
The Journal of Computing
Sciences in Colleges

Papers of the 34th Annual CCSC
South Central Conference

March 31st, 2023
Stephen F. Austin State University

Nacogdoches, TX

Bin Peng, Associate Editor Bingyang Wei, Regional Editor
Park University Texas Christian University

Mustafa Al-Lail, Regional Editor
Texas A&M International University

Volume 38, Number 7 April 2023

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners 7

Welcome to the 2023 CCSC South Central Conference 8

Regional Committees — 2023 CCSC South Central Region 9

Reviewers — 2023 CCSC South Central Conference 10

Keynote Speaker 11
Paul R. Gault

Supporting Low-Income, Talented Undergraduate Students in En-
gineering and Computing Sciences with Scholarships and Mentor-
ing 12

Dulal C. Kar, Scott A. King, and Dugan Um, Texas A&M University-
Corpus Christi

Iterative Efforts for Improving Learning Experience in Software
Engineering 27

Pradip Peter Dey, Mohammad Amin, Bhaskar Raj Sinha, National Uni-
versity

Bug Battles: A Competition to Catch Bugs in Different
Programming Languages 36

Waleed Alhumud, Abdullah Alenzi, Renée Bryce, Yuan Li, University of
North Texas; Nasser Alshammari, Jouf University

Preparing ABET Accreditation for An Undergraduate Software
Engineering Program 46

Jicheng Fu, Myungah Park, Gang Qian, Hong Sung, Thomas Turner,
University of Central Oklahoma

Comparative Sequential and Parallel Discrete Signal Convolution
Algorithms: A Case Study 55

Caleb Sneath, Eduardo Colmenares, Midwestern State University

3

Developing Incident Response-Focused Cybersecurity
Undergraduate Curricula 65

Junghwan “John” Rhee, Myungah Park, Fei Zuo, Shuai Zhang, Gang
Qian, Goutam Mylavarapu, Hong Sung, Thomas Turner, University of
Central Oklahoma

Hands-On Lab Development for Policy Violations in
Voice Personal Assistants 75

Alejandra Enriquez Sanchez, Oludare Ogunbowale, Olayinka Adetola,
Na Li, Prairie View A&M University

Programming Many-Core Architectures (GPUs) Using CUDA
— Conference Tutorial 85

Eduardo Colmenares, Midwestern State University

Designing Learning Outcomes and Competencies using Bloom’s
for Computing
— Conference Tutorial 86

Markus Geissler, Koudjo Koumadi, Pam Schmelz, Christian Servin,
Cara Tang, Cindy Tucker, Committee for Computing Education in Com-
munity Colleges

4

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:
Scott Sigman, President (2024),
ssigman@drury.edu, Mathematics and
Computer Science Department, Drury
University, Springfield, MO 65802.
Karina Assiter, Vice
President/President-Elect (2024),
KarinaAssiter@landmark.edu, Computer
Science, Landmark College, Putney, VT
05346.
Baochuan Lu, Publications Chair
(2024), blu@sbuniv.edu, Division of
Computing & Mathematics, Southwest
Baptist University, Bolivar, MO 65613.
Brian Hare, Treasurer (2023),
hareb@umkc.edu, School of Computing
& Engineering, University of
Missouri-Kansas City, Kansas City, MO
64110.
Cathy Bareiss, Membership Secretary
(2025),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical &
Engineering Sciences, Bethel University,
Mishawaka, IN 46545.
Judy Mullins, Central Plains
Representative (2023),
mullinsj@umkc.edu, University of
Missouri-Kansas City, Kansas City, MO
(retired).
Michael Flinn, Eastern Representative
(2023), mflinn@frostburg.edu,
Department of Computer Science &
Information Technologies, Frostburg
State University, Frostburg, MD 21532.

David R. Naugler, Midsouth
Representative (2025),
dnaugler@semo.edu, Brownsburg, IN
46112.
David Largent, Midwest
Representative(2023),
dllargent@bsu.edu, Department of
Computer Science, Ball State University,
Muncie, IN 47306.
Mark Bailey, Northeastern
Representative (2025),
mbailey@hamilton.edu, Computer
Science Department, Hamilton College,
Clinton, NY 13323.
Shereen Khoja, Northwestern
Representative(2024),
shereen@pacificu.edu, Computer
Science, Pacific University, Forest Grove,
OR 97116.
Mohamed Lotfy, Rocky Mountain
Representative (2025),
mohamedl@uvu.edu, Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Tina Johnson, South Central
Representative (2024),
tina.johnson@mwsu.edu, Department of
Computer Science, Midwestern State
University, Wichita Falls, TX 76308.
Kevin Treu, Southeastern
Representative (2024),
kevin.treu@furman.edu, Department of
Computer Science, Furman University,
Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2023),
bcdixon@csuchico.edu, Computer
Science Department, California State
University Chico, Chico, CA 95929.

5

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor,
bin.peng@park.edu, Department of
Computer Science and Information
Systems, Park University, Parkville, MO
64152.
Ed Lindoo, Associate Treasurer & UPE
Liaison, elindoo@regis.edu, Anderson
College of Business and Computing,
Regis University, Denver, CO 80221.
George Dimitoglou, Comptroller,
dimitoglou@hood.edu, Department of

Computer Science, Hood College,
Frederick, MD 21701.
Megan Thomas, Membership System
Administrator,
mthomas@cs.csustan.edu, Department
of Computer Science, California State
University Stanislaus, Turlock, CA
95382.
Karina Assiter, National Partners
Chair, karinaassiter@landmark.edu,
Landmark College, Putney, VT 05346.
Deborah Hwang, Webmaster,
hwangdjh@acm.org.

6

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Level Partner
Google Cloud

GitHub
NSF – National Science Foundation

Gold Level Partner
zyBooks
Rephactor

Associate Level Partners
Mercury Learning and Information

Mercy College

7

Welcome to the 2023 CCSC South Central Conference

The 2023 South Central Steering Committee is very pleased to welcome
everyone to our 34th annual conference hosted by Stephen F. Austin State
University in Nacogdoches, Texas. Unlike the previous two years, our con-
ference chair and host, Anne Marie Eubanks, has provided infrastructure and
support for the in-person delivery of our conference this year.

For our 2023 conference, we have seven papers, three tutorials, and both
student and faculty posters scheduled for the program. This year the Steering
Committee chose 7 of 15 papers through a double-blind review process for a
paper acceptance rate of 46%. Sixteen colleagues across the region and country
served as professional reviewers and we recognize the expertise and guidance
they all so thoughtfully contributed to the selection of our 2023 conference
program.

The Steering Committee continues to seek colleagues to host the confer-
ence in the future and to join our community of computer science educators
to enrich our curricula and provide innovative pedagogy for our students. We
invite and encourage our fellow members of the South Central region to attend
our steering committee business meeting on Friday, March 31, 2023 after the
conference reception and banquet. Fellow educators and colleagues are encour-
aged to join in our efforts to involve more of our community in the planning
and execution of the conference in the future.

We extend a very warm and delightful welcome to our presenters and at-
tendees who continue to promote computer science education and camaraderie
to our region. To all members of our 2023 Steering Committee, thank you
again for your help in organizing the conference and your gracious efforts in
delivering our conference during such challenging times.

Anne Marie Eubanks
Stephen F. Austin State University

Conference Chair and Host

Bingyang Wei
Texas Christian University
Regional Editor Co-Chair

Mustafa Al-Lail
Texas A&M International University

Regional Editor Co-Chair

8

2023 CCSC South Central Conference Steering
Committee

Conference Chair
Anne Marie Eubanks Stephen F. Austin State University, TX
Past Conference Chair
Shyam Karrah . University of Texas at Dallas, TX
Papers Chair
Bingyang Wei . Texas Christian University, TX
Mustafa Al-Lail Texas A&M International University, TX
Reviewer Chair
Lasanthi Gamage .Webster University, MO
Julie Smith . University of North Texas, TX
Panels and Tutorials Chair
Jeffrey Zheng . Stephen F. Austin State University, TX
Posters Chair
Christain Servin . El Paso Community College, TX
Moderator Chair
Abena Primo .Huston-Tillotson University, TX
Publicity Chair
Eduardo Colmenares-Diaz Midwestern State University, TX
Nifty Assignments Chair
Michael Kart .St. Edward’s University, TX
At-Large Member
Tim McGuire . Texas A&M University, TX

Regional Board — 2023 CCSC South Central Region

National Board Representative
Tina Johnson .Midwestern State University, TX
Registrar
Anne Marie Eubanks Stephen F. Austin State University, TX
Treasurer
Bilal Shebaro . St. Edward’s University, TX
Regional Editor
Bingyang Wei . Texas Christian University, TX
Mustafa Al-Lail Texas A&M International University, TX

9

Reviewers — 2023 CCSC South Central Conference

Laura Baker . St. Edward’s University, Austin, TX
Eduardo Colmenares-Diaz . . .Midwestern State University, Wichita Falls, TX
Andrea EdwardsXavier University of Louisiana, New Orleans, LA
Lasanthi GamageWebster University, Webster Groves, MO
Thoshitha Gamage .
. Southern Illinois University Edwardsville, Edwardsville, IL
David Gurney Southeastern Louisiana University, Hammond, LA
Tina Johnson Midwestern State University, Wichita Falls, TX
Srinivasarao Krishnaprasad . . . Jacksonville State University, Jacksonville, AL
Vipin MenonMcNeese State University, Lake Charles, LA
Jose Metrolho .
. Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal
Muhammad RahmanClayton State University, Morrow, GA
Ken Rouse . Letourneau University, Longview, TX
Michael Scherger Texas Christian University, Fort Worth, TX
Bilal Shebaro . St. Edward’s University, Austin, TX
Bingyang Wei Texas Christian University, Fort Worth, TX
Fei Zuo . University of Central Oklahoma, Edmond, OK

10

Keynote Speaker – Paul R. Gault

Paul R. Gault is a seasoned business
executive and technology leader with
over 25 years of experience in the soft-
ware industry. He currently serves as the
Senior Vice President of Customer Suc-
cess and Technical Support at Provalus;
whose mission is to elevate under-served
communities by providing technology,
business and support positions to un-
tapped talent in the U.S. Their work
provides Fortune1000 companies the de-
pendable, quality and practical services
they need. . . straight from the heart of America.

Prior to joining Provalus, Paul held several executive positions at various
software companies, including Advisory Specialist Leader for Deloitte, Direc-
tor of Security Solutions for InteliSource, Senior Network Administrator for
General Dynamic Information Technology, and over 20 years in the United
States Airforce as Superintendent, Standards and Self-Assessments/Quality
Assurance and Network Team Lead, Integrated Network Operations and Secu-
rity Center. In these roles, he was responsible for building and scaling global
support organizations that provided mission-critical services to enterprise cus-
tomers.

Paul is a results-driven leader with a passion for delivering exceptional
customer experiences. He is known for his ability to build high-performance
teams, foster collaboration across departments, and drive innovation in support
delivery. He is also a strong believer in using data and analytics to measure
customer success and optimize support operations. He has a strong passion for
disaster and humanitarian relief, economic empowerment, politics, science and
technology, and education.

11

Supporting Low-Income, Talented
Undergraduate Students in Engineering

and Computing Sciences with
Scholarships and Mentoring∗

Dulal C. Kar, Scott A. King, and Dugan Um
Texas A&M University-Corpus Christi

Corpus Christi, TX 78412
{dulal.kar, scott.king, dugan.um}@tamucc.edu

Abstract

The NSF S-STEM program supports low-income, talented students
seeking an education and career in STEM fields. This works presents
the results of an NSF S-STEM grant awarded to Texas A&M University-
Corpus Christi, a Hispanic Serving Institution, that recruited and sup-
ported 39 talented and financially needy undergraduate students includ-
ing 23 students from underrepresented groups. Each student was men-
tored, guided, and supported with curricular and co-curricular activities
for engineering and computer science majors and relieved from financial
burden of paying tuition and other expenses with an amount of $7,000
per year. There were 17 community college transfer students and 22 high
school seniors recruited altogether. Despite the support of the scholar-
ship, seven students could not continue in the program since they could
not maintain the GPA of 3.0 required to stay in the program. All seven
dropouts were from the group of 22 recruited high school seniors, and
none were from the group of the 17 community college transfer students.
There were 11 students in the Hispanic students group. It was found
that the overall GPA of the Hispanic students group went down near
the end of their graduation while the overall GPA of the rest of the
students improved slightly. In various support services and activities,
midterm mentoring was found to be most helpful for students at-risk to

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

12

continue in the scholarship program and the participation in undergrad-
uate research was found to be beneficial for some students in securing
employment in leading industry. The findings and results of this S-STEM
scholarship project are important to prospective S-STEM PIs (Principal
Investigators) who plan to apply for NSF S-STEM grants and recruit
Hispanics, women, and/or community college transfer participants.

1 Introduction

The NSF S-STEM scholarship program supports talented, needy undergradu-
ate students with scholarships in S-STEM disciplines. The S-STEM program
has helped many needy students around the nation to complete their education
in a STEM discipline and then eventually enter a STEM career to contribute to
advancement and applications of science, technology, engineering, and math-
ematics [9, 21, 11, 4, 1, 7, 14, 18]. Texas A&M University-Corpus Christi
(TAMUCC) as a Hispanic Serving Institution received an S-STEM grant from
NSF to offer scholarships to talented and disadvantaged undergraduate stu-
dents majoring in engineering or computer science. The objectives of the S-
STEM project were to recruit talented, needy undergraduates for majors in
engineering and computer science disciplines, particularly as many as possible
from underrepresented groups such as Hispanics and women and support them
with mentoring, co-curricular, and professional development activities. Specif-
ically, we targeted to recruit students not only from high schools but also from
community colleges since many needy students attend a community college to
further their education.

Community College Transfer Students: The ever-increasing cost of
education in four-year degree institutions has made college education unafford-
able for many low-income high-school graduates. Many of them have found
low-cost community colleges to further their education beyond high school.
The American Association of Community Colleges (AACC) reports that the
annual average cost of tuition and fees for students in community colleges in
the United States is about $3,300. In contrast, the annual average cost of tu-
ition and fees at state funded institutions is approximately $9,000. Some have
found community colleges as affordable pathways to higher education first by
completing a two-year associate program at a community college with less cost
in tuition and fees and then transferring to a four-year institution that gives
credits earned in a community college [8, 16, 2, 15, 17]. However, upon comple-
tion of a community college degree, the additional increased cost of attending
a four-year degree institution for the remaining two or three years of education
can discourage a vast majority of economically disadvantaged students from
pursuing a four year degree. Those who transfer from a community college to
a four-year institution face severe financial hardship due to increased tuition

13

and fees and often have to work long hours in jobs to survive financially. The
lack of time for study can cause poor academic performance for many of these
individuals which in turn causes many to drop out from the pursuit of a four-
year degree. Another consequence is delayed graduation as few courses are
taken or courses with poor performance are repeated. The major goal of our
NSF sponsored S-STEM scholarship program was to recruit and support com-
munity college transfer students financially in their pursuit of higher education
by alleviating their need to work in low-paying, long-hour jobs and facilitating
them with necessary time for study to be successful in their coursework.

Diversity and Recruitment of Hispanics: TAMUCC is a Hispanic
Serving Institution with an enrollment of over 10,000 students, of which about
48% are Hispanic. However, Hispanic student enrollment percentages do not
match the region’s 60% Hispanic population. Nationally, Hispanics remain con-
siderably underrepresented in engineering and computer science careers [13].
In 2017, ASEE reports that among the engineering BS degrees awarded, only
about 11.1% were awarded to Hispanic students. As noted earlier, partly due
to financial hardship, many Americans, and most Hispanics in Texas, choose to
attend community college for their education beyond high school. However, a
National Academies report found that students entering community colleges do
not realize that they can obtain a four-year STEM degree such as in computer
science or engineering by transferring to a four-year institution [12]. Earlier
studies have indicated only about 20% of college-qualified low-income students
transfer and attain a bachelor’s degree. Hispanic students are the most likely to
leave college without attaining a degree in large part due to financial burdens
and cultural dislocation. It is to be mentioned that Hispanics are less likely
to accept loans and take on that debt, and instead, they choose to work [20].
Similarly, another well-known underrepresented group in our recruitment tar-
get for the S-STEM program was women. It is well-known that enrollment of
females in engineering and computer science is very low nationally. An impor-
tant focus of our S-STEM scholarship project was to recruit as many talented
students as possible from underrepresented groups, including Hispanic students
and women.

Providing financial support to these students does not automatically guar-
antee their success in achieving a bachelor’s degree from a four-year institution.
There is a significant disparity between the number of underrepresented stu-
dents who begin in the engineering and computer science disciplines and the
number who complete their degrees eventually. Many Hispanic or Latino stu-
dents are first generation college students who do not receive much motivational
support from their family, who may not understand the struggles these students
are going through [5]. These students experience a multitude of difficulties to
adapt and integrate with the mainstream student body. Support services are

14

needed to help them succeed in their pursuance of a four-year degree in STEM
disciplines [3, 6, 22, 19, 10]. Therefore, in addition to the financial support, our
S-STEM scholarship project provided the academic, professional development,
and emotional supports necessary to help these academically talented students
succeed.

In this paper, we present our experience based on our NSF S-STEM grant
that awarded $7,000 per year as a scholarship to each participant, which covered
tuition and fees to alleviate the financial burden. It is to be mentioned that
the current average cost of in-state tuition and fees at our institution for an
undergraduate student is $9,292. This S-STEM project recruited altogether 39
students, in which 17 students were community college transfer students and
the remaining 22 students started their college education at the institution
directly after graduation from high school. Among the 39 recruited students,
11 students were Hispanic, and 13 students were female. The diversity of
students in the S-STEM project provided us the opportunity to share our
valuable experience with the S-STEM community, particularly in engineering
and computing. The grant did not have any research requirement other than
supporting participants with scholarships, supervision, and engaging them in
voluntary learning and professional development activities.

2 Recruitment Efforts

To support recruitment of participants as well as to disseminate information
about the S-STEM scholarship opportunity at our institution, a website with
essential information needed to know by an applicant was maintained. The
website provided information on the benefits of the program, eligibility re-
quirements to apply, documents to be submitted with the application includ-
ing: transcripts, an essay, and references. An application form was developed
to receive information such as on the applicant’s academic background, ethnic-
ity, and work experience. A reference form was developed to receive feedback
from the references on the applicant’s skills, motivation, and even economic
situation, if known. A brochure on the S-STEM opportunity was developed
with requisite information such as the eligibility requirements, the scholarship
amount, professional development opportunities, and support services.

An outreach and recruitment institutional representative from TAMUCC
visited local and regional high schools and community colleges giving talks,
distributing flyers, and meeting high school counselors and community col-
lege officials. TAMUCC has yearly designated days (official preview days) to
conduct recruitment events on the campus designed especially for prospective
undergraduate students and friends and family members to learn about the
student life at the campus. Flyers on the S-STEM scholarship opportunity

15

were handed out to the attendees during those events. Also, during incoming
freshmen mentoring sessions and orientation sessions flyers were distributed to
the incoming freshmen in engineering and computer science programs.

The institutional outreach and recruitment representative attended career
fairs for high school students in Houston, Dallas, and Rio Grande Valley ar-
eas and distributed flyers on the S-STEM scholarship opportunity. In regional
“Counselor Updates” organized in Dallas, Houston, and Rio Grande Valley
areas, admission counselors of our institution provided high school and com-
munity college counselors information about the S-STEM scholarship oppor-
tunity. An application package would include the application form, a resume,
transcripts, an essay, and three completed reference forms. A rubric with
evaluations points on GPA, quality of the essay, standardized test score (SAT
or ACT sore), work experience, and reference information was developed to
evaluate applications by a selection committee. For each applicant, an over-
all total score was calculated by assigning a weight to each score summing all
weighted scores. The rank of each applicant was determined based on the over-
all score calculated. The recruitment decision on the number of participants for
a program was made in proportion to the number of students enrolled in each
program, either in engineering or computer science. Besides, ranking, diversity
was also considered while selecting participants for the S-STEM project.

The original project duration was five years, which was extended to seven
years with approval from NSF. Over the period of the project, there were 39
students altogether recruited in the program including: White – 25, Hispanics
– 11, African American – 1, Asian – 1, and Unreported Ethnicity – 1. Each
of the participants was either a U.S. citizen, permanent resident, national, or
refugee, as required by NSF, and each of them had a GPA of at least 3.0 at the
time of recruitment. By gender, there were 13 women among the participants,
exactly one-third of the total 39 participants. As stated above, according to
our recruitment plan, we recruited 17 community college transfer students.
Each student was supported with a scholarship of $7,000 per year for up to
four years for a regular undergraduate. The support period was shorter for
community college transfer students.

3 Support Services and Activities

Earlier studies show that mentoring contributes to the retention and academic
success of students [4, 6, 22, 15]. The S-STEM participants received academic
and career support using three major mentoring strategies: 1) Faculty Men-
toring, 2) Academic Counseling, and 3) Career Counselling. A team of faculty
and staff met regularly with the participants to promote academic success, re-
tention, and progress to graduation and employment. It is to be noted that

16

in compliance with NSF S-STEM scholarship program requirements, partici-
pation in any curricular, co-curricular, or professional activities for a student
was voluntary.

At the beginning of each semester, we would organize a mentoring ses-
sion or retreat. Attendance to the retreat was mandatory for all students.
To handle scholarship offers to participants as well as to oblige them to ful-
fill the requirements of the scholarship award, a contract document on the
scholarship award was used. The contract document includes some terms and
requirements such as being a full-time student in computer science or engi-
neering, maintaining satisfactory academic progress (GPA > 2.9), completing
FAFSA, attending mandatory meetings, and attending mentoring sessions and
seminars. During each fall semester retreat, each participant would sign the
contract of the scholarship containing a clause in the contract regarding the
GPA requirement to continue in the program and to participate voluntarily in
many activities and take advantage of available resources in the campus such
as for tutoring, academic counseling, and career counseling needed to succeed
in the pursuit of the BS degree. In each retreat, the participants would receive
useful information from academic counselors, career counselors, financial aids
office administrators, and peer participants.

During the retreat, the participants were reminded about the mission of the
NSF S-STEM program and its significance at the national level in advancement
of science, engineering, and mathematics. In this context, the purpose, goals,
objectives, and expectations of the S-STEM scholarship project at TAMUCC
were made known to the participants. Requirements in terms of academic
performance and participation in activities were informed.

Focusing on Education: Career prospects in engineering and computer
science as well as strategies to succeed in college education were discussed in
retreats. It was observed that many scholarship recipients continued working
and falling in danger of loosing the scholarship. They were advised to con-
centrate on education and graduate on time, rather than working part-time to
supplement income for living expenses and graduate later. Job prospects for
students graduating in engineering and computer science were highlighted to
raise the level of their motivation. They were reminded that the scholarship
support paying their tuition and fees should relieve them from working long
hours in jobs and concentrate on study and they should not seek any jobs
to support themselves while seeking college education. They were informed
about availability of various support services within the campus such as the
programming assistance lab, the writing center, and the tutoring center, and
encouraged to take advantage of these services to advance their education.

Balancing Course Load: Advising students with a balance of intensive,
non-intensive, hands-on, technical, and non-technical courses is critical to stu-

17

dent success and hence to retention. The scholars were instructed how to choose
courses based on technical, analytical, and hands-on contents and accordingly,
enroll in courses each semester to achieve academic goals each time success-
fully. They were advised to form study groups to succeed in difficult courses,
study objectively from presentation materials used in classes with questions in
mind, and develop problem solving skills in engineering, computer science, and
mathematics by working on example problems step by step. Helpful tips were
provided how to do well in college, how to manage time for various activities,
and how to make use of support facilities available within the college.

Memberships in Professional Societies: Joining professional societies
is very helpful for professional development. The participants were encouraged
to join professional societies and informed about the availability of fund to
pay for their memberships of professional societies such as IEEE, ACM, and
ASME.

Undergraduate Research Opportunities: Importance of undergradu-
ate research was stressed, particularly for a better job and career prospect. All
participants were informed about the research opportunities available on cam-
pus and were encouraged to contact the engineering or computer science faculty
members to join their research teams. TAMUCC supports many STEM un-
dergraduates each year for research and travel to conferences through an NSF
sponsored LSAMP (Louis Stokes Alliances for Minority Participation) grant.
The S-STEM participants were informed to apply for the research opportunity.
The participants were introduced with NSF sponsored REU programs offered
at different institutions around the nation. We provided references to the par-
ticipants who applied for this opportunity. In addition, the participants were
encouraged to apply to the NSF sponsored computer science REU program
offered at our institution. We demonstrated to the S-STEM scholarship recipi-
ents how to access NSF websites for engineering and computer science summer
REU programs, explore NSF-funded REU programs in various institutions in-
cluding the ones in the state of Texas, and find out specific information and
benefits. Benefits of these programs including research experience, professional
growth opportunities, stipends, and allowances for travel, food, and housing
were stressed. The S-STEM participants were shown how to apply online for
various REU opportunities. Several participants joined the REU program of-
fered at our institution and some other institutions around the nation.

Career Services: One of the career counselors of our institution would
give a presentation at each retreat on various resources and services available
at the institution. Participants were informed on how they can use online
tools and resources available for career planning (CHOICE360, BLS.GOV, and
OnetOnline.org), preparing professional documents, job hunting, preparing for
graduate/professional school, and networking with professionals. Internship

18

opportunities and benefits were discussed. The S-STEM scholars were informed
about professional etiquette to be followed during job interviews and asked to
participate in mock interviews for practice. They were invited to attend career
fairs organized at our institution throughout the year. During retreats, other
presentations by University Services Senior Personnel include presentations by
a financial aid advisor of the financial aid office, presentations by academic
advisers of the College of Science and Engineering, and presentations by the
directors of student support services, tutoring, learning, and writing centers.

Presentations by Peer Students: Several scholars who participated
in undergraduate research programs including NSF-sponsored REU programs
and presented papers or posters in conferences also gave presentations during
retreats. Similarly, some of the scholars who did summer internships in regional
industry also gave presentations to the participants during mentoring sessions
or retreats. Motivated by these presentations, many of them applied for REU
and internship opportunities.

Beyond retreats, the following support services were provided to the S-
STEM participants on a regular basis or as needed.

Faculty-Student Mentoring: Mentor training is provided by our in-
stitution’s Office of Student Engagement and Success. Faculty mentors are
informed at the beginning of each academic year how to access online and
other resources available at the institution to successfully mentor students. In-
formation on student support services and mentoring models is the primary
focus of the training. It is understood that the mentoring needs of a student
vary on ethnicity and socio-economic background as well as the academic level
of the student. Faculty members are informed and trained accordingly with
information and approaches needed to successfully mentor students of diverse
ethnic background and academic level. A separate group of faculty members
is responsible to mentor freshman-level students, particularly in the computer
science program.

General Counseling: The S-STEM participants had access to individ-
ual counseling, personal skills training focused on helping students improve
goal setting, memory and study skills, workshops on topics such as wellness,
healthy relationships, and assertiveness, plus many other topics. A number
of services and computer software programs are available for free via the Uni-
versity’s Transfer Center. S-STEM participants were recommended to take
advantage of such services that included career selection and skill enhance-
ment in note-taking, test strategies, time management, stress management,
financial management, and public speaking.

Professional Interactions: As mentioned above, the S-STEM partici-
pants are informed about the benefits and the funding available to become
members of one group of their choice, such as ACM Computer Science Club,

19

American Society of Mechanical Engineers Student Chapter, and Association
for Women in Science. Time to time, these student organizations would bring
in their meetings industry professionals for seminars and short talks thus pro-
viding them opportunities to learn about career prospects in industry.

Midterm Mentoring: Midterm mentoring was found to be the most ben-
eficial support service for the students who were at risk of losing the scholarship
due to low GPA. After the initial mentoring session or retreat each semester,
there was a mid-term mentoring/advising meeting with some selected at-risk
students. In this effort, only the students who were at-risk with low mid-term
grades were contacted. The project leadership would meet each student indi-
vidually and check midterm grades reported by faculty in all courses. Students
having trouble in some courses were advised to meet course instructors and
attend tutorial services provided by the university as well as provided with
helpful tips such as to form study groups and join online forums. Occasionally,
a course instructor was also contacted to setup a meeting with the affected
student to receive helpful guidance to improve performance.

The first step in midterm mentoring was to find out the reason behind poor
performance in a course. Often, students would reveal their struggle in their
personal lives, and they would need to be directed to receive general counsel-
ing. For directly course related situations, depending on the situation, they
were advised to meet with the course instructor to find out how to improve
in the course, form a study group to improve understanding of course mate-
rial, seek help from teaching assistants in programming assignments, visit the
tutoring center on math or physics assignments, and make appointments with
the writing center to improve writing. In some cases, it was found that a stu-
dent was working long hours which was the main cause of poor performance
in multiple courses, and it was necessary to advise the student to attain some
balance between work and study. A powerful argument was to appeal to them
that if they could not spend enough time on their studies, they were putting
their scholarship at risk and, also that they should look at their scholarships
as if they were being “paid” to study, and they, therefore, needed to fulfill that
requirement. It was found that working long hours was one of the primary rea-
sons for poor performance for many participants. After mind-term mentoring,
it was found that some students would reduce their work hours to make more
time to improve their grades. In some cases, it was necessary to help students
by developing a well-balanced schedule of work and study as well as allocating
ample time in the schedule to study for improving grades in difficult courses.

The NSF S-STEM program collects data on each S-STEM project on ac-
tivities. Table 1 summarizes data collected in our project on all 39 students
who were recruited and supported through the S-STEM project. It is to be
noted that attending a retreat or mentoring session was mandatory for all par-

20

ticipants and hence the corresponding participation rate was 100%, as shown
in the table. The “Other” activities include many miscellaneous activities such
as joining a club, playing sports, providing tutoring services, helping in church
services, and so on.

Table 1: Participation in Activities

Item Academic Year Yearly2015- 2016- 2017- 2018- 2019- 2020-
2016 2017 2018 2019 2020 2021 Rate

No. of Participants 7 14 13 30 24 16 -
Part-Time Employment 3 5 6 17 12 9 50%
Academic Support Services 4 5 8 19 15 10 59%
Career Counseling 2 2 7 12 9 8 38%
Community Building 0 5 7 7 5 2 25%
Field Trips 0 2 3 7 6 1 18%
Internships 1 0 1 9 3 1 14%
Meetings/Conferences 2 7 4 17 15 9 52%
Mentoring 7 14 13 30 24 16 100%
Recruitment 0 0 2 5 3 1 11%
Research 0 1 1 7 4 3 15%
Seminars 4 4 3 27 7 3 46%
Other 4 5 8 17 15 5 52%

4 Results and Discussion

As mentioned above, of the 39 students in the program, there were 23 students
(59% of the total number of participants) altogether from underrepresented
groups including women. In terms of gender, there were 13 women among the
participants. Ethnic minorities include 11 Hispanics, one African American,
one Asian, and one student of undeclared ethnicity. In all, 29 students com-
pleted the S-STEM program successfully, including all 17 community college
transfer students. Among the ten students who could not or did not continue in
the program, seven students could not maintain the required minimum GPA of
3.0, one student switched to a different STEM major, one student transferred
to a different institution and continued in a STEM major, and one student
dropped out from our institution after adversely affected by a natural disaster
(hurricane). Overall, the attrition rate is 18% (7 out of 39) due to low GPA.
Over the period of the grant, 35 students have graduated with a BS degree
either in engineering or computer science or in a STEM discipline, i.e., the
graduate rate is about 90%, thereby increasing the pool and diversity of the
nation’s workforce in these critical STEM fields. Table 2 shows overall average
GPAs of different groups of students. We observe improvement in the academic
performance of the community college transfer students as indicated in their
overall final average GPA. In contrast, the performance of high school seniors
recruited in the program shows a decline in overall final average GPA by 2%.

21

In terms of gender, almost no change in academic performance is observed. A
significant decline of 3% in overall average GPA in academic performance in
the Hispanic ethnic group is found.

Table 2: Academic Performance by Ethnicity, Gender, and Initial Level of
Education

Initial Avg. Final Avg. Interpretation
GPA GPA

Ethnicity Hispanic 3.74 3.63 -3% (decrease in GPA)
White 3.53 3.54 No significant change

Gender Female 3.65 3.66 No significant change
Male 3.55 3.53 No significant change

Group High School Senior 3.69 3.61 -2% (decrease in GPA)
Community College 3.54 3.60 2% (increase in GPA)
Transfer in GPA

In the following, we summarize our findings and make suggestions that can
be helpful for all participants, especially low-income, talented participants of
Hispanic descent:

1. Scholarship Amount: An amount of $7,000 per year was not enough as
a scholarship for most students as they had to work long hours to support
themselves. Some students were found to hold jobs for 30 hours per
week. Increasing scholarship amount will help these students to devote
more time to study, continue in the program, and graduate on time. The
maximum scholarship amount of $10,000 is allowed by the NSF S-STEM
program. It is recommended that the maximum amount should be given
as a scholarship to each participant.

2. Midterm Mentoring: Midterm mentoring was very effective in retain-
ing the students in the S-STEM project, particularly the students at risk.
Most students reported with midterm grades of C or D in courses were
eventually able to attain better grades or to maintain the overall GPA of
at least 3.0. More interventions such as midterm mentoring were found
to be beneficial to improve academic performance of the participating
students. For example, in Fall 2018, among 29 students, 17 students had
a grade of C or D in one or more courses. These students were given
guidance how to improve their situation in those courses. All these stu-
dents did well and were able continue their scholarships in spring 2019
with an overall GPA greater than 2.9. Similarly, in spring 2019, among
25 students, eight students had a grade of C or D in one or more courses.
Except one student, all other seven students at-risk were able to maintain
a GPA above 2.9.

22

3. Research Participation: Several students involved in undergraduate
research, including in NSF REU programs, were found to receive employ-
ment in leading industry or seek graduate education. In surveys, many
participants expressed positively on the impact of research experience in
their academic pursuit, employment success, or career path.

4. Learning Community: The dropout rate of high school senior recruits
from the S-STEM program was found to be too high. One possible
solution is to enlist them in learning communities/cohorts and guiding
them with advice more frequently [19, 10].

5. Professional Development: In compliance with NSF’s requirements,
participations in co-curricular activities were voluntary for students. Ac-
cordingly, the students were advised to attend seminars, symposiums,
and conferences as well as to join internships and undergraduate re-
search programs. However, a focus group study reveals that many partic-
ipants wanted to have more engaging professional development activities
through workshops such as on Presentation Skills, Technical Writing, Re-
sume Preparation, and Ethics. Due to lack of funding in the S-STEM
grant to support such activities at the time, it was not possible for us to
organize sessions or workshops.

Focus Group Study: A focus group study was conducted by an external
evaluator. The focus group participants were predominantly sophomores (5)
and juniors (4). One female senior participated. There were six male infor-
mants and four females. The focus group participants agreed that benefits of
the S-STEM program fell in two categories, financial and motivational. They
stated that without the scholarships they would have needed to work to com-
plete school and felt that would have impacted their ability to be successful.
The focus group participants said that the S-STEM scholarships gave them
a sense of accomplishment, indicated to them that they were capable and
that they could do more than they might otherwise have thought, and that
the awards gave them motivation to attend classes, to stay “on top of things;
classes and grades, and that the GPA requirement motivated them to invest
time and effort in meeting that standard. The most valuable aspect(s) of the
S-STEM project, as stated by the focus group participants, are: 1) the ability
to continue as an undergraduate student in engineering or computer science
major, 2) the ability to work toward a degree without incurring debt or, at
least, with a limited amount of debt, 3) the meetings held each semester at
which participants were reminded of project commitments and opportunities
that were before them, 4) the opportunities presented to meet faculty members,
and 5) being encouraged by project personnel.

23

5 Conclusion

This paper presents the results and experiences of an NSF S-STEM grant that
supported 39 undergraduate students in which there were 17 community college
transfer students, and the rest were recruited high school seniors. Among the
participants, there were 11 Hispanic students and 13 female students. Seven
students could not continue in the program as they could not maintain a GPA of
at least 3.0. Altogether, 35 students have graduated successfully including three
students who were dropped out from the S-STEM program due to low GPA.
The most of the dropout students were found to be busy working long hours
to support themselves financially. Increasing the scholarship amount could
help these students spend more time in education than in work. The overall
performance of the community college transfer students was better than the
students recruited from high school. All the attritions were from the group of
the recruits from high school. Some better support strategies such as enrolling
students in a learning community or preparatory summer courses in cohorts
can help. Midterm mentoring was found to be helpful for students at risk to
continue in the program. Several students who participated in undergraduate
research were successful in obtaining employment in leading companies in the
nation.

Acknowledgment

This material is based upon work supported in part by the National Science
Foundation under Grant DUE-1458096. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

References

[1] Joel C. Adams and Randall J. Pruim. Computing for stem majors: En-
hancing non-cs majors’ computing skills. In Proc. SIGCSE, pages 457–462,
Raleigh, NC, 2012.

[2] Oscar S. Cerna, Patricia A. Perez, and Victor Saenz. Examining the
precollege attributes and values of latina/o college graduates. In Higher
Education Research Institute: Research Report, Los Angeles, CA, 2007.

[3] Martin M. Chemers, E.L. Zurbriggen, M. Syed, B.K. Goza, and S. Bear-
man. The role of efficacy and identity in science career commitment among
underrepresented minority students. Journal of Social Issues, 67(7):469–
492, 2011.

24

[4] Teresa J. Cutright and Edward Evans. Year-long peer mentoring activity
to enhance the retention of freshmen stem students in a nsf scholarship
program. Mentoring & Tutoring: Partnership in Learning, 24(3):201–212,
2016.

[5] Jennifer M. Dennis, Jean S. Phinney, and Lisa I. Chuateco. The role of
motivation, parental support, and peer support in the academic success
of ethnic minority first-generation college students. Journal of College
Student Development, 46(3):223–236, 5 2005.

[6] Susan Gershenfeld. A review of undergraduate mentoring programs. Re-
view of Educational Research, 84(3):365–391, 2014.

[7] Heather B. Gonzalez. An analysis of stem education funding at the nsf:
Trends and policy discussion. Technical report, Washington D.C., 2012.

[8] Linda S. Hagedorn and Astrid V. Purnamasari. A realistic look at
stem and the role of community colleges. Community College Review,
40(2):145–164, 2012.

[9] Sylvia M. James and Susan R. Singer. From the nsf: The national science
foundations investments in broadening participation in science, technol-
ogy, engineering, and mathematics education through research and capac-
ity building. CBE—Life Sciences Education, 15(3):1–8, 2016.

[10] Maria Kalevitch, Caleb Maurer, Paul Badger, Glenn Holdan, Joseph Ian-
nelli, Ahmet Sirinterlikci, George Semich, and James Bernauer. Building
a community of scholars: One university’s story of students engaged in
learning science, mathematics, and engineering through a nsf s-stem grant.
Journal of STEM Education, 16(2):40–45, 2016.

[11] Junalyn Navarra-Madsen, Rodney A. Bales, and DiAnna L. Hynds. Role
of scholarships in improving success rates of undergraduate science, tech-
nology, engineering and mathematics (stem) majors. Procedia - Social and
Behavioral Sciences, 8:458–468, 2010.

[12] National Academy of Sciences, National Academy of Engineering, and In-
stitute of Medicine. Rising Above the Gathering Storm, Revisited: Rapidly
Approaching Category 5. National Academies Press, Washington, DC,
2010.

[13] John Roy. Engineering by the numbers, 7 2019.

25

[14] Domenico Russomanno, Richard Best, Sarah Ivey, John R Haddock, Don-
ald Franceschetti, and Rebecca J Hairston. Memphistep: A stem expan-
sion program at the university of memphis. Journal of STEM Education,
11(1), 2010.

[15] Carol Slater, William Edmister, Brenda Watford, and Joel Kampe.
Lessons learned: Implementing a large-scale peer mentoring program. Pro-
ceedings of the ASEE Annual Conference and Exposition, 2006.

[16] Tom Springer, Callam K. Girolami, and W.K. Kellogg Foundation. EN-
LACE Connection: What Makes a Difference in the Education of Latino
U.S. Students–Learning from the Experience of 13 ENLACE Partnerships.
W. K. Kellogg Foundation, Battle Creek, MI, 2007.

[17] Michael Summers and Freeman A. Hrabowski. Preparing minority scien-
tists and engineers. Science, 311(5769):1870–1871, 2006.

[18] Vincent Tinto. Taking retention seriously: Rethinking the first year of
college. NACADA Journal, 19(2):5–9, 1999.

[19] Vincent Tinto. What have we learned about the impact of learning com-
munities on students? Assessment Update, 12(2):1–4, 2002.

[20] Francisco Vara-Orta. Most latino students spurn college loans. The Los
Angeles Times, 2007.

[21] Zakiya S. Wilson, Sitharama S. Iyengar, Su-Seng Pang, Isiah M. Warner,
and Candace A. Luces. Increasing access for economically disadvantaged
students: The nsf/csem & s-stem programs at louisiana state university.
Journal of Science Education and Technology, 21(5):581–587, 2012.

[22] Daniel Yomtov, Scott W Plunkett, Rafael Efrat, and Ana Gabriela Marin.
Can peer mentors improve first-year experiences of university students?
Journal of College Student Retention: Research, Theory & Practice,
19(1):24–44, 2017.

26

Iterative Efforts for Improving Learning
Experience in Software Engineering∗

Pradip Peter Dey, Mohammad Amin and Bhaskar Raj Sinha
School of Technology and Engineering

National University
9388 Lightwave Ave., San Diego, CA 92123

{pdey, mamin, bsinha}@nu.edu

Abstract

In a project-based learning environment, students and teachers jointly
made iterative efforts for improving learning experience in software engi-
neering through all major tasks including requirements analysis, design,
implementation, and testing. The iterative efforts were implemented
in a prototype-based evolutionary process by performing reviews jointly
by students and teachers after each major task, and assessing student
performance based on their participation in task-related activities. End
of course evaluation data, collected in a standard anonymous process,
indicated improvements in student learning experience and teaching ef-
fectiveness attributable to the iterative efforts. The major advantages of
the iterative efforts were engaging students in the review process, and
eliminating or reducing plagiarism-based academic dishonesty by em-
phasizing participation-based grading. One of the major challenges for
teachers was making extra efforts for participation-based grading, rather
than using automated grading of multiple choice exams and quizzes. In
addition, extra efforts were needed to complete three iterations for sizable
software engineering projects in a timely manner in order get benefits of
iterative efforts in project-based learning environments. There are op-
portunities for future research in this area for creating a set of revealing
software engineering projects of appropriate sizes and explaining their
potential benefits in teaching learning environments.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

27

1 Introduction

In a project-based learning environment [6], teachers and students can work
together cooperatively performing software requirements engineering, design,
implementation and testing, and their reviews iteratively in order to promote
desirable learning experience [16] and fair grading. Key development skills are
in demand because developers are facing increasingly more complex problems
in their work environment. Design skills are more important than other skills,
because “The ability to recognize complexity is a crucial design skill” [11] (page
5). When a designer recognizes that a system is too complicated, the designer
can use that ability to guide their design philosophy towards dealing with
the complexity [11]. Designers should be able to explain how the software
elements will work together collaboratively in operational scenarios to provide
appropriate services to users with excellent user experience.

Great designers such as Steve Jobs and Jony Ive (of Apple, Inc.) have not
described their innovative design approaches for teaching-learning purposes [8].
Jason Hong has studied the practices in Apple, and asked the following ques-
tion “Why is great design so hard?” [7]. In this paper, we critically examine
some teaching strategies for making iterative efforts for improving learning ex-
perience in design, and suggest that one of the strategies has great potential in
project-based learning [6]. For explaining the potential, we emphasize graphi-
cal user interface (GUI) design. Evidence from end of course evaluation data,
collected in a standard anonymous process, is presented that indicates improve-
ments in students learning experience and teaching effectiveness attributable
to iterative efforts.

2 Iterative Efforts

Iterative efforts for software engineering can be made with well-known pro-
cess models such as evolutionary, spiral, agile, or prototype-based development
models [3, 5, 9, 11, 12, 13, 14, 15, 17]. Iterative efforts using evolutionary
prototypes are often recommended in object oriented software development
[9, 14]. One can follow Pressman and Maxim’s textbook which suggests that
“Software design is an iterative process . . .” [13] (page 228). Designers can
make excellent progress through successive refinement in an iterative process.
Most process models allow design reviewers and designers to ask questions such
as, “Is this the best possible design for this product? Or, are there opportuni-
ties for improvement?” Iterative efforts with these types of questions promote
innovations as demonstrated by Steve Jobs and Jony Ive [8]. Effective GUI de-
signers repeatedly examine their designs in order to make improvements where
many alternatives are carefully considered. GUI design and development can-

28

not be done in a hurry considering only some obvious alternatives. Experiments
with evolutionary prototypes and their careful reviews may focus on providing
excellent user experience [9, 13].

3 Reviews in Software Engineering

All major tasks in software engineering should be reviewed for preventing errors
or defects. Software requirements engineering, design, implementation, testing
and their reviews may be introduced to students using examples and textbooks
[9, 13]. A good strategy for initial design is to decompose the problem into sev-
eral sub-problems or relatively independent conceptual elements [11]. However,
this strategy requires some understanding of interactions among the conceptual
elements. Use cases and their relationship from requirements engineering may
help at this stage [13, 14]. Following the Unified Modelling Language (UML),
one can also draw use case diagrams [13, 14]. Preliminary reviews can start
with the use case diagrams. For better reviews, other UML diagrams including
component diagram, class diagram, sequence diagram, state machine diagram,
and activity diagram may be considered [13, 14]. A use case diagram presents
major use cases with ovals in a box or rectangle displaying actors outside the
box to indicate that the actors are external users of the current system. Each
use case represents a case of use that can be further illustrated in other UML
diagrams such as activity diagrams, sequence diagrams [13, 14]. Consider a
sample use case diagram shown in Figure 1; it was drawn in the UML 2.0 no-
tation with a minor extension for a sample software project, which was initially
described as follows:

“Develop a software system for computing areas of three types of play-place
units: Rectangular, Circular and Triangular. A contractor in Los Angeles
builds play-places (with materials such as wood, iron, pads, plastics etc.) at
customer site using play place units of different dimensions. The charges are
in dollars based on the area of each unit in square feet, plus the number of
units. The software system is needed for computing the cost which is based on
area. The cost is five dollars per square foot. Assume that users always use feet
for entering the dimensions of the units. A Graphical User Interface (GUI)
is required for user interactions. Additional typical assumptions can be made
about this project.”

In addition to the above sample problem, Albrecht’s function point method
[1] was used for explaining iterative efforts (a prototype for function point esti-
mation is available at http://www.asethome.org/project/functionpoint.html).
Iterative efforts for major tasks and their reviews were explained with two
textbooks [9, 13]. The interfaces shown with the dotted rounded rectangles
in Figure 1 were explained with special care, because these were absent in

29

the standard UML use case diagrams [13, 14]. These dotted interfaces were
called general interfaces in order to distinguish them from specialized UML
interfaces such as provided interfaces and required interfaces [14]. In order to
conveniently refer to the general interfaces, they were sequentially numbered.
A general interface shown within the system box must be developed as a part
of the current software system; otherwise, it should be depicted outside the
system boundary (such an interface is usually available in the development
environment). If an interface was a GUI, then it was marked with the term
“GUI” utilizing UML stereotypes [14].

It was reasonable to be flexible about the notations of the diagrams, be-
cause we needed to emphasize design skills, and not necessarily the diagram
notations. Practitioners in agile development techniques value “Working soft-
ware over comprehensive documentation" [4]. Following the “Manifesto for Ag-
ile Software Development”, we emphasized working software that may satisfy
end-users in operational environments [4]. In our project-based environment,
the primary measure of progress in software development was working software,
not extensive documentation with precise diagrams in standard notations. We
considered two main alternative notations for the general interface diagrams:
(1) screen shots from a prototype, and (2) abstract graphical representation of
major interface elements. We show the former notation in the general interface
diagram given in Figure 2 for the general interface 1 of Figure 1. The GUI in
Figure 2 is from our third iteration.

4 Guidelines for Design

As designers and design-reviewers go through the iterative process they may
like to follow some guidelines. Most of the guidelines suggested below came
from Pressman and Maxim [13]; others were inspired by Hong [7], and Kung
[9].

1. Examine promising alternatives from the widest range of possible alter-
natives in order to provide the best user experience through integration
of various features including artistic, mathematical and intuitive aspects.

2. Utilize Object Oriented Design concepts throughout the development
process.

3. Consider separation of concerns in order to deal with complexity of the
system and interactions among system elements.

4. Consider design principles as well as human-computer interaction (HCI)
data and user experience for innovative user interface solutions.

30

Figure 1: Augmented use case diagram with general interfaces.

Figure 2: A prototypical general interface diagram (from third iteration)

31

5. Include only those action features which are intuitively learnable; trans-
form others to an automated category.

6. Maximize cohesion and minimize coupling among components.

7. Include error prevention and simple error handling.

8. Present design models at multiple levels of abstraction.

9. Make iterative efforts through design-review-redesign as many times as
possible using the guidelines 1 through 8.

With reference to guideline 1, innovative designers often consider many un-
usual alternatives in addition to obvious ones. Quick design in a hurry may
lead to consideration of only a few obvious alternatives missing innovative so-
lutions [7, 8]. Steve Jobs and Jony Ive came up with brilliant user interface
solutions that were missed by other practitioners in the same domain [7, 8].
Object-oriented design of guideline 2 is emphasized in several popular books
[9, 13]. Object-oriented design elements such as fields, windows, buttons, al-
low rapid prototyping [9, 13]. Guideline 3 is essential for solving complicated
problems [11, 13]. Guideline 4 is based on a reasonable integration of HCI
factors [15], user experience, and other advanced design strategies [13, 14, 15].
Guideline 5 suggests that users should not be burdened by cognitive load and
difficult learning tasks [13, 15]. If there are tasks that are not easy to learn,
the designer should try to automate them as much as possible. Guideline 6 is
suggested in many popular books [9, 13]. Guideline 7 is important for dealing
with errors [3, 9, 11, 12, 13, 14, 15, 17]; it is related to guidelines 3 and 6
because loosely coupled systems have advantages over tightly coupled systems.
It is easy to make changes to loosely coupled components. Guideline 8 makes
sure that the design is expressible in multiple levels of abstraction without
significant loss of clarity. When one level of abstraction is transformed into
another level, consistent interpretations should be applicable to both levels.
Presenting user interface designs in multiple levels may help thorough reviews.
Most designers are inspired by the success of Steve Jobs and Jony Ive’s design
[7, 8]. Steve Jobs and Jony Ive were committed to Apple’s proclamations such
as “Simplicity is the ultimate sophistication” [8]. They achieved simplicity by
conquering complexities, not ignoring them [8]. Jobs and Ive forged a bond
that led to “the greatest industrial design collaboration of their era” [8] (page
341).

Iterative efforts outlined above were implemented in a project-based learn-
ing environment [6] with a special emphasis on design and design review. Stu-
dents were introduces to the iterative efforts with an example before they began
their work on their projects. Students started their project work with require-
ments engineering and submitted their initial requirements analysis, which was

32

reviewed jointly by teachers and students. In the next step, students designed
the system that was followed by a design review jointly by students and teach-
ers, followed by development of version-2 design, which was submitted by the
students within a few days; this was followed by version-2 design review (jointly
by students and teachers). In the next step an evolutionary prototype was im-
plemented by the students; this prototype was then reviewed jointly by students
and teachers. Based on the review, the system was redesigned again and this
new design was reviewed and implemented. Another iteration of design, design
review, implementation and testing was performed. Evidence from the end of
course evaluation indicates that before the iterative efforts method was put into
practice, the overall mean students’ self-assessment of learning was 4.78 and
the overall mean students’ teaching evaluation was 4.73. After the practice, the
learning figure rose to 4.96, and the teaching figure rose to 4.97. Evaluations by
faculty panels suggest that students’ performance had also improved according
to outcomes based assessments [6, 16]. Iterative efforts suggested here may
provide extra benefits towards fair grading based on students’ participation in
the project activities, rather than on written assignments, which can be gen-
erated completely or partly by AI tools such as ChatGPT, or other chat-bots
[2, 10, 18]. It is becoming possible for AI tools to generate discussion board
posts, write student papers based on a few prompts, and provide answers to
essay questions on exams. Unacknowledged use of an AI tool such as Chat-
GPT to write essays, answer exam questions, write discussion board posts, or
to complete many types of assignments may be considered ethically unaccept-
able. A few reasonable ways to adjust the course contents, delivery methods,
and student evaluation in software engineering include project based learning
[6], evaluation with case studies, iterative hands-on design, design reviews, and
other collaborative activities. However, iterative efforts require additional time
in order to complete three iterations for sizable projects, because fair assess-
ment necessitates that adequate opportunities must be provided for student
participation in all major software engineering activities [6].

5 Concluding Remarks

We have examined certain challenges of teaching software engineering and sug-
gested opportunities for improvement based on our experiments with project-
based learning [6]. Iterative efforts may offer opportunities for overcoming
some of the challenges. Some extra benefits of teaching iterative efforts include
engaging students in the collaborative review of all major software engineering
tasks in each iteration, and outcomes based assessment for fair grading. A set
of guidelines is evolving from the studies of successful design and development
practices; these guidelines have great potential for helping software engineers,

33

and providing clarity about the nature of improvements that are achievable
through iterative efforts in software engineering. From practical experience
of software engineers, the guidelines can be reviewed and revised. There are
opportunities for future research in this area for creating a set of revealing
software engineering projects of appropriate sizes and explaining their poten-
tial benefits in project based learning environments. In addition, future work
may include how to deal with ethical concerns about use of smart AI tools in
teaching learning environments.

References

[1] A. Albrecht and J. Gaffney Jr. Software function, source lines of code,
and development effort prediction: A software science validation. IEEE
transactions on Software Engineering, 9(6):639–648, 1983.

[2] A. Alkhatlan and J. Kalita. Intelligent tutoring systems: A comprehen-
sive historical survey with recent developments. International Journal of
Computer Applications, 181(43):1–20, 2019.

[3] E. Braude and M. Bernstein. Software Engineering: Modern Approaches.
2nd Ed. John Wiley, 2011.

[4] Kent Beck et al. Manifesto for agile software development. https://
agilemanifesto.org/.

[5] J. Giacomin. What is human centered design? The Design Journal, 17(4),
2014.

[6] P. Guo, N. Saab, L. S. Post, and W. Admiraal. A review of project-based
learning in higher education: Student outcomes and measures. Inter-
national Journal of Educational Research, 102(4), 2020. "https://www.
sciencedirect.com/science/article/pii/S0883035519325704".

[7] J. Hong. Why is great design so hard? Communications of the ACM,
53(7,8), 2010.

[8] W. Isaacson. Steve Jobs. Simon and Schuster, 2011.

[9] D. Kung. Object-Oriented Software Engineering: An Agile Unified
Methodology. McGraw-Hill, 2014.

[10] E. Mollick. ChatGPT is a tipping point for AI. Harvard Business Review,
2012.

[11] J. Ousterhout. A Philosophy of Software Design. Yaknyam Press, 2018.

34

[12] S. Pfleeger and J. Atlee. Software Engineering. Prentice-Hall, 2010.

[13] R. Pressman and B. Maxim. Software Engineering. 8th ed. McGraw-Hill,
2015.

[14] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. 2nd Ed. Addison Wesley, 2005.

[15] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs,
Niklas Elmqvist, and Nicholas Diakopoulos. Designing the User Interface:
Strategies for Effective Human-Computer Interaction. 6th Ed. Pearson,
2016.

[16] Z. Sokhanvar, K. Salehi, and F. Sokhanvar. Advantages of authentic as-
sessment for improving the learning experience and employability skills
of higher education students: A systematic literature review. Studies in
Educational Evaluation, 70, 2021.

[17] I. Sommerville. Software Engineering. 9th Ed. Addison Wesley, 2010.

[18] M. Welsh. The end of programming. Communications of the ACM, 66(1),
2023.

35

Bug Battles: A Competition to Catch
Bugs in Different Programming

Languages∗

Waleed Alhumud1, Abdullah Alenzi1, Renée Bryce1, Yuan Li1
and Nasser Alshammari 2

1Computer Science and Engineering
University of North Texas

Denton, TX 76203
{WaleedAlhumud,AbdullahAlenzi}@my.unt.edu,

{Renee.Bryce,Yuan.Li2}@unt.edu
2College of Computer and Information Sciences

Jouf University
Aljouf, Saudi Arabia

Nashamri@ju.edu.sa

Abstract

Software Engineers are typically expected to know multiple program-
ming languages and technologies while continuing to learn as technology
advances. Some students find new languages intimidating. We attempt
to minimize student mindsets of intimidation when it comes to learning
new programming languages while also strengthening their software test-
ing skills through Bug Battles competition. Bug Battles is a team-based
competition between students in a classroom to catch bugs in several
problem sets that are written in different programming languages. In
a study of 104 participants, results indicate that 93.26% of participants
agree or strongly agree that Bug Battles competition improved their
software testing skills and motivated them to learn new programming
languages.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

36

1 Introduction

Programming languages and technologies have changed rapidly over the years.
Software Engineers are typically expected to learn new programming languages
tools throughout their careers. Many students find it overwhelming and intim-
idating to learn new programming languages [6]. Good instructors, peers, pair
programming, books, videos, and online forums often provide support to help
students learn new programming languages. However, some students change
majors due to different experiences related to working in teams, as well as they
feel overwhelmed that it was difficult to learn one language and worry about
trying to learn new languages [6][8][9]. Bug Battles strives to expose students
to a mix of familiar and new programming languages in a team-based compe-
tition environment in an attempt to help students to organically notice and
discuss different programming languages while searching for bugs.

Testing software is challenging as companies attempt to develop quality
software within finite budgets. Low quality software may result in expensive
failures or could even cause serious accidents [16]. Therefore, the expense of
testing software can frequently exceed 50% or greater of the entire software
development process [12]. Finding and identifying errors can be a challenging
task and requires significant time and effort, thus software testing plays a
crucial role in the Software Development Life Cycle (SDLC) [1]. In fact, Li
and Tan reported that catching bugs can be a stimulating and inspiring task
[11]. Teaching students to use software testing techniques to test software is
not an easy task [10]. There are many ways to improve software testing skills.
For instance, instructors may give assignments to find errors in small programs,
offer help in labs, and hold competitions to catch bugs in an effort to enhance
software testing skills. Working in teams is often beneficial as multiple studies,
such as those on pair programming, have shown that students tend to enjoy
collaborating [3].

In this paper, we present Bug Battles, a competition which is a team-based
competition to catch bugs in code written in different programming languages.
In Bug Battles, students compete to find bugs in code where problems are
written in three different programming languages. We hypothesize that Bug
Battles experiences will increase software testing skills while also motivating
students to learn new languages. We survey the participants to assess whether
participating in team-based competitions improves participants’ software test-
ing skills and motivates them to learn new programming languages.

The paper is organized as the following: Section 2 discusses motivation and
previous work, Section 3 presents the methodology including the two surveys
and the competition, Section 4 discusses results, Section 5 explains limitations
steps that we took to minimize threats to validity in our study, and Section 6
gives conclusions and suggests areas of future work.

37

2 Background

Some studies indicate that gaining knowledge of software testing skills can help
students to improve their programming skills [15]. In the software testing field,
especially in the education field, there are many researchers that aim to in-
crease students’ software testing skills in different ways. Clegg et al. [5] used
Code Defender which is a program that can make games between students
to help them to improve their software testing skills. In the Code Defender
game, students write tests like unit tests and they can evaluate existing tests
to determine whether they are good or need more improvements. The game
has a scoring system between the attackers who gain points by keeping their
mutants survive and the defenders who gain points by writing tests that can
expose those mutants. Every team tries to gain the highest scores which make
the game exciting. Moreover, Fraser et al. [7] utilized Code Defenders as a
graded part of the software testing course with two-academic-hour per week
as practical sessions. They added new features, including the ability to eval-
uate each participant by using a number of analytics and statistics of his/her
mutants and tests. After conducting a survey, they found that the majority
of students expressed positive feedback on the integration of Code Defenders
in the software testing course. In both previous studies, we share the same
goal which is improving students’ software testing skills. However, our study
differs by providing three programming languages and these languages were se-
lected based on students’ preferences. Scatalon, Garcia, and Barbosa’s research
[13] was to discover the used practices to combine software testing into pro-
gramming courses. They examined various research papers to identify effective
methods for teaching students to improve their programming skills through
the use of software testing practices. One of the successful approaches they
found was holding software testing competitions between students to motivate
them and increase engagement. In addition, software testing competitions can
help to improve software testing skills. For instance, Bug Catcher is a web
app for software testing competitions where students compete to find bugs in
code as quickly as possible and report positive results from students [4]. Bug
Battles differs as we use three different programming languages instead of only
one. However, Bug Battles and Bug Catcher both are team-based competitions.
Matthew Barr relayed on a fundamental course to prepare students to learn any
new programming languages with the necessary skills [2]. Unlike traditional
courses that focus on a single language, Barr utilized this course to emphasize
the study of multiple programming languages. For example, students learn the
differences and similarities between several programming languages. Our work
differs as Bug Battles is not an entire course, but rather a team-based game
that may be used in courses to try to increase student interest and enthusiasm
in learning new programming languages and improving software testing skills.

38

3 Methodology

A competition was held and two surveys were conducted on a group of vol-
unteers. A pre-survey was applied to determine what programming languages
will be used in the Bug Battles competition. The competition was held then a
post-survey was conducted to determine whether team-based competitions in-
crease participants’ software testing skills and encourage participants to learn
new programming languages.

3.1 Subjects

This research was reviewed and approved by The University of North Texas
Institutional Review Board (IRB). A total of 104 students who are graduates
and undergraduates in the Department of Computer Science and Engineering
at the University of North Texas participated in this study. The participants
came from different instructors and classes because the participation in this
study was volunteering.

3.2 Pre-Survey

Prior to the competition, a pre-survey was conducted to solicit participants’
feedback on their interests in programming languages that they would like
to see in Bug Battles. In this survey, the participants shared their opinions
about the programming languages that they are most familiar with and the
programming languages that they would like to be included in the competition.
In the pre-survey, participants’ preferences for programming languages were
Python, Java, C++, C#, and Javascript.

The pre-survey results indicated that Python, Java, and C++ are the most
commonly known and desired languages for inclusion in competition among
the participants in Bug Battles.

3.3 Bug Battles Competition

Bug Battles which is a team-based competition was held in a classroom. The
competition was held outside of class hours and it took place in eight separate
sessions at varying times each day over the span of two weeks. The participants
were divided into teams and each team has 4 members. Each team was given
18 questions (6 for each programming language) that contain zero to one bug.
Each question includes a short problem description, a buggy code, the code’s
output, a field to enter the line of error, and a bug fixed field to enter the
correction of error as shown in Figure 1. Each team has to find the bug in
each question (if any) and write the line number of the error and how to fix it.
Participants have to cover all the statements of the buggy code to detect any

39

Figure 1: Question sample.

errors. In case there is no error or participants do not know the answer, they
write “0” in the line number of error and “Do not know” in the bug fixed field.
Each team receives points for the number of bugs that they catch and fix.

3.4 Post-survey

The post-survey was conducted after the Bug Battles competition to collect
individual opinions about the Bug Battles experience. The survey is based on
a five-point likert scale that captures respondents’ level of agreement: Strongly
disagree, Disagree, Neutral, Agree, and Strongly agree [14]. The main goal
of the post-survey is to answer the following research questions based on the
participants’ responses:

• RQ1: Do Bug Battles increase participants’ software testing skills?

• RQ2: Do Bug Battles encourage participants to learn new programming
languages?

4 Results

The post-survey results indicated that more than 93% of the participants
strongly agreed or agreed that detecting bugs with different programming lan-
guages enhances their software testing skills. On the other hand, less than

40

3% of the participants strongly disagreed or disagreed while less than 4% were
neutral as shown in Figure 2. It is important to note that these positive re-
sponses prove how competitions might improve software testing skills. These
findings are consistent with previous research in terms of improving software
testing skills after experiencing the competition [4].

Figure 2: Result of increasing software testing skills.

Figure 3 presents that 93.26% of participants agreed or strongly agreed that
competition like this motivates them to learn more programming languages.
This result is not surprising to us since some students were new to one or
more languages in the competition. Another explanation for this result is
using different programming languages in the competition and these languages
were included based on their preferences. It is noteworthy that none of the
participants disagreed, while only 2 expressed strong disagreement.

The vast majority of the participants believed that their skills were im-
proved to compare programming languages’ syntax. Some participants did not
know that they do not need to declare the type of variables in some languages
like Python, as they do in Java or C++. The Python problems set helped them
to discover the nature of the dynamic programming language. More than 80%
of the participants preferred working in teams rather than working individually
to catch bugs. In contrast, a tiny minority of the participants who disagreed or
strongly disagreed to work in teams with approximately less than 2%. The par-
ticipants shared their points of view regarding the excitement of Bug Battles

41

Figure 3: Result of increasing motivation to learn new programming languages.

and whether it motivated them to join future bug-catching competitions. The
results showed that a high percentage of the participants found Bug Battles
to be thrilling and beneficial. Additionally, 87.5% of the participants either
agreed or strongly agreed that Bug Battles had inspired them to participate in
finding bugs competitions in the future. Figure 4 shows all the results in this
paragraph.

The findings of our research have implications for instructors as they can
be used to improve their students’ software testing skills and motivate them to
learn new languages by holding team-based competitions. Additionally, these
findings can have implications for software engineers as they can provide an op-
portunity for engineers to learn new languages and practice finding bugs. When
participating in team-based competitions, engineers may encounter bugs and
errors that they have never encountered before, which can provide a valuable
learning opportunity to expand their software testing skill set. Moreover, in
team-based competitions, engineers may have a learning experience as they
communicate and collaborate with their team members in order to find and fix
bugs.

42

Note: *BB = Bug Battles

Figure 4: Results of the other post-survey questions.

5 Threats to Validity

There are factors in our study that prevent us from generalizing the results to
all students. We tried to minimize this risk by reaching 104 students. Another
threat to validity is that different coding problems and bugs may change the
results. We tried to minimize this risk by using 18 problems in the competition
(six per programming language) and including bugs that we categorized as
beginner, intermediate, and advanced in order to engage students.

6 Conclusion and Future Work

Bug Battles is a team based competition in which teams compete to catch
the most bugs in problem sets written in Python, Java, and C++. These
languages were selected by the students in a pre-survey in an effort to include
both familiar and new languages for the students. The results of the survey
demonstrate that students have positive feelings toward Bug Battles in terms
of motivating them to learn new languages and improving their software testing
skills. We recommend instructors of computer programming courses organize
team-based competitions to assist students in enhancing their software testing
skills and inspire them to learn new programming languages. Problem sets and

43

solutions may be freely downloaded from GitHub:
https://github.com/Waleed9549/bugBattles

Future work will examine Bug Battles competitions with more program-
ming languages and problem sets. We plan to conduct a student focus group
to develop problem sets based on bugs that focus group participants have en-
countered in different programming languages. We plan to solicit feedback
from instructors and teach assistants about bugs that they notice their stu-
dents encounter in an effort for us to include common bugs in Bug Battles. We
hypothesize that customizing competitions to issues encountered by students
will help students succeed in our programs.

References

[1] Abdullah Alenzi, Waleed Alhumud, Renée Bryce, and Nasser Alshammari.
A survey of software testing tools in the web development domain. J.
Comput. Sci. Coll., 38(2):63–73, dec 2022.

[2] Matthew Barr. How to learn a new language: A novel introductory pro-
gramming course. In Computing Education Practice, pages 9–12. 2023.

[3] Renee Bryce. Bug wars: A competitive exercise to find bugs in code. J.
Comput. Sci. Coll., 27(2):43–50, dec 2011.

[4] Renée Bryce, Quentin Mayo, Aaron Andrews, Daniel Bokser, Michael
Burton, Chelynn Day, Jessica Gonzolez, and Tara Noble. Bug catcher: A
system for software testing competitions. In Proceeding of the 44th ACM
technical symposium on Computer science education, pages 513–518, 2013.

[5] Benjamin S Clegg, José Miguel Rojas, and Gordon Fraser. Teaching soft-
ware testing concepts using a mutation testing game. In 2017 IEEE/ACM
39th International Conference on Software Engineering: Software Engi-
neering Education and Training Track (ICSE-SEET), pages 33–36. IEEE,
2017.

[6] Paul Denny, Brett A Becker, Nigel Bosch, James Prather, Brent Reeves,
and Jacqueline Whalley. Novice reflections during the transition to a
new programming language. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education V. 1, pages 948–954, 2022.

[7] Gordon Fraser, Alessio Gambi, and José Miguel Rojas. Teaching soft-
ware testing with the code defenders testing game: Experiences and im-
provements. In 2020 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pages 461–464. IEEE,
2020.

44

[8] Patricia Haden, Dale Parsons, Krissi Wood, and Joy Gasson. Student
affect in cs1: Insights from an easy data collection tool. Koli Calling
’17, page 40–49, New York, NY, USA, 2017. Association for Computing
Machinery.

[9] Amanpreet Kapoor and Christina Gardner-McCune. Considerations for
switching: exploring factors behind cs students’ desire to leave a cs major.
In Proceedings of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education, pages 290–295, 2018.

[10] Per Lauvås and Andrea Arcuri. Recent trends in software testing educa-
tion: A systematic literature review. In NIK, 2018.

[11] Ziqiang Li and Shin Hwei Tan. Bugine: a bug report recommendation sys-
tem for android apps. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
pages 278–279, 2020.

[12] Congcong Liu. Research on software test data generation based on particle
swarm optimization algorithm. In 2021 5th International Conference on
Trends in Electronics and Informatics (ICOEI), pages 1375–1378, 2021.

[13] Lilian Passos Scatalon, Rogério Eduardo Garcia, and Ellen Francine Bar-
bosa. Teaching practices of software testing in programming education.
In 2020 IEEE Frontiers in Education Conference (FIE), pages 1–9, 2020.

[14] Bert Weijters, Kobe Millet, and Elke Cabooter. Extremity in horizontal
and vertical likert scale format responses. some evidence on how visual
distance between response categories influences extreme responding. In-
ternational journal of research in marketing, 38(1):85–103, 2021.

[15] Jacqueline L. Whalley and Anne Philpott. A unit testing approach to
building novice programmers’ skills and confidence. In Proceedings of the
Thirteenth Australasian Computing Education Conference - Volume 114,
ACE ’11, page 113–118, AUS, 2011. Australian Computer Society, Inc.

[16] Yi Zhao, Yun Hu, and Jiayu Gong. Research on international standard-
ization of software quality and software testing. In 2021 IEEE/ACIS
20th International Fall Conference on Computer and Information Science
(ICIS Fall), pages 56–62, 2021.

45

Preparing ABET Accreditation for An
Undergraduate Software Engineering

Program∗

Jicheng Fu, Myungah Park, Gang Qian,
Hong Sung, Thomas Turner

Department of Computer Science
University of Central Oklahoma

Edmond, OK 73034
gqian@uco.edu

Abstract

In this article, we share our seven-year experience in preparing for
ABET accreditation for the undergraduate Software Engineering pro-
gram offered at the University of Central Oklahoma. We present our
approach to the preparation with a focused discussion of the general
and the program-specific accreditation criteria required by ABET Engi-
neering Accreditation Commission. As most computer science graduates
work in the area of software development, we hope our experience can
benefit computer science departments similar to our setup and promote
better undergraduate education in the area of software engineering.

1 Introduction

The BS in Software Engineering (SE) program was created at the University
of Central Oklahoma (UCO) in 2014. Before that, the department had been
offering a BS in Computer Science program for almost thirty years. Our mo-
tivation to create the SE program was multifold. First, while SE used to be
considered as a sub-discipline of Computer Science (CS), software systems had
grown larger, more complex, and more expensive, some of which were even

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

46

mission critical. As a result, SE was eventually recognized as a discipline of its
own by many professionals in the IT industry. Second, it was our observation
that most of our CS graduates worked in positions related to software design
and development. Based on feedback from our alumni and the department’s
industrial advisory board, offering a program that focused on the lifecycle of
software systems would greatly benefit our graduates for their career in the
software industry.

After the BS in SE program was created, an immediate next step for us was
to prepare for ABET accreditation. The department received ABET accredita-
tion for its CS major in 2007, of which we recognized the benefits as follows: 1)
it increased the recognition of the program from the university administration;
2) it increased the recognition of the program from its external stakeholders, es-
pecially prospective students; and 3) it helped maintain an objective academic
standard that was established by third-party experts in the CS discipline. Our
experience of having the CS major accredited was documented in [4] and [3].

To accredit the new SE program, we worked with a different ABET Com-
mission. While all computing disciplines are reviewed and accredited by ABET
Computing Accreditation Commission (CAC), all engineering programs are
evaluated by ABET Engineering Accreditation Commission (EAC). Therefore,
we studied and implemented ABET standards for engineering programs before
the ABET EAC review of 2019. The remainder of the paper discusses the
details of our approach to preparing for ABET accreditation with a focus on
both the general and the SE program-specific accreditation criteria.

2 Preparing for the ABET Evaluation

Our preparation for the ABET evaluation of our SE program included the
following features:

1. Having an existing program accredited by ABET
2. Having a member of the faculty serve as an ABET volunteer
3. Performing a dress rehearsal for the SE program accreditation visit

While none of features above were mandatory, each of them provided sup-
port in the accreditation process. Having an existing program accredited by
ABET meant that the department had a working infrastructure for documenta-
tion to support ABET accreditation. As indicated by Leach [5], documentation
is important; if it is not written, it does not exist. The department had a pro-
cess for establishing and reviewing program educational objectives (see Section
3.2). We also had functioning assessment tools and procedures to enable con-
tinuous improvement. A method for collecting required documents for courses
and storing them electronically was instituted too. The sum of these activities
served as a foundation for accrediting the SE program.

47

Having a member of the department serve as an ABET volunteer provided
detailed insights as to how ABET accreditation was performed: this knowledge
was invaluable in preparing for ABET visits. The institution and the depart-
ment recognized the effort of the ABET volunteer, demonstrating support for
the ABET accreditation process as recommended by Collofello [2].

Based on prior experiences, the department believed that a dress rehearsal
for a future ABET evaluation would be best. We contacted the ABET Foun-
dation, now called the ABET Bridge, and asked for a former team chair whose
area of expertise was in the area of SE. The ABET Foundation found a con-
sultant having the appropriate credentials, who reviewed a self-study that we
prepared and visited our institution to conduct a review exactly as an ABET
team would do. Based on the consultant’s observations, we revised the as-
sessment processes and the materials taught in some classes to conform to the
consultant’s suggestions.

3 ABET Criteria for Software Engineering Programs

In this section, we present in detail how we met the ABET criteria for Soft-
ware Engineering programs, which must be followed by every accredited SE
program. As mentioned earlier, ABET EAC accredits Software Engineering
programs instead of ABET CAC. The 2022-23 Criteria can be found at [1].
The Criteria are divided into the General Criteria for Baccalaureate Level
Programs, General Criteria for Master’s Level and Integrated Baccalaureate –
Master’s Level Engineering Programs, and Program Criteria. In this paper,
we limit our discussion to the baccalaureate-level General Criteria as well as
the Program Criteria for SE programs. ABET evaluates programs to ensure
that they satisfy both the General and the Program Criteria.

There are eight General Criteria and two Program Criteria for SE programs.
The Criteria are discussed in each of the following subsections. The two SE
Program Criteria are related to curriculum and faculty so they are discussed
in the related General Criteria subsections (sections 3.5 and 3.6, respectively).

3.1 Criterion 1. Students

Criterion 1 is about student admission, performance evaluation, transfers, ad-
visement, and graduation requirements. This criterion ensures that students
are advised regarding curriculum and career matters, attain all outcomes by the
time of graduation, are awarded appropriate academic credits for all courses,
and satisfy all graduation requirements.

As mentioned in the previous paragraph, student advisement is a major
concern of this criterion. When we obtained ABET accreditation for our CS
major, the faculty advised every student every semester. The workload became

48

unsustainable as our enrollment more than doubled in the past ten years. As
a result, we reformed our advisement process. Each semester, we only offer
advisement to new students to the department (transfers, major changes, and
freshmen) as well as those who try to enroll into a few key courses in the
curriculum, including Programming II, Data Structures & Algorithms, and the
SE Senior Design. We used a combination of enrollment holds and instructor
permissions to enforce the mandatory advisement process. Each advisement
session was documented. This approach reduced our workload by half.

We complied with the admission requirements set forth by the university to
accept new students and transfer students. There were no additional admission
requirements for students who chose to pursue the SE degree. Student perfor-
mance was evaluated based on the student outcomes that ABET specifies in
Criterion 3 (see Section 3.3). It was the department’s responsibility to create
and administer assessment instruments to evaluate student outcomes.

Another concern of this criterion was awarding credits to transfer students.
In this case, we handled the SE program in the same way as we handled our
ABET-accredited CS major. In general, we required that all upper-division SE
and CS courses be taken at UCO. The details can be found in [3].

3.2 Criterion 2. Program Educational Objectives

ABET EAC shares the same definition of Program Educational Objectives
(PEOs) as that of ABET CAC, which are “... broad statements that describe
what graduates are expected to attain within a few years after graduation”. It
is important to note that the specified attainments in the PEOs should not be
acquirable by a student before his/her graduation. The PEOs should only be
obtained after the student graduates.

Criterion 2 requires that PEOs be consistent with the mission of the institu-
tion. In addition, a review process of the PEOs, which involves constituencies
of the program, must be conducted and documented with a regular cycle [3].
We ensured that every PEO was directly supported by one or more student
outcomes (see Section 3.3) to satisfy General Criterion 3. The department
published the PEOs on the department website as required by ABET.

3.3 Criterion 3. Student Outcomes

Student Outcomes (SOs) describe “what students are expected to know and
be able to do by the time of graduation”. There are seven ABET-defined SOs
under Criterion 3, which describe the knowledge, skills, and behaviors that
students should acquire through the program. We directly adopted all seven
ABET SOs as the SOs of the SE program. Note that SOs must be periodically
reviewed, and a program can choose to define its own SOs [3].

49

Every SO needs to be related to its corresponding PEOs. In our self-study
report for accreditation, we utilized a table format to illustrate how each PEO
was supported by the SOs. For example, as shown in Table 1, PEO (b) was
supported by SOs #3, #4, #5, #6, and #7.

Table 1: Mapping of SOs to PEOs

PEOs SOs
#1 #2 #3 #4 #5 #6 #7

(a) x x x x x x x
(b) x x x x x
(c) x x x

3.4 Criterion 4. Continuous Improvement

Criterion 4 requires that students must be assessed to evaluate the extent to
which SOs are being attained on a regular basis. ABET defines Assessment as
“one or more processes that identify, collect, and prepare data to evaluate the
attainment of student outcomes”. It defines Evaluation as “one or more pro-
cesses for interpreting the data and evidence accumulated through assessment
processes”.

Criterion 4 was the most time consuming and difficult criterion for us to
satisfy. As a first step, we needed to establish the assessment instruments. For
our ABET-accredited CS major, we used to rely on a locally defined test as the
main instrument [3]. This approach worked for ABET accreditation purposes.
However, we found that it was difficult for us to fully utilize the assessment/e-
valuation results for continuous improvement. Therefore, we decided to switch
to a course-oriented approach.

For each SO, we started by identifying all the courses where students were
being prepared to attain that SO. Among the courses identified, we picked one
course that was a required course for the SE program, in which the specific
SO would be assessed. The next step was to choose one or more performance
criteria (PCs) to evaluate the SO. The number of PCs to use can be determined
based on the complexity of the SO. For simple SOs, a single PC is sufficient. For
complex ones, two or even more PCs may be needed. For example, for SO#6,
“an ability to develop and conduct appropriate experimentation, analyze and
interpret data, and use engineering judgment to draw conclusions”, we defined
two PCs as follows:

• PC#1 for SO#6: An ability to development and conduct appropriate
experimentation

50

• PC#2 for SO#6: An ability to analyze and interpret data, and use
engineering judgment to draw conclusions

Once the PCs are settled for an SO, artifacts produced by students in
the chosen course should be used as the assessment instrument for each PC.
Note that ABET requires direct measures be used in this process. Therefore,
we needed to use actual work produced by students (indirect measures such
as opinion surveys would not count). Depending on the nature of the PC,
a homework assignment, a course project, or a test can be used from the
chosen course. Note that an assessment instrument need not to be the entire
assignment or test. A part of an assignment or test can also serve as an
assessment instrument. For each artifact gathered, we defined a rubric to
evaluate the artifact. For example, an artifact might be rated in one of the
following categories: Unsatisfactory, Developing, Satisfactory, or Excellent.

Figure 1 provides an illustration of all the assessment items discussed above.
As shown in the figure, the course SE 4213 was chosen for the assessment of
SO#2. SO#2 had two PCs. PC#1 used the course project as its assessment
instrument while PC#2 used the second test of the course as its assessment
instrument.

Figure 1: Illustration of Relationships of the Assessment Items

After the course-oriented assessment structure was established, we set up
an evaluation schedule since ABET requires continuous assessment cycles. In
the schedule, artifacts gathered in the spring and fall semesters of the prior
calendar year were evaluated in the spring of the subsequent calendar year.
For example, artifacts gathered in the spring and fall semesters of 2018 were
evaluated in the spring of 2019. Annual assessment reports were produced to
document the results of evaluating all SOs. In the annual assessment reports,
we identified opportunities for improving the SE program. The department’s
assessment committee decided upon which of these opportunities the depart-
ment would act, based on resources available and the effort required to address
the opportunity.

51

3.5 Criterion 5. Curriculum

We must meet both the General Criterion and the SE Program Criterion on
Curriculum as set by ABET. The General Criterion specifies the subject area
and the number of credit hours required for mathematics, basic science, and
engineering topics without naming specific courses. The Program Criterion
mandates SE-related topics such as computing fundamentals, discrete math,
software design and construction, requirements analysis, security, and software
verification and validation.

We ensured that every required SE topic was covered and every SO was
supported by some course(s) in the curriculum. As mentioned earlier, the
department offered the SE program along with an ABET-accredited CS major.
Many of the courses were shared between the two degrees. Several lower-
division courses were characterized to meet both the CS and the SE curricula
for ABET accreditation.

At the upper-division level, three dedicated SE courses were created along
with a capstone course for senior design. The program offered three application
areas, including application development, system development, and a newly
added cybersecurity track. Students in the SE program could take CS courses
as electives based on the application area that they chose.

This criterion also requires that course collectible items be kept for each
time a course is taught. In addition, a program needs at least one graduate
under an ABET-compliant curriculum to qualify for an onsite visitation for
accreditation [3].

3.6 Criterion 6. Faculty

General Criterion 6 covers faculty size, expertise and experience while the
SE Program Criterion on Faculty requires that the core SE faculty members
maintain currency in their areas of professional or scholarly specialization. At
the time when we applied for ABET accreditation, there were nine full-time
faculty members in the department. Among them, seven held a Ph.D. and
two held an MS degree. Most of the faculty members had also worked in the
industry on software development.

ABET requires that “collectively, the faculty must have the breadth and
depth to cover all curricular areas of the program.” To meet this requirement,
two core faculty members were primarily responsible for teaching SE-related
courses while other faculty members taught the rest of the required and elective
courses.

Similar to the situation of many other regional universities that focused
on teaching excellence, the most challenging requirement of this criterion for
our department was to demonstrate that the faculty members had ongoing

52

professional development to maintain currency. Fortunately, we were able to
adopt the same approach that we used for the accreditation of our CS major.
The actual approach was discussed in [3].

3.7 Criterion 7. Facilities

Criterion 7 examines the resources that are available to the program, such as
equipment, classrooms, and laboratories. For this criterion, we ensured that
all lab computers were upgraded on a fixed five-year cycle. Three faculty mem-
bers served as system administrators for the department’s computer servers to
promptly resolve any issues that might affect students’ course works.

3.8 Criterion 8. Institutional Support

Criterion 8 emphasizes the importance of institutional support and leadership
that must be “adequate to ensure the quality and continuity of the program”.
Our accreditation effort was well supported by the administration at both
the university and the college levels. In general, administration support is
indispensable for a program to obtain ABET accreditation.

Our two ABET-accredited programs (SE and CS) shared the same ap-
proaches to satisfy criteria 7 and 8. To avoid repeating ourselves, we refer our
readers to [3] for more details.

4 Conclusion

In this article, we presented our experience in preparing for ABET accreditation
for our undergraduate SE program. A timeline of the major events is presented
as follows:

1. Fall 2014: The BS in SE program was created.
2. Spring 2016: The first graduate of the program received his degree.
3. Summer 2016: An ABET consultant visited us and provided his evalua-

tion and feedback.
4. Fall 2019: A team of ABET evaluators conducted onsite visitation.
5. Summer 2020: The program was officially accredited by ABET EAC.

Currently, we have about 260 students in the ABET-accredited CS major
and about 70 students in the SE program. We have observed a noticeable
enrollment increase in the SE program after its ABET accreditation. The
accreditation of the SE program has also led to its top national rankings by
two separate online resources for prospective college students (study.com and
HQUniversity). For the next step, we will be working on ways to encourage
even more students into the SE program as it provides targeted learning on

53

software design and development, which is a much-needed skill for the profes-
sional career of most of our graduates in the industry.

References

[1] ABET. Engineering accreditation commission, 2022–23 criteria. https:
//www.abet.org/accreditation/accreditation-criteria/criteria-
for-accrediting-engineering-programs-2022-2023/.

[2] James Collofello. Applying lessons learned from software process assess-
ments to ABET accreditation. In 34th Annual Frontiers in Education,
2004. FIE 2004., pages T3G–24. IEEE, 2004.

[3] Jicheng Fu, M. Gourley, M. Park, G. Qian, H. Sung, and T. Turner. Ob-
taining and maintaining ABET accreditation: An experience-based review
of the ABET criteria for computer science programs. Journal of Computing
Sciences in Colleges, 29(4):13–19, 2014.

[4] Michael Gourley, G. Qian, H. Sung, and T. Turner. Seeking ABET ac-
creditation of a computer science program at a public regional university.
Journal of Computing Sciences in Colleges, 23(6):140–147, 2008.

[5] Ronald J Leach. Using the vocabulary of software engineering to describe
ABET accreditation. ACM Inroads, 1(2):27–29, 2010.

54

Comparative Sequential and Parallel
Discrete Signal Convolution Algorithms:

A Case Study∗

Caleb Sneath and Eduardo Colmenares
Computer Science

Midwestern State University
{caleb.sneath, eduardo.colmenares}@msutexas.edu

Abstract

Case studies play an important role in the testing and verification of
prevailing conventional wisdom, the collection of knowledge in a new and
quick format, and to potentially answer several minor questions at once
which on their own are not worthy of deeper inquiry. Case studies ideally
should have a clear focus, provide at least one good question which can be
answered by the case study, and ensure that their creation provides some
tangible educational benefit to one or more fields. This paper focuses
on discrete signal convolution problems, as well as multiple algorithms
which can be used to solve them, particularly from the viewpoint of
output signal analysis.

The discrete one-dimensional (1D) signal convolution problem has ap-
plications in statistics, physics, music, machine learning, and electrical
engineering. This paper aims to answer how much a parallel GPU-based
approach might speed up the problem as well as ways an existing library
implementation can differ from a simpler parallel algorithm implementa-
tion from scratch. This paper presents a case study that makes extensive
use of GPU programming and should benefit not only those involved in
computer science, but also those involved in any mathematics, engineer-
ing, or fields of science in which signal convolution is a concern.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

55

1 Methodology

This paper explores 1D convolution by breaking its discussion into six parts.
The first part aims to provide a quick definition and summary of the rele-
vant background information for convolution. The second step goes over one
possible method to solve 1D convolution problems by hand. This section also
contains an illustrative example. The third part discusses ways in which the 1D
convolution problem can be programmed. This section describes two methods
to view 1D convolution problems that help break it down easier into sequential
code, a section on how to modify one of the sequential algorithms to instead
take advantage of GPU parallelization, and a section which briefly mentions
some modifications which a more complicated library might use in order to fur-
ther optimize the problem. The sections on sequential and parallel code each
include example C++/CUDA implementations of 1D convolution algorithms.
Finally, the last part of this paper summarizes an experiment to time one of
the sequential approaches as well as the parallel GPU approach mentioned in
in part three of this paper. This section includes tables of the results of the
average execution times and speedups across different problem sizes. The aver-
ages for each input size were obtained from 35 trials each of input matrix sizes
in increasing powers of two. For each trial, the filter size remained constant
with a size of four, and each item of the output matrix was computed by a
single GPU thread each for the parallel trials. This section also briefly lists
the hardware specifications of the test machine used, although all trials were
conducted on the same computing cluster.

2 Problem Description

Convolution is an operation like addition or subtraction, but for matrices rather
than individual numbers. It is represented by the “*” symbol, meaning that
for matrices it is important to properly distinguish between multiplication and
convolution. For this reason, normal multiplication should be represented by
“x”, and the dot product by a single dot. As an operation, convolution is com-
mutative so the order of the two matrices to be convolved does not matter [5][4].
The larger matrix is often referred to as the input matrix or mathematically
as x[n]. The smaller matrix on the other hand has a variety of commonly used
terms to refer to it such as filter, kernel, convolution kernel, the point spread
function, or mathematically as h[n] [5].

Standard conventions on the format of the two signal matrices to be con-
volved exist which make communicating and calculating 1D convolution easier.
One of the matrices to be convolved should be the impulse response for a given
delta function. The delta function, denoted by δ[n], is a way to represent any

56

signal in a normalized format by giving sample number zero the value of one,
and all other signals a value of zero. The impulse response then is the resulting
exiting symbol for the delta function] [5][4]. In simple terms, the 1D convolution
is a sum of products in a sliding window. For two 1D matrices, matrix h and
matrix x, the convolution is formally defined by the following equation:

y[i] =
∑(M−1)

(j=0) h[j]x[i− j]

Equation 1.

3 The Do It by Hand Phase

Signal convolution can be solved fairly simply by hand, although the time
required to do so can be immense as the problem size expands past just a
few values for the input and filter. For simplicity, this section will refer to
the signal with more samples as the input signal, and the smaller signal as the
filter. This should not pose a problem in practice as convolution’s commutative
property means that the order of the two signals can be freely rearranged
without affecting the output [5].

One helpful method is to start by finding the total number of outputs for
the output signal. This will simply be the sum of the number of elements in the
input and filter signal minus one. Then, create a table with as many columns
as the number of outputs in the output signal, and as many rows as the number
of inputs. In the first row, starting in the first column and going right a column
one number at a time, write each element of the filter, stopping when the filter
is out of elements. Then, next to each of the newly added numbers, write a
multiplication sign, and put the first element of the input next to each of these
numbers. Next, move onto the next row. Once again, start by writing out
all elements of the filter, however begin doing so one column to the right of
the previous row. Next, once again place the multiplication sign next to each
element, and this time add element two of the input signal. Repeat this process
until there are no more rows. Next, compute the product for each cell. Finally,
sum up every element within the same column, and left to right each sum is
that element of the output signal.

For illustrative purposes let’s assume signal S1 is the input signal, signal S2
is the filter signal, and signal S3 is the output signal. Although this example
uses signals of size 5 and 3, it is important to remember that by following the
same process, any size of inputs can be solved in a similar fashion. If S1 = 1,
2, 3, 4, 5; S2 = 5, 6, 7; the objective is then to compute S3 = S1 * S2.

57

Figure 1: By Hand Example

4 Computational Solutions

There are at least two different broad approaches to creating an algorithm that
can solve signal convolution problems. The first broad viewpoint involves ex-
amining and therefore iterating through each input signal to determine how
it contributes to each output. This is arguably better suited to a sequential
approach than a parallel one as each iteration of the outer loop contributes
to multiple output signals, resulting in some dependencies on multiple itera-
tions for each output. The second viewpoint involves examining and therefore
iterating across each output signal and determining how it was affected by dif-
ferent inputs. This algorithm is well suited to parallelization as each iteration
of the outer loop can be turned into a separate thread since each element of
the output can be calculated entirely independent of the others, although it is
also fine for serial approaches.

4.1 First Sequential Implementation

The input viewpoint serial code is described by Smith[5] as a very intuitive
algorithm to understand. Simply put, after zeroing the output signal’s array
there is an outer loop which iterates from the starting element to the ending
element of the input signal’s array. Then, there is an inner loop which iterates
from the starting element to the ending element of the filter signal. Inside the

58

nested loop, the output signal with an index equal to both loop counters is
assigned the value of itself plus (the current input element times the current
filter element). Figure 2 provides an idea of its C++ implementation.

Figure 2: Input Viewpoint Sequential Code

4.2 Second Sequential Implementation

The output viewpoint is mainly more difficult to understand due to the com-
plexity at first glance of determining which indices of the input and filter arrays
correspond to which output without directly iterating through each to find out.
It begins with an outer loop which iterates across each element of the output
matrix. At the start of each iteration of the loop, the current output being cal-
culated is assigned a starting value of zero. Then, an inner loop begins which
iterates through each element of the filter signal array. Inside this loop, some
bounds checking is done to ensure the input and filters don’t go out of bounds
for their index. If they won’t, an extra step must be taken. A temporary value
will be computed using the product of one point of the input and filter matrix.
The filter value’s index can be obtained from the innermost loop. The input
matrix item for this will be the item with the index of the current output value
minus the index of the current filter value. Afterwards, this temporary value
is added to the current output value. An example of the use of this temporary
value is below.

Input Matrix = {0, 2, 4, 6, 5} Filter Matrix = {1, 2, 3, 5}
To calculate the temporary value for the output matrix on index 3 for the

innerloop value of 1, first the filter value must be obtained. The filter matrix

59

index is obtained directly from the innerloop index, which is 1. Filter Matrix [0]
is 1. Next, the input matrix value must be obtained. The input matrix index is
obtained from subtracting the current output value index, 3, from the current
filter value index we just obtained, 0, for an index of 3. Input Matrix [3] is 6.
Calculating the product of the input and filter gives a temporary value of (6 *
1 = 6). This temporary value can then be added to the current output value,
Output Matrix [3]. Figure 3 provides an idea of its C++ implementation.

Figure 3: Output Viewpoint Sequential Code

4.3 Parallel Implementation

This paper’s illustrative parallel approach was similar to the serial output
viewpoint centered algorithm with several minor adjustments. Each thread
is mostly concerned with calculating one output value, however each thread
may need to calculate more if it is assigned more outputs than the number
of threads called, or less, meaning zero, in cases where the number of outputs
isn’t evenly divisible by the number of threads per block. To meet these goals,
the function begins like the sequential output viewpoint version by calculating
the number of total threads as well as which job id this block and thread would
translate into. Then, the outer loop is tweaked to begin only at this thread’s
job id as the output index, and go up by the total number of threads each time
until it is at least as large as the total number of outputs.

Figure 4 provides an idea of its C++ implementation.

60

Figure 4: Parallel CUDA GPU Code

5 Testing Environment

All trials were performed in the same program execution on the Maverick2
computing cluster. The specifications of the Maverick2 cluster as presented by
TACC are as follows [2][3][1].

6 Comparisons

Testing revealed several predictable as well as unexpected results. As is some-
what expected, serial time grew roughly linearly for the serial approach with
respect to input size. In contrast, the parallel approach started off perform-
ing weaker, but scaled significantly better as the problem size increased in
comparison, with the graph showing somewhere from constant to logarithmic
performance. This results in the serial program being more efficient for smaller
problem sizes, but the parallel approach gaining an advantage as the problem
size increases, suggesting that it may have a better algorithmic complexity.
Allocating variables, copying variables, launching multiple threads, and then
recopying and freeing extra variables can constitute a relatively expensive pro-
cess, so it isn’t unreasonable that for small enough problem sizes, this extra
overhead is simply not a worthwhile cost to solve the problem better.

One trend which warrants further investigation is the difference in how re-
quired time changes between the smaller and the larger parallel GPU based
approaches. While the small input size figures produce similar averages seem-

61

Table 1: Maverick 2 GTX Compute Node Specifications

CPU GPU
(Intel(R) Xeon(R) CPU E5-2620 v4) (GTX 1080-TI)
Processors per
node:

2 CUDA Cores 3584

Cores per proces-
sor:

8 Graphics Clock
(MHz)

1480

Cores per node: 16 Processor Clock
(MHz)

1582

HW threads per
core:

2 Graphics Perfor-
mance

High-
200,000

HW threads per
node:

32 Memory Specs

Clock rate: 2.10 GHz Standard Memory
Configuration

11 GB
GDDR5X

RAM: 128 GB Memory Interface
Width

352-bit

L1/L2/L3 Cache: 512KiB/
2MiB/
20MiB

Bandwidth
(GB/Sec)

11 Gbps

Local Storage: 150.0 GB
(60 GB
free)

Thermal and Power Specs

GPUs: 4xNVidia
1080-TI
GPUs

Max. Graphics
Card Power (W)

250

ingly constant and within the normal range of variance, larger input sizes begin
to scale to some degree with input sizes. This doesn’t appear to be a mere out-
lier of the data, as similar figures were obtained across several 35-trial average
runs of the program. As no thread or output should be reliant upon the work of
another thread, it is possible that what is happening is that at some point, the
threads simply start competing for placing required values in limited memory
space. If this is indeed the case, it might be worthwhile to examine whether for
a large enough problem size, factors like competition for limited memory begins
to lower the relative advantage that parallel GPU approaches possess vs serial
CPU approaches, or even if some modifications to use some degree of synchro-
nization and shared memory management may allow continued increasing of
performance.

62

Table 2: Execution Times and Speedup

Problem Size for Serial Program Execution Speedup
and Parallel - GPU Time Relative To

Threads for Parallel Only (Seconds) Serial
Size GPU

Threads
Serial Parallel Serial Parallel

1,024 1,027 0.000018 0.000293 1 0.061
2,048 2,051 0.000037 0.000294 1 0.126
4,096 4,099 0.000073 0.000335 1 0.218
8,192 8,195 0.000145 0.000290 1 0.500
16,384 16,387 0.000291 0.000312 1 0.933
32,768 32,771 0.000581 0.000422 1 1.377
65,536 65,539 0.001162 0.000533 1 2.180

7 Conclusions

The average of the trials suggests that a parallel GPU based approach can but
won’t always speed up signal convolution. This may be because the highly
independent nature of computing each output matrix value means that the
process can potentially benefit highly from the more cores that can be utilized
for a larger problem. In contrast, for smaller problems it seems to be the
case that the overhead required both to launch the threads, as well as in some
cases the additional CUDA overhead to simply first launch a CUDA function
at program start combine to make a traditional serial CPU based approach
not only suitable but faster to solve these kinds of problems compared to just
a fairly straightforward parallel implementation of 1D convolution. Existing
libraries exist which employ more advanced techniques to increase performance
even further. One potential area worth examining would be whether it is the
case that these techniques also only extend to improving performance to scale
better for larger datasets at the cost of creating further overhead that keeps
performance behind a traditional sequential CPU-based approaches.

References

[1] GeForce GTX 1080 Ti | Specifications | GeForce. https:
//www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-
1080-ti/specifications/.

[2] Maverick2 user guide - tacc user portal. https://portal.tacc.utexas.
edu/user-guides/maverick2.

63

[3] Stampede2 user guide - TACC user portal. https://portal.tacc.
utexas.edu/user-guides/stampede2.

[4] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gab-
bouj, and Daniel J. Inman. 1d convolutional neural networks and appli-
cations: A survey. Mechanical Systems and Signal Processing, 151:107398,
2021.

[5] S. W. Smith. The scientist and engineer’s guide to digital signal processing.
1999.

64

Developing Incident Response-Focused
Cybersecurity Undergraduate Curricula ∗

Junghwan “John” Rhee, Myungah Park, Fei Zuo, Shuai Zhang,
Gang Qian, Goutam Mylavarapu, Hong Sung, Thomas Turner

Department of Computer Science
University of Central Oklahoma

Edmond, OK 73034
{jrhee2,mpark5,fzuo,szhang10,gqian,smylavarapu,hsung,trturner}@uco.edu

Abstract

Increasing cybersecurity incidents call for a competitive cybersecurity
workforce more than ever. We create new comprehensive cybersecurity
university curricula in a metro undergraduate-focused regional univer-
sity. Our program is distinguished from other programs by specializing
in incident response, which addresses the analysis of attack trails and
damages followed by infrastructure hardening including software, sys-
tems, and policies to prevent future attacks. This special theme requires
practical strength such as certifiable deep knowledge, hands-on skills,
and research-involved cybersecurity activities. We present the design
and implementation of the cybersecurity curricula in our institution.

1 Introduction

Increasing cybersecurity incidents and malware hits as seen in the Colonial
pipeline incident [13] have been issues with real impact on our society. Rep-
utable sources such as Cyberseek [6] and ISC2 [7] from industry leaders esti-
mate 4.7 million cybersecurity experts are lacking. Cybersecurity is becoming
increasingly important in computer science education as an essential skill be-
cause a poor design without careful consideration of software vulnerabilities and

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

65

Figure 1: Mapping goals with major tasks, core knowledge, and prerequisites.

attack surfaces can invite adversaries and incidents in no time in the current
connected world. This trend is evidenced by multiple movements of integration
of cybersecurity into the design and development of software such as Microsoft’s
Secure Software Development Life Cycle (SDL) [10]. Recent announcements
promoting memory-safe languages as a major transition by Microsoft and NSA
show cybersecurity is an inseparable subject in computer science education and
affects the major decision in computing.

As cybersecurity has been a major social issue with great demand in the
workforce, our department created a new cybersecurity program specialized
in incident response, which is an essential subject for cybersecurity analysts
who are the experts to evaluate and improve each organization’s cybersecurity
status. This paper proposes a new design of cybersecurity education curricula
with the following contributions:

• We introduce a design of an undergraduate cybersecurity program spe-
cialized in incident response.

• We present a case study of the design and implementation of this program
as a real instance of an incident response-focused cybersecurity program
in a regional university.

We present the design of our curricula in Section 2. Related work is dis-
cussed in Section 3. We discuss our plan for the next step in Section 4. Our
paper is concluded in Section 5.

2 Design of Incident Response-focused Curricula

We set multiple objective requirements for the design of our cybersecurity
program to make it distinguished from others.

66

2.1 Design Requirements

• R1: Specialized education plan for unique competitiveness: First,
we wanted to make our program unique and distinguished with a unique
value in incident response. This requirement can be fulfilled by under-
standing the necessary skill sets and corresponding course design. Fig-
ure 1 presents the mapping that we determined. Core skillsets to con-
duct incident response include an understanding of cybersecurity attack
methods, assessment of attack damages, and system hardening methods
to prevent future attacks. We determined the required core skills and
knowledge to perform these tasks and support prerequisites.

• R2: Multiple cybersecurity education targets: Second, our com-
puter science department has students with multiple different degree in-
terests such as B.S. of Computer Science, B.S. of Software Engineering,
B.S. of Data Science, and M.S. of Computer Science. Cybersecurity cur-
ricula should be positioned to be beneficial to students who need cyber-
security with different degree goals.

• R3: Quality hands-on skills: Cybersecurity employees require strong
knowledge and hands-on skills which help them to become effective em-
ployees in their tasks investigating incidents and securing the infrastruc-
ture which require strong underlying system knowledge.

• R4: Credentials to strengthen job applications: The current com-
petitive job market often calls for cybersecurity credentials in job ap-
plications. For fresh graduates who start the first position in their job
career, this is an important aid to assist their landing positions.

• R5: Research experience: Participating in research provides an op-
portunity to learn the latest technology, challenges, and solutions. Tack-
ling and solving unsolved problems could nurture students as problem
solvers. Also for students who seek research career paths, research expe-
rience will become an important record to help their applications.

2.2 Design Foci of the Proposed Program

With these requirements in mind, we designed our curricula to satisfy each of
the requirements.

• D1: Focus on incident response: Our department has multiple fac-
ulty members working on cybersecurity. Based on their research and
teaching background, we designed and implemented cybersecurity curric-
ula specializing in incident response, as shown in Figure 2. The required

67

Figure 2: Curricula of proposed courses, degrees, and certificates.

knowledge and skillset shown in Figure 1 are fulfilled by six cybersecurity
core courses and three supporting courses. We created an undergraduate
certificate that provides comprehensive cybersecurity skillsets with these
courses. We are also creating graduate-level programs for students who
seek advanced study.

• D2: Multiple student targets: We set two types of student targets for
our education program: The first target is the frontline of cybersecurity
defense. The students of this group intend to work in the cybersecurity
positions such as cyber analysts, penetration testers, and cyber opera-
tors. The second education target is the computer science majors with
cybersecurity awareness and competitiveness. For the second group, our
program is positioned to provide strong add-on cybersecurity skills for
their main career goals to make them more competitive.

• D3: Combination of hands-on skills and deep knowledge: Hands-
on assignments and projects provide an opportunity to deeply understand
the learning materials and apply what they have learned into practice.
We train our students to be competitive in skills as well as knowledge
so that their capabilities are practical and influential in their positions.
For instance, the Secure System Administration course teaches essential
utilities, command line interfaces, and scripting (bash, PowerShell) based
on Windows and Linux virtual machines. The Incident Analysis and
Response I course covers the collection of operating system data and
their investigation. Students analyze the data using various UNIX tools
and scripting to understand attack details and make an incident report.
The Cyber Operation course teaches penetration testing to discover the
weaknesses of systems and software using a comprehensive set of tools.
Also, students participate in multiple catch-the-flag (CTF) events with

68

the instructor and experience vulnerability discovery in the field.

• D4: Cybersecurity credentials: Our department became a partner
of CompTIA [5], which is a well-known cybersecurity organization in
the industry and government. Our curriculum is closely aligned with its
certificates. Besides, in several courses, we introduced micro-credentials
that can be validated regarding the details of skills obtained. We also are
preparing applications for accreditation such as NSA National Centers
for Academic Excellence in Cybersecurity [12].

• D5: Research-involved education program: Our department has
multiple faculty members who are active in cybersecurity research. We
offered multiple research assistant opportunities almost every semester
providing research experience. Their work is submitted to research pub-
lications and research events such as Oklahoma Research Day.

2.3 Degrees and Certificates

We created multiple cybersecurity programs as follows.

• Undergraduate cybersecurity certificate: Undergraduate level cy-
bersecurity certificate is offered to the students who complete a list of
core subjects in cybersecurity and supporting courses. This certificate
will provide a cybersecurity credential for undergraduate students (D2).

• Micro-credentials: Multiple courses offer micro-credentials for their
successful completion. These are issued using a third-party service called
“Credly” so that a digital certificate can show the details regarding the
earned skill (D4) by following the URL links assigned to the issued micro-
credentials.

• M.S. in Cybersecurity: We submitted an application for a new Mas-
ter’s degree in Cybersecurity to provide advanced education for students
who seek the next level. Currently, it is in the review process.

• Graduate cybersecurity certificate: We also submitted an applica-
tion for a graduate-level cybersecurity certificate to provide a cybersecu-
rity credential without the full commitment of the master’s degree due
to work and other reasons. This is also under review.

2.4 Cybersecurity Courses

We offer multiple courses specialized in cybersecurity in our department.

69

• Cybersecurity: This course introduces the foundations of cybersecurity.
The course topics include cyber threats, security principles and goals,
security policies and mechanisms, access control, cryptography, operating
system and software security, and legal and ethical issues in cybersecurity.

• Network Security: This course introduces the principles of network
security, which covers network security policy, packet filtering, firewalls,
port scanning, intrusion detection and prevention systems, virtual private
networks, DNS security, host hardening, and network incident response.

• Secure System Administration: This course introduces the essential
knowledge and skillsets for system administration. Students will learn
hands-on system administration techniques including scripting, shells,
editors, utilities, policies, regulations, and risk management (D3).

• Incident Analysis and Response I: This course introduces the knowl-
edge and skillsets for incident response, system analysis, and security con-
trols. Students will learn hands-on techniques to investigate the symp-
toms of attacks and perform a comprehensive analysis to discover the
details of attack damages, recover the systems, and protect them from
future attacks. This course covers the materials for the CompTIA CySA+
certificate (D1, D3, D4).

• Cyber Operations: This course introduces techniques and hands-on
experiences in penetration testing, software security, and cyber opera-
tions. Students will learn vulnerable/secure code patterns, vulnerability
types, and security frameworks for vulnerability testing. This course
covers the materials for the CompTIA PenTest+ certificate (D3, D4).

• Cyber Infrastructure and Cloud Computing: This course intro-
duces the technologies of cloud computing, the stack of cloud service
models, and the design of cloud-based applications. Hands-on studies
over prevailing cloud services are provided to illustrate the common com-
ponents, interfaces and practices for resource management and applica-
tion development at scale.

2.5 Extra Activities

In addition to the presented curricula, we created several supporting activities
and groups to enhance cybersecurity education.

• Cybersecurity Center: We established a cybersecurity center, which
serves as a hub for cybersecurity activities at our institution (D5).

70

• Cybersecurity Research Groups: Our faculty members run research
labs to lead cybersecurity research and educational projects with under-
graduate and graduate students (D5).

• Cybersecurity Community Activities: We are participating in mul-
tiple cybersecurity community activities such as Catch the Flags (CTF)
events. We are also collaborating with industry and government organi-
zations forming an advisory board.

3 Related Work

There are multiple papers regarding the design of cybersecurity curricula and
the survey of cybersecurity programs related to this paper.

Design of Cybersecurity Curricula: Santos et al. [20] present the reflec-
tions regarding the curricula contents to be considered to design a graduate-
level curriculum in cybersecurity. In [21], Schneider et al. argue the issues
about what should be taught and which are not well addressed by many of
the university cybersecurity faculty. Rowe et al. [17] discussed the role of cy-
bersecurity in an IT education context and argue why IT programs should
champion this topic. Rashid et al. [16] present the Cyber Security Body of
Knowledge (CyBOK) project that classifies the foundational and generally
recognized knowledge on cybersecurity. Blaken-Webb et al. [2] describe the
rationale for and implementation of an experimental graduate-level cybersecu-
rity ethics course curriculum recently piloted at their school. Blair et al. [1]
present a vision and curricula for multi-disciplinary cybersecurity teams which
are made up of experts of diverse abilities and expertise. Yuan et al. [24]
provide a detailed account of designing and developing a hands-on cybersecu-
rity project, which consists of penetration testing, defending an enterprise-level
network system, and performing a comprehensive IT audit. The authors of [8]
propose a course of study in cybersecurity designed to target homeland secu-
rity students. The curriculum promotes the intellectual strengths of students
in this discipline and that is consistent with the broad suite of professional
needs. Saharinen et al. [19] describe a model for designing a degree program in
cybersecurity. The authors establish the guiding frameworks and requirements
within the European Union for a degree program. Sharevski et al. [22] devel-
oped an interdisciplinary course for learning in the fields of cybersecurity and
interaction design. The inaugural course teaches students secure user interface
design. Yue et al. [25] present a case study of an ABET-accredited cyber-
security program. Luallen et al. [9] discuss the development of a course and
laboratory environment regarding an undergraduate and graduate-level critical
infrastructure and control systems cybersecurity curriculum.

71

While there have been multiple approaches proposed for cybersecurity cur-
ricula, our proposal is differentiated from them because it is a cybersecurity
education program with a specialty in incident response education for under-
graduate students.

Survey of Cybersecurity Education Programs: There are prior sur-
veys on cybersecurity education programs. Multiple researchers [3, 4, 11, 15, 18]
present an overview and comparison of existing curriculum design approaches
for cybersecurity education as a survey and review. Yamin et al. [23] aim to
identify commonalities in skillset requirements for multiple cybersecurity roles
like penetration tester, security operation center analysts, digital forensic and
incident responders, and information security managers. They determined five
main domains which are all included in our curriculum.

Cybersecurity Education Framework: NIST’s NICE framework [14]
aims to create an operational, sustainable, and continually improving program
for cybersecurity awareness, education, training, and workforce development
that advances the US’s long-term cybersecurity posture. This framework pro-
vides a foundation for most cybersecurity education programs.

4 Discussion

This paper presents the design and implementation of our cybersecurity pro-
gram. After its long-term operation for multiple years, we plan to publish the
outcome of our program and reflection on the result including further enhance-
ment, modifications, student career, and lessons from the operation as future
work.

5 Conclusion

We propose cybersecurity curricula focused on the incident response which is
an essential task for cybersecurity workforce to address security incidents and
secure infrastructure. We designed the curricula by determining core knowledge
and skillset for the major tasks of incident response and then mapping them
to six core cybersecurity courses. Our institution implemented this design and
offers an undergraduate cybersecurity certificate. In addition, currently, we are
in the process of creating a graduate-level master’s degree and cybersecurity
certificate as advanced steps. We hope our design and experience could be
helpful to the institutions that plan a new cybersecurity program.

72

References

[1] Jean R.S. Blair, Andrew O. Hall, and Edward Sobiesk. Educating future
multidisciplinary cybersecurity teams. Computer, 52(3):58–66, 2019.

[2] Jane Blanken-Webb, Imani Palmer, Sarah-Elizabeth Deshaies, Nicholas C
Burbules, Roy H Campbell, and Masooda Bashir. A case study-based
cybersecurity ethics curriculum. In 2018 USENIX Workshop on Advances
in Security Education (ASE 18), 2018.

[3] Krzysztof Cabaj, Dulce Domingos, Zbigniew Kotulski, and Ana Respí-
cio. Cybersecurity education: Evolution of the discipline and analysis of
master programs. Computers & Security, 75:24–35, 2018.

[4] Nabin Chowdhury and Vasileios Gkioulos. Cyber security training for
critical infrastructure protection: A literature review. Computer Science
Review, 40:100361, 2021.

[5] CompTIA. Computing technology industry association (CompTIA).
https://www.comptia.org/.

[6] CompTIA. Cyberseek. https://www.cyberseek.org/.

[7] ISC2. 2022 cybersecurity workforce study. https://www.isc2.org/
Research/Workforce-Study.

[8] Gary C. Kessler and James D. Ramsay. A proposed curriculum in cy-
bersecurity education targeting homeland security students. In 2014 47th
Hawaii International Conference on System Sciences, 2014.

[9] Matthew E. Luallen and Jean-Philippe Labruyere. Developing a critical
infrastructure and control systems cybersecurity curriculum. In 2013 46th
Hawaii International Conference on System Sciences, 2013.

[10] Microsoft. Microsoft security development life cycle. https://www.
microsoft.com/en-us/securityengineering/sdl.

[11] Djedjiga Mouheb, Sohail Abbas, and Madjid Merabti. Cybersecurity Cur-
riculum Design: A Survey, pages 93–107. 04 2019.

[12] NSA. National centers of academic excellence in cybersecurity. https:
//www.nsa.gov/Academics/Centers-of-Academic-Excellence/.

[13] Energy Security Office of Cybersecurity and Emergency Response.
Colonial pipeline cyber incident. https://www.energy.gov/ceser/
colonial-pipeline-cyber-incident.

73

[14] Celia Paulsen, Ernest McDuffie, William Newhouse, and Patricia Toth.
NICE: Creating a cybersecurity workforce and aware public. IEEE Secu-
rity & Privacy, 10(3):76–79, 2012.

[15] Denny Pencheva, Joseph Hallett, and Awais Rashid. Bringing cyber to
school: Integrating cybersecurity into secondary school education. IEEE
Security & Privacy, 18(2):68–74, 2020.

[16] Awais Rashid, George Danezis, Howard Chivers, Emil Lupu, Andrew Mar-
tin, Makayla Lewis, and Claudia Peersman. Scoping the cyber security
body of knowledge. IEEE Security & Privacy, 16(3):96–102, 2018.

[17] Dale C. Rowe, Barry M. Lunt, and Joseph J. Ekstrom. The role of cyber-
security in information technology education. In Proceedings of the 2011
Conference on Information Technology Education, SIGITE ’11, 2011.

[18] Rodrigo Ruiz. A study of the uk undergraduate computer science curricu-
lum: A vision of cybersecurity. In 2019 IEEE 12th International Confer-
ence on Global Security, Safety and Sustainability (ICGS3), 2019.

[19] Karo Saharinen, Mika Karjalainen, and Tero Kokkonen. A design model
for a degree programme in cyber security. In Proceedings of the ICETC
2019.

[20] Henrique Santos, Teresa Pereira, and Isabel Mendes. Challenges and re-
flections in designing cyber security curriculum. In 2017 IEEE World
Engineering Education Conference (EDUNINE), pages 47–51, 2017.

[21] Fred B. Schneider. Cybersecurity education in universities. IEEE Security
& Privacy, 11(4):3–4, 2013.

[22] Filipo Sharevski, Adam Trowbridge, and Jessica Westbrook. Novel ap-
proach for cybersecurity workforce development: A course in secure de-
sign. In 2018 IEEE Integrated STEM Education Conference (ISEC), 2018.

[23] Muhammad Mudassar Yamin and Basel Katt. Cyber security skill set
analysis for common curricula development. In Proceedings of the 14th
International Conference on Availability, Reliability and Security, ARES
’19, New York, NY, USA, 2019. ACM.

[24] Dongqing Yuan. Design and develop hands on cyber-security curriculum
and laboratory. In 2017 Computing Conference, pages 1176–1179, 2017.

[25] Xiaodong Yue, Belinda Copus, and Hyungbae Park. How to secure ABET
accreditation for a cybersecurity program: A case study. J. Comput. Sci.
Coll., 2022.

74

Hands-On Lab Development for Policy
Violations in Voice Personal Assistants∗

Alejandra Enriquez Sanchez, Oludare Ogunbowale
Olayinka Adetola, Na Li

Computer Science Department
Prairie View A&M University

Prairie View, TX 77446
{aenriquezsanchez, nali}@pvamu.edu

Abstract

This paper discusses the design and implementation of a hands-on
lab for undergraduate students to learn Voice Personal Assistants(VPA),
their policies, and possible policy violations in existing Amazon Alexa
skills and Google Assistant actions. A pilot lab session and a survey
were conducted among 14 undergraduate students enrolled in the class,
Introduction to Information Security, at Prairie View A&M University in
the fall of 2022. Students’ feedback was very positive, demonstrating the
effectiveness of the lab for them to learn relevant knowledge and skills.

1 Introduction

The rise of Voice Personal Assistants (VPA) in the cloud-based artificial intel-
ligence and IoT space has been propelled by market leaders such as Amazon’s
Alexa, Apple’s Siri, Google Assistant, and Microsoft’s Cortana. VPAs allows
users to communicate through speech using customized software. However, the
increased usage of VPAs in households raises concerns about users’ safety and
privacy disclosure. Although Amazon Alexa and Google Assistant have poli-
cies in place to protect their users, research has shown that only 10% of users
are definitely aware of what data can be collected[7]. It also shows a misplaced

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

75

trust in Amazon and Google’s certification process to check and detect any
policy violations before the publishing of the action or skill.

This paper focuses on Amazon Alexa skills and Google Assistant actions,
two of the most widely known VPA applications. The Amazon Alexa and
Google Assistant platforms [3][9] allow third-party developers to publish their
VPA applications (skills or actions). Both of the platforms perform a certifi-
cation process to assess the submitted skills or actions and determine whether
they are appropriate for publishing. Despite the existence of this process, some
published skills/actions still violate the policies set by Amazon and Google.
Considering the popularity of VPAs, especially among younger generations,
we were motivated to educate students on VPA policies and possible viola-
tions by developing hands-on lab activities. Particularly, we intended to (1)
introduce VPA policies to students; (2) raise students’ awareness of possible
policy violations in using VPAs; (3) teach them how to properly test VPA
applications; and (4) empower them to discover policy violations on their own.

The rest of the paper is organized as follows: Section 2 briefly discusses
literature related to policy violations in VPA and the skill certification process.
Section 3 presents the development of the lab. Section 4 discusses the survey
evaluation. Finally, a conclusion is made in Section 5.

2 Related Work

2.1 Information Leakage From Third-Party VPAs

Research exposes a lack of security measures to prevent sensitive information
leakage through third-party voice applications. Bispham et al. interacted with
Google Actions and Alexa skills via a chat box and confirmed the leakage of
sensitive information[5]. They believe it remains a challenge to thoroughly
prevent such leakage through the conversation interface of third-party voice
applications due to the current architecture of voice assistance. They suggested
redesigning the voice assistant architecture to prevent future security risks.

Sabir et al. also discovered a significant gap in users’ understanding of how
Alexa selects and auto-enables skills[13]. This study exposes the lack of proper
auditory interventions which are necessary to minimize VPA applications’ se-
curity and privacy risks.

2.2 Trustworthiness of Skill Certification in VPAs

Amazon and Google require skills and action developers to pass a certifica-
tion to publish their applications. However, findings demonstrate the policy
requirements are not strongly imposed despite claims. Cheng et al. designed
and submitted 234 Alexa skills that deliberately violated 55 content and privacy

76

Figure 1: Alexa console Figure 2: Error display when test-
ing existing action

policies defined, all of which passed the certification process[7]. In comparison,
they also submitted 381 policies violating Google actions, out of which 39%
passed the certification process. They manually tested 755 Alexa skills in the
Kid’s category and identified 31 problematic skills with policy violations and 34
broken skills. They tested all 114 actions in the same category and only found
one with a policy violation. Additionally, Liao et al. investigated and analyzed
the overall effectiveness of privacy policies provided by developers through an
NLP-based analysis approach [11].

They systematically measured the effectiveness of privacy policies provided
by voice-app developers in both Alexa and Google stores to understand the
quality and usability issues of privacy policies provided by developers. They
also conducted a user study to understand users’ perspectives on VPA’s privacy
policies. They found that there exist a substantial number of problematic pri-
vacy policies. Although research has been conducted on VPA policies, educa-
tion on this topic for younger undergraduate students has not been sufficiently
emphasized.

3 Lab Development

In this section, we will detail how we developed the lab activities, including the
investigation of the environmental setup, researching VPA policies in the Kids
and Healthcare category, and testing several VPA skills and actions. Addition-
ally, we will briefly introduce the structure of the lab manual we designed for
students.

3.1 VPA Testing Platforms

VPA services like Amazon Alexa and Google Assistant offer a development
console for developers to create, test, manage and publish skills and actions.
Through the console, developers can simulate the interaction between a skill

77

or action and an end user. The simulator allows both voice and text input for
this purpose [2].

The console interface for Amazon Alexa is displayed in Figure 1. Note that
there is an error if one tries to test an existing action developed by others,
as displayed in Figure 2. This is because Google does not allow a developer
to test any actions through the console which do not belong to the developer
himself. Therefore, we tested some existing actions with the Assistant mobile
application available in Google Play store and Apple store, instead of using the
console.

3.2 VPA Policy Investigation

We investigated the policies in general and their different categories created
by both Amazon and Google. Then we decided to focus on two of the most
critical categories, Kids and Healthcare.

The Amazon Alexa platform defines three specific policies for skills in the
Kids category as listed in Table 1. The Google Assistant platform specifies the
first and third policies above as well, but it does not explicitly forbid actions
from directing its users to external websites[4][10]. In the Healthcare category,
both Amazon Alexa and Google Assistant platforms defined the two policies
listed in Table 1. Amazon does not allow skills to collect information about a
user’s physical or mental health. Google requires that actions cannot collect
information that could be considered protected health information (PHI) under
the Health Insurance Portability and Accountability Act (HIPAA). For both
categories, Amazon Alexa requires skills in data collection to provide a privacy
policy/notice, whereas Google Assistant requires every action to have a privacy
policy/notice.

Table 1: Policy Definitions

Category Policy Requirements by VPA Platforms

Kids
It cannot collect any personal information from end users.
It cannot promote any products, content, or services or direct end users to engage with content outside of Alexa.
It cannot include content that is not suitable for all ages.

Health It cannot collect information relating to any individual’s physical or mental health condition.
If a skill provides health-related information, it has to include a disclaimer that it is not substitute for medical advice.

3.3 VPA Testing

We tested several existing skills and actions manually. Specifically, we at-
tempted to violate each existing policy through every possible interaction path.
For Amazon Alexa, 20 skills were tested in the Kid’s category, out of which
three were found with violations. Additionally, 20 skills were tested in the

78

Figure 3: Quiz Yay skill Figure 4: Blood donation helper
skill

Healthcare category, out of which two were found in violation. For Google As-
sistant, ten actions were tested in the Kids category, out of which the authors
found no violation. Another ten actions were tested in the Healthcare category,
out of which two actions were found with violations. Due to the space limit,
we selected two skills and two actions with policy violations for illustration in
the following.

3.3.1 Skill I

The first skill selected is “Quiz Yay”, which belongs to the Kid’s category and
is a simple game to entertain kids [1]. The game starts by asking how many
players will be playing, followed by requesting a name from each player. The
players can use any name, including inappropriate words such as curse words.
While the game attempts to censor the word upon selection, the skill utilizes
the uncensored word during that player’s turn, as circled in Figure 3. This is
a violation against the second policy in the Kids category in Table 1.

3.3.2 Skill II

The second skill selected is “Blood donation helper” in the Healthcare cate-
gory [8]. This skill helps the blood donor choose the people who have the
correct receiving blood group. However, its initial response, as pictured in
Figure 4, violates the first policy in the Healthcare category in Table 1, as a
person’s blood type is considered personal data and should not be collected by
the skill. Although knowing the correct blood type is important for safe trans-
fusion, the skill can simply demonstrate the correct matching between blood
types and receiving groups without inquiring about the user’s blood type.

79

Figure 5: Health Buddy action Figure 6: Health Guru action

3.3.3 Action I

The first action selected is “Health Buddy" in the Healthcare category [6].
This action helps users track calories of the food they consume daily. Upon
interaction, it asks a user for his name, email, and profile picture before he can
access the action, as pictured in Figure 5. This violates Google’s health policy
which does not allow actions to provide, collect, or store personal medical
information, including data that could be considered data concerning health
under the General Data Protection Regulation.

3.3.4 Action II

The second action selected is “Health Guru" in the Healthcare category pic-
tured [12]. This action claims to help users lead a healthier lifestyle if they
follow their tips and fact. Although the action displays a disclaimer in the
description that states, “this app is not a substitute for medical advice...", it
fails to make a disclaimer upon first interaction with the user as seen in Fig-
ure 6. Google’s policy requires actions that provide health information, such
as non-personalized information about symptoms, treatments, or medications
include a disclaimer at the beginning of the user’s first interaction with the
action and in the Directory description. Therefore, it causes a policy violation.

3.4 Lab Manual Design

The lab manual includes instructions on how to set up the environment to test
skills and actions and illustrates how to break the policies of the selected skills
and actions aforementioned. Particularly, students can read the information
about those VPA applications from their official sites and they are able to
interact with them to replicate the scenarios of policy violations. The manual
also explains why they break the policies. Ultimately, the task encourages
students to explore more about detecting policy violations of VPAs by testing
more skills and actions.

80

4 Survey Evaluation

To evaluate the effectiveness of our lab, we piloted a lab session in a lower-level
Computer Science elective class for undergraduate students, Introduction to
Information Security, at Prairie View A&M University in the end of Fall 2022.
A total of 14 students participated in the lab session. During the lab session,
the students were given a brief background lecture explaining what VPAs are,
their policies, the importance of VPA policies, the impact of policy violations,
and some examples of policy violations. Then students were walked through
the activities in the lab manual. We also conducted pre and post-surveys for
the lab. The survey questions were designated to measure the students’ gain in
awareness, interest, and understanding of the topic, as listed in Table 2. The
survey questions were divided into two categories, questions in both pre and
post-surveys, and questions only in the post-survey. All questions use a rating
scale of one to five, with five being the most positive.

Table 2: Survey questions for evaluating the labware

Survey Question Type
1 Consider your level of awareness about Policies of VPA services (P-

VPA)
Pre and
Post

2 Consider your level of awareness about possible Privacy Disclosure of
VPA applications (PD-VPA)

Pre and
Post

3 Consider your level of awareness about Policy Violations of VPA ap-
plications (PV-VPA)

Pre and
Post

4 Consider your level of interest in Testing VPA applications Pre and
Post

5 Consider your level of interest in Detecting Policy Violations of VPA
applications

Pre and
Post

6 Consider your level of interest in Developing VPA applications with
Policy Compliance

Pre and
Post

7 Indicate the extent of your gains in understanding Voice Personal
Assistant (VPA) services

Post

8 Indicate the extent of your gains in understanding Policies in VPA
applications (Kids and Healthcare categories)

Post

9 Indicate the extent of your gains in understanding Policy Violations
in VPA applications

Post

10 This lab helped me understand how to test VPA applications. Post
11 The lab helped me understand what policies should be followed for

developing a VPA application.
Post

12 The lab helped me understand how to detect policy violations of VPA
applications.

Post

13 I would like this lab to be taught in a computer security course. Post

81

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

q1 q2 q3

A
V

e
ra

g
e

 R
a

tin
g

Pre

Post

Figure 7: Student’s level of aware-
ness

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

q4 q5 q6

A
ve

ra
g

e
 R

a
tin

g

Pre

Post

Figure 8: Student’s level of interest

4.1 Category I

The questions in this category are focused on assessing students’ level of aware-
ness and interest in different relevant concepts.

For each question in Questions 1 to 6, the average rating of the students’
responses was calculated for the pre and post-surveys. Questions 1 to 3 fo-
cused on students’ awareness of the VPA policies, possible privacy disclosure,
and policy violations of VPA applications. Questions 4 to 6 focused on stu-
dents’ interest in testing and detecting policy violations of VPA applications
and developing VPA applications with policy compliance. Figures 7 and 8
demonstrate a significant increase in student’s awareness and interest levels
after the lab session with the average rating being above 4 or close to 4.

4.2 Category II

Questions in this category were designed to gather students’ feedback on their
understanding gained after the lab session and on the effectiveness of the lab.
The final question sought to gauge the interest in including this lab and topic
in a computer security course.

Questions 7 to 9 sought to gauge the extent of the students’ gain in under-
standing VPA, policies in VPA applications, and policy violations. As seen in
Figure 9, the students indicated a significant gain in understanding of those
concepts. Questions 10 to 12 sought to assess whether the lab helped the
students understand how to test VPA applications, what policies should be
followed for developing a VPA application, and how to detect policy viola-
tions. Figure 10 indicates a strong agreement that the lab helped the students
learn the corresponding knowledge and skills.

The last question in the post-survey can help us understand if this topic

82

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85

q7 q8 q9

A
ve

ra
g

e
 R

a
tin

g

Figure 9: Student’s gain in under-
standing

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

4.45

q10 q11 q12

A
ve

ra
g

e
 R

a
tin

g

Figure 10: This lab helped students
with understanding the topic

interests the students and whether they are willing to learn through lectures
and hands-on experience like the lab presented. Most students agreed that
they would like this lab to be taught in a computer security course (6 strongly
agree, 6 agree, and 2 neither agree nor disagree).

5 Conclusion

This paper discusses the development of a lab intended to make students aware
of the possible privacy violations in using VPAs, expose them to VPA policies,
teach them how to test VPA applications, and help them discover privacy
violations. We explored Amazon Alexa and Google Assistant policies and
tested some of their skills and actions. We designed the lab manual and piloted
the lab in a class with a survey distributed to the students. The survey feedback
is very positive, indicating the effectiveness of the lab activities we designed
for students to learn all relevant knowledge and skills.

Acknowledgment

This project is supported in part by the National Science Foundation (NSF)
under grant DUE-1712496. Any opinions, findings, and conclusions expressed
in this paper are those of the authors and do not necessarily reflect the views
of NSF. Additionally, we thank Mr. Okechukwu Ogwo-Ude for his assistance
in researching skills and running the lab session.

83

References

[1] Aarna. Quiz yay. https://www.amazon.com/Aarna-Quiz-yay/dp/B09WVLY66H/.

[2] Amazon. Alexa developer console. https://developer.amazon.com/alexa/
console/ask.

[3] Amazon. Alexa skills. https://www.amazon.com/alexa-skills/b/?ie=UTF8&
node=13727921011.

[4] Amazon. Policy testing. https://developer.amazon.com/en-US/docs/alexa/
custom-skills/policy-testing-for-an-alexa-skill.html.

[5] Mary Bispham, Clara Zard, Suliman Sattar, Xavier Ferrer-Aran, Guillermo
Suarez-Tangil, and Jose Such. Leakage of sensitive information to third-party
voice applications. In Proceedings of the 4th Conference on Conversational User
Interfaces, pages 1–4, 2022.

[6] Bonitoz.Inc. Health buddy. https://assistant.google.com/services/a/uid/
00000075a4065a36.

[7] Long Cheng, Christin Wilson, Song Liao, Jeffrey Young, Daniel Dong, and
Hongxin Hu. Dangerous skills got certified: Measuring the trustworthiness of
skill certification in voice personal assistant platforms. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pages
1699–1716, 2020.

[8] Leslie Correa. Blood donation helper. https://www.amazon.com/Leslie-
Correa-Blood-donation-helper/dp/B07N626993.

[9] Google. Assistant actions. https://assistant.google.com/explore.

[10] Google. Policies for actions on google. https://developers.google.com/
assistant/console/policies/general-policies.

[11] Song Liao, Christin Wilson, Long Cheng, Hongxin Hu, and Huixing Deng. Mea-
suring the effectiveness of privacy policies for voice assistant applications. In
Annual Computer Security Applications Conference, pages 856–869, 2020.

[12] Sandeep Kumar Rana. Health guru. https://assistant.google.com/
services/a/uid/000000114f6751c7.

[13] Aafaq Sabir, Evan Lafontaine, and Anupam Das. Hey Alexa, who am I talk-
ing to?: Analyzing users’ perception and awareness regarding third-party Alexa
skills. In Proceedings of the 2022 CHI Conference on Human Factors in Com-
puting Systems, pages 1–15, 2022.

84

Programming Many-Core Architectures
(GPUs) Using CUDA∗

Conference Tutorial

Eduardo Colmenares
Computer Science

Midwestern State University
Wichita Falls, Texas, 76308
eduardo.colmenares@msutexas.edu

Many-core devices also known as Graphical Processing Units (GPUs) have
dominated the floating point race since 2013 and their benefits have been fuel-
ing the current artificial intelligence (AI), machine learning (ML), deep learning
(DL), and data science (DS) revolution. Many of these fields benefit from the
use of specialized frameworks, such as Tensor Flow, Keras, etc. Although ex-
tremely helpful for AI, ML, DL and DS related purposes, the use of these
frameworks does not provide the user any knowledge about how to harness the
potential of the underlying hardware for different applications or different fields
to those mentioned above. This tutorial intends to provide interested students
and faculty a basic, but strong hands-on programming foundation regarding
good practices and potential capabilities of modern GPUs. The tutorial focuses
on GPU programming and not AI Frameworks.

∗Copyright is held by the author/owner.

85

Designing Learning Outcomes and
Competencies using Bloom’s for

Computing∗

Conference Tutorial

Markus Geissler, Koudjo Koumadi, Pam Schmelz
Christian Servin, Cara Tang and Cindy Tucker

Association of Computing Machinery
Committee for Computing Education in

Community Colleges

In this tutorial, participants will be introduced to Bloom’s for Computing:
Enhancing Bloom’s Revised Taxonomy with Verbs for Computing Disciplines,
a project of the ACM CCECC (Committee for Computing Education in Com-
munity Colleges) [1, 2, 4, 3]. Due for final publication by the end of 2022,
the Bloom’s for Computing report offers a total 57 additional verbs across all
six levels of Bloom’s cognitive domain – Remembering, Understanding, Ap-
plying, Analyzing, Evaluating, Creating. The enhanced verb list is intended
to support crafting more appropriate and less awkward learning outcomes and
competencies that express the knowledge, skills, and dispositions required in
computing disciplines. The Bloom’s for Computing verb list and report is not
just for use in future ACM curriculum guideline reports, but is primarily for
educators in computing disciplines who find themselves needing to craft learn-
ing outcomes or competencies – whether for programs, courses, or individual
modules; whether two-year, four-year, graduate, or K-12 level; whether faculty,
instructional designers, or program coordinators.

The presentation and activities in the proposed tutorial session are outlined
below:

1. Introductions – tutorial facilitators & participants

2. Refresher on Bloom’s Revised Taxonomy, its 6 cognitive levels, and com-
mon verbs lists

∗Copyright is held by the author/owner.

86

3. Interactive discussion on how faculty approach writing learning outcomes
and some of the challenges encountered

4. Bloom’s for Computing: Enhancing Bloom’s Revised Taxonomy with
Verbs for Computing Disciplines

(a) Introduce the project & the verbs

(b) Examples of learning outcomes using the Bloom’s for Computing
verbs

(c) Areas where the Bloom’s for Computing verbs come in particularly
handy

5. Activity where participants write or modify learning outcomes for courses
they teach

6. Share out learning outcomes and thoughts on how the enhanced verbs
might be used

7. Wrap up

Participants will be given a handout to take home with the complete list of
verbs for each cognitive level.
This tutorial is relevant for anyone involved in writing, revising, or updating
learning outcomes for programs, courses, or instructional units in computing
disciplines such as Computer Science, Information Technology, and Cyberse-
curity.

Biography

Christian Servin is an Associate Professor of Computer Science at El Paso
Community College; he has more than 15 years of experience teaching comput-
ing courses, developing best practices in computing education, and establishing
academic and research partnerships between community colleges with ISDs and
four-year colleges. Currently, he serves as a vice chair for the ACM Standing
Committee for Computing Education in Community Colleges (CCECC), where
he assists in the development and updates curricular guidelines in computing
for 2-Year colleges and computing education projects. He serves as a member
of several committees for The Texas Higher Education Coordinating Board
representing Two-Year Colleges. He has served in various curricular guidelines
recommendations such as the ACM Data Science Task Force and the CS2023:
ACM/IEEE-CS/AAAI Computer Science Curricula

87

References

[1] Markus Geissler, Christian Servin, Cara Tang, and Koudjo Koumadi. Op-
erationalizing computing verb enhancements to bloom’s revised taxonomy:
Leveraging bloom’s for computing to create learning outcomes for various
computing disciplines. In Proceedings of the 23rd Annual Conference on
Information Technology Education, SIGITE ’22, pages 44–45, New York,
NY, USA, 2022. Association for Computing Machinery.

[2] Christian Servin, Cara Tang, Markus Geissler, Melissa Stange, and Cindy
Tucker. Enhanced verbs for bloom’s taxonomy with focus on computing
and technical areas. In Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education, SIGCSE ’21, page 1270, New York, NY,
USA, 2021. Association for Computing Machinery.

[3] Cara Tang, Markus Geissler, and Christian Servin. Bloom’s for comput-
ing: Crafting learning outcomes with enhanced verb lists for computing
competencies. J. Comput. Sci. Coll., 38(1):114–115, nov 2022.

[4] Cara Tang, Markus Geissler, Christian Servin, and Cindy Tucker. Comput-
ing verbs to enhance bloom’s revised taxonomy. In Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education V. 2, SIGCSE
2022, page 1026, New York, NY, USA, 2022. Association for Computing
Machinery.

88

