage of machine learning in this introductory course. Topics covered
include linear regression, decision trees, Bayesian learning and neural
networks, including some coverage of deep learning, ensemble methods,
and evaluation of learning algorithms. This ensures that students have a
deep enough understanding of machine learning to use these techniques
right away in their careers after graduation. The degree of coverage of
deep learning has varied but there is not enough time to cover all key
areas such as convolutional neural networks, recurrent neural networks
and generative adversarial networks, so the instructor has to select what
would be covered in a specific course offering.

3. One application area of AI: Taking into account the highly dynamic
nature of AI, a third of the course content is loosely focused on an “ap-
plication area” of AI and is left up to the instructor to decide specifically
what that might be. Choices could include Natural language processing,
Computer Vision, Multiagent Systems, Planning including Markov deci-
sion processes, and symbolic methods in AI. The decision to focus on one
area rather than provide a broad introduction to many different areas
was so that students can see in-depth examples and applications of AI
rather than receive just a broad overall knowledge. It is expected that
students will do 1-2 programming projects in the chosen area. At UWO,
the instructors have chosen to focus on NLP but the course description
allows maximum flexibility from one offering to the next.

The exclusion of symbolic logic from the standard topics might be contro-
versial but it is a recognition that including this topic in course coverage
will occupy a third of the course contact time due to the lack of prereq-
uisite knowledge required from the students. It is also a recognition that
deep learning is currently driving research in AI, especially over symbolic
approaches. But it also provides an instructor the opportunity to cover
symbolic logic in depth if they should so choose.
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The course description for this redesigned AI course is given below:

“This course is an introduction to the field of artificial intel-
ligence. A survey of classical search in artificial intelligence and
machine learning, and an in-depth examination of a specific ap-
plication area such as robotics, theorem proving, computer vision,
natural language processing, etc. are covered. Students are expected
to demonstrate mastery via computer programs using the techniques
of artificial intelligence.”

The course outcomes list specific learning outcomes for the first two areas,
as would be expected in a standard introductory AI course. The course out-
comes for the “application area” had to be phrased in a generic manner. These
outcomes are included here for illustration:

With respect to ONE selected "big application" area of AI such
as Reasoning and Theorem Proving, Natural Language Processing,
Computer Vision, Robotics, Multiagent Systems, etc:

(a) identify and describe the motivation, terminology, foundations
and key concepts in the selected area

(b) describe and manually trace the essential algorithms in the
selected area

(c) use available libraries and software to test the key algorithms
and extend them to specific application projects in the selected
area

We believe such an outcome formulation provides maximum flexibility to
the instructor while giving students a clear understanding of what they will be
able to demonstrate at the end of the course.

4 Evaluation

While we do not have objective data collected, with appropriate controls en-
forced, we have subjective data inferred from student evaluation data and the
instructor’s experience.

The AI course is an elective taught every three semesters. We present data
for five offerings of the course over a seven year span. The same instructor
taught the course these five times. The course was taught by a different in-
structor in 2012, for which data is not available and student evaluation data
was not collected in the spring 2020 semester due to the pandemic. The 2011
offering was based on the old AI course, and the 2014 and subsequent offerings
are based on the redesigned course.
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First, the instructor noticed a marked difference in student interest in the
redesigned version of the course. NLP was used as the application area in all
offerings of this course. Using NLP as the application area piqued student
interest, and the prerequisite change ensured students were better prepared. A
side benefit of the ability to focus on a specific AI application area through a
“mini-course” was that three students were interested enough in the application
area to work on subsequent practicums with the instructor. One of those
practicums resulted in a peer reviewed publication.

The overall student experience seems to correlate with the instructor’s as-
sessment. Table 1 shows the relevant questions dealing with course content.

Table 1: Student Evaluation Data

Criteria 2011 2014 2015 2017 2018
Q1: Course organization 4.2 4.28 4.53 4.59 4.36
Q2: Value of lectures 3.8 4.06 4.42 4.35 4.24
Q9: Effective instructor 3.8 4.11 4.26 4.65 4.24
Q11: Appropriate prerequisites 3.14 4.19 4.11 4.31 4.26
Q12: Recommend to others 3.6 3.89 4.05 4.31 4.08
Q13: Course difficulty 2.57 2.72 2.47 2.65 2.71
Q14: Course pace 2.95 3.22 3.32 3.18 3.24
Q15: Amount of work 2.85 2.72 2.74 2.94 2.88
Total Respondents 21 18 19 17 26
Total Enrollment 27 22 22 18 27

Questions Q1-Q12 were rated on a 1-5 scale (with 1 being strongly disagree
and 5 being strongly agree). As can be seen, the value of lectures and over-
all instructor effectiveness increase significantly in the redesigned course, over
the 2011 old version of the course. While this is possibly due to the instruc-
tor getting more experience in teaching the course, we also strongly believe
the redesign helped significantly. There was also a marked increase in the
appropriateness of the prerequisites, and the degree to which students would
recommend the course to others.

Questions 13-15 were rated on a scale of hard to easy, slow to fast and too
much to too little respectively, with a score of 3 being about right. Students per-
ceive the course pace to have increased but, interestingly, the course difficulty
and the amount of work required seem to be mostly the same. This would seem
to indicate that this increased pace is appropriate for the redesigned course.
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5 Conclusion

We present an outline of the redesign of our introductory AI course. Our
experience is based on high level student evaluation data with one instructor
over five course offerings, and this small sample size is a limitation of our study.

Our redesign incorporates a “mini-course” in an AI application that would
typically be its own upper level course in a program that can afford to do
so. Our experience has been that we can cover the application area in the
equivalent of one credit hour (or roughly a third of the overall course time) to
a depth that allows students to be productive in programming applications of
significant complexity. The preceding two credit hours devoted to the basics
of AI, and machine learning seem to set the stage for this higher degree of
student comprehension in the application area. Student evaluation data seem
to indicate that students prefer this redesigned course. And such a course
organization affords a high degree of flexibility to the instructor.

References

[1] Travis Mandel and Jens Mache. Developing a short undergraduate intro-
duction to online machine learning. The Journal of Computing Sciences in
Colleges, 322(1), 2016.

[2] Matthew Merzbacher. Open artificial intelligence - one course for all. In
Proceedings of the thirty-second SIGCSE technical symposium on Computer
Science Education, SIGCSE 01, pages 110–113, 2001.

[3] Alpay Sabuncuoglu. Designing one year curriculum to teach artificial in-
telligence for middle school. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education, ITiCSE 20,
pages 96–102, 2020.

[4] Daniel Wong, Ryan Zink, and Sven Koenig. Teaching artificial intelligence
and robotics via games. In Proceedings of the AAAI 2010 Symposium on
Educational Advances in Artificial Intelligence, EAAI 10, 2010.

104



Creating Hands-on Assignments
to Teach Symmetric Encryption

with Increased Student Involvement∗

Jonathan Neilan and Sayeed Sajal
Department of Computer Science

Utah Valley University
Orem, UT 84058

{jonathan.neilan, sayeed.sajal}@uvu.edu

Abstract

Encryption is a ubiquitous and necessary aspect of our online world.
An education in computer science would be incomplete without at least
a high-level understanding of encryption algorithms. We look into com-
mon paradigms for symmetric encryption in order to create educational,
application-based assignments for testing competency in symmetric en-
cryption concepts. We first look into Data Encryption Standard (DES)
for an introductory view of why certain cryptographic qualities mat-
ter and how they are achieved and create an assignment to effectively
implement DES. next, we looked into Advanced Encryption Standard
(AES) and the other top entries of the NIST competition from which
AES was selected in order to observe multiple examples of implemented
block ciphers. We created an assignment to implement a block cipher,
the specifics of which are of the student’s choosing in order to provide
leeway for each student to brainstorm and implement their own ideas.

1 Introduction

Symmetric encryption is the model of encrypting data by using a single, shared
secret key that is used for both encrypting and decrypting data. The promi-
nent predecessor for many modern day symmetric encryption algorithms is
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DES, Data Encryption Standard. DES has long been deprecated, no longer
secure for any serious web traffic but still presents a good initial point of study
for cryptography. DES uses 64-bit blocks of plain text data and a 64-bit key as
input; a total of sixteen Feistel rounds are performed to create cipher text[6].
A single Feistel round entails splitting the plain text input in half, perform-
ing an encryption step on one of the halves, and then swapping the ’left’ and
’right’ halves. A different key, referred to as a round key, must be used at
each Feistel round. These round keys are generated from the main key ac-
cording to a defined "key schedule" which includes performing left shifts and
permutations[6].

The National Institute of Standards and Technology (NIST) held a compe-
tition to find a new encryption standard. The chosen winner "Rijndael" would
become the new AES, Advanced Encryption Standard. It is still the current
standard for symmetric encryption algorithms and is the most popular cipher
used in both public and private sectors. Rijndael’s block cipher guarantees
“high diffusion over multiple rounds“ through three steps - byte substitution,
shift row, mix column, and finally adding the round key[5]. It provides the
best mix of defense against well-known attacks as well as accomplishing the
“avalanche effect“; a property of algorithms where a small, single change in an
input yields large changes in the output.

The top five finalists of NIST’s encryption competition were Rijndael (the
winner), Serpent, Twofish, RC6, and MARS. All five of these finalists used
one of two forms of block ciphers: Substitution-permutation ciphers or Feistel
network ciphers.

Substitution-permutation ciphers work by applying alternating rounds of
substitution boxes and permutation boxes to the input plaintext and key.
Feistel ciphers involve splitting an input into two halves and performing a
non-linear function to only the right half. The result is also “added into the
left half, and subsequently left and right halves are swapped[8]".

2 Background

Initial research we performed on symmetric cryptography assignments yielded
varied results. There were security-based assignments aimed at teaching stu-
dents the weaknesses of DES and how they are exploitable. There were fairly
simple exercises which were meant to teach steps of an encryption process as
part of a whole, such as one that provided full AES functionality and only re-
quired students to perform the base-64 encoding of messages before and after
the encryption and decryption process between two clients. A more mathemat-
ically inclined one involved analyzing block cipher chaining and cryptanalysis
of various paradigms. An assignment from a Utah Valley University course in
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2019 goes over encryption concepts and application but involves no program-
ming. Another course from 2020 that did require encryption programming
also required the use of key generators and libraries to complete the exercise.
Completion of the assignment also required construction of an API for a client
and server to communicate with each other via a REST API.

The languages used by these examples were mostly C++ and Python, their
justifications being that they both allow for the easy use of external libraries
such as Key generators. Those using C++ further cited that as a low-level
language it has quick access to the hardware, a desirable quality for perform-
ing ciphers. Those using Python justified their approach as an easier way to
educate students on new concepts.

3 Project Details
Based on our research into previous assignments, pedagogical methods, and
paradigms we wished our students to focus on, we decided the assignments
would entail two parts. The first is the implementation of a specific, well-
known algorithm such as DES for first learning cryptography concepts. The
second is to allow students more leeway in what they create by providing a
general paradigm common to encryption algorithms to serve as a model to
follow. The model that was chosen was block ciphers. Our reasoning will be
provided below.

3.1 Tools and Languages
The language the programming assignments were created in was C++ (stan-
dard C++11/C++14 compliant). This provided the best balance of being
"low"/close to the machine and being a popular language in which the assign-
ment could be expounded upon in future edits. The software was created in
Microsoft Visual Studio 2017 (v141) on a Windows 10 Operating System.

3.2 Assignment 1 - DES
Given its lengthy existence and cryptanalysis that has been performed on it,
implementation of DES as an assignment provides a good introduction to the
types and qualities of cipher "rounds" that encryption functions may perform.
The assignment format is as follows: the steps of DES are broken up into their
own functions. The steps that require "boxes", which are the expansion step,
substitution step, and permutation step, have each fixed "box" provided as
multi-dimensional arrays, seen in Figure 1, for use in their respective steps in
the encryption process.

Comments are provided to explain the role that each function and step
plays in the encryption process. As an example, explaining S-box’s role is
based on documentation for the fixed-sized array(s), "A straightforward way
to implement simple nonlinear functions are lookup tables or S-boxes. The DES
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Figure 1: D-box, S-box, and P-box (S-box kept collapsed due to size)

uses eight different S-boxes with six input bits and four output bits (denoted
with 6 to 4)"[8]. Further explanation is provided by explaining that the specific
4-bit output is found by using the middle four bits and outer two bits to select
a row and column from which the output is selected[4]. Knowledge of the inner
workings of the S-box is not necessary for the completion of the assignment but
may help in creativity and brainstorming ideas for the second, more open-ended
assignment.

A simple hexadecimal string is used for the key, and helper functions are
provided for translating hexadecimal strings to bit string representations and
vice versa. The inspiration for using that format of strings for keys in place
of a crypto key-generator library came from an article that likewise wished to
reduce complexity involving the key and focus more on the algorithm[10].

We created separate functions that the students will have to correctly pro-
gram in order for the input plaintext to properly convert to ciphertext and
decrypt back to the original plaintext. The student will need to properly code
out all functions or portions of functions marked with a "TODO" comment
within the assignment. One of the first such functions encompasses the left
shifting functions for shifting "bits" as seen in Figure 2, though this will be
emulated through string manipulation.

More examples of the base functions that students will have to correctly
implement in order to do other parts of the program that rely on them are the
permutation function and the XOR function as seen in Figure 3.

Since the permutation arrays are predefined according to the DES standard,
the student will have to fill out the function that takes an array and properly
permutes the string/bit values according to the respective array.
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Figure 2: Left Shift Functions

Figure 3: Permutation and XOR Functions
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Figure 4 shows the round key generation portion of the code. Both left shift
functions and the permute function will have to be correctly implemented to
generate the sixteen round keys required for the encryption process.

Figure 4: Generation of sixteen round keys

3.3 Assignment 2 - AES
We were inspired by the NIST competition from which AES was chosen, to
create this open-ended assignment. A new, more secure symmetric encryp-
tion algorithm was needed to replace DES. After NIST analyzed and received
comments for the Round 1 entries, they selected the top five from the original
fifteen[7]. Those top five were: the eventual winner Rijndael, Serpent, Twofish,
RC6, and MARS. The grading criteria involved cryptanalysis, intellectual prop-
erty, and crosscutting analyses[7], though the assignment we created is much
simpler. As these algorithms were created by expert cryptographers who had
several months to research, design, and implement them, we aimed to narrow
the programming topic to a common, necessary element among them; they
all created their own block cipher. The top five finalists in round two of the
competition all used one of two block cipher models: Substitution-Permutation
(S-P) Network/Cipher or Feistel Network/Cipher.

We wanted to have this assignment be something of a similar competition,
though on a smaller scale and more for the purpose of allowing the students
an opportunity to create something of their own, following one of the general
paradigms of block ciphers. This allows a student to not spend so much time
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on working with external libraries and interfaces and to focus more on con-
ceiving and implementing an idea of their own choosing. A guide is provided
along with the assignment and references the two main block cipher models as
well as a more modern, popular model known as ARX, which stands for add-
rotate-XOR, the only three operations such an algorithm is allowed to use[2].
The actual handout has code examples of very simplistic functions that do not
fulfill desirable cryptography qualities but show how the initial formatting can
be approached. For the assignment, students will first choose their preferred
model. Students will then design and create the following functions: substitu-
tion, permutation, round-key generation. Grading for a student is based on the
average number of bits of an input that are flipped by the student’s functions.

The desirable cryptographic qualities are based on Claude Shannon’s con-
cepts of confusion and diffusion. Confusion obscures the relation between the
ciphertext and key, and diffusion obscures the relation between the ciphertext
and plaintext[9]. Effectively, we want the students to understand that the goal
is to achieve a function or functions in which changing one bit of the key dras-
tically changes the ciphertext, and similarly, changing one bit of the plaintext
yields a drastically different ciphertext. From a technical point of view, the
gold standard of diffusion, means that the change of a single bit of plaintext
will statistically change half of the bits in the cipher text[9]. Guidance can
be provided and independent research is encouraged. The assignment is pur-
posely flexible to entail more or less complexity and work, and ultimately allow
maximum student input.

4 Results
The DES assignment is available for viewing online. There are two listings: the
blank assignment code, with several empty functions for students to fill out[3]
and a completed assignment, as one possible example for a finished, working
DES solution[11]. The created handout of the AES assignment with examples
of simple implementations of block cipher components can likewise be found
online for viewing or for download as a pdf[1].

5 Conclusion
There is much to learn about the world of encryption and many ways to teach
it. We focused our study more on the implementations of encryption algorithms
and less on the related aspects such as strength from increased key-lengths and
APIs that utilize encryption. The goal we set out to achieve was the creation
of assignments that teach students about symmetric encryption models and
paradigms in a manner that involves more of the students’ participation. We
achieved this goal by creating two assignments that have students code an ex-
isting, simpler encryption and then allow them to create their own. Something
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to note, these assignments provide the key to be used as the shared secret
key, but in practical applications there needs to be a way to distribute and/or
share that secret key. The Diffie-Helman Key Exchange is a good, possible
next assignment to learn how two parties would acquire that key securely.

Another major aspect of security naturally moves toward asymmetric en-
cryption and RSA. Secure communication is faster through symmetric encryp-
tion and one of the numerous, critical purposes that RSA fulfills is the exchange
of shared secret keys. As such, it is an important and prevalent concept in un-
derstanding network security.
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Teaching offensive security (penetration testing/ethical hacking) is becoming a
standard practice in computer science, information systems, information tech-
nology and cybersecurity programs [3, 1, 6]. Penetration testing/ethical hack-
ing allow students to perform a sequence of different phases to gain the needed
cybersecurity knowledge and skills using current tools. Through a hands-on ap-
proach, penetration testing/ethical hacking courses allow students to develop
offensive cybersecurity competency enabling them later to build layered de-
fenses that hardens the systems to penetration. Teaching penetration testing
requires an attacking host that is used to perform the different phases of pene-
tration testing on vulnerable hosts. Using an encapsulated virtual environment
where the different attacks on vulnerable hosts can be conducted, reduces the
risk to institutional networks and systems.

Tutorial Description

In this tutorial I will provide a hands-on working example of how to create a
penetration testing environment using VMware Workstation Pro and Oracle
VM VirtualBox on laptops or PCs[5, 4]. The virtual environment will include
an Offensive Security Kali Linux VM, a Ubuntu Linux VM, a Metasploitable
Linux VM by Rapid7, and a customized Windows XP VM.

In the tutorial I will illustrate and explain the following:

1. Offensive tools on Kali Linux
2. Port and operating system scanning using Nmap
3. Vulnerability assessment

∗Copyright is held by the author/owner.
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4. Exploitation using Metasploit Meterpreter
5. How to use the Social Engineering Toolkit

Tutorial program

Step-by-step implementation and testing of a penetration testing virtual envi-
ronment using multiple hosts.

Expected outcomes

Attendees will exit the tutorial with a working VMware or VirtualBox envi-
ronment and learn how to perform some of the phases of penetration testing
using a Kali Linux attack host.

Target audience

Any faculty who desires to incorporate a virtual environment and use it in a
penetration testing/ethical hacking course.

Prerequisites

Attendees should be familiar with Linux, networking, and some programming
knowledge (Java, C++, Python, etc.). It is highly recommended that attendees
bring their own laptops with VMware or VirtualBox and a Kali Linux VM
installed [2].
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Abstract

The foundational aspects of computer science are usually explained
with mathematical models such as Finite Automata (FA), Pushdown
Automata (PDA) and Turing Machines (TMs) because understanding
the scope and limitations of computation are inherently embedded in
an overlapping area of mathematics, logic and cognition. This area is
one of the most challenging fields in computer science. Students tend to
engage, and participate actively when the basic ideas are introduced in a
tutorial with multiple perspectives in multiple representations including
transition graphs, tabular forms and coded strings. Mathematical proofs
are provided in a gentle introductory session in order to help beginners.

Tutorial Description

The central ideas of computation are defined in an area commonly known as
the theory of computation or automata theory that comes from an interesting
overlap between mathematics, logic and cognition. Most learners will bene-
fit from a tutorial at their initial stages of learning. In order to have good
interactions with learners, multiple perspectives and multiple representations
are used for initial discussion of mathematical ideas[1, 2, 3, 4, 5, 6]. Math-
ematical models including FA, PDA, and TMs are explained with examples;
their processing styles and computing powers are compared with references to
languages they accept. The tutorial starts with explaining how FA can pro-
cess regular languages defined by regular expressions. That PDA can accept
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Context Free Languages (CFLs) is explained next. Finally, TMs are explained
with non-CFLs. Undecidable problems are explained with examples such as
integral polynomials[6]. Some supplemental materials from the following site
are used in this tutorial: http://www.asethome.org/mathfoundations/

Expected outcomes

Attendees will exit the tutorial with a good understanding of mathematical
foundations of computer science. Attendees will have free access to the sup-
plemental materials at the following site:
http://www.asethome.org/mathfoundations/

Target audience

Any faculty who desires to teach mathematical models of computation.

Prerequisites

None. Everybody is welcome to this tutorial. Intuitive explanations are pre-
sented in this tutorial with the assumption that the attendees do not have
any knowledge of the theory of computation, and they may be interested in
questions such as: What is computable? What is not computable?
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The coronavirus (COVID-19) epidemic environment has made academic in-
stitutions evaluate alternatives to traditional onsite classroom education. One
of the options being studied is a strong and effective online system with vir-
tual classrooms using state-of-the-art Learning Management Systems (LMS).
In many Science, Technology, Engineering, and Math (STEM) scenarios, es-
pecially in Computer Science (CS) curriculums, these online systems perform
as good as, or better than, the traditional onsite systems. Going forward,
new challenges and opportunities with this new educational paradigm must be
critically examined, and CS educators must strive to learn how to effectively
teach in this online setting. This research focusses on undergraduate CS classes
where most of the content is delivered virtually with the aid of online technolo-
gies. As more students enroll in virtual courses, questions, and concerns about
ethical teaching practices in digital classrooms continue to surface. Handling
of due process, freedom of expression, diversity among students, individual
rights, etc. are among the many critical issues that need to be evaluated and
carefully integrated in the content delivery and evaluation processes. Teachers
are ethically accountable to serve the learning needs of all learners, and to do
this they must recognize, understand, and appreciate the cultural backgrounds,
values, beliefs, world views, and wide-ranging experiences that students bring
to the class. Instructors must understand the motivations of these culturally
diverse group of students to be able to connect with them, to motivate them,
and to create a positive learning environment for the learners. CS education is
important because it teaches logical and evidence-based critical thinking skills
and develops a desire for innovation. Beyond the benefit of learning STEM, CS

∗Copyright is held by the author/owner.

117



curriculums help learners in the problem-solving and exploratory learning that
leads to success across a variety future endeavors across disciplines. Access to
CS education is a social justice issue that goes far beyond the latest trends. It
is becoming increasingly apparent that we are at a crucial point when those
who effectively apply CS concepts can improve the lives of many and contribute
to the acceleration of profound societal advancements. As educators, teachers
in academia have the responsibility to leverage the power of STEM, includ-
ing CS, to help address disparities in the immediate communities and beyond,
which would hopefully result in significant and positive progress. This research
argues that CS undergraduate education must serve as a context for moral de-
velopment by expanding student argumentation and discourse to include the
moral and ethical consequences of decision making. This study contains some
current thoughts in ethics education in CS curriculums including intellectual
engagement versus emotional engagement, the curricular structures, the nature
of engineering faculty, and the engineering of the topic of ethics.

Based on the above background, this research analyzes some of the areas of
digital privacy, intellectual property, and professional practice, in teaching CS
courses in undergraduate programs and suggests some best practices to deal
with these challenges. This ongoing study is narrowed to undergraduate online
CS programs due to the backgrounds of the authors and their experiences in
teaching in this space. It is expected that this preliminary report and the light-
ning talk will generate interest, questions, and suggestions from the audience,
thus enhancing the scope and the quality of this effort.
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