The Journal of Computing
Sciences in Colleges

Papers of the 32nd Annual CCSC
Rocky Mountain Conference

October 20th-21th, 2023
Metropolitan State University of Denver
Denver, CO

Baochuan Lu, Editor Pam Smallwood, Regional Editor
Southwest Baptist University Regis University

Volume 39, Number 2 October 2023

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright (©2023 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

Table of Contents

The Consortium for Computing Sciences in Colleges Board of

Directors 5
CCSC National Partners 7
Welcome to the 2023 CCSC Rocky Mountain Conference 8

Regional Committees — 2023 CCSC Rocky Mountain Region 9

The Generation of a Large Bank of Randomized Questions in a
Discrete Structures Course 10
Jose Cordova, University of Louisiana at Monroe

Teaching and Learning With Virtual Reality 19
Daniel C. Cliburn, University of the Pacific

Like a Bee to a Honeypot: A Bug Bounty Capstone Project 28
Steven Fulton, Matthew Dickerman, Madison Gillan, Krittawata Su-
uthai, Alison Thompson, Peter Ye, United States Air Force Academy

Digital Circuit Projects for an Accelerated Online Undergraduate
Computer Architecture Course 38
Bin Peng, John Cigas, Park University

A Stakeholder Visualization Tool Study 49
Johanna Blumenthal, Richard Blumenthal, Regis University

ML Production Systems Course at a Polytechnic PUI 62
Ronald J. Nowling, Milwaukee School of Engineering

The Structure of a Graduate Defensive Cybersecurity Course 72
Mohamed Lotfy, Utah Valley University

Experiences Introducing the POGIL Methodology for Teaching
Computer Organization & Architecture 85
Pamela M. Smallwood, Regis University

Is the Amount of Computer Game Play Since High School Asso-
ciated With Mental Health Outcomes in Adulthood? 98
Max Mare, Black Hills State University

Developing Identity-Focused Program-Level Learning Outcomes
for Liberal Arts Computing Programs — Conference Tutorial 108
Jakob Barnard, University of Jamestown, Grant Braught, Dickinson

College, Janet Davis, Whitman College, Amanda Holland-Minkley, Wash-
ington & Jefferson College, David Reed, Creighton University, Karl
Schmitt, Trinity Christian College, Andrea Tartaro, Furman Univer-

sity, James Teresco, Siena College

Getting Started on Jetstream2 — Conference Tutorial 111
Zachary Graber, Daniel Havert, Indiana University

How to Install and Use a Security Onion NIDS VM in a Defensive
Cybersecurity Course — Conference Tutorial 113
Mohamed Lotfy, Utah Valley University

Teaching Global and Ethical Perspectives in Information
Technology — Conference Tutorial 115
Cynthia Krebs, Jan Bentley, DeDe Smith, Utah Valley University

Incorporating Computing for the Social Good Into the Classroom
— Conference Workshop 118
Johanna Blumenthal, Richard Blumenthal, Regis University

Platform-Free Mobile Application: Chatbot That Uses ChatGPT
— Poster Abstract 120
Marcos Pinto, NYC College of Technology

Teaching an Undergraduate Computer Graphics Elective Course:
Lessons Learned — Poster Abstract 121
George Thomas, University of Wisconsin Oshkosh

Reviewers — 2023 CCSC Rocky Mountain Conference 122

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:

Scott Sigman, President (2024),
ssigman@drury.edu, Mathematics and
Computer Science Department, Drury
University, Springfield, MO 65802.
Karina Assiter, Vice

President /President-Elect (2024),
KarinaAssiter@landmark.edu, Computer
Science, Landmark College, Putney, VT
05346.

Baochuan Lu, Publications Chair
(2024), blu@sbuniv.edu, Division of
Computing & Mathematics, Southwest
Baptist University, Bolivar, MO 65613.
Brian Hare, Treasurer (2023),
hareb@Qumkc.edu, School of Computing
& Engineering, University of
Missouri-Kansas City, Kansas City, MO
64110.

Cathy Bareiss, Membership Secretary
(2025),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical &
Engineering Sciences, Bethel University,
Mishawaka, IN 46545.

Judy Mullins, Central Plains
Representative (2023),
mullinsj@umbkec.edu, University of
Missouri-Kansas City, Kansas City, MO
(retired).

Michael Flinn, Eastern Representative
(2023), mflinn@frostburg.edu,
Department of Computer Science &
Information Technologies, Frostburg
State University, Frostburg, MD 21532.

David R. Naugler, Midsouth
Representative (2025),
dnaugler@semo.edu, Brownsburg, IN
46112.

David Largent, Midwest
Representative(2023),
dllargent@bsu.edu, Department of
Computer Science, Ball State University,
Muncie, IN 47306.

Mark Bailey, Northeastern
Representative (2025),
mbailey@hamilton.edu, Computer
Science Department, Hamilton College,
Clinton, NY 13323.

Shereen Khoja, Northwestern
Representative(2024),
shereen@pacificu.edu, Computer
Science, Pacific University, Forest Grove,
OR 97116.

Mohamed Lotfy, Rocky Mountain
Representative (2025),
mohamedl@uvu.edu, Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.

Tina Johnson, South Central
Representative (2024),
tina.johnson@mwsu.edu, Department of
Computer Science, Midwestern State
University, Wichita Falls, TX 76308.
Kevin Treu, Southeastern
Representative (2024),
kevin.treu@furman.edu, Department of
Computer Science, Furman University,
Greenville, SC 29613.

Bryan Dixon, Southwestern
Representative (2023),
bedixon@csuchico.edu, Computer
Science Department, California State
University Chico, Chico, CA 95929.

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor,
bin.peng@park.edu, Department of
Computer Science and Information
Systems, Park University, Parkville, MO
64152.

Ed Lindoo, Associate Treasurer & UPE
Liaison, elindoo@regis.edu, Anderson
College of Business and Computing,
Regis University, Denver, CO 80221.
George Dimitoglou, Comptroller,
dimitoglou@hood.edu, Department of

Computer Science, Hood College,
Frederick, MD 21701.

Megan Thomas, Membership System
Administrator,
mthomas@cs.csustan.edu, Department
of Computer Science, California State
University Stanislaus, Turlock, CA
95382.

Karina Assiter, National Partners
Chair, karinaassiter@landmark.edu,
Landmark College, Putney, VT 05346.
Deborah Hwang, Webmaster,
hwangdjh@acm.org.

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Gold Level Partner
Rephactor

Welcome to the 2023 CCSC Rocky Mountain Conference

Welcome to the 32nd annual conference of the Rocky Mountain (RM) Re-
gion of the Consortium for Computing Sciences in Colleges. The CCSC RM
region board members are grateful for the authors, presenters, speakers, atten-
dees, and students participating in this year’s conference.

This year we received 14 paper submissions on a variety of topics, of which
9 papers were accepted for presentation in the conference. Multiple review-
ers, using a double-blind paper review process, reviewed all submitted papers
for the conference. The review process resulted in an acceptance rate of 64%.
In addition to the paper presentations, there are five peer reviewed tutorial-
s/workshops. This year is the first time we accepted scholarly posters. The
review process resulted in two posters for presentation. We truly appreciate
the time and effort put forth into the reviewing process by all the reviewers.
Without their dedicated effort, none of this would be possible. A special thank
you goes to co-Submission chair Karina Assister.

The CCSC RM region board would like to thank our national gold level
partner Rephactor, as well as the Association for Computing Machinery in-
cooperation with SIGCSE.

We hope you enjoy the conference and take the opportunity to interact
with your colleagues and leave both enthused and motivated. As you plan
your scholarly work for the coming year, we invite you to submit a paper,
workshop, tutorial, or panel for a future CCSC RM region conference, or to
serve as a reviewer or on the CCSC RM region board. Please encourage your
colleagues and students to participate in future CCSC RM region conferences.

Mohamed Lotfy, PhD
Utah Valey University
Conference Chair

2023 CCSC Rocky Mountain Conference Steering

Committee
Mohamed Lotfy
Conference chairo Utah Valley University, UT
Ed Lindoo
Treasurero.eomniim e Regis University, CO
Pam Smallwood
Editor ... Regis University, CO
Karina Assiter
Submission Co-chairol Landmark College, VT
Mohamed Lotfy
Submission Co-chair Utah Valley University, UT
Dan McDonald
Webmasteroooiiiiiiiii Utah Valley University, UT
Jenny Nehring
Publicity chair i Utah Valley University, UT
Ed Lindoo
Registraro Regis University, CO
Jody Paul
Site Co-chair Metropolitan State University, CO
Thyago Mota
Site Co-chairc.coiiiiat, Metropolitan State University, CO
Mohamed Lotfy
Program Chair ... Utah Valley University, UT
Michael Leverington
Student Posters Co-chair Northern Arizona University, AZ
Troy Taysom
Student Posters Co-chair Utah Valley University, UT

Kodey Crandall

Student Programming Competition Co-chair Utah Valley University, UT
Dave Loper

Student Programming Competition Co-chair Utah Valley University, UT

Regional Board — 2023 CCSC Rocky Mountain Region

Mohamed Lotfy, Board Representative Utah Valley University, UT
Ed Lindoo, Treasurercooiiiiiiiniinine... Regis University, CO
Pam Smallwood, Editor, Regis University, CO
Dan McDonald, Webmaster Utah Valley University, UT

The Generation of a Large Bank of Randomized
Questions in a Discrete Structures Course*

Jose Cordova
Department of Computer Science

University of Louisiana at Monroe
Monroe, LA 71209

cordova@ulm.edu

Abstract

This paper describes a system designed to generate a large bank of
questions containing randomized elements for certain topics in an intro-
ductory discrete mathematics course. The resulting questions introduce
random parameters into questions designed to test a student’s mastery
of various learning outcomes in propositional logic. The system stores
randomly generated questions in an XML-based file format that can be
imported into a learning management system for assignment as home-
work exercises and/or quiz questions. The question bank, which includes
hundreds of questions of various structural types in six areas of proposi-
tional logic, has been used successfully in three sections of our discrete
structures course.

1 Introduction

The effort described in this paper is part of a larger study designed to ascer-
tain the effect of randomized vs. non-randomized homework assignments in
various areas of computer science. A previous paper [2], which focused on our
data structures course, reported our initial findings that there was little or no
correlation between the performance of students in non-randomized homework

*Copyright (©)2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

10

assignments and their performance in corresponding code-completion exam
questions.

The above-mentioned paper also discussed possible reasons leading to the
apparent lack of impact of homework exercises on students’ mastery of learning
objectives, as indicated by their performance on exam questions. One possi-
bility is that, given a uniform set of homework questions presented to a group
of students, the correct answers are shared among students within the same
course or possibly among students taking the course in different sections or dif-
ferent semesters. The natural research question to be examined is whether the
introduction of randomized elements in homework questions affects the results
significantly. To help with this research, the author has developed software
to generate a large bank of questions in an introductory discrete structures
course. This paper describes the nature of the questions generated, the general
approach used by the software, and preliminary experiences of using the test
bank in an actual classroom setting.

2 Background

While previous research studies have investigated the effectiveness of online
homework assignments as predictors of test scores ([4], [5], [6]), little empha-
sis has been placed on studying the effects of homework randomization. In
contrast, Chen et al [1] studied the impact of question randomization on asyn-
chronous exams in an effort to limit collaborative cheating. Interestingly, the
researchers found that the effects of collaborative cheating were significantly
reduced by using even relatively small question pools consisting of three or four
problems.

Commonly used Learning Management Systems (LMS) —such as Moodle
and Canvas— have traditionally provided instructors with the ability to com-
pose questions in which a numerical answer is computed from other numeric
value(s) drawn randomly from a specified range when the question is presented
to the student. This type of calculated formula question allows an instructor
to write a question once while effectively generating multiple versions of the
question. However, in computer science, there are several types of student
outcomes which cannot be assessed adequately by calculated formulae using
numeric values. For instance, a typical question in an introductory discrete
structures course requires students to select the correct symbolic logic trans-
lation of an English sentence. The following example is taken from a popular
introductory textbook in discrete structures for computer science majors [3].

Let s = “stocks are increasing” and i = “interest rates are steady.” Write the
statements below in symbolic form using the symbols =, A, V and the letters s

11

and 1 to represent component statements.
a. Stocks are increasing but interest rates are steady.
b. Neither are stocks increasing, nor are interest rates steady.

When giving electronic assessments using an LMS, an instructor could pro-
vide students with a list of choices —each containing an expression in symbolic
form— including the correct answer and several distractors. However, if the
intent is to assign randomized assessments, one would need to generate mul-
tiple similar questions by modifying either the component statements or the
structure of the expression, or both. Such a task would require a significant
amount of effort if performed manually. Furthermore, if such an effort were
to be undertaken for various student learning outcomes, the amount of time
required of the instructor would be prohibitive.

To help address these obstacles, we have developed software to generate
arbitrarily large numbers of questions, such as the one above, in a format that
can be imported into the Moodle LMS. The sections that follow describe the
methodology used and the resulting structure of the generated questions.

3 Methodology

When designing a system to generate a bank of questions to be used in random-
ized assessments, one can include randomness in at least two ways: parameter
randomization and structural randomization. In parameter randomization, the
structure of the question is consistently duplicated, but different parameter
values are used randomly, as is the case with the calculated formula question
types discussed in the previous section. In contrast, with structural random-
ization, both the parameter values and the form of the question (as well as the
solution) change from question to another.

Consider, for instance, a learning outcome from our introductory discrete
structures course related to the book example presented in the previous section:

the student will be able to select the correct symbolic logic translation

of an English sentence.

When applying parameter randomization, one can generate multiple ques-
tions of the form:

Given the statements p: <p> and q: <q>, select the correct
symbolic representation for the sentence: <p> but <q>

where <p> and <q> are English statements such as “stocks are increasing”
and “interest rates are steady.” By replacing the values of <p> and <q> with

12

randomly selected statements, one can programmatically generate many ques-
tions, each containing a different English sentence. Of course, in all cases, the
student is simply asked to recognize and select the conjunction (p A q) from a
list of different choices. To introduce structural randomization, one can mod-
ify the form of the question (and the corresponding correct answer) as in the
following:

Given the statements p: <p> and q: <q>, select the correct symbolic
representation for the sentence: <p> only if <q>

If the system draws random values for p and q from a list of n distinct
statements, it is possible to generate n(n-1) variations of each question form,
since there are n choices for p and n-1 choices for q. Furthermore, by system-
atically generating negations of the original statements, the number of possible
variations increases to 2n(2n-2), given the constraint that the value of q should
be neither p nor ~p. The resulting question bank can be imported into the
LMS and used as the basis for homework exercises in which a subset of the
questions is selected at random.

4 Implementation

The process described above has been used to generate questions of various
structural types in several areas of our introductory discrete structures course.
In this paper, we focus on student outcomes and associated questions related
to the propositional logic area. The process involves, as its first step, the
construction of a data file containing an arbitrary number of statements of the
form <subject> is <object>. While various sentence structures could be used,
having a simple and uniform structure facilitates the syntactic manipulations
to be implemented by the software. A sample file might contain statements
such as:

the weather in Chicago is windy

the food in Italy is delicious

the architecture in Paris is stunning

the color of the new dress is blue

The data file, which could be constructed manually or generated program-
matically, can contain any number of statements, although as indicated be-
fore, the number of possible question variations involving two variables grows
quadratically with respect to the number of statements in the source file. In
practice, we have used data files containing approximately 30 statements. Fur-
thermore, different data files could be used to generate alternative question

13

banks with minimal effort.

For a question type with two variables, such as the examples presented in
the previous section, the question-generation software module randomly selects
values for <p> and <q>, randomly constructs the negation of either <p> or
<q>, and constructs the question in a format compatible with the Moodle
import feature. The system repeats this process as many times as necessary to
generate the desired number of questions, which are then stored in an output
file. Figure 1 contains a sample randomly generated question in Moodle XML
format (some of the optional XML elements have been removed in the interest
of saving space and aiding in comprehension).

It should be noted that, although the correct answer (shown last in the
code snippet) involves the conjunction of two statements, the software selects
and presents three random statements to increase the number of possible false
choices. The question options also specify that a single answer should be
selected and that the possible answers should be shuffled every time a question
is rendered. Figure 2 contains a snapshot of the question when rendered in a
Moodle quiz. By randomly populating the values of the individual statements
and shuffling the order in which choices are presented, there is greater difficulty
in copying another student’s answers.

After being stored in the LMS question bank, the generated questions are
assigned randomly to students as homework exercises or quiz problems. When
a sufficiently large number of questions is generated, the probability of having
two or more students presented with the same question is very low. In addition,
the random selection of exercises from a large set of questions facilitates the
possibility of granting a student multiple attempts without repeating questions
from one attempt to the next. Slight modifications to the software allow for the
generation of pools of alternative questions whose correct answers match some
of the other logic expressions, to be used as distractor choices in the sample
question shown in Figure 2. Consequently, a homework assignment or other
assessment that draws random questions from the various pools effectively
introduces both parameter randomization and structural randomization.

Although not shown in Figure 1, the Moodle XML format allows the in-
clusion of general question feedback as well as individual feedback for each
of the distractors. Figure 3 presents another randomly generated question in
which the student is asked to apply known logical equivalences to select the two
statements that are equivalent to the original implication. As explained in the
previous example, parameter randomization is achieved by randomly selecting
(and possibly negating) statements for the antecedent and consequent.

14

‘yeutIo TINX O[POOJN Ul uorsong) sydureg :T oIn3ig

<uoTisanby:
<IIMSUR /><AXIY /o< [[<d/>q fpuey T<ds | WIVID] | ><IX215<, TUIY,,=1PWICT LO0QT.=UCTIDORII J3msue>

<TIMSUR /><IXIY /o< [[<d/> (5 fpuey q) fTo% I~<d>])WIva:
<ISMESUR /><3X8] /o< [[«d/>g fpuey I~od>]¥Ivao)

<TAMEUR />£IXBY <[[<d/>5 fpuey T<d>]¥IVAD]

<IIMSUR /><AIXIY f><[[«d/> (5 fpuey g) !puey J<ds]WIWa:
<IIMSUR />CAIXIf><[[<d/> (5 !T0%) !puey J<d>]WIVAC
<ISMEUR/><AXSA/>< [[<cd /> (5 Ipuey g~) 30% J<d>]¥ivao]
<IIMEUR f>£AXKIYf>< [[<d/> (5 pues q)
<IBIMEUR /><ARIY />« [[<d/>q

<TIBMSUR /><AXBYf>< [[<d/> (5 ‘109 q) ‘pu

> ARBYI>C, TWIY,=1PUIOT ,0.,=UCTIDORIT IaMSUR>
>£3ABY> L, TWIY,=IPWIOT ,0,=UCTIDRI] Iamsue>
>€IXIY> <, TUIY,=IFWIOT ,0u=UOTIDRIT JIMSUE>
>€3XIL> <, TUIY,=1PWIOT ,0.,=UCTIZPI] II3MSUE>
< 3XB13 €, TUIY,=1FPWUI0T ,0,=UCTIDEI] IaMSUE>
>€IXBY> <, TURY,=1FUIO] ,Qu,=UCTIDEIJ JISMSUP>
Ted» | WIWAD] | ><€3XIY> <, TWIY,=IPWIOT ,0,=UOTIDEI] IJIMSUE>
T<ds | YIVAD] | ><3XSI> <, TWIY,=10WICT ,0,=UCTIORIT IS3MSUR>
>€AXNBA>C, TWIY,=1FWIOT ,Qu=UOTIDOEI] JISMSUE>
<BUTISqUMUIaMSUR />PUou<bUTISqUNUISMSURS
<SIBMSURITIINYS />BNIJLEIIMSURSTIINYS >

<atbuts />enazcatburss
<speabarnelap/>00° 1<2peibitneyap>
<axajuorasanb />
<3X33 />
c[[ed/s<cBbuoais /> TNITIN®aG ST uochues purIo Yyl pur Aotds sT poog TRUl <bBuoiiss<ds
<d/»:moTagq j3uawajels a2yl I0J UOTIETSURII 3ID2II00 ayj jdaTased>

cdf»<buorls /> BuTuunls ST STIEd UT 2INld22a3TUY2IR a2yl :scbhuocrisscds
0I15 /> TnFTIneaq sT ucAuen puels ayl :g<buoriss<ds
<d/»<bucIas /> AoTds ST po03 TEL tI<buoIls»<d>
<d/>»:sjuswaiels DutmoTIol =Yl =29 s 'q '3 3a1cd>
J¥IYaD] i ><INII>
<, TW3Y,=319UI07 3IXIjuUcTiIsanb>
<BWEU/> <1X81/> TZ OFHBOT 03 eOuUsjuUes SIETSURILCINSI> <IWEU>

<d/><b

<.®soToysTITNR,=2di3 uorisanb:

15

Letr, b, and s be the following statements:

r: Thai food is spicy

b: the Grand Canyon is beautiful

s: the architecture in Paris is stunning

Select the correct translation for the statement below:

Thai food is spicy and the Grand Canyon is beautiful

O rvb
O =~rab
O ~rvibanasg)
O ra(bas)
O rab
O ~ra(vs)
O ras
O rvibas)
O rabvs)

O rv(~bas)

Figure 2: Rendering of Sample Question in a Moodle Quiz.

Consider the statement below.

If Thai food is not spicy, then the food in Italy is not delicious

Which of the following are logically equivalent to the above statement? (select as many as applicable).

16

.
]
O
O
O

Thai food is spicy, or the food in Italy is not delicious
If the food in Italy is delicious, then Thai food is spicy
If the food in Italy is not delicious, then Thai food is not spicy
If Thai food is spicy, then the food in Italy is delicious

Thai food is spicy, and the food in Italy is not delicious

Figure 3: Parameter Randomization with Multiple Correct Answers.

The process described in this section has been used to generate thousands
of questions that test the student’s ability to perform the following tasks in the
context of propositional logic:

e Translate English sentences into symbolic logic expressions.

e Translate logic expressions into corresponding English sentences.

e Select the correct negation of English sentences involving disjunctions
and conjunctions.

e Identify the contrapositive, converse, and inverse form of an English sen-
tence containing an implication.

e Identify a logically equivalent sentence of an English sentence containing
an implication.

e Select the correct negation of an English sentence containing an implica-
tion.

The question bank was used in three sections of our discrete structures course
in the Spring 2023 semester totaling almost one hundred students. The large
number of questions allowed us to assign homework exercises that draw random
questions from one or more structural types in such a manner that no two stu-
dents had the same questions. The same process was used when administering
quizzes and tests in a proctored environment.

5 Summary and Avenues for Further Research

We have described the design and general implementation of a software system
that generates questions to assess several learning outcomes in the area of
propositional logic within the context of an introductory course in discrete
structures. The generated questions have been utilized to assign homework
exercises as well as proctored quizzes and tests in three sections of the course.

As explained in the introduction, the system was developed as part of a
wider effort to study whether the randomization of homework assignments
has a measurable effect on students’ performance. While this paper has fo-
cused on the propositional logic area, we are extending the system to generate
randomized questions to assess outcomes in the areas of predicate logic and
combinatorics. As we expand the study to other areas of computer science,
we will explore opportunities for randomizing questions in data structures and
algorithms.

As mentioned in the paper, the system currently generates question files
in Moodle XML format, which was selected because of its flexibility and ease
of import. We plan to modify the software by adding an option to output
questions using alternative formats that can be imported by other commonly
used LMS platforms.

17

References

[1]

2]

3]

4]

5]

[6]

18

Binglin Chen, Matthew West, and Craig Zilles. “How much randomization
is needed to deter collaborative cheating on asynchronous exams?” In:
Proceedings of the Fifth Annual ACM Conference on Learning at Scale.
2018, pp. 1-10. DOI: 10.1145/3231644.3231664.

Jose Cordova et al. “On the correlation between homework problems and
test code-completion questions in a data structures course”. In: Journal of
Computing Sciences in Colleges 36.5 (2021), pp. 180-188.

Susanna S Epp. Discrete mathematics with applications. Cengage learning,
2010.

Mingyu Feng and Jeremy Roschelle. “Predicting students’ standardized
test scores using online homework”. In: Proceedings of the Third (2016)
ACM Conference on Learning@ Scale. 2016, pp. 213-216. pDOI: 10.1145/
2876034 .2893417.

Christiane Frede and Maria Knobelsdorf. “Exploring how students per-
form in a theory of computation course using final exam and homework
assignments data”. In: Proceedings of the 2018 ACM Conference on In-
ternational Computing Education Research. 2018, pp. 241-249. por: 10.
1145/3230977.3230996.

Andrew Grodner and Nicholas G Rupp. “The role of homework in student
learning outcomes: Evidence from a field experiment”. In: The Journal
of Economic Education 44.2 (2013), pp. 93-109. por: 10.2139/ssrn.
1892173.

Teaching and Learning With Virtual Reality”

Daniel C. Cliburn
Department of Computer Science
University of the Pacific
Stockton, CA 95211

dcliburn@pacific.edu

Abstract

Virtual reality (VR) is an exciting field with numerous application
areas, one of which is education. It has never been easier for instructors
to teach with and for students to learn about VR technologies. This pa-
per provides an overview of many ways that VR technologies are being
integrated into computing education. Software tools are described that
support teaching and learning about VR, and the author’s experiences
teaching VR and using VR technologies are presented. The paper con-
cludes with a discussion of some of the barriers to wide scale adoption
of VR technologies in computing education.

1 Introduction

Virtual reality (VR) technologies have been around for decades, but only re-
cently has the more affordable cost of high quality VR equipment allowed
these technologies to be easily accessible to the average consumer. Faculty
and students at practically every academic institution can now interact in the
“metaverse,” 3D virtual worlds accessible through the Internet and often in
VR][7]. VR experiences can allow students to practice or observe concepts that
would be difficult to do otherwise, or interact in ways not possible through
other online mediums. Many published research studies report learning gains
when VR technologies are used in educational settings[14].

*Copyright (©)2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

19

The purpose of this paper is to provide an overview of many ways that VR
technologies are being used in computing education. The next section defines
the field of VR and discusses previous work to incorporate VR technologies
into educational settings. Then, several tools for developing web-accessible
VR content are described. Next, the author’s experiences teaching with and
about VR are presented. Finally, the paper concludes with a discussion of
barriers to wide scale adoption of VR technologies in educational settings and
directions for future work.

2 Background

Sherman and Craig|27] describe five elements of a VR experience: the par-
ticipants, the creators, a virtual world, immersion, and interactivity. Clearly,
there would be no need for VR content without someone to experience it, and
there would be no VR content without someone to create it. Unfortunately, too
often those with the domain knowledge necessary to conceptualize an effective
educational VR experience have not had the expertise to create the experi-
ence. Similarly, those with the expertise to create VR applications often have
not had sufficient domain knowledge to conceptualize an effective educational
VR experience. Developing a partnership between educators and VR content
creators that is beneficial to both has been challenging.

Virtual worlds are 3D computer generated spaces that allow interactions
such as selecting and manipulating virtual objects, exploring virtual spaces,
and interacting with other users. Immersion is the element of a VR experience
described by Sherman and Craig[27] that may be most confusing to students,
in part, because the term immersion can refer to multiple concepts. Sherman
and Craig describe mental immersion as a “state of being deeply engaged,” such
as how you may feel when reading a good book or playing a great video game.
Those in the VR community often refer to this phenomenon as presence. Sher-
man and Craig describe physical immersion as “bodily entering into a medium,”
which involves the use of technology devices (such as a VR headset) to present
feedback to the user’s senses. The goal of a true VR experience is to allow
participants to interact with a virtual world through immersive technology de-
vices while feeling a sense of presence greater than what is possible through
traditional computing equipment (such as a computer monitor, keyboard, and
mouse). However, there is certainly a place in educational settings for what
is sometimes referred to as “desktop VR” or “non-immersive VR,” which offers
a lower level of physical immersion through traditional computing equipment,
but is more broadly accessible since it does not require access to special VR
technology devices[24].

Educators have been discussing the use of VR technologies for decades|20,

20

22]. VR technologies have been used to create educational experiences in fields
such as anatomy[12], art history[6], astronomy|[5], and criminology[13]. Com-
puting educators have been using VR technologies to teach computer graph-
ics[15], sorting algorithms|2, 25|, and interdisciplinary collaboration|21]. Stu-
dents have found VR learning experiences to be more engaging and preferable
to similar non-immersive learning tools[25]. Cui and colleagues[12] report that
after experiencing their immersive learning sessions, students with lower spa-
tial abilities were able to score comparatively on assessments to students with
higher spatial abilities, suggesting that at least for some types of content, VR
might be particularly useful to students with lower spatial abilities.

Bricken[3] was among the first to discuss the concept of a virtual reality
learning environment (VRLE), which can provide students with virtual active
learning experiences that can be shared with others. VRLEs can motivate and
engage students[11, 23, 16], and their usage has been discussed for application
areas such as special education[17], industry[18], and engineering education|[28].
VRLEs have been used to hold online class meetings[10, 11, 23] as an alterna-
tive to other forms of distance education. Many modern VRLEs allow students
to represent themselves as avatars, and communicate with each other through
voice and text chat. Figure 1 shows an example of the author’s VRLE devel-
oped using Mozilla Hubs.

Figure 1: A virtual reality learning environment created with Mozilla Hubs.

21

3 Tools for Developing Web-Accessible VR

While game engines, such as Unreal Engine (unrealengine.com) and Unity
(unity.com), are used to develop much of the commercial VR content available
today, many other tools are available for creating web-accessible VR experi-
ences. One of the major benefits of creating web-accessible VR content is that
it is easy to share with others. Students can simply open the browser app on
their VR headset and enter the web address given to them by their instructor
to join an immersive VR class session or other educational VR experience. An-
other advantage of these tools is that they also allow for non-immersive access,
meaning that someone without a VR headset can still experience the content
through a browser on their computer.

Mozilla Hubs (hubs.mozilla.com) supports the development of custom
virtual worlds accessible online through a web browser or a VR headset. Stu-
dents can customize avatars to represent themselves in the virtual space (see
Figure 1). Hubs supports screen sharing, so instructors can present lecture
slides during a virtual class session. Hubs also supports voice chat and 3D
spatial sound, so someone’s voice becomes louder the closer an avatar is to
theirs. This makes it possible for students to split up into groups and go to
separate locations in the virtual space, so they can hold conversations not eas-
ily overheard by others. No coding experience is necessary to create a VRLE
in Hubs. Instead, Mozilla supplies a tool called Spoke, for customizing Hubs
spaces. Mozilla recommends a maximum capacity of 25 guests per room in
Hubs.

Virbela Frame (learn.framevr.io) is similar to Mozilla Hubs in many
ways. Frame supports the creation of VRLESs accessible through a web browser
or VR headset, with no coding necessary. Students can join virtual classrooms
using avatars, communicate through voice chat, and instructors can share their
screen to present lecture slides during virtual class sessions. For a fee, Frame
can accommodate up to 100 users at once.

A-Frame (aframe.io) supports development of VR applications that run
in a web browser using HTML and JavaScript. Students can use a tool called
Glitch to edit their code and deploy it online for free. A-Frame projects can be
experienced in VR through the browser app in a VR headset. The A-Frame
website contains numerous examples, tutorials, and documentation to help
students get started creating their own custom browser based VR applications.

PlayCanvas (playcanvas.com) is a browser-based game engine that can be
used to develop VR applications for the web. Like A-Frame, custom scripts can
be written with JavaScript and applications can be experienced in VR through
the browser app in a VR headset. The PlayCanvas Editor looks similar to
Unity’s interface, so students with Unity experience should be able to learn
PlayCanvas quickly. An unlimited number of public projects can be hosted on

22

the PlayCanvas website for free (projects can be made private for a fee). Nu-
merous tutorials and other learning resources are available on the PlayCanvas
website.

4 Teaching and Learning with VR

The author first became interested in VR technologies while a graduate student
in the year 2000. In his early years as a faculty member, he focused on how
to teach VR concepts to undergraduate students at primarily undergraduate
institutions. The cost of the technologies necessary for teaching immersive VR
were substantially more than today, creating significant challenges. Most VR
education at the author’s institution took place as a unit in an undergraduate
computer graphics course[9], and focused primarily on how to create VR appli-
cations. A few years later, the author began holding occasional class sessions in
Second Life (secondlife.com), which was used as a non-immersive VRLE[10].

In 2013, the Oculus Rift DK1 was introduced, which led to a dramatic
reduction in the cost of high-quality VR headsets. VR headsets have become
affordable and quite prevalent (at the time of this writing, a Meta Quest 2 can
be purchased for under $400). With game engines such as Unity and Unreal
Engine, developing VR content has never been easier, particularly for those
without significant programming experience. During this period, the author
began to spend less class time on how to develop VR applications, and more
time on foundations of VR and evaluation of VR content.

In 2018, the author began teaching a cross-disciplinary VR course[8] that
has been taken by students from Computer Engineering, Computer Science,
Education, Engineering Management, Psychology, Mechanical Engineering,
and Media X (a major focusing on the intersection of arts, technology, and
emerging media). The first third of the course covers applications of VR, the
second third on foundations of VR, and the final third on evaluating VR ex-
periences. Working in cross-disciplinary teams, students developed and then
evaluated VR applications created for the Oculus Rift and HTC Vive using the
Unity game engine.

In 2021, the author obtained funding to purchase Oculus Quests for every
student enrolled for the VR course and for the first time most class sessions
were held in immersive VR[4]. A VRLE was created using Mozilla Hubs, and
students could join class sessions through the browser app in their Oculus
Quests. Thus, students were fully immersed in VR while learning about VR.
However, it should be noted that students were required to be on campus to
work with their assigned teams on their final course projects. While students
felt that learning about VR in VR was a positive experience, some students
indicated that wearing their Quest for long periods was uncomfortable, and it

23

was very difficult to take notes during class sessions while wearing the Quest.

In fall of 2023, for the first time a completely virtual option of the VR
course will be offered. The goal is to make the course as broadly accessible
to as many students as possible, and from as many majors as possible. All
class sessions will be held in a VRLE, which students can attend through a
browser in their VR headset or their personal computer. Students will not
have to travel to campus to attend any class sessions or to complete course
assignments. Students will have the option to complete final course projects
individually, or in teams. Students will also have the option to complete fi-
nal course projects using immersive VR equipment available on campus or
complete web-based projects using their own equipment and Mozilla Hubs,
Virbela Frame, A-Frame, or PlayCanvas. Students that choose team-based
final projects will develop virtual reality applications proposed by faculty and
staff at the author’s institution. Students that choose individual final projects
will develop VR applications that they propose themselves. Instead of a final
exam, all students will present their final project at a virtual reality showcase
at the end of the term. Students may present in person on campus, or virtually,
whichever option they prefer and that best fits their final project.

5 Conclusion

In 1991, Bricken[3] identified cost, usability, and fear as barriers to the adop-
tion of VR technologies in educational settings. The cost of VR equipment
has dropped substantially since 1991, and the number of users experiencing
social VR applications in the metaverse has never been greater. Thus, cost
and fear are less likely to be barriers to the adoption of VR in educational
settings now than in 1991. However, usability may still be a concern. In a
recent study, Pirker and colleagues[26] identified “design of the user interface”
as a common issue with educational VR applications for computer science ed-
ucation. Furthermore, as described earlier, some tasks, such as note-taking,
that are straight forward in the real world are challenging in VR.

One of the greatest barriers today to the adoption of immersive VR tech-
nologies in computing education may be determining appropriate usages with
quantifiable benefits. Liu and colleagues[19] have begun to investigate the
types of learners that may benefit most from educational experiences in VR.
Other researchers report recently that, while VR is often cited as improving
attitudes of learners, increasing motivation, and providing an efficient learning
environment, more evidence-based research should be conducted to explore the
effectiveness of VR in computing education[1]. Many studies investigating edu-
cational uses of immersive VR are short term, and do not provide students with
multiple opportunities to experience the educational VR content[14]. Pirker

24

and colleagues|26] identified exploration into potential use cases of VR in class-
room settings as an important direction for future work.

Despite these barriers and limitations, VR remains a topic of great interest

to many computing students and educators. VR technologies have never been
more accessible, and developing VR content has never been easier. Identifying
effective ways to teach VR, utilize immersive technologies in the classroom,
and construct educational VR experiences remain important areas for future

work.

References

1]

2]

3]

4]

[5]

[6]

7]

8]

9]

Friday Joseph Agbo et al. “Application of virtual reality in computer
science education: A systemic review based on bibliometric and content
analysis methods”. In: Education Sciences 11.3 (2021), p. 142.

Akhan Akbulut, Cagatay Catal, and Burak Yildiz. “On the effectiveness
of virtual reality in the education of software engineering”. In: Computer
Applications in Engineering Education 26.4 (2018), pp. 918-927.

Meredith Bricken. “Virtual reality learning environments: potentials and
challenges”. In: Acm Siggraph Computer Graphics 25.3 (1991), pp. 178—
184.

Keely Canniff and Daniel Cliburn. “Teaching virtual reality in virtual
reality”. In: 2022 8th International Conference of the Immersive Learning
Research Network (iLRN). IEEE. 2022, pp. 1-5.

Hubert Cecotti. “A Serious Game in Fully Immersive Virtual Reality
for Teaching Astronomy Based on the Messier Catalog”. In: 2022 8th
International Conference of the Immersive Learning Research Network
(iLRN). IEEE. 2022, pp. 1-7.

Hubert Cecotti et al. “Virtual reality for immersive learning in art his-
tory”. In: 2020 6th International Conference of the Immersive Learning

Research Network (iLRN). IEEE. 2020, pp. 16-23.

Peter Allen Clark. “The Metaverse has already arrived. Here’s what that
actually means”. In: Time Mag (2021).

Daniel C Cliburn. “A cross-disciplinary course on virtual reality”. In: 2018
IEEE Frontiers in Education Conference (FIE). IEEE. 2018, pp. 1-5.

Daniel C Cliburn. “Incorporating virtual reality concepts into the intro-
ductory computer graphics course”. In: 2006 37th Technical Symposium
on Computer Science Education (SIGCSE). ACM. 2006, pp. 368-372.

25

[10] Daniel C Cliburn and Jeffrey L Gross. “Second Life as a medium for lec-
turing in college courses”. In: 2009 42nd Hawaii international conference
on system sciences. IEEE. 2009, pp. 1-8.

[11] Murat Coban and Idris GOKSU. “Using virtual reality learning environ-
ments to motivate and socialize undergraduates in distance learning”. In:
Participatory Educational Research 9.2 (2022), pp. 199-218.

[12] Dongmei Cui et al. “Evaluation of the effectiveness of 3D vascular stereo-
scopic models in anatomy instruction for first year medical students”. In:
Anatomical sciences education 10.1 (2017), pp. 34-45.

[13] F Jeane Gerard et al. “Work-In-Progress—CrimOPS—Gamified Virtual
Simulations for Authentic Assessment in Criminology”. In: 2022 8th In-
ternational Conference of the Immersive Learning Research Network (iLRN).
IEEE. 2022, pp. 1-3.

[14] David Hamilton et al. “Immersive virtual reality as a pedagogical tool
in education: a systematic literature review of quantitative learning out-
comes and experimental design”. In: Journal of Computers in FEducation
8.1 (2021), pp. 1-32.

[15] Birte Heinemann, Sergej Gorzen, and Ulrik Schroeder. “Teaching the
basics of computer graphics in virtual reality”. In: Computers & Graphics
112 (2023), pp. 1-12.

[16] Hsiu-Mei Huang, Ulrich Rauch, and Shu-Sheng Liaw. “Investigating learn-
ers’ attitudes toward virtual reality learning environments: Based on a
constructivist approach”. In: Computers € Education 55.3 (2010), pp. 1171
1182.

[17] Horace HS Ip and Chen Li. “Virtual reality-based learning environments:
Recent developments and ongoing challenges”. In: Hybrid Learning: In-
novation in Educational Practices: 8th International Conference, ICHL
2015, Wuhan, China, July 27-29, 2015, Proceedings 8. Springer. 2015,
pp. 3-14.

[18] Vasiliki Liagkou, Dimitrios Salmas, and Chrysostomos Stylios. “Realizing
virtual reality learning environment for industry 4.0”. In: Procedia Cirp

79 (2019), pp. 712-717.

[19] Jiaxu Liu et al. “Which Types of Learners Are Suitable for the Virtual
Reality Environment: A fsQCA Approach”. In: 2022 8th International
Conference of the Immersive Learning Research Network (iLRN). IEEE.
2022, pp. 1-5.

[20] Paul Moore. “Learning and teaching in virtual worlds: Implications of
virtual reality for education”. In: Australasian Journal of Educational
Technology 11.2 (1995).

26

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

Eric Nersesian et al. “Interdisciplinary Collaboration Approaches on Un-
dergraduate Virtual Reality Technology Projects”. In: 2020 IEEE Inte-
grated STEM Education Conference (ISEC). IEEE. 2020, pp. 1-8.

Max M North, Joseph Sessum, and Alex Zakalev. “Immersive visual-
ization tool for pedagogical practices of computer science concepts: A
pilot study”. In: Journal of Computing Sciences in Colleges 19.3 (2004),
pp- 207-215.

FEileen A O’Connor and Jelia Domingo. “A practical guide, with theo-
retical underpinnings, for creating effective virtual reality learning envi-
ronments”. In: Journal of Educational Technology Systems 45.3 (2017),
pp. 343-364.

Sujni Paul and Saif Hamad. “The Role of Virtual Reality in Story telling
and Data Visualization for motivating students in learning program-
ming”. In: 2020 Seventh International Conference on Information Tech-

nology Trends (ITT). IEEE. 2020, pp. 169-173.

Johanna Pirker et al. “The potential of virtual reality for computer sci-
ence education-engaging students through immersive visualizations”. In:
2021 IEEE Conference on Virtual Reality and 3D User Interfaces Ab-
stracts and Workshops (VRW). IEEE. 2021, pp. 297-302.

Johanna Pirker et al. “Virtual reality in computer science education:
A systematic review”. In: Proceedings of the 26th ACM symposium on
virtual reality software and technology. 2020, pp. 1-8.

William R Sherman and Alan B Craig. Understanding virtual reality:
Interface, application, and design. Morgan Kaufmann, 2018.

Diego Vergara, Manuel Pablo Rubio, and Miguel Lorenzo. “On the design
of virtual reality learning environments in engineering”. In: Multimodal
technologies and interaction 1.2 (2017), p. 11.

27

Like a Bee to a Honeypot:
A Bug Bounty Capstone Project*

Steven Fulton, Matthew Dickerman, Madison Gillan,
Krittawata Su-uthai, Alison Thompson, and Peter Ye
Department of Computer and Cyber Sciences
United States Air Force Academy
USAFA, CO 80841

{steven.fulton, c23matthew.dickerman,
c23madison.gillan, c23krittawata.su-uthai,

C23alison.thompson, c23peter.ye}@afacademy.af.edu

Abstract

Our research focuses on the use of a commercial bug bounty program
as part of a senior capstone project for Computer Science and Cyber
Science majors. We look at the use of such programs as fulfillment of the
accreditation requirement for a major project which requires integration
and application of knowledge and skills acquired in earlier course work.
We approached the project by using the Cyber Attack Methodology to
systematically test vulnerabilities and identify possible areas for concern
for the corporation. We also provided an overview of our experience and
associated findings for other universities that may wish to use a similar
program as a capstone experience. This paper discusses the process we
used to analyze the corporate environment, as well as the general findings
of our attempt.

*Copyright (©)2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

28

1 Introduction

At the United States Air Force Academy (USAFA), seniors who are majoring
in Computer Science and Cyber Science can take advanced computing courses
which include cyber warfare, cyber defense, and other related topics (https://
www.usafa.edu/department/computer-science/). While these classes have
proven useful in gaining an educational background, students may not have an
opportunity to work on large multi-dimensional projects until their senior year
when they are given an opportunity to work on a two semester capstone project.
USAFA’s Computer Science and Cyber Science programs are accredited by the
Accreditation Board for Engineering and Technology (ABET) which have a stu-
dent outcome that focuses on the ability to function effectively as a member
or leader of a team engaged in activities appropriate to the program’s dis-
cipline (https://www.abet.org/accreditation/accreditation-criteria/
criteria-for-accrediting-computing-programs-2019-2020/). We use our
capstone as an opportunity to meet this requirement.

The use of bug bounties to find and patch security flaws in software appli-
cations has grown in popularity in the field of cybersecurity since 1983, when a
Silicon Valley start-up offered anyone to “get a bug if you find a bug”[7]. These
initiatives incentivize those who discover and report flaws, thus giving engi-
neers useful feedback and enhancing the software’s overall security. Companies
may choose to perform penetration testing (pen testing) by hiring one ethical
hacker or by crowd sourcing the process, making it available to a large number
of ethical hackers via a bug bounty (paying for the vulnerabilities reported by
participating ethical hackers)[3]. In our case, a group of students participated
in a public bug bounty for a large corporate organization, thus putting their
technical and security skills to the test in a practical setting. This project was
a chance for these cadets to develop their technical skills in a controlled setting,
while gaining real-world experience in the field of cybersecurity. In this paper,
we’ll examine the value of practical hacking and bug finding experiences for
college students, and how the experiences might help them become ready for
careers in cybersecurity. We also review the process used in the bug bounty
event and discuss our findings.

2 Background and Related Work

We were recently approached by a large corporation to consider creating a team
to participate in a bug bounty for our capstone project. The team utilized the
5-phase Cyber Attack Methodology[11]| to formulate a plan of attack, which
included different attack vectors to potentially gain access. We opted to use
this methodology as it is taught in our core computer science class and we felt

29

that the clarity and simplicity of the methodology fit our project goal. Our
plan of attack focused on attack vectors, such as web-based attacks and social
engineering, throughout the semester to attempt to gain and maintain access.

Unlike traditional universities, the United States Air Force Academy is a
federal entity. It was important that we address some possible concerns prior
to the start of the bounty. The use of United States Government purchased
computer systems and software could be seen as governmental overreach in an
attempt to attack a private organization. To overcome this concern, we asked
the company to provide baseline hardware and software configurations for the
attack machines. Furthermore, the faculty mentor required that the students
create rules of engagement to ensure that the students were aware of the limits
of their ability to break into the system. Otherwise, the only limits placed
upon the team were the same limits defined by the corporation’s published bug
bounty program. Finally, since our students are in fact, government personnel,
they are not able to accept any monetary ‘bounty’ from any of their findings
and we had to come to an understanding regarding any possible bounty.

Along with the research conducted on the company, our team also con-
ducted research focused on similar programs offered at other universities and
companies. These articles helped to establish a framework for how we would
conduct our project and how we should aim to gain access into the company’s
systems. Tjaden and Tjaden[12] and more recently Whitman and Mattord[13]
describe college-level courses focused on defending computer networks and sys-
tems. While these courses include some penetration testing, they are more
focused on internal defense rather than attacking external companies. Tjaden
and Trajen[12] most closely describe our capstone project, as it focuses on
an undergraduate course that allows students to practice penetration testing
on actual applications owned and used by the university. However, this dif-
fers from our capstone project in that it takes place in a classroom setting
for graded events, rather than having a team dynamically focused purely on
performing penetration testing on a company.

In 2006, Irvine, Rose, and Fably[5] hosted a workshop discussing practical
and experimental approaches to information security education, in which they
discussed topics such as case studies[1] and threat modeling[8] to provide cap-
stone experiences in computer information security. At the same workshop, it
was discussed that there needs to be an ethical understanding prior to teach-
ing students how to use tools to break into computer systems[10]. Pauli and
Engebretson[9], a mere six years later, emphasized the importance of hands-on
learning, which supports the need for developing capstones that include active
learning components, such as our the bug bounty project.

In a master’s thesis in 2018, Christian[2] pointed out how bug bounties could
be the future of vulnerability research if organizations are mature enough to

30

run a fully public bounty program. By 2022, Kapoor, Penton and Pierpont[6]
were describing how the University of Florida has implemented a bug bounty
program outside the computer security world, in which identified bugs associ-
ated with class structure (syllabi, course website, etc) were being submitted by
students to present formative course feedback. Students would receive points
toward their course if they identified a course issue.

Harper[4] discusses the use of bug bounty programs by the Department of
Defense to crowd source their computer vulnerability identification by encour-
aging friendly hackers to "probe for and identify vulnerabilities", allowing for
a more secure environment.

While much exists in literature about the pros and cons of bug bounties, it
is important to note that our capstone project differs from the articles in that it
is being used as an undergraduate capstone class and, in some ways, is focused
on skill-building rather than actually finding bugs. We view this as a learning
opportunity for each member of our team to gain hands-on experience in cyber
offensive and defensive fields, which will be crucial in our future careers.

3 Team and Class Structure

Our capstone team was made up of five students: three Computer Science ma-
jors, one Cyber security major and a double Computer Science/Cyber Science
major. The course is a two semester, three credit hour per semester course,
which is a requirement for Computer Science and Cyber Science majors. Stu-
dents are provided the opportunity to choose their capstone at the beginning of
the first semester and with rare exceptions must remain with the course for the
entire year. Some basic team compatibility testing is performed at the start
of the first semester to understand the compatibly of the team. Each team is
matched with a faculty mentor whose specialty is focused on the subject area
of the topic being evaluated. In this case, the faculty member had not only
published on cybersecurity topics, but also worked in the cyber career field
prior to teaching at our institution.

The team met 40 times a semester for a two hour block of time. The
expectation was that while much of the work could be accomplished during
this time frame, the students would be required to complete tasks outside of
the normal working time.

4 Approach

In the beginning of the project, the team consulted the partner company to
create a definitive list of rules of engagement (ROE) that the team will follow
throughout the project. The set of rules included everything from how we

31

planned the attacks, which computers were going to be used in the attack,
which networks we were going to use, which new tools were going to be used,
and the like. There were also rules which were placed on us by the bug bounty
itself, such as no physical destruction of company property and no denial of
service to employees or customers.

We began the bug bounty by gathering information and conducting research
to gain more insight into the company’s structure and the tools available to
use. For example, we were able to identify and sort thousands of DNS domains
belonging to the organization, find important individuals at the company to
begin a map of corporate personnel, and research possible malware available for
use in attacking the systems. For the individuals at the company, we found that
it was most beneficial to find them on websites such as LinkedIn, GitHub, and
Facebook. We also researched possible penetration software and other tools
which could be of use. We used Burp Suite, a commercially available software
package, to attempt to perform the pentesting attacks on the corporation. We
also decided to use GoPhish as a resource in email campaigns.

From this research, we were able to gain a more solid background on the
company, malware tools available, and more to ensure that the project was
successful after this reconnaissance stage. We were then able to organize an
attack log, lists of company contacts for phishing, and sorted scans/domain lists
for web exploitation. This organization allowed us to become more successful
in the attack portions of the project and coordinate attacks with one another.
We decided to take a three pronged approach to the system: Technical attacks
against the corporate resources, a social engineering campaign (primarily using
Linked In), and a phishing campaign to see how likely the employees were to
open email and click on a link. This three pronged approach in demonstrated
in Figure 1.

4.1 Network Mapping and Scanning

The team was able to find and sort through over 21,000 DNS addresses. The
team utilized a divide-and-conquer method of approaching this task and was
able to sort domains by type including log-in pages, non-existent pages, error
pages, and more. By accomplishing this task, we had a strong foundation to
begin web-based attacks. Additionally, we researched individuals working for
the corporation to create a web of employees for easier phishing attacks. We
conducted this research through social media sites, such as LinkedIn, to receive
employee names and job titles. Our team was able to find more than 2,000
employees in various locations across the country, therefore making it much
easier to find an individual that would be willing to click a link in a phishing
campaign or false web page.

From this research, our team was better able to begin attacks against the

32

Technical Attacks Corporate Social Engineering
Systems

w
=
=
Y
=
o

Figure 1: Corporate Attack Plan

organization. We had solidified targets for phishing including names, job titles,
and email addresses, which were expanded throughout the semester. Using
Burp Suite, we began identifying web-based attacks and possible malware usage
on the domains that were initially sorted.

4.2 Phishing

We executed a phishing campaign that involved sending emails to employees of
the targeted organization. To make the emails appear more legitimate, we also
created fake LinkedIn accounts that were used to lure employees into providing
sensitive information. Despite evidence of spam filtering, our phishing emails
were successfully delivered to the employees. We further investigated how
the company handles incoming emails, and discovered a DKIM vulnerability
that allowed our emails to get into the company’s system undetected. This
vulnerability underscores the importance of robust email security measures to
prevent phishing attacks from being successful.

4.3 Port Exploitation

After using the scan function on Burp Suite, we identified several IP addresses
that were flagged as vulnerable. The program shows multiple levels of vulner-
abilities including high, medium, and low vulnerabilities. The team focused
on the high and medium vulnerabilities and found approaches to exploit the
vulnerabilities.

33

4.4 Web Exploitation

We identified several IP addresses that were flagged as vulnerable. The pro-
gram shows multiple levels of vulnerabilities including high, medium, and low
vulnerabilities. The team focused on the high and medium vulnerabilities and
found approaches to exploit the vulnerabilities.

HTTP request smuggling is a technique for interfering with the way a web
site processes sequences of HT'TP requests that are received from one or more
users. Request smuggling vulnerabilities are often critical in nature, allowing
an attacker to bypass security controls, gain unauthorized access to sensitive
data, and directly compromise other application users. The site had been taken
down and was presenting a 403 error, suggesting that the website understood
our request but refused to answer it. We attempted (unsuccessfully) to bypass
403, in order to try HTTP smuggling. Multiple bypassing attacks were used on
all 403 pages found, but nonetheless, the servers blocked the connection after
time limit has expired. Overall, no vulnerabilities were found.

Cross-Origin Resource Sharing (CORS) is an HTTP header-based mech-
anism that allows a server to indicate any origins (domain, scheme, or port)
other than its own, from which a browser should permit loading resources. Af-
ter scanning various domains with Burp Suite, we found one vulnerability on
one domain. However, the server forbade clients from accessing the input box
and HTTP header.

SQL injection is a common attack vector that uses malicious SQL code for
back-end database manipulation to access information that was not intended to
be displayed. There were multiple attempts to exploit the user input injection,
however, no vulnerabilities were found.

A brute force login attack was attempted by using a dictionary attack.
There were four main sites that were attacked: an older site that had not
been updated since 2013, a Cisco Network Management service, and two FTP
servers. The sites were discovered in our initial reconnaissance, and it is be-
lieved that the organization did not have knowledge that they were public
facing. The attacks on these sites were conducted utilizing Burp Suite In-
truder, with the IP Rotate Extension enabled, to make it appear that the login
attempts were coming from different TP addresses. We quickly discovered that
we needed to create a DNS domain for Burp Suite intruder to rotate, so we cre-
ated a similar domain to the organization’s domain. We attempted more than
one million username and password attempts with one success occurring with
the default credentials for a Cisco network management service. We were dis-
appointed to discover a second login page was behind the initial page. Shortly
after we discovered this access, GET requests began using RSA verification, so
it is likely that the organization discovered our attempts and put a blocking
system in place.

34

5 Conclusion

During the capstone, we took several actions to access an organization’s sys-
tem. We divided our tactics into social engineering, web-based attacks, and
malware. Under social engineering, we created a phishing campaign and forged
LinkedIn accounts to lure employees for information. Our emails were deliv-
ered successfully, and we found a DKIM vulnerability as our email entered the
company’s system. In web-based attacks, we scanned over 1,000 IP addresses
and discovered 57 non-standard ports accessible across four sub-nets registered
to the organization by using nmap and other available tools. Additionally, we
found numerous hidden Cisco product sign-on pages with default credentials
enabled and one SSH connection allowing anonymous login. In web exploita-
tion, we used the Burp Suite scan function to identify vulnerabilities in IP
addresses and exploit high and medium vulnerabilities. We attempted HTTP
smuggling and Cross-Origin Resource Sharing, but the server forbade clients
from accessing the input box and HTTP header. We also did SQL injection,
403 bypasses, and brute force login but did not find any vulnerabilities. We
learned about the company’s robust security measures and gained insights into
improving our hacking techniques for future college-level projects.

While we did not successfully exploit all the vulnerabilities we identified, we
gained important insights into the company’s security measures. For example,
we learned that the company had implemented robust spam filtering for in-
coming emails, making it difficult for phishing campaigns to succeed. We also
found that the company had successfully implemented multi-factor authenti-
cation, which helped to prevent unauthorized access to sensitive information.
These insights allowed us to understand the company’s security posture better
and identify potential improvement areas.

Using an active bug bounty event as our capstone project allowed us to
perform pentesting on a true networked environment, as opposed to a lab
environment with simulated vulnerabilities. Our team was able to identify
several vulnerable areas which needed to be hardened by the corporation. The
information was shared with the company to allow for them to secure their
system.

6 Future Research

Based on the results from this capstone, there are several recommendations
for future research that could help penetrate a company’s cybersecurity de-
fenses. We realized the need to start phishing campaigns and social engineering
early to allow more time for our team to pivot if needed and for the responses
from the employees. It is crucial to avoid spending too much time on a single

35

vulnerability and instead focus on a broad range of vulnerabilities to ensure
comprehensive protection. Frequent scanning for exploitation is important to
ensure that new vulnerabilities are quickly detected and exploited. Finally, we
discovered the value of taking advantage of real-world events. In our case, em-
ployee layoffs were announced shortly after we started our bug bounty, and we
found that employees were reaching out to us to find answers regarding their
employment, thinking that we were actually part of the company. Hackers can
take advantage of the uncertainty and fear among employees in such a situation
to launch phishing campaigns.

“The views expressed in this article, book, or presentation are those of the
author and do not necessarily reflect the official policy or position of the United
States Air Force Academy, the Air Force, the Department of Defense, or the
U.S. Government."

References

[1] Shiva Azadegan et al. “Undergraduate Computer Security Education”.
In: Practical and Experimental Approaches to Information Security Ed-
ucation (2006), p. 17.

[2] Joseph L Christian. “Bug bounty programs: Analyzing the future of vul-
nerability research”. PhD thesis. Utica College, 2018.

[3] Aaron Yi Ding, Gianluca Limon De Jesus, and Marijn Janssen. “Eth-
ical hacking for boosting IoT vulnerability management: A first look
into bug bounty programs and responsible disclosure”. In: Proceedings
of the Fighth International Conference on Telecommunications and Re-
mote Sensing. 2019, pp. 49-55.

[4] Jon Harper. “Silicon Valley Could Upend Cybersecurity Paradigm”. In:
National Defense 101.759 (2017), pp. 32-34.

[5] “Practical and Experimental Approaches to Information Security Educa-
tion”. In: Proceedings of the Seventh Workshop on Education in Computer
Security (WECS7). Ed. by Cynthia Irvine, Matthew Rose, and Naomi
Falby. 2006-01. URL: http://hdl.handle.net/10945/35011.

[6] Amanpreet Kapoor, Andrew Penton, and Hamish Pierpont. “Eliciting
course feedback through a bug bounty program”. In: Proceedings of the
27th ACM Conference on on Innovation and Technology in Computer
Science Education Vol. 2. 2022, pp. 595-596.

36

7]

8]

19]

[10]

[11]

[12]

[13]

P Marks. “Bounties mount for bugs”. In: Commun. ACM (2018). URL:
https://cacm.acm%20.org/news/230582-bounties-mount%20-for-
bugs/fulltext.

Jide B Odubiyi and Casey W O’Brien. “Information security attack tree
modeling”. In: Practical and Ezperimental Approaches to Information Se-
curity Education (2006), p. 29.

Josh Pauli and Patrick Engebretson. “Filling your cyber operations train-
ing toolbox”. In: IEEE Security & Privacy 10.5 (2012), pp. 71-74.

Scott J Roberts and Andrew L Reifers. “Adding When, Where,and Why
To How”. In: Practical and Ezperimental Approaches to Information Se-
curity Education (2006), p. 39.

Edward Skoudis and Tom Liston. Counter hack reloaded: a step-by-step
guide to computer attacks and effective defenses. Prentice Hall PTR,
2005.

Brian Tjaden and Brett Tjaden. “Training students to administer and de-
fend computer networks and systems”. In: Proceedings of the 11th annual
SIGCSE conference on Innovation and technology in computer science
education. 2006, pp. 245-249.

Michael E Whitman and Herbert J Mattord. “Instructional Perspective
on Cyber Defense: From Collegiate Competition to Capstone Course”.
In: Information Security Education Journal, Vol 2, Number 1 (2014).

37

Digital Circuit Projects for an Accelerated
Online Undergraduate Computer Architecture
Course*

Bin Peng and John Cigas
Computing and Mathematical Sciences
Park University
Parkville, MO 64152

bpeng@park.edu, cigas@acm.org

Abstract

Digital Logic is an essential topic in the Computer Science curricu-
lum. This paper introduces a set of circuit-building projects to teach
digital logic and circuits in an eight-week online version of an undergrad-
uate computer architecture course. Those projects cover circuit design
and building in a software simulator by progressing through gate-level
design, sub-circuits, and circuit component-level integration. Students
commented positively on gaining a deeper understanding from those
hands-on projects. Student performance and feedback are presented and
discussed.

1 Introduction

Digital Logic is an essential topic in the Computer Science curriculum. The
Computer Science Curricula 2013[2] recommends digital logic and digital sys-
tems as a required topic for the Architecture and Organization knowledge area,
which “develops a deeper understanding of the hardware environment upon
which all computing is based, and the interface it provides to higher software

*Copyright (©)2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

38

layers.” At the beginning of their computing curriculum, computing students
learn that logic gates are basic building blocks for digital circuitry. However,
many may not fully understand how digital circuits implement computing and
control functionalities computers need until a computer architecture or orga-
nization course.

The authors teach an undergraduate-level computer architecture course at a
four-year liberal arts institution. The course covers combinational and sequen-
tial circuits and how such circuits are used to build fundamental computer
components like the arithmetic-logic unit, registers, central processing unit,
and memory. As an active learning strategy[l, 7], the authors designed a set
of projects on designing and building combinational and sequential circuits
in a software simulator. Students commented positively on the active learn-
ing approach and gaining a deeper understanding from building those circuits
themselves.

The remainder of this paper is organized as follows. Section 2 explains the
background of the work. Section 3 covers the setup of the projects within the
course. Section 4 describes each project in detail. Student performance and
feedback are discussed in Section 5. Section 6 offers concluding remarks and
possible ideas for adoption.

2 Background

The computer architecture course at the authors’ institution is an
undergraduate-level course that covers data representation, logic and circuits,
memory system organization, and assembly-level machine organization. The
course uses a bottom-up approach in which logic gates and circuits are cov-
ered right after data representation. The course has two prerequisites, discrete
mathematics and an introductory programming course. The course content is
driven by the institution’s student profile and degree requirements. Most of
our students are non-traditional and part-time, taking classes in an acceler-
ated online 8-week format as their schedules allow. Most have started their
degree programs at one or more institutions and have transferred a sometimes
significant portion of their overall bachelor’s degree courses. Most of these stu-
dents are currently employed. Some seek a career change, while others need
to complete their degree for career advancement. To serve that population,
the department offers a broad computing degree with several concentrations
sharing a common set of core classes. The architecture course is required in
several concentrations, ranging from a more traditional computer science track
to an information technology track, specifically designed to serve students who
prefer less mathematics in the curriculum. Because of these characteristics
and constraints, projects in our online courses need to be software-based and
completable in the compressed, 8-week format of our online courses.

39

The projects described in this paper differ from other sets of classroom
activities, such as those using a physical breadboard[4] or Raspberry Pi[9], Lo-
gisim simulations of a complete ALU[6], or web-based circuit evaluations|5].
The online, 8-week course format precludes using physical hardware, which is
difficult to obtain and support outside a lab environment. The 8-week limita-
tion makes AL U-based projects too challenging as students don’t have enough
time to build up skills and then complete a significant project. Web-based
circuit evaluations are helpful for initial learning and perhaps scaffolding, but
lack the cohesiveness of a meaningful project.

3 The Course Organization

Here is the overall schedule of the 8-week version of our computer architecture
course:

Unit 1: Number Systems; Two’s Complement

Unit 2: TEEE 754; Boolean Algebra Review

Unit 3: Combinational Circuits

Unit 4: Sequential Circuits

Unit 5: Memory Hierarchy

Unit 6: von Neumann Architecture

Unit 7: x86 Architecture

Unit 8: Review and Final Exam

The three projects progress through gate-level design, using sub-circuits,
and circuit component-level integration in Units 3, 4, and 5. Unit 2 of
the course provides a quick review of logic gates and the concept of com-
binational circuits, as those topics have been covered in discrete mathemat-
ics, which is one of the prerequisite courses. Unit 3 introduces designing
and building combinational circuits and covers combinational circuits used
in computers. The first project, therefore, is placed in Unit 3 for stu-
dents to practice designing and building a combinational circuit in Logisim
(http://www.cburch.com/logisim/). After learning about sequential circuits
in Unit 4, the second project covers building a sequential circuit and feeding its
output to a combinational circuit. Finally, in Unit 5, students build a memory
reading circuit using Logisim components.

Before adding those projects, units 3 - 5 focused only on theory and reading
circuits, with no significant reinforcement activities.

40

4 The Projects

4.1 Project 1: A BCD-to-Decimal Circuit

The first project is to build a combinational circuit to light up a seven-segment
display to display decimal values 0 to 9. The circuit takes a four-bit input,
ABCD in Figure 1 (A being the most significant bit), in Binary Coded Decimal
(BCD) format. The seven outputs of the circuit, a to g, will connect to the
seven segments of a seven-segment display.

a
B —_— Cor:nbéggti.onal I.ogic to turn g c g 1 'b
the input into seven > > —
c > outputs for the display E e E e g .
D —> S f 2 C
’ d

Figure 1: Block Diagram of the BCD-to-Decimal Circuit

This project originates from a Boolean expression simplification exercise in
Stallings[10]. A seven-segment display can display a hexadecimal digit, 0 to
9, and A to F. In our adaptation, this project’s input runs only from 0000 to
1001 for decimal digits 0 to 9. This restriction turns the last six combinations
of the four-bit input, i.e., 1010 to 1111, into don’t care conditions. We picked
this BCD-to-decimal version as it lets students practice designing a circuit with
don’t care conditions. A hidden reason for this design is that it is harder to
find the solution to a BCD-to-decimal circuit online than a BCD-to-hex circuit.

Students complete this project in three steps. First, students revise the
truth table of a seven-segment display to turn the last six input combinations
into "don’t care" conditions. They then simplify the Boolean expression of
each output variable. Next, students build a combinational circuit based on
their step 1 result in Logisim. Finally, they connect a seven-segment display
to their circuit.

This project is time-consuming, so a warning about the time needed is in-
cluded at the beginning of the project requirement. To prepare students for
this project, the lecture of this unit shows an example of designing and build-
ing a combinational circuit with four inputs and four outputs. The example
circuit is a BCD incrementer that requires the same four-bit BCD code input
as the project and increments the BCD code to generate a plus-one result. The
lecture walks through the truth table with don’t care conditions, simplifying

41

the Boolean expressions for two out of the four output variables, and creating
the circuit for those two outputs.

4.2 Project 2: A Counter-Driven Two-Decimal-Digit Display Cir-
cuit

After learning about sequential circuits, the second project builds a sequential
circuit and feeds its output to a combinational circuit. This project is a circuit
that displays decimal numbers 0 to 15 and rewinds to 0. It is composed of a
sequential sub-circuit and a combinational sub-circuit. First, the project uses
a counter sub-circuit (step 1 in Figure 2) to generate binary numbers 0000
to 1111 automatically. Next, the output of the counter sub-circuit is fed to a
second sub-circuit (step 2 in Figure 2) to convert the binary number to decimal,
but as two decimal digits in BCD format, i.e., the output would be two sets
of BCD numbers. Finally, the output of the step 2 circuit connects to two
Hex Digit displays. A splitter is used before each Hex display component to
combine the four bits for a BCD number (four wires, one bit per wire) into a
wire carrying four bits.

Step 1. A sequential circuit. Step 2. A combinational Hex Hex
No input. Propelled by a circuit w four 1-bit inputs display display
clock signal. Four 1-bit and eight 1-bit outputs. #1 #2
outputs.

Figure 2: Block Diagram of the Counter-Driven Two-Decimal-Digit Display
Circuit

This project is composed of three steps. In step 1, students build an asyn-
chronous counter using D flip-flops based on the block diagram of a cascaded
divide-by-two circuit from Tarnoff[11]. In step 2, students design and build
a combinational circuit to convert a 4-bit binary number to its decimal value
expressed in two sets of BCD codes. Step 2 instruction provides the truth table
for such a circuit; students complete the simplification and circuit building. In
step 3, students combine the step 1 and step 2 circuits by loading the step
2 circuit as a circuit library and connecting the two as Figure 2 shows. The
project includes a basic explanation of splitters and directs students to the
Logisim documentation for additional details.

42

4.3 Project 3: A Memory Reading Circuit

After working with gates and self-built circuits, students advance into building
a circuit using circuit components from the software simulator. Project 3 is
a revised version of a nifty assignment|[8] and features a sequential circuit to
simulate memory reading. This circuit will read a block of data from a memory
device and display the data on a user terminal (Figure 3). The block of data
will be a string of ASCII characters. During design time, students pick a
string of their choice and hard-code the ASCII values into the memory device.
A counter component will generate memory addresses automatically, just that
students need to determine the number of bits needed for the addresses based
on the length of their string. The memory device is a ROM component, and
the user terminal is simulated with a TeleTYpewriter (TTY) component.

counter
ROM
Bit TTY

N selector | i

clock L

Figure 3: Block Diagram of the Memory Reading Circuit

This project is designed to be simpler compared to the first two. Its unit,
unit 5 of the course, covers memory hierarchy and cache memory, and cache
memory weighs more in this unit. Nevertheless, this memory reading circuit
integrates data representation and interfacing memory with other components
in a computer. As simple as it is, this project wraps up the discussion at
the digital circuit level before the class moves into the next unit on CPU
architecture.

5 Student Performance, Feedback, and Analysis

The authors tested those projects in three online sessions in 2022, with 13
students in S2 2022 (Spring 2022), 15 in F1 2022, and 11 in F2 2022. Table 1
tabulates the average and standard deviation of student scores in those projects
and the course total. Those projects accounted for 15% of the course total.
The same instructor taught all three sessions and graded all coursework.

Rather than course scores, a finer-grained analysis of the final exam based
on core learning outcomes would be more appropriate. However, we are still
trying to ascertain the right level of problems on the final, so that is not a
helpful measure at the current time.

43

Table 1: Project and Course Total Grades From Three Online Sessions in 2022

Class Session Project 1 Project 2 ‘ Project 3 Course Total
avg stdev | avg stdev ‘ avg stdev | avg stdev

S2 2022
(13 students) | 77.7% 27.4%| 87.4% 19.6%| 89.8% 26.1%| 73.0% 14.0%
F1 2022
(15 students) | 79.6% 24.9%| 91.4% 10.4%| 93.0% 12.0%| 79.0% 14.1%
F2 2022
(11 students) | 84.4% 16.4%| 80.8% 21.7%| 91.5% 11.6%| 78.0% 14.0%

Overall, students performed well in all three projects, despite the com-
pressed schedule. Project 1 grades were generally lower than the other two
since it was the first digital logic project; students had just started on Boolean
expression simplification and the simulator software. The relatively high stan-
dard deviations are due to projects that received minimal credit, which is not
unusual for our 8-week courses, where students will skip assignments when
they have other commitments and later just try to keep up with the rest of
the course. Final course grades, which include exams, tend to be lower than
project grades. This situation is also not unusual.

Students liked the hands-on approach of those projects and how the projects
helped visualize the concepts. Here is a student reflection on their understand-
ing of simplification and combinational circuits at the end of Project 1:

I'still am a little lost as to how this all works. My brain isn’t creative
enough to make the connections but, using Logisim is awesome
because I can see what is actually happening when I click each
input on of [or] off. That really helps me to visualize how the gates
are working.

The projects were engaging. Students gained a deeper understanding of
how digital circuits were designed and worked. Building a working circuit was
satisfying:

My understanding of simplification and combinational circuits after
this project has improved. If I didn’t do the K-map and discovered
the simplest form, my circuit would’ve had so many gates compared
to what I might have had! It is an amazing feeling to be able
to complete and visualize a simple yet, complex circuit displaying
numbers from 0 to 9.

These projects help me understand the information in the lecture

44

much more because I actually get to create the circuits and see how
they behave.

I have a better understanding of the bigger picture of digital cir-
cuits. This project put together all the components we have been
working on the last few weeks and finally displayed a result in the
TTY output. Being able to see a tangible final result really ce-
mented my understanding of how each of these basic digital circuits
come together to create an output.

At the end of the course, students even volunteered more comments on
those projects in a graded asynchronous discussion. As a way to wrap up the
course, the discussion in the last unit asked students to respond to one of the
following four questions:

Q1. What was the hardest material from last week? What did you do that
helped or didn’t help? The purpose of this discussion question is for you to
reflect on your work last week and share some tips (what failed, what worked,
...) with the class.

Q2. Summarize your learning in this course. Were there any topics you
found more interesting than others, or topics you felt were stressed too much?

Q3. Post a question for the class to answer. Your question may be some-
thing you’d like to discuss more on or a made-up question to test your peers’
understanding of a specific topic.

Q4. Post a question about the final exam that you’re not clear about.

Of the 39 students from the three sessions combined, 22 took advantage
of Q2 to talk about topics that interested them (Table 2). Among the 22
students who picked Q2, 18 talked about those digital logic projects. Of those
18 students, 15 cited those projects as their favorites or that helped their
learning. Among the other Q2 students, two students had mixed feelings, and
a third one spoke negatively as they had a hard time connecting the dots.

Students liked the projects for their hands-on nature. Two students said
the projects helped visualize the abstract concepts. Seven students talked
about how they gained a better or deeper understanding of the material. Nine
students considered the projects “fun”, “cool”, “fascinating”, or they “enjoyed”
the projects. One student talked about “a great sense of accomplishment”, and
another said those projects sparked their curiosity to learn more. Creating
circuits, even via a software simulator, helped visualize abstract concepts from
the book. Designing and building circuits mimicking real computer components
or functionalities was relevant and intriguing. Seeing a working circuit of a
certain complexity from their own creation, even with issues at times, was
gratifying. Here are excerpts of some of the positive comments. Only the
portions relevant to those projects are included.

45

Table 2: Student Discussion of Those Projects in the Last Unit of the Course

Number of Number of Q2
Class students that | responses that talked | Number of remaining
Session picked Q2 about the projects Q2 responses
S2 2022 | 7 out of 13 6 (4 positive, 1 (talked about other topics
2 mixed) covered in the course)
F1 2022 | 9 out of 15 7 (6 positive, 2 (positive about the whole
1 negative) course but did not list any
specific topics)
F2 2022 | 6 out of 11 5 (all positive) 1 (talked about other topics
covered in the course)

Well, the course was a bit technical for me but I enjoyed it a lot. I
learned from this course a lot, especially the digital logic projects.
The most interesting topic to me was K-Maps and boolean simpli-
fication.

I immensely enjoyed using circuits, clocks, and d-latches. See-
ing and creating circuits that a computer would use to produce
a counting-up counter was great.

I had the most fun when we had to actually design the circuits,
minus the part where we had to simplify the K-maps, especially
unit 4 where there where |[were] multiple maps for the different
outputs. Then triple checking to make sure I got the grouping
correct then when it came to testing the circuit realizing that there
were still some mistakes in the groupings. The lesson that had to
be the most fun had to be unit 5 when we converted our string
of characters to hexadecimals then having the TTY display the
corresponding character.

Among the less favorable comments, one student liked building circuits,
but had a hard time with simplification. The second mixed-feeling comment
wanted more connections between those circuits and real-world applications.
The student who made the negative comment said they didn’t grasp the con-
nection between k-map (simplification) and circuits. This student may have
been helped if they didn’t ignore the grading comments and the instructor’s
offer to meet virtually since the first project.

As an initial evaluation of the efficacy of the assignments for our students,
we looked at data from the Major Field Test (MFT) in Computer Science[3], an
assessment instrument from ETS that we use as part of our ongoing program

46

Table 3: ETS Major Field Test Scores

Percent Correct — Percent Correct —
Number of Digital Logic Digital Logic
Student Cohort Test Takers Question 1 Question 2
AY2022-2023* 62 45.2 34.4
AY2021-2022 59 35.6 20.3
National** - 64.4 41.3

* Does not include summer term.
** ETS Comparative Data population. Data from September 2015 thru June 2022.

evaluation. In the academic year 2021-22, we started offering the MFT in two
of our operating systems courses, as these courses were likely to come toward
the end of a student’s degree program, and one of the courses uses computer
architecture as a prerequisite.

Looking at the data in Table 3, there are two items on the MFT that specif-
ically relate to digital logic/digital systems. Of the 59 students in operating
systems in AY 2021-22 who tested, 35.6% answered the first question correctly
and 20.3% answered the second correctly. This is in comparison to 64.4% and
41.3% of overall correct answers at the national level. Looking at the results
for AY 2022-23, which is the first time students from the updated computer
architecture course took the MFT, the average scores of the 62 students rose
to 45.2% and 34.4%. These results are very encouraging, though still prelimi-
nary. The increases appear to be significant, especially in light of the fact that
only about 1/3 of the MFT takers during AY 2022-23 had used the updated
projects. Note that of the 62 students, only 4 had not taken computer archi-
tecture prior to taking an operating systems course, so we did not analyze that
situation separately.

6 Conclusion

The authors built digital logic projects to engage students in an accelerated
online format of their computer architecture course. Most students responded
positively to the projects and gained a good amount of learning from the
projects. Even though the first project is heavy, time-wise, the projects are
attainable even in an accelerated eight-week online setting. While they may
be easy for some students, such projects may work well with students in a
moderate-level introductory computer architecture course. For an advanced
class, instructors may simplify the project instructions to let students figure
out some details and connections on their own.

47

References

[1]

2]

3]

4]

[5]

(6]

7]

18]
19]

[10]

[11]

48

Charles C Bonwell and James A Eison. Active learning: Creating ex-
citement in the classroom. 1991 ASHE-ERIC higher education reports.
ERIC, 1991.

Joint Task Force on Computing Curricula — Association for Computing
Machinery (ACM) and IEEE Computer Society. Computer Science Cur-
ricula 2013: Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science. New York, NY, USA, 2013. DO1: 10.1145/2534860.

ETS. ETS Major Field Tests - Computer Science Test Description. 2015.
URL: https://www.ets.org/content/dam/ets-org/pdfs/mft/comp-
sci-test-description.pdf.

James Feher. “Providing a digital logic lab experience in a computer
architecture course: nifty assignment”. In: Journal of Computing Sciences
in Colleges 25.5 (2010), pp. 337-341.

Ville Karavirta et al. “Interactive exercises for teaching logic circuits”. In:
Proceedings of the 2016 ACM Conference on Innovation and Technology
in Computer Science Education. 2016, pp. 101-105.

Matias Lopez-Rosenfeld. “"Tell me and I forget, teach me and I may
remember, involve me and I learn": changing the approach of teaching
Computer Organization”. In: 2017 IEEE/ACM 1st International Work-
shop on Software Engineering Curricula for Millennials (SECM). IEEE.
2017, pp. 68-T71.

Jeffrey J. McConnell. “Active Learning and Its Use in Computer Science”.
In: SIGCSE Bull. 28.S1 (Jan. 1996), pp. 52-54. 1sSN: 0097-8418. DOIL:
10.1145/237477 .237526. URL: https://doi.org/10.1145/237477.
237526.

Bin Peng. “Building a memory reading circuit”. In: Journal of Computing
Sciences in Colleges 34.4 (2019), pp. 114-116.

Michael P Rogers and Charles Hoot. “Getting ahead with a hat: reengi-
neering a computer organization course”. In: Journal of Computing Sci-
ences in Colleges 34.4 (2019), pp. 42-51.

William Stallings. Computer Organization and Architecture. 10th. New
York, NY: Pearson, 2015.

David Tarnoff. Computer Organization and Design Fundamentals: Exam-
ining Computer Hardware from the Bottom to the Top. Lulu.com, 2007.

A Stakeholder Visualization Tool Study*

Johanna Blumenthal and Richard Blumenthal
Department of Computer and Cyber Sciences
Regis University
Denver, CO 80221

{jblumenthal, rblumentl}@regis.edu

Abstract

Professional codes of ethics and conduct provide a convenient ped-
agogy for teaching students to consider social, ethical, and professional
issues related to computing. Case studies offer a means for using these
codes to analyze such issues, which include the importance of identifying
all stakeholders impacted by a computing decision. The research in this
article suggests that the introduction of a stakeholder visualization tool
into a professional code’s text-based case study can positively affect the
number of stakeholders considered by students.

1 Introduction

Computing professionals are expected to analyze computing applications. His-
torically, this analysis focused on the technical capabilities of the computing
solution (performance, reliability, availability, etc.). Today, there is a growing
expectation that such an analysis will also include an examination of the social
context in which the application resides including its impact on society. As
this expectation has grown, educators have been called to teach students how
to perform social impact analysis of computing applications. This requirement
has been formalized in the learning outcomes of curricular recommendations
for computing-related programs, such as Cybersecurity, Data Science, Software
Engineering, Information Systems, and Computer Science[8, 10, 17, 18, 26].

*Copyright (©)2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

49

Case studies are commonly used to demonstrate how to determine the social
context and impact of a computer solution (e.g., [5, 12]). CARE is a case study
analysis approach developed for use with the The ACM Code of Ethics and
Professional Conduct (The-Code), which can be used for a social context and
impact analysis, and “is designed to inspire and guide such social and ethical
conduct for all computing professionals including... students”[13]. Each step
in the CARE approach suggests examination of certain aspects of a presented
case study via exploratory questioning, similar to the Socratic method.

Although Socratic style methodology has oft been used in the classroom as
an organizing method for deeper discussion of a topic, the quality and effec-
tiveness of the discussion in this approach relies heavily upon a facilitator to
ensure that the direction of the questions and answers broadens and deepens
the understanding of the topic[4]. Without such experienced guidance, are the
CARE questions enough for students to engage in the deep analysis desired? If
not, would a simple tool aid in deepening the questions-answer consideration?

The researchers set about to answer these questions through a pre-post style
study in which students were asked to use questions from the CARE approach
before and after being presented with a simple Stakeholder Visualization Tool
(SVT), which is depicted in (Figure 1). The SVT is designed to prime the
thinking of students in a manner that would have them consider stakeholders
based upon different spheres of life (the sectors) and different proximity scopes
(the levels). Three primary research questions are addressed in this article:

R1: To what extent does the SVT affect the number of stakeholders
considered by students in a CARE case study?

R2: To what extent does the SVT affect the number of additional details
students would seek in order to provide a greater understanding of the
situational context in a CARE case study?

R3: To what extent can students appropriately expand the SVT?

R1 and R2 directly follow from two of three questions posed in the Consider
step of the CARE process, which is described in Section 3.3.

2 Background

The SVT developed by the authors in this research has been highly influenced
by the Computer Science Curriculum 1991 (CS’91), literature arising from
CS91 (e.g., [14, 19, 20]), and the progression of case studies for use in applying
The-Code (e.g., [5, 13]). The design of SVT and motivation for R1 and R2
has been influenced by research in educational and cognitive psychology. A
summary of these influencing factors is given in the remainder of this section.

50

juand

Personal :

Organizatio,,

Covernmer®

Figure 1: Stakeholder Visualization Tool

2.1 CS Curriculum

Considerations of Social, Ethical, and Professional (SEP) issues were first re-
quired in the CS’91 curricular recommendations|[28], have continued through
the subsequent recommendations in 2001 and 2013[9, 26|, and are currently
expanded upon in the proposed 2023 recommendations[16]. Accrediting agen-
cies have also followed these recommendations|1, 27|. The introduction of SEP
requirements in 1991 led to a flurry of activity focused on how to address these
new SEP learning outcomes including the ImpactCS project.

In 1991, NSF funded the ImpactCS project to further develop the knowledge
areas that ought to be included in the SEP curricular guidelines[14, 19, 20].
One product to come out of ImpactCS was a listing of case studies to be
used in this manner[15]. ImpactCS also introduced a conceptual framework
for educators to categorize computing case studies with respect to SEP issues
suggesting that “every ethical and social concern occurs at a particular level
of social analysis”. Three dimensions of such social analysis were identified:
technical, social, and ethical with a two-dimensional table visualization where
rows specified Levels of Social Analysis and columns Responsibility and Ethical
Issues.

The introduction of required SEP topics into the curriculum included a
focus for computing students to “uphold general professional standards”[28]
and led ImpactCS to note that “a careful study and application of professional
codes of ethics is crucial to ethical practice in computer science. It is also
important to present students with examples of authentic situations to analyze
in the context of a code of professional ethics”’[19]. In turn, this brought a
focus on The-Code into required computer science education.

51

2.2 The Code

Guidelines for a Professional Conduct in Information Processing were first
adopted by the ACM in 1996(23] with revisions in 1972 and 1992[2]. The most
recent 2018 revision is The-Code version[13]. In 2018, Ethical Principle
1.1 was amended to “a computing professional should contribute to society
and to human well-being, acknowledging that all people are stakeholders in
computing”[13]. Additionally, the CARE process along with three fictionalized
case were also introduced. The case studies are intended to illustrate how
The-Code can be applied as a framework for analyzing ethical dilemmas using
CARE. CARE is a four-step process: (Consider stakeholders and consequences,
Analyze how the code applies to the context, Review possible actions, and
Evaluate decisions and future impact)[13]. Two questions, of three, from the
Consider step are used in this article’s research (see Q1 and Q2 in Step 4 of
Section 3.2) along with the first CARE case study.

2.3 Cognitive and Education Theory

Priming is an effect where “environmental stimuli may affect subsequent re-
sponses by activating mental constructs without conscious realization”[29].
While the SVT in the current study is designed to serve as a prime, it also
designed to serve as a hierarchical concept map. “Concept mapping is an
active, creative, visual and spatial learning activity in which concepts are or-
ganized according to their hierarchical relationships’[24]. Together, priming
and concept maps have been demonstrated to improve long-term retention of
information and transfer of knowledge when solving future problems.

The Picture Superiority Effect (PSE) is a phenomenon where pictures are
better recognized and recalled than text-based labels as a result of what is be-
lieved to be the duel-encoding of pictures in human memory[22]. This encoding
results in pictures being more perceptually rich than text. Evidence against
the PSE effect occurs when such images are only presented for brief periods
of time, such as when several pictures are presented every second[11], which is
not the case with the SVT presentation in this research. As a result, illustra-
tions have been shown to be more effective than text alone for problem solving
transfer[21], which requires students to solve problems that are different from
those presented during instruction. In the current research, no instruction is
given for problem-solving with the transfer being the answering of the CARE
stakeholder and additional context questions. Naturally, the SVT plays the
role of the illustration annotating the text in the case study.

Ultimately, the stakeholder identification problem can be treated as a stu-
dent learning outcome. That is, students should learn to better identify all
stakeholders in a problem. Research on multiple external representations (MERs)

52

of information suggests the inclusion of the SVT, in addition to the text-based
case study descriptions and questions, would positively affect stakeholder iden-
tification. Specifically, the use of multiple isomorphic external representations
of the same task space has been shown to be effective in enhancing learner
performance[3]. Of specific interests in the current research is MER support
for making the task easier by changing its nature[30]. In the current research,
the use of both text and the SVT provides a MER of potential stakeholders.

In learning environments, researchers have demonstrated that individuals
also have varied learning styles (e.g., [25]). The inclusion of the SVT into the
text-based case study from The-Code provides additional support for visual
learners beyond the priming, concept mapping, and MERs previously intro-
duced.

2.4 Prior Research

Preliminary results for research Question R1 were reported in a SIGCSE poster
session|6]. The current work has expanded the number of subjects in the study,
the stakeholders examined, and added the R2 and R3 questions.

3 Methodology

The authors designed an experiment and survey to analyze the effect of intro-
ducing the SVT into the Consider phase of the The-Code CARE process.
3.1 Participants

Twenty-three undergraduate computer science students participated in this
study. The students were enrolled in one of six courses (CS1, Algorithmic Com-
plexity, Operating Systems, Web & Database, Unix, and Computer Ethics).

3.2 Procedure

The survey was conducted using an online Learning Management System tool
associated with the student’s course and consisted of the following steps.
Step 1: Voluntary consent to participate in the experiment was obtained.

Step 2: Students were given Ethical Principle 1.1 from The-Code.
Step 3: Students were given the two-paragraph Malware Disruption case

study from The-Code. They were not informed that the ethical principle in
Step 2, nor the case study in this step, were taken from The-Code.

53

Step 4: With the case study still displayed, students were then asked two
successive questions taken from the Consider step of the CARE process:

Q1: “Who are the relevant actors and stakeholders?”

Q2: “What additional details would provide a greater understanding of
the situational context?”

These questions serve as controls for the research experiment.

Step 5: Students were then shown the SVT depicted in Figure 1 with
the following explanation: “Consider the following image that suggests various
communities of stakeholders effected by a computing decision, where Personal
consists of you and your family, Organization consists of the organization you
are working for, Client consists of the customers from whom you and your
organization are creating a computing solution, Government consists of the
governing bodies in which your computing solution will be created and/or de-
ployed, and Society represents general societal interests in your computing
solution”. No other information about the SVT or how to use it was provided.

Step 6: With the SVT now displayed, students were re-asked Q1 and Q2,
Q3: “Who are the relevant actors and stakeholders?”

Q4: “What additional details would provide a greater understanding of
the situational context?”

Hence, the SVT serves as the manipulation in this study/experiment.

Step 7: The subjects were subsequently asked the following successive ques-
tions. “With respect to stakeholder diagram,

Q5: What levels might you add or subdivide besides Personal, Local,
Regional, and Global?,

Q6: What additional sectors might you add or subdivide besides Society,
Client, Organization, and Government?

QT7: Did you find this diagram easy to understand, why or why not?

Q8: In the future how likely might you be to consider this stakeholder
diagram, when considering all stakeholders that might be affected by an
ethical computing decision?”

The responses to Q8 were restricted to a Likert-like scale of: Not Very Likely,
Not Likely, Not Sure, Somewhat Likely, and Very Likely.

54

3.3 Coding Protocol

A coding protocol was created and independently used by the researchers
to determine the number of stakeholders appearing in the Q1-Q6 answers.
The protocol identifies ten “Named-Stakeholders” explicitly mentioned in the
CARE case study: Generic Services, Generic’s clients (web-based retail, mal-
ware, spam, and botnet), ISPs, security organizations, other-governments, and
two response teams (security vendors and government). The SVT depicts five
contextual sectors: Society, Client, Government, Organization, and Personal.
Each sector contains three proximity levels (local, regional and global) depicted
in the SVT. With respect to these sectors and levels, the protocol was conser-
vative in identifying different stakeholders. For example, a specific answer
of “Generic’s Clients" or “Society” is coded only as one stakeholder, while an
answer specifically enumerating multiple clients or sector levels, such as “web-
based retail, malware” or “local government, regional government” is coded as
two different stakeholders. For question Q3, only additional stakeholders not
already mentioned in question Q1 for a given subject were counted.

With respect to what “situational context details” students would seek in Q2
and Q4, the protocol counted additional “Mentioned-Stakeholders” prompted
by the SVT in Q4 that were not mentioned in Q2. For example, if “advertisers”
was mentioned, it was not counted since it is not a level or sector found in the
SVT. Finally, with respect to what additional SVT sectors or levels the students
might add in Q5 and Q6, the answers “national” and “regional” were coded as
different responses (see the Discussion section).

4 Results

To verify the stakeholder identification coding protocol accuracy, an agreement
percentage inter-rater reliability assessment was performed. The two raters
identified a combined total of 157 references to stakeholders in the students’
answers to questions Q1 and Q3. There was a 97.5% (153/157) agreement
on these references with a 100% agreement for the 101 stakeholder references
in question Q1 and a 92.9% (52/56) agreement for Q3. The disagreements re-
sulted when one rater judged two references as different stakeholders, while the
other rater judged them as referring to the same stakeholder: two occurrences
of “Generic Services” vs. “Organization”, “governments of” vs. “governments
hosting”, and “global vs. society”. In the following statistical tests, these dis-
agreements were rectified by conservatively using the rater’s judgment with
the lower number of identified additional stakeholders in Q3. Additionally, the
raters had 100% agreement on the number of additional stakeholders about
which contextual details were sought by the student in the answers to Q4 ver-
sus Q2. Finally, the two raters also had a 100% agreement on the number of
new sector or level additions given in the answers to questions Q5 and Q6.

55

Test-1: A single-sample paired difference t test[7], with null hypothesis
Hy of no difference from ten (the number of case study Named-stakeholders)
was conducted to determine how many Named-stakeholders were referenced
in Q1. There was a significant decrease difference for the referenced Named-
Stakeholders (M = 2.87,5SD = 1.80); t(22) = —19.11,p < 0.01. A large
Cohen’s effect size of (D = 3.99) was found. These results suggest the students
failed to reference most of the Named-Stakeholders as actual stakeholders.

Test-2: A paired-samples difference t test[7], with null hypothesis Hy of
no increase in referenced stakeholders, was conducted to compare the number
of stakeholders identified prior to the SVT presentation in Q1 and after its
presentation in Q3. There was a significant increase difference for the prior
Q1 (M = 4.39,5SD = 4.42) and after Q3 (M = 6.65,SD = 4.47) conditions;
t(22) = 5.27,p < 0.001. A large Cohen’s effect size of (D = 1.10) was found.
These results suggest the SVT manipulation affects an increase in the total
number of stakeholders identified in the CARE case study. Additionally, 74%
(17/23) of students identified additional stakeholders in their Q3 answers.

Test-3: A single-sample paired difference t test, with null hypothesis Hy of
no increase, was conducted to determine whether the SVT resulted in students
suggesting additional situational context criteria in their Q4 answers. There
was a significant increase difference for the additional situation criteria Q4
condition (M = 0.57,5D = 1.24); ¢(22) = 2.19,p < 0.05. A medium Cohen’s
effect size of (D = 0.46) was found. Since the sample size is small N = 23 yet
statistical significance was found, the medium effect suggests the SVT affects
an increase in the situational context criteria introduced in the answers to Q4.

Test-4: A single-sample paired difference t test, with a null hypothesis H
of no increase, was conducted to determine whether the SVT affected stu-
dents referencing “Mentioned-Stakeholders” specifically depicted in the SVT in
Q3. There was a significant increase difference for the after SVT condition
(M =1.91,5D = 1.81); t(22) = 5.06,p < 0.01. A large Cohen’s effect size of
(D = 1.06) was found. These results suggest that the SVT affects an increase
in the Mentioned-Stakeholders considered in the case study, as depicted in the
SVT. Additionally, 74% (a different 17 of 23 than in Test-1) of the students
referenced "Mentioned-Stakeholders" in the SVT. Of these seventeen, there
was an mean increase of 2.6 Mentioned-Stakeholders referenced.

56

Test-5: A single-sample paired difference t test, with a null hypothesis Hy
of no increase, was conducted to compare the combined number of additional
levels and sectors suggested in the answers to questions Q5 and Q6. There was
a significant increase difference for the suggested sectors and levels in the Q5-
Q6 condition (M = 1.61, 5D = 1.90); ¢(22) = 4.06,p < 0.01. A large Cohen’s
effect size of (D = 0.85) was found. These results indicate that students were
able to suggest additional sectors and levels not found in the SVT. Additionally,
74% (a different 17 of 23 from Tests 1 and 3) of students suggested additional
levels and sectors. These suggestions and the (multiple) number times they
were suggested are: national vs. regional (7), public vs. private (2), individual,
family, community, legislative vs. executive government, victims, criminal,
physical environment, moral, socioeconomic, legal damages, and internet users.
Furthermore, two subjects who did not suggest any additional levels or sectors
indicated that the SVT adequately covered all stakeholder groups, while a
third indicated the SVT didn’t work even though they did reference additional
stakeholders from the SVT in Q4.

Tests 1, 3, and 5 were repeated by comparing the N=12 students in a Lower
Division condition, in which they survey was taken during courses taught to
Freshman and Sophomores, and in an Upper Division condition given during
Junior and Senior courses, referred to as Tests- 6, 7 and 8. No statistical
difference was found for these tests. The results with the N=12 Lower Division
condition listed first were:

Test-6 M =2.33,SD =2.15 vs. M =2.91,5D =1.92,¢(21) = 0.68,p = 0.50;
Test-7 M = 2.35,SD =250 vs. M =0.73,SD =1.27,t(21) = 1.91,p = 0.07;
Test-8 M =1.92,5D = 2.47 vs. M =1.27,SD = 1.01,#(21) = 0.81,p = 0.4.

For Q7, fourteen students indicated the SVT was easy to understand, seven
it wasn’t clear, and one stated it was not easy. The remaining two students
indicated that the diagram was too generic. Though, another student stated
that it was presented at the right level of detail. The results from how likely
the students were to use the SVT again in Q8 are: Not Very Likely (4), Not
Likely (1), Not Sure (8), Somewhat Likely (5), and Very Likely (5).

5 Discussion

Overall, the results of the study indicate that the SVT helps students to engage
in the two CARE “Consider” questions tested in a more depthful manner by
listing more stakeholders and asking for more information about additional
stakeholders. Furthermore, the results are encouraging to the researchers in so
far as most students were able to use the SVT as intended without any detailed
instructions as to how it was designed to be used. The researchers believe that
additional instruction may increase the effects found in these results.

57

Interestingly, most of the students struggled in the control question to list
all of the explicitly Named-Stakeholders by only naming an average of 2.9 out
of the 10 stakeholders (Test-1). This may indicate a general lack of familiarity
among these students with stakeholder and issue spotting in a written scenario.
After being exposed to the SVT, most students did list additional stakeholders
that they had not previously listed in Q1. One student even explicitly stated
that the SVT was subjectively “not helpful”, while still listing additional stake-
holders after seeing it. Of those who did reference additional stakeholders, the
average number of stakeholders added was 2.26 (Test-2).

Although the particular case study chosen for this experiment came di-
rectly from The-Code, it contains Named-Stakeholders and synonyms that are
depicted in the SVT: organization, client(s), and government(s). This may
indicate that “having seen these words” or priming alone is not the only source
of the effect described in the results. The researchers are curious to repeat the
experiment with a different case study that does not explicitly use stakeholders
depicted in the SVT to see if the effect size is greater after seeing the SVT than
when stakeholders are explicitly stated in a less direct manner.

When comparing Q2 vs. Q4 answers, which called upon students to state
“what additional contextual details were important for analyzing the case sce-
nario”, the researchers only focused on additional information related to stake-
holders sought by the student in Q4 that was not stated as sought in Q2
and that was directly related to the SVT, as determined by labels depicted
in the SVT, as well as agreed upon protocol synonyms for such words. The
researchers wanted to know if the SVT prompted the students to seek addi-
tional information expressly about stakeholder groups alluded to in the SVT.
The results suggest that students did, on average, seek more information about
stakeholders alluded to in the SVT. (Test-3).

In addition to analyzing the total number of stakeholders listed in Q3 vs.
Q1, the researchers also coded the number of Mentioned-Stakeholders. The
number of Mentioned-Stakeholders increased by an average of 1.91 after the
students were exposed to the SVT. Even some students who did not have an
additional number of stakeholders when comparing Q1 and Q3, changed the
way they worded their responses in order to align with the language of the
SVT, which indicates they were influenced by the SVT.

Although the authors purposefully did not give explicit instructions on how
students should use the SVT to come up with additional stakeholders in the
case study, most students appeared to understand the general intent of the
SVT. This is indicated by the increase in stakeholders referenced, which is
discussed above (Test-2) as well as the result that most students were able
to appropriately extend the stakeholder diagram in a manner aligned with its
general intended approach (Test-5). Instruction on how to use the SVT to

58

identify stakeholders, including an example using a case study, may increase
the effect provided by the SVT. Although most students understood the general
purposes of the SVT, with fourteen stating it was clear or easy to use, seven
students expressed some confusion about the SVT, parts of the SVT, or how
to apply it to the case study. The authors assume that explicit instructions
would help reduce this confusion.

Student responses indicate that there may be some confusion between the
SVT Client and Organization sectors (however this confusion also exists in
Software Engineering discussions of customer, client and organization, where
these “roles” are often filled by the same stakeholder but can have different
stakeholders too). Responses also indicate that some students were unsure
about the “Personal” sector/level in the center of the SVT and how to use that,
while several appropriately referenced and extended the Personal sector/level.
Clarification of the Personal aspect of the SVT in future research should prove
helpful, especially since this level was included to increase student engagement
with the SVT.

The comparison of the Lower to Upper Division conditions suggests that
educational maturity isn’t a factor in identifying stakeholders. The Upper
Division group included three students who were enrolled in an ethics and
social good computing course. It would be interesting in future research to
collect more data to determine whether such a course affected stakeholder
identification versus use of the SVT.

There is a concern that the small sample size of N=23 might be biasing the
data. This is especially true of the comparison of the Lower and Upper Division
conditions in Tests 6-8, since the sample size was twelve and eleven students,
respectively. Although somewhat of an aside, in future research, the authors
would strongly consider some type of non-coercive incentive for students to
participate in such research, such as offering gift-card for a free coffee drink or
equivalent.

There are several avenues of future research the authors are interested in
exploring. The research cited in the Background section suggests that the
SVT may also increase the long-term benefits of using such a diagram. For
example, after using the SVT multiple times, a type of automaticity may take
place in which the SVT is integrated in the reasoning process when identifying
stakeholders such that it no longer needs to be explicitly shown. The authors
are also interested in exploring variations of the SVT and other visual tools.
Finally, the SVT focused on one ethical principal from The-Code and one step
in The CARE process. It is likely that similar visualization tools could help
with other principles in The-Code and steps in the The CARE approach to
examining ethical computing case studies.

In conclusion, the results of the experiment suggest that fairly simple visual

59

tools can be used to help students engage in deeper analysis when considering
all of the potentially relevant stakeholders in case studies with the SVT having
a positive affect for research questions R1-R3.

6

Acknowledgements

The authors would like to thank the anonymous reviewers for their feedback,
the Internal Review Board of Regis University, and the students who volun-
teered to participate in this survey.

References

(1]

2]
(3]
(4]

(5]

[6]

(7]

(8]

[l

[10]

(11]

(12]

60

ABET. Criteria for accrediting computing programs. https://www.abet.org/
accreditation/accreditation-criteria/criteria-for-accrediting-computing-
programs-2021-2022/.

ACM. Acm code of professional conduct (1972), 1972. https://ethics.acm.org/code-
of-ethics/previous-versions/1972-acm-code/.

Sharon Ainsworth. Deft: A conceptual framework for learning with multiple represen-
tations. Learning and Instruction, 16:183—198, 2006.

Hanna M. Altorf. Dialogue and discussion: Reflections on a socratic method. Arts &
Humanities in Higher Education, 18(1):60-75, 2019.

Ronald E. Anderson, Deborah G. Johnson, Donald Gotterbarn, and Judith Parrolle.
Using the new acm code of ethics in decision making. Communications of the ACM,
36(2):98-106, 1993.

Richard Blumenthal and Johanna Blumenthal. Consider visualizing society within the
acm code of ethics [poster|. In Proceedings of 51st ACM Technical Symposium on
Computer Science Education, page 1292, 2020.

Charles H. Brase and Corrinne P. Brase. Understandable Statistics: Concepts and
Methods. Houghton Mifflin Company, Boston, MA, USA, 2003.

Diana L. Burley and Matt Bishop. Cybersecurity curricula 2017, 2017. https:
//www.acm.org/binaries/content/assets/education/curricula-recommendations/
csec2017.pdf.

James H. Cross, Gerald Engel, Eric Roberts, and Russell Shackelford. Computing cur-
ricula 2001 computer science, 2001. https://www.acm.org/binaries/content/assets/
education/curricula-recommendations/cc2001.pdf.

Andrea Danyluk and Paul Leidig. Computing competencies for undergraduate data
science curricula, 2021. https://www.acm.org/binaries/content/assets/education/
curricula-recommendations/dstf_ccdsc2021.pdf.

P Fraisse. Motor and verbal reaction times to words and drawings. Psychonomic
Science, 12:235-236, 1968.

Damian Gordon, Michael Collins, and Dympna O’Sullivan. The development of teach-
ing case studies to explore ethical issues associated with computer programming. In
UKICER, pages 1-9, 2021.

113
[14]
[15]
[16]

(17]

(18]

(19]

20]

[21]

[22]
23]
[24]

25]

[26]

27]
28]

29]

(30]

Don Gotterbarn and Marty J. Wolf. The code: The acm code of ethics and professional
conduct, 2018. https://www.acm.org/code-of-ethics.

Chuck Huff and C. Diane Martin. Computing consequences: A framework for teaching
ethical computing. CACM, 38(12):75-84, 1995.

ImpactCS. Impactcs (impact computer science), 1995. http://computingcases.org/
general_tools/curriculum/impactcs.html.

Amruth N. Kumar and Rajendra K. Raj. Cs202x acm/ieee-cs/aaai comuter science
curricula, 2023. https://csed.hosting.acm.org/.

Rich LeBlanc and Ann Sobel. Software engineering 2014: Curriculum guidelines for
undergraduate degree programs in software engineering, 2014. https://www.acm.org/
binaries/content/assets/education/curricula-recommendations/is2020.pdf.

Paul Leidig and Hannu Salmela. 1s202: A competency model for undergraduate pro-
grams in information systems, 2014. https://www.acm.org/binaries/content/assets/
education/se2014.pdf.

C. Diane Martin, Chuck Huff, Don Gotterbarn, and Keith Miller. Implementinag a
tenth strand in the cs curriculum. CACM, 39(12):75-84, 1996.

C. Diane Martin and Elaine Y. Weltz. From awareness to action: Integrating ethics
and social responsibility into the computer science curriculum. ACM Computers and
Society, 29(2):6-14, 1999.

Richard E. Mayer, Kathryn Steinhoff, Gregory Bower, and Rebecca Mars. A genertative
theory of textbook design: Using annotated illustrations to foster meaningful learning
of science text. Educationa Technology Research and Development, 43:31-41, 1995.

Allan Paivio. Images in Mind: The Ewvolution of a Theory. Harvester Wheatsheaf,
Birmingham, United Kingdom, 1991.

Donn B. Parker. Rules of ethics in information processing. CACM, 11(3):198-201, 1968.
https://ethics.acm.org/code-of-ethics/previous-versions/1966-acm-code/.

Angelo J. Pintoi and Howard J. Zeitz. Concept mapping: A strategy for promoting
meaningful learning in medical education. Medical Teacher, 19(2):114-121, 1997.

Frank Romanelli, Eleanora Bird, and Melody Ryan. Learning styles: A review of theory,
application, and best practices. American Journal of Pharmaceutical Education, 73(1),
2009. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690881/.

Mehran Sahami and Steve Roach. Computer science curricular 2013. https://www.
acm.org/binaries/content/assets/education/cs2013_web_final.pdf.

Seoul Accord. The seoul accord. http://www.seoulaccord.org/.

Alan B. Tucker and Bruce H. Barnes. Computing curricula 1991: Report of the
acm/ieee-cs joint curriculum task force. CACM, 34(6):68-84, 1991.

Evan Weingarten, Qijia Chen, Maxeall McAdams, Jessica Yi, Justin Hepler, and Dolores
Albarracin. From primed concepts to action: A meta-analysis of the behavior effects of
incidentally-presented words. Psychological Bulletin, 142(5):472—-497, 2015.

Jiajie Zhang and Donald A. Norman. Representations in distributed cognitive tasks.
Cognitive Science, 18:87-122, 1994.

61

ML Production Systems Course
at a Polytechnic PUI*

Ronald J. Nowling
Electrical Engineering and Computer Science

Milwaukee School of Engineering
Milwaukee, WI 53202

nowling@msoe.edu

Abstract

Machine learning-powered web services have entered the mainstream
and related experience is highly valued in industry. A course titled “ML
Production Systems” on the implementation and operation of software
services that incorporate machine learning is described. The course was
designed around a term-long group project to implement a spam clas-
sification service. The project was supported by lectures in topics such
as RESTful services, data storage systems, and data processing systems
along with machine learning on time series data. The design of the class,
a reflection from its first offering at a polytechnic primarily undergradu-
ate institution (PUI), and the availability of open-source course materials
are described. With few courses like it currently available, this work aims
to stimulate the proliferation of similar courses at other colleges and uni-
versities.

1 Introduction

Machine learning (ML) plays an integral role in data-driven, user-serving appli-
cations such as online advertising[22, 4, 26, 11, 24|, social media platforms[11,
21, 20], streaming media[6, 3, 18], and e-commerce[29, 1]. Developing machine

*Copyright (©)2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

62

learning-powered services requires knowledge across a wide range of technolo-
gies and practices. The development and training of machine learning models
needs to be adjusted to handle data sets that change in time. Architects must
be familiar with the tradeoffs, in terms of latency and throughput of storage
and data processing components, in order to meet performance requirements
and consider failure modes of distributed systems to meet reliability require-
ments. Developers and software reliability engineers (SREs) need to adapt
practices and processes for software deployment, operation, and monitoring,
often referred to as developer operations (DevOps), to the nuances of machine
learning. ML production systems is a growing yet critical area of study needed
to realize the full potential of machine learning for many applications.

Although around for a decade or longer, the practice and knowledge have
primarily been driven by a small number of companies. Companies such as
Google[24, 33, 27, 2|, Meta[11], Uber[7, 31|, and LinkedIn[8, 28, 17] developed
and described critical technologies and architectural approaches that were later
adopted by the wider industry and published highly-cited experience reports.
Industry is beginning to converge on terminology, concepts, knowledge, and
practices, enabling the development of educational resources. At least eight
books[5, 10, 32, 9, 19, 15, 30, 13] and self-study materials[25] have been pub-
lished since 2018. This knowledge has started to translate into the classroom
as evidenced by the recent development of two courses[14, 16]. Students will
expect access to similar coursework to support industry careers, and faculty
will be tasked with developing such courses.

This paper describes the content and materials of a new, group-based,
project-focused elective course titled “ML Production Systems” and reflects
on the experience of teaching the course to senior undergraduate students at a
polytechnic, primarily undergraduate institution (PUTI). The core of the course
is an implementation of an end-to-end spam classification system, using pop-
ular, freely-available, open-source software. The project was supported by
lectures, example code, and tutorials. The described materials are released
under open-source licenses for use by other instructors.

2 Description of the Course

In a 10-week quarter course, students learned to design, implement, deploy,
and monitor ML production systems. The course was organized around a five-
part end-to-end spam classification system project. An architectural diagram
of the system is presented in Figure 1.

Students were given a script that simulates users receiving and interacting
with emails and evaluates predictions against known labels using the trecO7p
spam classification data set [23] and hand-picked philosophy and history texts

63

Email
Service PostgreSQL
. Apache p
. Mailbox Log
Simulator Service Collector Spark Minio
Pipeline

I Model

Minio .
Training and
Evaluation

Spam
— Detection
Service

Figure 1: Architecture of the Spam Classification System. Square boxes
indicate services, cylinders indicate databases, and hexagons indicate pipelines.
The model development component represents an interactive process performed
by a user. Arrows indicate the direction of data movement.

from Project Gutenberg as input. Students used the script to populate their
system, test the prediction service, and experiment with data distribution shift
and model retraining. The project was supplemented with code examples and
handouts. Students were given two weeks to complete each part and asked to
demo their working solutions to the instructor.

One of the primary goals of the course was to expose students to technol-
ogy commonly used in industry. To accomplish this, the course and project
were designed using only freely-available, open-source software. PostgreSQL
was used as the relational database, and Minio was used as the object store.
Python was chosen as the primary programming language primarily due to the
availability of the scikit-learn library for machine learning. Jupyter notebooks,
Pandas, and matplotlib were used for model development. Additional Python
libraries used include the Flask web framework, marshmallow for validation,
psycopg2 for accessing PostgreSQL, and boto3 for accessing an object store.
Lastly, the data pipeline was implemented using Apache Spark and Scala. Due
to concerns about costs and complexity, it was decided to focus on local devel-
opment (at least initially), rather than using a cloud provider. Therefore, the
university assigned every student a personal laptop with a moderately powerful
CPU, 16 GB RAM, and a 256 GB SSD configured with Microsoft Windows 10.

The project was supported by two lectures per week. The lectures covered
topics such as implementing RESTful services using the Flask framework, dif-
ferent types of database and storage services, data processing infrastructure,
development and evaluation of machine learning models, continuous delivery

64

(CD) of machine learning models (so-called MLOps), and monitoring of the
system.

2.1 Submissions and Feedback

Projects were graded primarily through student demonstrations. Students were
asked to store their project code in private GitHub repositories and share the
repositories with the instructor. For archival purposes, students were asked to
submit links to the repositories to the learning management system (LMS).

Through these demonstrations, given during lab time, the instructor pri-
marily assessed technical correctness. This allowed the instructor to identify
and provide feedback on any errors that could impact later projects. If errors
were encountered during the demo, the students were asked to make changes
and demo again. Grades were assigned based on the successful demos. Sug-
gested due dates were provided to students but flexibility was provided if stu-
dents needed more or less time for projects.

2.2 Availability of Materials

The course materials are available under the open-source Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) and Apache Soft-
ware License v2.0 licenses and archived in the ¢s4981-2023g3 branch of the
GitHub repository located at:
https://github.com/msoe-dise-project/ml-prod-sys-course

The course and its materials are initatives of the Milwaukee School of Engineer-
ing Data-Intensive Systems Education (MSOE DISE) project (https://msoe-
dise-project.github.io) led by the author.

3 Student and Instructor Experiences

Two sections of the course were offered by a single instructor in the 2022-
2023 Winter quarter. Thirty-six Computer Science (CS) and twelve Software
Engineering (SE) majors (48 total) with senior standing enrolled. All students
had taken required courses in full-stack web applications, database systems,
and software engineering tools (e.g., version control with git). The CS majors
had taken additional required courses in machine learning and data science,
including a junior practicum, while the SE majors had taken courses such as
software architecture, software verification, and a junior practicum experience.
Students organized themselves into 14 groups and ensured that each group
included at least one CS major to support the machine learning-specific aspects
of the course project.

65

Student learning was assessed primarily based on satisfaction of the tech-
nical project requirements. 46 of the 48 students successfully completed the
course, meaning that the students’ groups submitted work for and earned pass-
ing grades on all five projects. The two students who were not successful did
not attend class or submit any work.

Students were asked to describe what they learned, what went well in the
class, and what could be improved as part of their final project reports. Textual
analysis was performed using a two-pass coding approach|[12]. In the first pass,
the feedback was reviewed to identify topics. The feedback was reviewed in
a second pass to count the number of groups explicitly mentioning each topic
with a positive or negative sentiment (see Table 1).

Table 1: Topics and number of mentions in student feedback.

Positive Negative Not Men-
Mentions Mentions tioned

Overall Experience 10 0 4
ML outside of notebooks 9 0)
Learned new technologies 12 0 2
Review/integration of previous 9 0 5
classes

Environment setup/debugging 1 6 7
Mixed-skills team experience 5 0 9
Preparation for industry roles 4 0 10
Valuable addition to curriculum 4 0 10

Ten of the fourteen groups described their overall experience as positive;
none of the groups described their overall experience as negative. The most
commonly mentioned contributors to the positive experiences including see-
ing how ML is used outside of notebook environments (9 positive mentions),
learning new technologies (12 positive mentions), review and integration of
technologies and concepts learned in previous classes (9 positive mentions),
and the experience of working in mixed CS/SE teams (5 mentions). Lastly,
four groups described the class as good preparation for industry roles and sug-
gested the class should be a required course for both majors. The only negative
mention was of challenges with setting up and debugging the environments by
six groups.

66

4 Discussion

Despite the overall positive experience of the students and instructor, there are
multiple opportunities to improve the course. In its current 10-week quarter
format, there was no time to include a number of relevant topics. For example,
production systems are now frequently designed around event-driven architec-
tures and implemented using streaming technologies. Streaming systems have
unique considerations in terms of implementing data analyses on unbounded
streams, required computational resources, and how to handle failure. Com-
panies have also adopted experiment trackers, like MLflow, to facilitate repro-
ducibility in ongoing efforts by data scientists to improve model performance.
Lastly, feature stores were recently introduced as a new type of service that
wraps high-throughput and low-latency data stores into a single API to enable
centralization and reuse of feature calculations.

This course is one of the few places in the curriculum where the CS majors
were exposed to topics in software engineering, such as software architecture,
developing requirements, documentation practices, and software testing. There
are substantial opportunities to improve coverage of these topics in the course.
For example, the students submitted their work by sharing private GitHub
repositories with the instructor, but none of the student groups documented
their projects. This means the students did not follow the standard practice of
creating README . md Markdown files that summarize the purpose of the software
in the repository and provide instructions for installing dependencies and run-
ning the software. It would have been even better if students had documented
dependencies on other services and data, any interfaces or data exported by the
system, and the internal operation of the component (including any relational
data or file schemas). The students did not appear to implement any formal
code review process (e.g., creating pull requests and asking for code reviews),
although several groups reported practicing peer programming in their reflec-
tions. Lastly, there was no evidence that students implemented any manner
of automated tests or continuous integration for their repositories. Given the
importance and widespread usage of these practices in industry, their incorpo-
ration would better prepare students for industry roles.

From the assessments of the group projects, it was not possible to determine
if there were variations in student learning or contributions to the projects.
Assessments of individual students such as exams or quizzes would be beneficial
for assessing the effectiveness of student learning from the lectures. Similarly,
students could be asked to reflect on their contributions and that of group
members.

Challenges with setting up the environment and installing dependencies was
the only topic with significant negative mentions by multiple student groups in
the final reports. In three cases, the instructor created and shared additional

67

instructions with the class; these instructions were incorporated into the as-
signment descriptions for use by future groups. Nonetheless, the effort needed
to set up and debug environments reflective of tasks commonly performed by
industry software engineers. The instructor considered the required work and
effort spent debugging environment issues to be good preparation for industry
roles and was hesitant to simplify that component of the course.

5 Conclusion

In this paper, a course focused on the implementation and operation of ML-
powered services was described. This course is not the first of its type but,
to the author’s knowledge, only the third such course to be described. Maybe
most importantly, this course was successfully implemented in a substantially
different environment from those of previous courses. The other courses were
taught at very selective institutions, Carnegie Mellon University (CMU)[16]
and Stanford University[14]. Further, while the CMU course[16] was targeted
at graduate students, both the Stanford course[14] and the course described
here were taught to senior-level undergraduate students. The author’s institu-
tion is a regional primarily-undergraduate institution (PUI) that is selective,
but considerably less so than either CMU or Stanford. Nonetheless, as a poly-
technic, students are required to take a significant number of computer science
and software engineering courses, which, as seniors, the students had already
completed most of. Future work should evaluate the feasibility of offering a
similar course at a liberal arts college or comprehensive regional institution
with fewer required courses and/or a mix of junior and senior students.

Few universities offer such courses currently, but there are good reasons to
believe that these types of courses will become more common in the next few
years. The author’s goal in sharing the course materials and describing student
experiences is to encourage the development of similar courses at a wide-range
of universities and colleges. As the number of available courses increases, there
will be further opportunity for dialogue on technical best practices for imple-
menting such systems, effective teaching practices, and ways to interface with
related fields such as software engineering and algorithmic fairness.

68

References

[1]

2]

3]

4]

[5]

[6]

7]

8]

19]

[10]

Xavier Amatriain and Justin Basilico. “Recommender Systems in Indus-
try: A Netflix Case Study”. In: Recommender Systems Handbook. Ed. by
Francesco Ricci, Lior Rokach, and Bracha Shapira. Boston, MA: Springer
US, 2015, pp. 385-419.

Eric Breck et al. “The ML test score: A rubric for ML production readi-
ness and technical debt reduction”. In: 2017 IEEE International Confer-
ence on Big Data (Big Data). Dec. 2017, pp. 1123-1132.

Oscar Celma. “The Exploit-Explore Dilemma in Music Recommenda-
tion”. In: Proceedings of the 10th ACM Conference on Recommender
Systems. RecSys "16. Boston, Massachusetts, USA: Association for Com-
puting Machinery, Sept. 2016, p. 377.

Deepayan Chakrabarti, Deepak Agarwal, and Vanja Josifovski. “Contex-
tual advertising by combining relevance with click feedback”. In: Proceed-
ings of the 17th international conference on World Wide Web. WWW
’08. Beijing, China: Association for Computing Machinery, Apr. 2008,
pp. 417-426.

Cathy Chen et al. Reliable Machine Learning: Applying SRE Principles
to ML in Production. en. 1st ed. O’Reilly Media, Oct. 2022.

Gideon Dror et al. “The Yahoo! Music Dataset and KDD-Cup’11”. In:
Proceedings of KDD Cup 2011. Ed. by Gideon Dror, Yehuda Koren, and

Markus Weimer. Vol. 18. Proceedings of Machine Learning Research.
PMLR, Aug. 2012, pp. 3-18.

Yupeng Fu and Chinmay Soman. “Real-time Data Infrastructure at Uber”.
In: Proceedings of the 2021 International Conference on Management of
Data. SIGMOD ’21. Virtual Event, China: Association for Computing
Machinery, June 2021, pp. 2503-2516.

Sahin Cem Geyik et al. “Talent Search and Recommendation Systems
at LinkedIn: Practical Challenges and Lessons Learned”. In: The 41st
International ACM SIGIR Conference on Research & Development in
Information Retrieval. SIGIR ’18. Ann Arbor, MI, USA: Association for
Computing Machinery, June 2018, pp. 1353-1354.

Noah Gift and Alfredo Deza. Practical MLOps: Operationalizing Machine
Learning Models. en. 1st ed. O’Reilly Media, Oct. 2021.

Yaron Haviv and Noah Gift. Implementing MLOps in the Enterprise: A
Production-First Approach. en. 1st ed. O’Reilly Media, Nov. 2023.

69

[11]

12]
13]
14
15]

[16]

[17]

[18]

[19]

[20]

[21]

70

Xinran He et al. “Practical Lessons from Predicting Clicks on Ads at
Facebook”. In: Proceedings of the Eighth International Workshop on Data
Mining for Online Advertising. ADKDD’14. New York, NY, USA: Asso-
ciation for Computing Machinery, Aug. 2014, pp. 1-9.

Monique Hennink, Inge Hutter, and Ajay Bailey. Qualitative Research
Methods. en. Second edition. SAGE Publications Ltd, Feb. 2020.

Geoff Hulten. Building Intelligent Systems: A Guide to Machine Learning
Engineering. en. 1st ed. Apress, Mar. 2018.

Chip Huyen. CS 329S. en. https://stanford-cs329s. github. io/.
Accessed: 2023-6-4. 2022.

Chip Huyen. Designing Machine Learning Systems: An Iterative Process
for Production-Ready Applications. en. 1st ed. O’Reilly Media, June 2022.

Christian Késtner and Eunsuk Kang. “Teaching software engineering for
Al-enabled systems”. In: Proceedings of the ACM/IEEE /2nd Interna-
tional Conference on Software Engineering: Software Engineering Edu-
cation and Training. ICSE-SEET ’20. Seoul, South Korea: Association
for Computing Machinery, Sept. 2020, pp. 45—48.

Krishnaram Kenthapadi, Benjamin Le, and Ganesh Venkataraman. “Per-
sonalized Job Recommendation System at LinkedIn: Practical Challenges
and Lessons Learned”. In: Proceedings of the Eleventh ACM Conference
on Recommender Systems. RecSys '17. Como, Italy: Association for Com-
puting Machinery, Aug. 2017, pp. 346-347.

Noam Koenigstein, Gideon Dror, and Yehuda Koren. “Yahoo! music rec-
ommendations: modeling music ratings with temporal dynamics and item
taxonomy”. In: Proceedings of the fifth ACM conference on Recommender
systems. RecSys ’11. Chicago, Illinois, USA: Association for Computing
Machinery, Oct. 2011, pp. 165-172.

Valliappa Lakshmanan, Sara Robinson, and Michael Munn. Machine
Learning Design Patterns: Solutions to Common Challenges in Data
Preparation, Model Building, and MLOps. en. 1st ed. O'Reilly Media,
Nov. 2020.

Jimmy Lin and Alek Kolcz. “Large-scale machine learning at Twitter”.
In: Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’12. Scottsdale, Arizona, USA: Associa-
tion for Computing Machinery, May 2012, pp. 793-804.

Zhuoran Liu et al. “Monolith: Real Time Recommendation System With
Collisionless Embedding Table”. In: (Sept. 2022). arXiv: 2209 . 07663
[cs.IR].

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

Quan Lu et al. “A Practical Framework of Conversion Rate Prediction
for Online Display Advertising”. In: Proceedings of the ADKDD’17. AD-
KDD’17 Article 9. Halifax, NS, Canada: Association for Computing Ma-
chinery, Aug. 2017, pp. 1-9.

Gordon Lynam and Cormack Thomas. TREC 2007 Public Corpus. https:
//plg . uwaterloo . ca/ “gvcormac /treccorpus07 / about . html. Ac-
cessed: 2023-6-4. 2007.

H Brendan McMahan et al. “Ad click prediction: a view from the trenches”.
In: Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. KDD ’13. Chicago, Illinois, USA:
Association for Computing Machinery, Aug. 2013, pp. 1222-1230.

Goku Mohandas. Home - Made With ML. https://madewithml.com/.
Accessed: 2023-6-4.

Matthew Richardson, Ewa Dominowska, and Robert Ragno. “Predict-
ing clicks: estimating the click-through rate for new ads”. In: Proceed-
ings of the 16th international conference on World Wide Web. WWW
'07. Banff, Alberta, Canada: Association for Computing Machinery, May
2007, pp. 521-530.

David Sculley et al. “Hidden technical debt in machine learning systems”.
In: Adv. Neural Inf. Process. Syst. 28 (2015).

Amit Sharma and Baoshi Yan. “Pairwise learning in recommendation:
experiments with community recommendation on LinkedIn”. In: Proceed-
ings of the 7th ACM conference on Recommender systems. RecSys ’13.
Hong Kong, China: Association for Computing Machinery, Oct. 2013,
pp- 193-200.

Brent Smith and Greg Linden. “Two Decades of Recommender Systems
at Amazon.com”. In: IEEE Internet Comput. 21.3 (May 2017), pp. 12-18.

Jeff Smith. Machine Learning Systems: Designs that scale. en. First Edi-
tion. Manning, July 2018.

Chong Sun, Nader Azari, and Chintan Turakhia. “Gallery: A machine
learning model management system at Uber”. In: Proceedings of the 22nd
International Conference on Extending Database Technology (EDBT).
OpenProceedings.org, 2020.

Mark Treveil et al. Introducing MLOps: How to Scale Machine Learning
in the Enterprise. en. 1st ed. O'Reilly Media, Jan. 2021.

Martin Zinkevich. “Rules of machine learning: Best practices for ML engi-
neering”. In: https: //developers. google. com/machine-learning/
guides/rules-of-ml (2017).

71

The Structure of a Graduate Defensive
Cybersecurity Course*

Mohamed Lotfy
Utah Valley University
Orem, UT 84058

MohamedL@Quvu.edu

Abstract

The growing need for cybersecurity professionals is driven by the drastic
increase of advanced persistent threat cyber-attacks on critical infrastruc-
ture and ransomware attacks. There are still mismatches between indus-
try needs and cybersecurity education. To prepare I'T and cybersecurity
graduates and meet industry needs, cybersecurity courses must introduce
current offensive and defensive tools and practices to secure computing
resources, systems, services, data, and network services. These offensive
and defensive cybersecurity tools should be introduced and applied in
hands-on activities, thus allowing students to gain the needed knowledge
of current cybersecurity best practices. In this paper, we provide the
structure, components, hands-on assignments, and virtual environment
of a graduate defensive cybersecurity course designed to introduce the
cyber kill chain model and the DoD information operations 6D doctrine.
Student course evaluations and what helped them to learn the most are
presented and discussed.

1 Introduction

The need for cybersecurity professionals has been growing drastically in the
last decade and is continuing to grow. According to the Cyberseek.org cyber-
security supply/demand heat map, the total national employed cybersecurity

*Copyright (©)2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

72

work force in 2023 is 1,129,659. The total number of national cybersecurity
openings in 2023 at the time of this writing is 663,434[4]. The 2023 eSENTIRE
official cybersecurity jobs report mentioned that “according to Cybersecurity
Ventures,there will be 3.5 million unfilled jobs in the cybersecurity industry
through 2025”[5]. The growing need for cybersecurity professionals is justified
due to the exponential increase in critical infrastructure and ransomware at-
tacks. The Center for Strategic & International Studies recorded more than
950 worldwide significant cyber-attacks on government agencies, defense and
high-tech companies, or economic crimes with losses of more than a million
dollars since 2006]6].

Most of the significant cyber-attacks are advanced persistent threats (APT).
APT are clandestine, prolonged, and continuous hacking processes conducted
by cyber-criminals and nation-state/sponsored actors to infiltrate a targeted
entity for specific gains[11]. APT conducted by nation-state/sponsored actors
tends to be more sophisticated, utilize more resources, and are not financially
driven like APT conducted by cybercriminals[2]. For example the 2019-2020
SolarWinds APT hack impacted the global supply chain and affected thou-
sands of organizations, including the U.S. government[18]. The 2021 Colonial
pipeline attack impacted the U.S. oil and gas supply chain in the south east
and impacted many U.S. residents and organizations[10]. APT and cybercrime
damages cost is expected to reach $10.5 trillion by 2025[15].

Nowadays, “every IT position is also a cybersecurity position”[5]. IT work-
ers are currently involved, at some level, securing applications, systems, servers,
networking and cloud infrastructure, data at rest or in motion, devices, and
people[5]. However, there are still mismatches between industry needs and cy-
bersecurity education[3]. To prepare IT and cybersecurity graduates and meet
industry needs, IT and cybersecurity courses must introduce current offen-
sive and defensive tools and practices to secure computing resources, systems,
services, data, and network services. These current offensive and defensive
cybersecurity tools should be introduced and applied in hands-on activities,
thus allowing students to gain the needed knowledge of current cybersecurity
best practices. Connecting the systems and data networks knowledge with cur-
rent cybersecurity best practices within a specific deployment context enables
students to develop and gain current professional cybersecurity competency.

In the remaining sections, a review of the structure of current cybersecurity
graduate courses will be conducted and the cyber kill chain model will be
introduced. Then the structure of a graduate Advanced Network Defense and
Countermeasures course, as well as the course assignments, the used tools, and
the virtual environment infrastructure are presented. Student evaluation and
feedback of the course are shared followed by a discussion on the findings and
lessons learned from offering the course.

73

2 Graduate Cybersecurity Courses Review

In recent years, teaching offensive and defensive cybersecurity in computer
science, cybersecurity (CSEC), and information technology (IT) programs be-
came central in cybersecurity education. Offensive security, through penetra-
tion testing/ethical hacking courses, allows students to gain the needed knowl-
edge and skills of how to attack and access systems and networks using current
tools[8, 13]. Connecting the systems and data networks knowledge with how
to perform defensive security skills within a specific context enables students
to develop and gain needed cybersecurity competency[13]. In addition, the
offensive and defensive hands-on assignments let students develop the needed
cybersecurity capabilities thus enabling them later to build layered defenses
that harden the systems to intrusion.

According to CC2020 curricula guidelines, CSEC and IT competency-based
programs need to be organized around the knowledge, skills, and dispositions
dimensions to enable student’s career readiness. For IT and CSEC graduates
to be job ready, the educational course work should mirror the “computing
technologies in the work environment”[7]. IT and CSEC program courses need
to expose students to current offensive and defensive methodologies, including
network port scanning, vulnerability assessment, exploitation, password har-
vesting and cracking, server hardening, firewall iptables rules, network and host
intrusion systems, and honeypot deployment.

Educators use different approaches to teach cybersecurity courses. Some
courses are designed using the Committee on National Security Systems pro-
posed reference framework. Other courses follow curricular guidelines based
on industry guidelines, for example ABET. The third approach follows the
Department of Homeland Security (DHS) educational guidelines[16]. To allow
students to acquire the needed hands-on skills, labs are required regardless of
the approach. Some courses in graduate cybersecurity programs allow students
to acquire and apply the needed offensive and defensive cybersecurity skills in
a legal security education (SEED) lab[12]. Other courses use on-site local net-
work of computers, virtual machines (VMs) installed on students’ personal
laptops, cloud deployed computing environments (labs as a service), and cyber
ranges lab infrastructures.

The computer system security (CSS) graduate course discussed in [1] was
designed to allow students to learn and practice security concepts, such as au-
thentication, access control, auditing, system hardening and data protection, to
ensure the confidentiality, integrity, and availability (CIA) elements in informa-
tion systems([1]. The hands-on labs were conducted using containers deployed
to create an instance of the system, thus allowing students to run vulnerable
applications in an isolated environment on the students’ host machines[1].

74

In Moldovan and Ghergulescu[14], the authors described how they delivered
the network security and penetration testing module, which is part of a gradu-
ate cybersecurity program, using two different approaches. In the first cohort,
timed in-class practical tests with a fixed set of questions were used. In the
second cohort, students were placed in groups. Each student group used virtual
labs to conduct penetration testing, drafted a report, and presented the work
in front of the class. The end of module feedback survey results showed that
the second cohort, which used group assessment using virtual labs, provided
favorable feedback than the first cohort.

Some cybersecurity courses use a case-study approach[3, 20]. Cai[3] shared
a model of how to use a case study approach with hands-on labs using cloud-
based virtual machines to teach cybersecurity courses. The end of course survey
results showed that students responded positively to the case study approach
compared to the traditional delivery of the courses. In addition, the case study
course feedback showed that student motivation and self-efficacy were improved
in the case study course.

In Vykopal[19], the authors discussed how they used two learning environ-
ments to allow students to perform the hands-on cybersecurity labs depending
on the class size. While the first environment was a cloud based KYPO cyber
range platform used for large or multiple classes, the second environment, used
for smaller classes, utilized multiple premade images of operating systems to
create VMs that were installed on lab computers or the students’ own desktop
or laptop.

Ngo, Cui, and Chen[17], shared how the authors used various computing
infrastructures in cybersecurity courses taught. The infrastructures included
on-site local network of computers, VMs installed on students’ personal laptops,
and Cloud-Lab, a national computing infrastructure deployed in the cloud. Ac-
cording to , “the former two presented various logistical, technical, and admin-
istrative challenges in ensuring a seamless and transparent hands-on learning
environment for students”. Student feedback was positive regarding the used
cloud computing environments.

3 The Cyber Kill Chain Model

Hutchins, Clopperty, and Amin[9] proposed the structure and phases of the
cyber kill chain (CKC). The CKC model breaks down an intrusion attack into
consecutive stages to help cybersecurity analysts determine the patterns and
behaviors of the intruders, their tactics, techniques, and procedures (TTP)[9,
2]. The CKC model allows cybersecurity professionals to understand the ad-
vanced persistent threats TTP and how to align defensive capabilities to in-
terrupt and stop the chain. The defensive course of actions was derived from

7

the DoD information operations (I0) 6D doctrine—detect, deny, disrupt, de-
grade, deceive, and destroy. “Defenders must be able to move their detection
and analysis up the kill chain and more importantly to implement courses of
actions across the CKC”[9].

Figure 1 shows the CKC to 6D course of action mapping from[9].

Phase Detect Deny Disrupt Degrade Deceive Destroy .
Reconnaissance a n";‘;;tl' cs Fiﬁéf”
Weaponization NIDS MNIPS
Delivery Vigilant user Proxy filter In-line AV Queuing
Exploitation HIDS Patch DEP
Installation HIDS “chroot” jail AV
c2 NIDS F‘L"E:"“La” NIPS Tarpit) e%?lresd
Aglonson | audtiog U oneysr

Figure 1: Cyber Kill Chain to 6D course of Action Matrix from [9]

To illustrate the benefits of the CKC model and the 6D course of action
matrix techniques, [9] shared a case study of three adversary intrusion attempts
that were observed by the Lockheed Martin Computer Incident Response Team
(LM-CIRT) in March 2009. Using the CKC to analyze the intrusions, which
were leveraging a “zero-day” vulnerability, the LM-CIRT network defenders
successfully detected and mitigated the intrusions using the 6D course of ac-
tions and techniques.

4 Defensive Cybersecurity Course Structure

At Utah Valley University, the IT6740 Advanced Network Defense and Coun-
termeasures course, which follows the CKC model and the 6D course of action
techniques, has been taught face-to-face in a 16-week semester format. The
course allows students to explore advanced cybersecurity topics in network
defense, server hardening, vulnerability assessment, and mitigation scanning.

76

Students learn advanced network scanning, asset identification, Linux and Win-
dows server hardening, firewall tools, intrusion and host detection concepts and
tasks through an applied viewpoint using a hands-on application of 6D doc-
trine techniques and the use of current tools. The graduate students attending
the course were IT, IS, or cybersecurity professionals working in local organi-
zations. The course activities included hands-on assignments, readings, and
multiple reports.

4.1 Hands-on Assignments

The hands-on assignments are constructed to allow the student to use current
defensive cybersecurity practices and tools. The student uses the CKC model
knowledge to apply the detect, deny, and deceive actions of the 6D doctrine
within different contexts. Table 1 shows the structure and software/tools used
in the course.

Table 1: Course Hands-on Assignments

Assignment Software/Tools used
1 Setting the Virtual environment Kali, VMware/Oracle VirtualBox
Network Port Scanning using Nmap Nmap

Nessus, Kali, Windows XP
Windows Server 2008, Linux VMs
Kali, Linux CentOS
Windows Server 2012r2 VMs
Kali, Linux CentOS

3 Vulnerability Assessment using Nessus

4 Server Hardening

5 Host-Based Firewalls Windows Server 2012r2 VMs

6 Snort NIDS/NIPS Assignment 1 Kali, Security Onion VMs

7 Snort NIDS/NIPS Assignment 2 Kali, Security Onion VMs

8 Snort NIDS/NIPS Assignment 3 Kali, Security Onion VMs

9 Honeypot Kali and T-Pot Honeypot VMs
Kali, Linux (Ubuntu/Debian)

10 HIDS Endpoint Security Windows Server 2012r2,

Security Onion, and Wazuh(OVA)

The course assignments introduce current defensive cybersecurity practices.
The second and third hands-on assignment allow the student to identify the
different open or closed ports as well as the existing vulnerabilities on the differ-
ent host VMs. In assignment four the student applies different fixes to harden
the different host VMs. In the host-based firewalls assignment five the student
reviews the default firewall settings on the Linux and Windows server VMs
and used iptables/ufw and the Windows firewall to create a set of more robust

7

rules specifying the use case and justification considering the flow of traffic be-
tween clients and services. Assignments six, seven and eight allow the student
to install a network intrusion detection system (NIDS), Security Onion (SO),
and write rules to detect ICMP, TCP and different file types flowing between
the hosts on the sub-net. In assignment nine the student installs and attacks
a honeypot, T-PotCE, and uses the honeypot dashboard to view the different
attacks. In the last assignment, host intrusion detection system (HIDS), the
student installs Wazuh agents on the Linux and windows server hosts to collect
Sysmon events and check changes to the file sizes, permissions, owner changes,
last modification date, inode and all the hash sums (MD5, SHA1 and SHA256)
of the system files and directories ensuring that the agents are reporting to
the centralized SO VM manager or Wazuh OVA VM dashboard. Each student
completes the assignments individually.

Each assignment, in the course shell assignment module/page, provided
detailed descriptions and instructions to enable the student to perform the dif-
ferent tasks. Each assignment module/page included four areas, the purpose
and goals of the assignment, the needed software tools and virtual machines,
the tasks that should be performed, and the expected deliverables. The stu-
dent submits a written document or technical report showing screenshots of
accomplished tasks, all used commands, and a reflection on the lessons learned
and issues encountered while performing the assignment.

4.2 Written Assignments/Reports

To enable the students to demonstrate the acquirement of the advanced defen-
sive cybersecurity CKC skills, each student submits five detailed reports. The
written reports allow students to challenge their defensive cybersecurity knowl-
edge and hands-on skills. It enables them to research and investigate resources
that can be part of their professional work. Table 2 shows the structure of the
written reports used in the course.

Table 2: Course Written Assignments and Reports

Written Assignment/Report

Current Verizon data breach report analysis

Recent breach CVEs (Solarwinds, Colonial pipeline, Log4j, etc.)
Cyber kill chain analysis

Network defense compliance (PCI-DSS, HIPAA, NIST, etc.)
Cybersecurity defense strategy and planning

QU | W N~

78

4.3 Course Delivery

Each course shell in the learning management system included the class video
recordings, presentations, demonstrations, hands-on learning and report as-
signments, the course information, course syllabus, grade book, calendar, and
the course materials/modules. The recorded class video lectures showing why
and how to use the different tools to conduct the defensive cybersecurity tasks
were uploaded in the course shell media folder as well as the course Microsoft
Teams channel. To keep students on track, the course calendar was populated
with all the assignments and their due dates.

Students were encouraged to use the course Microsoft Teams channel and
the weekly discussion Q&A forum to answer each other’s questions and provide
help. To allow the students to acquire the needed competencies and achieve
the course outcomes, the faculty provided detailed feedback on each graded
assignment. The feedback explained what the student did well, what did the
student missed, how the student used the tools to meet the assignment/lab
requirements, and any additional resources or tools that should have been
used.

4.4 The Virtual environment

Students had to install either VMware (spring 2021 and spring 2022) Worksta-
tion Pro, offered free through VMware Academic Software Licensing Program
with the university, or VirtualBox (spring 2023) on their laptops or PCs to
create their own virtual environment to complete the required hands-on assign-
ments/labs. To conduct the hands-on assignments, each student was provided
a Metasploitable 2 Linux by Rapid7, a customized Windows XP and Windows
server 2008 VMs, and a SO 16.04.7.3 ISO. In addition, students had to in-
stall an Offensive Security Kali, Linux CentOS, Windows Server 2012r2, Linux
(Ubuntu/Debian) host, Telekom-security T-PotCE, and Wazuh OVA VMs.

5 Student Course Evaluation and Feedback

At the end of each course, students were provided an online course evaluation
form. The overall course evaluation area used a five-point Likert scale to answer
the following questions:

Q1: I learned more about the subject as a result of taking this class.
Q2: I learned how this subject can be used outside of the classroom.
Q3: This class challenged me to think in new ways.

Q4: I developed one or more essential skills as a result of this class.

79

Table 3 shows the results for the IT6740 Spring 2021, Spring 2022, and
Spring 2023 overall course evaluation.

Table 3: Overall Course Evaluation Results

SA(%) A(%) N (%) D (%) SD(%) Avg StdDev 95% CI
Spring 2021
(N=11, n=5)
Q1 40 20 20 - 20 3.8 1.17 (2.78, 4.82)
Q2 40 40 - - 20 4.0 1.10 (3.04, 4.96)
Q3 40 20 20 - 20 4.0 0.89 (3.22, 4.78)
Q4 40 20 20 - 20 3.8 1.17 (2.78, 4.82)
Spring 2022
(N=11, n=3)
Q1 67 33 - - - 4.67 0.47 (4.13, 5.20)
Q2 67 33 - - - 4.67 0.47 (4.13, 5.20)
Q3 33 67 - - - 4.33 0.47 (3.80, 4.87)
Q4 67 33 - - - 4.67 0.47 (4.13, 5.20)
Spring 2023
(N=13, n=4)
Q1 100 5.0 0.0 (5.0, 5.0)
Q2 100 5.0 0.0 (5.0, 5.0)
Q3 100 5.0 0.0 (5.0, 5.0)
Q4 100 5.0 0.0 (5.0, 5.0)

Students were offered to answer the following open-ended question “what
helped you learn the most”. The following were the written responses pro-
vided by the students who opted to answer the open-ended question. Each
bullet represents the whole received response from each student.

Spring 2021

e “Difficult semester but I got through it.”
e “How knowledgeable the professor is on the subject.”
e “Google.”

Spring 2022

e “The lectures showing how the security software is used and then doing hands-
on assignments of those tools helped me understand how they work.”

e “What helped me learn the most in this class was reinforcing what we learned
in class with the assignments.”

o “Working the assignments.”

Spring 2023

e “Professor extremely knowledgeable on the subject matter and was really good
at explaining everything.”

e “I loved the hands on labs. Those were the most interesting and helpful as-
signments. The papers were interesting, but I felt like I wasn’t getting as much
hands on experience as I would have liked.”

e “The labs were really cool and insightful. There was a broad range of tools and
activities so we got a nice taste of many different solutions. It also took away

80

some of the stress of keeping VMs working, because we only used them for a
few weeks at most. Great for a student environment because we’re not afraid
to try things and make a mess at times.”

e “Hands on labs and exercises.”

The spring 2021, spring 2022, and the spring 2023 course sections used the
same course content, course structure, hands-on assignments, same virtual ma-
chines, and same paper/project requirements and rubrics. While in the spring
2021 and 2022 course sections students used VMware to host the virtual ma-
chines, in the Spring 2023 course section students used Oracle VM VirtualBox
to host the virtual machines. The same faculty taught and managed the three
course sections.

6 Discussion

To prepare the future IT and cybersecurity graduates to current and future
practices of defensive cybersecurity, the courses need to introduce students to
current tools and practices used by cybersecurity professionals to stop and pre-
vent APT. The CKC model coupled with the DoD IO 6D doctrine course of
actions enabled the IT/cybersecurity students to be job ready. The submitted
graded student work showed that the students applied the CKC model learned
knowledge and gained the needed skills to perform current advanced defen-
sive cybersecurity tasks. Also, student graded work showed that the students
understood how each tool was used and why the tool usage fit the defensive
task within the provided scenario/context, thus allowing them to acquire the
needed IT and cybersecurity skills.

Student response to the course evaluation questions showed that the stu-
dents developed one or more essential defensive cybersecurity skills. Also, the
students learned more about advanced defensive cybersecurity because of tak-
ing the course. Students learned how the CKC model and the 6D doctrine
course of actions can be used to address outside the class cybersecurity issues.
Lastly, the students agreed that the course challenged them to think in new
ways.

All students managed to build their virtual environment on their laptops
and PCs and complete all the assignments/labs successfully. Student written
comments, in section 5 above answering the open-ended question, showed that
the hands-on experience in their own virtual environment enabled them to learn
the different advanced defensive cybersecurity skills. A very small number of
students corrupted their VMs or had difficulties creating the VMs but they
managed to overcome the faced issues through peer and faculty help. Some
students commented in their reflections that the weekly provided walk-through
videos helped them to learn the most. Most students highlighted the value

81

of the hands-on assignments on their learning. In addition, some students
found the practicality of the course content was another element that allowed
students to learn the most. Also, many students mentioned, in many classroom
discussions, that they will adopt and implement the different defensive tools
used in the course in their current work environment.

7 Conclusions

Advanced defensive cybersecurity courses need to be an integral component in
current graduate IT/cybersecurity education. The courses should provide ad-
vanced defensive concepts through an applied viewpoint using hands-on appli-
cation of real-world cybersecurity practices and techniques using current tools
in virtual environments that mimic real organizational infrastructures. Allow-
ing students to practice the CKC model and apply the DoD IO 6D course of
actions in different scenarios and contexts enables them to develop IT/cyber-
security job readiness. Analysis of student overall course evaluation and qual-
itative responses showed that having a personal virtual environment to gain
hands-on experience with current cybersecurity tools enabled the students to
acquire the different advanced cybersecurity defensive skills.

References

[1] Arwa Khalid AlSalamah, José Maria Sierra Cdmara, and Stephen Kelly.
Applying virtualization and containerization techniques in cybersecurity
education. In Proceedings of the 34th Information Systems Education Con-
ference, ISECON, pages 1-14, 2018.

[2] Pooneh Nikkhah Bahrami, Ali Dehghantanha, Tooska Dargahi, Reza M
Parizi, Kim-Kwang Raymond Choo, and Hamid HS Javadi. Cyber kill
chain-based taxonomy of advanced persistent threat actors: Analogy of

tactics, techniques, and procedures. Journal of information processing
systems, 15(4):865-889, 2019.

[3] Yu Cai. Using case studies to teach cybersecurity courses. Journal of
Cybersecurity Education, Research and Practice, 2018(2):3, 2018.

[4] Cyberseek. Cybersecurity supply/demand heat map, 2023. Visited June
27, 2023. URL: https://www.cyberseek.org/heatmap.html.

[5] eSENTIRE. 2023 official cybersecurity jobs report, 2023. Visited June
27,2023. URL: https://www.esentire.com/resources/library/2023-
official-cybersecurity-jobs-report.

82

(6]

(7]

[10]

[11]

[12]

[13]

[14]

[15]

Center for Strategic & International Studies. Significant cyber incidents,
2023. Visited June 8, 2023. URL: https://www.csis.org/programs/
strategic-technologies-program/significant-cyber-incidents.

CC2020 Task Force. Computing Curricula 2020: Paradigms for Global
Computing Fducation. Association for Computing Machinery, New
York, NY, USA, 2020. https://doi.org/10.1145/34567967 doi:10.1145/
34567967.

Regina Hartley, Dawn Medlin, and Zach Houlik. Ethical hacking: Ed-
ucating future cybersecurity professionals. In Proceedings of the EDSIG
Conference ISSN, volume 2473, page 3857, 2017.

Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-
driven computer network defense informed by analysis of adversary cam-
paigns and intrusion kill chains. Leading Issues in Information Warfare
& Security Research, 1(1):80, 2011.

Sean Michael Kerner. Colonial pipeline hack explained: Ev-
erything you need to know, 2022. Visited June 20, 2022.
URL: https://www.techtarget.com/whatis/feature/Colonial-

Pipeline-hack-explained-Everything-you-need-to-know?0ffer=
abVidRegWall_gate.

Cheng Chung Kuo, Kai Chain, and Chu Sing Yang. Cyber attack and
defense training: Using emulab as a platform. Int. J. Innov. Comput. Inf.
Control, 14(6):2245-2258, 2018.

Phil Legg, Alan Mills, and Ian Johnson. Teaching offensive and defensive
cyber security in schools using a raspberry pi cyber range. In Journal of
The Colloguium for Information Systems Security Education, volume 10,
pages 9-9, 2023.

Mohamed Lotfy. Teaching a penetration testing course during covid-19
- lessons learned. Journal of the Consortium for Computing Sciences in
Colleges, 37(2):85-99, 2021.

Arghir-Nicolae Moldovan and Ioana Ghergulescu. Leveraging virtual labs
for personalised group-based assessment in a postgraduate network secu-
rity and penetration testing module. In 2020 15th International Workshop
on Semantic and Social Media Adaptation and Personalization (SMA,
pages 1-6. IEEE, 2020.

Steve Morgan. Cybersecurity jobs report: 3.5 million unfilled po-
sitions in 2025, 2023. Visited June 27, 2023. URL: https://
cybersecurityventures.com/jobs/.

83

[16]

[17]

[18]

[20]

84

Djedjiga Mouheb, Sohail Abbas, and Madjid Merabti. Cybersecurity cur-
riculum design: A survey. In Transactions on Edutainment XV, pages
93-107. Springer, 2019.

Linh B Ngo, Liu Cui, and Si Chen. Computing infrastructures to support
cybersecurity education. In 3/th Annual Conference of The Pennsylvania
Association of Computer and Information Science Educators, page 30,
2019.

Saheed Oladimeji and Sean Michael Kerner. Solarwinds hack ex-
plained: Everything you need to know, 2023. Visited June
27, 2023. URL: https://www.techtarget.com/whatis/feature/
SolarWinds-hack-explained-Everything-you-need-to-know.

Jan Vykopal, Pavel Celeda, Pavel Seda, Valdemar Svébensky, and Daniel
Tovarnak. Scalable learning environments for teaching cybersecurity
hands-on. In 2021 IEEE Frontiers in Education Conference (FIE), pages
1-9. IEEE, 2021.

Xinli Wang and Yan Bai. Introducing penetration test with case study and
course project in cybersecurity education. In Journal of The Colloquium
for Information Systems Security Education, volume 9, pages 66, 2022.

Experiences Introducing the POGIL
Methodology for Teaching Computer
Organization & Architecture®

Pamela M. Smallwood
Department of Computer and Cyber Sciences
Regis University
Denver, CO 80221

psmallwo@regis.edu

Abstract

This paper describes one CS department’s experiences with introduc-
ing Process Oriented Guided Inquiry Learning (POGIL) activities in CS
classrooms. POGIL is an active and collaborative learning methodol-
ogy, in which students work together in small groups to complete guided
activities that help them construct understanding and develop process
skills. This paper will discuss what POGIL is, the benefits of POGIL,
how POGIL activities were first introduced in CS1, and how POGIL
activities were then developed and introduced within a Computer Orga-
nization and Architecture course. Informal results and future work will
also be discussed.

1 Background

Ideally learning environments (such as college classrooms) would implement
methodologies that support the research about how students learn. Research
shows people learn better and remember more when they construct their own
understanding following an explore-invent-apply learning cycle, when they in-
teract with others, and when they reflect on their performance[12]. Learning

*Copyright (©)2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

85

outcomes increase as learning environments progress from passive, to active,
to constructive, to interactive, so students are interacting with each other to
construct understanding of a topic[1]. McConnell[10] discussed the benefits of
active and collaborative learning in Computer Science (CS). Process Oriented
Guided Inquiry Learning (POGIL) supports all of this research.

1.1 What is POGIL?

In POGIL[17] classrooms, students work together in self-managed 3-4 person
teams, completing carefully designed guided-inquiry activities. Each POGIL
activity contains several models (e.g., figures, tables, sample code). The mod-
els are followed by a series of questions that guide teams through one or more
of the following learning cycles: explore the model, discover/invent key con-
cepts, and apply new understanding. Each team member has a rotating role
(e.g., manager, spokesperson, recorder, and analyst). The roles help students
develop process skills (e.g., communication, teamwork, problem solving, and
critical thinking), along with learning content material. Instead of lecturing,
the instructor facilitates learning by assisting teams, as needed, while they
complete the activities.

1.2 Use and Effectiveness of POGIL

While POGIL has been used in other STEM disciplines for over 20 years[11],
use of POGIL within computing disciplines is newer. The 2011-2016 CS-POGIL
project[2] began developing POGIL activities for CS. The 2016-2020 IntroCS
POGIL project|8] created many introductory Java and Python activities and
provided training and mentors for faculty starting to use POGIL in CS1. The
CS department at Regis University was able to introduce POGIL within its
CS1 courses starting in fall 2018, using previously developed activities and
guidance from the IntroCS POGIL project.

Studies on the use of POGIL compared to over traditional lectures [3, 15, 4]
have found that students using POGIL had more positive attitudes about the
course and instructor while demonstrating higher content mastery, and courses
using POGIL had lower attrition rates. Walker and Warfa’s meta-analysis of
21 studies comparing POGIL courses to standard lecture courses[16] also found
that the odds of passing a course (grade of C or better) were roughly 2 times
higher in a POGIL classroom.

Research with CS1 faculty[5] indicated that using POGIL in CS1 courses
led to more active learning and engagement in class, a deeper understanding
of concepts, and encouraged positive peer-to-peer relationships (which helps
develop a sense of community). And more recently, students using POGIL in

86

CS1 were found to perform better on post-tests at the end of the course, as
well as on retention tests given in a follow-on course[9].

These findings tracked with the Regis CS department’s experiences when
first implementing POGIL in CS1. Compared to a baseline standard Java
assessment given in the term before introducing POGIL, grades on the assess-
ment improved between 12% and 19% during the first three terms of POGIL
usage (with no other changes to the course and using the same instructor).
Students seemed to form stronger bonds with others in the class, and atten-
dance improved dramatically — students still rarely miss classes with POGIL
activities. Therefore, POGIL continues to be the primary methodology used
in the department’s CS1 classrooms. There are 3 classroom sections of CS1
per year, with about 18 students per section. They complete 20 Java POGIL
activities (developed by the IntroCS POGIL project[8]) in teams of 3 (so they
easily can share a computer screen) over the course of one semester.

2 POGIL in Computer Organization and Architecture

Following the success of POGIL in CS1, the CS department became interested
in expanding its usage to other CS courses, especially Computer Organization
& Architecture (CO&A). However, unlike CS1, there were fewer POGIL ac-
tivities available for CO&A topics, and none for the MIPS language/datapath
taught at Regis.

2.1 Initial POGIL use in CO&A

The CS department first tried using two existing POGIL activities (on sequen-
tial logic and register files)[2] and two activity drafts in spring 2021, to see how
the students responded. The nine students worked in three teams of three, and
were enthusiastic about the activities. And four of the students specifically
mentioned that more POGIL group activities would be helpful, in response to
the open-ended course feedback survey question, “What else could have been
included in the course that would have helped you more with your learning?”

Given the students’ positive response, the CS department wanted to add
more POGIL activities to CO&A. But creating new POGIL activities is very
labor-intensive and time-consuming. In fact, one of the greatest barriers cited
by CS instructors for not adopting POGIL is the lack of vetted POGIL activ-
ities for the classes they teach[7].

2.2 The CS POGIL Activity Writing Program

In summer 2022, the NSF funded a CS POGIL activity writing program [6].
Computer Science faculty across the country developed 58 new, high-quality

87

CS POGIL activities (see Resources section for more information on the ac-
tivities developed). Authors were given training on POGIL activity writing
criteria, which included writing clear learning objectives, designing good mod-
els, incorporating explore-discover-apply learning cycles, and including process
skills and self-assessment in activities. Each new activity was reviewed and
revised as many times as necessary to insure it met all of the above criteria.
After a final content review by an expert in the field, the new activity was
accepted for publication by the POGIL Activity Clearinghouse (PAC)[14] and
for classroom testing.

During the writing program, this author developed nine new activities for
Computer Organization &Architecture courses that use the popular Patterson
and Hennessy MIPS textbook[13]. Space limitations of this paper prevent
complete coverage, but a sampling of some of the CO&A activities will be
covered to give the reader an idea of how POGIL activities were incorporated.

3 Activity Example 1: IEEE Format for Binary Floating-
Point Numbers

This activity covers data representation of floating-point numbers. It was cho-
sen as an example for this paper, because it has a broader application than
just CO&A and can be used in many courses. Several of the models will be
shown, along with sample questions.

Model 1 introduces terminology (e.g., normalized form, significand) using
decimal floating-point numbers. Then Model 2 (shown in Figure 1) gives an
example of converting a decimal floating-point value to a binary floating point
value, and shows normalizing binary values and breaking them into parts.
Student questions following Model 2 lead to converting decimal floating point
values to binary normalized form. For example, some explore and discover
questions for the conversion example in Model 2 are:

o How is the value for 2% mathematically related to the value for 272 ¢
o The table only gives decimal values out to 24. As a team, determine the
decimal values of 27°.

And some explore and discover questions for the normalization examples in
Model 2 are:

e For the values 11001.11 and -0.001101, how many places and what di-
rection did the radiz point move to get from the original binary floating
point number to the significand in the normalized form?

e How does the exponent’s sign and value relate to the movement of the
radiz point?

88

The fractional part of binary floating point numbers can be represented using negative powers of 2 to
represent the values to the right of the radix peint (where a radix point in binaryis similar to a decimal
pointin decimal). In the table below, 2 is equivalent to 1/2! and 2 is equivalent to 1/2%, etc.

23 22 21 20 o 2-1 -2 -3 -4
8 4 2 1 = = =23 -123 0625
Example:

Decimal number 2.625 would be represented in binarvas 10.101
The ones in the binary representation would line up under each column in the table as follows:

| | [+ [o J.[2 [o [& | |
Convert the binarv value back to decimal, bv adding the decimal values for each 1 bit:
2 + 0.5 + 0.125 = 2.625

Similar to decimal numbers, binary numbers can also be written in binary normalized form,
using powers of 2 for the exponents (instead of powers of 10).

Equivalent Parts
DecimalFloating || Binary Floating | Binary
Point Number Point Number | Normalized Form Sign | Significand | Exponent
25.75 11001.11 1.100111 x 2% |+ 1.100111 | 4
[B 1.1 1.1 x 20 + 1.1 4]
-0.203125 -0.001101 | -1.101 x 2°%° = 1.101 -3

Figure 1: Example 1 Model 2: Binary Floating Point

Finally, some example application questions for Model 2 are:

o Given decimal value -0.125, what would its
binary floating point equivalent be?
o Give the normalized version of your previous answer.

Model 3 (shown in Figure 2) covers the IEEE format and storage of ex-
ponents as biased binary values. Student questions following Model 3 lead
students to the discovery the decimal value of the bias used and determining

the stored binary exponent. Some example explore and discover questions for
Model 3 are:

o Recalling ranges for binary values, what’s the largest positive signed bi-
nary value that can be stored using 8-bit two’s complement?

o What is decimal value of the binary value above?

o The value you found in the previous questions (binary and decimal ver-
sions) is known as the bias.

— What is the difference between 132 and the bias?
— What is the difference between 123 and the bias?
— Use the table to determine what value these differences represent.

89

The IEEE single precision standard uses 32 bits to represent a binary floating peint value.
The format divides a floating point number into the three parts we have examined:
the sign, the exponent, and the mantissa (aka, the significand).

Sign Exponent Mantissa/Significand
[o Joooooooo [00000000000000000000000 |
1 bit 8 bits 23 bits
Storing Biased Exponents

The exponent bits represent the signed power of 2 from the normalized binary form,
but they not stored in two’s complement representation.
Instead they are stored as an unsigned binary value relative to a bias.

Examples:

Binary Decimal Binary Biased Exponent | Decimal Equivalent of
Normalized Form Exponent of 2 | (Stored Exponent Bits) Binary Biased Exponent
-1.101 x 2% -4 01111011 123

L e s =3 01111100 124

1.0 x 29 0 01111111 127

-1.1011 x 22 2 10000001 129

1.100111 x 25 5 10000100 132

Figure 2: Example 1 Model 3 IEEE Format & Biased Exponent

e Have your team come up with a formula that could be used to determine
the value of the biased exponent (decimal version).

An example application question for Model 3 requires the team to show how
the exponent for 1.00012 x 27 (in binary normalized form) would be stored in
the 8-bit exponent field of the IEEE format.

Model 4 (shown in Figure 3) covers storage of the sign and significand with
the exponent. Student questions following Model 4 lead students to understand
what bits are stored (and not stored) and to perform an entire decimal to IEEE
floating point conversion. Some example explore and discover questions for
Model 4 are:

o What bits from the significand in the binary normalized form are stored
in the significand field?

o What is missing from the significand field that was part of the binary
normalized form?

e As a team, come up with a possible explanation about why these items do
not need to be stored.

An example application question for Model 4 requires the team to show
how decimal 15.25 would be stored in IEEE single precision binary format.

90

Storing the Mantissa/Significand
As seen above, the significand valueis stored in the last 23 bits of the IEEE representation.
However, in order to save bits, only pasf of the normalized significand is stored.

Examples (spaces added to significand fleld for readability):

Binary Sign bit | Exponent field (8 bits | Significand field

Normalized Form field of biased exponent) | (23 bits stored in IEEE format)
-1.101 x 2% 1 01111011 10100000 00000000 0000000
1.11 x 272 1] 01111100 11000000 00000000 0000000
1.0 x 20 [1] 01111111 00000000 00000000 0000000
-1.1011 x 22 8 10000001 10110000 00000000 0000000
1.100111 x 2° 0 10000100 10011100 00000000 0000000

Figure 3: Example 1 Model 4 Storing the significand

This activity ends with a homework exercise that creates an algorithm for
converting from decimal floating-point numbers to their IEEE representations,
using what was learned in the activity.

4 Activity Example 2: MIPS Machine Language

Translation of MIPS assembly to MIPS machine language was split into two
activities, so that each could be finished within one class period. The first
activity introduced the three MIPS machine language formats and translating
R-type and I-type immediate math instructions. In the second activity, Model 1
covers translating data transfer instructions (LW/SW), Model 2 covers trans-
lating branch instructions (BEQ/BNE), and Model 3 covers translating the
jump instruction (J).

Model 2 (shown in Figure 4) will be discussed as an example. Some initial
explore/discover questions for Model 2 are:

o FExamine the BEQ instruction code segment in the table in Model 2.

— What is the byte address of the BEQ instruction?

— Recall that a new Program Counter (PC) value (byte address of the
next sequential instruction) is calculated during fetch. After the
fetch for this BEQ instruction, what will the new PC value be?

— What is the byte difference when the new PC wvalue is subtracted
from the address of the NEXT label?

— What would this difference be in words (instead of bytes)?

— What is the decimal value of the bits that store the offset value?

o An offset must be relative to something that provides a starting point.
What is the offset for branch instructions relative to?

91

Model 2: I-type instructions (branch

Fecall that MIPS instructions are all 32 bits in length, so instruction byte addressesincrease by 4 bytes per instruction.
And Itype instructions all have unique opcodes. The opcode for BEQ is 4, andthe opcode for BNE is 5. Here are two
assembly code segments, located atthe given byte addresses on the left:

620 BEQ §8, $9, NEXT 880 LOOP: label-instruction
624 next-segquential-instruction 884 another-instruction
628 another-instruction 888 another-instruction
632 NEXT: label-instruction 892 another-instruction
896 BNE $10, $20, LOOP
So0 next-segquential -instruction

Here are the machine code translations forthe branch instmictions fromthe above assembly code segments.

MIPS Assembly Code MIPS I-type Machine Code
instruc RS, RT, LABEL Opcode RS RT offset (2's complement) in words

BEQ &8, §9, NEXT 000100 | 01000 (01001 | OOO0QOOO0O OQOOODOO1O

BNE $§10, $20, LOOP 000101 | 01010 (10100 | 11131333131 1311311011

Figure 4: Example 2 Model 2 MIPS branch instructions

o As a team, come up with a description of the bit value stored in the offset
field of the machine code, in relation to the assembly language code.

Similar questions are asked about the BNE instruction in the model. Then
the final application questions for Model 2 require the student to translate
several branch instructions from assembly language to machine language.

5 Activity Example 3: Data Hazards and Forwarding

This activity introduces data hazards and leads the students to understand
how forwarding could solve them. Model 2 is shown in Figure 5.

Model2: Pipeline Diagramwith intermediate Pipeline Registers

We will now exarnine how the data hazards might be handled. Model2 shows the same instructions

in the pipeline as Model 1. But Model2 also contains the pipeline registers that store intermediate values
between stages, shown between the stages that they connect.

Stages being performed during each clock cycle are highlighted in grey.

Clock Cycles
Instructions i 2 3 4 5 -1 T
suB 58, 516, 510 | F | w0 | 0 | wex | EX [exwen] mEm we |
AND §12, §8, $§9 IF IFAD 1D IDEX EX MEM Juenwe| WB
OR §13, $10, §8 IF 1FAD D EX |exwen | mem Jvevws] we |

Figure 5: Example 3 Model 2

Some initial explore/discover questions for Model 2 are:

92

e In the Model, fill in the names of the missing pipeline registers
used to store the values generated during clock cycle 4.

o Ezxamine the execution of the SUB instruction in the model.

In which stage does the SUB instruction use the ALU to compute
the new value for register $872

During which cycle does the computation happen?

At the end of this cycle, where does the SUB instruction store the
computed ALU result (for use in later cycles)?

e Examine the execution of the AND instruction in the model.

In which stage does the AND instruction use register $8’s value to
compute a new value for register $127

During which cycle does the computation happen?

During this cycle, which stage is the SUB instruction in?

During this cycle, from which pipeline register does the SUB instruc-
tion retrieve its ALU result (calculated in SUB’s EX stage)?

Draw an arrow on Model 2, from the pipeline register containing the
SUB instruction ALU result for this cycle, to the AND instruction
stage that uses register $8’s value to compute something.

Some application questions for Model 2 are:

e The arrows your team drew demonstrate the concept of forwarding. As
a team, come up with a definition of forwarding.

o Assuming a MIPS pipelined CPU implemented forwarding of register
values as shown, would any of the data hazards in this code still be a
problem? Why or why not?

6 Classroom Testing of the New CO&A POGIL Activi-

ties

All nine of the new CO&A POGIL activities developed by the author during
the CS POGIL Activity Writing Program were classroom tested for the first
time during the spring 2023 semester, along with the two used previously that
were developed by other authors, and three draft activities by this author,
bringing the total number of POGIL activities used in the course to 14. The
class met twice a week for 15 weeks, and each class session was 75 minutes long.
There were eight junior- and senior-level CS students enrolled (seven male, one
female) in the course, so students were divided into two teams of four.

Before each POGIL activity, the instructor gave a short (under 5 minutes)
introduction to the topic. Students were given their own copies of the activity,

93

but only the recorder’s copy with the team’s consensus answers was collected
by the instructor (for grading, students were simply given participation points
when they completed an activity cooperatively on a team). Each team gath-
ered around a table, and engaged in discussions to solve each question on the
activity. The instructor circulated around the room, answered questions and
monitored/redirected the teams, as needed. When teams finished the questions
for each model, the instructor led a read out of answers to key questions, with
the teams providing the answers. Any differences between the teams’ answers
were discussed, to insure the learning objectives were acheived. After com-
pleting the entire activity, teams filled out a team activity report, reflecting
on their learning and use of process skills. Following the activities, students
individually completed homework assignments that required application of the
concepts learned. Some activities required the entire class period, while others
only required part of the session.

The students were much more engaged in the material, as demonstrated by
the active discussion and interactions within the teams. And after the first few
POGIL activities, whenever a class session did not include a POGIL activity,
students voiced disappointment. No specific research was done during this
first usage of these new activities. But within the end-of-course evaluations,
students were asked to rate the effectiveness of all the POGIL activities, using
the question:

e How important were the POGIL activities in helping you successfully
learn the material?

Answers given for this question are shown in Table 1.

Table 1: Student evaluations - Importance of POGIL activities

very very
unimportant unimportant neutral important important
0 0 2 2 4

Additionally, in the general comments section, several students specifically
mentioned the POGIL activities:

e “The POGIL activities provided in class made the biggest difference in
understanding the material.”

e “Towards the end of the semester, some more POGIL activities relating
to caches and I/O would have been beneficial, since the activities really
helped my understanding of concepts at the beginning of the semester.”

94

7 Discussion, Conclusions, and Future Work

In the spring 2023 CO&A course, most of the students considered the activities
to be important or very important contributions in helping them learn the
material. However, since the POGIL activities were not strictly evaluated by
any official research questions, the findings are very informal for this pass.

An additional benefit of using POGIL (beyond previous points) became
clear during classroom testing. Monitoring the team activities made it very
obvious to the faculty which parts of the topics were understood completely
and which parts needed more coverage. This is often very hard to discern
during a lecture.

During the classroom testing of the nine new activities, several of the ac-
tivities took longer than the author estimated and had to be continued in
the next class period. These activities will be revised, either by shortening
them or splitting them into smaller activities, to better fit with classroom time
constraints.

It is the author’s hope that this preview of some CO&A POGIL activities
within this paper piqued the interest of other CO&A faculty to try POGIL.
The author will continue to develop more POGIL activities for CO&A. Future
work could examine POGIL’s effect on student mastery of CO&A material.

8 POGIL Resources

8.1 The POGIL Project (https://pogil.org)

The POGIL project website provides more information on POGIL and its
usage and effectiveness. The POGIL project also presents workshops (https:
//pogil.org/events) to help faculty learn about POGIL theory and practice,
including how to facilitate, evaluate, and develop POGIL activities.

8.2 CS Activities from the CS POGIL Activity Writing Program
(https://bit.1ly/2022cspogil)

This webpage lists all 58 of the new Computer Science POGIL activities de-
veloped within the 2022 CS POGIL Activity Writing Program (described in
this paper) for a large variety of CS topics (beyond CO&A). Access to the full
activities, along with answer keys, can be requested at the site.

CO&A activities developed by the author that are included in the list are:

e IEEE Single Precision Format for Binary Floating Point Numbers
e Booth’s Algorithm

95

MIPS machine language — Part 1: R-type and I-type immediate

MIPS machine language — Part 2: I-type data transfer and branch, jump
Building a MIPS Single Cycle Datapath - Part 1: R-type Instructions
Building a MIPS Single Cycle Datapath - Part 2: I-type Instructions
Pipeline Diagrams and Pipeline Timing

Data Hazards and the concept of a Forwarding solution

Data Hazard Detection and Handling — Part 1: The Forwarding Unit

NOTE: Contact the author for access to editable versions of any these activities.

8.3 Other CS POGIL Activities (https://cspogil.org)

This website hosts the many activities developed by the CS-POGIL project
and the IntroCS-POGIL Project.

9 Acknowledgements

Thank you to National Science Foundation grant DUE-162676 for funding the
CS POGIL Writing project and to the project mentors and peer reviewers for
their constructive feedback on improving the activities.

References

1]

2]
3]

[4]

[5]

96

Michelene T. H. Chi and Ruth Wylie. “The ICAP Framework: Linking
Cognitive Engagement to Active Learning Outcomes”. In: Educational
Psychologist 49.4 (2014), pp. 219-243. poOI: 10.1080/00461520.2014 .
965823.

CS-POGIL Project. https://cspogil.org.

John J. Farrell, Richard S. Moog, and James N. Spencer. “A Guided-
Inquiry General Chemistry course”. In: Journal of Chemical Education
76.4 (1999), pp. 570-574. DOT: 10.1021/ed076p570.

David M. Hanson. Instructor’s Guide to Process-Oriented Guided-Inquiry
Learning. Hampton, NH: Pacific Crest, 2006.

Helen H. Hu and Tricia D. Shepherd. “Teaching CS 1 with POGIL activ-
ities and roles”. In: Proceedings of the 45th ACM Technical Symposium

on Computer Science Education. SIGCSE '14. Atlanta, GA: ACM, Mar.
2014, pp. 127-132. DOL: 10.1145/2538862. 2538954,

[6]

7]

18]
19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Helen H. Hu, Tricia D. Shepherd, and Clif Kussmaul. “The CS POGIL
Activity Writing Program”. In: Proceedings of the 54th ACM Techni-
cal Symposium on Computer Science Education. Vol. 2. SIGCSE 2023.
Toronto, ON, Canada: ACM, Mar. 2023, p. 1408. DOI: 10.1145/3545947 .
3576352.

Helen H. Hu et al. “Results from a Survey of Faculty Adoption of Process
Oriented Guided Inquiry Learning (POGIL) in Computer Science”. In:
Proceedings of the 2016 ACM Conference on Innovation and Technology
in Computer Science Education. ITICSE ’16. Arequipa, Peru: ACM, July
2016, pp. 186—-191. DOI: 10.1145/2899415.2899471.

IntroCS-POGIL project. http://introcspogil.org.

Chris Mayfield et al. “POGIL in CS1: Evidence for Student Learning
and Belonging”. In: Proceedings of the 53rd ACM Technical Symposium
on Computer Science Education. Vol. 1. SIGCSE 2022. Providence RI:
ACM, Feb. 2022, pp. 439-445. DOL: 10.1145/3478431.3499296.

Jeffrey J. McConnell. “Active and Cooperative Learning: Tips and Tricks
(part I)”. In: ACM SIGCSE Bulletin 37.2 (2005), pp. 27-30. DOI: 10.
1145/1083431.1083457.

Richard S. Moog, James N. Spencer, and Andrei R. Straumanis. “Process-
oriented guided inquiry learning: POGIL and the POGIL Project”. In:
Metropolitan Universities Journal 17.4 (2006), pp. 41-52. URL: https:
//journals.iupui.edu/index.php/muj/article/view/20287.

National Research Council. How People Learn: Brain, Mind, Experi-
ence, and School, Expanded Edition. Washington, DC: National Academy
Press, 2000.

David A. Patterson and John L. Hennessy. Computer Organization and
Design: The Hardware/Software Interface. 6th ed. Waltham, MA: Else-
vier, 2021.

POGIL Activity Clearinghouse. https://pac.pogil.org.

Andrei Straumanis and Emily A. Simons. “A Multi-Institutional Assess-
ment of the Use of POGIL in Organic Chemistry”. In: Process Oriented
Guided Inquiry Learning (POGIL). American Chemical Society, 2008.
Chap. 19, pp. 226-239. DOI: 10.1021/bk-2008-0994.ch019.

Lindsey Walker and Abdi-Rizak M. Warfa. “Process Oriented Guided In-
quiry Learning (POGIL) Marginally Effects Student Achievement Mea-
sures butSubstantially Increases the Odds of Passing a Course”. In: PLoS
ONFE 12.10 (2017), pp. 1-17. DOI: 10.1371/journal . pone.0186203.

What is POGIL? https://pogil.org/what-is-pogil.

97

[s the Amount of Computer Game Play Since

High School Associated With Mental Health
Outcomes in Adulthood?*

Max Marc
Management Information Systems
Black Hills State University
Spearfish, SD 57783

max .marc@bhsu.edu

Abstract

For computer educators, there is increasing concern about the dark
side of information technology. Useful innovations, such as social me-
dia and artificial intelligence, often have a dark side to them. Computer
games also have this dual nature. Useful as pedagogical tools, and provid-
ing hours of joy to millions of people, computer games may nonetheless
be associated with adverse mental health outcomes when abused. This
study reports on findings from the longest running longitudinal survey
related to computer game usage, covering a single cohort over a 14 year
span from adolescence to adulthood. Computer game play during adoles-
cence and early-adulthood was not found to be associated with adverse
mental health outcomes in adulthood, but computer game play during
adulthood (average cohort age of 30 years) was found to be significantly
associated with adverse mental health outcomes.

1 Introduction

For computer educators, computer games represent a double-edge sword. One
the one hand, computer games have some positive associations for pedagogy|1,

*Copyright (©)2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

98

7]. They help lower entry barriers for people to learn to use computers and
are useful for introducing students to concepts in computer programming and
user interface design. They are found to offer cognitive benefits and are cred-
ited with attracting young people to consider a career in the computer and
information systems field.

On the other hand, computer games also have some negative associations
for pedagogy. They have been found to be addictive and distracting, and to
have associations with adverse mental health outcomes[3]. Indeed, the con-
cern has spawned terminology such as “gaming disorder”[11] and “pathological
gaming”’[12]. With the additional rising specter of pathological use of social
media, there is a need for more longitudinal research studies, based on long-
term high-quality data, to study the long-term mental health consequences of
using double-edged technologies such as computer games.

2 Background

Extensive prior research has examined associations between computer game
play and mental health outcomes, among individuals[4], examining these asso-
ciations from diverse perspectives. However, the findings have been disparate,
inconsistent, and inconclusive. On whether computer game play is associated
with mental health outcomes, the findings range from no association, to as-
sociations with both positive and negative mental health outcomes. In some
cases, computer gaming was found to lead to outcomes such as higher self-
confidence, self-efficacy, connection with others, and prosocial behavior. In
other cases, computer gaming is found to lead to addiction, disassociation, loss
of connection with others, and antisocial behavior. The research work needed
to integrate these disparate, inconsistent findings is still ongoing.

Two theoretical perspectives, namely uses-and-gratifications theory[10] and
sociotechnical theory[5], can be useful in informing the complex issue of why the
findings have been inconsistent and inconclusive[9]. The uses-and-gratifications
perspective suggests that individuals are active seekers and users of solutions
for their emotional needs (e.g. entertainment needs, relationship needs, sensa-
tion needs). Computer games are such a solution. Depending on their disparate
needs, users will have disparate outcomes. The sociotechnical perspective sug-
gests that computer games are not neutral. They embody the values and intents
of those who have the power to define the terms of the design and distribution
of computer games. Moreover, this power dynamic is not static, and is con-
tinually negotiated between suppliers and the consumers. Depending on who
has the upper hand in this dynamic in each situation, there will be disparate
outcomes from consuming computer games.

99

A potential shortcoming of the existing body of research is that it consists
mostly of cross-sectional studies of data (i.e., where data on computer game use
and mental health were collected during a single concurrent episode). While
useful in many ways, cross-sectional studies can be limited in how well they
can inform long-term or time-delayed associations. For a complex, potentially
biologically based factor such as mental health, the passage of time, in and
of itself, should be considered potentially influential. However, possibly due
to the complexity and difficulty of doing long-term longitudinal studies, there
are relatively few studies that have incorporated long-term, longitudinal data.
Another shortcoming is that most of this research has focused on mental health
outcomes among the youth; studies relating to adult mental health are few|8].
There need to be more studies that focus on adult mental health outcomes.

While there are a small number of longitudinal studies that have examined
associations between computer game play and adult mental health outcomes,
they have tended to focus on early-adulthood[2] and haven’t covered very long
lengths of time. To integrate and clarify past inconsistencies, there is a clear
and present need for more longitudinal studies that focus on long-term com-
puter game play and the association with adult mental health outcomes. The
next section describes how this study uses longitudinal data collected over a
very long-term (14 years), for the same cohort, from adolescence to adulthood
(average adult cohort age of 30 years).

3 Research Method

3.1 Data

This study uses survey data from “The National Longitudinal Study of Ado-
lescent to Adult Health” (abbreviated as “Add Health”)[6]. The “Add Health”
survey was conducted in several “Waves” and is currently still ongoing. The
first Wave used a nationally representative sample of high schoolers in the USA,
with an average cohort age of 16 years. Every few years, the same cohort was
surveyed again, constituting a new Wave. This study uses data from the first
four Waves, because they contain questions pertinent to the study. At the time
of the fourth Wave, respondents were adults with an average cohort age of 30
years. The public-use dataset has an unweighted sample size of approximately
6,500 actual respondents in the first Wave, with a small amount of attrition in
subsequent waves. An anonymized unique identifier is available to track each
respondent across multiple Waves. For analysis purposes, this sample size will
be adjusted later using a weighting variable.

100

3.2 Survey Questions

“Add Health” Waves one to four each contained a question pertaining to how
many hours per week the respondent played computer games (questions h1dalo,
h2dal0, h3dal0, h4dal0). Wave four contained ten questions pertaining to the
mental health of the (then adult) respondents. The mental health questions
concerned frequency of feeling “bothered by things that usually don’t bother
you”, “depressed”; “too tired”, “happy”, “sad”, “others disliked you”, “you were
just as good as other people”. Additional questions referenced trouble staying
focused on what one was trying to do, and one’s enjoyment of life (questions
h4mh18 to h4mh?27). The mental health questions were coded on the following
scale: 0 = “never or rarely”, 1 = “sometimes”, 2 = “a lot of the time”, 3 = “most
of the time or all of the time”. For all questions, additional possible responses
were “Refused to answer” and “Don’t know”.

3.3 Quantitative Model

Panel data was constructed using survey respondents who 1) responded ito
the question pertaining to how many hours they played computer games in
all four Waves, and 2) responded to all questions pertaining to mental health
in Wave 4. A weighting variable, available in the dataset, was incorporated
to readjust the sample size. The weighting variable reduced the weightage of
respondent categories that were over-represented and increased the weightage
of respondent categories that were under-represented, within the actual survey
sample. The weight-adjusted sample is designed to be representative of the
population of the USA. The next section contains descriptive statistics of the
weight-adjusted sample.

This study proposes to test the association between hours per week of com-
puter games played in each of four survey Waves, and mental health of re-
spondents in the fourth Wave. A single criterion variable for mental health is
calculated as the average of the responses for all the ten mental health questions
(after reverse-coding two questions that had opposite-coded scales). Multiple
regression was used to conduct the analysis. Multiple regression is appropri-
ate here because all the variables are numeric and there is a single criterion
variable.

In Wave 1, the respondents had an average cohort age of 16 years. In Wave
2, the same respondents had an average cohort age of 18 years. In Wave 3, the
average cohort was 23 years, and in Wave 4 it was 30 years. Having recorded
how much respondents played computer games in each of these Waves, it is
possible to build a longitudinal model of how very long-term engagement with
computer games may be associated with mental health outcomes in Wave 4,
when respondents were adults with an average cohort age of 30 years. It is also

101

possible to measure whether the association from playing computer games in
certain age milestones (i.e. Waves) was more or less significant than in other
age milestones. A picture thus emerges of how computer game play, over a very
long term, in different age categories, may be associated with mental health
outcomes in adulthood. Figure 1 offers a visual model of the association being
tested.

1
Computer Games Played |
(hours per week) in :

I

Wave 1 (average age 16)

Wave 2 (average age 18) Mental Health in Wave 4

(average age 30)

Wave 3 (average age 23)

Wave 4 (average age 30)

Figure 1: The Quantitative Model

The regression equation is:

MHW4 = b0 + b1CGPW1 + b2CGPW2 + b3CGPW3 + b4CGPW4
Where:

MHW4 = Mental health in Wave 4

CGPWx = Computer Game Play (hours per week) in Wave x

4 Results

4.1 Descriptive Statistics

Table 1: Distribution by Sex
Sex Proportion
Male 46.4%

Female | 53.6%

102

Table 2: Distribution by Race

Race/Ethnicity Proportion
White (non-hispanic) | 76.9%

Black 14.7%
Asian/Pacific Islander | 4.1%

Native American 2.9%

Other 6.4%

Table 3: Self-Identified Hispanic Origin
Yes, of Hispanic Origin ‘ 11.2%

The weight-adjusted sample size of the panel data is 2,498. The demo-
graphic distributions of the weight-adjusted sample data (see Tables 1, 2, and
3) are similar to national distributions (except for self-identified Hispanic Ori-
gin in Table 3, which is much lower in this sample than in the general USA
population, estimated at 18.7%|13]|). This indicates that the panel data are
broadly representative of the wider population in the USA.

Table 4: Hours Per Week Computer Games Played
Wave 1 | Wave 2 | Wave 3 | Wave 4

Percentage of respondents

who played zero hours 43% 31.7% 25% 54.1%
Average hours played per
week by those who played 5.21 4.42 7.39 7.51

Table 5: Mental Health Distribution in Wave 4
Mental health score range | <= 0.3 | 0.31 to 0.5 | 0.51 to 0.8 | >=0.81
Proportion of respondents
in that range 25% 25% 25% 25%

Table 4 indicates hours per week playing computer games. And Table 5
indicates that 25% of respondents in Wave 4 had a mental health score of less
than 0.3, 25% had a mental health score of between 0.31 to 0.50, and so on.

As explained in Section 3.3, the mental health score is calculated as the
average of the scores in the ten questions in Wave 4 that were related to mental
health. To understand what low or high scores mean in this context, please
refer to Section 3.2.

103

4.2 Multiple Regression

In Table 6, CGP represents Computer Game Play in hours per week, for each
Wave of the survey. Model 1 represents the results of the multiple regression
using the full weight-adjusted sample, i.e., the original intended analysis. The
effective sample size after removing missing values (“Refused to answer”, “Don’t
know”) was 2,395. After receiving results from this analysis, it was decided
to attempt another analysis (Model 2) after removing all respondents who
indicated that they didn’t play computer games during at least one of the
four Waves. Thus, Model 2 is an analysis of respondents who indicated that
they played computer games in each Wave. These are long-term, consistent
computer game players. The effective sample size for Model 2, after removing
missing values (“Refused to answer”, “Don’t know”) was 412. The results from
multiple regression are similar for both Models.

Table 6: Multiple Regression Results

Model 1 Model 2

Standardized Standardized

Beta Coefficient | p-value || Beta Coefficient | p-value
CGP Wave 1 | -.013 .540 -.044 .402
CGP Wave 2 | -.016 A73 +.008 877
CGP Wave 3 | -.011 .604 +.023 .656
CGP Wave 4 | +.080 .000%** 11 +.180 001 #%*

Model Sig. .006 Model Sig. .008

R-square .006 R-square .033

In both Models in Table 6, only computer game play in Wave 4 was found
to have a significant association (p-value less than 0.01) with mental health
outcomes in adulthood. Here, mental health was coded in such a way that a
positive Beta Coefficient would indicate worse mental health outcomes from
increased computer game play. Thus, Model 1 may be interpreted as follows:
A one hour increase in computer game play per week is associated with an 8%
worse outcome in mental health (on a mental health scale of 0 to 3, where 3 is
the worst mental health outcome). For Model 1 the model significance (0.006)
is high, indicating that this regression model offers a better explanation than
no model. Nevertheless, the R-square is low, implying that mental health
outcomes in adulthood are associated with many factors, and computer game
play is only one of them.

104

5 Discussion and Conclusions

Data were collected for the same cohort at different points in their life from
adolescence to adulthood (at average cohort ages of 16 years, 18 years, 23
years, and 30 years). The results indicate that the amount of computer game
play at 16 years, 18 years, or 23 years (average cohort age) is not significantly
associated with mental health outcomes in adulthood (average cohort age of
30 years). However, computer game play at 30 years (average cohort age of
30 years) is significantly associated with negative mental health outcomes in
adulthood (average cohort age of 30 years). In adulthood (average cohort
age of 30 years), an increase in one hour of computer game play per week is
associated with 8% worse mental health outcomes (in the mental health scale
used here). Model 2 in Table 6,indicates that among adults (average cohort age
of 30 years) who have consistently played computer games since High School,
a one hour increase in computer game play per week is associated with 18%
worse mental health outcomes using the same mental health scale.

In order to make advances in integrating prior disparate, inconsistent and
inconclusive findings, this area of research (association between computer game
play and mental health outcomes) needs long-term longitudinal studies, and a
focus on mental health in adulthood. The research study presented here uses
data collected over a period of 14 years, from the same cohort. Starting in ado-
lescence with an average cohort age of 16 years and ending in adulthood with
an average cohort age of 30 years, this is the longest term of any longitudinal
cohort study related to computer game play and mental health made public
thus far. In this way, this study makes a major contribution to the existing
body of research.

This study is an association study that makes no claims about causality.
Two theoretical perspectives, uses-and-gratifications and sociotechnical, were
described earlier. They are useful in speculating about causality and its di-
rection here. Uses-and-gratifications theory can be employed to speculate that
adults in the average 30 year cohort age, who are dealing with negative mental
health, are seeking out computer game play to receive emotional relief. And
that the arrow of causality is from mental health to computer game play. So-
ciotechnical theory could be employed to speculate that computer games are
typically designed for younger people. Hence adult consumers don’t have a fa-
vorable balance of power in the design of computer games. And thus computer
game play by adults leads to adverse mental health outcomes for them. These
are just a couple of examples of how theories can inform speculation about
causes and effects. A limitation of this study is that, in the data sample, the
proportion that self-identified as being of Hispanic Origin is lower than in the
current general population of the USA. Although it may be worth clarifying
that this is likely because when the survey began in Wave 1, the proportion

105

that self-identified as being of Hispanic Origin in the general population in the
USA was lower than it is now.

Future research should incorporate variables such as gender, socio-economic
status and education into our model to investigate whether the association
found in this study varies for different categories of these variables. Future
research should also strive to look beyond the USA, at international data, to
see the extent to which the findings from this study can be universalized.

Technologies have become an integral part of our lives, shaping the way we
interact, learn, and entertain ourselves. From nuclear power to artificial intel-
ligence and social media, these advancements have proven to be double-edged
swords, capable of bringing both blessings and curses to our society. Computer
games, in particular, epitomize the dual nature of technology. On one hand,
they can serve as a refuge for individuals seeking connection and community.
However, the same technology that can foster connection and community can
also be isolating. Some individuals may find themselves engulfed by the virtual
world, losing touch with the real-life relationships and experiences that are es-
sential for human well-being. Ultimately, it is our responsibility as individuals
and as a society to navigate the potential for both good and harm, seeking ways
to maximize the benefits while minimizing the negative consequences. More
work needs to be done to enable prosocial aspects of computer games and to
enable self-regulation and moderation in those who play them.

References

[1] Brandon K. Ashinoff. “The potential of video games as a pedagogical
tool”. In: Frontiers in Psychology 5 (2014). DOI: 10.3389/fpsyg.2014.
01109.

[2] Sarah M. Coyne et al. “Pathological video game symptoms from adoles-
cence to emerging adulthood: A 6-year longitudinal study of trajectories,
predictors, and outcomes.” In: Developmental psychology (2020). https:
//api.semanticscholar.org/CorpusID:218475490.

[3] Christopher J. Ferguson. “Do Angry Birds Make for Angry Children? A
Meta-Analysis of Video Game Influences on Children’s and Adolescents’
Aggression, Mental Health, Prosocial Behavior, and Academic Perfor-
mance”. In: Perspectives on Psychological Science 10.5 (2015), pp. 646—
666. DOI: 10.1177/1745691615592234.

106

4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

Christopher J. Ferguson, Mark Coulson, and Jane Barnett. “A meta-
analysis of pathological gaming prevalence and comorbidity with mental
health, academic and social problems”. In: Journal of Psychiatric Re-
search 45.12 (2011), pp. 1573-1578. DOI: 10.1016/j. jpsychires.2011.
09.005.

Bradley S. Greenberg et al. “Orientations to Video Games Among Gender
and Age Groups’. In: Simulation & Gaming 41.2 (2010), pp. 238-259.
DOI: 10.1177/1046878108319930.

Kathleen Mullan Harris et al. “Cohort Profile: The National Longitudinal
Study of Adolescent to Adult Health (Add Health)”. In: International
Journal of Epidemiology 48.5 (June 2019), 1415-1415k. DO1: 10.1093/
ije/dyz115.

Abhijit Jain. “Extra-Curricular Computing Engagement, Academic
Achievement, and Income Attainment: From Youth to Adulthood”. In:
Journal of Computing Sciences in Colleges 2 (29 Dec. 2013), pp. 105-12.

Nor Shuhada Mansor, Chin Moi Chow, and Mark Halaki. “Cognitive ef-
fects of video games in older adults and their moderators: a systematic re-
view with meta-analysis and meta-regression”. In: Aging & Mental Health
24.6 (2020), pp. 841-856. DOI: 10.1080/13607863.2019.1574710.

Max Marc. “Not Playing the Game: Negative Opinions about Online
Dating and Video Gaming among Non-Participants”. In: Journal For
Virtual Worlds Research 10 (Sept. 2017). DOI: 10.4101/ jvwr .v10i2.
7273.

Julio Angel Ortiz. “Re-Gaming the Digital Divide: Broadband, MMOGs
and U.S. Latinos”. In: 2010. URL: https://api.semanticscholar.org/
CorpusID:59376366.

John B. Saunders et al. “Gaming disorder: Its delineation as an impor-
tant condition for diagnosis, management, and prevention”. In: Journal
of Behavioral Addictions 6.3 (2017), pp. 271-279. DOI: 10.1556/2006 .
6.2017.039.

Timothy Sim et al. “A Conceptual Review of Research on the Pathologi-
cal Use of Computers, Video Games, and the Internet”. In: International
Journal of Mental Health and Addiction 10.5 (2012), pp. 748-769. DOLI:
10.1007/s11469-011-9369-7.

Census Bureau United States. Table 4. Hispanic or Latino Origin by
Race: 2010 and 2020. https://wuw.census.gov/data/tables/2020/
dec/2020-redistricting-supplementary-tables.html.

107

Developing Identity-Focused
Program-Level Learning Outcomes for
Liberal Arts Computing Programs*

Conference Tutorial

Jakob Barnard!, Grant Braught?, Janet Davis®,
Amanda Holland-Minkley?, David Reed®, Karl Schmitt®,
Andrea Tartaro”, James Teresco®
YUniversity of Jamestown, Jamestown, ND 58405
Jakob.Barnard@uj.edu
2Dickinson College, Carlisle, PA 17013
braught@dickinson.edu
SWhitman College, Walla Walla, WA 99362
davisj@whitman.edu
4“Washington & Jefferson College, Washington, PA 15317
ahollandminkley@washjeff.edu
Creighton University, Omaha, NE 68178
DaveReed@creighton.edu
STrinity Christian College, Palos Heights, IL 60463
Karl.Schmitt@trnty.edu
"Furman University, Greenville, SC 29690
andrea.tartaro@furman.edu
8Siena College, Loudonville, NY 12211

jteresco@siena.edu

The SIGCSE Committee on Computing Education in Liberal Arts Colleges
(SIGCSE-LAC Committee) has found that liberal arts and small colleges ap-
proach design of their computing curricula in unique ways that are driven by
institutional mission or departmental identity. This impacts how faculty at

*Copyright is held by the author/owner.

108

these colleges adopt curricular guidelines such as the current ACM/IEEE-CS
(CS2013[2]. The committee is developing guidance, informed by its sessions at
recent CCSC and SIGCSE conferences, to help with the design and/or revision
of CS curricula in liberal arts contexts[l]. This will ultimately be included
in the committee’s article in the Curricular Practices Volume that will be re-
leased as a companion to the new ACM/IEEE-CS/AAATI Computer Science
Curricula guidelines, CS2023 (https://csed.acm.org). Curricular guidelines
like CS2013 or CS2023 inform curriculum design, but are balanced with the
vision for a program, departmental strengths, locale, student populations and
unique academic experiences. The desire to craft distinctive curricula, com-
bined with the size of prior curricular recommendations, requires an assessment
of trade-offs between achieving full coverage of curricular recommendations and
a school’s other priorities. SIGCSE-LAC’s guidance will encourage faculty to
reflect on their programs and the role of CS2023, beginning with their institu-
tional and departmental priorities, opportunities and constraints.

The specific goal of this session is to help participants develop program-
level learning outcomes that align with the unique features of their programs.
Following an overview and brief discussion of the newest CS2023 draft, par-
ticipants will begin working through a preliminary version of the committee’s
reflective assessment process. This process is framed by a series of scaffolding
questions that begin from institutional and departmental missions, identities,
contexts, priorities, initiatives, opportunities, and constraints. From there,
participants will be led to identify design principles for guiding their curricular
choices, including the CS2023 recommendations. Examples gathered from the
committee’s previous CCSC and SIGCSE sessions will be available to help to
articulate identity and program design principles, which will then be used for
the identification of identity-focused program-level learning outcomes. Par-
ticipants will leave the session with a better understanding of how CS2023
can impact their programs and a jumpstart on the entire reflective assessment
process. Feedback on the process and this session are welcome and will be
used to refine the committee’s guidance prior to its publication in the CS2023
Curricular Practices volume.

Presenter Biography

Janet Davis is Microsoft Chair and Professor of Computer Science at Whit-
man College, where she serves as the department’s founding chair. She co-
organized SIGCSE pre-symposium events in 2020 and 2021 on behalf of the
SIGCSE-LAC Committee.

109

Biographies of Other Authors

Jakob Barnard is Chair and Assistant Professor of Computer Science & Tech-
nology at the University of Jamestown. He is a member of the SIGCSE-LAC
Committee and his research involves how curricula has been integrated into Lib-
eral Arts Technology programs. Grant Braught is a Professor of Computer
Science at Dickinson College. He is a facilitating member of the SIGCSE-LAC
Committee, has organized committee events focused on curricula and has pub-
lished widely on issues related to CS education, particularly within the liberal
arts. Amanda Holland-Minkley is a Professor of Computing and Informa-
tion Studies at Washington & Jefferson College. Her research explores novel
applications of problem-based pedagogies to CS education at the course and
curricular level. She is a facilitating member of the SIGCSE-LAC Committee.
David Reed is a Professor of Computer Science and Chair of the Department
of Computer Science, Design & Journalism at Creighton University. He has
published widely in CS education, including the text A Balanced Introduction
to Computer Science, and served on the CS2013 Computer Science Curricula
Task Force. Karl Schmitt is Chair and Associate Professor of Computing
and Data Analytics at Trinity Christian College. He has served on the ACM
Data Science Task Force and various Computing, Technology, Mathematics
Education related committees for the MAA, ASA and SIAM. His interests
explore data science education, and interdisciplinary education between com-
puting, mathematics, data, and other fields. Andrea Tartaro is an Associate
Professor of Computer Science at Furman University. Her computer science
education research focuses on the intersections and reciprocal contributions of
computer science and the liberal arts, with a focus on broadening participation.
She is a member of the SIGCSE-LAC Committee, and has published and pre-
sented in venues including the CCSC and the SIGCSE Technical Symposium.
Jim Teresco is a Professor of Computer Science at Siena College. He has
been involved in CCSC Northeastern for almost 20 years and currently serves
as board chair, and has been involved with the SIGCSE-LAC Committee for
4 years. His research involves map-based algorithm visualization.

References

[1] Amanda Holland-Minkley, Jakob Barnard, Valerie Barr, Grant Braught, Janet Davis,
David Reed, Karl Schmitt, Andrea Tartaro, and James D. Teresco. Computer sci-
ence curriculum guidelines: A new liberal arts perspective. In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 1, SIGCSE 2023, page
617-623, New York, NY, USA, 2023. ACM.

[2] Association for Computing Machinery (ACM) & IEEE Computer Society Joint Task
Force on Computing Curricula. Computer science curricula 2013: Curriculum guidelines
for undergraduate degree programs in computer science, 2013. https://www.acm.org/
binaries/content/assets/education/cs2013_web_final.pdf.

110

Getting Started on Jetstream?2*

Conference Tutorial

Zachary Graber and Daniel Havert
Research Technologies
Indiana University
Bloomington, IN

As research and education advance, so does their need for advanced compu-
tational resources. While some universities are fortunate to be able to provide
these resources in abundance, many do not have free availability to such cy-
berinfrastructure for their research, much less for their instruction. Through
Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support
(ACCESS), advanced computing resources such as Jetstream?2 are shared with
educators for free. This sharing of resources provides access to educators who
normally would not have access to such platforms.

Jetstream2[1] is an NSF-funded, user-friendly cloud computing environ-
ment for researchers and educators running on OpenStack and featuring Ex-
osphere as the primary user interface. Jetstream2 is built on the successes of
Jetstream1, continuing the main features of that system and extending to a
broader range of hardware and services, including GPUs, large memory nodes,
virtual clustering, and other features. It is designed to provide both infrastruc-
ture for gateways and other “always on” services, as well as to give researchers
and educators access to interactive computing and data analysis resources on
demand. One of the goals of providing such a resource without cost is to give
colleges and universities access to these resources not only for research but also
for instruction, thereby democratizing cloud computing for educators.

Tutorial Audience and Details

This tutorial targets an audience of educators and researchers. Attendees will
get an overview of Jetstream2, the ACCESS ecosystem, and how to get on Jet-
stream?2, with a walk through of how to access and launch VMs on Jetstream?2

*Copyright (©)2023 is held by the authors.

111

via the Exosphere interface. It will provide various examples and use cases of
Jetstream?2 for instruction, along with other helpful tips and tricks.

Tutorial Session Requirements

e A computer with internet access.

e An ACCESS account. Can be created for free at:
https://identity.access-ci.org/new-user

o After you create an ACCESS account, fill in the google form at:
https://forms.gle/dNwn7sj9CBfLyGev5
to let us know your ACCESS username, so we can add you to a special
training allocation and you can follow along with the tutorial.

Acknowledgements

This material is based upon work supported by the National Science Founda-
tion under Grant 2005506. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

Biography

Zachary Graber is part of the Research Cloud Services team in the Research
Technologies division of Indiana University (IU) that supports Jetstream?2. He
received his bachelor’s degree in Computer Science from IU’s Luddy School of
Informatics, Computing, and Engineering.

Daniel Havert is part of the Research Cloud Services team in the Research
Technologies division of Indiana University that supports Jetstream2. He re-
ceived his bachelor’s degree in Physics from Embry-Riddle Aeronautical Uni-
versity and is currently completing a PhD in Physics at Indiana University.
His interests include cloud computing, artificial intelligence, and educational
outreach.

References
[1] David Y. Hancock et al. “Jetstream2: Accelerating Cloud Computing via
Jetstream”. In: Practice and Experience in Advanced Research Computing.

PEARC ’21. Boston, MA: Association for Computing Machinery, 2021.
DOI: 10.1145/3437359.3465565.

112

How to Install and Use a Security Onion NIDS
VM in a Defensive Cybersecurity Course*

Conference Tutorial

Mohamed Lotfy
Utah Valley University
Orem, UT 84058

MohamedL@uvu.edu

To prepare both IT and cybersecurity graduates and to meet industry needs,
cybersecurity courses must introduce current offensive and defensive tools and
practices to secure computing resources, systems, services, data, and network
services. These current offensive and defensive cybersecurity tools should be
introduced and applied in hands-on activities, thus allowing students to gain
the needed knowledge of current cybersecurity best practices[2, 1]. The hands-
on approach allows students to develop defensive cybersecurity competency,
enabling them to build layered defenses that harden systems to advanced per-
sistent threats. Teaching defensive cybersecurity practices requires an environ-
ment where attacking vulnerable network intrusion detection systems (NIDS),
host intrusion detection systems (HIDS), and honeypots hosts are used to per-
form the different defensive actions to the phases of the cyber kill chain on vul-
nerable hosts. Using an encapsulated virtual environment, where the different
attacks on vulnerable hosts can be conducted, reduces the risk to institutional
networks and systems.

Tutorial Description

In this tutorial the presenter will provide a hands-on working example of how to
install a Security Onion (SO) NIDS/HIDS VM][5] on a testing environment, us-
ing either VMware Workstation Pro[6] or Oracle VM VirtualBox[4] on laptops
or PCs. The virtual environment will include a SO VM, an offensive security
Kali Linux VM, and a Linux VM. The presenter will show how to write rules
to detect ICMP and TCP packets, different file transfers, which cause alerts
on the SO NIDS dashboards.

*Copyright (©)2023 is held by the author.

113

Tutorial program
In the tutorial the presenter will illustrate and explain the following:

1. How to install a SO NIDS/HIDS VM in VMware and/or VirtualBox.
Describe the format and structure of Snort rules.

How to write Snort rules to detect ICMP and TCP traffic on the subnet.
How to write Snort rules to detect different file formats.

How to craft special packets using the hping3 command.

How to see the alerts on the SO dashboards.

S CoU W

Expected outcomes

Attendees will exit the tutorial with a working VMware or VirtualBox environ-
ment and learn how to use the SO NIDS system to detect packets and different
file transfers on the subnet.

Target audience

Any faculty who would like to incorporate a VMware or VirtualBox virtual
environment and use SO NIDS in a defensive cybersecurity course.

Prerequisites

Attendees should be familiar with Linux, networking, and some programming
knowledge (Java, C++, Python, etc.). It is highly recommended that attendees
bring their own laptops with VMware[6] or VirtualBox[4] and a Kali Linux
VM[3] installed.

References

[1] Pooneh Nikkhah Bahrami, Ali Dehghantanha, Tooska Dargahi, Reza M Parizi,
Kim-Kwang Raymond Choo, and Hamid HS Javadi. Cyber kill chain-based tax-
onomy of advanced persistent threat actors: Analogy of tactics, techniques, and
procedures. Journal of information processing systems, 15(4):865-889, 2019.

[2] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-driven
computer network defense informed by analysis of adversary campaigns and in-
trusion kill chains. Leading Issues in Information Warfare € Security Research,
1(1):80, 2011.

[3] OffSec Services Limited. KALI pre-built virtual machines, 2023. URL: https:
//www.kali.org/get-kali/#kali-virtual-machines.

[4] ORACLE. ORACLE VM VirtualBox, 2023. URL: https://www.virtualbox.
org/.

[5] Security Omion Solutions, LLC. Security Onion, 2023. URL: https://
securityonionsolutions.com/.

[6] VMware. VMware Workstation Pro, 2023. URL: https://www.vmware. com.

114

Teaching Global and Ethical Perspectives in
Information Technology®

Cynthia Krebs, Jan Bentley and DeDe Smith
Utah Valley University
Orem, UT 84058

{cynthia.krebs, jan.bentley, smithdo}@uvu.edu

Information technology and computer science practitioners make ethical
decisions every day. To aid students as they make ethical decisions, the Infor-
mation Systems and Technology (IS&T) Department at Utah Valley University
offers a “Global, Ethical, & Professional Perspectives in Information Technol-
ogy” course, a required 4000-level course for IS&T students. In this course
students identify and express their own values, explore the values of others in
a global community, analyze case studies and apply ethical decision-making
standards, and learn to ethically resolve differences. This course offers a global
perspective to students as they examine current ethical issues within informa-
tion systems and technology fields.

Tutorial Description

In this tutorial, the presenters will discuss the course’s focus on ethics and eth-
ical relationships, examine the Portulans Institute’s Global Networked Readi-
ness Index, and explore challenges that today’s students face in a global en-
vironment. The presenters will cover strategies used for teaching ethics with
a global awareness focus. Presenters will cover methods for teaching students
to use critical thinking skills to examine ethical and legal issues related to
freedom of expression, social networking, global etiquette, cybercrime, intel-
lectual property, and software development. Other methods to be discussed
include case studies, guest speakers, media coverage, readings, role-play, pair
and share, papers, and worksheets.

*Copyright (©)2023 is held by the authors.

115

Tutorial program

In the tutorial the presenters will cover methods used to teach the following:

An overview of ethics

Ethical problem solving

Global Network Readiness issues
Privacy issues

Freedom of expression issues
Other ethics issues

Sk

Expected outcomes

Attendees will exit the tutorial with a framework for teaching ethics with a
global perspective to information technology and computer science students.

Target audience

Any faculty who would like to introduce a more formalized ethics program in
a higher education information technology or computer science course.

Prerequisites

No prerequisites necessary.

116

References

[1]

8]

A decade on, Edward Snowden remains in Russia, though
U.S. laws have changed, 2023. Visited June 4, 2023. URL:
https://www.npr.org/2023/06/04/1176747650/a-decade-on-edward-
snowden-remains-in-russia-though-u-s-laws-have-changed.

A framework for ethical decision making, 2021. URL: https:
//www.scu.edu/ethics/ethics-resources/a-framework-for-
ethical-decision-making/.

Global Network Readiness Index (NRI), 2023. Visited July 27, 2023. URL:
https://portulansinstitute.org/.

Sydnee Gonzalez. Navajo president says ’Oppenheimer’ film erases how
nuclear testing impacted his people, 2023. Visited July 26, 2023. URL:
https://www.ksl.com/article/50694964/navajo-president-says-
oppenheimer-film-erases-how-nuclear-testing-impacted-his-
people.

Carmen Nesbitt. Utah voucher boosters are promoting a ‘mislead-
ing’ website, state education officials say, 2023. Visited July 26,
2023. URL: https://www.sltrib.com/news/education/2023/07/26/
misleading-website-invites-utahns/.

George Reynolds. Fthics in information technology. Cengage learning,
2019.

Gai Sher and Ariela Benchlouchl. Unmasking AI bias: a col-
laborative effort, 2023. Visited July 21, 2023. URL: https:
//www.reuters.com/legal/legalindustry/unmasking-ai-bias-
collaborative-effort-2023-07-21/.

Heather Widdows. Global ethics: An introduction. Routledge, 2014.

117

Incorporating Computing for the Social Good

Into the Classroom*
Conference Workshop

Johanna Blumenthal and Richard Blumenthal
Department of Computer and Cyber Sciences
Regis University
Denver, CO 80221

{jblumenthal, rblumentl}@regis.edu

This workshop will provide participants with hands-on learning experi-

ences to familiarize them with the Computing for Social Good in Education
(CSG-Ed) community and the methods CSG-Ed uses to create socially rele-
vant classroom computing activities. CSG-Ed is an umbrella term meant to
incorporate any educational activity, from small to large, that endeavors to
convey and reinforce computing’s social relevance and potential for positive
societal impact[1, 2]. Incorporating CSG-Ed into classroom activities across a
computing curriculum addresses a range of desirable goals including:

e Support the ethical and societal learning outcomes specified in the ACM

curricular recommendations (e.g., Computer Science, Cybersecurity, Data
Science, Information Systems, and Software Engineering), as well as in
ABET accreditation and the Seoul Accord objectives.

Encourage computing students to use their computing education towards
the benefit of society (e.g., climate change, world hunger, etc.)

Increase enrollments by focusing on students who want to make socially
relevant contributions to our communities and our world. For example,
expanding diversity and inclusion, since research suggests: student ori-
entation towards social activism has been a consistent negative predictor
of interest in computing over the past 40+ years, women place greater
emphasis on social activism than men, and choice of major is influenced
by one’s values rather than one’s interests[3].

*Copyright (©)2023 is held by the authors.

118

The workshop is designed to demonstrate the ease in which educators can
incorporate various CSG activities into their pedagogy. This will be reinforced
by having participants use CSG-Ed methods to create student-focused exercises
during the workshop, which can be taken back to their home universities.
The workshop also focuses on growing the CSG-Ed community, by connecting
participants with each other and existing members of the community.

Workshop Agenda

The agenda for the workshop is:
e Introductions: facilitators and participants
o CSG-Ed Overview: a brief history and current activities
e CSG-Ed Methods: introduce the CSG-Ed taxonomy and design patterns

e Activities: participants will use the CSG-Ed methods to create socially
relevant computing activities for use in their own classrooms. Partici-
pants will also present these CSG activities to the group.

e Wrap up and discussion of next steps.

The workshop will also provide ample opportunities for participants to discuss
existing and proposed CSG activities, to gain additional insight from the facil-
itators and other workshop participants. Workshop participants will only need
pencil and paper.

Authors Information

The authors are active in the CSG-Ed community and have led several CSG-Ed
focused tutorial sessions for educators in computing and related disciplines at
the ACM Technical Symposium on Computer Science Education conferences
(SIGCSE) and Data for Good for Education workshops.

References

[1] Michael Goldweber, John Bar, and Tony Clear. ACM Inroads, 4(1):58-79, 2012.

[2] Michael Goldweber, Lisa Kaczmarczyk, and Richard Blumenthal. Computing for
the social good in education. ACM Inroads, 10(4):24-29, 2019.

[3] Linda J. Sax, Katheleen J. Lehman, Jerry A. Jacobs, M. Allison Kanny, Gloria
Lim, Laura Monje-Paulson, and Hilary B. Zimmerman. Anatomy of an enduring
gender gap: The evolution of women’s participation in computer science. The
Journal of Higher Education, 88(2):258-293, 2017.

119

Platform-Free Mobile Application:
Chatbot That Uses ChatGPT*

Poster Abstract

Marcos Pinto
NYC College of Technology
Brooklyn, NY 11201

mpinto@citytech.cuny.edu

This poster presents a mobile application that allows any person to commu-
nicate with a chatbot via a mobile device using natural language, and get replies
from it on a variety of topics such as business ideas, freelancing, blogging, email
marketing, essay creation, coding, ebooks, etc. The use of ChatGPT as the
backend chatbot is justified by the increasing popularity of this chatbot, which
has been currently hailed as the most important chatbot that makes use of
artificial intelligence to harvest and curate data from several data sources.

*Copyright (©)2023 is held by the author.

120

Teaching an Undergraduate Computer Graphics
Elective Course: Lessons Learned*

Poster Abstract

George Thomas
University of Wisconsin Oshkosh
Oshkosh, WI 54956

thomasg@uwosh.edu

The challenge of teaching introductory undergraduate Computer Graphics
involves both covering the theoretical and practical components of an unusu-
ally large diversity of topics in a limited amount of time, and implementing
concepts in a multi-layered programming infrastructure that can also exploit
the advances in modern hardware. Our experience teaching such a course in
a purely lecture-based format led us to introduce a lab-based component into
a subsequent version of this course. Our original version of the course con-
sisted of three hours of lecture, with short review problems assigned every lec-
ture, accompanied by 5-6 programming projects. This poster will present our
modified version of the course, which introduced carefully structured weekly
labs that complemented the lecture material for that week, but eliminated one
hour of lecture per week. The programming projects were replaced by two
large projects, with the second project being a team-based game development
project, where teams were free to design a game of their choosing within cer-
tain broad parameters. High-level quantitative student feedback indicated a
4% increase in students who felt that the course activities aided their learning.
In addition, while there was some concern about the density of topic coverage
in the now reduced two-hours of lecture per week, student comments about the
labs were overwhelmingly positive, with many students remarking on how the
labs helped them better understand course concepts. In future versions of this
course, we plan to restructure delivery of the course content while retaining
and improving the labs as an integral part of the course.

*Copyright (©)2023 is held by the author.

121

Reviewers — 2023 CCSC Rocky Mountain Conference

Assiter, Karina,L. Landmark College, Putney, VT
Blumenthal, Richard Regis University, Denver, CO
Cliburn, Daniel University of the Pacific, Stockton, CA
Cordova, Jose University of Louisiana at Monroe, Monroe, LA
Crandall, Kodeyoo... Utah Valley University, Orem, UT
Hamdan, Basil Utah Valley University, Orem, UT
Kirkman, Stephen Regis University, Denver, CO
Leverington, Michael Northern Arizona University, Flagstaff, AZ
Lindoo, Edcc i Regis University, Denver, CO
Lotfy, Mohamed Utah Valley University, Orem, UT
McDonald, Dan Utah Valley University, Orem, UT
Nehring, Jenny ...t Utah Valley University, Orem, UT
North, Matt ...t Utah Valley University, Orem, UT
Pinto, Marcos NYC College of Technology, Brooklyn, NY
Smallwood, Pam Regis University, Denver, CO

122

