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Welcome to the 2021 CCSC South Central
Conference

The 2021 South Central Steering Committee is very pleased to welcome ev-
eryone to our 32nd annual conference online hosted by the University of Texas
at Dallas. Our conference chair and host, Shyam Karrah, has provided infras-
tructure and support for the virtual delivery of our conference. With generous
time and effort the Steering Committee has delivered a fine program overcom-
ing the challenges of virtual hosting and production of this year’s program.

For our online 2021 conference we have eight papers, five workshops, and
both student and faculty posters scheduled for the program. This year the
Steering Committee chose 8 of 17 papers through a double-blind review process
for a paper acceptance rate of 47%. Seventeen colleagues across the region
and country served as professional reviewers and we recognize the expertise
and guidance they all so thoughtfully contributed to the selection of our 2021
conference program.

The Steering Committee continues to seek colleagues to host the conference
in the future and to join our community of computer science educators to
enrich our curricula and provide innovative pedagogy for our students. We
invite and encourage our fellow members of the South Central region to attend
our Monday April 12, 2021 virtual evening business meeting. Fellow educators
and colleagues are encouraged to join in our efforts to involve more of our
community in the planning and execution of the conference in the future.

We extend a very warm and delightful welcome to our virtual presenters and
attendees who continue to promote computer science education and camaraderi
to our region. To all members of our 2021 Steering Committee, thank you again
for your gracious efforts in delivering our first virtual conference during such
challenging times.

Shyam Karrah
University of Texas at Dallas
Conference Chair and Host

Laura J. Baker
St. Edward’s University

Papers and Program Chair
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We’re All In This Together: Learning
Communities for First-Year Computer

Science Majors∗

Rita Sperry
Department of Undergraduate Studies

Texas A&M University - Corpus Christi
Corpus Christi, TX 78412

rita.sperry@tamucc.edu

Abstract

In Fall 2016, the learning communities program at Texas A&M Uni-
versity Corpus Christi, a four-year public institution in Texas, offered
its first learning community for incoming Computer Science majors that
linked the introductory Computer Science course with a Mathematics
course and First-Year Seminar in an effort to improve student perfor-
mance in first-year Computer Science courses and increase retention rates
for students in the major and at the institution. Over the course of the
past four years, the faculty members in the Computer Science learn-
ing community have developed an assignment sequence that integrates
the first-year experience and takes advantage of the inherent benefits of
the learning community model in order to promote student success and
engagement. Preliminary analysis of grades in the Computer Science
introductory sequence courses and retention figures after the first and
second year for Computer Science learning community students appear
to indicate that the creation of this learning community has had a posi-
tive impact on the first-year experience for incoming Computer Science
majors.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Learning communities (or LCs) involve the linking of “two or more courses,
often around an interdisciplinary theme or problem, and enroll a common co-
hort of students”[6]. They are considered a high-impact educational practice[4]
and can be found at a majority of the nation’s colleges and universities[2]. LCs
that include a first-year seminar course are designed to help student and faculty
make connections with one another across course and disciplinary boundaries,
with the ultimate goal of developing students’ abilities to engage in deep, in-
tegrative, and lifelong learning[3].

Faculty members who teach in LCs are expected to collaborate before and
during the semester to intentionally align their goals, calendars, and assign-
ments to take full advantage of the learning community structure. Many LC
experiences require students to complete integrated assignments that challenge
them to leverage the knowledge and skills gleaned from all of their linked
courses to tackle novel problems or issues. Beyond helping students to develop
important communication, teamwork, and critical thinking skills, LCs have
been shown to positively impact student success measures such as first-year
GPA and retention[1].

At Texas A&M University-Corpus Christi (TAMU-CC), all full-time first-
year students are required to participate in LCs during their first two semesters.
Historically, these LCs have included one to three linked core curriculum courses
open to all majors connected with First-Year Seminar. However, the growing
number of students bringing in dual credit coursework has led to the recent
development of major-specific LCs that included classes outside of the core cur-
riculum. The Computer Science LC was the first LC at TAMU-CC to include
courses that were not in the core curriculum, which set the stage for other
disciplines (eg, Engineering, Music, Art) to offer their own major-specific LCs
for first-year students in recent years. As of Fall 2020, nearly half of the LCs
offered each semester at TAMU-CC are reserved for particular majors.

2 The Computer Science LC at TAMU-CC

The Computer Science LC was intentionally designed to support the transi-
tion of incoming first-year Computer Science majors while they took their first
introductory programming class at TAMU-CC – COSC 1435: Introduction to
Problem-Solving with Computers I. This class had traditionally posed chal-
lenges to incoming students and the thought was that linking it to a First-Year
Seminar section designed to support first-year student success would benefit
student engagement and performance. Students in this LC also registered for
Trigonometry or Calculus together with other students in the LC based on their
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math placement. In 2018, COSC 1100 (Skills for Computing Professionals) was
added to the fall LC schedule.

In the spring semester, first-year students who pass the COSC 1435 course
have the option to continue with the Computer Science LC to take COSC
1436, MATH 2305 (Discrete Mathematics), and the second required semester
of First-Year Seminar. Computer Science LC students have also had the option
to add major-specific sections of COMM 1311 in the fall and ENGL 1302 in the
spring if desired. The Computer Science LC courses are summarized in Table 1
below, while Table 2 contains a breakdown of students in the Computer Science
LC by semester since its inception in Fall 2016.

Table 1: Computer Science LC Courses, 2016-Present

Fall Computer Science LC (2016-Present)
COSC 1435: Introduction to Problem Solving with Computers I
COSC 1100: Skills for Computing Professionals (added Fall 2018)

MATH 1316: Trigonometry or MATH 2413: Calculus I
UNIV 1101: First-Year Seminar I

Optional COMM 1311 course

Spring Computer Science LC (2017-Present)
COSC 1436: Introduction to Problem Solving with Computers II

MATH 2305: Discrete Mathematics I
UNIV 1102: First-Year Seminar II

Optional ENGL 1302 course

Table 2: Computer Science LC Enrollments, 2016-Present

Semester Enrollments
Fall 2016 47

Spring 2017 32
Fall 2017 55

Spring 2018 39
Fall 2018 35

Spring 2019 25
Fall 2019 31

Spring 2020 19
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3 First-Year Seminar and the Integrated Computer Sci-
ence LC Experience

The First-Year Seminar curriculum at TAMU-CC is based on an adaptive,
just-in-time model that allows for the incorporation of student success topics
(such as notetaking, time management, study skills, campus resources) in the
context of the linked learning community courses at the particular time of
need[3]. The student learning outcomes include integrative learning, lifelong
learning, higher education navigation, and academic development. The course
meets twice per week for fifty minutes and is highly interactive in nature, with
a heavily reliance on in-class discussion and participation.

Daily activities and topics in First-Year Seminar can include, but are in no
way limited to, the following: group tasks or discussions that allow students
to practice and grapple with concepts from the linked courses; exam reviews;
visits from campus resources; course registration and academic advising; habits
of mind and growth mindset; personal values, goals, and strengths; career
exploration and professional development; and metacognitive reflections on
learning. Faculty members who teach First-Year Seminar do not necessarily
have expertise in the linked courses, but the program typically attempts to
match First-Year Seminar faculty based on their background and preference
for working with particular disciplines.

In the Computer Science LC, the First-Year Seminar course necessarily
supports the specific demands of the linked Computer Science and Mathe-
matics courses, while at the same time incorporating timely discussions about
first-year student resources, strategies, and requirements. All of the faculty
members in the Computer Science LC for First-Year Seminar, Computer Sci-
ence, and Mathematics meet prior to the start of each semester to align due
dates and deadlines for exams and to established shared learning outcomes for
their students. The First-Year Seminar professor attends the COSC 1435/6
class with the Computer Science LC students throughout the semester and
regularly communicates with instructors for the other linked courses to dis-
cuss upcoming assignments, provide feedback on student concerns, and discuss
students who might be struggling. Frequently the faculty members will work
together to develop a plan for responding to individual student issues.

Over the years, the Computer Science LC faculty members have devel-
oped an assignment sequence that includes two major integrative projects that
are facilitated within the First-Year Seminar course and are designed to help
students to make connections between their LC courses, practice necessary
teamwork and communication skills, and enhance their ability to identify the
relevance of their coursework to their future careers. During the fall semester,
students work together in teams to design and code a simple text-based game.
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The spring semester includes an experience affectionately entitled the First-
Year Capstone Project in which the students are challenged to implement a
project for a real-world client.

3.1 Fall Team Coding Project

About a third of the way into the fall semester, the Computer Science LC stu-
dents are placed into teams in First-Year Seminar and are challenged to create
a pitch for a text-based game for an imaginary potential client who is inter-
ested in the first-year student experience. Teams are encouraged to be creative
with their storylines, with the only major caveat being that the game must
relate somehow to real problems faced by first-year students at TAMU-CC.
As they learn about the problem-solving process and the design of algorithms
in the linked COSC 1435 course, they work together in First-Year Seminar to
create flowcharts and pseudocode for particular portions of their game. Once
students begin to learn more about coding in C++, they then implement their
team’s game design to include, at a bare minimum, basic decision and loop
structures, input and output from files, functions, and arrays/vectors. Teams
are highly encouraged to go beyond the minimum – and many choose to do
so – and, over the years, the student teams have figured out creative ways to
incorporate color, images, animation, and features like high score tracking and
save files into their designs. Teams typically have the opportunity to celebrate
and showcase their final products to the campus community at First-Year Sym-
posium, a first-year student poster session required of all learning community
students at TAMU-CC.

The fall coding project allows students to get their first real experience
working together as a team to complete a complex coding challenge, an activity
that they will necessarily engage in throughout their undergraduate Computer
Science experience at TAMU-CC but, perhaps more importantly, throughout
their careers if they choose to stay in Computer Science. Reflection is built
into the assignment sequence for the project, and discussions about the impor-
tance and challenges inherent in collaboration are a common topic of discussion
in the First-Year Seminar course throughout the semester. The project also
allows students to apply the material from their linked COSC 1435 course in
a way that is substantively different from their traditional lab or homework
assignments. It is not uncommon for students to express excitement at how a
concept they learned in the previous COSC 1435 lesson could be immediately
incorporated into their team’s game design. The level of student engagement
each fall semester in the team coding project consistently surprises and excites
the Computer Science LC faculty teaching team, and it serves as an exemplar
of all of the features necessary for a high-impact learning experience[4].
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3.2 Spring First-Year Capstone Project

During the spring semester, Computer Science LC students are again placed
into faculty-selected teams to complete the First-Year Capstone Project. In-
tended to simulate the senior capstone experience for Computer Science ma-
jors at TAMU-CC, teams are challenged to implement a program that solves a
problem for a real-world client. Because the linked COSC 1436 course focuses
on object-oriented programming, the one major requirement for the solution –
aside from needing to be written in C++ – is that it must include at least one
class. The assignment sequence mirrors the senior capstone stages of require-
ments collection and analysis, design, implementation, and testing. Accord-
ingly, student teams are tasked with reaching out and meeting with their client
multiple times to define and clarify requirements and demonstrate drafts of
their solutions for feedback. Major deliverables for the project include require-
ments and design documents, rough drafts and final code submissions, and a
final formal presentation that includes a live demonstration of the solution.

This project is meant to introduce students to the software development life
cycle in a supportive and “safe” environment. As such, the “clients” for their
projects have always been faculty members or peer mentors in the Computer
Science LC whose problems related to their role in the learning community.
The ENGL 1302 instructor, for example, has challenged his student groups to
create a “better” APA/MLA citation generator, while the Discrete Mathematics
instructor asked his assigned teams to create a truth table builder. This is yet
another example of how students in the Computer Science LC are challenged
to integrate the concepts they are learning across the curriculum.

4 Results

Table 3 below includes the one-year retention rates of first-year students at
TAMU-CC from 2012 to 2019. The first row lists the overall retention figure
for all first-year students, while the second row filters the overall list to first-year
Computer Science (CS) majors. The third row refines the group even further to
first-year Computer Science majors who participated in the Computer Science
learning community experience during their first semester.

Table 3: First-Year Student One-Year Retention, 2012-2019

2012 2013 2014 2015 2016 2017 2018 2019
Overall 61.6 58.8 62.7 60.9 57.3 57.8 59.8 57.8

CS Majors 61.8 60.9 70.7 70.4 67.5 67.1 69.5 76.0
CS LC 74.5 72.9 74.5 75.0
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Table 4 contains the two-year retention rates of first-year students at TAMU-
CC from 2012 to 2018. Again, the first row represents all first-year students,
the second row represents all first-year Computer Science students, and the
third row only includes students who participated in the Computer Science LC
during their first fall semester.

Table 4: First-Year Student Two-Year Retention, 2012-2018

2012 2013 2014 2015 2016 2017 2018
Overall 48.2 45.1 49.1 48.0 45.2 43.7 47.8

CS Majors 50.9 56.3 56.0 56.8 53.8 50.6 61.0
CS LC 61.7 55.9 72.3

Both of the above tables appear to indicate that students in the Computer
Science learning community are more likely to return for their second and
third years than the general student population. While the gap between the
overall one-year retention rates of first-year students and Computer Science
LCs is rather large – a 17.2 point difference in the 2019 cohort – the two-year
retention rate differences are even more striking. There is likely some selection
bias playing a role in this difference because students in the Computer Science
LC likely have higher math placements than the average first-year student due
to the prerequisites for entry into the COSC 1435 and linked MATH courses.

Beyond retention, the primary goal of the Computer Science LC is to
improve performance in the linked Computer Science introductory sequence
courses. Tables 5, 6, and 7 below include the C or better rates for COSC 1435,
1436, and 2437, the first three course that students take as Computer Science
majors. The first two courses are taken as part of the LC experience in the
first year, while COSC 2437 is typically taken during the student’s second fall
semester. Table 7 only includes students who took the Computer Science LC
during both semesters of their first year.

Table 5: COSC 1435 C or Better Rate, Fall Semesters, 2012-2019

2012 2013 2014 2015 2016 2017 2018 2019
Overall 65.4 55.9 40.5 61.6 75.8 68.1 59.6 55.6

CS Majors 69.3 57.7 38.4 68.0 81.2 67.8 62.5 67.2
CS LC 87.2 76.4 68.6 67.7

Thus, students who participate in the Computer Science LC are not only
more likely to be retained in to their second and third fall semesters, their
performance in their introductory Computer Science course sequence (1435,
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Table 6: COSC 1436 C or Better Rate, Spring Semesters, 2013-2020

2013 2014 2015 2016 2017 2018 2019 2020
Overall 48.8 52.9 51.7 57.4 69.4 40.0 72.6 59.3

CS Majors 49.3 53.5 52.2 59.0 67.9 43.1 75.0 59.2
CS LC 87.5 53.9 96.0 63.2

Table 7: COSC 2437 C or Better Rate, Fall Semesters, 2014-2019

2014 2015 2016 2017 2018 2019
Overall 71.7 60.0 65.5 88.4 77.8 57.9
CS LC 92.6 88.9 81.8

1436, and 2437) is higher than students who take those same classes outside
of the learning community experience. Perhaps the most significant finding is
the performance of Computer Science LC students in the third programming
course, COSC 2437, since that course is taken after completing the learning
community experience.

5 Discussion

After its fourth year of implementation, the results of the Computer Science
LC experiment at TAMU-CC are promising. Students in the LC earn higher
grades in the linked Computer Science classes (COSC 1435 and COSC 1436)
than other students in the same classes who are not in the LC, and they go on
to perform better in the next class they take during their second fall semester
(COSC 2437). In addition, the one- and two-year retention rates for first-year
Computer Science majors in the LC are higher than the general population.

Much more research is needed to explore the qualitative nature of the bene-
fits of learning communities on first-year student success, particularly in Com-
puter Science. Anecdotally, faculty members who teach the linked Computer
Science and Mathematics courses indicate that the LC students are much more
engaged in the experience, have greater in-class attendance and participation,
tend to ask more questions, and identify peer and study groups more easily
than their non-LC colleagues. The benefits of learning communities identified
by others as hallmarks of a high-impact educational practice[5] seem to be
manifesting themselves in the Computer Science LC experience at TAMU-CC.
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Abstract

Grading rubrics communicate convenient explicitly articulated per-
formance expectations to students and provide a consistent methodology
for assessment, but using linearly weighted rubrics can lead to poor grade
differentiation among high performing students and as a percentile score
can often poorly map to instructor academic achievement expectations.
In this work, we describe a logarithmically weighted rubric for computer
science projects and analyze its effect on grading through modeling and
surveys.

1 Introduction

In 1913, E. Finkelstein expressed concern about conventional grading practices
as part of a statistical monograph on grading. He begins his work by asserting
“the percentage system with 100 for a maximum and 60 or 70 as a ‘pass mark’
is in all probability not the best system” [8]. Some 80 years later, Mark Durm
similarly raised concerns about the current grading system asking the ques-
tion “Is our current grading system still uncalibrated?” [7]. Cross and Fray
pointed out that while there is no consensus on the most appropriate grading
system; there is, however, quite a bit of agreement about what is wrong with
the current system [6]. Unfortunately, as stated by Cizek, even as “grades con-
tinue to be relied upon to communicate important information about academic
performance... they probably don’t” [5].

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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For these reasons, educational researchers and theorists have been highly
critical of traditional grading practices, and more than that, some researchers
have proposed abolishing traditional grading practices [11, 12, 1].

Because the sole purpose of a grade is to accurately communicate to others
the level of academic achievement that a student has obtained [14], do the
assessment procedures and assignments of grades accurately reflect and com-
municate the academic achievement of students? The standard grading system
may actually be a barrier as it requires unnatural mappings to a zero to one
hundred scale. At best this can be cumbersome and it worst it doesn’t deliver
the truth about academic achievement [4].

F C B A

14%14% 68% 2%2%

D

Figure 1: The most common grading scale, arguably, doesn’t strongly align
with the student performance we expect.

Consider what many believe to be a mathematical ideal where grades are
aligned with a normal distribution such that most grades fall in the ‘C’ range
and roughly 85% of grades are passing. Yet, as illustrated in Figure 1, the
actual scale we use for assigning grades awards 70% of the points to the perfor-
mance that we might expect from 2% of the student population. This problem
is particularly acute for many standard grading rubrics.

Though the word ‘rubric’ comes from the Latin ‘marks in red’ (Finson
and Ormsbee, 1998) [9], today, a rubric is understood to be a coherent set of
grading criteria based on descriptions of performance. Rubrics are essentially
a scoring tool that indicates ‘what counts’ [2, 13] but do so using categories of
performance and not explicitly a traditional percentile scoring system.

While there are strong reasons to upend traditional grading systems al-
together, there are problems with that too. Students, in general, don’t like
inconsistency. Non-traditional grading systems are more often the target of
grade appeals and when different classes use dissimilar grading systems this
can be a point of frustration for students who feel that benchmarks and stan-
dards are being unfairly changed.

Rather than change student attitudes or completely change how we do
grading, we propose adopting a rubric grading scale with performance levels
aligned with the performance we expect but weighted with points such that
the final score uses a traditional 0 to 100 scale. We suggest this is often done
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informally but in this work we formally analyze this approach and describe a
logarithmic relationship between rubric performance levels and the percentage
grade scale.

2 Rubric Design

Many institutions provide guides and workshops with best practices and design
tips for rubrics. The mechanics of a rubric are straightforward - a grid is formed
from a pairing of dimensions with performance levels.

Dimensions or criterion used in a rubric are typically enumerated on the
left column of the rubric and broadly categorize the activities instructors are
looking for in the assessed work. Three to five criteria are the most com-
mon [3]. The example rubric in Figure 2 uses three common computer science
dimensions: correctness, design, and style, weighted at 50%, 25%, and 25% re-
spectively. Correctness describes the degree to which the code meets technical
specifications. Design describes the degree to which the code is efficient and
well organized. And style represents the degree to which the code is readable
including variable naming, commenting, and indentation. In addition to hav-
ing lower weight, design and style are “parameritized” by correctness. That is,
design and style must support the correctness of the code - these dimensions
are not independent. It would be unlikely, for example, to get high scores in
design and style and a low score in correctness.

Performance levels provide broad categories of student expectations,
listed at the top of the rubric, and when paired with a criterion describe an
instantiation of the performance level with the criterion. Four to five perfor-
mance levels are the most common [3] but four to six levels are typically rec-
ommended [10]. An odd number of performance levels can create an implicit
catch-all category and limit a more precise judgement of student performance.

Technical objectives, while not a feature of the rubric, support the
dimensions and performance levels by articulating the specific features that
should be implemented in the project. This allows the rubric to speak more
generally about project expectations and emphasizes specific technical require-
ments in a check list attached to the assignment.

3 Logarithmic Rubric Weighting

A logarithmic rubric weighting is one which has exponentially increasing penal-
ties. Specifically, we considered the equation ikp, where p is the performance
level, i is the initial penalty and k is the growth constant. For c = 5 and k
chosen such that 5k5 = 100, we find the score progression (100 − penalty) is
{100, 95, 90.9, 83.4, 69.8, 45.1, 0}, charted in Figure 3. The actual progression
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of scores we use in our rubric is rounded to the nearest multiple of five as not
to indicate to the student a level of precision that is not present.
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Performance Level
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100
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Figure 3: Scores and performance levels
reveal a logarithmic relationship.

This scoring system has some in-
teresting properties. Four of the
six performance levels are associated
with passing scores (66.7%) and only
two of the six levels are associated
with failing scores (33.3%). This is
almost the reverse allocation com-
pared to the traditional percentile
scale where 59-69% of points repre-
sent unacceptable scores. Another ef-
fect is that performance level descrip-
tions don’t over represent unaccept-
able performance and instead spend
more time differentiating acceptable
levels of performance.
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Figure 4: As the score weights are ap-
plied to progressively more dimensions
the density at the upper end of the scale
increases faster than the lower end.

This scale is applied for each di-
mension of the rubric. The example
rubric in Figure 2 illustrates three di-
mensions but we can visualize how
the rubric would be applied to 1, 2,
3, or even a higher number of dimen-
sions. Figure 4 demonstrates, as one
might expect, that as the number of
dimensions increases the density at
the upper end of the scale increases
faster than the density at the lower
end of the scale. If average perfor-
mance for a class falls between “Fair
Effort” and “Good Effort” and there
is a normal distribution of grades we
can expect a curve that looks like
Figure 1 without additional mathematical “post processing”.

Another positive effect of this system is that it gives some of the highest
performing students more feedback and grade differentiation. This allows in-
structors to set a high bar in the rubric for “Very Good Effort” and “Extemely
Good Effort” while not making an ‘A’ or a ‘B’ impossible.
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4 Deployment and Student Feedback

Figure 5: The rubric scoring
user interface used in BbLearn.

Variations of this rubric and logarithmic
scoring has been deployed in several classes.
Most recently, this rubric was used in an up-
per division computer science elective class
with six large open-ended project-based as-
signments. BbLearn was used as the learn-
ing management system for the course and
all projects were collected as BbLearn assign-
ments. The BbLearn rubric tool was used to
design and implement the rubric and weight-
ings as described in this paper. The same
rubric was used for each project but with dif-
fering technical objectives.

Assignments are graded based on input
from automated tests constructed for the
class and linting tools. In the past a git “lint-
ing” tool has also been used to assess ver-
sion control usage. These inputs along with
an inspection of the code and accompanying
documentation inform the performance level
assignment for each dimension and each stu-
dent.

Feedback was collected in the form of surveys with 43 students responding.
A Likert scale from 1 to 10 was used to assess student satisfaction with mapping
of performance levels to scores for projects. Students reported high satisfaction
with the rubric, specifically reporting a 9.5 satisfaction rating.

5 Conclusion

We suspect that logarithmic scoring has been used informally in rubrics, but
has not previously been studied explicitly. This work describes the motiva-
tion for such a grading scale, its implementation, and its deployment in the
classroom. Students who used the scale have indicated that they were satisfied
with the scale and analysis of synthetic models and real scores suggest it maps
student achievement as desired.

While this work included a small student satisfaction survey, a larger study
is needed to better understand how rubric scoring impacts student learning.
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Abstract

The Internet of Things (IoT) has grown rapidly in recent years; along
with this rapid growth have come multiple privacy concerns. This re-
search utilizes the Mobile Users’ Information Privacy Concerns (MUIPC)
instrument [27] to examine user intention to change privacy settings on
IoT devices.

1 Introduction

Privacy is one of the key ethical issues facing the information age [15]. Ongo-
ing changes in technology have only increased the number of privacy threats
[2]; as a result, privacy models must evolve to address these new threats and
technologies.

The proliferation of the Internet of Things (IoT) presents a huge threat
to user privacy, especially given the rapid increase in usage. These devices
often incorporate a variety of sensors [28] and collect an amazing amount of

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
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a fee and/or specific permission.
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data including audio, video, location, and medical data; this data collection
poses a threat to privacy [16]. Such data has been utilized in murder trails
and, as Morrow [16] notes, Internet-connected cameras could also be subject
to attacks.

Most IoT devices do allow users to alter privacy settings; unfortunately,
many users have differing levels of privacy concerns. Some may seek to protect
their privacy by altering settings, while others may not. As a result, privacy
models must evolve to consider the impact of technological changes, user pri-
vacy concerns, and user decisions regarding changing privacy settings.

Solutions to the IoT privacy issue must consider user attitudes and aware-
ness [28]. The current research utilizes the Mobile Users’ Information Privacy
Concerns (MUIPC) instrument [27] to examine user concern for privacy and
intention to change settings within the IoT environment. Foltz and Foltz [9]
demonstrated that the MUIPC model is applicable in determining intention to
use the IoT; changing IoT privacy settings appears to be a related behavior for
which the MUIPC might also apply.

2 Literature Review

2.1 Privacy

Privacy has been examined in multiple disciplines for quite some time [15] [2]
[5]; interest in this concept has only increased with the rapid growth of tech-
nology [5] [2]. Privacy has been defined in multiple ways, with variations based
on factors such as culture and legal concerns [14]. Many privacy definitions
incorporate the idea of control over the use and secondary use of personal in-
formation [2]. Westin [24] provided an early definition of privacy as “the claim
of individuals, groups, or institutions to determine for themselves when, how,
and to what extent information about them is communicated to others.” Later
Westin [25] modified this definition to “the right to select what personal in-
formation about me is known to what people.” More recent definitions also
incorporate this concept of control. Belanger and Crossler [2] define privacy
as “the desire of individuals to control or have some influence over data about
themselves” while Sfar et al [19] add the collection, use, and sharing of data.

Within the extant information systems literature, multiple behavioral mod-
els utilize information privacy concern as a proxy for privacy [26]. Although
multiple definitions have been offered, the current research will utilize the Xu
et al [27] definition of information privacy concerns as “concerns about possible
loss of privacy as a result of information disclosure to a specific external agent.”
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2.2 The Internet of Things (IoT

The Internet of Things (IoT) consists of a collection of interconnected devices
that are also connected to the Internet [28]. These devices integrate the physical
and digital worlds while collecting data without human interaction [23]. These
IoT devices have gained rapid acceptance; Weinberg et al [23] predicted 50
billion such devices in use by 2020.

2.3 Privacy and the Internet of Things

Despite the rapid growth of the IoT, multiple privacy concerns remain. These
devices collect a great deal of data [23] but how will that data be stored and
used? Who owns the data [23] [28]?

Users surround themselves with these sensor-equipped devices which “ag-
gressively collect personally identifiable information” about daily activities to
help predict user needs [13]. Further, this information is shared between devices
and services over the Internet [19] and creates multiple security and privacy
concerns [19] [28]. Many users are simply unaware of this data collection and
sharing and fail to read privacy policies [1]; each device presents another op-
portunity for privacy violations [17].

2.4 Changing Settings

Most IoT devices and related services offer options to alter a variety of settings.
This allows the user some control over the collection and sharing of data. To
help understand user privacy concerns and intention to change the associated
settings, an existing survey (MUIPC) will be modified and examined within
the IoT setting.

3 Methodology

3.1 Information Privacy Concern Measurement

Multiple privacy instruments exist within the extant information systems lit-
erature. Preibusch [18] provides an excellent summary of these. In 2012, Xu
et al proposed the Mobile Users Information Privacy Concern (MUIPC) model
which is based upon Communications Privacy Management (CPM) theory [27]
and has been extended to the IoT [9]. Unfortunately, none of these instruments
target user alteration of privacy settings; however, a recent study [8] applied
the Dinev and Hu [6] awareness model of human behavior to this area: that
model did not hold.

This research seeks to apply the MUIPC (Figure 1) to user alteration of
privacy settings within the IoT environment. The MUIPC model consists of
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three dimensions: perceived intrusion, perceived surveillance, and secondary
use of information.

Figure 1: MUIPC Instrument [27]

3.2 Perceived Intrusion

Perceived intrusion reflects the ability of the data recipient to make decisions
regarding the user’s data [27]. Since IoT devices are designed to gather data
using various sensors and to report that data over a network, the idea of intru-
sion exists for IoT devices. The CFIP captures this concept with the improper
access and error dimensions while the IUIPC captures intrusion with the con-
trol dimension [27]. MUIPC captures user concern regarding physical and
informational space [27].

3.3 Secondary Use of Information

Users are often concerned with the possibility of unauthorized use of their
data [22] or the use of that data for a different purpose [21]. This concern is
addressed within the CFIP, IUIPC, and MUIPC and is the same within the
IoT setting.
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3.4 Information Privacy Concern

Information Privacy Concern is a second-order factor. Xu et al [27] selected a
second-order factor model as providing the most parsimonious fit.

3.5 Prior Privacy Experience and Behavioral Intention

The MUIPC model incorporated Prior Privacy Experience and Behavioral In-
tention to assist in validating the higher-order factor structure of the model.
Prior Privacy Experience utilizes items from Smith et al [21] to measure respon-
dents’ past experiences with privacy violations. Behavioral Intention reflects
the likelihood of an individual performing a specific behavior; individuals with
prior privacy violations and higher privacy concerns are less likely to share in-
formation and should therefore be more interested in changing privacy settings.
The current research utilizes survey items derived from [6] and modified by [8]
to capture intention to change settings. These factors are all defined in Table
1.

3.6 Hypotheses

This research seeks to extend the MUIPC instrument within the Internet of
Things to examine user intent to change IoT settings.

H1: Perceived Surveillance is correlated with Information Privacy Concern.
H2: Perceived Intrusion is correlated with Information Privacy Concern.
H3: Secondary Use of Personal Information is correlated with Information

Privacy Concern.
H4: Prior Privacy Experience Influences Information Privacy Concern
H5: Information Privacy Concern influences Behavioral Intention

3.7 Methodology

Students at a mid-south Carnegie Master’s level university were invited to com-
plete an online survey by their normal classroom instructors. An opportunity
to enter a random drawing for three gift cards was also offered to respondents
(this process was administered by an independent department chair). 192 stu-
dents, or 15.3 percent, of the 1257 students invited elected to complete the
survey. Table 2 present descriptive statistics. The survey designed to gather
this data contained the items from Dinev and Hu [6] and the MUIPC [27] in-
struments along with items measuring intention to change privacy settings and
intention to use IoT devices [8] [9]. The Dinev and Hu model examining user
alteration of privacy settings was only partially supported [8]. The MUIPC
model examining the intention to utilize IoT devices was supported [9]. Can
MUIPC also be used with the intention to change privacy settings? This study
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Table 1: Definition of Key Constructs

Variable Definitions
Perceived Surveillance
(PS)

Composite of three items reflecting respondent per-
ception of IoT devices “watching, listening to, or
recording” [22]. Scoring ranged from 1 (strongly
agree) to 7 (strongly disagree).

Perceived Intrusion
(PI)

Composite of three items reflecting respondent per-
ception of IoT devices creating a “violation of per-
sonal space, presence, or activities” [22]. Scoring
ranged from 1 (strongly agree) to 7 (strongly dis-
agree).

Secondary Use of Infor-
mation (SUI)

Composite of three items reflecting respondent con-
cern with the use of data collected by IoT devices
for other purposes [21]. Scoring ranged from 1
(strongly agree) to 7 (strongly disagree).

Prior Privacy Experi-
ence (PPE)

Composite of three items reflecting respondents’
past experience with privacy violations [27]. Scor-
ing ranged from 1 (no instances) to 7 (over 10 in-
stances).

Behavioral Intention
(BI)

Composite of three items reflecting respondents’ in-
tention to change privacy settings on IoT devices
[6]. Scoring ranged from 1 (strongly agree) to 7
(strongly disagree).

Information Privacy
Concern (IPC)

Second—order factor composed of Perceived
Surveillance, Perceived Intrusion, and Secondary
Use of Information.

32



Table 2: Descriptive Statistics

Gender Age Internet and IoT Experience
Gender Freq. Age Freq. Time Frame Internet

Freq.
IoT Freq.

Female 112 18-24 150 Less than a
year

3 27

Male 68 25-34 14 1 – less than
2 years

1 26

Prefer
not to
say

5 35-44 11 2 – less than
3 years

2 21

45-54 7 3 – less than
4 years

9 29

55-64 3 4 – less than
5 years

7 13

Over 65 0 5 – less than
6 years

12 11

6 – less than
7 years

15 6

More than 7
years

136 53

seeks to answer that question by utilizing factors and data from the existing
survey.

SmartPLS was used to validate the measurement model and to test hy-
potheses. This software uses a variance-based approach for parameter estima-
tion and a least-squares process to reduce demands on the measurement scales
and sample size [4] [7] [10].

The measurement model was examined by comparing discriminant validity,
convergent validity, and internal consistency reliability (ICR) to established
heuristics. The model did meet the threshold for discriminant validity: the
AVE values all exceeded the recommended .707 threshold and the square roots
of the AVE exceeded the correlations among construct pairs [11]. The indi-
vidual items loaded more heavily upon the expected constructs than on other
constructs [12]. Tables 3 and 4 present the AVE values, correlations, and load-
ings; discriminant validity is supported.

Convergent validity is also supported, as indicated in Tables 3 and 4. The
factor loadings all load significantly upon their respective constructs and exceed
the recommended cutoff value of .70 [3].

Further, The Internal Consistency Reliability (ICR) values, which are anal-
ogous to Chronbach’s Alpha, range from .88 to .93 and all exceed the accepted
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Table 3: Internal Consistency Reliability, Convergent Validity, and Discrimi-
nant Validity

ICR AVE PS PI SUI PPE BI IPC
PS .91 .77 .88
PI .92 .80 .86 .89
SUI .92 .81 .86 .83 .90
PPE .88 .71 .76 .76 .75 .84
BI .93 .81 .70 .70 .70 .59 .90
IPC .92 .80 .92 .95 .81 .75 .67 .89
Internal Consistency Reliabilities (in ICR column),
Average Variance Extracted (in AVE column),
AVE square roots (on diagonal),
and correlations (below diagonal).

heuristic value of .70 as suggested by [11]; further, the AVE values range from
.71 to .81 which exceeds the heuristic of .5 [11]; the analysis thus supports
internal consistency reliability.

The first three hypotheses are all significant at the .001 level. These hy-
potheses focus upon the relationships between the individual factors (perceived
intrusion, perceived surveillance, and secondary use of personal information)
and the second-order factor of information privacy concern. Thus, the MUIPC
model does work within the IoT environment.

The remaining hypotheses (H4 and H5) are also supported at the .001 level.
H4 examines the relationship between PPE and IPC, while H5 examines the
relationship between IPC and BI. Prior privacy violation experiences influence
privacy concern, and privacy concern is related to the intention to change
privacy settings for IoT technology.

The IoT is growing rapidly; many consumers are unaware of the various
privacy concerns created by this technology. A growing body of research sug-
gests that this concern is indeed warranted. The risks posed by IoT technology
can be mitigated by altering IoT privacy settings. The current research sug-
gests that IoT users are becoming aware of these concerns and are beginning
to change their settings to address these concerns.

4 Results

The path coefficients and t-statistics are presented in Table 5. All hypotheses
are significant at an alpha level of .001 which suggests the MUIPC is useful in
evaluating user intention to change IoT security settings.
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Table 4: Factor Loadings

PS PI SUI PPE IPC BI
PS1 .871 .6743 .6813 .6196 .8345 .5411
PS2 .899 .7966 .8019 .6949 .8225 .5743
PS3 .8552 .8015 .7922 .6753 .7596 .7366
PI1 .8032 .9231 .7458 .6858 .914 .6254
PI2 .8061 .9379 .7561 .6945 .9306 .626
PI3 .6963 .8106 .7459 .6599 .6681 .6392
SUI1 .7643 .7154 .9213 .6348 .7113 .6099
SUI2 .7665 .7686 .8585 .6659 .7195 .6868
SUI3 .8081 .7723 .9257 .718 .7719 .5992
PPE1 .636 .6491 .6863 .8744 .645 .4433
PPE2 .6744 .6372 .5839 .8008 .6626 .5714
PPE3 .5871 .6218 .6086 .8427 .5618 .4625
BI1 .6092 .5955 .5944 .5122 .5584 .9248
BI2 .6593 .6957 .669 .5605 .6758 .8607
BI3 .6082 .5747 .5976 .5039 .5483 .9088

5 Limitations

There are numerous limitations within this research. First, a convenience sam-
ple of university students was utilized; this sample may not represent the gen-
eral population. Further, most respondents reported significant experience
with the Internet and IoT. A larger, more diverse sample could produce differ-
ent results. Finally, this research combined elements and data from two earlier
studies to evaluate the data in a new way.

Table 5: Path Coefficients and t-Statistics

Path Coeff. t-Statistics
H1: PS -> IPC .92 26.2680*
H2: PI -> IPC .95 125.8856*
H3: SUI -> IPC .81 12.0578*
H4: PPE -> IPC .75 10.7830*
H5: IPC -> BI .67 7.0544*
* Signifacant at alpha = .001
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6 Conclusions and Implications

The rather amazing growth of the IoT has resulted in users placing Internet-
connected devices equipped with multiple sensors throughout their homes and
environments; these devices collect an amazing amount of information and pose
a threat to privacy [16]. While users often express a concern with privacy, these
actions contradict those statements—this is termed the privacy paradox [20].
This paradox suggests a need to further understand privacy concerns within
the IoT environment, especially a need to understand user intention to alter
IoT privacy settings.

Although a plethora of privacy research exists, little effort has been ex-
pended examining the applicability of existing instruments to the IoT, espe-
cially regarding users changing the IoT privacy settings. This research extends
the MUIPC to examine user alteration of privacy settings within the IoT en-
vironment, thus opening another avenue for future research.

Also, this research establishes the influence of prior privacy concerns upon
user alteration of IoT settings. Understanding why users do or do not alter
privacy settings is an important factor in understanding privacy within the IoT
environment.

Future research should examine user awareness of privacy risks within the
IoT environment; the privacy paradox suggests that user behavior and attitudes
may not match. This could be explained by a lack of user understanding
regarding the data collected and shared by IoT devices, or by user failure
to alter available privacy settings. Additional research should examine the
impact of training and education upon this privacy paradox: perhaps greater
knowledge and experience would allow users to more accurately understand and
protect their data. Finally, a better understanding of user privacy concerns and
willingness to alter settings should allow IoT manufacturers to offer instructions
or options to help mitigate this loss of privacy.
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Abstract

We develop a model for message delivery between a source node and
a destination node in which each node operates as a binary renewal
processes; that is, nodes are only available for communication during a
portion of the time. We determine the closed-form formula for calculating
the expected message delay and the probability distribution for message
delivery as a function of time. From there, we examine a message’s delay
from its source to its destination as it propagates from node to node
along a path topology where each node can only communicate with its
nearest two neighbors (one neighbor for each node at the ends of the
path) and develop the probability distribution for the message delay.

1 Introduction

Two philosophers are sitting side-by-side. Unfortunately, both suffer from nar-
colepsy; that chronic sleep disorder that causes the afflicted to be overcome

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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by drowsiness and suddenly fall asleep. Thus, each philosopher alternates be-
tween random periods of being awake and random periods of being asleep.
While awake (and, perhaps, even while asleep), each philosopher ponders the
deep questions of the Universe. When one philosopher has a sudden brilliant
insight, if he is awake, he immediately wishes to share his new found knowledge
with his colleague. However, he can only do so if both he and his colleague are
awake. How long until the first philosopher can successfully communicate his
new idea to his colleague?

Understanding this form of message delay is important in many types of
information networks, such as delay tolerant networks (DTN), mobile ad hoc
networks (MANET), sensor networks, and distributed Internet of Things (IoT)
networks. Message propagation and delay in these types of networks depend on
two nodes that are in range of each other to be active (as opposed to dormant or
in power-savings mode). Much of the research into these types of networks that
are concerned with message delay also examine routing issues [1, 5], quality of
service [6], and security [2, 3, 7].

2 A Description of the Basic Model

To model our narcoleptic philosophers, consider a communication network in
which each philosopher is represented as a node within the network. The basic
model consists of only two nodes, and a message, m, to be transmitted between
the two nodes. The philosopher/node sending the message is the source node,
and the destination node receives the message.

Each node is modeled as a binary renewal process; that is, it can be ei-
ther ON or OFF, corresponding to the philosopher being awake or asleep,
respectively. Each node is ON for an independent and identically distributed
(i.i.d.) random duration drawn from an exponential distribution with param-
eter λ. Similarly, each node is OFF for an i.i.d. random duration drawn from
an exponential distribution with parameter µ. A node will indefinitely cycle
through repeated states of ON and OFF during its life cycle (as per Fig. 1).
Let ∆tON (i) and ∆tOFF (i) denote the duration that a node is ON and OFF
respectively during the ith iteration of its life cycle.

The message can only be generated while the source is ON. The destination
can only receive the message while both source and destination are ON. The
delay between message generation and delivery is the message delay, ∆tm.
We assume that the transmission time (mostly propagation time) between the
source and destination is zero. Thus, the message delay is strictly the delay
until both source and destination are in the ON state.

The probability that a node is ON at some random time during its life
cycle is Pr(ON) = µ/(λ+ µ) and the probability that the same node is OFF
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Figure 1: The Life Cycle of a Node

is Pr(OFF ) = λ/(λ+ µ).
We are interested in the amount of time it takes the source to communicate

its message to the destination; that is, the cumulative probability distribution
(CDF) of the message delay as a function of λ, µ, and time t.

3 Modeling Message Delay Using Stochastic Processes

We model the evolution of the generation and delivery of a message in a two-
node system using a Markov chain, as shown in Fig. 2a. At message generation,
we know that the source node is ON. The probability that the destination node
is ON is independent of the source node. If both the source and destination
nodes are ON, then the message is delivered immediately, and ∆tm = 0.

The more interesting case is when the destination node is OFF. We repre-
sent the process of transmitting the message from source to destination node
using four states: State 10 represents when the source node is ON but the
destination node is OFF. State 00 represents when both nodes are OFF, and
State 01 represent when only the destination node is ON. State 11 represents
when both source and destination are ON. Message delivery occurs only while
the system is in State 11.

Each state transition is controlled by an exponential random variable, which
is defined by its associated transition rate. For example, the transition rate
from State 10 to State 00 corresponds to the rate of the source node transi-
tioning from ON to OFF. This occurs based on the duration of the ON state,
which is drawn from the exponential distribution with parameter λ. The same
holds for the other transitions.

The probabilities associated with each transition is the transition rate di-
vided by the sum of the transition rates of the originating state. Thus, the
transition from either State 10 or State 01 to State 11 occurs with probability
Pr(ON), and the probability that the transition from either State 10 or State
01 to State 00 occurs is Pr(OFF ) .

Notice that the Markov chain of Fig. 2a exhibits a symmetry: The transi-
tions from State 00 to State 11 are identical whether going through State 10
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or State 01. We can therefore simplify this Markov model by collapsing State
10 with State 01. We denote this combined state as State XY , where X and
Y ∈ 0, 1 but X 6= Y . Our simplified Markov chain is shown in Fig. 2b.

(a) Full Markov Chain

(b) Simplified Markov Chain

Figure 2: Markov Chain Representation of one-hope Message Delivery

One way of viewing our simplified Markov chain is to recognize how the
transition rates specified in Fig. 2b reflect the rate at which a node will change
states. Thus, from State XY , whichever node is ON will remain ON for the
duration specified by λ. Likewise, the transition from State XY to State 11
occurs when the node that is OFF switches to ON, which occurs based on the
parameter µ. The transition from State 00 to State XY occurs when either of
the two nodes switches to ON and occurs at a rate based on the sum of the
two rate parameters, µ+ µ = 2µ.

3.1 Computing the Delay Distribution on a Single Hop

We compute the delay for a single-hop communication given that the second
node is OFF at time t0, based on the simplified Markov Chain in Fig. 2b.
This simple system can be described as follows, with the Kolmogorov forward
equations on the left and their Laplace transforms on the right:

dP00

dt
= −2µP00(t) + λPXY (t) sP̄00(s) = − 2µP̄00(s) + λP̄XY (s)

dPXY
dt

= 2µP00(t) − (µ+ λ)PXY (t) sP̄XY (s) − 1 =2µP̄00(s) − (µ+ λ)P̄XY (s)

dP11

dt
= µPXY (t) sP̄11(s) =µP̄XY (s) .

If f ′(t) is the derivative of f(t), then recall that the Laplace transform L
of the f ′(t) is given by: L{f ′(t)} = sL{f(t)} − f(0). Since the starting state
of the system is State 10 = State XY, we set PXY (0) = 1, and P00(0) = 0 and
P11(0) = 0. As a result, we get the above Laplace transform of the system.
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Solving for P̄11(s)1, we get

P̄11(s) =
1

s
× µs+ 2µ2

(s+ α1)(s+ α2)
. (1)

where α1, α2 = (3µ+ λ)±
√
µ2 + 6µλ+ λ2.

We rewrite Eq. 1 and compute the inverse Laplace transform to get the CDF
F1(t) for the one-hop delay considering only the case when the destination node
is OFF :

F1(t) = P11(t) =
2µ2

α1α2
+

(2µ2 − α1µ)e−α1t

α1(α1 − α2)
+

(α2µ− 2µ2)e−α2t

α2(α1 − α2)
. (2)

The probability density function (pdf) for the message delay f1(t) under
the same conditions can be easily derived by first representing its Laplace
transform f̄1(s) = sF̄1(s)−F1(0) and then inverting the transform f̄1(s) to get
the density function:

f1(t) =
(α1µ− 2µ2)e−α1t + (2µ2 − α2µ)e−α2t

α1 − α2
. (3)

Thus, we denote D1(t) to be the probability that the message has been
delivered by time t under the condition that the destination node may or may
not be OFF; that is, we represent the CDF of the 1-hop case as:

D1(t) = Pr(∆tm < t) = Pr(ON) + Pr(OFF ) × F1(t) , (4)

where the message is delivered instantaneously with probability Pr(ON) and
in accordance with the special case CDF denoted by F1(t) with probability
Pr(OFF ). In Fig. 4a, we see the plots of the CDFs derived from Eq. 4. We
can use the CDF to determine the expected message delay over a single hop as
E[∆tm] =

∫∞
0

1−D1(t)dt = λ2+2λµ
2µ2(λ+µ) .

4 Store and Forward Messaging on Multi-Hop Paths

Now, consider multiple narcoleptic philosophers sitting in the same row of an
auditorium. The philosopher sitting on one end of the row suddenly has a

1We loosely follow the derivation of time-to-failure in the “two-component parallel-
redundant system with a single repair facility of rate µ” discussed in [4].
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Figure 3: Three Nodes in a Path Topology

brilliant insight and wants to communicate his idea to his colleagues. The
philosopher quietly shares his insight with his immediate neighbor as soon as
both are awake. On receiving the information, each neighbor, in turn, quietly
communicates the idea with to next neighbor as soon as both are awake. How
long will it take to communicate this idea to the philosopher sitting at the
opposite end of the row? In other words, what is the end-to-end delay of the
message?

The message propagates through the path topology from the source node
to the destination node one hop at a time whenever two adjacent nodes are
both ON and exactly one of the two nodes “has” a copy of the message. The
message is delivered when the destination node is ON and its sole neighbor is
both ON and has a copy of the message.

4.1 The 2-Hop Case

We extend our model to a path with two hops as represented in Fig. 3 where
Node S is the source node, Node D is the destination node, and Node I is an
intermediate node. While ON, Node S generates the message and when both
Node S and Node I are ON, then the message propagates to Node I. Once
Node I has the message and is simultaneously ON with Node D, the message
can then be successfully delivered.

To represent the distribution of the end-to-end message delay within this
system, we need to account for three cases: (1) all nodes are ON and the mes-
sage is transmitted instantaneously; (2) exactly one of the two hops happens
instantaneously; or (3) there is delay at both hops.

For Case (1), the delay is zero. For Case (2), the time delay is represented
by Eqn. 3. For Case (3), the delay is the sum of the two independent random
variables drawn from the distribution of the one-hop case. The density function
is, thus, the convolution of Eq. 3 with itself; that is, f2(t) = f1(t) ∗ f1(t). The
CDF is calculated by integrating f2(t) to give us F2(t).

The CDF for the full system is the sum of the probability of each state
occurring times the delay that each particular state would incur: Thus, the
CDF D2(t) can be directly derived to be:

D2(t) = Pr(ON)2 + 2Pr(ON)Pr(OFF ) × F1(t) + Pr(OFF )2 × F2(t) . (5)

In Fig. 4b, we plot Eq. 5 under the same conditions as before but across two
hops instead of one.
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(b) Two-hop Case

Figure 4: Pr(∆tm < t) on one and two hops, for varying λ and µ

4.2 Path Topologies with More than Three Nodes

Progressing from the one-hop case to the two-hop case, we see the emergence
of the pattern for the n-hop case. We need to define the density function for
each case of the message being delayed at 0, 1, 2, ... n nodes. As such, we
define the following recurrence relation:

fk(t) =

1 for k = 0
f1(t) for k = 1
fk−1(t) ∗ f1(t) for k ≥ 2

where k is the number of hops that incur a delay. So when k = 0, the message
travels from source node to destination node instantaneously. If delay occurs
on a single hop, then Eq. 3 is the density function of the delay. For k ≥ 2,
the repeated convolution with f1(t) produces the density function for non-zero
delay occuring over exactly k hops (with no delay over n− k hops). Likewise,
Fk(t) =

∫∞
0
fk(t)dt to give us the cumulative density over k hops.

The resulting CDF Dn(t) for the n-hop delay then naturally follows to be:

Dn(t) =
n∑
k=0

(
n

k

)
Pr(ON)n−kPr(OFF )kFk(t) . (6)

The value of Dn(t) in Eq. 6 gives the probability that the message has traversed
n hops at time t. The resulting expected message end-to-end delay is the sum
of n single-hop expectations, or E[∆tm] = n× λ2+2λµ

2µ2(λ+µ) .

5 Conclusion and Future Work

In this paper, we presented the probability distribution for a message traveling
from a source node to a destination node along intermediate nodes within a
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sequential path in which the message can only be transmitted when: (1) one
of two adjacent nodes possesses the message and the other does not; and (2)
both nodes are available for communication.

In the sequel, we will extend the distribution model to network topologies
more complex than the path topology examined in this paper. Also, we will
look for real-world examples and compare the distributions generated by the
real-world examples with our distribution model.
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Abstract

The increasing dependency on digital technology has made the con-
cept of data security an important concern. Not only how information
is accessed, but also where and when have become important considera-
tions in cyber-security. Certain situations exist where it is necessary to
restrict access based on time and location. An example is a policy for a
medical institution where doctors can only access patient records at hos-
pitals during their shifts. The Generalized Spatio-Temporal Role-Based
Access Control model (GSTRBAC) determines users’ access to resources
based on such information. This paper describes a software architecture
and its current implementation of the GSTRBAC model.

1 Introduction

Modern society has evolved quickly with the advent of the Internet and elec-
tronic resources. This has created a shift in terms of how companies, gov-
ernments, and organizations conduct their business and access and use their
resources. However, this new method of resource access has created new ways
for attackers to gain access to confidential resources. According to a recent
study, there had been at least 5,183 breaches, exposing 7.9 billion records in
2019 alone [5]. Such breaches pose a significant challenge to society.

A potential cause of the rise in breaches is the increased use of mobile ap-
plications with weak security measures. Nowadays, people use their mobile
devices to gain access to governmental and business services. Traditionally, to
access such services, the users’ requests need to be authenticated and autho-
rized.
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Figure 1: The effect of location and time on resource access.

The current authorization methods are commonly based on the use of the
role-based access control (RBAC) model [8]. RBAC uses the users’ credentials
(based on their roles in an organization) to determine access to resources.
However, there are applications (e.g., the telemedicine application iMediK [6])
that require more than standard users’ credentials (i.e, the factors of time and
location). Consider Figure 1 for an illustration of such a system. In such
a system, access control policies state that doctors can only access patients’
records when they are in the hospital and during their shift; otherwise, they
should be denied.

The RBAC model lacks support for time and location constraints. To-
wards this end, researchers have developed new models to accommodate spatio-
temporal requirements [2, 4, 7, 9]. The Generalized Spatio-Temporal Role-
Based Access Control model (GSTRBAC) is an extension of RBAC [1] that
integrates time and location into authorization decisions.

In this paper, we discuss the progress of an undergraduate research project
that aims to provide an implementation of a software system that incorporates
Spatio-temporal data when determining access to resources. The implementa-
tion is based on the abstract GSTRBAC model [1]. We use the Unified Mod-
eling Language (UML) [3] (the standard modeling language in the software
industry) to define a software architecture of a system implementing GSTR-
BAC policies. Additionally, we discuss our implementation of the architecture
using the C# programming language. The result of this project is a system
that demonstrates the feasibility of GSTRBAC policies.

This paper provides an overview of the GSTRBAC model in Section 2. In
Section 3, we discuss the software architecture and its implementation of the
GSTRBAC system. Section 4 concludes the paper and points out future work.
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Figure 2: The conceptual model of the generalized spatio-temporal RBAC.

2 Overview of GSTRBAC

Figure 2 shows the conceptual model of GSTRBAC [1]. You can see five main
components of the model: Users, Roles, Permissions, STZones, and Spatio-
Temporal constraints. These components represent the set of users, roles,
permissions, spatio-temporal zones, and constraints that exist in a system,
respectively. Users are assigned to roles (denoted by UA) that specify job
positions. Similarly, each role has different permissions assigned to it (denoted
by PA) that determine the access granted to the role and, in turn, to the
users. The separation of user and role assignments eases the management of
access policies. The GSTRBAC model uses spatio-temporal zones (denoted by
STZones) to define where and when a user is assigned to a role or where and
when a permission is accessible. Location data comes in two forms: physical
and logical. A physical location would be a specific point, like GPS coordinates,
while a logical location would be an abstract location like Fort Worth, TX.
Time data is represented by intervals such as 9:00 AM-5:00 PM.

As you can see in Figure 2, users, roles, and permissions have relations with
the set of STZones (i.e., currentzone, rzones, and pzones). These relations
indicate where and when these sets are enabled. For example, the pzones
relation indicates where permissions can be activated. Similarly, roles can
only be assigned to or activated by a user at specific spatio-temporal zones.
The GSTRBAC model also supports advanced access control concepts such
as role hierarchy (denoted by RH) and separation of duty (denoted by SoD)
between roles and permissions. Interested readers of these concepts can find
more information in the GSTRBAC model paper [1].
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Mobile Application

«external system»
GPS

«component»
Authorization Server

Figure 3: Software architecture of the GSTRBAC system.

3 Software Architecture and Implementation

We use the UML component diagram to model the software architecture of
a system implementing the GSTRBAC policies [3]. The architecture is com-
prised of three main components, as seen in Figure 3, in addition to an outside
external GPS component linked to the Mobile Application for location tracking
purposes. These components communicate with each other to determine access
to resources and to distribute them following the steps displayed in Figure 4.

Access to resources will be
terminated when the user
leaves the valid STZone.

[User moved out of valid STZone]opt

If the request is granted, the
Resource Server will send 
resources to the Mobile App.

If a request is denied, the 
Resource Server will terminate 
user access and will not provide
any resources.

[RequestGranted = true]

[RequestGranted = false]

alt

:Authorization Server:Resource Server:Mobile Application

interaction Resource access sequence diagram

revokePrivileges()terminateAccess()

revokePrivileges()
terminateAccess()

Requested Resource

Authorization Token

requestRoleActivation(request)

logout()

authorizationTokenResponse()

requestAuthorizationToken(request)

login(username, password)

Figure 4: UML sequence diagram for resource access communication protocol.

50



Figure 5: Mobile application software subcomponents.

3.1 Mobile Application

The Mobile Application component is the conduit through which the user logs
into the system and requests and accesses resources. After a user logs in,
this module compiles the user’s spatio-temporal data along with the requested
resources and sends them to the Resource Server. Figure 5 shows that the
Mobile Application includes the Request Builder subcomponent to prepare an
access request. The Request Builder compiles STZone data obtained from the
Zone Manager. The Zone Manager collects the user’s time and location data
from the Time Tracker and the Location Tracker. The Location Tracker is
linked to a GPS Client that is designed to receive GPS data from the user’s
device. The request package (created by the Request Builder) is then sent
to the Resource Server component. If access is granted, the Zone Manager
continually checks the STZone data to ensure the user has not moved out of
the authorized zone. If the user is no longer in the authorized zone, the system
terminates access and revokes the user’s privileges to the required resources,
as shown in Figure 4.

The Mobile Application currently consists of the main component class
named MobileAppClient integrated with a graphical user interface (GUI) ap-
plication implemented using a Xamarin Form framework to build a mobile
application for Android and iOS. The MobileAppClient class includes the sub-
components shown in Figure 5. The subcomponents are further refined and
implemented by smaller subcomponents (not shown in the figure). The Xam-
arin application GUI consists of many classes to demonstrate the functionality
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(a) Login window. (b) Request window.

Figure 6: Android mobile application user-interface.

of the mobile client from the users’ perspective. Figure 6 displays the current
Xamarin Android handset application. Users enter their credentials to log in
and select a role, an activity to perform, and a resource to request. The re-
quest is then packaged as a serialized object and sent to the Resource Server
through a network socket. The current Mobile Application has a full imple-
mentation of the subcomponents, except for the GPS Client that has not been
fully implemented.

Note that to demonstrate the feasibility of the approach without the need
to physically move around different STZones, the current application allows
the user to select a current location and time. These parameters should be
fetched directly by the mobile application itself, not supplied by the user. The
application is tamper-proof and it periodically should fetch the location and
the time of the user using the current time of the system and the GPS client.
This ensures that the correct location and time are being reported by the
application and can not be spoofed.

3.2 Resource Server

The Resource Server is the intermediary server between the Mobile Application
and Authorization Server components, as seen in Figure 3. Figure 7 shows the
internal subcomponents of the Resource Server. When a user sends a login mes-
sage, it includes the user’s credentials in the request. The Credential Evaluator
is an authentication service that validates users’ credentials by comparing them
with stored credentials in the Resource Database. If the credentials are vali-
dated, the system proceeds to the authorization phase; otherwise, the request
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Figure 7: Resource server software subcomponents.

is denied.

The Authorization Requester requests an authorization token (from the
Authorization Server) indicating if the Resource Server is allowed to provide
the requested resources to the user. This token contains information regarding
the user, its roles, allowed permissions, and the spatio-temporal zone. While
this token is active, the Resource Provider subcomponent provides access to
the requested resources by fetching it from the Resource Database. This token
remains active until the user logs out, or moves to an invalid spatio-temporal
zone. When a token expires, the Resource Server requests the updated spatio-
temporal data from the Mobile Application component to request a new token
from the Authorization Server component. If the token is granted again, the
user continues to have access to the requested resources without interruption.
If the token is denied, however, the resource access is immediately revoked from
the user, as shown in Figure 4.

The current Resource Server has a full implementation of the four subcom-
ponents classes. As shown in Figure 7, these classes are the Credential Eval-
uator, Resource Provider, Authorization Requester, and Resource Database.
Credential Evaluator is responsible for the verification of user credentials like
username and password, though it does not check the spatio-temporal zone of
the user. The class Authorization Requester prepares and sends a request to
the Authorization Server to request an authorization token. Finally, the Re-
source Provider class examines what activity and resource the user has selected
and requests the appropriate resources from the Resource Database to send to
the user, assuming that a token has been granted by the Authorization Server.
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Figure 8: Authorization server software subcomponents.

3.3 Authorization Server

Figure 8 shows the Authorization Server subcomponents that are responsi-
ble for policy evaluation and token generation. The Policy Checker receives
STZone data from the Resource Server and then interprets it by sending it
to Zone Identifier, a subcomponent of Policy Checker. Zone Identifier checks
the Authorization Database to see if the STZone of the user is authorized to
access the requested resources. The Authorization Database, which stores ac-
cess control policies for the model, is consulted to determine access. Based
on the authorization result, the Authorization Provider subcomponent then
distributes an authorization-token to the Resource Server. The Authorization
Server subcomponents are fully implemented, in addition to a separate web
application for administering the authorization database.

4 Conclusion

In this paper, we reported the results of an undergraduate research project in
which we created a software architecture and its implementation of the GSTR-
BACmodel. The GSTRBACmodel is an authorization technique reliant on the
factors of space and time. We created the various components of the architec-
ture to ensure that resources remain secure while adhering to spatio-temporal
constraints. The current implementation shows how spatio-temporal access
constraints can be integrated with a software system to achieve a higher level
of authorization. Future work will involve enhancing the quality of the soft-
ware by adding features related to different quality attributes such as usability,
reliability, and security.
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Abstract

The ultimate objectives of all the various facets of computing are
about solving real–world problems to obtain the best (optimum, when-
ever possible) solutions, using minimum computing resources. Use of
appropriate Data Structures and Algorithms is at the core of the above
endeavor. Students and professionals in the Computing disciplines (Com-
puter Science, Computer Engineering, Data Science, Information Sys-
tems, Artificial Intelligence, etc.) need to have a good grasp of algorith-
mic techniques and algorithmic thinking skills in order to effectively solve
information–rich, information–driven, real–world and societal problems.
Transforming a given problem to another known problem, for which a
solution already exists, is an important skillset. Problem transformation
skills are known to augment algorithmic thinking (based on several years
of teaching experience), and are important and useful for students and
professionals alike. This paper presents several problem transformation
examples. These are expected to enhance the effectiveness of algorithmic
thinking, problem-solving, and algorithm development.

1 Introduction

Algorithms are at the heart of all computing. In the increasingly informa-
tion and computation driven world, a good grasp of algorithmic techniques is

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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extremely important for the development of elegant and efficient solutions to
problems in various domains.

Also, algorithmic thinking is considered one of the 21st century skills and
is important across several disciplines. Students and professionals in the Com-
puting disciplines (Computer Science, Computer Engineering, Data Science,
Information Systems, Artificial Intelligence, etc.) need to have algorithmic
thinking and problem–solving skills for effectively solving information–rich, in-
formation–driven, real–world and societal problems. Even for technical profes-
sionals from other disciplines, it is beneficial to have a good grasp of algorithmic
techniques, which they can apply effectively to solve problems in their chosen
domains of specializations.

The term computational thinking was introduced in [6] where computa-
tional thinking has been described as consisting of a variety of elements drawn
from Computer Science. Among other things, it involves solving problems,
designing systems, reformulating a seemingly difficult problem into one we
know how to solve, thinking recursively, using abstraction and decomposition,
choosing an appropriate representation for a problem or modeling the relevant
aspects of a problem to make it tractable, using heuristic reasoning to discover
a solution, and several others. A variant, algorithmic thinking consists of key
abilities that can be learned independently from programming. It is one of the
required key abilities in Computing/Informatics. In [2], it has been shown that
algorithmic thinking can be developed independently from learning program-
ming, by the use of problems that may not be easy to solve, but have an easily
understandable problem definition [2].

There have been several novel efforts in the development of techniques to
facilitate and enhance algorithmic thinking. For example, there have been
several examples of work in the areas of teaching computational/algorithmic
thinking and programming without the use of computers, but by several pa-
per–and–pencil methods and/or hands-on gadgets/tactile methods. A major
aspect of the Australian Informatics Competition (AIC), which has a core fo-
cus on algorithms, is a pen–and–paper event, which is described in [1]. A new
technique for implementing educational programming languages using tangible
interface technology, which makes use of inexpensive and durable parts with no
embedded electronics or power supplies, is described in [3]. Several hands–on
gadgets (primarily made of wood / cardboard) which have been developed to
facilitate novices in programming and computing to improve the comprehen-
sion of a few representative algorithms, and which serve as stepping stones to
algorithmic thinking and programming are presented in [4, 5]. These gadgets
are designed around several classical problems such as 0/1 knapsack problem,
2D packing problem, sorting, towers of Hanoi problem, etc. These gadgets also
act as motivations for persons who may not have mathematical or computing
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background, but are interested in problem solving and developing algorithms.
Informal qualitative feedback has shown the effectiveness of the hands–on gad-
gets for the beginners, in facilitating a good understanding of the problems,
and systematic thinking in solving the problems.

Based on several years of teaching algorithm design courses, and having
experimented with several techniques to enhance the effectiveness of teaching
and learning algorithms, we have identified some techniques which have been
found to be effective in algorithmic thinking. One of the main themes of all
of these techniques is the use of ‘non–linearity’ during teaching and learning.
These provide opportunities for thinking in multiple ways and facilitate deeper
understanding of the problem and the solution technique. Note that the term
‘non–linearity’ is used in an informal sense. It is meant to highlight the use of
techniques, not commonly used in traditional lectures where straight–forward
delivery of content with concepts and examples is the norm. These techniques
facilitate viewing problems and thinking about solutions from different angles,
and to make connections between seemingly different problems, that share a
common solution structure.

Some of the components of the non–linear mode of teaching/content deliv-
ery are: (a) development of interesting/useful questions from data/facts; (b)
development of counterexamples; (c) making connections between problems
with similar ‘computational’ structures; (d) problem transformation to make
use of existing computational elements/gadgets; etc. In this paper, we only
focus on the last technique – making use of predefined (pre-existing) compu-
tational elements/gadgets, along with appropriate transformation of the prob-
lems.

2 Problem Transformation

Problem transformation has been a well–known technique in engineering which
makes the understanding of the problem, and the solution development much
easier / efficient than in the original domain of the problem. There are nu-
merous transformation techniques. Just to give a couple of examples, Laplace
transformation (from the time domain to the frequency domain) transforms
differential equations into algebraic equations, and convolutions into multipli-
cations. In signal processing, Discrete Fourier Transform (DFT) is used to
transform time domain signal to frequency domain, which makes several op-
erations, including noise removal, easier. Discrete Cosine Transform (DCT)
is used to transform grey scale / colors of the pixels to (spatial) frequencies
in image compression. In the multiplication of (large) polynomials, the coef-
ficient vector is transformed to point-value representation using Fast Fourier
Transform (FFT), which simplifies the computation enormously.
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In Engineering and Computing disciplines, solutions to numerous problems
have been developed and are continuously improved. For a given problem, in-
stead of solving it from scratch, a better option would be to identify if solution
to this or similar problem is already available. In many practical scenarios,
transforming a given problem to a similar problem for which (an elegant) so-
lution is already available would be beneficial in terms of time, effort, and cost
savings. Thus, it is worthwhile to evaluate the feasibility of transforming a
problem in order to make use of existing solution to the transformed problem,
rather than jumping into development of solution from scratch.

2.1 Building algorithms using predefined computing blocks

One of the key skills in ‘building’ algorithms for several applications is not to
start from scratch, but to use known and well–tested, pre-existing gadgets /
computing elements / components / blocks, consisting of function, subprogram,
software module, design pattern, or even specialized hardware (any combina-
tions of them) in meaningful ways to obtain the solution to the problem. This
requires (a) skills in transforming the original problem in such a way that the
pre-existing computing elements could be used, and (b) for choosing the right
set of blocks and their combinations. This is somewhat in spirit to the use of
design patterns in software engineering. A design pattern provides a general
reusable solution for the common problems occurring in software design. The
patterns typically show relationships and interactions between classes or ob-
jects. Their use speeds up the development process by the use of well tested,
proven development/design paradigm.

In order to use pre-existing computation elements, the problem needs to
be transformed such that it could be given as the expected input to the pre-
existing computation element(s). The solution produced by the pre-exiting
computation element is subjected to an inverse transformation to obtain the
solution to the original problem. An overview of the process is shown in Figure
1.

Figure 1: Problem transformation in order to use existing computation
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This approach saves tremendous amounts of time, effort, and cost, since the
solution is not developed from scratch, rather is composed of using already ex-
isting computing blocks. The cost of transformation and using the pre-existing
computation element must be lower than the cost of solving the problem from
scratch, which is usually the case in many cases.

3 Examples of use of predefined computing blocks

In this section, we present descriptions of a few problems, the descriptions of
the computing blocks available, and the task of problem transformation and
using/combining the available computing blocks to solve the given problem.

3.1 Interval overlap detection

The following gadgets / “computation units” in Figure 2 are already available.
The “Inside Interval” gadget takes a point and an interval as inputs and outputs
a Yes (No) depending on whether the point is inside the interval (or not). The
AND and OR blocks perform the standard logical operations. An interval is
a tuple (Si, Fi), where Si and Fi are real numbers (Si < Fi,) representing the
starting and ending points of the interval (temporal or spatial), and a point is
a real number.

Figure 2: Gadgets for checking point containment in interval and elementary
logic operations

Using only these existing (predefined) components, it is required to solve
the interval overlap problem, i.e., to determine whether two intervals (Sk, Fk)
and (SL, FL) overlap or not. One may use multiple copies of the gadgets, but
it is desirable to use the minimum number possible.

It must be observed that for two intervals to overlap, at least one of the
end points of one interval (say K) must be contained inside the other interval
(say L). This logic is ‘implemented’ using combinations of the above gadgets
(Figure 3).

3.2 Use of a “partition” gadget

Suppose a gadget (Figure 4) is available which takes as input any array A[L..R]
of numbers, and partitions A and returns the index (new position of) ‘s’ of P,
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Figure 3: Using pre–existing gadgets for checking interval overlap

the pivot element A[L]. Note that after partition, all elements to the left of
index ‘s’ are less than A[L] and all the elements to the right of ‘s’ are greater
than or equal to A[L].

Figure 4: Partition gadget

Finding the number of elements smaller than a given value. Given A[0 ..
N], an array of size N + 1 containing N numbers in A[1] through A[N], and a
number (key) Q, it is required to find the number of elements of A which are
>= Q, using the gadget of Figure 4 just once.

The leftmost element of A, A[L] is set to key Q: A[0] = Q. This array is
then given as input to the “partition” gadget. The number of elements >= Q
is easily seen to be (N – s).

Finding the smallest element. Suppose an array A[0..N–1] is given, and it
is required to find the smallest number in A, using only the gadget of Figure
4.

It is easy to see that, if after the use of the gadget on an input A, the value
of ‘s’ is 0 or 1, then, A[0] must be the smallest element. If not, then use the
gadget repeatedly on part of the array A[0.. s – 1], until s = 0 or 1, and return
A[0]. This sequence of operations is formally stated in the following sequence
of statements, where the repeated use of the gadget is given by the ‘while’ loop.

s = GADGET (A[L..R]);
while (s != 0 OR s != 1) do
R = s – 1;
s = GADGET (A[L..R]);

endwhile;
return A[L];
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3.3 Use of a gadget that locates the minimum and maximum in an
array

Suppose two gadgets (Figure ??) are available – one that takes as input any
array A[L..R] of numbers, and locates and returns the indices i and j of the
minimum and maximum elements in the array, and the other swaps the con-
tents of two memory locations given as inputs. Using only these gadgets, it is
required to sort a given array A[0..N–1] in non–decreasing order.

Figure 5: Gadget for locating minimum and maximum in an array, and gadget
for swapping

By using the gadget once on an input array A[L..R], it is clear that A[i] and
A[j] would be the minimum and maximum values among A[L] to A[R]. Then,
the pairs (A[i], A[L]) and (A[j], A[R]) are swapped using the "Swap" gadget.
After this, A[L] and A[R] will have the smallest and largest of the values among
A[L] to A[R]. The gadget is next used on A[L+1 .. R–1] followed by swapping,
and this is repeated as long as L < R. When the process terminates, the array
A will be sorted. The repeated use of the gadgets is formally stated in the
following sequence of statements.

while (L < R) do
(i,j) = GADGET(A[L..R]);
Swap (A[L], A[i]);
Swap (A[R], A[j]);
L = L + 1; R = R – 1;

endwhile

3.4 Use of a gadget producing three partitions

The gadget (Figure 6) takes as input any array A[L..R] of numbers, and pro-
duces three partitions. It locates and returns the indices P and Q of A such
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that (a) all elements to the left of P are < X, (b) all elements A[P] to A[Q]
(inclusive) are equal to X, and (c) all elements to the right of Q are < X (where
X = A[L], and is referred to as the pivot). Using this gadget repeatedly, it is
required to sort a given array A[0 .. N–1] in non–decreasing order.

Figure 6: Gadget that produces three partitions

Note that after using the gadget once, the elements A[P] to A[Q] (inclusive)
are in their final positions in the final sorted array. Subsequently, the gadget
needs to be applied to the two partitions A[L .. P–1] and A[Q+1 .. R],
repeatedly as long as P > L and Q < R. The repeated use of this gadget as
described is captured in the following sequence of statements.

SORT_WITH_GADGET (A[L..R])
begin
if (L == R)return;
(P, Q) = Partition (A[L..R]);
SORT_WITH_GADGET (A[L..P-1]);
SORT_WITH_GADGET (A[Q+1..R]);

end

3.5 Use of a gadget that reverses part of a given array

Suppose a gadget or ‘computation box’ (Figure 7) is available, which takes as
input an array A and two indices i and j (i <= j) and reverses the elements of
A in the range i to j. The task is to use the gadget and perform left rotation
by K positions of a given input array A[1 .. N].

Figure 7: Gadget which reverse the input

Note that after rotation by left by K positions, the first element of the
original array will be at index (N-K+1) MOD N, the second element of the
original array at index (N-K+2) MOD N, etc. To accomplish this, the gadget
can be used a minimum of three times: (i) first reverse the elements in the
index range (1, K), (ii) then reverse the elements in the index range (K+1,
N), and (iii) lastly, reverse the elements in the range (1, N). This can easily
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be verified by writing out the indices after each step. The following sequence
of gadget use with the indices shown will accomplish the task. The following
sequence of gadget use with the indices shown will accomplish the task.

Reverse (A[1..K]);
Reverse (A[K+1..N]);
Reverse (A[1..N]);

3.6 Use of a gadget that computes the maximum matching in a
given graph

Suppose a gadget ‘computation box’ (Figure 8) is available, which takes a
connected graph as input, then computes and outputs the maximum matching
in the graph. Note that a matching in a graph G = (V, E) is a set of all edges
such that no two edges in the set are incident on a common vertex.

Figure 8: Gadget for computing the maximum matching in a given graph

Domino tiling. Given an N x N ‘crossword grid’ (Figure 9), it is required
to determine if it can be tiled with at least K (1 x 2 sized) dominos, using only
the gadget of Figure 8.

Figure 9: Crossword grid

Transform the grid into a graph where each empty cell is a vertex, and
an edge between two adjacent empty cells. Supply this graph as input to the
gadget to find the maximum matching, and check to see if K <= |M|, where
M is Gadget’s output, which is the maximum matching (set of edges).
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International relief effort. An international relief effort is being organized
for a disaster struck area. Each person can speak more than one language.
It is required to form the maximum number of 2–person teams from out of
N applicants such that every pair in every teams speaks a common language.
This needs to be determined using only the gadget of Figure 8.

Build the graph G where the vertices are the persons. Add an edge between
vertices i and j if they speak a common language. The problem then becomes
one of finding the maximum cardinality matching in this graph. Supply G as
input to the gadget of Figure 8, and the output would be the required solution.

4 Conclusions
Algorithmic thinking and problem solving is extremely important for students
and professionals in the Computing disciplines (Computer Science, Computer
Engineering, Data Science, Information Systems, Artificial Intelligence, etc.).
Problem transformation skills are in important part of algorithmic thinking.
Problem transformation techniques are practical and save time, effort, and cost
in many scenarios by making use of pre-existing computational units. This
paper presented some representative examples of making use of existing com-
putational elements/gadgets with appropriate problem transformation which
facilitate enhancement of algorithmic thinking skills.
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Abstract

Introductory computer programming is a challenging course for many
students, demonstrating higher withdrawal and failure rates. This article
discusses a Bottom-up teaching approach that reverses the traditional
teaching method in introduction-level computer programming (CS1).
This approach consists of a series of in-class activities. An activity starts
with a full computer program that demonstrates the definitive topics the
instructor desires to introduce - instead of introducing detached multiple
topics that they will be assembling later on. This article enumerates a
sequence of in-class activities along with a few specific activities. The
students’ performance in CS1 class and next-level programming (CS2)
shows this approach’s effectiveness. Transformation into the set up does
not require additional time nor resources from instructors, making this
is scalable on the class capacity.

1 Introduction

Computer Programming in Computer Science Degree Programs is undoubtedly
an essential course for the degree. On the other hand, most computer science
undergraduates find programming to be one of the most challenging courses in
their degree path due to rigid syntax, unfamiliar structure, and time spent to
produce a simple output, for example [3].

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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Due to this challenging nature of programming, lower-level programming
courses experience higher withdrawal and failure rates, leading to lower reten-
tion rates [1]. The statistics show that the first-year students who withdraw
from their classes are significantly less likely to persist to a degree [1]. The
consequences of higher withdrawal and failure rates impact many parties of a
university. Some of which include the students (waste of money and time),
the department (upper-level course cancellations due to less enrollment), and
eventually, the University (higher average time to graduate and lower student
retention) [3, 13]. These consequences and the challenges have developed the
scholars’ research interest in Computer Programming Teaching and Learning.

One typical teaching method for computer programming, named the top-
down approach in this article, introduces programming concepts one-by-one
and then exercises several examples on the concept. Finally, writing a full
program that exercises the topics. However, these full programs require many
concepts to be taught to understand each piece of the program. Thus, it
requires several topics to be covered and a significant amount of class meeting
time before going for a full programming assignment.

The teaching technique proposed in this article is named the bottom-up
approach. To make programming more enjoyable and understandable, it in-
troduces bite-size topics in a full program. The full programs are incomplete,
and the students will be completing the programs by filling in the blanks as
they learn the new concepts; these activities will be called in-class-activities
(ICA’s). The instructor would introduce each concept centering to the ICA.
The instructor expands the discussion on specific topics with more examples
and the topic’s technical background accordingly.

With this bottom-up approach, the students get a broader view of the con-
cept and its application with the full program first. Nevertheless, the students’
concentration should only be on new topics. This approach helps students
grasp the lesson’s essence by separating other possible concerns/distractions,
such as rigid syntax and unfamiliar structure, from students’ minds, referred
to in [3]. After presenting the concepts parallel to ICA’s, complex take-home
assignments will improve their logical thinking and analytical skills. As a sum-
mary: this work presents:

A Novel Pedagogical method: This method is different from the most
popular techniques we see in the literature (presented in Section 2)

A list of example ICAs: Ten ICAs are presented with selected in detailed
versions.

A Comparison of Student Performance: The student performance is
presented that shows the influence of a strong foundation to be successful in
subsequent courses.

The organization of the paper is as follows. The article continues with the
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work related to teaching introductory level programming in Section 2. Section
3 discusses the procedure followed in this project. Section 4 discusses ten
selected ICA’s with some tangible examples. Section 5 presents the results and
Section 6 discusses advantages and issues of this method and the future work.

2 Related Work

It is a common understanding that learning programming is challenging. Among
the many reasons for its challenging nature, some of them include rigid syn-
tax, unfamiliar structure, unsuitable learning styles, lack of motivation, and
need for multiple skills and knowledge [3, 9]. The educators try out different
strategies to make learning exciting, fun and to improve retention. This section
addresses different strategies experimented with to achieve the objectives men-
tioned above. Some such strategies that teachers have adopted are introducing
active learning approaches, teaching in computer labs, class time assignment,
having mandatory lab class, flipped classroom, group assignments, 2-stage as-
signment submissions [5, 14, 2, 18, 6, 17]. Syeda et al. have studied the class-
room setup (active learning classroom vs. traditional lecture hall) on student
performance [15]. Some other experiments consider using other tools such as
visual aided programming languages (e.g., Alice and Scratch [11]), game-based
approaches [16], different applications (e.g., Mind mapping software [10]). In
addition to the above strategies, some researchers introduce different modeling
approaches [12] to teach programming, especially object-oriented concepts.

Active learning approaches would be useful in learning as, in most cases,
the students get a chance to apply their critical thinking. However, it still
needs instructors’ supervision and guidance for struggling students, making it
less practical for large class sizes. The proposed method’s advantage is that it
would scale up with the class size because the instructions with this method
are straightforward, and no additional human resources are needed.

Alen et al. [4], and Dawar [7] have experimented with approaches similar
to the one proposing in this article. They have named their approach Many
Small Programs (MSP) and An Assignment A Day (AAAD), respectively. Both
works see the advantage of breaking down the big-scale assignments into smaller
ones. Like our motivation, they also believe that big-scale assignments may
require students to complete several interconnected parts and tend to have
lots of text to explain before the assignment is completed. Nevertheless, one
significant difference in our proposed approach is that it uses these programs
as in-class activities, whereas they use them in assignments. The simpleness
and the bite-size granularity of the ICAs better fit in introducing the text
rather than assignments. Another difference is that ICAs do not require heavy
grading. In contrast, assignments in [4] and [7] do, because it is a teacher-
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guided atmosphere from which students’ proficiency should not be evaluated;
the intention of these activities was not to assess them, in the first place.
However, the students can be asked to submit ICAs for zero-or-all grading to
promote students’ active participation, which would not need much effort or
time to grade.

3 Methodology

Class Setup

The project 1 explained here was piloted in two sections of introductory level
Computer Programming classes (CS1’s) in Fall 2019. The course covers the
first seven chapters of [8]; the next stage programming course, CS2, covers the
remaining chapters of the textbook; CS1 is offered three days a week, each for
50 mins, the class capacity is 20 students, and, in exceptional cases, it would
go up to 25. Full-time or part-time faculty teach the classes, and no class-
assistants are available for neither teaching nor grading. The classes are solely
lecture-classes, and no lab class is associated 2. In the remaining weeks, the
students will be completing the homework assignments on their own.

3.1 Project Design

ICAs exercise different topics that the instructor plan to cover for the day. The
number of ICA’s could depend on the instructor. Each ICA is assembled into
a handout which composes the activity number, objective, assignment, and, in
most cases, an outline of the program (see Figure 1); note that this method
does not expect any prior student preparation like in flipped classrooms.

The outline helps in multiple ways. One is that students get a comprehen-
sive picture of the application of the topic (although some topics have not been
introduced yet) with the outline.

Student focus can be narrowed down to the new topics only (other known
and unknown concepts are not focused on). Class time can be utilized for a
productive conversation of the new topics (but not the other related concepts)
and clear students’ concerns, reinforce the previously known topics and de-
emphasize the non-introduced topics.

The programs provided in these activities are intentionally made simple
to make it easier to follow and reduce the assignment’s information gathering

1This research was reviewed and determined to be exempt by the IRB at Webster Uni-
versity

2On the very first day, however, the students will be working on a HelloWorld program
in a lab to make them familiarize with the institutional computer facilities and the IDE, for
example.
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Figure 1: In Class Activity 1 (File output)

time. ICA’s composed of two sub-activities: filling in blanks of a program and
rewriting the whole program on a separate paper or typing it in Visual Studio
or both. Each part has its learning outcomes. The first one is to teach them
the topic-specific content, whereas the second sub-activity is to practice the
concept’s application in a full program. To enforce these learning objectives,
optionally - but advisably-, the instructor could make students submit the
second part of the activity for points (The authors accredited those points
for class participation category, which is 5% of the final grade). The grading
could be as lenient as zero-or-nothing grading because it is not necessarily
required logical thinking. Those types of assignments include implementing
a two-player tic-tac-toe game against the computer and generate a two-digit
subtraction worksheet - 4 problems per line and six lines.

4 In-Class Activities

The first activity ICA1 introduces file output (Note that file output was intro-
duced as early as the second week as opposed to the order in the textbook so
that the student can practice it enough before they get to the Functions. If an
instructor does not find this change necessary, he/she could move this activity
to an appropriate place in the list). ICA1 adopts the typical helloWorldcout
program and asks to complete helloWorldfout program in which directs the
output to a file. Figure 1 illustrates the complete view of the activity (in the
remaining samples of ICAs, we only present the program outline). Centering
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on ICA1, the instructor can lead into a meaningful discussion by comparing the
counterparts of the helloWorldcout and helloWorldfout, such as c++ iostream
vs. c++ fstream, c++ cout vs. c++ fout (the file object was named fout to
maintain the comparableness), and the role of c++ std vs. file stream object
and file linking to the object.

ICA2 introduces variable definition, initialization, constant definition, and
mathematical expression; since each concept is easy to digest, they fit fine in
the same ICA.

The next two activities, ICA3 and ICA4, introduce if-else and switch-case,
respectively. Both share the same assignment, which displays the day of the
week in words based on the user given integer. As noted before, the assign-
ment itself is simple, promoting the concentration on the topic. Even though
ICA3 was the first time that the students experience branching, with ICA3,
they experience multi-branched if- else if statements. This activity renovates
the standard order of presenting the if branching statement to students. This
topic, typically, approaches a step-by-step expansion of the if-statement, start-
ing with only one branch and eventually reaches multi-branched if- else if.
ICA3, instead, starts with multi-branched if- statement and then, teaches its
variations - one branch (if branch) and two branches (both if- else and if- else
if)- which is easier for students to understand.

The next exciting set of activities is on functions. A lesson plan with
ICA’s for functions would take a minimum of four in-class activities: reviewing
system-defined function-calls (ICA5), introducing user-defined function-calls
(ICA6), introducing function definitions (ICA7), and designing and writing a
FULL program with functions (ICA8).

Although the students have experienced system-defined and function-calls,
some students demonstrate a deficiency in their correspondence of user-defined
functions. For example, some students are under the impression that the
parameter and argument names should be the same even though they used
system-defined functions with zero information about the parameter names.
Another set of students cannot think about invoking a user-defined function
several times to get a similar effect with different arguments. They have done
with system-defined functions very often. ICA5 is to clear these common mis-
conceptions using system-defined functions.

ICA6 lets students practice function calls furthermore. This activity em-
ploys user-defined functions. It provides prototypes of all the functions required
(see Figure 2), and the students will be writing the function calls to get the
output shown in Figure 2. ICA6 is an excellent position to emphasize the role
of include libraries used in ICA5, such as c++ #include <cmath>, vs. the
prototypes in ICA6. It can again be reinforced in ICA7 in where the students
will be practicing function definitions.
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Figure 2: In Class Activity 6 (User-defined Function Calls) and It’s Sample
Output

ICA7 is an extension of ICA6. It focuses on function-definitions. It uses
the same programming problem as it was in ICA6. It, however, does provide
a second opportunity to revise function-prototypes and function invoke while
introducing definitions.

ICA8 is also on functions, and in this activity, the students get to work on
a different problem to apply all three aspects of functions from scratch. This
activity does not teach any new concepts; instead, it gives them a chance to
practice what they learned in three preceding activities.

ICA9 and ICA10 are on arrays: one and two dimensional, respectively (Yet,
authors used more ICA’s for arrays which were not reported here due to the
space limitations, for example, ICA’s on partially filled arrays, parallel arrays,
and arrays in functions.). ICA9 and ICA10 demonstrate the array definition,
size declarator, initialization, and traversing through the array in the selected
type of dimension.

5 Results

Here we present the results in terms of the student grades. In this research,
we first report the CS1 grades of the students who experienced the proposed
method. That is two sections of Fall 2019 - 16 and 7 students taught by the
same instructor (we refer this group of students GCS1). The control group
contains the students from the other CS1 sections taught by other instructors.
The instructors teaching methods were not influenced by any means, and the

72



corresponding instructors independently determined those. Figure 3 (a) shows
the grade percentage of the GCS1 and according to that 52% of the students
have got an A grade and 65% of them (A and B grades) move to CS2.

Figure 3: Students CS1 and CS2 grades

We next present the performance of those who took CS2 in Spring 19. We
present the grades of those students in two groups: those who underwent the
Bottom-up Approach CS2A and those who were not (CS2B). It is worth noting
here that CS2A is a subset of GCS1; That is because CS2 is taken only by those
who have a B- or above in CS1, and not all students take CS2 immediate next
semester. Same with (CS2B), meaning that the semester those students took
CS1 could spread into several semesters into the past.

As Figure 3 (b) illustrates, close to 60% and 20% students from CS2A and
CS2B, respectively, have obtained an A grade in CS2. Furthermore, more than
90% of CS2A have got a Pass grade for CS2 whereas that of CS2B is only 74%.
Also, only 51% of CS2B have satisfied the prerequisite for the Data Struc-
tures(DS) course, where as 83% of CS2A have satisfied the DS prerequisites.
These results show that even with the same treatment in CS2, the influence of
a solid foundation in CS1 has lead CS2A to have better grades.

6 Discussion

preparation time:: The ICA’s take a moderate amount of preparation time;
they would not take more time than assignments or tests. One reason for that
is that the assignments in activities could be quite naive, requiring less con-
templation and time. This kind of relaxed preparation is acceptable for the
activities because the main objective of activities is to demonstrate the topics
and not assess their problem-solving capabilities. Another reason is that the in-
structors do not need to develop unique assignments from semester to semester
to maintain academic integrity; instead, the instructor could repeatedly use the
same set of activities.

73



grading: As it was pointed out at a couple of places before, grading these
activities is optional. If an instructor decides to grade to promote students’
active participation, it could be as relaxed as zero-or-nothing grading. This
grading would not require additional grading tools or supplementary grading
assistants.

scale-up: The presented pedagogical method scales up well with the class
size. The primary reason for that is that it is merely a part of the class plan,
requiring no one-on-one teacher attention. Each activity has clear directions
for the students in the handout, and it only expects students to follow the
instructor-led discussion. Thus, these activities are easy to implement in both
small and large-scale class environments. Also, since ICA’s could solely be
paper-based, it does not require a change in the venue, such as from a lab to
lecture- hall or vice versa. Due to the above reasons, the presented method fits
well with any class-formats.

Issues: One possible issue an educator might face and resolve in this
method is that figuring out the suitable granularity of concepts that one should
be putting in one activity. The educator can decide the right granularity as
the semester goes by based on the student population. Alternatively, the in-
structor could use multiple activities one day if the assignments were designed
with finer granularity.

Future Work: The Authors expect to expand this project in a larger class
set up as a joint work with a different institute.
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Abstract

In his proposal “Constructionism: A New Opportunity for Elemen-
tary Science Education,” Seymour Papert starts with the constructivist
theory viewpoint that learning is building knowledge rather than receiv-
ing a transmission of knowledge. He then defines constructionism as
an extension of this theory which includes the learner constructing a
meaningful product. This paper investigates the effect of applying this
viewpoint to the teaching of computer science content via the rigorous
construction of a related software artifact. Specifically, radix represen-
tation concepts and algorithms are taught using the construction of a
change making class. The results show that, with appropriate support,
software construction can greatly enhance student learning in computer
science.

1 Introduction

Computer science students have to a lot to learn. Seymour Papert [3, 4] con-
tended that the act of constructing artifacts can produce deep learning oppor-
tunities in his theory of “constructionism.” diSessa argues that programming
can facilitate learning since the act of programming forces the programmer to
represent their solution in a structured way while providing opportunities for
them to reflect on their thinking [2].

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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This paper asks the question: “Can the act of software construction com-
bined with prior knowledge, rigor, and experiential learning result in certain
indirectly related learning outcomes?” In particular, can the universal knowl-
edge of making change (e.g., the change for 98¢ is 3 quarters, 2 dimes, and
3 pennies) along with rigorous specification (e.g., preconditions and postcon-
ditions, and JUnit test cases) and implementation be leveraged to affect the
learning outcomes for radix representations. All of this takes place in a third
programming course while using experiential learning techniques.

The course proceeded as follows:

1. Instructor introduced the concept of making change and ensured that all
students realized that they already knew how to do it

2. Instructor introduced the instructor-authored ChangeMaker interface;
students helped complete the interface by determining preconditions and
postconditions

3. Instructor distributed several instructor-authored concrete examples of
ChangeMaker behavior; students had to figure out behavior for fifteen
more examples

4. Instructor distributed several instructor-authored JUnit test cases; stu-
dents had to write fifteen more JUnit test cases

5. Students implemented the ChangeMaker interface

6. Instructor introduced the connections between ChangeMaker and radix
representations

7. Instructor assessed radix representation learning outcomes on the final
exam

2 Background

2.1 Radix Representations

Let n be a nonnegative integer and b be an integer that is greater than 1. Then,
for some integer k ≥ 0, n can be uniquely decomposed over the nonnegative
powers of b as follows:

n = rk · bk + rk−1 · bk−1 + rk−2 · bk−2 + · · ·+ r0 · b0, (1)

where 0 < rk < b and 0 ≤ ri < b, for each i ∈ [0, k). The numeral
r′kr
′
k−1r

′
k−2 · · · r′0 is defined to be the representation of n in radix (i.e., base) b,

where r′i is the digit that represents the integer ri, for each i ∈ [0, k).
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For example, with n = 98 and b = 2:

98 = 1 · 26 + 1 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 0 · 20, (2)

Therefore, the radix 2 representation of 98 is 1100010.
There are two commonly taught algorithms for determining the base-b rep-

resentation of n = rk ·bk+rk−1 ·bk−1 +rk−2 ·bk−2 + · · ·+r0 ·b0. The traditional
algorithm determines the coefficients in the order r0 up to rk, while the alter-
native algorithm determines the coefficients in the order rk down to r0.

2.2 Traditional Algorithm and Perspective

The traditional way to teach how to obtain the radix representation of a partic-
ular number often involves the following presentation. Let n be a nonnegative
integer and let b be an integer that is greater than 1. Assume that

n = rk · bk + rk−1 · bk−1 + rk−2 · bk−2 + · · ·+ r0 · b0, (3)

where 0 < rk < b and 0 ≤ ri < b, for each i ∈ [0, k).
The traditional algorithm is based on the following observations:

n%b = (rk · bk + rk−1 · bk−1 + rk−2 · bk−2 + · · ·+ r0 · b0)%b = r0 (4)

and

n/b = (rk · bk + rk−1 · bk−1 + rk−2 · bk−2 + · · ·+ r0 · b0)/b (5)

= rk · bk−1 + rk−1 · bk−2 + rk−2 · bk−3 + · · ·+ r1 · b0, (6)

where ‘/’ above denotes integer division.
So, the following algorithm produces the sequence of integers rk, rk−1,

rk−2, · · · , r0 (and, consequently, determines the sequence of digits r′k, r
′
k−1,

r′k−2, · · · , r′0):

public static List <Integer > getCoefficients(int n, int b)
{

assert n >= 0 : "n = " + n + " < 0!";
assert b > 1 : "b = " + b + " <= 1!";
List <Integer > coefficients = new ArrayList <Integer >();
if(n == 0) // special case
{

int r_0 = 0;
coefficients.add(r_0);

}

int n_prefix = n;
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int i = 0; //for documentation purposes only
boolean existMorePositiveCoefficients = (n_prefix > 0);
while(existMorePositiveCoefficients)
{

int r_i = n_prefix % b;
coefficients.add(0, r_i);
n_prefix = n_prefix/b;
existMorePositiveCoefficients = (n_prefix > 0);
if(existMorePositiveCoefficients) i++;

}
return coefficients;

}

Most computer science students find this algorithm very opaque and pure
memorization is their only chance of success. Moreover, this success is usually
short-lived.

3 Alternative Algorithm and New Perspective

The alternative algorithm is the one that determines the base-b coefficients of
n = rk ·bk+rk−1 ·bk−1+rk−2 ·bk−2+· · ·+r0 ·b0 in the order from rk down to r0.
As mentioned earlier, an important aspect is the new perspective, which helps
students gain and retain a better understanding of radix representations and
their corresponding algorithms. This new perspective requires the introduction
of the concept of a mixed-radix representation.

3.0.1 Mixed-Radix Representations

Let n be a nonnegative integer and let [di : di > 1] be a (potentially finite) list
of integers. Suppose that n can be decomposed over the di, for some integer
k ≥ 0, as follows:

n = rk · dk + rk−1 · dk−1 + rk−2 · dk−2 + · · ·+ r0 · d0, (7)

The numeral r′kr
′
k−1r

′
k−2 · · · r′0 is defined to be a representation of n in mixed-

radix [di], where r′i is the digit that represents ri, for each i ∈ [0, k).
For example, when n = 98 and [di] = [25, 10, 5, 1], n can be decomposed as

follows:
98 = 3 · 25 + 2 · 10 + 0 · 5 + 3 · 1 (8)

Therefore, 3203 is a representation of 97 in the mixed radix [25, 10, 5, 1].
Notice that since 98 = 2 · 25 + 4 · 10 + 1 · 5 + 3 · 1, 2413 also represents 98

and mixed-radix representations are not guaranteed to be unique. Moreover,
notice that n = 3 has no mixed-radix representation over [7, 4], so mixed-radix
representations are not guaranteed to exist.
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3.1 ChangeMaker

A ChangeMaker is an abstraction of a ballpark vendor who, after receiving $20
in payment for an $12.50 order, must return $7.50 in change, using coins, to
the customer. Each ChangeMaker instance has a finite set of coin types, but
an infinite number of coins of each type. In addition, a ChangeMaker must
always make change in a greedy manner. This will be defined precisely below,
but, for now, it can be taken to mean “do not give back two nickels when you
could give back a dime instead.”

3.1.1 ChangeMaker Interface

public interface ChangeMaker {
//part of post:
//for i in [0, rv.size() - 1): rv.get(i) > rv.get(i + 1)
public List <Integer > getDenominations ();

// precondition: left to student
// postcondition: left to student
public boolean canMakeExactChange(int valueInCents);

// precondition: left to student
// postcondition: left to student
//part of pre: canMakeExactChange(valueInCents)
//part of post: valueOfChangeList(rv) == valueInCents
public List <Integer > getExactChange(int valueInCents);

// precondition: left to student
// postcondition: left to student
//part of pre:
// changeList.size() == getDenominations ().size()
public int valueOfChangeList(List <Integer > changeList);

}

Notice that the interface doesn’t have involve the concept of coin, instead,
this has been abstracted up to the concept of denomination. The greedy con-
straint is manifested in the postcondition of the getExactChange() method.
To make the expression of this constraint easier, let [d0, d1, · · · , dk] be the re-
turn value from the method call getDenominations() and let [c0, c1, · · · , ck] be
the return value from the method call getExactChange(n). Then, the greedy
constraint can be expressed as:

di > ci+1 · di+1, for each i ∈ {0, 1, · · · , k − 1} (9)

For example, suppose that m is a ChangeMaker instance such that:

m.getDenominations() = [100, 25, 10, 5, 1] = [d0, d1, d2, d3, d4].
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Then the method call m.getExactChange(98) returns [0, 3, 2, 0, 3] and the
method call m.valueOfChangeList([0, 3, 2, 0, 3]) returns 98. Notice that the
method call m.valueOfChangeList([0, 2, 4, 1, 3]) also returns 98, even though
the list [0, 2, 4, 1, 3] = [c′0, c′1, c′2, c′3, c′4] violates the greedy constraint above
since

25 = d1 ≤ c′2 · d2 = 4 · 10 = 40 (10)

4 Greedy Change Making Algorithm

From experience, every student already knows the correct behavior of the
method getExactChange(). For instance, all students can determine that the
correct greedy change for 98¢ when the denomination list is [100, 25, 10, 5, 1].
Note that the following four inequalities are true:

3 · 25 <= 98 < 4 · 25 (11)

2 · 10 <= 23 < 3 · 10 (12)

0 · 5 <= 3 < 1 · 5 (13)

3 · 1 <= 3 < 4 · 1 (14)

So, greedy change for 98¢ involves exactly 3 quarters, 2 dimes, 0 nickels, and
3 pennies.

4.1 Connection to Radix Representations

Notice that the problem of making greedy change over a generic denomination
list is equivalent to the problem of determining the coefficients in the expansion
of Equation (7) for a mixed radix of [di], where this list is strictly decreasing.
In particular, for any b > 1, the problem of making greedy change over the de-
nominations [bk, bk−1, bk−2, · · · , b0], is equivalent to the problem of determining
the coefficients in the expansion of Equation (1).

For example, consider the following steps to calculate the coefficients in-
volved in the binary representation of the integer 19. First, construct an in-
stance of ChangeMaker such that the denomination list is [25, 24, 23, 22, 21, 20].
Second, make the method call getExactChange(19). This will return the
change list [0, 1, 0, 0, 1, 1], which enumerates the exact coefficients in (1) since
19 = 0 · 25 + 1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20.

81



5 Methodology

Students learn about radix representations and associated algorithms via var-
ious active learning steps. First, students work through straightforward con-
crete change making problem over the “standard U.S. coins” involving Saca-
gaweas, quarters, dimes, nickels and pennies, that is, a denomination list of
[100¢, 25¢, 10¢, 5¢, 1¢]. An example of this work includes: Assuming the stan-
dard U.S. coins, what change should a cashier give back to a customer who
is owed 98¢? Typically, students notice that the [0, 3, 2, 0, 1] case is special
among all change lists with this value and at least one student brings up the
[0, 0, 0, 0, 98] case. At this point, the greedy constraint is organically introduced
and discussed.

Next, students encounter a couple of less straightforward questions, while
still using the standard U.S. coins. For instance, the question of whether
change can be made for 0¢ is discussed. The instructor raises this question if
no student does. The instructor then guides the class to the consensus that
the correct answer is [0, 0, 0, 0, 0]. Another question includes whether greedy
change can be make for −11¢. Students usually propose one of two candidates:

• No, it cannot.

• The change list is [0, 0,−1, 0,−1]

There is always active discussion about the [0, 0,−1, 0,−1] change list candidate
and how such a change list should be interpreted. The instructor guides the
class to consensus that the correct answer is that no change can be made in
this case.

Next, students work on concrete problems (provided by the instructor) in-
volving denomination lists that differ from the U.S. coins. One interesting
problem involves determining whether change can be made for 6¢ over the
denomination list [5, 3] = [d0, d1]. The nuanced, and often surprising, answer
is “No” since the change list of [0, 2] = [c0, c1] violates the greedy constraint
because 5 = d0 ≤ c1 ·d1 = 2 ·3 = 6 (see Inequality (9) above). In addition, test
cases involving the denomination lists of [28, 27, 26, 25, 24, 23, 22, 21, 20] (“trun-
cated binary”) and [83, 82, 81, 80] (“truncated octal”) are introduced; hexadeci-
mal is held in reserve.

At this point, students receive the ChangeMaker interface and several JUnit
test cases to the class. An example test case is shown in the next section.
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5.1 ChangeMaker Test Cases

public void usChangeFor65Cents ()
{

//{100, 25, 10, 5, 1}
Set <Integer > usDenomSet = getUSDenominationSet ();
ChangeMaker cm_STUDENT = getChangeMaker(usDenomSet);
int valueInCents = 65;

boolean actualCanMakeChange =
cm_STUDENT.canMakeChange(valueInCents);

assertTrue("canMakeChange(" + valueInCents + ")
should be true!", actualCanMakeChange);

List <Integer > actualChangeList =
cm_STUDENT.getExactChange(valueInCents);

List <Integer > correctChangeList =
Arrays.asList(new Integer []{0, 2, 1, 1, 0});

assertEquals("Calculated changeList disagrees with
expected!", correctChangeList , actualChangeList);

}

A full class period is dedicated to having each student actively generate the
20 JUnit test cases, which correspond in a one-to-one fashion to their previously
developed concrete examples. Note that this is purely an activity in expressing
these concrete examples as JUnit test cases. Some students finish within the
hour and while others finish outside of class time.

At this point, the students all understand the concept of greedy change
making along with its associated algorithms and most students have a full
set of correct and diverse JUnit test cases. Only after students had achieved a
conceptual understanding of ChangeMaker and were fully equipped with JUnit
test cases were they tasked with the programming assignment that involves
implementing the ChangeMaker interface.

Then, once students finish the programming assignment, they learn that
they already know how to determine the radix representation for any base;
especially base-2, base-8, and, after adding extra digits so that ri = 10 =⇒
r′i = ‘A’, ri = 11 =⇒ r′i = ‘B’, . . . , ri = 15 =⇒ r′i = ‘F’, base-16.

Lastly, the instructor assessed how well students understand radix repre-
sentations and their associated algorithms on the final exam.

6 Discussion

Featuring greedy change making in a sophomore-level programming class has
many benefits. First and foremost, as mentioned above, everyone already un-
derstands how to make change, so there is not a single student who is confused
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about any of the straightforward concrete examples. Students can then focus
on the expression of these concrete examples in terms of method calls and
JUnit test cases. Furthermore, students acquire the ability to self-author a
high-confidence set of JUnit test cases before they begin programming. These
aspects are extremely important to enable a greater amount of active learn-
ing for the rest of the course and their academic career as well. Secondly,
the ChangeMaker concept has just enough complexity and nuance to make a
memorization-based approach unlikely to succeed. The ChangeMaker assign-
ment, paired with concrete examples, and JUnit test cases allow these students
to try such an approach and have the chance to see (via failing test cases) that
they need a different approach. As Boaler [1] points out, students who rely on
memorization are the lowest achieving (math) students in the world.

In the course, the difference between the change lists produced by a “hex-
adecimal” ChangeMaker (i.e., all of the denominations are powers of 16) and the
corresponding hexadecimal representation is emphasized. That is, the change
list [15, 2, 3, 12] is different from “F23C”. From a data type perspective, students
were best served when the hexadecimal representation is typed as a String and
they were able to see that the change list is not the hexadecimal representa-
tion, but, instead, is highly correlated with it. So, students also got to wrestle
with the difference between a value (e.g., rk) and the presentation of that value
(e.g., r′k).

ChangeMaker can be used to implement other unrelated (in the eyes of a
sophomore) concepts, such as certain calendars, playing cards, Roman numer-
als, and, by allowing the left-most denomination to be negative, two’s comple-
ment. This ability to place a single perspective on many disparate concepts
allows students to achieve a significant amount of mental compression, which
as Thurston [5] points out, allows students to recall these concepts quickly and
completely.

This mental compression is also related to one the biggest benefits, which is
the “stickiness” of student learning. As will be seen in the next section, the class
did quite well on final exam, so there is stickiness at the scale of the semester.
Students have reported that when they encounter radix representations in other
classes they think “It’s just ChangeMaker!”

7 Conclusion

Student understanding of all radix representations were assessed at the end
of the semester via seven questions on the final exam. Recall that the
ChangeMaker connection to binary, octal, and hexadecimal was discussed in
the course, however, duodecimal, also known as base-12, was not. In spite of
this, the final exam assessed student knowledge of binary, octal, hexadecimal,
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and duodecimal. In addition, the duodecimal symbols for 10 and 11 devised
by William Dwiggins were used, rather than the symbols ‘A’ and ‘B’. Most
students were not flustered by having to deal with these symbols which they
had never seen before.

The table below reflects the results from two courses containing a total of
42 students and shows very positive student performance. It might be worth
noting that a subpopulation of four students missed most of the questions,
suggesting that once a student understands the ChangeMaker connection for
one radix representation, then they understand it for all. In aggregate, students
scored a grand total of 241 points out of 294 for a rate of around 82% overall.

Question %Correct
What is 3310 in binary? 95%
What is 3310 in octal? 86%
What is 3310 in hexadecimal? 81%
What is 2710 in duodecimal? 83%
What is 15010 in duodecimal? 76%
What is 1212 in decimal? 76%
What is 2712 in decimal? 76%
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Techniques for Effective Teaching and
Learning in the Wake of Transition to
Online Classes Due to COVID-19∗

Conference Tutorial

Srikantia Subramanya
Visiting Assistant Professor

University of Central Oklahoma
ssubramanya@uco.edu

In the wake of the current COVID-19 pandemic, almost all of the higher
educational institutions have transitioned to complete online instruction or
some form of hybrid mode where a subset of students of a class attend classes
in-person with appropriate physical distancing, and the rest of the students are
connected online synchronously. The transition to online mode has resulted in
a sudden and drastic reduction in several facilities and features which were
available in traditional classes such as a large whiteboard, high level of face-to-
face interactions, relatively higher levels of engagement, and longer attention
spans, etc. The best of the instructors in traditional classes have suddenly
found themselves in uncharted online territory. This is especially challenging
in Computer Science courses which contain intricate and complex concepts
and have substantial Mathematical content. The online mode of instruction
has posed additional challenges in keeping the students motivated, interactive,
focused, and engaged during online lectures. Conventional teaching methods
are not easily translated to the online context in terms of content delivery
and keeping the students engaged. To make up for these, and to keep the
effectiveness and teaching and the learning experience at desirable levels, there
is a dire need for new set of techniques. The proposed workshop discusses a few
techniques for use in online instruction which has been found to be effective
in delivering content and in keeping student interactions and engagement at
desirable levels. Some of the techniques which will be covered in workshop
include:

∗Copyright is held by the author/owner.
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• Making connections to real–world applications

• Having students come up with questions, given facts

• Having students come up with counter examples

• Posing conventional problems with a slight twist

• Use of relevant history / trivia / quotes / etc.

• Having students come up with precise problem statement, based on some
scenarios

• Having students detect (deliberately introduced) errors

• Making connections between different, but related problems

• “Building” algorithms using predefined computing “components”

Although this workshop uses examples related to a particular course in Com-
puter Science, namely Algorithm Design, several of the ideas and concepts
can be easily adapted to other Computer Science courses, and also possibly to
courses in other disciplines. It must be noted that the effectiveness of the tech-
nique discussed here is based on informal feedback and discussions. A detailed
formal study would be a worthy future work.
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Enrich Student Learning Experience by
Building a Cybersecurity Virtual Lab

with Open-Source Tools∗

Conference Tutorial

Jianjun Zheng
Department of Computer Science

Stephen F. Austin State University, Nacogdoches, TX 75962
jeffrey.zheng@sfasu.edu

A lab session is an important component of a successful and effective cy-
bersecurity curriculum in computer science. It gives students the opportunity
to apply the cyber defense knowledge they have learned in the classroom into
practice. Moreover, students in a lab session tend to be more interactive and
engaging and often have a successful and effective learning experience. Course
instructors who teach cybersecurity courses usually rely on textbook authors
or publishers to provide some type of virtual lab. While this approach is conve-
nient and time-efficient, as instructors can focus more on preparing the course,
it has some challenges when adopting this approach.

First of all, it potentially limits the textbook selections for a course be-
cause the course instructors tend to choose a textbook that comes with a lab
option, even when there is a better textbook candidate that lacks a lab op-
tion. Secondly, the assignments in the provided virtual labs are predefined and
instructors do not have the flexibility to modify them if needed. Thirdly, a
textbook with a lab option costs more than a regular textbook and could im-
pose a financial burden on students and even deter some students from taking
the course.

To address the aforementioned challenges, this workshop demonstrates how
to use available open-source tools to create a virtual cybersecurity and network-
ing lab. There is a wide selection of well-known and open-source tools available
that have been used in cybersecurity education and training, and it can give
course instructors full control over the setup of the lab environment to suit
their teaching objectives, without having to be tied with a specific textbook
for the sake of a lab option. Since the lab is built with open-source and free
tools, students will not be financially burdened and will be more willing to take
the course and engage in it when they are given the chance to build the lab
themselves.

∗Copyright is held by the author/owner.
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Play With Trained Hierarchical
Reinforcement Learning Agents in Two

Common Games∗

Conference Tutorial

Chengping Yuan, Mark V. Albert, Daniel McGartland
Jakob Smith, Anthony Solorio

Department of Computer Science & Engineering
University of North Texas

Denton, TX. 76203
chengpingyuan@my.unt.edu, mark.albert@unt.edu

Participants will have an opportunity to learn the basic concepts of rein-
forcement learning. They can engage with a recently developed reinforcement
learning system to play two different games, Connect 4 and Tic-Tac-Toe, with
reinforcement learning agents. The games are hosted on a mobile platform (An-
droid, iOS). Participants can explore tactics of how to play individual games
as well as the strategy of how to bet or withdraw optimally in matches of
multiple games with a variety of opponents. Each game can be set at three
different difficulty levels; both strategic and tactic levels learning have their
own difficulty levels that can be set separately. Participants can learn that
the dual-level learnings are trained with the same algorithm. A quick, broad
overview of reinforcement learning will lead to a summary of how this dual-
level reinforcement learning model differs from standard game-playing models.
The designers of the system are UNT undergraduate and graduate students.
The designers will assist participants in setting up and running the games.
Participants will be able to observe the flexibility and power of reinforcement
learning.

The target audience includes anyone with interest in machine learning. A
workshop like this can stimulate early computer scientist students to pursue
more challenging aspects of machine learning. In particular, it is a stark re-
minder of the power of abstraction as the same reinforcement learning model
explains two levels of decision making for individuals and adapts flexibly to

∗Copyright is held by the author/owner.
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a variety of games. For those students who have taken machine learning, of-
ten exposure to reinforcement learning is limited to one week, with minimal
time to fully demonstrate the capabilities of these systems. The fact that re-
inforcement learning is a large part of what drives human and animal decision
making is often lost by having to cover the technical details of Q-learning or
similar methods in the limited time available. This workshop will also provide
them an opportunity to ask detailed questions on this more advanced rein-
forcement learning strategy and allow them to relate to their exposure in prior
coursework.
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On-ramp to AI: lessons from the
introductory AI course “Software

Development for AI”∗

Conference Tutorial

Ting Xiao1 and Mark V. Albert1
1Department of Computer Science & Engineering

University of North Texas
Denton, TX. 76203

ting.xiao@unt.edu, mark.albert@unt.edu

This workshop will discuss the benefits and lessons learned in a project-
oriented first course in software development. The intended audience for the
workshop is similar to the makeup of the course under discussion - STEM-
oriented students interested in a career in Artificial Intelligence. Much like
learning a foreign language, experiential learning is a necessary component of
learning how to create software, however, students pursuing Artificial Intelli-
gence at the graduate level come from a variety of backgrounds. Students in
the course learned tools and techniques focused on three application areas: 1)
efficient data and model exploration using Jupyter notebooks 2) flexible use
of cloud APIs from AWS, GCP, and Azure, and 3) Mobile/Front-end develop-
ment.

The University of North Texas had the first cohort of Masters in Artifi-
cial Intelligence students in Fall 2020. The inaugural class of approximately
40 students was approximately half professionals in areas of software develop-
ment, one quarter computer science students, and one quarter STEM students
with limited programming experience. However, a project-focused effort led to
sharing of expertise through four separate project periods where students are
required to mix with new students on new projects in each iteration. This led
to 45 different projects with a variety of application domains including 17 in
computer vision, 15 in natural language processing , and 7 in audio processing
including speech and music. Basics of source code management, data struc-
ture, and python were covered with a primer in machine learning for navigating

∗Copyright is held by the author/owner.
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the terminology of AI APIs used. However, the emphasis was on processes in-
cluding web and UI design principles, job ad keyword overviews, and open
source management of both source code and teams so that base principles
were efficiently and effectively put into practice. Participants in the workshop
will hear the variety of project experiences of students building their skills in
software development with a focus on integrating AI frameworks and APIs.
Participants outcomes include a greater awareness of tools and techniques in
developing software and experiential approaches to learning how to become
actively engaged in creating AI-driven software.
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Programming With the Cloud∗

Conference Tutorial

Laurie White
CS Professor Emeritus, Mercer University
Developer Relations Engineer, Google Cloud

Former Program Chair, CCSC:SE
lauriewhite@google.com

While there’s a lot to learn about cloud computing, the cloud can also be
used in classes as fundamental as programming courses with little change to
the material being taught. The cloud can provide a uniform programming
environment for students regardless of the computers they use to access it
remotely. It can provide computing resources beyond what some students may
have on their own computers. And there are even some cloud services that can
be used to make even the simplest programming assignments more interesting.

∗Copyright is held by the author/owner.
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