
The Journal of Computing
Sciences in Colleges

Papers of the 33th Annual CCSC
South Central Conference

April 8th, 2022
The University of Texas at Dallas

Richardson, TX

Baochuan Lu, Editor Bin Peng, Associate Editor
Southwest Baptist University Park University

Bingyang Wei, Regional Editor Mustafa Al-Lail, Regional Editor
Texas Christian University Texas A&M International University

Volume 37, Number 7 April 2022

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners 7

Welcome to the 2022 CCSC South Central Conference 8

Regional Committees — 2022 CCSC South Central Region 9

Reviewers — 2022 CCSC South Central Conference 10

Knowing What It Knows and Asking the Right Questions? An
Effective Approach to Human-Allied AI — Keynote 11

Sriraam Natarajan

Teaching Data Representation Using Real-World Applications 13
Daniel Ray and Mark Terwilliger, University of North Alabama

Motivating the Study of Discrete Structures with Experiments 23
Jose Cordova, University of Louisiana at Monroe

Recruiting Technology Majors through High-Impact Educational
Practices (HIPs) 31

Alana Platt, Anna Land, and Andrew Ciganek, University of Wisconsin-
Whitewater

Closing the Gap: Building Internship Programs for Career Readi-
ness 40

Bilal Shebaro, Jacqueline P. DeMuynck, Charles R. Hauser, Andrea
Holgado, Rebecca S. Thompson, and Paul J. Walter, St. Edward’s Uni-
versity

Teaching Blockchain in Security 48
Bilal Shebaro, St. Edward’s University

Computer Science Fundamentals Open Educational Resource: A
Video-Based Practice to Learning Programming 55

Christian Servin and Nadia Karichev, El Paso Community College

3

Extended Precision Multiplication using a Message Passing In-
terface (MPI) — Tutorial 62

Bill McDaniel and Evan Lemley, University of Central Oklahoma

4

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Karina Assiter, President (2022),
(802)387-7112,
karinaassiter@landmark.edu.
Chris Healy, Vice President (2022),
chris.healy@furman.edu, Computer
Science Department, 3300 Poinsett
Highway Greenville, SC 29613.
Baochuan Lu, Publications Chair
(2024), (417)328-1676, blu@sbuniv.edu,
Southwest Baptist University -
Department of Computer and
Information Sciences, 1600 University
Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2023),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill Rd.,
Kansas City MO 64110.
Cathy Bareiss, Membership Secretary
(2022),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical &
Engineering Sciences, 1001 Bethel
Circle, Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2023), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, UMKC, Retired.
Michael Flinn, Eastern Representative
(2023), mflinn@frostburg.edu,
Department of Computer Science &
Information Technologies, Frostburg
State University, 101 Braddock Road,
Frostburg, MD 21532.

David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Grace Mirsky, Midwest
Representative(2023), gmirsky@ben.edu,
Mathematical and Computational
Sciences, 5700 College Rd. Lisle, IL
60532.
Lawrence D’Antonio, Northeastern
Representative (2022), (201)684-7714,
ldant@ramapo.edu, Computer Science
Department, Ramapo College of New
Jersey, Mahwah, NJ 07430.
Shereen Khoja, Northwestern
Representative(2024),
shereen@pacificu.edu, Computer
Science, 2043 College Way, Forest
Grove, OR 97116.
Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Tina Johnson, South Central
Representative (2024), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308.
Kevin Treu, Southeastern
Representative (2024), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer Science,
Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2023), (530)898-4864,
bcdixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

5

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor,
(816)584-6884, bin.peng@park.edu,
Department of Computer Science and
Information Systems, Park University,
8700 NW River Park Drive, Parkville,
MO 64152.
Ed Lindoo, Associate Treasurer &
UPE Liaison, (303)964-6385,
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, 3333 Regis Boulevard,
Denver, CO 80221.
George Dimitoglou, Comptroller,
(301)696-3980, dimitoglou@hood.edu,

Department of Computer Science &
Information Technology, Hood College,
401 Rosemont Ave., Frederick, MD
21701.
Carol Spradling, National Partners
Chair, carol.spradling@gmail.com.
Megan Thomas, Membership System
Administrator, (209)667-3584,
mthomas@cs.csustan.edu, Department of
Computer Science, CSU Stanislaus, One
University Circle, Turlock, CA 95382.
Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

6

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Google Cloud

GitHub
NSF – National Science Foundation

Silver Partners
zyBooks

Associate Partners
Mercury Learning and Information

Mercy College

7

Welcome to the 2022 CCSC South Central Conference

The 2022 South Central Steering Committee is very pleased to welcome
everyone to our 33rd annual conference online hosted by the Computer Sci-
ence Department at The University of Texas at Dallas. Our conference chair
and host, Shyam Karrah, has provided infrastructure and support for the vir-
tual delivery of our conference. With generous time and effort the Steering
Committee has delivered a fine program overcoming the challenges of virtual
hosting and production of this year’s program.

For our online 2022 conference we have six papers, one workshop, and
both student and faculty posters scheduled for the program. This year the
Steering Committee chose 6 of 11 papers through a double-blind review process
for a paper acceptance rate of 54%. Eighteen colleagues across the region
and country served as professional reviewers and we recognize the expertise
and guidance they all so thoughtfully contributed to the selection of our 2022
conference program.

The Steering Committee continues to seek colleagues to host the conference
in the future and to join our community of computer science educators to
enrich our curricula and provide innovative pedagogy for our students. We
invite and encourage our fellow members of the South Central region to attend
our Monday April 11, 2022 virtual evening business meeting. Fellow educators
and colleagues are encouraged to join in our efforts to involve more of our
community in the planning and execution of the conference in the future.

We extend a very warm and delightful welcome to our virtual presenters
and attendees who continue to promote computer science education and cama-
raderie to our region. To all members of our 2022 Steering Committee, thank
you again for your gracious efforts in delivering our first virtual conference
during such challenging times.

Shyam Karrah
The University of Texas at Dallas

Conference Chair and Host

Bingyang Wei
Texas Christian University
Regional Editor Co-Chair

Mustafa Al-Lail
Texas A&M International University

Regional Editor Co-Chair

8

2022 CCSC South Central Conference Steering
Committee

Conference Chair
Shyam Karrah . University of Texas at Dallas, TX
Papers Chair
Bingyang Wei . Texas Christian University, TX
Mustafa Al-Lail Texas A&M International University, TX
Reviewer Chair
Lasanthi Gamage .Webster University, MO
Julie Smith . University of North Texas, TX
Panels and Tutorials Chair
Jeffrey Zheng . Stephen F. Austin State University, TX
Posters Chair
Michael Scherger . Texas Christian University, TX
Moderator Chair
Abena Primo .Huston-Tillotson University, TX
Publicity Chair
Eduardo Colmenares-Diaz Midwestern State University, TX
Nifty Assignments Chair
Michael Kart .St. Edward’s University, TX
At-Large Member
Tim McGuire . Texas A&M University, TX

Regional Board — 2022 CCSC South Central Region

National Board Representative
Tina Johnson .Midwestern State University, TX
Registrar
Anne Marie Eubanks Stephen F. Austin State University, TX
Treasurer
Bilal Shebaro . St. Edward’s University, TX
Regional Editor
Bingyang Wei . Texas Christian University, TX
Mustafa Al-Lail Texas A&M International University, TX
Webmaster
Abena Primo .Huston-Tillotson University, TX

9

Reviewers — 2022 CCSC South Central Conference

Barbara Anthony Southwestern University, Georgetown, TX
Laura Baker . St. Edward’s University, Austin, TX
Eduardo ColmenaresMidwestern State University, Wichita Falls, TX
Lasanthi GamageWebster University, Webster Groves, MO
Joshua Gross California State University Monterey Bay, Seaside, CA
David Gurney Southeastern Louisiana University, Hammond, LA
Jayantha Herath St. Cloud State University, St Cloud, MN
Michael Kart .St. Edward’s University, Austin, TX
Jose Metrolho Instituto Politécnico de Castelo Branco, Castelo Branco,
Portugal
Tim McGuire Texas A & M University, College Station, TX
Muhammad RahmanClayton State University, Morrow, GA
Janet Renwick University of Arkansas Fort Smith, Fort Smith, AR
Michael Scherger Texas Christian University, Fort Worth, TX
Bilal Shebaro . St. Edward’s University, Austin, TX
Julie Smith .University of North Texas, Denton, TX
Bingyang Wei Texas Christian University, Fort Worth, TX
Chadd Williams . Pacific University, Forest Grove, OR
Jeffrey Zheng Stephen F. Austin State University, Nacogdoches, TX

10

Knowing What It Knows and Asking the
Right Questions? An Effective Approach

to Human-Allied AI∗

Keynote

Sriraam Natarajan
Department of Computer Science, University of Texas Dallas

Abstract

Historically, Artificial Intelligence has
taken a symbolic route for representing
and reasoning about objects at a higher-
level or a statistical route for learn-
ing complex models from large data.
To achieve true AI, it is necessary to
make these different paths meet and en-
able seamless human interaction. First,
I briefly will introduce learning from
rich, structured, complex and noisy data.
Next, I will present the recent progress
that allows for more reasonable human
interaction where the human input is taken as “advice” and the learning algo-
rithm combines this advice with data. The advice can be in the form of qualita-
tive influences, preferences over labels/actions, privileged information obtained
during training or simple precision-recall trade-off. Finally, I will outline our
recent work on “closing-the-loop” where information is solicited from humans
as needed that allows for seamless interactions with the human expert. While
I will discuss these methods primarily in the context of probabilistic and rela-
tional learning, I will also present our recent results on reinforcement learning
and demonstrate how human input can be effectively used to create appropriate
abstractions to guide RL.

∗Copyright is held by the author/owner.

11

Bio

Dr. Sriraam Natarajan is a Professor at the Department of Computer Science
at University of Texas Dallas and a RBDSCAII Distinguished Faculty Fellow
at IIT Madras. His research interests lie in the field of Artificial Intelligence,
with emphasis on Machine Learning, Statistical Relational Learning and AI,
Reinforcement Learning, Graphical Models and Biomedical Applications. He is
a AAAI senior member and has received the Young Investigator award from US
Army Research Office, Amazon Faculty Research Award, Intel Faculty Award,
XEROX Faculty Award, Verisk Faculty Award and the IU trustees Teaching
Award from Indiana University. He is the AI and society track chair of AAAI
2022, demo chair of IJCAI 2022, program co-chair of SDM 2020 and ACM
CoDS-COMAD 2020 conferences. He was the specialty chief editor of Frontiers
in ML and AI journal, and is an associate editor of MLJ, JAIR, DAMI and
Big Data journals.

12

Teaching Data Representation Using
Real-World Applications∗

Daniel Ray, Mark Terwilliger
Computer Science and Information Sciences

University of North Alabama
Florence, AL 35632

{dray4, mterwilliger}@una.edu

Abstract

Students who are majoring in computer-related disciplines should
have a reasonable understanding of data representation. Concepts like
encoding, range and precision, overflow, round-off error, and data com-
pression are all vitally important. Unfortunately, students often struggle
to recognize the practicality of these concepts. To address this concern,
we created a 6-module lesson plan that uses real-world examples to help
students connect with this material. When incorporated into our Com-
puter Science I (CS1) course, we found measurable improvements in both
student perceptions and associated computational skills.

1 Introduction

Number systems are one of the most fundamental concepts in computer sci-
ence and engineering education[8]. As computer science educators, we strongly
believe that our students should understand number systems, as well as com-
puting related concepts like range and precision, overflow, round-off errors,
encoding schemes, and data compression. In our experience, students have
shown resistance when these ideas are presented, and struggle to find their
practical relevance. To address this, we created a 6-module, 1-week lesson
based on real-world applications for inclusion in our CS1 course. Additionally,
we created tools to measure the lesson’s impact on student outcomes.

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

13

When conducting this preliminary study, our hypothesis was that lessons
built around real-world examples would help improve student attitudes, under-
standing, and skills related to number systems and data representations in a
relatively short window of time. We believe our results support this hypothesis.

2 Previous Work

We relied on several important works in developing our lesson plan. One
classic paper relies on the theory of multiple intelligences to suggest alter-
natives to using classic linguistic or mathematical approaches when teaching
data representation[2]. Other works explore alternative methods and curricula
for teaching number systems and data representation at the K-12 level[7] and
using interactive software to present this content[1]. Other works guiding our
research included an effort to teach data science to non-CS students[4] and a
review of efforts to use problem-based learning as a paradigm for an entire CS
program[6]. Our work aligns with and expands upon these findings.

3 Methodology

Our study uses a cognitive constructivist epistemology which argues that deep
learning occurs when students can contextualize new content by relating it
to practical experiences[3]. To accomplish this, we developed a two-day les-
son in a CS1 class introducing number systems and data representation. It
consisted of 6 modules focusing on relatable real-world examples highlighting
skills related to these areas. College pre-algebra is a prerequisite and discrete
structures a corequisite for the course. Students received no additional priming
instructional content before the study. We presented the first three modules
on day one and the final three on day two. To measure the learning outcomes,
we also gave students a paper-based survey both before and after the lesson.
We discuss the modules in more detail in the next section.

For our study group, we used two sections of the CS1 course at our insti-
tution during the 2021 Fall semester. The student pool for this course is a
representative cross-section of students in computing as well as mathematics
and technology-related fields in various majors. While there were 48 students
enrolled in these two sections, only 33 students were present for both lessons
and completed both the pre-survey and post-survey. Therefore, we only in-
cluded these 33 students in our results.

The survey consisted of ten questions and was designed to be completed
in approximately 15 minutes. The questions included three direct measures of
relevant skills questions, two Likert-type scale measures of student attitudes

14

towards the importance of the material, and five open response questions that
tested students’ mental models toward the material and its significance.

4 The Modules

An overview of the six modules is shown in Table 1. In each module, we
present some real-world applications, cover data representation concepts, and
have students take part in hands-on activities.

Table 1: The Modules

Mod. Title Concept Activities
A Birthday

Cakes
Number Systems, Bi-
nary Number System

1. Convert Decimal to
Binary 2. Convert Bi-
nary to Decimal

B Parachute Binary Encodings 1. Use Binary to De-
code a Message

C Morse
Code

Data Compression En-
codings: (a) Keyword,
(b) Run-length, (c)
Huffman Compression
Ratio

1. Encode/Decode us-
ing: (a) Keyword, (b)
Run-length, (c) Huff-
man 2. Compute Com-
pression Ratio

D What’s in a
Color?

Using Binary to Store:
(a) Black and White
Image, (b) Color Im-
age Hexadecimal Num-
ber System

1. Convert Decimal to
Binary to Recover an
Image 2. Convert Dec-
imal to Hex to Cre-
ate Web Page Color
Scheme

E What Time
is it?

Representing Time,
The Overflow Problem

1. Convert Decimal to
Binary / Hex 2. Other
Numeric Conversions

F Deadly
Round-off
Error

Representing Floating
Point Round-Off Errors

1. Convert Fractions
to Binary 2. Compute
Round-Off Errors

4.1 Module A – Birthday Cakes

The first module introduced number systems starting with dozenal (base 12),
vigesimal (base 20), and sexagesimal (base 60) and discussed why these were
used in antiquity. As we transition to binary (base 2), we give each student a

15

whole number “Bit Flipper,” which is one of two tools (see Figure 1) we devel-
oped based on the code.org “Flippy Do”[5]. Students used their Bit Flipper to
practice conversions between binary and decimal. Finally, students discovered
how to conserve candles on birthday cakes using binary counting.

Figure 1: Bit Flippers version 1 (whole numbers) and version 2 (fractional)

4.2 Module B – Parachutes

We reinforced the concept of different number systems and introduced binary
encodings of text in the second module. To answer, ‘How can we represent hu-
man languages?’ we examined a secret message scheme that was used on the
Mars 2020 lander parachute (see Figure 2). After breaking down the encoding
scheme used and discovering the secret message (“Dare Mighty Things”), stu-
dents were given a parachute containing a different message to decode on their
own.

Figure 2: A secret message encoded in the Mars 2020 Lander parachute.

16

4.3 Module C – Morse Code

In Morse code, the letters E and T, which are used frequently, are represented
by a single pulse, while less frequently used letters like Q and X are represented
using four pulses each. The class discussed the advantages of a variable-sized
encoding scheme such as this one. In the module, students also talked about
reasons why we would want to compress data. Three compression techniques
were presented, including keyword encoding, run-length encoding, and Huff-
man encoding. Students used these techniques to encode and decode strings,
as well as compute compression ratios.

4.4 Module D – What’s in a Color?

An introduction to the hexadecimal number system showed students that bi-
nary numbers can be used to represent not only characters, but also multimedia
data such as colors and images. We started by looking at a black-and-white
image, using one bit per pixel. By increasing the number of bits per pixel, our
color palette increased. Students put this knowledge to work to create a simple
web page color scheme. To do this, students had to convert RGB (Red Green
Blue) values to their 6-character hex-code equivalents.

4.5 Module E – What Time is it?

A discussion of the famous Y2K event helped students learn the concept of
overflow and the importance of choosing an appropriate date representation
scheme. This led into a related discussion of Y2K38, a similar event on the
horizon concerning UNIX time. Other related conversations involved the rolling
over of an older style mechanical car odometer and an overflow glitch in the
Pac Man arcade game. A hands-on activity involved students picking a date
and time, finding the equivalent UNIX Timestamp, and then computing how
long before an overflow event occurs.

4.6 Module F – Deadly Round-off Error

In our final module, we introduced a binary fractional representation and had
students use Bit Flipper version 2 (see Figure 1) to represent fractional num-
bers. Students soon discovered the concept of round-off error. A discussion of a
fatal 1991 failure of the Patriot missile defense system, which occurred because
of a fixed-point round-off error, illustrated the potentially serious consequences
of poor data storage design decisions.

17

5 Results

In this section we analyze our results by first arguing that a significant improve-
ment can be seen in related skill tests. Next, we argue that student attitudes
concerning the importance of the material deepened and that their perception
of the material matured.

5.1 Quantitative Data – Skills Inventory

One hypothesis that we wanted to test with this study is that lessons in data-
representation using real-world examples would help students learn relevant
skills in a short amount of time. To test this, we asked students to exhibit
those skills in a series of questions on the survey. If our hypothesis is true, we
would expect to see a marked improvement in those skill sets in the post-survey
over the pre-survey.

Question 5 asked students to convert the binary value 101101 to its decimal
form, Question 6 asked students to convert the decimal value 75 to binary, and
Question 7 asked students to convert the decimal number 75 to hexadecimal.
This sort of question ensures that the original representation is understood by
the student, and also that the student possesses sufficient knowledge of the
second number system to complete the conversion. Pre-survey results found
student knowledge widely lacking.

We classified results as successful, unsuccessful, and “total beginner,” where
unsuccessful responses at least exhibited some numerical sense, while “total
beginner” results reflected non-numeric answers. For converting binary to dec-
imal, only 13 of 33 participants, or 39%, were successful, while 36% were clas-
sified as total beginners. Only 12 participants (36%) successfully converted
from decimal to binary with fully 51% falling in the “total beginner” category,
and only 2 participants (6%) were able to convert from decimal to hexadecimal
with 75% in the “total beginner” category.

The post-survey results showed dramatic improvement. Binary to decimal
was completed with a success rate of 93% with no students in the total be-
ginner category. Decimal to binary was completed with 100% success rate,
and decimal to hexadecimal was completed with a 70% success rate. These
improvements constitute solid measurable evidence of significant improvement
in skills related to the material learned over a very short interval.

5.2 Qualitative Data – Student Attitudes

The Likert-type questions asked on the pre/post-survey were geared toward
testing our second hypothesis that lessons built around real-world examples
would improve student attitudes toward these topics.

18

Question 1 on the survey asks, “On a scale of 1 to 5, how important do you
think knowledge about number systems is for the average person?” Question
2 asks the same question but for “a career in a computer-related field.”

The pre-survey results showed an average response of 3.59 for perceived
importance to the average person and a 4.41 average response for perceived
importance to a career in computer-related fields. One possible explanation for
the relatively low score for the “average person” is that students in the study
often seemed to have a faulty idea of what was meant by “number systems”.
Still, a positive shift in this number, especially from pre- to post-survey, would
be strong evidence for improvement in learning and understanding. In addition,
while the perceived importance of number systems to a career in computer-
related fields is high in relation to the average person, we would expect it to
be rated higher still overall for such a fundamental part of computer science.

The data from the post-survey exhibit a positive shift. Students answered
Question 1 at an average of 3.91, an 0.33-point increase (plus 6.6%), and Ques-
tion 2 at an average of 4.88, a 0.47-point increase (plus 9.4%). This indicates
that an exposure to real world examples where number systems and data repre-
sentation play a key role increased knowledge and matured student perceptions.

5.3 Qualitative Data – Student Perceptions

The remaining five questions were open-response questions that aimed to qual-
itatively capture any changes in student perception and understanding regard-
ing these topics.

Question 3 asked: “Name a couple of instances that you can think of where
you have come across various number systems outside of schoolwork.” Re-
sponses to this question in the pre-survey support the idea that there was
confusion amongst respondents as to what was meant by “number systems”.
Responses on the post-survey showed less overall confusion.

For instance, one student who responded, “I’m not really sure” on the pre-
survey answered, “working on html, cybersecurity competitions” on the post-
survey, showing that they were able to link their personal experiences to the
topic as a result of the lesson.

Three other students on the pre-survey answered, “Counting money”, “Cashier
– making change”, and “Banking or figuring discounts”. This was a common
misconception that the only number system outside of schoolwork deals with
amounts (presumably in base 10) and often dealing with financials.

These same students answered differently on the post-survey. They an-
swered, “Unix timestamp, birthday dates” (the reference to birthday dates
referring apparently to both the elementary counting example of binary birth-
day candles as well as the lesson on calculating your birth date and time using

19

the Unix epoch), “computer data, phone numbers”, and “coding or making a
website”, respectively.

Question 4 asked: “Name three things you think the following value might
represent: 46166B” Responses varied widely on an open question such as this
one. Overall, students showed improvement from pre-survey to post-survey.
We highlight a few student responses that typify this improvement below.

On the pre-survey, students answered things like: “4 6 4 6 6 11, n/a, n/a”,
“I don’t know, n/a, n/a”, and “46 billion, n/a, n/a”. On the post-survey those
same students answered: “hexadecimal so could be a color value, date, binary
value”, “A color, a number in hex, 0100 011 0001 0110 0110 12”, and “A number
that has been converted to hex, 0100 0110 0001 0110 0110 1011, 4616611”,
respectively.

Clearly, these responses show a level of reasoning about number systems
that is still developing but also showed a noticeable evolution.

Question 8 asked: “What specifically about a number system does the “base”
of that number system determine?” Non-responses, “N/A”, “I don’t know”,
“IDK” or something similar dominated the pre-survey (39%). Of the rest, many
were answers such as, “The “key””, “the start”, “The value?”, “the height?? of
the number system”, etc., that showed students who were either not at all or
only vaguely familiar with the term and likely the concept of different number
systems. A total of 10 students (another 30%) gave such “beginner” answers.

Post-survey responses were expectantly varied but again showed a marked
improvement. Seventeen students (51%) correctly identified what was the base
of a number system. Another four students answered the question by refer-
encing number systems of specific bases. Finally, six more students answered
by saying that the base represents the number of “digits” in the system or
the “size” of the system; confused and imprecise to be sure, but a confusion
of terminology only and still an improvement. Even among the remaining six
students, the answers, while wrong, revealed the respondents to be emergent
learners.

Question 9 asked: “What are the advantages and disadvantages to using a
number system with a larger base compared to a smaller base?” An advanced
level of understanding will focus on the tradeoff between a larger base with
fewer symbols required to store large numbers but more overhead in remem-
bering larger sets of unique symbols and a smaller base with fewer symbols to
represent but increasingly larger numbers to store data.

In the pre-survey responses, we see little to suggest sophisticated under-
standing with 18 responses (55%) being either fully (both advantages and dis-
advantages) or partially (one or the other) left as non-answers.

The post-survey results offer a mixed bag with most students still exhibiting
confusion. The number of non-answers dropped from 18 to 2. However, all

20

students exhibited maturing mental models.
Finally, Question 10 asked: “What information do you have to consider to

decide what the underlined value in the following number means? 723048276”
On the pre-survey, 19 students (58%) either left this question completely or par-
tially blank. Among those counted in this group, the partially blank responses
exhibited novice level understanding of the question’s implications only.

In contrast, among post-survey responses, only three students (9%) fell
into this category. A wide range of answers was present on the post-survey,
which frustrates generalization about student understanding. However, we do
note that a total of 21 students (63%) in their responses mentioned either the
base of the number (10 total), the position of the number (3 total), or both
(8 total). This is a marked improvement over the pre-survey results, where
only 13 students (39%) fell into the same category with only 3 respondents
mentioning the base of the number system, 5 mentioning the place value, and
5 mentioning both.

6 Conclusion

Our hypothesis when conducting this preliminary study was that lessons built
around real-world examples would help students to both grasp the topics and
skills related to data representation as well as to improve student attitudes
toward and deepen the complexity of the understanding about these topics.
These results could also be realized in a short window of time. Our results
show improvement in all three areas: knowledge retention, student perceptions
about covered concepts, and student mental models. These improvements were
significant enough to warrant further study and expansion of our methodology.

References

[1] Ruedi Arnold, Marc Langheinrich, and Werner Hartmann. InfoTraffic:
teaching important concepts of computer science and math through real-
world examples. In Proceedings of the 38th SIGCSE technical symposium
on Computer science education, pages 105–109, 2007.

[2] Katrin Becker. A multiple intelligences approach to teaching number sys-
tems. Consortium for Computing Science in Colleges Northwest Confer-
ence, 2003.

[3] Mordechai Ben-Ari. Constructivism in computer science education. Acm
sigcse bulletin, 30(1):257–261, 1998.

21

[4] Robert J Brunner and Edward J Kim. Teaching data science. Procedia
Computer Science, 80:1947–1956, 2016.

[5] Code.org. Binary numbers. https://curriculum.code.org/csp-20/
unit1/4/, 2017. Accessed: 2021-12-09.

[6] Steve Cooper and Steve Cunningham. Teaching computer science in con-
text. Acm Inroads, 1(1):5–8, 2010.

[7] Yvon Feaster, Farha Ali, and Jason O Hallstrom. Serious toys: teaching the
binary number system. In Proceedings of the 17th ACM annual conference
on Innovation and technology in computer science education, pages 262–
267, 2012.

[8] Manuela Panoiu, Anca Iordan, Caius Panoiu, and Loredana Ghiorghioni.
Educational software for teaching the basics of computer science. WSEAS
Transactions on Advances in Engineering Education, 12(6):238–243, 2009.

22

Motivating the Study of Discrete
Structures with Experiments∗

Jose Cordova
Department of Computer Science and Computer Information Systems

University of Louisiana at Monroe
Monroe, LA 71203

cordova@ulm.edu

Abstract

In this paper, we discuss the use of experiments to motivate and
reinforce the study of selected topics in the field of discrete mathematics.
Experiments are used to verify hypotheses based on students’ solutions to
problems of moderate complexity. Examples are presented from the areas
of summations, probability, recursive sequences, and relations. For each
experiment, a procedure is outlined to test the experimental hypothesis.
The paper concludes with suggestions for classroom use and possible
avenues for future research.

1 Introduction

For the past several years, there has been a renewed emphasis on enhancing the
role of discrete mathematics in undergraduate Computer Science curricula [9].
It is widely recognized that discrete mathematical structures are vital to the
type of computational thinking essential for effective abstraction and problem
solving in computer science and software engineering ([4], [7]). In this light,
significant effort has been devoted to the development of hands-on activities
and demonstrations for use in a classroom setting [3].

Increasingly, computer science educators face the difficulty of impressing
upon students the notion that discrete structures are not only important but

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

23

indeed very relevant to their chosen profession. As discussed by Gries [6],“. . .
students ask ‘Why do we have to learn all this?’ as they study sequences,
mathematical induction, counting, probability, etc., relatively early in their
college years. Unfortunately, the most convincing answer comes during the
subsequent semesters, and it comes in many iterations.” The question is then,
not only how to motivate the study of discrete structures concepts, but what the
appropriate timing is for the introduction of these topics in an undergraduate
computer science curriculum [9].

We suggest that part of the answer may be found in the field of exper-
imental computer science, which focuses on the role of experimentation as
“necessary and beneficial both as a complement to theory and as an element in
constructing systems” [5]. Even though empirical studies can both confirm and
complement the results of theoretical analysis [8], this practice has been tra-
ditionally underutilized in computer science education, unlike what has been
commonplace in the natural sciences [1].

In this paper, we discuss the use of experiments to motivate and complement
the study of discrete mathematical structures in computer science. The paper
describes four experiments and concludes with observations regarding their
uses in a classroom setting.

2 Use of Experiments in Teaching Discrete Structures

In the traditional scientific method, experiments are conducted to test hy-
potheses in a particular subject of study. As such, an experiment traditionally
includes a statement of the problem, a formulation of the hypothesis being
tested, a description of the procedure or methodology used for testing the
hypothesis, observation and collection of data, and the establishment of con-
clusions based on analysis of the data. As pointed out before, experiments are
useful in confirming theoretical results. In addition, empirical studies often
point scientists in the direction of new theories.

Topics in a discrete structures course can be motivated by the presentation
of problems whose solution requires the correct application of mathematical
concepts. When working exercises and arriving at potential solutions theoret-
ically, students often wonder whether the potential solution is correct. Verifi-
cation of the theoretical result is usually limited to a comparison with model
answers provided by the instructor, the textbook, or their peers. In the worst
case, verification fails to take place, potentially leaving students uncertain re-
garding the correctness of their solution.

We suggest that experiments can be a valuable tool in motivating the study
of discrete structures and in helping students confirm - or refute - the correct-
ness of their theoretical results. In the following examples, typical problems

24

related to discrete structures topics are presented, as well as sample exper-
iments to validate the theoretical solutions. Completion of the experiment
usually - though not always - involves writing a program or program segment,
simple enough to be within the reach of a student who has completed an intro-
ductory programming course. Unlike approaches that use specialized languages
such as Alloy [2], the experiments presented here can be implemented using
any general-purpose programming language.

3 Experiment 1: Sequences and Summations

The objective of this experiment is to verify the correctness of a theoretical
solution to the problem of simplifying an expression involving summations.
For instance, students are asked to simplify an expression such as

200∑
j=1

3j

2
+ 3

199∑
k=0

k + 3

2
(1)

The correct solution requires application of the distributive property of
summations, although before the summations can be combined, one needs to
change one of the index variables in order to obtain a match of the lower and
upper limits. The variable change (for instance, j = k + 1) needs to be prop-
agated in the corresponding summation, resulting in an equivalent expression
such as

199∑
k=0

(3k + 6) (2)

In the author’s experience, students find it difficult to simplify this type of
expression correctly. Therefore, experimental verification is not only appropri-
ate, but a potentially useful tool in discovering errors. Once the student arrives
at a potential solution (such as expression (2)), an experimental hypothesis can
be formulated stating that expression (2) is equivalent to expression (1). To
test the hypothesis, students can be instructed to:

• write a program segment that implements the operations in expression
(1), including one loop for each summation and a statement to combine
the results

• write a program segment that implements the operations in expression
(2), which uses a single loop construct

• observe and compare the results from both program segments

25

Students can then form a conclusion based on the results. If correct, the student
confirms that the alternative expression is not only equivalent to the original
expression, but algorithmically simpler and computationally less expensive.
This conclusion can be a powerful motivating factor. A negative conclusion
means that either the alternative expression (2) or the software implementation
of the experiment is flawed. One possible variation of the experiment is for the
instructor to derive expression (2) and ask the students to find and test another
alternative expression by changing a different variable. Another variation is
to start with a program segment containing two loops, ask the students to
translate the code into an equivalent expression involving summations, simplify
the expression, and test its correctness by implementing the corresponding
program segment.

4 Experiment 2: Counting and Probability

The study of basic probability lends itself to a variety of experimental possi-
bilities. This example is a variation of a problem described by Winkler [10].
In this example, given the fact that the probability of winning a bet at the
roulette table is 1/38, that placing a bet costs $1, and that a win earns the
gambler $36, the students are asked to derive the probability that, in a run
of 105 bets, the gambler will win exactly 0, 1, or 2 times (and therefore lose
money, since the gambler must win at least three times in order to come out
ahead). A general description of the solution, which is not shown here due to
space limitations, is presented by Winkler [11]. As is the case with the first
example, since calculating the correct probability may be difficult for some
students, experimental verification can be helpful.

Given the difficulty students may have in calculating the probability that
the number of wins is less than three, it is probably best to approach the
problem in steps. First, ask students to find the probability that the gam-
bler will not win at all in 105 attempts. Students should calculate the result
as (37/38)105. Once this is accomplished, the experimental hypothesis to be
verified is that this theoretical result (approximately 0.06) is, in fact, the prob-
ability of not winning at all. The procedure used to test the hypothesis can be
described to student as follows:

• pick a positive integer less than or equal to 38 as your bet
• use a random number generator to sample 105 integers in the range 1
to 38, including code that counts the number of times (out of 105) that
your bet is selected

• complete the program by including a loop that repeats the above steps
n times, for n = 10, 100, 1000, . . . , and computes the number of trials

26

in which the gambler won no bets (this value, when divided by n, can be
used to approximate the desired empirical probability)

After observing the results and summarizing the data, students should be able
to arrive at a conclusion regarding their calculated probability. If correct, the
empirical probability obtained by the program should converge towards the
theoretical probability as the value of n increases. The fact that the value of n
must be sufficiently large in order to obtain reliable results is a valuable lesson
for students.

A similar process can be used to compute and verify the probability of
winning exactly once and the probability of winning exactly twice in 105 tries.
Finally, the overall probability of winning less than three times, which can
be computed by adding the three partial results, can be verified by making a
small modification to the program. The experiment provides an opportunity
to discuss issues regarding the law of large numbers, random sampling, and the
use of simulation for estimating results when theoretical results are difficult to
compute.

5 Experiment 3: Directed Graphs and Binary Relations

The objective of this experiment is to verify the student’s ability to produce the
transitive closure of a relation by comparing it to the result obtained through
the application of Warshall’s algorithm. A secondary objective, from a ped-
agogical point of view, is to reinforce the connection between the concepts of
binary relations, directed graphs, and matrices.

Students are provided with the elements of a finite set S and with the
ordered pairs that make up a relation R on S. They are asked to draw the
corresponding directed graph and to use the graph to list the ordered pairs in
the transitive closure of R, as suggested in various discrete structures textbooks.
Typical examples used include a set of courses in a college curriculum and the
ordered pairs that result from applying the “is prerequisite of” relation, or a
set of users who are members of a social network and the ordered pairs that
result from applying the “is a friend of” relation. Unless S and R are trivially
small, the process of generating the transitive closure of R by hand can be time
consuming and prone to error. An experiment can help students validate the
results by testing the hypothesis that the set of ordered pairs generated from
the directed graph is in fact the transitive closure of R.

The procedure used to test the hypothesis consists of the following steps:

• use the original set of ordered pairs in R to construct the adjacency
matrix for R

• use Warshall’s algorithm to produce the corresponding reachability ma-
trix

27

• compare the set of ordered pairs in the transitive closure with the ones
in the reachability matrix

The last step of the process allows the student to confirm or reject the stated
hypothesis. Initially, students can be asked to produce the reachability matrix
by doing a hand trace of the algorithm. Alternatively, students can implement
the algorithm in an actual program.

6 Experiment 4: Recursively Defined Sequences

The objective of this experiment is to verify the student’s ability to produce a
closed form for a recursively defined sequence, such as

An = 2An−1 + 3 for n > 1 (3)

A1 = 5

The result, which can be obtained either by iteration or by the application of
the solution formula for linear first-order recurrence relations, can be expressed
as

An = 8(2n−1) + 3 for n ≥ 1 (4)

Given the difficulty many students experience in deriving expressions such
as (4), verification is an important step. Though the first principle of math-
ematical induction provides a formal and elegant way to verify that (3) and
(4) produce the same sequence, it has been our experience that many students
have just as much trouble in constructing an argument based on mathematical
induction as they would in solving the original recurrence. Empirical evidence
–though itself not a proof- can help verify the hypothesis that the sequence pro-
duced by the expression in (4) is equivalent to that produced by the recursive
definition in (3). The experiment can be completed as follows:

• implement a recursive subprogram to model the sequence defined in (3)
• implement a loop-based algorithm that repeatedly invokes the recursive
subprogram and evaluates the expression in (4) for n = 1 to a sufficiently
large upper limit

• compare the values returned by the recursive method with the results of
evaluating the expression in (4) for all values of n

Again, it is important to emphasize to students that empirical data is to be
considered simply as evidence in support of the stated hypothesis, not a re-
placement for a rigorous proof. In this regard, the experiments described in
this paper play a similar role as experiments designed to test hypotheses in the
natural sciences.

28

7 Summary and Observations

The use of experimentation can be effective in motivating the study of discrete
structures and in helping students verify the correctness of their solutions.
Computer science students who are usually more interested in programming
than in mathematics have the opportunity to apply their programming skills in
the completion of the experiments. As an interesting side effect, in cases when
the theoretical results differ from the empirical results, students are forced to
ponder and investigate as scientists often do: is the theoretical result incorrect?
or are there flaws in the implementation of the experiment?

The examples provided are drawn from the topics of probability, summa-
tions, recursive sequences, and relations. Various others are possible. The type
of experiments described in this paper can be assigned in a classroom setting,
as homework, or as a combination. The experiments are well suited for use in
small groups in an effort to foster collaborative learning. Though this is not
always the case, the experiments usually involve programming tasks, with the
instructor providing starter code if necessary. One must be careful to ensure
that the program be simply considered as a tool for the validation of the theo-
retical results. Accordingly, the programming activity must be simple enough
so as not to distract from the purpose of the experiment.

Further research involves an investigation of the effectiveness of the use of
experiments in fulfilling the learning outcomes of a discrete structures course.
This research would include a series of pre- and post-experiment quizzes de-
signed to measure whether there is a significant change in students’ perfor-
mance as a result of experimentation in a particular topic.

References

[1] Victor R Basili and Marvin V Zelkowitz. Empirical studies to build a
science of computer science. Communications of the ACM, 50(11):33–37,
2007.

[2] Laura E Brown, Adam Feltz, and Charles Wallace. Lab exercises for
a discrete structures course: Exploring logic and relational algebra with
alloy. In Proceedings of the 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education, pages 135–140, 2018.

[3] Lijuan Cao and Audrey Rorrer. An active and collaborative approach to
teaching discrete structures. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pages 822–827, 2018.

[4] Michael E Cotterell, Delaram Yazdansepas, and Bradley J Barnes. Active
learning in cs2 and discrete mathematics. In Proceedings of the 51st ACM

29

Technical Symposium on Computer Science Education, pages 1318–1318,
2020.

[5] Dror Feitelson. Experimental computer science. Communications of the
ACM, 50(11):24–26, 2007.

[6] David Gries. Discrete mathematics/structures: How do we deal with the
late appreciation problem? Journal of Computing Sciences in Colleges,
24(6):110–112, 2009.

[7] Peter B Henderson, Thomas J Cortina, and Jeannette M Wing. Compu-
tational thinking. In Proceedings of the 38th SIGCSE technical symposium
on Computer science education, pages 195–196, 2007.

[8] Catherine C McGeoch. Experimental algorithmics. Communications of
the ACM, 50(11):27–31, 2007.

[9] Norman Neff. Problem-directed discrete structures course. In Proceedings
of the 41st ACM technical symposium on Computer science education,
pages 148–151, 2010.

[10] Peter Winkler. Puzzled: Probability and intuition. Communications of
the ACM, 52(8):104–104, 2009.

[11] Peter Winkler. Puzzled: Solutions and sources. Communications of the
ACM, 52(9):110–110, 2009.

30

Recruiting Technology Majors through
High-Impact Educational Practices

(HIPs)∗

Alana Platt, Anna Land, and Andrew Ciganek
Information Technology and Supply Chain Management

University of Wisconsin-Whitewater
Whitewater, WI 53190

{platta, landa, ciganeka}@uww.edu

Abstract

This study proposes integrating a High-Impact Educational Practice
(HIP) in an introductory technology course to improve attitudes toward
and better attract students to computing majors. Faculty at the Uni-
versity of Wisconsin - Whitewater worked with a community partner to
develop technology case studies and administer them to students in an
introductory technology course. Students who participated in the case
studies exhibited greater gains compared to a control group in their self-
assessed familiarity with computing concepts and more positive attitudes
towards technology as a viable major.

1 Introduction

The faculty of the University of Wisconsin - Whitewater have been exploring
ways to attract undergraduate students to computing majors earlier in their
college careers. Based on anecdotal student feedback and internal surveys, over
eighty percent of students enrolled in an information technology major started
college as a different major. Many students were unfamiliar with the material
covered in the major or what an information computing professional does. Fur-
ther, the faculty sought to identify ways to better support underserved students

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

31

in their courses. To this end, the faculty proposed modifying an introductory
information technology course to include High-Impact Educational Practices
(HIPs), which are a series of high student engagement educational activities
which are positively associated with a number of desirable curricular outcomes
[7]. The faculty posited that by strengthening the educational experience in
introductory courses, students would leave with a more positive opinion of both
the area of study and their capacity to succeed in a technology-related career.

This study proposes integrating a community-based learning experience in
a lower division course to positively affect student attitudes towards comput-
ing majors. A discussion of pertinent studies specific to computing curricular
experiences is addressed next in the literature review section. The subsequent
methodology section describes the technology-oriented case studies piloted, re-
fined, and then administered over the duration of two semesters with the partic-
ipation of a community partner as well as the pre- and post-treatment surveys
conducted to measure student attitudes. The study results are then presented
followed by a discussion and avenues for future work.

2 Literature Review

High-impact practices (HIPs) are a series of high student engagement edu-
cational activities which are positively associated with a number of desirable
outcomes [7]. The most commonly reported positive outcomes include student
persistence, improved academic performance and faculty and peer interaction,
as well as increases in intellectual and practical skills [4]. Further, HIPs typi-
cally have compensatory effects or accelerated growth for underserved students
(i.e., underrepresented minorities, gender, financial aid status, first generation
status, etc.) [7]. Integrating captivating classroom experiences into introduc-
tory STEM courses offer promising results i.e. [2, 5, 6]. Other prior works
provide evidence on the benefits of communication and engagement between
students and community partners e.g. [3, 8, 12]. Elements of the assignments
include oral communication, critical thinking, working in teams, and real-world
application of skills and knowledge, all of which have been recently rated as
the most important college learning outcomes by executives and hiring man-
agers [1]. Prior research has investigated the impact of HIPs on aspects of a
technology curriculum. One prior work found that HIPs embedded in an under-
graduate curriculum led to strong soft skills in the workforce [10]. The authors
in [9] studied an expansion of HIPs in an undergraduate cybersecurity degree
program and found evidence that they benefited students. Another prior work
found that the incorporation of HIPs, specifically learning communities into
the first-year computer science experience, led to better student performance
and retention [11]. However, little research has examined the use of HIPs in

32

attracting students to a computing major.

3 Methodology

Survey results from the University of Wisconsin - Whitewater (N=1100) reveal
that relatively few undergraduate students participate in university-sponsored
HIPs (e.g., learning community, undergraduate research, global experiences,
etc.). Many college departments at the University of Wisconsin - Whitewa-
ter do offer HIPs within their programs and curricular offerings like collabora-
tive assignments and projects, service learning, community-based learning, and
capstone courses. However, most of these HIPs are exclusive to upper-division
courses and the faculty hypothesized that incorporating HIPs in lower-division
courses would stimulate interest in computing courses at an earlier stage of
a student’s academic career. The faculty at the University of Wisconsin -
Whitewater partnered with a community partner, Liquid Freight, to develop
case studies for an introduction to information systems course. Liquid Freight
initially reached out to faculty to solicit talent for open positions, but an op-
portunity for enhanced exposure through semester-long case studies and live
partner engagement was subsequently discussed as a rewarding opportunity for
the company, students, and faculty. Liquid Freight was founded in the 1930s
and is a medium-sized, family-owned logistics firm headquartered in Wisconsin,
specializing in food and beverage transportation.

Faculty members worked with a senior executive at Liquid Freight by iden-
tifying information technology challenges in their organization that could be
developed into case studies. After a series of interviews, three topics were se-
lected that were both of urgent importance to Liquid Freight and aligned with
an expertise area of each participating faculty member. Three faculty members
separately drafted a case study and shared it with the senior executive and one
of the executive’s direct reports for multiple rounds of feedback. Once the
senior executive and the direct report agreed that a case study accurately cap-
tured the problem, the case study was sent to the other two faculty members
for a final review.

Each of the three case studies had distinctive learning outcomes appropriate
for sophomore-level students in an introductory information technology course.
The first case study addressed issues related to a corporate enterprise system
not being user-friendly. Liquid Freight had hired a third-party vendor to re-
place their legacy enterprise system with a custom software as a service (SaaS)
solution. Students developed an implementation plan along with a strategy for
launching this SaaS platform for partner companies. The second case study
endeavored a broader understanding of the role of software and the Inter-
net of Things (IoT) in managing transparency and risks in multi-tier supply

33

chains. Students learned about operation on tight margins, where investments
in emerging technologies are often relegated as excessive and unnecessary un-
less done in response to a significant negative event or are mandated by a
relatively powerful partner. This is a challenge not unique to Liquid Freight
nor the transportation industry. The third case study explored the complex-
ity of launching a mobile component of the SaaS solution, the influence of
user demographics and user environment on software design, and ethical con-
siderations in software design. Usability implications specific to the trucking
industry were explored. In each of the case study assignments, students worked
in groups to analyze the case study and propose solutions to questions raised
by Liquid Freight. Each case study included a description of the problem fol-
lowed by analysis questions. These questions addressed both technological and
business aspects of the problem and were appropriate in technical content for
an introductory information technology course.

A pilot study was conducted with one section of an introduction to infor-
mation systems course to evaluate the classroom appropriateness of the newly
created curricular materials and improve the study design prior to a broader
implementation. The senior executive from Liquid Freight attended a lecture
of the class to explain their business, their challenges, and to introduce the case
studies at a high level. Students were given the opportunity to ask questions
for clarification. The session was recorded for use in future semesters. Over the
course of the semester, the case studies were assigned as small group problems.
At the end of the semester, students were given the opportunity to provide
feedback on the case study via a survey and directly to the instructor.

Overall feedback from students was positive. Students generally found
working on the case studies to be a positive experience and helped them to
better understand the role of information technology in industry. Others stated
that having the guest speaker from industry was enjoyable. However, some stu-
dents seemed unsettled by how “disorganized” Liquid Freight is and how Liquid
Freight “doesn’t know what they want.” The faculty concluded that student
expectations for how a business operates does not match reality and that addi-
tional background information on innovation would be appropriate so students
understand that uncertainty is common in business and not “bad.” Addition-
ally, the second case study was confusing to several students. After reviewing
the feedback, the faculty concluded that the second case study was too open-
ended for the students and decided to omit it from the study. The following
semester, the same faculty member taught two sections of the introduction to
information systems class: one section received the case study treatment (Class
Test; N=59) and one section was the control group (Class Control; N=58). To
control for the impact on learning for an additional two assignments, the control
group was given a group paper assignment on technologies covered in the case

34

study addressing logistics and mobile applications. Students in both classes
were provided with a pre- and post-survey to assess (1) their self-assessment of
information technology knowledge and competency, and (2) attitudes towards
their professional field. The survey items were adapted from the Student As-
sessment of their Learning Gains (SALG) instrument, which focuses exclusively
on students’ self-reporting of their learning and the degree to which specific
aspects of the course have contributed to that learning [11]. Students were of-
fered extra credit if they submitted proof that they had completed the survey.
Responses were anonymous and students were given a unique ID that allowed
faculty to match pre- and post-survey responses. Responses for students who
participated in only one survey were eliminated, resulting in a total of 32 usable
responses (54.25% response rate) from the test class and 20 usable responses
(39.33% response rate) from the control class.

4 Results

Students were asked to self-assess their familiarity with the seven major topics
in the introduction to information systems course. Students were prompted to
“Rate your familiarity with the following topics” followed by a set of Likert scale
(1= not at all; 5 = a great deal) corresponding to each topic. The results for
the technology self-assessment are shown in Table 1. Students in both groups
saw statistically significant increases in their assessment scores for all areas.
However, students in class test saw greater improvements than those in class
control for all areas except for Cybercrime and Information System Security.

The survey also measured attitudes towards the profession using the same
Likert scale described above. The specific statements along with results are
shown below in Table 2. Class test saw greater statistically significant im-
provements in: enthusiasm for the subject; feeling they should share their skills
through community outreach; the ability to communicate business concepts to
others; confidence that they can succeed in the subject area; and likelihood to
seek input from outside the discipline in the decision-making process. Class
control saw a greater interest in taking other courses in the subject, although
it was not statistically significant.

Interestingly, both classes saw decreases in: willingness to seek help from
others on academic problems; consideration of end users on project design and
communication; incorporating diverse perspectives from those outside the dis-
cipline; and sharing expertise through volunteerism (the latter was statistically
significant).

35

Table 1: Responses for Technology self-assessment

Test-Pre Test-Post Diff. Control-Pre Control-Post Diff.
Information Systems in Organizations
3.21(0.65) 4.18(0.98) 0.97** 3.57(0.87) 4.42(0.81) 0.86**
Business Intelligence and Analytics
2.91(0.91) 4.09(0.98) 1.18** 3.33(0.97) 4.43(0.75) 1.10**
Database Systems and Big Data
2.73(0.67) 3.94(1.03) 1.21** 3.00(0.84) 4.10(0.89) 1.10**
Hardware and Mobile Devices
3.61(0.93) 4.45(1.12) 0.85** 3.62(1.02) 4.38 (0.86) 0.76**
Software and Mobile Applications
3.42(1.06) 4.53(1.05) 1.11** 3.67(0.91) 4.52(0.87) 0.86**
Electronic and Mobile Commerce
3.21(1.02) 4.31(0.90) 1.10** 3.38(1.02) 4.48(0.87) 1.09**
Cybercrime and Information System Security
2.75(0.76) 4.03(1.05) 1.28** 2.76(0.94) 4.10(0.89) 1.33**
** significant to 0.01

5 Conclusion

The results support our hypothesis that the introduction of real-world case
studies to an introduction to information systems course will increase student
engagement. Class test exhibited a statistically significant improvement in self-
assessed familiarity in six out of seven major learning components compared
with the control group. The results for attitudes towards the profession were
mixed. Students in the class test had greater statistically significant gains in
five areas primarily related to enthusiasm for the subject and sharing it with
others; however, other questions saw mixed or even decreased responses. A fu-
ture line of inquiry could investigate the causes of these decreases and potential
interventions to help students in an introduction to information systems course
have a greater appreciation for various issues of importance to the technology
profession. Additionally, HIPs are known to positively impact underserved stu-
dent populations. We hypothesized that the incorporation of the case study
HIPs into this introduction to information systems will lead to better outcomes
for these students. We were unable to directly assess underserved student pop-
ulations due to study limitations.

36

References

[1] Hart Research Associates. Fulfilling the american dream: Liberal edu-
cation and the future of work: Selected findings from online surveys of
business executives and hiring managers., 2018.

[2] Margaret E Beier, Michelle H Kim, Ann Saterbak, Veronica Leautaud,
Sandra Bishnoi, and Jaqueline M Gilberto. The effect of authentic project-
based learning on attitudes and career aspirations in stem. Journal of
Research in Science Teaching, 56(1):3–23, 2019.

[3] Robert G Bringle and Julie A Hatcher. Implementing service learning in
higher education. The Journal of Higher Education, 67(2):221–239, 1996.

[4] Jayne E Brownell and Lynn E Swaner. High-impact practices: Applying
the learning outcomes literature to the development of successful campus
programs. Peer Review, 11(2):26–31, 2009.

[5] Andrew Cox, Philippa Levy, Peter Stordy, and Sheila Webber. Inquiry-
based learning in the first-year information management curriculum. Inno-
vation in Teaching and Learning in Information and Computer Sciences,
7(1):3–21, 2008.

[6] Terrah J Goeden, Martha J Kurtz, Ian J Quitadamo, and Carin Thomas.
Community-based inquiry in allied health biochemistry promotes equity
by improving critical thinking for women and showing promise for in-
creasing content gains for ethnic minority students. Journal of Chemical
Education, 92(5):788–796, 2015.

[7] George D Kuh et al. Excerpt from high-impact educational practices:
What they are, who has access to them, and why they matter. Association
of American Colleges and Universities, 14(3):28–29, 2008.

[8] Tania D Mitchell. Traditional vs. critical service-learning: Engaging the
literature to differentiate two models. Michigan Journal of Community
Service Learning, 14(2):50–65, 2008.

[9] Brian K Payne, Lisa Mayes, Tisha Paredes, Elizabeth Smith, Hongyi Wu,
and ChunSheng Xin. Applying high impact practices in an interdisci-
plinary cybersecurity program. Journal of Cybersecurity Education, Re-
search and Practice, 2020(2):4, 2021.

[10] Bruce M Saulnier. Towards a 21 st century information systems educa-
tion: High impact practices and essential learning outcomes. Issues in
Information Systems, 17(1), 2016.

37

[11] Elaine Seymour, Douglass Wiese, A Hunter, and Susan M Daffinrud. Cre-
ating a better mousetrap: On-line student assessment of their learning
gains. In National Meeting of the American Chemical Society, pages 1–40.
Pergamon Amsterdam, 2000.

[12] Randy Stoecker, Amy Hilgendorf, and Elizabeth A Tryon. The unheard
voices: Community organizations and service learning. Temple University
Press, 2009.

38

Table 2: Responses for attitudes towards profession

Test-Pre Test-Post Diff. Control-Pre Control-Post Diff.
I am enthusiastic about the course subject.
3.76(1.03) 4.12(0.93) 0.36** 4.00(0.89) 3.86(0.73) -0.14
I am interested in taking or planning to take additional classes in this subject.
3.42(1.20) 3.91(1.16) 0.48** 3.43(0.87) 4.05(0.97) 0.62
I am willing to seek help from others (teacher, peers, TA) when working
on academic problems.
4.33(0.96) 4.15(0.94) -0.18 4.24(0.94) 3.90(0.77) -0.33
As business professionals, we are obligated to share our skills through outreach
with our community.
4.18(1.04) 4.55(0.90) 0.36* 4.33(0.86) 4.52(0.81) 0.19
It is critical that business students be able to communicate business
concepts with fellow business students, business leaders, and other stakeholders.
5.00(0.83) 5.09(0.80) 0.09** 4.95(1.02) 4.81 (0.75) -0.14*
It is critical that business students be able to communicate business concepts
with non-business audiences.
4.76(1.03) 4.91(0.95) 0.15 4.76(0.89) 4.67(0.91) -0.10
I am confident that I can do this subject.
3.67(0.85) 4.51(0.91) 0.85** 4.14(0.57) 4.33(0.80) 0.19
How likely are you to share your expertise by volunteering in your community?
4.30(1.13) 3.67(1.02) -0.64** 4.43(0.75) 4.00(0.77) -0.43*
When working in my field, I consider the end user to inform my project design
and communication.
4.13(1.07) 4.06(1.14) -0.07 4.29(0.72) 4.24(0.83) -0.05
When working in your discipline, it is critical to incorporate diverse
perspectives from outside your field.
4.64(1.05) 4.55(0.89) -0.09 4.57(0.68) 4.14(0.79) -0.43*
How likely are you to seek guidance from those outside your discipline
to inform your decision-making process?
4.09(0.91) 4.87(0.92) 0.78** 4.52(0.68) 4.57(0.87) 0.048
In our profession, it is critical that we serve the community by sharing
our expertise.
4.36(0.86) 4.36(0.99) 0.00 4.57(0.68) 4.33(0.87) -0.24
* Significant to 0.1; ** significant to 0.01

39

Closing the Gap: Building Internship
Programs for Career Readiness∗

Bilal Shebaro1,2, Jacqueline P. DeMuynck2, Charles R. Hauser2,3,
Andrea Holgado2,3, Rebecca S. Thompson2,4, and Paul J. Walter2,5

1Department of Computer Sciences
bshebaro@stedwards.edu

2Institute for Interdisciplinary Science (i4)
3Department of Biological Sciences

4Department of Chemistry
5Department of Mathematics

St. Edward’s University
Austin, TX 78704

Abstract

The need for academic institutions and organizations to provide in-
ternship opportunities for their students is vital for student academic and
career success, especially in STEM, given the market growth and com-
petition in this field. Building strong connections with industry partners
is essential for providing STEM students with experience working on
industry-level products and research. This paper details our institute’s
summer internship program, shares some insight into our contracts with
industry partners, and discusses how our summer interns are evaluated,
selected, and matched with projects for their summer internship. We
hope this paper will provide guidance for other academic institutions in-
terested in developing a similar program to grant more students access
to invaluable career development opportunities.

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

40

1 Introduction

As the 4th Industrial Revolution unfolds, collaborations between industry and
higher education are becoming ever more critical to ensure that academic insti-
tutions are graduating students with the knowledge and skills to be successful
and competitive in the workplace [3, 4, 5]. Student readiness can be enhanced
via internships that rely on cross-sector educational and professional networks.
In particular, internships provide an effective way to foster the inclusion of un-
derrepresented students in computing and STEM fields [1, 2]. In these efforts,
we established the National Science Foundation (NSF) funded (grant award
No. 1832282) Institute for Interdisciplinary Science (i4) [6] at our university
to support interdisciplinary research, training, and professional development
among STEM faculty, staff, and students. One of our most effective initia-
tives is the i4 Summer Internship Program. This program utilizes cross-sector
cooperative agreements with leading local and national STEM organizations
to provide students with fully-funded internship opportunities. It supports
underrepresented students pre- and post-internship and introduces them to
industry-level applications and products. If given the proper financial support,
i4’s Summer Internship program is easily replicable across other universities
and organizations. This paper will walk through i4’s process of creating coop-
erating agreements with companies, evaluating applicants, preparing students
for interviews, equitable hiring practices, weekly check-ins, and post-internship
growth opportunities.

Our compensation strategy is the key to i4’s Summer Internship Program’s
success. Participants in i4’s Summer Internship Program are paid ($5,000 for
full-time eight-week internships) solely through our institute’s budget. By pro-
viding companies with no-cost interns, i4 can attract industry partners and
unique internship experiences. Funding the internships creates highly mar-
ketable internship opportunities for our students, ensures they receive equitable
compensation, and strengthens the Institute’s connections and appeal among
local industry leaders.

This paper is organized as follows: Section 2 describes the call for new
industry partners and lists the major points of the cooperating agreements.
Section 3 discusses the student application process, evaluating applications,
and interviews with industry partners. Section 4 discusses the student hir-
ing and onboarding process. Evaluation data collection and post-internship
proceedings are discussed in Section 5, followed by our concluding remarks in
Section 6.

41

2 Building Connections with Industry Partners

A successful internship program starts with building connections and co-signing
cooperating agreements with industry partners. This section describes the
“Call for Partners” that we use to invite new industry partners every year
and provides insight into the agreements we develop for industry partners that
standardize expectations around providing safe, meaningful work experiences
for our students.

2.1 Call for Partners

The Call for Partners occurs in October through December prior to the in-
ternship period. Beginning with a description of our university and institute’s
mission statement, the Call for Partners explains the funding, modality, and
timeline of i4’s Summer Internship Program. Each year, this call is sent out
to i4’s established partners and is promoted on i4’s website, social media, and
LinkedIn accounts. The call is often sent directly via alumni or other personal
networks, which has been particularly useful for forming local partnerships.
The Call for Partners lays the foundation on which i4’s cooperating agree-
ments are built.

2.2 Cooperating Agreements

The i4 Summer Internship Program hinges upon a carefully crafted cooperating
agreement with industry partners. The i4 team works with company represen-
tatives to get the cooperating agreements fully signed by January prior to the
internship summer period. The University Risk and Compliance Office en-
sures our cooperating agreement contracts utilize language to create safe and
meaningful working conditions for our interns. The i4 summer interns are des-
ignated temporary university employees, ensuring that students are protected
by all federal and state laws while working off-campus at our industry partner’s
locations. These protections include but are not limited to Title IX, federal
and state labor laws, and worker’s compensation in the case of injuries during
employment. Additionally, the agreement asserts that the industry partner
will be solely responsible for ensuring a safe work environment in a commercial
setting free from hazards. Also, the i4 interns follow the university’s labor rules
for all student employees. As stated in the cooperating agreement, “no student
shall perform work in excess of twenty hours per week during the regular school
year or in excess of forty hours per week during the summer term.”

The cooperating agreements also restrict the power of the industry part-
ner’s non-compete requirements to avoid placing limitations on students’ ability
to seek similar work at different companies upon graduation. Because of this,

42

industry partners must provide any forms or agreements to be signed by the in-
tern, allowing the University Risk and Compliance Office to review and dispute
any clauses that put students at a disadvantage. The cooperating agreements
safeguard student labor and ensure the students can pursue their career goals
upon graduation.

The cooperating agreements not only place limitations and protections on
student internships, but also define what the industry partners must provide to
ensure a high-quality internship experience. The agreement states that indus-
try partners are primarily responsible for the supervision of the student interns
and the work performed by participating students, noting that an internal pro-
fessional will provide supervision of the intern with expertise in educational and
professional background in the field of experience. Students thus will be given
consistent and applicable mentorship for their internship projects, strengthen-
ing their skills and building their professional networks.

Once the cooperating agreements have been signed by both parties (the
industry partner and the university), the i4 team finalizes the list of industry
partners for placing students interns over the summer. After the cooperating
agreements are signed, we work with our partners individually to determine
the number of interns they can support, the types of potential student projects
they would have opportunities for, and what student expertise they are seeking.

3 Application Process and Student Selections

The i4 team initially screens applicants to create a short list of student can-
didates for each industry partner. Representatives from the industry partners
then interview their applicants to create the best pairs between students, part-
ners, and projects. This section details this process and the resources we
provide our students to succeed in an interview.

3.1 Application and Applicant Evaluations

The summer internship application is open during February. The application
consists of 20 questions, some with multiple components. Application questions
gather information regarding student demographics, contact information, pro-
fessional references, company preferences, resume, transcript, and several short
answer questions. Critical questions include:

1. What are your post-graduation career goals? How would an i4 internship
support you on the path towards those goals?

2. How would working for your selected companies align with your career
goals and expectations?

43

3. Describe any past job experience or previous internships.

4. Describe any life experience or additional information that would distin-
guish you from other applicants. In other words, why should the i4 team
select YOU?

Each member of the i4 team evaluates student applications using the rubric
shown in Figure 1. For the transcript and previous job experience pieces, the i4
team prioritized underrepresented students by altering the expected rankings.
Transcripts are scored 1 point for a 0 − 2.49 GPA, 2 points for a 3.5+ GPA,
3 points for a 2.5− 2.99 GPA, and 4 points for a 3.0− 3.49 GPA. This allows
i4 to provide crucial experiential learning and work experience to those who
might not meet the criteria for other student internship programs. Additionally,
i4’s applicant rubric reversed typical scores for job experience, giving 1 point
to those with “significant amount of prior relevant experience” and 4 points to
students with “no prior relevant job or internship experience.” By changing the
typical scoring system, the i4 Summer Internship Program attempts to increase
relevant work experience among underrepresented student populations.

Figure 1: Rubric used in evaluation internship applications

3.2 Interviews with Industry Partners

The i4 team selects a pool of potential interns based on their scores and the
availability of their preferred internship opportunities. Selected students inter-
view with two or three industry partners. Each industry partner is provided

44

two more applicants than they can support, allowing them to rank their pref-
erences and rule out any potential applicants.

Prior to interviewing with their assigned industry partners, the pool of
potential interns must attend an interview preparation event hosted by the
University’s Career and Professional Development Office (CAPD). The event
informs students on common interview practices and offers them a chance to ask
questions specific to their situation. Additionally, the CAPD representatives
invite students to schedule personalized mock interviews with their team.

After the students interview with their assigned companies, the i4 team
and industry partners determine the internship assignments. Following their
interviews, the company representatives send the i4 team a ranking of their
interviewees. The i4 team then compares students’ rankings across companies
and selects based on company and student preferences.

4 Hiring and Onboarding

Since hiring processes vary greatly between institutions, this paper will focus
primarily on onboarding. In April, i4 hosts a mandatory onboarding event
for the selected applicants. During this event, representatives from the Uni-
versity Risk and Compliance Office educate students on non-disclosure agree-
ments (NDAs), university protections, and identifying non-compete clauses.
The CAPD representative gives students tips on networking and making the
most of their internships. Finally, the i4 team describes the hiring process and
the students’ requirements before, during, and after their internships.

Alongside the regular university hiring documents, students are required to
sign some additional documents. First, students must sign an internship agree-
ment detailing all student requirements for their internship period, including
filing evaluations and post-internship assignments. The other remaining doc-
uments are the company-specific forms. As agreed upon in the cooperating
agreements, industry partners must send over their company-specific hiring
documents for University review. Once approved by the University Risk and
Compliance Team, these documents are shared with students for signature prior
to their internships. After the necessary documents are signed and the student
is hired, the i4 Summer Interns are officially ready to begin their internships
on their assigned start dates.

5 Internship Evaluation and Post-Internship Proceedings

Students are asked to record and share data about their internships during the
internship, including bi-weekly timesheets, weekly reflections, focus groups,
and pre-, mid-, post-internship surveys. For the weekly online reflections, the

45

interns write responses to prompts about how the internship experiences relate
to their course work or career goals. The pre/mid/post online evaluations ask
similar but more detailed questions. The in-person focus groups only occur
once towards the end of the internship period and allow the interns to provide
greater detail on their internship experiences. These evaluations allow the i4
team to understand the students’ experiences throughout the internship and
are a part of the quantitative and qualitative reporting for the grant and to
assess the measured benefit of the program to our students.

The i4 interns must complete several assignments after the internship. The
interns meet individually with a member of the i4 team to review their experi-
ences. This one-on-one meeting allows i4 team members to get a more in-depth
understanding of what the students accomplished during their internships and
what they liked and disliked about the program itself. These interviews pro-
vide the team with insight into improvements for the following year, usually
reflected in timeline edits, application changes, or discussions with specific
industry partners. In addition to the one-on-one meetings, students record
an informational video to talk about their internship experiences, learnings,
and tips for future interns. An edited collage of these videos is shared on our
YouTube page for promotional purposes, especially for future interns. The one-
on-one interviews and promotional video act as tools for information gathering,
program development, and marketing when appropriate.

Finally, the i4 interns are encouraged to present posters at an annual school-
wide symposium in the Fall semester following their internships. These posters
allow the i4 interns to share their discoveries with other students and artic-
ulate their work experience much like they would in a future job interview.
The students’ supervisors from their industry partners attend, which furthers
the interns’ networking opportunities and strengthens i4’s partnerships. Post-
internship presentations have become a valuable activity for all i4 participants
and help to disseminate internship information to others.

6 Conclusion

The Institute for Interdisciplinary Science (i4) Summer Internship Program
provides underrepresented students with industry experience and career devel-
opment opportunities vital for job placement in the 4th Industrial Revolution
workplace. At this point, several of our summer interns have accepted post-
graduation job offers with their assigned companies, and many have pursued
jobs or research in similar fields. The success of i4’s Summer Internship Pro-
gram can be attributed to its payment model, carefully crafted cooperating
agreements, inverted rubric for selecting potential interns, and ability to adapt
to participant feedback. This internship program can be replicated at other

46

institutions if given the proper support, granting more students access to in-
valuable career development opportunities.

7 Acknowledgement

This material is based upon work supported by the National Science Founda-
tion under Grant No. 1832282.

References

[1] Allison BrckaLorenz, Heather Haeger, and Christen Priddie. An examina-
tion of inclusivity and support for diversity in STEM fields. Journal for
STEM Education Research, pages 1–17, 2021.

[2] Maral Kargarmoakhar, Stephanie Lunn, Leila Zahedi, Monique Ross, Zahra
Hazari, Mark Allen Weiss, Michael Georgiopoulos, Ken Christensen, and
Tiana Solis. Understanding the experiences that contribute to the inclu-
sion of underrepresented groups in computing. In 2020 IEEE Frontiers in
Education Conference (FIE), pages 1–9. IEEE, 2020.

[3] Antonella Petrillo, Fabio De Felice, Raffaele Cioffi, and Federico Zomparelli.
Fourth industrial revolution: Current practices, challenges, and opportuni-
ties. Digital transformation in smart manufacturing, pages 1–20, 2018.

[4] Klaus Schwab. The fourth industrial revolution. Currency, 2017.

[5] Klaus Schwab and Nicholas Davis. Shaping the future of the fourth indus-
trial revolution. Currency, 2018.

[6] St. Edward’s University. Institute for interdisciplinary science (i4). http:
//www.stedwards.edu/i4.

47

Teaching Blockchain in Security∗

Bilal Shebaro
Department of Computer Sciences

St. Edward’s University
Austin, TX 78704

bshebaro@stedwards.edu

Abstract

The increased interest in using blockchain technology in real-world
and virtual applications makes it a desirable topic for students to learn
more about. The implementation details of such a technology includes
some of the major topics that are usually covered in introductory com-
puter security courses. Digital signatures and crypto hashing are among
the taught topics that are applied in the blockchain technology and im-
plemented in cryptocurrency systems such as Bitcoins and Ethereum.
Having all these computer security topics combined in one application
makes it attractive for course instructors to examine with students in
order to improve their course learning outcomes. Therefore, this paper
highlights on the importance of teaching the blockchain implementation
details in a computer security course, and provides an example of a class-
wide interactive student activity that mocks the blockchain implemen-
tation to enrich students with hands-on experience of these computer
security concepts.

1 Introduction

Instructors of introductory computer security courses are eager to include more
practicality while teaching their main course topics of cryptography (symmet-
ric and public-key cryptography), hashing, access control mechanisms for au-
thentication and authorization, software and network security, and so on. As
learning by doing is one successful method in teaching such concepts, using

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

48

suitable real world practical examples that are also of high interest to students
is crucial to improve the course learning outcomes. In this paper, we encourage
instructors of such a course to explore with their students the blockchain tech-
nology and its implementation details in the cryptocurrency systems. Not only
are such technologies of great interest to our students as they are shaping the
future of many technologies and applications [2], but also the detailed imple-
mentation of the blockchain technologies involves a great application of digital
signatures and crypto hashing. We also highlight the importance of teaching
how Bitcoins [11] and Ethereum [4] (using non-fungible tokens (NFTs) as an
example) work behind the scenes [12]. Doing so gives students an overview
of how these systems work, and provides them with a better understanding
of their capabilities and applicabilities, how to use them safely, their risks and
limitations, as well as how to use them in various applications and domains. We
finally provide an example of a hands-on student activity that instructors can
explore with their students. This activity allows students to learn and mock
the “behind the scenes” implementation of the mining process in blockchain,
and gain hands-on skills in applying digital signatures and verification using
PGP keys, and SHA-256 crypto hashing in real-world problems [8].

As this paper explores the importance of teaching blockchain and cryptocur-
rency among the topics taught in an introductory computer security course, the
rest of this paper is organized as follows: Section 2 discusses the motivations
behind teaching about blockchain technologies and what makes them suitable
to explore in a computer security course. Section 3 includes some listing of
topics in cryptocurrency implementations that directly link to the course key
concepts. Finally, we share an example of a hand-ons class activity that mimics
the Bitcoin blockchain system in Section 4, followed by our concluding remarks
in Section 5.

As a disclaimer, while this paper encourages instructors to teach blockchain
and uses Bitcoin and Ethereum as examples of blockchain cryptocurrencies,
teaching students how to trade or invest in these digital currencies is out of
scope and not endorsed in this paper.

2 The Motivation behind Blockchain

Blockchain technology was introduced in October 2008 as part of the Bitcoin
cryptocurrency system that decentralizes digital currency and uses a peer-to-
peer network to keep record of transactions and balances. It uses cryptogra-
phy as a central part of its protocol, in order to establish pseudonymous and
decentralized ledger transactions and currencies. Ethereum, Binance Coin,
Tether, Solana, and others are some examples of cryptocurrencies that use the
blockchain concept in their own modified versions. Ethereum, for example, uses

49

the concept of smart contracts that can define rules, like a regular contract,
through submitting transactions to the blockchain. Bitcoin, for example, uses
digital signature algorithms (same mathematical techniques used for a type of
encryption based on elliptic curves) to sign, verify, and proof the user identity
of transactions [9, 8]. In addition, it uses 256-bit SHA hashing algorithms (the
same level of security that banks and the military use to encrypt their sys-
tems) to justify the concept of proof-of-work (POW), which is the key concept
in trusting the transaction log of this currency. Hashing is used to also provide
a unique fingerprint of every transaction, recording and authenticating them.
The existence of these key concepts of computer security in blockchain and
cryptocurrencies is what makes them an appropriate example for discussion in
an introductory computer security course.

Additionally, instructors should strive to include examples and topics that
are of high interest to student in order to increase engagement and positively
affect the learning outcomes of the course. Given that Non-Fungible Tokens,
or NFTs, was among the most searched items in 2021 on the Google search
engines, it is currently of high interest to students [7]. As per an NFT indus-
try report by market tracker DappRadar, in 2021, the NFT space generated
over $23 billion in trading volume [5]. NFT transactions use the Ethereum
cryptocurrency as the most suitable cryptocurrency for such an application,
understanding how Ethereum works and the concept of smart contracts be-
comes relevant for students to learn how it works, and why NFTs can be done
in Ethereum and not other cryptocurrency, such as Bitcoin. Such an expla-
nation will not only enrich the students’ understanding of computer security
concepts, but it will also allow students to learn the reasons why some appli-
cations are suitable for one cryptocurrency over the other.

3 What to teach in Blockchain

Decentralized ledger system, online bidding system, Bitcoin cryptocurrency,
and NFT (using Ethereum) are among the recommended topics that we suggest
to explore in an introductory computer security survey course.

In a decentralized ledger system, financial transactions are stored in a chain
of blocks. Each transaction is digitally signed and distributed among all net-
work peers. Blocks are confirmed for their accuracy among the network peers
through hashing and mining, an interesting application that combines key con-
cepts in cryptography.

The study of how Bitcoin works is a relevant example to explain the key
role that data miners play in the accuracy of this cryptocurrency. When a
user creates a transaction, such a transaction gets digitally signed using the
user’s private key and is broadcasted to the Bitcoin peer-to-peer network users.

50

When we have enough transactions to form a block, data miners compete in
trying to validate the block through calculating a certain hash function to solve
the Proof Of Work (or POW - a consensus algorithm) concept. The use of hash
functions, POW, and building a trusted chain of blocks that all miners agreed
on its accuracy is the key success factor of the Bitcoin cryptocurrency. In
Section 4, we discuss how such an algorithm is mocked as a classroom activity
and how students are actively recording and mining transactions created among
each other.

Another attractive example is the discussion of NFTs, ranked among the
top searched terms in Google search engines in 2021, which allows users to
create and trade digital items with differing values. NFTs have been a recent
trend and students would be interested to learn about its relationship with the
Ethereum blockchain, and why it would not be possible to be implemented
in Bitcoin or other cryptocurrencies. On this matter, instructors could use
previously taught computer security concepts to elaborate that every NFT is
a unique token on the blockchain and cannot be replicated [10]. Each token
is a digital certificate stored on a secure digital database that can be publicly
verifiable as an intellectual property authenticated on a blockchain.

The reason why the Ethereum blockchain is a better suit to store NFTs
than the Bitcoin blockchain is due to the need to store massive files on the
blockchain. This is where the Interplanetary File System, or IPFS, comes
into play as each NFT digital asset is stored with an IPFS hash into the smart
contracts of the Ethereum blockchain [6]. The IPFS hashes are unique (because
they are directly derived from the data itself) and can address large amounts
of data, and the Ethereum blockchain stores these immutable and permanent
IPFS links into its blockchain transactions. Instructors can dive into more
details on how IPFS links work as a good hashing algorithm example, and
how they can differ from regular http links. Such discussion allows students to
understand the reason for using IPFS links over http links, and would be able
to differentiate the types of applications that are suitable for each link type.

The discussion on how NFTs are designed and their purpose in providing a
way to prove ownership of the work opens many doors for students’ creativity.
NFTs are designed to give users something that cannot be copied, which is the
ownership of the work (though original owners can still retain the copyright
and reproduction rights). This is because NFTs can be programmed to give
royalties to its creator every time it is sold to a new owner. While NFTs are
most known for selling and transferring ownership of anything digital (such
as drawings, music, code, etc.), we are starting to see more applications in
the digital and physical world that are being connected to NFTs. The idea
that NFTs can store information about the ownership of a particular digital
asset has also expanded to the physical assets [3]. NFT tokens have been

51

revolutionizing the ownership of tokenized art and intellectual property. For
instance, one of the physical NFT service providers called MATTEREUM [1]
defines a physical asset NFT as a unique digital token that denotes the right to
take physical custody of an object, complete with warranties, insurance, and
legal enforceability to create trust in trade. Such marketplaces are becoming
more popular in digital assets, which are shaping a new crypto world of trading.

4 Blockchain in Practice and Student Engagement

Developing a hands-on activity to explain a theoretical concept is key in stu-
dent learning. In the blockchain domain, we designed an in-class activity (which
could also be assigned as a homework or project) that allows students to cre-
ate a simplified version of the blockchain design in Bitcoin for the purpose of
practicing the concepts of SHA-256 crypto hashing and digital signatures using
the PGP public key algorithm.

The activity requires the use of a simple broadcasting messaging service
(provided by the instructor) that listens and displays broadcasted messages
to all network users. Students are given a unique public address (acting as
their network identifiers), and are all assigned the role of miners. In addition,
each student uses the GNU Privacy Guard software to generate their own PGP
public/private key pair and make their public keys available to the entire class
using the command:

gpg –keyserver keyserver.ubuntu.com –recv-key XXXXXXXX

where XXXXXXXX is the generated public key.

The activity consists of 4 steps:
(1)Transaction creation and signing
(2) Broadcasting
(3) Verification
(4) Validation

(1)Transaction creation and signing consists of student generated transac-
tion messages. For example, when Student A is performing a transaction with
Student B, Student B creates a transaction message and signs it with their
private key. The message format looks like:

“A’s public address, Amount, B’s public address”.
This message is then signed using the Student B’s public PGP key and (2)

broadcasted to the entire network of students in class. (3) These messages are
signatures made with private keys, which can be verified by any student using

52

public keys.
(4) Validation in Bitcoin is performed using SHA-256 hashing for its Proof-

of-Work (PoW). In our simplified version, all student miners record each broad-
casted transaction into their ledger (or block), with each block can hold up to
10 transactions. Therefore as soon as we have a complete block (10 transac-
tions), students will start mining their blocks while still listening to incoming
transactions. We made mining the block a similar process to what happens
in Bitcoin by requiring that the hash of blocks be with a certain predefined
format, for example, a SHA-256 block hash that must start with 2 zeros. Block
miners will need to try to find a random number that they can add to their
block so that the hash of the block combined with that number can match the
predefined hash criteria, mimicking what happens in Bitcoin hashing. This
mining process will require a lot of hashing computations and the first miner
who can find such a number and block hash value will announce it to the net-
work. All other miners can easily verify the correctness of this number and the
block hash value. The student miner of that block will be announced as the
winner of mining that block. The activity continues in building more blocks,
however, new blocks should start with the hash of the previous block to keep
them in sequence, hence forming a blockchain.

This class activity will require students to write their own code to digitally
sign transactions, encode them, and store them into blocks. Students would
also use standard SHA hashing libraries for mining and computing their block
hashes.

While the learning outcomes of such an activity directly match those out-
comes in the typical Computer Security course, we plan to expand this activity
in future iterations to make a simple trading website of digital artwork avail-
able to students with each picture represented by an NFT (with an IPFS link).
Students could then implement a simple version of the Ethereum blockchain
and design their own smart contracts that store the IPFS links and other owner
information in their blockchain.

5 Conclusion

This paper highlights the benefits of teaching the blockchain technology and
its implementation details to students in an introductory computer security
course. These benefits come as a result of applying several key concepts of
cryptography in blockchain examples, such as Bitcoin transactions and NFTs,
which may be of high interest to students and highly relevant. While blockchain
and cryptocurrencies can be their own course, this paper serves as a recommen-
dation for general Computer Science curriculums that have an Introduction to
Computer Security course as one of its courses without having Blockchain and

53

Cryptocurrencies as a dedicated course.

References

[1] Mattereum: Enabling trust for physical asset nfts. https://mattereum.
com.

[2] BlackTie Academy. How NFTs are shaping our world. https://
blacktieacademy.com/altcoins/how-nfts-are-shaping-our-world.

[3] NFTically Blog. Can I convert physical art into NFT? https://www.
nftically.com/blog/can-i-convert-physical-art-into-nft/.

[4] Vitalik Buterin. Ethereum whitepaper. https://ethereum.org/en/
whitepaper/.

[5] DappRadar. 2021 Dapp industry report. https://dappradar.com/blog/
2021-dapp-industry-report.

[6] IPFS Docs. Mint an NFT with IPFS. https://docs.ipfs.io/how-to/
mint-nfts-with-ipfs/#a-short-introduction-to-nfts.

[7] The Indian Express. Google trends data shows interest in ’NFT’ is
now greater than ’crypto’. https://indianexpress.com/article/
technology/crypto/google-trends-data-reveal-interest-in-nft-
is-now-greater-than-crypto-7689897.

[8] Azzief Khaliq. The good, the bad and the ugly of bitcoin security. https:
//www.hongkiat.com/blog/bitcoin-security.

[9] Bitcoin Magazine. Bitcoin security: Trustless private messaging with pub-
lic and private key cryptography, 12 2021. https://bitcoinmagazine.
com/technical/trustless-private-messaging-bitcoin-security.

[10] The Verge Mitchell Clark. NFTs, explained. https://www.theverge.
com/22310188/nft-explainer-what-is-blockchain-crypto-art-
faq.

[11] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Bit-
coin. org. Disponible en https://bitcoin. org/en/bitcoin-paper, 03 2009.

[12] Gayan Samarakoon. Bitcoin fundamentals: Step by step explanation of
a peer-to-peer bitcoin transaction. https://samarakoon-gayan.medium.
com/bitcoin-fundamentals-a5d62fe98bac.

54

Computer Science Fundamentals Open
Educational Resource: A Video-Based
Practice to Learning Programming∗

Christian Servin and Nadia Karichev
Computer Science & Info. Tech. Systems

El Paso Community College
El Paso, TX, 79915

{cservin1, nmerzlya}@epcc.edu

Abstract
Computer Science Fundamentals (CSF) courses have become a pop-

ular study area from K-12 to higher education levels (i.e., community
and technical colleges, and four-year institutions). Different educational
approaches have been proposed to disseminate concepts in these areas
(traditionally through books and online platforms including wikis, web-
sites, forums). Although several resources are available to assist stu-
dents in learning tricks or “how-to” for specific items, some lack curricu-
lar guidance to lead to a constructivist learning approach. Some of the
other available resources rely on a solid mathematical background, which
many potential computer science students might not have, discouraging
students from pursuing a computer science or programming field, partic-
ularly from a K-12 environment and community colleges. In this paper,
we report the experience of deploying an Open Educational Resource
(OER) used for the CSF in a community college that hosts early col-
lege high school, workforce, and transfer students as part of the teaching
community.

1 Introduction

The Computer Science Fundamentals (CSF), a.k.a., CS-I, CS-II, and CS-III,
belong to the first two years in computer science education. Nowadays, dif-

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

55

ferent institutions offer these courses (e.g., K-12, community college, four-year
universities). Although many institutions might follow curricular guidelines,
recommendations, and best practices in these courses, traditional books in
CS might consider additional material and concepts that might be useful or,
in other cases, redundant to courses depending on a variety of reasons (e.g.,
articulation agreements between local colleges/universities, recommendations
from higher education authorities, specialized programs).

Furthermore, nowadays, books are designed with companions and other re-
sources specified for specific courses, and instructors may or may not use them
in their instruction, provoking students to purchase the entire book regardless
of their decisions. Through the transition of face-to-face to online instruc-
tion due to the COVID-19 pandemic, many instructors revamped their teach-
ing structure, style, and even the dissemination format, including resources
and materials used at the “classroom.” Codio, Zybooks, and other platforms
gain popularity due to their auto-graded assessments and learning materials.
Although these platforms provide valuable and relevant material for specific
courses, many instructors considered these platforms complementary educa-
tion resources for the material covered in the book or the class. Nowadays,
vast online material (such as videos, wikis, question and answer knowledge
market websites, tutorials). However, this material often does not follow a se-
quence of practice; it assumes specific background, knowledge, or skills before
understanding a particular topic; the material is in a different programming
language; is not aligned to a common curricular guideline recommendation/ob-
jectives. In this paper, we present the CS OER: Open Educational Resource
for Computer Science Fundamentals designed for students in a two-year com-
munity college that hosts transfer students from a four-year college and high
school.

This project was developed and implemented as part of the Open Edu-
cational Resources Course Development and Implementation Grant Program.
The project received the award and funding from the Governor’s Emergency
Education Relief Fund (GEER).

2 Open Educational Resources and Computer Science
Education

Open Educational Resources (OERs) are important in education, primarily in
higher education levels, for several reasons:

• they are open licensed (permits that anyone can use the work, modify it,
and distributed based on the discretion of the author)

• they are free and available for anyone (student/instructor/researcher)

56

depending on the available repository

• they are motivated to provide an alternative and enhanced educational
paradigm from the current educational models.

These characteristics are significant and attractive to many small institutions
such as community college or technical colleges that pursue similar objectives
in their mission.
A Need for OER: In 2020, The Texas Higher Educational Coordinating
Board (THECB) requested a solicitation to develop the Texas OER for different
knowledge areas including. This was in response to the emergency commission
department from the state of Texas. Due to the COVID-19 crisis and the
abrupt migration to online classes, many institutions recognized the need to
“revamp” many courses to online format. The Community College face relevant
challenges than four-year institutions, such as:

• community colleges have a large non-resident population, this varies from
international students to military students who take courses at different
colleges while deployed.

• serve underserved student populations: including Early College High
School (ECHS)/Dual Credit students who are traditionally underserved
students, including those from low-income families, color, first -generation
attend to college, and English language learners.

• assist part-time students with concurrent enrollment at a four- year col-
lege. Students who might take CS-I at the university level while complet-
ing their math requirements at the community colleges or taking summer
courses at the college to speed up their graduation. These students might
have had a book/resource at a different institution with different styles,
emphasis, programing language, learning objectives, to mention a few.

• create roadmaps on the CSF courses: creating road maps with multiple
“access points” permit to assist students from a different context to “go
back” to specific areas and learn the competencies needed instead of tak-
ing a specific course or module. For example, a student who took CS-I
class at a high school, and is currently taking a CS-II at a community
college, might know the “why,” however, details or semantics might be
missing, and the student can find the “how” without excessively deviating.

• reduce/avoid cheating: Video watch can help decrease cheating or finding
answers from the web and perform “copying and pasting.” A student
is likely to perform such behavior when the student is under pressure
when he/she has the opportunity to do it, or rationalizes the opportunity

57

making the action least unethical [1]. OER does not necessarily prevent
students from committing plagiarism but allows students to read, watch,
and pay attention to the OER explanations that discuss the subjects
explained in the course and not random answers from a search engine.

• achieve learning outcomes through videos: explaining how programs work
from scratch requires a visual demonstration other than showing the code
as the final result. Video watch can increase learning outcomes since it
describes a step-by- step formulation of the problem and its solution as
shown in various works such as [4].

2.1 Related Work

Although several existing OERs are designed for similar courses, there are
no existing resources available for the particular characteristics mentioned in
previous section. The work proposed uses a unique alignment to curricular
guidelines that focus on the first two-year core in computer science. Although
there are well-known best practices proposed in proceedings and NSF funded
projects, this project considers the community college environment, including
ECHS/Dual Credit High school, P-Tech courses, regular community college,
and the first two-year material the regular four-year colleges. Finally, many
different videos can be found on YouTube. However, there is no uniform in the
material that has been presented, and the captions are accurate to the material
presented. From the available open educational resources used for computer
science education such as [3].

3 Proposed Open Educational Resource (OER) in Com-
puter Science

The computer science fundamentals OER hosted at https://www.thecsoer.com/,
offers three main contributions to the CS educational community:

• A mapping and alignment between the ACM curricular standards [2] and
the Texas Essential Knowledge Skills (TEKS);

• A 50+ programming videos covering learning outcomes that incorporate
the learning outcomes from the mapping; and

• A GitHub repository for each code presented in the videos

Additionally, the project provides detailed documentation for instructors,
showing the mapping for each learning outcome. This instrument assists in-
structors in identifying and recognize potential material to be adopted into any

58

CSF course. GitHub allows students to “fork” a program and extended it based
on instructions that the instructor would like to assign. The programs serve
as a draft for future implementations.
Content, Topics, and Objectives: The OER consists of 14 Chapters (seven
chapters for CS-I and seven for CS-II). Each chapter has three to five videos
(depending on the complexity of the chapter). We identified topics from several
CS-I and CS-II courses based on traditional courses and best practices in the
computer science community.
Curricula Alignment: Currently, several curricular guideline recommenda-
tions are designed based on the educational level the institutions offer com-
puting courses. For example, for higher education institutions (i.e., community
and technical colleges, four-year universities) follow the ACM/IEEE curricular
guidelines, wherein a K-12 environment might follow the curriculum provided
by the College Board, CSTA, or code.org (among others).

Since community colleges share a large diversity of students, the design and
implementation of the OER focus on serving these communities, including K-
12 students, traditional community col- lege, four-year transfer, and particular
workforce need for technical.

• The ACM Curricular Guidelines: This OER’s content aligns to The
ACMComputer Science Curricular Guidance for Associate-Degree Trans-
fer Programs with Infused Cybersecurity. Most accredited four- year
institutions worldwide follow these curricular guidelines as well-known
standards to adopt in the undergraduate curriculum and keep consistent
objectives.

• The Texas Essential Knowledge Skills: In Texas, K-12 schools follow
the Texas Essential Knowledge Skills (TEKS). The three approved Texas
Computer Science Courses that are commonly used in high schools are:
Computer Science 1 (130.421), Computer Science 2 (130.4220), and AP
Computer Science-A.

Coverage and Distribution of Learning Outcomes

Active faculty in curricular development and instruction studied the curricular
recommendations and compiled the Learning Outcomes (LO) provided at these
courses. These learning outcomes are associated with the contemporary topics
offered in CS-I and CS-II. Next, they developed the video based on the LO
selection. Figure 1 shows the total number of learning outcomes mapped from
the four curricular recommendation and guidelines per course (CS1 and CS 2).
The percentage indicates the LO covered per recommendation guidelines.
Observations and Challenges

59

Figure 1: Mapping of Learning Outcomes from CS-I, CS-II based on ACM
CCECC, TEKS CS 1 and CS 2, and AP-CS

• Selected ACM CCECC’s KAs used in the FCS OER (with their respec-
tive coverage percentage) include the following: Software Development
Fundamentals (94.74%), Algorithms and Complexity(82.35%), Program-
ming Languages (50.00%), and Social Issues and Professional Practice
(50.00%). Due to the nature of the FCS, a majority of the KAs had
a lower coverage of LO, such as Computational Science, Information
Management, Networking and Communications, Parallel and Distributed
Computing, Platform-based Development, and Systems Fundamentals
with a 0% of coverage.

• Exclusion of learning outcomes from the TEKS CS-I, CS-II, and the AP
CS-A in the OER videos. These learning outcomes are overly specific,
and it was a challenge to address to illustrate them. For example:

CON-1.C.4 Values of type double can be rounded to the nearest integer
by (int)(x + 0.5) or (int)(x – 0.5) for negative numbers.

However, selected videos provide an “approximation learning outcome”
along with a rationale to address its selection and replacement.

• Some learning outcomes have different levels of Bloom’s taxonomy: the
learning outcome inclusion is debatable. Depending on the context or
the proficiency of instructors might select learning outcomes based on the
cognitive level of Bloom’s Taxonomy. For example, the learning outcome:

130.421.c.6.l Understand the binary
representation of numeric and non-numeric data in computer systems

60

was incorporated in Chapter 1, along with primitive data types. How-
ever, during the design of this work, the designers on the videos were
considered to have more effective to illustrate this topic under Chapter
4: Functions/Methods.

4 Evaluation and Validation

The OER project consists of two evaluation components. Internal evaluation
corresponds to the content and material evaluation through learning outcomes
using controlled sections and external institution evaluations (project’s part-
ners). For the internal the project’s administrators kept track of the following
metrics to evaluate the usefulness and usability of the implemented system:

• Evaluation Instruments: A total of three tests; 10 quizzes that evaluate
the material covered through each unit. A standardized (district-wide)
final test for CS 1 and 2.

• Number of withdrawals or failing grades after using the OER project in
CS 1 and 2.

• Compare students’ saving costs for CS 1 students from the Spring 2021
semester vs. the Fall 2021 and the Spring 2022 semesters.

For the external project evaluation, the OER will be provided to leaders on
partner institutions, along with a survey to evaluate the OER.

References

[1] Ibrahim Albluwi. Plagiarism in programming assessments: A systematic
review. ACM Trans. Comput. Educ., 20(1), December 2019.

[2] ACM Committee for Computing Education in Community Col-
leges (CCECC). ACM Computer Science Curricular Guidance for
Associate-Degree Transfer Programs with Infused Cybersecurity. Associ-
ation for Computing Machinery, New York, NY, USA, 2017.

[3] Beryl Hoffman and Barbara Ericson. CSAwesome: A Free Curriculum and
Ebook for Advanced Placement Computer Science A (CS1 in Java), page
1352. Association for Computing Machinery, New York, NY, USA, 2021.

[4] Colin Moore, Lina Battestilli, and Ignacio X. Domínguez. Finding Video-
Watching Behavior Patterns in a Flipped CS1 Course, page 768–774. As-
sociation for Computing Machinery, New York, NY, USA, 2021.

61

Extended Precision Multiplication using
a Message Passing Interface (MPI)∗

Bill McDaniel1 and Evan Lemley2

1Department of Computer Science
University of Central Oklahoma

Edmond, OK 73034
billmcd@roesner.us

2Center for Research and Education in Interdisciplinary Computation
College of Mathematics and Science

University of Central Oklahoma
Edmond, OK 73034

elemley@uco.edu

Abstract

This tutorial describes the Trachtenberg System [2] of multiplica-
tion using a Message Passing Interface (MPI) [1] running on multiple
processors. Multiplication on a single processor is given first, then mul-
tiplication using multiple processors follows.

1 Single Processor Implementation

The essential logic of the non-MPI code is given as:

1. accept 2 strings (all digits)
2. make sure that they are the same length
3. convert from characters to numbers
4. do the multiplication
5. return the answer (as a string)

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

62

The original version of the multiplication routines were written as 2 func-
tions in C++, and is shown below.

Listing 1: This is the main multiplication routine

s t r i n g mult ip ly (s t r i n g a , s t r i n g b)
{

int j , k , l s , r s ;
s t r i n g ans = "" ;

// make the s t r i n g s equa l l eng th , j i c
while (a . s i z e () != b . s i z e ())

i f (a . s i z e () < b . s i z e ()) a = ' 0 '+a ; else b = ' 0 '+b ;

// conver t from charac t e r s to numbers so the
// mu l t i p l i c a t i o n s w i l l work c o r r e c t l y
int numdigits = a . s i z e () ;
for (int i =0; i<numdigits ; i++) { a [i]−= ' 0 ' ; b [i]−= ' 0 ' ; }

// do the mu l t i p l y − ' l s ' i s the p o s i t i o n o f the
// l e f t s i d e o f the group to be mu l t i p l i e d ,
// and ' rs ' i s the p o s i t i o n o f the r i g h t s i d e
l s = r s = numdigits −1;
int car ry=0;
do

{
for (k=l s , j=r s ; k<=rs ; k++,j−−) carry += a [j] ∗ b [k] ;
hand le_carr i e s (carry , ans) ;
i f (l s > 0) l s −−; else rs −−;

}
while (r s > −1);

// take care o f any ex t ra va l u e s in ' carry '
while (car ry) hand le_carr i e s (carry , ans) ;
return ans ;

}

Listing 2: The following function converts the rightmost digit to a character
and prepends it onto the answer then strips the rightmost digit

void hand le_carr i e s (long long int & carry , s t r i n g & ans)

63

{
ans = char (car ry%10+ ' 0 ') + ans ;
car ry /= 10 ;

}

Notes:

1. The variable ans will contain the product when the algorithm is finished.
2. The handle_carries routine will pick off the rightmost digit, convert it

to a character, then prepend it to the answer, creating the answer right
to left.

3. A machine readable version of the code can be found at www.roesner.
us/~billmcd

4. There may be a question about the maximum value for carry. Testing
two 3000 digit numbers, we found that the maximum number for carry
is 269990, so overflow is not a major concern.

This particular system for multiplication is not widely known, so, a specific
example is shown below in Figure 1. The reader will note that the answer is
created in reverse order (right to left).

2 Multiple Processor Implementation

Converting the above algorithm over to run using multiple processors is fairly
straightforward. The approach used was to have one processor for each output
digit.

The objective of this implementation was to have the calculations for various
instances of t done at the same time, on different processors.

The MPI version of this code was run on the Buddy supercomputer at
the University of Central Oklahoma. This resource was funded by a National
Science Foundation grant (OAC 1429702) and consists of 31 general purpose
nodes each with two ten-core Intel Xeon CPUs and 64 GB of RAM, and four
high-memory nodes (identical to the general purpose nodes except for RAM
size of 128 GB), and two GPU nodes each with one NVidia Tesla K-40 card.

Message Passing Interface (MPI) was introduced as a method of paralleliz-
ing code in 1994 and has continued to be one of the primary ways code is run
in parallel on high performance computing platforms.

The MPI functions that are used in the program are shown in Figure 2.
Default values are used whenever possible.

64

Figure 1: Given two 4 digit numbers that are to be multiplied together, where
the digits are represented by letters, p is determined first, then o, then n, and
so on. The variable t is a temporary variable to hold intermediate values.

65

Figure 2: MPI functions used in the multiplication program

The program is basically divided into 3 parts.

1. if world_rank = 0 then send the endpoints of the various groups to each
processor and wait for the results to be returned.

2. if (world_rank > 0 && world_rank <= N ∗ 2− 1) then accept ls and
rs and do the multiplications.

3. if (world_rank = N ∗ 2) then take care of the leftmost digit.

A quick summary of the logic of the program follows:

• Get the number of processes

• Get the rank of the process

• Get the name of the processor

66

pseudocode for process 0

determine the value of the left side and the right side
send the appropriate values of ls and rs to each process

for (i=1; i <= N∗2−1;i++)
send ls to process i
send rs to process i
send a value of 0 (carry) to process 0
if (ls > 0) ls−−; else rs−−;

receive the digits back (right to left)
for (i=1; i <= N∗2; i++)

receive 1 digit
result [N∗2−i]= digit;

print the result - skip leading zeros

pseudocode for processes = 1...N ∗ 2− 1

get ls and rs from ps 0
do the computations

for (k=ls, j=rs; k <= rs; k++,j−−) carry += a[j]∗b[k];
read tcarry from the previous process then add tcarry to carry
pick off the rightmost digit and send to ps 0
compute the new value for carry and send to the next process

carry = carry \% 10
send carry to the next process

code for process N*2
get the carry from the previous process
send the carry to ps 0

Finalize the MPI environment

Since the number of processes required has to be determined before the
program starts, a shell script is used to determine some of the run time con-
stants.

Listing 3: bash script to determine number of processes and other run-time
constants before actual run begins

#!/ bin / bash
#
echo " en t e r i ng ␣mult ip ly . sh"
u=$1
v=$2

67

i f [[$u && $v]]
then

determine the l e n g t h s o f the 2 parameters
lu=${#u}
l v=${#v}

se t lm to the l e n g t h o f the l onger s t r i n g
i f [${ lu } −gt ${ lv }] ; then lm=$lu ; else lm=$lv ; f i
echo "␣−length ␣ o f ␣ the ␣ l ong e s t ␣ s t r i n g ␣=␣"$lm

ca l c u l a t e the number o f t a s k s needed
p=$ ((lm∗2+1))
echo "␣−number␣ o f ␣ ta sk s ␣"$p

echo "␣−compi l ing "
mpicc mult ip ly . c

e x i t on compi le time error
i f [$? != 0] ; then exit ; f i

echo "run␣ the ␣program"
mpirun −np $p "a . out" $u $v $lm

else
echo "usage : ␣bash␣mult ip ly . sh␣number␣number"

f i

Students in a senior level parallel programming course (or related) could be
first asked to develop a single processor algorithm for Trachtenberg multipli-
cation, then asked to develop a multiprocessor version of the single-processor
code.

3 Acknowledgements

The code and scripts in this tutorial were developed and tested on the Buddy
Supercomputer at the University of Central Oklahoma, which was funded by
National Science Foundation grant, OAC-1429702.

References

[1] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-

68

dard Version 4.0, June 2021.

[2] Jackow Trachtenberg, as translated by Ann Cutler, and Rudolph McShane.
The Trachtenberg Speed System of Basic Mathematics. Doubleday, Garden
City, NY, USA, 1960.

69

