
The Journal of Computing
Sciences in Colleges

Papers of the 37th Annual CCSC
Southeastern Conference

November 3rd-4th, 2023
Coastal Carolina University

Conway, SC

Bin Peng, Associate Editor Adam Lewis, Regional Editor
Park University Athens State University

Volume 39, Number 5 November 2023

The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2

Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 7

CCSC National Partners 9

Welcome to the 2023 CCSC Southeastern Conference 10

Regional Committees — 2023 CCSC Southeastern Region 11

Reviewers — 2023 CCSC Southeastern Conference 12

Sentiment and Topic Modeling Analysis of Reddit Posts on Chang-
ing Ones Major 13

Nathan Green, Marymount University; Karen Works, Florida State
University

Preparing Students for Software Production with DevOps: A
Graduate Course Approach 23

Brian T. Bennett, East Tennessee State University

The Game Guillotine as Inspiration for a Data Structures Course 32
Chris Alvin, Lori Alvin, Furman University

Designing a Security System Administration Course for Cyber-
security with a Companion Project 43

Fei Zuo, Junghwan Rhee, Myungah Park, Gang Qian, University of
Central Oklahoma

A Social Good Challenge for Teaching Undergraduate Affective
Computing 53

Gloria Washington, Howard University; Marion Mejias, University of
North Carolina Charlotte

Checkpoint Classifier for CNN Image Classification 63
Jackson H. Paul and Andy D. Digh, Mercer University

UAV Path Planning using Aerially Obtained Point Clouds 75
Alec Pugh, University of North Carolina at Chapel Hill; Luke Bower,
The University of Alabama in Huntsville; Saad Biaz, Richard Chapman,
Auburn University

3

Improving Student Motivation Through an Alternative Grading
System 86

Ryan Stephen Mattfeld, Elon University

A Comparison of Machine Learning Code Quality in Python Scripts
and Jupyter Notebooks 96

Kyle Adams, Moravian University; Aleksei Vilkomir, East Carolina
University; Mark Hills, Appalachian State University

The Shrinking Slice of Women and Black Students in a Growing
Computer Science Pie: A Preliminary Spatiotemporal Analysis
of Longitudinal Completions Data 109

Syed Fahad Sultan, Chris Alvin, Rebecca Drucker, Furman University

Do We Need to Write? Researching Perceptions of Disciplinary
Writing Importance and Skills in an Advanced Computer Science
Course 119

Elizabeth von Briesen, Elon University

Explicitly Characterizing Team Structures in Teaching Team-based
Project Courses 129

Mingxian Jin, Fayetteville State University

The CTEEAM Process in Practice: An Evaluation of Its Role in
Digital Forensics Education 139

Barry Bruster, Joseph Elarde, Mir Hansen, Austin Peay State Univer-
sity

Effectiveness of Using Game Development in CS1: Faculty-Led
or Peer Created Video-Based? 150

Xin Xu, Wei Jin, Hyesung Park, Evelyn Brannock, Georgia Gwinnett
College

Designing a No SQL - Non Traditional Databases Course
— Conference Tutorial 160

Karen Works, Florida State University

Developing Identity-Focused Program-Level Learning Outcomes
for Liberal Arts Computing Programs — Conference Tutorial 162

Jakob Barnard, University of Jamestown; Grant Braught, Dickinson
College; Janet Davis, Whitman College; Amanda Holland-Minkley, Wash-
ington & Jefferson College; David Reed, Creighton University; Karl

4

Schmitt, Trinity Christian College; Andrea Tartaro, Furman Univer-
sity; James Teresco, Siena College

Introduction to Non-Functional Requirements
— Conference Tutorial 165

Joe Temple, Costal Carolina University

Curricular Practices for Computing for Social Good in Education
— Conference Tutorial 167

Heidi J. C. Ellis, Western New England University; Gregory W. Hislop,
Drexel University

Teaching the Divide-and-Conquer Closest Pair Algorithm Using
a Map-Based Visualization — Nifty Assignment 169

James D. Teresco, Siena College

Integrating GIS Into CS2 — Nifty Assignment 171
Evelyn Brannock, Georgia Gwinnett College; Robert Lutz, Piedmont
University

ChatGPT: To Use or Not To Use, That is the Question — Panel
Discussion 175

Paul S. Cerkez, Coastal Carolina University; Joseph Edward Hummel,
Northwestern University; Marlon Mejias, University of North Carolina
- Charlotte; William Pruitt, DCS Corporation

5

6

The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing Sciences
in Colleges (along with the years of
expiration of their terms), as well as
members serving CCSC:

Scott Sigman, President (2024),
ssigman@drury.edu, Mathematics and
Computer Science Department, Drury
University, Springfield, MO 65802.

Bryan Dixon, Vice
President/President-Elect (2024),
bcdixon@csuchico.edu, Computer
Science Department, California State
University Chico, Chico, CA 95929.

Baochuan Lu, Publications Chair
(2024), blu@sbuniv.edu, Division of
Computing & Mathematics, Southwest
Baptist University, Bolivar, MO 65613.

Ed Lindoo, Treasurer (2026),
elindoo@regis.edu, Anderson College of
Business and Computing, Regis
University, Denver, CO 80221.

Cathy Bareiss, Membership Secretary
(2025),
cathy.bareiss@betheluniversity.edu,
Department of Mathematical &
Engineering Sciences, Bethel University,
Mishawaka, IN 46545.

Judy Mullins, Central Plains
Representative (2026),
mullinsj@umkc.edu, University of
Missouri-Kansas City, Kansas City, MO
(retired).

Michael Flinn, Eastern Representative
(2026), mflinn@frostburg.edu,
Department of Computer Science &
Information Technologies, Frostburg
State University, Frostburg, MD 21532.

David R. Naugler, Midsouth
Representative (2025),
dnaugler@semo.edu, Brownsburg, IN
46112.
David Largent, Midwest
Representative(2026),
dllargent@bsu.edu, Department of
Computer Science, Ball State University,
Muncie, IN 47306.
Mark Bailey, Northeastern
Representative (2025),
mbailey@hamilton.edu, Computer
Science Department, Hamilton College,
Clinton, NY 13323.
Shereen Khoja, Northwestern
Representative(2024),
shereen@pacificu.edu, Computer
Science, Pacific University, Forest Grove,
OR 97116.
Mohamed Lotfy, Rocky Mountain
Representative (2025),
mohamedl@uvu.edu, Information
Systems & Technology Department,
College of Engineering & Technology,
Utah Valley University, Orem, UT
84058.
Tina Johnson, South Central
Representative (2024),
tina.johnson@mwsu.edu, Department of
Computer Science, Midwestern State
University, Wichita Falls, TX 76308.
Kevin Treu, Southeastern
Representative (2024),
kevin.treu@furman.edu, Department of
Computer Science, Furman University,
Greenville, SC 29613.
Michael Shindler, Southwestern
Representative (2026), mikes@uci.edu,
Computer Science Department, UC
Irvine, Irvine, CA 92697.

7

Serving the CCSC: These members
are serving in positions as indicated:
Bin Peng, Associate Editor,
bin.peng@park.edu, Department of
Computing and Mathematical Sciences,
Park University, Parkville, MO 64152.
Brian Hare, Associate Treasurer &
UPE Liaison, hareb@umkc.edu, School
of Computing & Engineering, University
of Missouri-Kansas City, Kansas City,
MO 64110.
George Dimitoglou, Comptroller,
dimitoglou@hood.edu, Department of

Computer Science, Hood College,
Frederick, MD 21701.
Megan Thomas, Membership System
Administrator,
mthomas@cs.csustan.edu, Department
of Computer Science, California State
University Stanislaus, Turlock, CA
95382.
Karina Assiter, National Partners
Chair, karinaassiter@landmark.edu,
Landmark College, Putney, VT 05346.
Deborah Hwang, Webmaster,
hwangdjh@acm.org.

8

CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Gold Level Partner
Rephactor

9

Welcome to the 2023 CCSC Southeastern Conference

Welcome to the 37th Southeastern Regional Conference of the Consortium for
Computing Sciences in Colleges. The CCSC:SE Regional Board welcomes you to
Conway, SC, the home of Coastal Carolina University, for our second visit to this
beautiful campus. The conference is designed to promote a productive exchange of
information among college personnel concerned with computer science education in
the academic environment. It is intended for faculty as well as administrators of
academic computing facilities, and it is also intended to be welcoming to student
participants in a variety of special activities. We hope that you will find something
to challenge and engage you at the conference!

The robust conference program is highlighted by a four sessions of three tracks
each, including engaging guest speakers, tutorials, student posters, a nifty assignment
session and five sessions of high quality refereed papers. We received 28 papers this
year of which 14 were accepted to be presented at the conference and included in the
proceedings – an acceptance rate of 50%.

Two exciting activities are designed specifically for students – a research contest
and an undergraduate programming competition, with prizes for the top finishers in
each.

We especially would like to thank the faculty, staff, and students of Coastal Car-
olina for their help in organizing and publicizing this conference. Many thanks also
to the CCSC Board, the CCSC:SE Regional Board, and to a wonderful Conference
Committee, led by Conference Chair Dr. Jean French and programming contest
coordinator Dr. Andy Digh. Thank you all so much for your time and energy.

We also need to send our deepest appreciation to our partners, sponsors, and
vendors. Please take the time to go up to them and thank them for their contri-
butions and support for computing sciences education — CCSC National Partners:
Rephactor. Sponsoring Organizations: CCSC, ACM-SIGCSE, Upsilon Pi Epsilon.
Local Sponsors: Archetype SC, Aynor Tire and Market, Domino’s Pizza, Just Ask
Hal Computer Repair Service, Medicine Mart Pharmacy, Nye’s Pharmacy, Spartan-
Tec, Horry Elective Cooperative, Palmetto Chevrolet, Santee Cooper, The Horry
Independent.

We could not have done this without several excellent submissions from authors,
the insightful comments from a great team of 26 reviewers, and the support from our
editor Baochuan Lu. Thanks to all of you for helping to create such a strong program
for this year’s conference.

We hope you enjoy the conference and your visit to Coastal Carolina.

Kevin Treu
Furman University
Program Co-Chair

Adam Lewis
Athens State University

Program Chair

10

2023 CCSC Southeastern Conference Steering Committee

Jean French, Local Arrangements ChairCoastal Carolina University
Paul Cerkez, Local Publicity ChairCoastal Carolina University
Will Jones, Speakers Chair .Coastal Carolina University
Ross Foultz, Vendors Chair . Coastal Carolina University
Tally Wright, Local Sponsors Chair Coastal Carolina University
Andy Digh, Programming Contest Co-DirectorMercer University
Fahad Sultan, Student Research Contest Director Furman University
Steven Benzel, Nifty Assignments Co-Chair University of North Georgia
Robert Lutz, Nifty Assignments Co-Chair Piedmont University

Regional Board — 2023 CCSC Southeastern Region

Jean French, 2023 Site Chair .Coastal Carolina University
Jonathan Cazalas, Regional Board ChairFlorida Southern College
Kevin Treu, CCSC:SE Regional Representative Furman University
Karen Works, Treasurer Florida State University Panama City
Kevin Treu, Program Co-Chair . Furman University
Adam Lewis, Program Chair/Regional Editor Athens State University
Stephen Carl, Publicity ChairThe University of the South
Jean French, Local Registrar . Coastal Carolina University
Kevin Treu, 2024 Site Chair . Furman University

11

Reviewers — 2023 CCSC Southeastern Conference

Farha Ali . Lander University, Greenwood, SC
Chris Alvin . Furman University, Greenville, SC
Scott BarloweWestern Carolina University, Cullowhee, NC
Brian Bennett East Tennessee State University, Johnson City, TN
Andrew Besmer .Winthrop University, Rock Hill, SC
Darrell Norman Burrell Marymount University, Warrenton, VA
Prashanth Reddy BusiReddyGari .
... University of North Carolina at Pembroke, Pembroke, NC
Paul Cerkez Coastal Carolina University, Surfside Beach, SC
Crystal Cox . Coastal Carolina University, Conway, SC
Lawrence D’Antonio . Ramapo College, Mahwah, NY
Hilmi Demirhan . University of North Carolina Wilmington, Wilmington, NC
Andy Digh .Mercer University, Macon, GA
Gulustan Dogan .University of North Carolina Wilmington, Wilmington, NC
Joe Dumas University of Tennessee at Chattanooga, Chattanooga, TN
Wayne Goddard .Clemson University, Clemson, SC
Adrian Heinz Georgia Gwinnett College, Lawrenceville, GA
Mark Holliday Western Carolina University, Cullowhee, NC
Gongbing Hong Georgia College and State University, Milledgeville, GA
William Jones . Coastal Carolina University, Conway, SC
Adam Lewis . Athens State University, Athens, AL
Ronald James Nowling Milwaukee School of Engineering, Milwaukee, WI
Adewale Sekoni . Roanoke College, Salem, VA
Scott Spurlock .Elon University, Elon, NC
Syed Fahad Sultan . Furman University, Greenville, SC
Henry Suters . Carson-Newman University, Knoxville, TN
Kevin Treu .Furman University, Greenville, SC
Karen Works .Florida State University, Panama City, FL
Fei Zuo . University of Central Oklahoma, Edmond, OK

12

Sentiment and Topic Modeling Analysis
of Reddit Posts on Changing Ones Major∗

Nathan Green1 and Karen Works2
1School of Technology and Innovation

Marymount University
Arlington, VI 22207
ngreen@marymount.edu

2Department of Computer Science
Florida State University
Panama City, FL 32405

keworks@fsu.edu

Both authors contributed equally to this research.

Abstract

Producing professional, responsible alumni is a primary mission of all
institutions of higher education. Hence it is important to support stu-
dents in their progress towards this goal, particularly when they consider
changing their major. This research aims to evaluate the sentiment and
topics used in Reddit posts on changing one’s major. By looking at the
commonalities in these posts, we can better understand the questions
and concerns of students changing their majors.

1 Introduction

Within the first three years of school, roughly one third of undergraduate
students change their major at least once [10]. Changing one’s major can be
very stressful. In fact, the life regret most often identified by Americans is their
educational choices [16]. It is beneficial for students changing their majors to
receive guidance from academic advisors. [11] found that academic advising of

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

13

students changing their majors can have a positive effect on student’s academic
performance. However, students may not always reach out for such support.
Many such students seek help from social interaction and discussion websites
such as Reddit. In this paper we explore the posts made by students who seek
such support via Reddit using sentiment analysis and topic extraction.

2 Related Work

Automated techniques to discover trends is a current topic in natural language
processing. One such technique that utilizes a probabalistic approach is Latent
Dirichlet Allocation (LDA) [2]. LDA has been applied to the discovery of trends
in many domains [4, 1, 15].

There are many projects that apply text mining techniques to monitor ed-
ucation trends. [14] used unsupervised text mining to identify trends in the
integration of ethics into introductory CS courses. [9] used LDA and trend-
ing analysis to identify common CS topics and trends from selected online
forum posts. A standard database query of articles with keywords related to
‘computer’ and ‘instructional technologies’ was used in trending analysis in
technology education by [13]. Non-negative Matrix Factorization (NMF) [17]
(a matrix factorization approach) was used to model topics in programming
problems scrapped from the Aizu Online Judge system [7]. Both LDA and
NMF models were used by [12] to locate common topics in online beginning
Python programming tutorials.

To the best of our knowledge, no one has examined Reddit posts on changing
one’s major.

3 Methodology

We harvested data via Reddit using the Reddit API on March 10, 2023, on
posts that contain “changing major” and similar phrases. All but six of these
posts were from individual users (Three users made two posts). The origin of
these posts is from 1,365 different Subreddits. We categorize these Subreddits
based upon the community that they support as either employment, general
advice, professional, school or other. The majority of these posts were in school
or professional Subreddits (Figure 1).

Then any Reddit posts with no comments were thrown out (leaving N =
8,987). The extracted posts, consisting of a title and text, were cleaned by
removing any non-alphanumeric characters (i.e., special characters and hyper-
links). The text was then converted to lower case. Common stop words [8] and
any phrases similar to “changing major” were removed from the text. Finally,

14

Figure 1: SubReddit Categories

synonyms were replaced with a single term [3]. The resulting text was divided
into unigrams for topic and frequency analysis.

As a first step to evaluating the posts, we generated Word Clouds, a popular
approach for visualizing the most frequently used terms across different posts
where the font size depicts how common the term is [5].

Then we applied an NLP (natural language processing) approach for auto-
matically extracting and classifying sentiment from text called Sentiment Anal-
ysis. We used VADER (Valence Aware Dictionary and sEntiment Reasoner), a
Sentiment Analysis method designed to evaluate social media context [6]. For
our evaluation of the sentiment of each post, we used the compound value, a
normalization of the negative, neutral, and positive values.

Then an LDA [2] model was developed for our data set. From the results,
we identified the topics and simultaneously classified the posts among these
different topics.

4 Results and Discussion

4.1 All Posts

4.1.1 Word Cloud

The Word cloud in Figure 2 visually represents the most frequently used words
in the title and text of these posts. It is noted that the most frequently used
words within these posts describe actions (“work”, “make”, “think”), and things
that influence these (“school”, “year”, “time”, “job”).

4.1.2 Sentiment Analysis

Sentiment analysis across the data collected (Figure 3) shows that the vast
majority (> 70%) of the posts were positive (sentiment value between .5 and
1), very few if any (< 5%) were neutral (sentiment value > -.5 and < .5),

15

Figure 2: Word Cloud

and roughly 25% were negative (sentiment value between -.5 and -1). The
distribution of these values (Figure 4) shows that the majority of the posts had
strong sentiments (i.e., close to 1 very positive, or close to -1 very negative).

Figure 3: Sentiment Categorization

Figure 4: Sentiment Distribution

4.1.3 Topic Detection

Table 1 contains the 10 automatically extracted topics, our self-annotated label
of the topic, and the top extracted 7 terms in each topic. We see a variety of
subjects on academic paths, academic programs, balancing life, career advice,
finances, peer advice, STEM courses, and STEM program. It is interesting that

16

academic (Paths or Programs), balancing life, and STEM (courses or program)
are general areas that occur more than once in the topic labels.

Figure 3 shows the intertopic distance map of the 10 topics. The size of each
circle depicts how frequently the topics occurred in the set of posts. Hence,
topic 1 has the largest bubble. The distance shows that the following topics
are closely related: topics 1 (Finances) and 3 (Academic Paths), and topics 2
(Career Advice) and 6 (Balancing Life).

Figure 5: Intertopic Distance Map

Table 1: Topics and Terms

No Topic Label Terms per Topic

1 Finances “job”, “time”, “work”,“pay”,“money”,“loan”,“full”
2 Career Advice “job”,“degree”,“career”,“work”,“time”,“experience”,“advice”
3 Academic Paths “student”, “university”, “research”, “high”, “biology”, “en-

glish”, “chemistry”
4 Peer Advice “friend”, “time”, “told”, “said”, “mom”, “got”, “back”
5 STEM: Courses “mom”, “math”, “course”, “programming”, “computer”,

“physic”, “science”, “learning”
6 Balancing Life “time”, “life”, “going”, “thing”, “make”, “much”, “think”
7 STEM: Programs “engineering”, “science”, “degree”, “computer”, “program”,

“university”, “currently”
8 Balancing Life “one”, “time”, “day”, “could”, “life”, “back”, “first”
9 Academic Progress “semester”, “gpa”, “course”, “take”, “student”, “first”, “credit”
10 Balancing Life “people”, “comment”, “make”, “game”, “thing”, “art”, “good”

4.2 Posts by Sentiment Categories

We now look at the posts broken into the three sentiment categories, namely
positive (sentiment value >=.5), neutral (sentiment value between -.5 and .5),
and negative (sentiment value <= -.5).

4.2.1 Word Clouds by Sentiment Categories

The Word clouds in Figures 6, 7, and 8 respectively visually represents the most
frequently used words in the title and text of the posts categorized by sentiment

17

as positive, neutral and negative. The top terms in the positive, neutral, and
negative are respectively (“school”, “year”, “time”, “degree”), (“degree”, “year”,
“science”, “school”), and (“year”, “time”, “school”, “job”). The neutral has fewer
terms with a high frequency of use than the other two. This is as expected
given that the size of the neutral post population is significantly smaller then
positive or negative. All include “school” and “year”. It is interesting that “job”
is a common term in negative posts.

Figure 6: Word Cloud- Positive Sentiment

Figure 7: Word Cloud- Neutral Sentiment

Figure 8: Word Cloud- Negative Sentiment

4.2.2 Topic Detection by Sentiment Categories

Tables 2, 3, and 4 respectively contain the 5 automatically extracted topics,
our self-annotated label of the topic, and the top extracted 7 terms in each
topic for the positive, neutral and negative posts.

18

The topic labels in the positive posts are on balancing life, career advice,
and STEM. For the neutral posts, the topics are academic progress, career
advice, and STEM. While the negative posts also have the balancing life topic
label, it have new labels not seen before, namely, parents and personal issues.

Table 2: Topics and Terms- Positive

No Topic Label Terms per Topic

1 Balancing Life “time”, “one”, “people”, “life”, “thing”, “friend”, “could”
2 Career Advice “time”, “degree”, “job”, “work”, “going”, “university”, “one”
3 STEM: Career Ad-

vice
“job”, “degree”, “time”, “engineering” , “work”, “much”,
“help”

4 STEM: Programs “degree” , “science”, “course”, “math” , “computer”, “engi-
neering”, “work”

5 Balancing Life “time”, “student”, “first”, “make”, “thing”, “work”, “going”

Table 3: Topics and Terms- Neutral

No Topic Label Terms per Topic

1 Career Advice “degree”, “job”, “hard”, “able”, “get” , “year”, “graduate”
2 Academic Progress “student”, “business”, “engineering”, “year”, “since”, “get”,

“first”
3 Academic Progress “year”, “time”, “get”, “still”, “semester”, “switched”, “went”
4 STEM: Programs “science”, “computer”, “year”, “degree”, “think”, “take”, “get”
5 STEM: Programs “engineering”, “school”, “year”, “degree”, “university”,

“semester”, “get”

Table 4: Topics and Terms- Negative

No Topic Label Terms per Topic

1 Balancing Life “life”, “one”, “soul”, “job”, “going”, “take”, “need”
2 Personal Issues “student”, “semester”, “degree”, “going”, “health”, “one”,

“work”
3 Parents “one”, “back”, “thing”, “mother”, “much”, “got”, “make”
4 Parents “think”, “mom”, “thing”, “could”, “issue”, “money”, “back”
5 Balancing Life “work”, “job”, “life”, “back”, “one”, “much”, “day”

Figures 9, 10, and 11 respectively show the intertopic distance map of the 5
topics for the positive, neutral, and negative posts. In the positive posts, topic
1 (Balancing Life) is larger than the other 4 topics, and topics 2 through 5
(Career Advice, STEM: Career Advice, STEM: Programs, and Balancing Life)
are closely related. While in the neutral posts, all the topics are relatively

19

the same size and topics 4 and 5 (both STEM: Programs) are closely related.
Finally, in the negative posts, topic 1 (Balancing Life) is larger than the other
4 topics, and topics 1 (Balancing Life), 2 (Personal Issues), and 3 (Parents) are
closely related.

Figure 9: Intertopic Distance Map-Positive

Figure 10: Intertopic Distance Map-Neutral

Figure 11: Intertopic Distance Map-Negative

5 Conclusion

Supporting students during the process of changing their major is critical to
ensuring their success and ultimately the success of their institutions. We
performed sentiment and topic analysis evaluation of Reddit posts posted prior
to March 10, 2023, that contain “changing major” and similar phrases. The

20

results show clearly that overall, these posts were positive and that negative
posts contained topics concerning parents and personal issues. In the future,
we hope to look deeper into this data set to explore trending analysis on the
original and new majors and evaluate the advice provided to these posts by
other users.

References

[1] Saqib Aziz, Michael Dowling, Helmi Hammami, and Anke Piepenbrink.
Machine learning in finance: A topic modeling approach. Econometrics:
Econometric & Statistical Methods - Special Topics eJournal, 2019.

[2] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet
allocation. Journal of machine Learning research, 3(Jan):993–1022, 2003.

[3] Jaime Carbonell, Steve Klein, David Miller, Mike Steinbaum, Tomer Gras-
siany, and Jochen Frei. Context-based machine translation. In Proceed-
ings of the 7th Conference of the Association for Machine Translation in
the Americas: Technical Papers, pages 19–28, Cambridge, Massachusetts,
USA, 8 2006. Association for Machine Translation in the Americas.

[4] Michael Dowling, Anke Piepenbrink, Saqib Aziz, and Helmi Hammami.
Machine learning in finance: A topic modeling approach, 02 2019.

[5] Marti A Hearst, Emily Pedersen, Lekha Patil, Elsie Lee, Paul Laskowski,
and Steven Franconeri. An evaluation of semantically grouped word
cloud designs. IEEE transactions on visualization and computer graph-
ics, 26(9):2748–2761, 2019.

[6] Clayton Hutto and Eric Gilbert. Vader: A parsimonious rule-based model
for sentiment analysis of social media text. In Proceedings of the interna-
tional AAAI conference on web and social media, volume 8, pages 216–225,
2014.

[7] Chowdhury Md Intisar, Yutaka Watanobe, Manoj Poudel, and Subhash
Bhalla. Classification of programming problems based on topic modeling.
In Proceedings of the 2019 7th International Conference on Information
and Education Technology, ICIET 2019, page 275–283, New York, NY,
USA, 2019. Association for Computing Machinery.

[8] Karen Sparck Jones, Peter Willett, et al. Readings in information retrieval.
Morgan Kaufmann, 1997.

21

[9] Habib Karbasian and Aditya Johri. Keeping curriculum relevant: Identify-
ing longitudinal shifts in computer science topics through analysis of Q&A
communities. In 2021 IEEE Frontiers in Education Conference (FIE),
pages 1–7, 2021.

[10] Katherine Leu. Beginning college students who change their majors within
3 years of enrollment. data point. NCES 2018-434. National Center for
Education Statistics, 2017.

[11] Deborah McKenzie, Tony Xing Tan, Edward C. Fletcher, and Andrea
Jackson-Williams. Major re-selection advising and academic performance.
NACADA Journal, 37(1):15–25, 01 2017.

[12] Laura Oliveira Moraes and Carlos Eduardo Pedreira. Clustering intro-
ductory computer science exercises using topic modeling methods. IEEE
Transactions on Learning Technologies, 14(1):42–54, 2021.

[13] C Nurzhanov, V Pidlisnyuk, L Naizabayeva, and M Satymbekov. Re-
search and trends in computer science and educational technology during
2016-2020: Results of a content analysis. World Journal on Educational
Technology: Current Issues, 13(1):115–128, 2021.

[14] Sarah Parsons and Natalia Khuri. Discovery of research trends in com-
puter science education on ethics using topic modeling. In 2020 Interna-
tional Conference on Computational Science and Computational Intelli-
gence (CSCI), pages 885–891, 2020.

[15] Paritosh Pramanik and Rabin K. Jana. Identifying research trends of ma-
chine learning in business: a topic modeling approach. Measuring Business
Excellence, 2022.

[16] Neal J Roese and Amy Summerville. What we regret most... and why.
Personality and Social Psychology Bulletin, 31(9):1273–1285, 2005.

[17] D Seung and L Lee. Algorithms for non-negative matrix factorization.
Advances in neural information processing systems, 13:556–562, 2001.

22

Preparing Students for Software
Production with DevOps: A Graduate

Course Approach∗

Brian T. Bennett
Department of Computing

East Tennessee State University
Johnson City, TN 37614

bennetbt@etsu.edu

Abstract

Software Engineering education continues to describe classical meth-
ods without fully embracing modern practices. DevOps combines Soft-
ware Engineering practices with the production and operations of the
software itself. This study describes a graduate course in software pro-
duction that primarily focuses on DevOps practices, while minimally
discussing Software Engineering. Student performance in each topic was
tracked through formative assessment (on quizzes) and summative as-
sessment (on exams). Results showed that students’ performance for
learning outcomes improved an average of 22% after participating in lec-
tures, discussions, exercises, and projects, validating the course design.

1 Introduction

Skills in Software Engineering (SE) remain essential for success in today’s de-
velopment industry. The 2020 Computing Curricula Report from ACM notes,
“SE emphasizes the use of appropriate software development practices and the
integration of engineering rigor with the ability to apply advanced algorithms
and data structures developed in computer science” [1]. However, the litera-
ture suggests that focusing on these skills alone could result in missing other

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

23

essential topics beyond SE [6]. DevOps incorporates both Development and
Operations in a way that can deliver value to the customer in a continuous
stream. According to Pang et al. [5], few institutions teach topics in DevOps
that prepare students for software production using a DevOps methodology.

This study follows the implementation of a DevOps-focused course, “Soft-
ware Production,” offered to graduate students in Spring 2023. The course in-
cluded twelve graduate students in the initial offering. The course was designed
to teach production-based topics after typical software engineering education.
Following a review of relevant topics from the literature, the course develop-
ment, learning outcomes, major topics, and pedagogical design are discussed.
The course assessment focused on major topics and learning outcomes using
formative and summative assessment methods.

2 Literature Review

The literature on DevOps Education is not extensive. However, a few studies
give insights into appropriate topics to cover in a DevOps-focused course. Table
1 shows the topics and their frequency across five individual studies.

Alves & Rocha [2] discuss the challenges of introducing technical and non-
technical DevOps concepts in a project-oriented undergraduate course. The
authors note several categories of DevOps concepts presented in their course.
These concepts include product and project management, build processes, con-
tinuous integration, deployment pipeline automation, and monitoring and log-
ging. The authors conclude in part that creating a culture that fosters DevOps
practice is a key factor and encouraging the use of different technologies to
teach concepts.

Bennett [3] reformatted a second undergraduate Software Engineering course
through the DevOps lens. To do so, the author took pre-existing learning ob-
jectives and reformatted them to fit into a more focused course on DevOps’s
development side. As such, the course touched primarily on Software Engi-
neering concepts like Configuration Management, Project Management, Test-
ing, and Planning. However, the course also touched on DevOps concepts,
such as Automation, Metrics Gathering, Infrastructure as Code, Continuous
Integration, and Cloud or Microservice Architectures.

Hobeck, Weber, Bass, & Yasar [4] review DevOps courses taught at two
separate universities: Carnegie Mellon University and Technische Universität
Berlin in Germany. The authors list eleven topics required in the courses
at both Universities: Introduction to DevOps, Virtual Machines, Containers,
Security, Deployment Pipelines, Microservices Architecture, Service Meshes,
Postproduction, and Disaster Recovery.

Pang, Hindle, & Barbosa [5] reviewed DevOps education using Grounded

24

Table 1: A summary of topics suggested for DevOps courses in the literature

Alves &
Rocha [2]

Bennett
[3]

Hobeck
et al [4]

Pang et
al. [5]

Verdicchio
[6]

Total

Automated Deployment
Pipelines

X X X X 4

Continuous Integration X X X 3
DevOps Conceptual
Overview

X X X 3

DevSecOps X X X 3
Emerging / Microser-
vices Architecture

X X X 3

Build Process X X 2
Cloud Computing X X 2
Configuration Manage-
ment / Repository

X X 2

Infrastructure as Code X X 2
Metrics and Telemetry X X 2
Project Management X X 2
Testing and Automated
Testing

X X 2

Agile Development X 1
Containers & VMs X 1
Disaster Recovery X 1
Infrastructure as a Ser-
vice

X 1

Organizational Culture X 1
Planning and Estima-
tion

X 1

Postproduction X 1
Service Meshes X 1

Theory qualitative analysis. They identified five significant DevOps terms —
Continuous Integration, Testing, Build, Repository, and Deployment — and
used these terms to conduct a systematic review. They noted that DevOps
and its corresponding topics were not present in the curriculum of many insti-
tutions. Only 12.8% of the institutions studied included Continuous Integration
or Build Processes. However, a large majority (89.7%) taught Testing.

Verdicchio [6] notes that while Software Engineering continues to be a
sought-after career, most curricula fail to provide industry-relevant practice.
After reviewing relevant job advertisements, the author introduced eight mod-
ules that seek to tie software engineering to industry practice. These modules
include Agile development and culture, DevOps concepts, Organizational cul-
ture related to DevOps, Cloud Computing, Infrastructure as a Service, Infras-
tructure as Code, DevOps Deployment Pipelines, and DevSecOps. The author
also notes that some modules require a technical background (e.g., Cloud Com-
puting and Infrastructure as Code), while others do not (e.g., Organizational
Culture and DevOps Concepts).

As stated by [6] and illustrated by [3] and [5], many university courses
focus extensively on the development side without students fully understanding

25

how that software moves to a production system. This review indicates that
a DevOps course should cover several topics. The most crucial topics are
Automated Deployment Pipelines, Continuous Integration, DevOps Concepts,
DevSecOps, and Microservices Architectures. Other important topics include
Build Processes, Cloud Computing, Configuration Management, Infrastructure
as Code, Metrics and Telemetry, Project Management, and Testing.

3 Course Development

“Software Production” was created as a new course within the Software En-
gineering concentration for a Master of Science in Computer Science. Under-
graduate courses that survey SE topics do not have time to take an in-depth
look at the production part of the process. Therefore, offering either an elective
course for undergraduates or a graduate course is a good way to cover DevOps
topics.

3.1 Learning Outcomes

The Software Production course had three primary learning outcomes. At the
end of the course, students should be able to:

1. Support and defend the selection of DevOps practices over traditional
software development practices

2. Evaluate software development processes and their relationships to soft-
ware production pipelines

3. Construct software development pipelines that utilize continuous integra-
tion, continuous testing, continuous deployment, and continuous delivery
practices

3.2 Course Topics

The Software Production course covered ten major topics. Table 2 shows the
relationship between the course’s major topics and maps them to topics dis-
covered during the literature review and the course learning outcomes.

The only topics from the literature review not covered in the Software
Production course related to Software Engineering, specifically: Planning and
Estimation and Project Management. While DevOps could be considered a
way to manage projects, the Software Production course assumes students
pick up project management and planning in previous courses. Therefore,
an introductory Software Engineering course was considered a prerequisite for
Software Production.

26

Table 2: Software Production Major Topics, mapped to Literature Topics and
Course Learning Objectives

Major Topic Literature Mapping Learning
Outcome(s)

1 Preliminaries VMs 0

2 Environments Containers
Service Meshes 0

3 The Cloud Cloud Computing
Infrastructure as a Service 0

4 DevOps Preliminaries

Agile Development
DevOps Conceptual Overview
Organizational Culture
Metrics and Telemetry

1

5 DevOps Tools Infrastructure as Code
Configuration Management/Repository 1, 2

6 Deployment Pipeline

Automated Deployment Pipelines
Build Process
Continuous Integration
Testing and Automated Testing

2, 3

7 Design Options Emerging / Microservices Architecture 3

8 Postproduction Postproduction
Testing and Automated Testing 3

9 Secure Development DevSecOps 1
10 Disaster Recovery Disaster Recovery 3

3.3 Course Design

Figure 1: Course Design

Figure 1 shows the flow of information through the class. For each module,
students completed reading assignments that fed into the week’s quiz, lecture,
and any associated exercises during class. Quizzes occurred at the beginning of
each class session and were used as formative assessments. Lectures and discus-
sions followed the quiz, and any applicable exercises were completed afterward.

27

Five projects were assigned during the semester that allowed students to apply
what they had learned during class. The first two projects were individual
explorations of tools like git and containerization. The last three projects were
group assignments that asked students to set up a DevOps pipeline that moved
code from development to the integration environment and then to the staging
environment. Two exams were given during the semester as a summative as-
sessment of students’ learning. A topic did not appear on an exam unless the
students had the opportunity to complete a project on the topic first.

4 Assessment Results

4.1 Topic Assessment

Figure 2 shows formative and summative assessment results for specific topics.
Formative assessments were taken from each topic quiz, while summative as-
sessments were taken from exam questions that map to each topic. Based on
the percentage of “Does Not Meet” results, improvements were seen across all
topics during the term except Topic 3 - The Cloud. However, Topic 3 did show
that 16.7% of students moved from “Meets” to “Exceeds.” In addition, students
initially struggled with Topic 5, DevOps tools (63.6% “Does Not Meet”), but
rebounded significantly after experiencing the lectures, exercises, and projects.
These results indicate that students benefited from the course design, but select
topics may need additional reinforcement, such as Topic 3 - The Cloud.

4.2 Learning Outcomes Assessment

Figure 3 shows formative and summative assessment results for the Student
Learning Outcomes. Formative results were aggregated from the quizzes for
each outcome based on the topic mapping in Table 2. Summative results were
taken from exam questions that map to the topics and then to the outcomes
shown in Table 2. Results indicate that half or nearly half of all students ini-
tially struggled with meeting the learning outcomes. At the formative stage,
students would have read the materials but might not have had enough con-
text through discussion, examples, and application to meet the outcome fully.
However, over time, the experiences gained during the course resulted in much
better summative results. Overall, nearly 77% of students met or exceeded all
three learning outcomes by the end of the semester.

5 Discussion & Conclusion

Literature suggests that few Higher Education institutions provide adequate
coverage of DevOps [5]. Therefore, creating DevOps-focused courses that pro-

28

Figure 2: Topic Assessment Results

vide students with an in-depth look at these topics is essential. This study
outlined an effective method for teaching DevOps-centric topics, showing that
a majority of students met or exceeded the learning outcomes after partici-
pating in the class activities. Additional project-based work might assist with
understanding some topics, like Topic 3 - The Cloud, Topic 4 - DevOps Pre-
liminaries, Topic 6 - Deployment Pipeline, and Topic 7 - Design Options. The
course did not include an extensive project on Cloud deployment or a focus
on continuous deployment. Therefore, adding a project focused on these areas
might help to increase understanding of all of these topics in future iterations
of the course.

29

Figure 3: Learning Objective Assessment Results

References

[1] Computing Curricula 2020: Paradigms for Global Computing Education,
12 2020.

[2] Isaque Alves and Carla Rocha. Qualifying software engineers undergradu-
ates in devops - challenges of introducing technical and non-technical con-
cepts in a project-oriented course. In Proceedings of the 43rd International
Conference on Software Engineering: Joint Track on Software Engineer-
ing Education and Training, ICSE-JSEET ’21, page 144–153. IEEE Press,
2021.

30

[3] Brian T. Bennett. Shifting traditional undergraduate software engineering
instruction to a devops focus. J. Comput. Sci. Coll., 36(5):129–138, 1 2021.

[4] Richard Hobeck, Ingo Weber, Len Bass, and Hasan Yasar. Teaching devops:
A tale of two universities. In Proceedings of the 2021 ACM SIGPLAN In-
ternational Symposium on SPLASH-E, SPLASH-E 2021, page 26–31, New
York, NY, USA, 2021. Association for Computing Machinery.

[5] C. Pang, A. Hindle, and D. Barbosa. Understanding devops education
with grounded theory. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering: Software Engineering Education and Training
(ICSE-SEET), pages 107–118, Los Alamitos, CA, USA, 10 2020. IEEE
Computer Society.

[6] Michael Verdicchio. Creating a devops course. In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 2, SIGCSE
2023, page 1311, New York, NY, USA, 2023. Association for Computing
Machinery.

31

The Game Guillotine as Inspiration for
a Data Structures Course∗

Chris Alvin1, Lori Alvin2

1Computer Science Department
2Mathematics Department

Furman University
Greenville, SC 29613

{ chris.alvin†, lori.alvin }@furman.edu

Abstract

A typical course in data structures covers arrays, linked lists, stacks,
queues, and efficiency of operations over those structures. In this paper,
we consider the card game Guillotine as inspiration and motivation for a
cohesive software project that integrates each of these linear data struc-
tures. We discuss the game’s components, rules, and consider linear data
structures and algorithms for those game components.

1 Introduction

Board games rely on many fundamental computing concepts and thus can
be popular among students in a course to take ownership of computing con-
cepts within an enjoyable context. Even in early CS courses, board games can
be appealing. They can reinforce the rigidity of algorithms when considering
player sequencing of ‘moves’. They also provide a framework in which students
can use a tabletop experience to engage in design and implementation choices
about data structures and algorithms. For example, a tabletop representation
can be useful for a student to engage in game-play to identify player use cases:
possible player steps in a ‘turn’, interactions among game components, etc.
Pedagogically we find games to be most appealing when testing a software

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

†Corresponding author

32

Figure 1: The Guillotine playfield. Figure 2: Layout of a Noble card.

Table 1: Some descriptors of nobles in the Noble Deck.

Color Count Group Sample Noble Titles
Purple 15 High Nobility Baron, Marie Antoinette, Regent
Green 10 Government Governor, Mayor, Sheriff
Red 11 Military General, Lieutenant, Palace Guard
Grey 7 Innocents Hero of the People, Martyr
Blue 7 Religious Cardinal, Bad Nun, Wealthy Priest

implementation because with a board game, game states can be easily con-
structed and evaluated offline. In this paper, we discuss the game Guillotine
[8] and consider different linear data structures for game components as part
of a software implementation framework.

2 The Game

Guillotine is a card game for ages 12+ that is set in a cartoonish version of
the French Revolution (1789–1799) in which the goal is to earn more points
than your opponents by beheading people of the nobility. Hopefully this brief
description allows the reader to appreciate the humor in the game tagline: “The
revolutionary card game where you win by getting a head.”

There are four main components for Guillotine shown in Figure 1; together
they make up the shared portion of the playfield. Foremost is the Noble Line:
a line of nobles who are awaiting their turn at the guillotine. The front of
the Noble Line refers to the noble adjacent to the guillotine (e.g., Noble0 in
Figure 1). The other three playfield components are distinct decks of cards we
consider in turn.

33

Figure 3: A view of a two player game. Figure 4: The Master Spy noble card.

The Noble Deck is a collection of 50 noble cards that are used to populate
the Noble Line. As shown in Figure 2, a noble card consists of a (a) name, (b)
background color, (c) a point value and (d) any special instructions. Table 1
gives more details regarding the color of nobles, how they can be interpreted
in the thematic context of the French Revolution, and some examples. As
an example of a noble, Figure 4 is named Master Spy, has a red background
(indicating a member of the military), is worth 4 points, and has the special
instructions “After each action card is played, move this card to the end of the
line.” Points for nobles vary from −1 for grey-bordered nobles and up to 5 for
nobles likeMarie Antoinette. We will analyze these special instructions in more
detail in Section 4. Some nobles in the noble deck have no special instructions
while some nobles are repeated or omit a specific point value. For example,
the Palace Guard represents 5 of the 50 nobles and has special instructions
related to scoring: “Each Palace Guard is worth a number of points equal to
the number of Palace Guards in your score pile (including this one).”

The second deck is a 60-card set of cards called the Action Deck. Each
individual action card varies according to its text; however, an action either (1)
manipulates the Noble Line, (2) serves to add (or subtract) points to (from) a
player’s total, (3) serves to add (or subtract) cards from a target player’s hand,
or (4) targets another player’s already collected nobles. An example of each
card type is shown in Table 2. For example, not shown in Table 2, Forward
March is a card that manipulates the Noble Line with the instructions “Move
a Palace Guard to the front of the line.” The last deck in the game playfield

34

Table 2: An example of each type of action card.

Name Type Card Text
Trip Manipulate the

Noble Line.
“Move a noble backward exactly 1 place in line.
You may play another action card this turn.”

Church
Support

Modify player
point total.

“Put this card in front of you. It is worth +1
point for each Blue noble in your score pile.”

Infighting Modify player
hand.

“Choose a player. That player must choose
2 action cards from their hand and discard
them.”

Clerical
Error

Target another
player’s already
collected nobles.

“Choose a player. Collect any noble of your
choice from that player’s score pile. That
player then chooses any other noble from your
score pile and collects it.”

is a discard pile for action cards that have been used or discarded by players.

3 Gameplay

The goal of Guillotine is to earn the most points. Points are earned through a
combination of collected nobles and action cards that augment how points are
computed.

At the beginning of the game, each player is dealt 5 actions card into their
hand; Figure 3 shows Player 1 with 4 action cards in hand while Player 2 has
a hand of 5 cards. The game consists of 3 days. Each day the players deal out
12 nobles from the Noble Deck to the Noble Line where the nobles await their
turn to face the guillotine. When the Noble Line is empty, the “day ends”.

Play consists of each player taking their turn in sequence. According to the
rules, a turn consists of 3 steps:

1. Play an action card. A player may opt to skip this step.
2. Collect the noble closest to the guillotine in the Noble Line. Collected

nobles are placed in front of the player face-up for all players to view as
shown in Figure 3.

3. Draw an action card (whether or not you played one).
When all 3 days have passed, the game is over and the player’s sum their

points by observing collected nobles and any applicable action cards.

4 Stack-based evaluation with Master Spy.

The rules for Guillotine are relatively straightforward and generally serve the
gaming audience well by facilitating quick play: players can learn the game on

35

Figure 5: A Noble Line with Master
Spy at the end.

Figure 6: The Noble Line after play-
ing the Trip card moving the Martyr.

Figure 7: A turn stack if Master Spy
is in the Noble Line.

the fly without having to slog through a complex set of rules. However, the
interactions between action cards and the Master Spy noble is not addressed
well in the rules. This has resulted in many questions and clarification requests
by the gaming community [9].

The text of the Master Spy card (Figure 4) states that after an action
card is played, the Master Spy is placed at the end of the Noble Line. The
fundamental question is: can the Master Spy ever be in a position in the Noble
Line other than at the end of the line? If not, the Master Spy must be the
last noble collected. Consider the Noble Line consisting of the Master Spy
and Martyr nobles as depicted in Figure 5. The Martyr is a grey background
character and is worth −1 points thus generally undesirable to collect. To
avoid collecting an undesirable noble, the current player plays the action card
Trip (Table 2) attempting to collect the Master Spy. That is, Trip allows the
player to move the Martyr back one position resulting in the Noble Line shown
in Figure 6; the evaluation of the Trip action is now considered complete.

The 3 steps to a player’s turn are discrete. When asking students to use
a data structure to properly model a player’s turn, we want to use the stack
shown in Figure 7 that includes an extra step handling Master Spy before a
player collects a noble. If the Master Spy is not in the Noble Line then this
step is ignored, otherwise, this formal evaluation of steps in a turn reflects the
intent of Guillotine’s designers. We illuminate a stack-based evaluation of a
turn reflecting our scenario involving Martyr and Master Spy.

1. A turn begins with a turn-stack initialized consistent with Figure 7.
2. Action card Trip is played indicating a shift of the Martyr back one

position taking the Noble Line from the state shown in Figure 5 to the
state in Figure 6. Pop the stack since the action card has been evaluated.

3. We act on the next step indicated by the top of the stack: move the
Master Spy to the end of the line (Figure 5). Pop the stack.

4. The player collects noble Martyr as the first noble in line.

36

Table 3: Sample action cards that manipulate the Noble Line.

Action Card Card Instructions
Pushed Move a noble forward exactly 2 places in line.

Friend of the Queen Move a noble backward up to 2 places in line.
The Long Walk Reverse the order of the line.
Extra Cart Add 3 nobles from the noble deck to the end of the line.

Let Them Eat Cake If Marie Antoinette is in line, move her to the front of the line.
Bribed Guards Move the noble at the front of the line to the end of the line.

5. The player draws an action card. Pop the stack.
6. Turn ends as the stack is empty.

While a stack-based evaluation is a bit formal in a game setting, it ensures
fairness and repeatability even without the Master Spy in the Noble Line. This
idea is not new. Magic: The Gathering [7] instituted a stack-based evaluation
of the “spell stack” to ensure clear, fair evaluation of player actions even though
it was not defined in the original ruleset.

5 Linear Structures and Considerations

Guillotine has a rating of 1.27 out of 5 complexity rating on BoardGameGeek
[3], a reputable community-driven site for all-things board games. A com-
plexity rating this low means Guillotine is considered to be a simple game by
community standards. While the board game itself may be simple, designing
a quality software framework can be a challenge unto itself. Indeed, it may
be a reasonable project for a course in software engineering to have groups of
students (1) play the game, (2) develop an Object-Oriented software solution,
(3) determine interactions among classes, and (4) start conversations about
what data structures are most appropriate for game components.

Many of the core components of the game (e.g., Noble Line, Action Deck,
player hands, etc.) can be represented using a linear data structure. We will
consider several of these components, but we begin with the Noble Line as an
example of how the game accesses and manipulates a data structure.
The Noble Line. The first time a player engages in Guillotine they might
conceive of the Noble Line as a queue. However, after playing the game, a
player might observe the Noble Line is one of the most manipulated compo-
nents. This excessive amount of manipulation has to do with the fact that 39
of the 60 action cards target the line; several examples are provided in Table
3.

It is clear that the Noble Line is a linear structure and that players must
be able to access both the front of the line (near the guillotine) as well as

37

the end of the line (the last noble to meet their doom). With respect to the
action cards that manipulate the line in Table 3, it is also clear that we cannot
treat this structure as a standard queue. In the forthcoming paragraphs, we
consider different implementation data structures for the Noble Line. We would
encourage the reader to ask their students to consider the consequences of each
structure as a beneficial pedagogical activity.

It can be argued that an array, with its capability for random access, is
a most appropriate structure for the Noble Line. It is clear from Table 3
that many of the action cards essentially swap two nobles or remove a noble.
However, other cards modify the entire line: The Long Walk reverses the line
whileMilling in Line requires a player “Randomly rearrange the first 5 nobles in
line.” These operations are common in CS1 and CS2 courses, but lack motive;
the Noble Line provides a clear motivation for these basic operations.

An array is an interesting structure due to its fixed capacity. Each day in
Guillotine begins with 12 nobles placed in the line; it may seem logical for an
implementation to construct an array of capacity 12. However, it is possible for
a player (and on rare occasions multiple players) to add more nobles to the line
with the Extra Cart card (see Table 2). This situation would naturally allow
an instructor an avenue to discuss array ‘expansion’ and the benefits of an
object-oriented approach that encapsulates array expansion (e.g., ArrayList
in Java, vector in C++, etc.). This is a particularly good example for students
to gain an intuitive understanding of amortization: on many days in Guillotine
12 array positions are satisfactory, but on some occasions, more are required.

Pedagogically, we should also consider a linked list structure for the Noble
Line. An interface for the Noble Line clearly requires some form of random
access. In Java, we may require a class that implements the List interface
or in C++ overloads the array access operator ([]). In the context of a game
implementation, this is a strong example of how an instructor can more organ-
ically discuss efficiency of random access versus sequential access structures. It
is also not necessarily a common operation in linked lists to swap two elements;
an interesting and meaningful exercise.

The question of a singly- or doubly-linked list for the Noble Line is germane.
Since we require access to the front and the back of the Noble Line, a doubly-
linked list is clearly preferred even though it may be more difficult for students
to manipulate. Depending on the goals of the instructor, students could be
given the option to choose, but choose wisely.

To address students lacking confidence when seeking external employment,
the authors’ have been keen to insert questions students might be asked in an
interview setting. A common, dreaded interview question asks a candidate to
reverse a singly-linked list. Without a motivating context like The Long Walk
action card in Guillotine (see Table 2), students are less likely to take ownership

38

of the experience. Ideally, students would solve the problem with a recursive
linear time algorithm that is also linear in terms of call stack space. However,
common solutions include: (a) creating a temporary array containing a copy
of the list or (b) an n2 operation where students construct a new list composed
of the last element, second-to-last element, etc. Pedagogically we have found
that it is not the solution to this problem that is the most meaningful to
student learning. What is most meaningful is the experience of developing a
solution, pondering its efficiencies, and then refining. Often, this is a process
that iterates several times making the experience a bit daunting, but also
incredibly meaningful for students.
Other linear game components. Guillotine has other components that
require a linear structure: Noble Deck, Action Card Deck, Discarded Action
Card Pile, Player Hand, and Player Collected Nobles.

There are no cards in the game that allow a player to directly manipulate
individual cards in either the Noble Deck or the Action Card Deck other than
to draw one card at a time. In order to allow access only to the top card in a
deck, the Noble Deck and the Action Card Deck should be implemented as a
stack (although any linear structure with limited element access is reasonable).
There is another operation that may arise during play: shuffling. An action
card may result in the Noble Deck being shuffled. If the Action Card Deck is
empty, the players can shuffle the discard pile and reset the Action Card Deck.
An empty Action Card Deck is more likely to occur with 4 or more players,
but is unlikely to occur in a typical game.

For each of the remaining components (pile of discarded action cards, player
hands, and collected nobles), iteration is critical. With the discard pile of
action cards, there are a few action cards that allow the user to select an
action from the discard pile. Thus, we require iteration, selection, and removal
as operations. Similarly for player hands, we iterate through our cards, select
one to play, and remove it. In the game of Guillotine we iterate through
collected noble piles to assess nobles to steal or compute points at the end
of the game. This is the perfect opportunity for an instructor to discuss the
Iterator design pattern [5] along with how to implement these ideas in the
target language (e.g., the Iterable and Iterator interfaces in Java, pointer-
based ::iterator classes in C++, etc.). This discussion might include the
non-trivial task of how to safely implement a removal operation with iterators.

6 Some Lessons Learned

Not every project is perfect for all facets of a course; hence, there are a few
pedagogical lessons we wish to share. Algorithms associated with linear data
structures for Guillotine have efficiencies that are either O(1) or O(n) oper-

39

ations; this is not demonstrative of algorithmic and mathematical diversity.
An instructor might introduce more interesting mathematical functions (e.g.,
O(n log2 n) or O(log2 n)) by integrating sorting and binary searching function-
ality for the Noble Deck, for example.

In teaching with Guillotine providing students with a skeleton of the game-
play implementation is often appropriate. This supplement focuses student
attention toward implementing and analyzing linear algorithms and data struc-
tures and not minutiae of a gameplay engine. Last, as written, Guillotine is
not a ‘course-long’ option for CS2 courses that introduce non-linear data struc-
tures. In such cases, we suggest implementing player hands as a B-tree where
each card type is represented in its own sub-tree. We have provided a few
suggestions, but there are many other creative avenues to integrate non-linear
data structures or more complex algorithms into Guillotine.

7 Related Works

[1, 2] focus on the use of board games for strategy development. The au-
thors report on students implementing a bot and its strategies to engage in
automated game-play. The overarching goal is for students to develop and
implement strategies that consistently beat a bot player that chooses their
moves randomly. While implementing bots is a useful pedagogical approach,
our contribution is to describe and analyze one particular game as applica-
ble to a course in linear data structures. While the authors of [1, 2] provide
strong motivation for students to implement their software solutions, we pro-
vide motivation for common, yet often unmotivated operations like swapping
two elements in a list or reversing a linked list.

Lee, et al. [6] focus on enhancing the computational capabilities of ele-
mentary school children using an ‘unplugged’ approach. It can be argued that
this work is not related to our work; however, the beauty of board games is
that they foster an offline, hands-on approach to computational thinking. As
[6] implies, much can be gained from an offline analysis of a game and game
strategies. In the case of Guillotine, we would ask students to analyze the
appropriateness of a particular linear data structure in the face of use cases
that can be clearly constructed and analyzed in an ‘unplugged’ setting. There
is also nothing more powerful to algorithm development for reversing a linked
list than using manipulatives: for example, cards in the noble line. Another
benefit of an unplugged approach is the ability for students to construct clear
and precise states for software testing, a powerful and often mundane task.

Drake and Sung [4] provide a survey of games correlated with concepts from
CS1 and CS2 courses (e.g., primitives and control structures, one-dimensional
arrays, etc.) This work is most similar to our work in that it maps games onto

40

course content. Contrasting, our work provides a more thorough analysis of
one game with a focus on linear data structures.

8 Conclusions

We believe Guillotine is a meaningful setting to discuss nuanced choices among
linear data structures, including: arrays, singly- and doubly-linked lists, stacks,
and queues. These choices can have a dramatic impact on the efficiency and
complexity of a software solution and are reminiscent of the considerations
students would encounter in a non-academic setting. Guillotine represents a
viable, all-encompassing project for a course in linear data structures.

References

[1] Ivona Bezáková, James E. Heliotis, and Sean Strout. Board game strategies
in introductory computer science. In Tracy Camp, Paul T. Tymann, J. D.
Dougherty, and Kris Nagel, editors, SIGCSE 2013, Denver, CO, USA,
pages 17–22. ACM, 2013.

[2] Ivona Bezáková, James E. Heliotis, and Sean Strout. On the efficacy of
board game strategy development as a first-year CS project. In J. D.
Dougherty, Kris Nagel, Adrienne Decker, and Kurt Eiselt, editors, SIGCSE
2014, Atlanta, GA, USA, pages 283–288. ACM, 2014.

[3] Contributors to BoardGameGeek. Boardgamegeek: Guillotine. https:
//boardgamegeek.com/boardgame/116/guillotine.

[4] Peter Drake and Kelvin Sung. Teaching introductory programming with
popular board games. In Thomas J. Cortina, Ellen Lowenfeld Walker,
Laurie A. Smith King, and David R. Musicant, editors, SIGCSE 2011,
Dallas, TX, USA, pages 619–624. ACM, 2011.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[6] Victor R. Lee, Frederick Poole, Jody Clarke-Midura, Mimi Recker, and
Melissa Rasmussen. Introducing coding through tabletop board games
and their digital instantiations across elementary classrooms and school
libraries. In Jian Zhang, Mark Sherriff, Sarah Heckman, Pamela A. Cutter,
and Alvaro E. Monge, editors, SIGCSE 2020, Portland, OR, USA, pages
787–793. ACM, 2020.

41

[7] Wizards of the Coast. Magic: The gathering. https://magic.wizards.
com/en.

[8] Paul Peterson and Wizards of the Coast. Guillotine. https://en.
wikipedia.org/wiki/Guillotine_(game).

[9] Stephen Bowden and et al. Thread discussing master spy. https:
//boardgamegeek.com/thread/5140/ded-elusive-master-spy.

42

Designing a Security System
Administration Course for Cybersecurity

with a Companion Project∗

Fei Zuo, Junghwan Rhee, Myungah Park, Gang Qian
Department of Computer Science

University of Central Oklahoma, Edmond, OK 73034
{fzuo, jrhee2, mpark5, gqian}@uco.edu

Abstract
In the past few years, an incident response-oriented cybersecurity pro-

gram has been constructed at University of Central Oklahoma. As a core
course in the newly-established curricula, Secure System Administration
focuses on the essential knowledge and skill set for system administra-
tion. To enrich students with hands-on experience, we also develop a
companion coursework project, named PowerGrader. In this paper,
we present the course structure as well as the companion project design.
Additionally, we survey the pertinent criterion and curriculum require-
ments from the widely recognized accreditation units. By this means,
we demonstrate the importance of a secure system administration course
within the context of cybersecurity education.

1 Introduction

In recent years, we have witnessed an immense shortage of cybersecurity pro-
fessionals and practitioners across the nation. To fill the gap between the low
supply and high demand of the cybersecurity workforce, an increasing number
of colleges have launched initiatives to establish new cybersecurity programs
or courses in their computer science departments.

In 2021, we initiated a cybersecurity degree program and the certificates for
both undergraduate and graduate students at our institution [12]. It is worth

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

43

noting that our program features incident response, which is an essential task
to address security incidents and secure infrastructure. This special theme
requires practical strength such as certifiable deep knowledge, hands-on skills,
and research-involved cybersecurity activities. To this end, we proposed an
array of cybersecurity courses to cover the essential knowledge and skill set for
the major tasks of incident response.

Within our cybersecurity curriculum, the Secure System Administration
(SSA) course plays a significant role. It aims to introduce the core knowledge
and skill set for operating and administering systems securely. In particular,
students learn and practice system administration techniques to operate a sys-
tem with script languages in a command-line interface. In this process, the
important concepts, components, and terminologies used in policy, regulation,
and risk management for secure system administration are also delivered.

Considering that cybersecurity is a practice-oriented discipline, we always
emphasize that students should not only understand how everything works the-
oretically but also be able to apply the related knowledge to solve real-world
problems. For this purpose, we have developed a companion coursework project
named PowerGrader, which is a PowerShell -based system for automatic
management and assessment of programming assignments. We anticipate that
students could polish their skills in using a script language by developing ap-
plications in a concrete scenario. They are also expected to deeply experience
how applications of automation and configuration management work through
this practical project.

2 Course Construction

We develop this course with the objective that upon successful completion of
this course, students will gain a solid understanding of essential concepts, com-
ponents, and terminologies involved in system administration policies, controls,
and risk management. They will also be able to proficiently administrate com-
puter systems via command-line interfaces and other productivity tools. Also,
the capability of designing and implementing the automation of computer op-
erational tasks using script languages is a designated learning outcome.

2.1 Course Structure

Students attending the course are juniors in the CS program as well as stu-
dents in the software engineering program. They should have finished and
passed the Programming I and Programming II courses or equivalent. Table 1
shows the course structure, which is divided into four topics. All of them are
commonly suggested in a syllabus concerning security system administration
geared towards those aforementioned objectives.

44

Table 1: Course Structure and Knowledge Units (KUs)
Topics Knowledge Units (KUs) Student Activities

T1
(3 weeks)

• Administration basics
• Terminals and CLI
• Windows essentials
• UNIX/Linux essentials

Project: Phase 1
Quiz 1

T2
(3 weeks)

• Regular expression
• Editors
• Software management
• Other system tools

Project: Phase 2
Quiz 2

T3
(5 weeks)

• Script Languages - Bash
• Script Languages - PowerShell

Project: Phase 3
Quiz 3

T4
(3 weeks)

• Policies and regulations
• Risk analysis and management
• Security controls and frameworks
• System certifications

Project: Report
Final exam

T1: Command-line interface and essential commands

System administration is the field of work in which someone manages one or
more systems including software, hardware, servers or workstations. Its main
goal is to ensure systems are running efficiently and effectively. It is not sur-
prising that command-line interface (CLI) has become a crucial skill for system
administrators. Its programmable characteristic provides great convenience for
scheduling automation. Therefore, demonstrating proficiency in the usage of
CLI is of necessity for professional management.

T2: System tools and productivity applications

Mastering good tools are a prerequisite to the success of any jobs. For in-
stance, a regular expression (or shortened as regex) is an immensely powerful
tool that can be used to improve productivity in routine tasks. Besides this,
other system tools such as Advanced Package Tool (APT), Windows manage-
ment instrumentation (WMI), and editors (e.g., Emacs or Vim) are covered.

T3: Scripting languages and automation

Scripting languages, e.g. PowerShell and Bash, are commonly utilized in
system administration tasks due to the convenience provided by them for ma-
nipulating and automating operating system facilities. As an open-sourced
and cross-platform system administration and configuration framework from
Microsoft, PowerShell is widely used to automate routine and repetitive tasks.
For example, PowerShell is leveraged to automate configuration management
in computer networking laboratories [11]. Moreover, current cyber-criminals
or hackers usually adopt PowerShell as a component of their attack tool-chain.
The number of penetration tools that use PowerShell increased accordingly at

45

high speed in recent years [5]. That is why PowerShell has been integrated
into many cybersecurity-related courses [8].

T4: Policies, controls, and risk management

In an organization, avoiding risks is often difficult due to many reasons such
as human fallibility and uncontrollable external factors. Sometimes it is even
impossible. How to assess and manage risks is thus an important capability
for a qualified system administrator. In this course, essential concepts, compo-
nents, and terminologies used in system administration policies, controls, and
risk management are introduced.

2.2 Comparison with Other Similar Courses

Admittedly, system administration courses are broadly provided by sibling uni-
versities. Some are particularly designed for IT programs [9], which do not
extensively cover security-related topics. Others only skim the surface of au-
tomation based on script languages or mainly focus on Bash [14], although
they are included in a cybersecurity program. By contrast, our course design
differs in three aspects: the hands-on experience involved companion project,
the concentration on PowerShell -based administration automation, and the
industry-leading, certificate-oriented course structure.

3 Companion Project

The prototype of PowerGrader was inspired by our practical needs in teach-
ing entry-level programming courses [15]. We systematically integrate it into
the SSA course as a companion project, so that students can gain a solid
understanding of how to make effective use of scripts for automatic system ad-
ministration. In this section, we present more details about PowerGrader.

3.1 Background and Motivation

Automatic code assessment solutions are a category of widely adopted aux-
iliary teaching applications. They have been developed to evaluate students’
programming assignments for correctness, efficiency, and adherence to the best
practices and coding standards. At the very beginning, we initiated our cus-
tomized code assessment tool PowerGrader in response to the actual de-
mands during our teaching practice. Later, we realized that the development
of PowerGrader was suitable to be adapted as a companion project for the
SSA course. That was not only because learning how to evaluate the code
would be especially beneficial for computer science students, but also because

46

through this project, they could experience firsthand the significant role of
scripting in system administration automation.

We observe that a majority of the existing methods are implemented based
on black-box testing, such as CodeAssessor[13] and MOCSIDE[2]. This sub-
category of methods are less flexible and unsuitable for introductory-level pro-
gramming courses, where students are usually required to practise a certain
language syntax or programming paradigm, so that a plausibly correct output
cannot be simply regarded as the indicator of an acceptable solution.

The “leap year” question can be used as a case study to illustrate this con-
cern. In this assignment, students are expected to implement a program to
determine whether a certain year is a leap or common year. As a classical
question, this exercise aims at asking students to practice nested branch state-
ments. In reality, however, we noticed some students included complicated
logical expressions with boolean operators to subconsciously bypass the orig-
inal requirement, as shown in Figure 1. It was obvious that code assessment
based on black-box testing would underperform when handling such a case.

if (year%4 != 0 || (year%4 == 0 && year%100 == 0 && year%400 != 0)) {
cout << "Common␣year" << endl;

}
if ((year%4 == 0 && year%100 !=0) ||

(year%4 == 0 && year%100 == 0 && year%400 == 0)) {
cout << "Leap␣year" << endl;

}

Figure 1: Solving the “leap year” problem without nested branch statements.

On the other hand, approaches based on static analysis such as abstract syn-
tax tree or symbolic execution would be more suitable for such intricate tasks,
e.g., vulnerabilities discovery and code quality assessment [7, 10]. However,
these methods would usually introduce high a false-positives rate that pre-
clude using them for grading purposes [6]. Thus, developing an auto-grader for
entry-level programming courses based on their own characteristics appeared
to be a more appropriate approach.

3.2 Project Breakdown

The core module of PowerGrader is a hybrid code assessor consisting of a
black-box tester and a lexical analyzer. Apart from that, the proposed system
can periodically collect the submissions from a file server, and automatically
manage them. When the assignments are analyzed, assessment reports and
compiling information including error messages are recorded into a log. Based

47

on these functionalities, we decompose the development of PowerGrader
into three phases, as shown in Table 1.

Phase 1: Assignment collection and pre-processing
The assignment collection module is deployed based on a file server where

students can submit their work via FTP. A time stamp is automatically at-
tached to each submission. Meanwhile, user credential and access permission
are defined accordingly as a security mechanism. In particular, we assume ev-
ery submission is archived using a ZIP file, and require the file name be in the
format as “FirstName_LastName_AssignmentNumber.zip”. Consequently, by
parsing the name and meta data of such a ZIP file, we can initialize an assess-
ment report including necessary information such as student name, submission
time, etc. After decompressing every ZIP file, the source code will be compiled
by invoking a third-party compiler. Any information like error or warning
messages during this procedure will be logged.

All of these system administration tasks are required to be conducted by
leveraging CLI-based commands. Hence, this phase is to align with the KUs
covered by T1, as shown in Table 1.

Phase 2: Regex based lexical analyzer
The lexical analyzer is implemented in a lightweight manner, where the

given regular expressions parse the source code to determine whether the stu-
dent’s implementation can fulfill the desired constraints. For example, the
regex pattern shown in Figure 2 can be used to verify nested branch state-
ments. Considering that PowerGrader is specially designed to handle code
submitted as coursework in a programming class, this lightweight approach is
not only feasible but also flexible.

if\s*\([\s\S]*\)\s*\{[\s\S]*
if\s*\([\s\S]*\)\s*\{[\s\S]*\}\s*
else\s*\{[\s\S]*\}\s*\}\s*

else\s*\{[\s\S]*\}

Figure 2: A regex pattern for nested branch statements.

Upon finishing the lexical analyzer, students can sufficiently polish their
skills of utilizing productivity tools like regular expressions and editors. As a
result, this phase covers the KUs related to T2 in Table 1.

Phase 3: Black-box test and automation
In the black-box test, expected outputs are literally compared with the

counterparts from running a student’s code against a test set. In addition to
this, all aforementioned functionalities will be integrated into the final product

48

Table 2: Agreement to the Course Evaluation Questions
Course evaluation question Average score Standard error
This course challenged me to
think from different angles 4.50/5.00 0.183

I acquired multiple essential
system administration skills 4.81/5.00 0.136

The project is well designed
and practiced my skills 4.75/5.00 0.112

The techniques delivered by this
course are very useful in practice 4.63/5.00 0.155

by making effective use of script languages. According to evaluation results
obtained from the hybrid code assessment, a report will be generated as a
reference for each submission.

To achieve automation, script language programming is highlighted in this
phase, which covers the KUs related to T3 in Table 1.

Project report

On completion of all the phases above, a closing report will be required
to conclude the whole project, where the newly developed application will be
considered as a case study. Students apply the knowledge covered by T4 as
shown in Table 1 to analyze this coding assignment management and assess-
ment system. Through this exercise, they can sharpen their understanding of
security policies, controls, and risk management-related concepts in practice.

3.3 Evaluation

Engaging in this hands-on project can make students deeply experience how
an automatic system administration and configuration application works in a
concrete scenario. Plus, a majority of knowledge units required in the course
are covered by this comprehensive project.

To evaluate the proposed course including the companion project, we col-
lected student responses to the course evaluation at the end of 2022. Based
on 16 valid responses, Table 2 summarizes their degree of agreement to the
questions, which demonstrates a positive feedback.

In addition, we compared students’ performances according to their exam
scores in two consecutive academic years. The distribution of scores is shown
in Figure 3. The average score was promoted from 83 in the year 2021 to 88
in 2022. Hence, a notable performance improvement has been observed after
the course project’s implementation in 2022.

49

12%

20%

48%

20%

6%

13%

50%

31%

0%

15%

30%

45%

60%

60~69 70~79 80~89 90~100

2021

2022

Pe
rc

en
ta

ge

Exam scores

Figure 3: Comparison of exam score distributions in different years

4 Survey on Reputable Accreditation Criteria

4.1 NCAE-C Program

The National Centers of Academic Excellence in Cybersecurity program, man-
aged by National Security Agency (NSA), accredits universities based on their
ability to meet rigorous academic criteria and offer top-notch cybersecurity ed-
ucation and training to students [1]. The program has established standards for
cybersecurity curriculum and academic excellence towards two specialization
tracks, which are Cyber Defense (CAE-CD) and Cyber Operations (CAE-CO).
It is noteworthy that the CAE-CD designates five technical core knowledge
units (KUs) and another five non-technical core KUs as the curriculum re-
quirements. The proposed SSA course covers two non-technical core KUs, i.e.,
“security risk analysis”, and “policy, legal, ethics, and compliance”, in addition
to one technical core KU, i.e., “basic scripting and programming”.

4.2 ABET Accreditation for Cybersecurity

ABET is a well recognized organization that accredits university programs in
natural science, computing, engineering and engineering technology. In par-
ticular, the Computing Accreditation Commission of ABET has developed the
accreditation criteria for cybersecurity programs [3]. The criteria of ABET
explicitly state that curriculum requirements do not prescribe specific courses.
Instead, the program needs to involve eight fundamental topics in total, and
specifies what course(s) each topic is covered. Our SSA course provides cov-
erage on multiple cybersecurity topics as required by ABET, including data
security, human security, organizational security, and societal security. These
required topics overlap with T4 of our course structure. Our investigation
shows that other ABET accredited cybersecurity programs also consider the

50

SSA course as a necessity [14].

4.3 CompTIA Certification

To meet the needs of the industry, we also refer to criteria and credentials
expected in the job market as the curricular guidance when creating our cy-
bersecurity program. In particular, our department became a partner of Comp-
TIA [4], which is a well-known trade association that issues professional cer-
tifications for the cybersecurity and IT industry. Our curriculum is closely
aligned with CompTIA certificates. Especially, the proposed SSA course cov-
ers the majority of the topics related to the CompTIA Linux+ certificate and
some topics for the CompTIA Security+ certificate.

5 Conclusion

As a core course in many cybersecurity-related curricula, secure system admin-
istration focuses on not only the essential concepts used in security policies,
controls, and risk management, but also the necessary techniques that are used
for automating system administration and configuration. Our SSA course has
all these suggested topics combined in the development of the PowerGrader
course project to enrich students with hands-on experience in automated sys-
tem administration and further improve their learning outcomes. This paper
also surveys the widely recognized accreditation criteria to demonstrate the
significance of the SSA course in a cybersecurity program. More importantly,
this work shares our experience and insights into teaching SSA and provides
an example of its curriculum construction.

References

[1] National Security Agency. National centers of academic excellence in cy-
bersecurity. https://www.nsa.gov/Academics/Centers-of-Academic-
Excellence/. Accessed: 2023-05-01.

[2] Max Barlow, Ibraheem Cazalas, Chase Robinson, and Jonathan Cazalas.
MOCSIDE: an open-source and scalable online ide and auto-grader for
introductory programming courses. Journal of Computing Sciences in
Colleges, 37(5):11–20, 2021.

[3] ABET Computing Accreditation Commission. Criteria for accredit-
ing computing programs, 2022. https://www.abet.org/wp-content/
uploads/2022/03/2022-23-CAC-Criteria.pdf. Accessed: 2023-05-01.

51

[4] CompTIA. Computing technology industry association (CompTIA).
https://www.comptia.org/. Accessed: 2023-04-01.

[5] Danny Hendler, Shay Kels, and Amir Rubin. Detecting malicious power-
shell commands using deep neural networks. In ASIACCS, 2018.

[6] Karen H Jin and Michel Charpentier. Automatic programming assignment
assessment beyond black-box testing. Journal of Computing Sciences in
Colleges, 35(8):116–125, 2020.

[7] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. Code quality issues
in student programs. In ITiCSE, 2017.

[8] Qiang Liu, Wentao Zhao, Minghui Wu, and Chengzhang Zhu. Web secu-
rity education in a multidisciplinary learning context. In the ACM Turing
Celebration Conference, 2020.

[9] Mohamed Lotfy and Christian Fredrickson. The structure and delivery
of an advanced systems administration it course. Journal of Computing
Sciences in Colleges, 38(2):33–44, 2022.

[10] Lannan Luo, Qiang Zeng, Bokai Yang, Fei Zuo, and Junzhe Wang. West-
world: Fuzzing-assisted remote dynamic symbolic execution of smart apps
on iot cloud platforms. In ACSAC, 2021.

[11] Neville Palmer, Warren Earle, and Jomo Batola. Automating the config-
uration management and assessment of practical outcomes in computer
networking laboratories. In the Science and Information Conference: In-
telligent Computing, 2019.

[12] Junghwan Rhee, Myungah Park, Fei Zuo, Shuai Zhang, Gang Qian,
Goutam Mylavarapu, Hong Sung, and Thomas Turner. Developing in-
cident response-focused cybersecurity undergraduate curricula. Journal
of Computing Sciences in Colleges, 38(7):65–74, 2023.

[13] Brad Vander Zanden and Michael W Berry. Improving automatic code
assessment. Journal of Computing Sciences in Colleges, 29(2):162–168,
2013.

[14] Xiaodong Yue, Belinda Copus, and Hyungbae Park. How to secure ABET
accreditation for a cybersecurity program: a case study. Journal of Com-
puting Sciences in Colleges, 37(6):15–24, 2022.

[15] Fei Zuo, Junghwan Rhee, Myungah Park, and Gang Qian. Power-
Grader: Automating code assessment based on PowerShell for program-
ming courses. In the 21st IEEE/ACIS International Conference on Soft-
ware Engineering, Management and Applications, 2023.

52

A Social Good Challenge for Teaching
Undergraduate Affective Computing ∗

Gloria Washington1, Marion Mejias2
1Electrical Engineering and Computer Science

Howard University
Washington, DC 20059

gloria.washington@howard.edu
2Software and Information Systems

University of North Carolina Charlotte
Charlotte, NC 28262
mmejias@charlotte.edu

Abstract

This paper describes how a social good innovation challenge was used
to teach 27 undergraduate and 6 graduate students affective comput-
ing techniques. The innovation challenge addressed the UN Sustainable
Development Goals (SDGs) and allowed students to create technology
solutions to solve problems related to clean water, poverty, and hunger,
protecting the planet, human prosperity, and inclusive societies. Course
activities were taught using project-based learning and required students
to understand their potential users through motivational design thinking
techniques. Emotional theory based on emotional artificial intelligence
techniques were also taught. Students filled out course evaluations and
provided observations on their experience in the course. Student feedback
primarily related to motivation to win the design challenge and ability
to connect theories taught in class with affective techniques. Challenges
related to connecting existing emotional AI software libraries with web-
based prototypes. Future iterations of the course will allow more time
for integration of existing tools with prototype software.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

53

1 Introduction

University computing students, particularly Black and Brown computing stu-
dents, often talk about creating software that helps their community and ulti-
mately contributes to the greater good of society. Additionally, most university
students across the United States are becoming more aware of how technol-
ogy may negatively impact already marginalized or underrepresented groups.
Unfortunately, computing curriculum taught at most universities do not give
students the opportunity to build technology for social good or reflect over how
their technology may create a better tomorrow. The United Nation’s Sustain-
able Development Goals are a “shared blueprint for peace and prosperity for
people and the planet” [1] that may be leveraged by computing faculty in exist-
ing project-based courses to give students opportunities to create technology for
social good. These seventeen goals include ending poverty, while spurring eco-
nomic growth, improving health and education, and reducing racial inequality.
Giving students parameters to design and create technology surrounding the
UN sustainable development goals can help computing courses teach students
how to create meaningful technology around these topics.

Teaching affective computing theory and techniques to undergraduate stu-
dents is difficult because most concepts are beyond the average undergradu-
ate computing curriculum. Prerequisite knowledge like image processing tech-
niques, machine learning models, and computer vision are usually too difficult
to teach in one semester are taught in their own separate courses. Additionally,
most affective computing courses are graduate courses that rely on teaching
the artificial intelligence and psychological theory that forms the basis for the
field. Undergraduate students are becoming more aware of emotionally intelli-
gent tools are interested in creating software and tools that not only help the
world but are also emotionally aware. Tools like facial expression recognition
and applications use human physiological information to guess mood, stress,
and anxiety are becoming commonplace. Students want to work on interesting
problems that they dream-up.

In this paper, we explore if teaching applied affective computing techniques
using a social innovation challenge to motivate students would improve student
engagement in the course. To determine this, analysis was performed over end-
of-the-semester student questionnaires and grades on the final project.

The rest of this paper is organized by describing the common topics and
theories taught in most affective computing courses. Next, briefly described
is the prior use of social innovation challenges employed in computing courses
listing the challenges and weaknesses of these approaches to improve student
performance. Then, the methodology is described and how this innovation
challenge requirements was used to tailor semester deliverables for the course.
Finally, we describe the results of study and study conclusions.

54

2 Background

2.1 Emotion vs. Affect

An emotion is a feeling that occurs in humans that results sometimes in physical
or psychological changes that influence behavior and thought [5]. Affect is the
underlying experience of a feeling, emotion, or mood[5]. It is the reaction of
the human, be it physical through movement of body muscles or parts or the
physiological reaction that occurs in the human autonomic nervous system[5].
Often these words are intertwined when software developers are speaking about
the emotions of the user in designing or evaluating experiences for human-
computer interactions.

Assessing emotion by software and user experience experts is usually done
through self-report in a survey. However, assessing the affect of the user in-
volves both the self-report of the emotion and noticing a change in the human
autonomic system (if any). Common changes to the human body are increased
heart rate for excitement, increased skin temperature for stress, anger, and
nervousness. In the next sections we describe the psychological theories of
emotion that pertain to how emotion is displayed outwardly to other humans
during interactions.

2.2 Basic Theory of Emotions

The Basic Theory of Emotions states that humans experience six basic emo-
tions: happiness, sadness, surprise, anger, disgust, fear [3]. Through this the-
ory, human emotion is binary as it either occurs or it doesn’t occur. The
premise is that these six emotions all have a signal or input that causes the
emotion, a physiological response, and an action or response that immediately
follows the behavior. Sometimes this following behavior is masked or hidden by
the human. The emotion also has a duration and many emotions can lead to
a change in mood by a human. Example getting a ticket while driving to work
and getting written-up for lateness contributes to a disgusted mood. Facial
expressions are one obvious way in which the six basic emotions are displayed.

Undergraduate students are very aware that more than six emotions can
occur within a human, however, they should begin to understand the com-
plexity surrounding emotion, mood, and intensities of emotions experienced
by humans. This is difficult, as sometimes different cultures display emotions
uniquely.

2.3 Appraisal Theory of Emotions

Appraisal Theory of Emotions says that human emotions are experienced and
reacted to differently according to appraisals or assessments directly relating

55

to a human’s values or beliefs [9]. Additionally, in every situation a person
finds themselves in, they weigh these values against their expectations and try
to assess how hard or easy it will be to accomplish the goal in the particular
situation. When faced with goal-blocking events that were unexpectedly en-
countered, humans often experience more intense emotional reactions[5]. An
example of this is a person is given a ticket for driving below the speed limit
that causes him/her to receive a demotion at work for lateness. The unex-
pectedness of the ticket may contribute to a more intense reaction of disgust
experienced by the driver because they did not expect to receive a ticket for
slow driving which is often associated with safe driving. The affect towards
the future driving experience may be hesitation, nervousness, disgust, with a
change in elevated heart rate and respiration.

Wearables and their connection to the study of human emotions and affect
can be introduced during appraisal theory lessons since physiological data,
context surrounding the task, and participant feedback can communicate the
basic constructs of appraisal theory. Wearable sensors like fitness trackers
gather physiological data like heart rate, skin temperature, blood oxygen levels,
and sometimes blood pressure.

2.3.1 Other Emotional Theories of Emotions

The OCC theory of emotions examines the cognitive structure of emotions so
that they can be modeled by artificial intelligence for emotion generation or
emotion synthesis [6]. The OCC theory of emotions builds upon Basic Emotion
Theory, Appraisal Theory, and breaks down emotions so that AI can began to
identify what causes humans to experience emotions, what makes emotions
vary in intensity, how emotions are similar to each other, and how behavior
can be predicted from learning about the experience preceding the emotion.

OCC Theory can be confusing to undergraduate students as its difficult
to understand how constructs like “consequences of events, actions of agents,
and aspects of objects translate into code. Often the terms agent is associated
with an AI agent and objects are associated with object-oriented programming.
Additionally, appealing-ness, desirability, and praiseworthiness are difficult to
describe without concrete examples. Undergraduate need hands-on ways to
see this theory in action. Activities or lessons about OCC theory can include
students finding technology based on the theory and how the behavior of the
technology reacts due to user interactions and input.

Compound emotional theories found in Schachter et al [8, 7] are too complex
to delve into within a normal one-semester undergraduate affective computing
course because the examples surrounding their application are usually artificial
humans, emotional agents, and deep learning techniques.

56

2.3.2 Social Innovation Challenges

Innovation challenges like the CMD-IT Innovation Challenge, the Verizon &
CGI U Social Innovation Challenge, the Clinton Foundation and Verizon Social
Innovation Challenge, and the Law School Admission Council’s Social Justice
Innovation Challenge are all geared to creating new technological ideas to solve
racism, prejudice, reducing climate change and poverty, and decreasing racial
bias and in in the United States. Challenges have been used in prior studies
in computing and business to teach problem-solving, project management, and
giving students the ability to confront real-world problems[4].

3 Methodology

Twenty-six undergraduate and six graduate students worked on projects to
address global social ills as outlined in the UN 2030 Sustainable Development
Goals. Students went through motivational design thinking activities to quickly
create “how might we” statements to address a UN sustainable development
goal. Then students quickly thought of technology solutions that addressed
the “how might we” statements. The technology that had the most votes for
that sustainable goal was developed for the team-based project. There were
seven teams, and each project was given the guidelines that the overall motiva-
tion behind the application must also amplify or reduce a particular emotion.
Additionally, each group must pick an emotional theory that is the underlying
basis for how the students assumed human emotions would be experienced or
expressed by humans using the prototype.

Graduate students in the course were allowed to pick their own groups even
though they usually were the persons with the most programming experience in
the course. There was no policy that graduate students could not create a group
with only graduate students either. The six graduate students in the course
were intermingled throughout the groups and chose their group membership
strictly based on the topic they wanted to address in the innovation challenge.
Additionally, the graduate student could also mentor the undergrads through
the software engineering process.

3.1 Social Innovation Challenge

The challenge used in this study was sponsored by an organization that works
directly with studying how technology can help Black and Brown persons,
Indigenous populations, and persons with disabilities. The primary goal of
the CMD-IT challenge was to tear down structural and institutional barriers
so all humans can build a more positive society. All submissions required the
teams pitch their idea in 5-minutes or less. Each submission was voted on

57

by peers or outside persons visiting the challenge site. Judging criteria was
devoted to creativity, innovation, usefulness, impact, scalability, sustainability,
and design. Prizes included $500, $300, and $100 for first, second, and third
place submissions. Also, teams could win a t-shirt for fourth place.

3.2 Human Subjects Protection

All students were required to complete Social and Behavioral Subjects Research
from Citi.org. Exempt approval was given for the course. They were also told
that they could not share any pics or videos of students they test using their
software.

3.3 Applied Affective Computing Techniques

Applied affective computing techniques were used to teach the concepts in the
course. Students were taught about how emotions are exhibited by the hu-
man autonomic system and through human physical behavior. They also had
to concretely tie an emotional theory (Basic Emotional Theory or Appraisal
Theory, etc.) to tasks that users would perform using their prototype solution.
Additionally, students were taught how to measure these physiological changes
using wearable devices that tracked heart rate, skin temperature, and respira-
tion. Verification of the human emotional response was taught as well through
questionnaires and surveys. These are described in the next sections.

3.3.1 Facial Expression Software and Wearables

Facial expression software from companies like Affectiva, Amazon Rekognition,
Microsoft Azure Cognition, MorphCast, etc. can be used to identify the six
basic emotions. Students within the course are shown the functions to include
in their tools for using facial expression systems. A web-browser based imple-
mentation of a facial expression tool was the preferred method shown by the
instructor and usable without much coding experience.

Wearable devices like Fitbit can help students detect stress, anxiety, phys-
ical activity, and mood. Getting the data off these devices are as simple as
plugging them into a laptop or downloading it from a cloud-based account.
Students were taught how to interpret the output of the fitness trackers noting
timestamps, mood indicators, stress levels, and other physical information.

3.3.2 Non-technical Affective Computing Techniques

Students were taught about the PANAS, SUS, and high-level data analysis for
reporting. The Positive and Negative Affect Schedule (PANAS) was used to
verify the emotion of the users. The Positive and Negative Affect Schedule is a

58

quick-and-dirty way for students to capture the emotions of the users in their
study through self-report. Students in the course were taught how to properly
convert the self-report measures in the PANAS into readable results using the
short form of the PANAS [10]. Students were also taught how to compare the
emotions identified in the PANAS to both facial expression output and wearable
output. Context of the user’s task was also noted by a student observer.

System Usability Scale [2] or SUS, is a quick way to measure user satisfac-
tion as defined by the reliability and learnability of an application. Students
were taught how to normalize their scores and interpret SUS output for anal-
ysis. A score of around 68 was encouraged. Note: most of the undergraduates
did not have statistics or data science experience prior to enrolling. There-
fore, analysis of results was limited to descriptive statistics like mean, median,
mode, and data visualizations from spreadsheets. Undergraduate that already
took Probability and Statistics I at the University were encouraged to perform
hypothesis testing using the data they gathered.

Pitching of ideas was a requirement by the innovation challenge. Therefore,
students were taught how to pitch their ideas according to four main questions:
What’s the problem according to the UN SDGs?, Why should you care (in
terms of the global problem)?, What’s your proposed solution?, and How is it
different?. Additionally, students introduced themselves in their pitching video
before giving a short demo of the solution. These videos were uploaded along
with a link to their prototype solutions to the innovation challenge website.

3.3.3 Technical Non-affective Computing Techniques

Rapid prototyping tools like proto.io, Adobe XD, Thunkable were used by
students to quickly create their solutions with little coding. Proto.io and other
tools that allow for outside calling of facial expression and audio emotional
APIs were easier to leverage in the student projects. Most student groups used
Thunkable and Proto.io rapid prototyping tools.

4 Results

Project prototypes were built addressing climate change shown in Figure 1,
economic growth and human prosperity, inclusive societies, and addressing
chronic disease for improved health and wellbeing. Seven project videos and
project prototypes were uploaded to the innovation challenge website. Students
could ask their friends and family to vote for their solutions in the challenge,
however the final winner for the contest was not determined only by outside
votes. A team of external judges evaluated the pitch videos and the materials
uploaded for each project. The 1st place submission was submitted from the
affective computing course described in this paper. The topic for the winning

59

Figure 1: Team project from affective computing course related to climate
change.

solution was a support community for persons with chronic disease to share
their stories of microaggressions and bias that they experienced in healthcare
settings. The project implemented facial expressions API to help understand
the emotions of the persons that uploaded their stories. Encouraging words
could be sent to those users. Also, the 2nd place submission came from this
affective computing course and the topic related to persons with disabilities
and how they feel left out of class discussions. The emotional component used
emoji, likes, and a mental health break for the disabled students.

The average grade earned in the course was 95% with 29 students receiving
and A, two students receiving a C, and one student receiving a B. Due the
pandemic some students did not turn in some assignments in the course, how-
ever the final project was turned in by all students as it included the results of
testing their solutions from the Social Innovations Challenge. Thirty students

60

received an A on the team project, while one person received a C due to not
helping with the demo and usability testing of the final project.

5 Discussion

Students were taught that often mood impacts the experience of users and
were also told to use a pre- and post-test PANAS to determine the emotions
of the users before and after using their prototypes. Some students forgot
this and their results were flawed. Only one student group, the group of two
undergrads, used a wearable to verify the emotions of their users. The other
groups used the facial expressions software output to verify the emotion. Many
of the student groups gathered data that showed that the users enjoyed their
tool, but the emotion of the users did not correspond positively to the enjoyable
experience of the user as the SUS was higher than 68 showed the learnability
of the tool was not well received by user. Only one student noted that the
mood of the user was negative coming into the experience with disgust, fear,
apprehension, and stress as they had just finished a final before participating
in the usability study of the prototype. Many students did not know how to
interpret the PANAS so that they could improve the experience of the tool.
One reason could be that whimsy, laughter, and attributing an interaction in
the real-world with an interaction in the tool was not explained in this class.

Students did not readily connect their tool creation with an emotion to
induce, increase or decrease in the user. An example is the climate change
group asked users to input daily activities to determine how they are reducing
their carbon footprint. However, a metaphor connection to the real-world that
included human footprints and their devastation to the rainforests or their local
environment would have amplified the need for climate reduction strategies
and created more of an emotional reaction in the users. Students in a future
iteration of the class will have a topic discussion on use of whimsy, laughter,
and metaphors with the real-world to encourage user behavior.

Often students used facial expressions when it was not appropriate for the
subject matter or necessarily useful for the tool. Perhaps this is due to famil-
iarity with facial expressions tools.

6 Conclusion

User emotion provides needed context and can be leveraged to evaluate de-
sign decisions by software developers. Innovation challenges centered around
social good topics can be leveraged to excite undergraduate students to design
software for good. Teaching about leveraging emotional AI tools for existing
technology innovations is difficult, but motivating students through an inno-

61

vation challenge and the thought of winning prize money can help to excite
students about learning affective computing.

References

[1] Frank Biermann, Norichika Kanie, and Rakhyun E Kim. Global gover-
nance by goal-setting: the novel approach of the un sustainable develop-
ment goals. Current Opinion in Environmental Sustainability, 26:26–31,
2017.

[2] John Brooke. System usability scale (sus): a quick-and-dirty method of
system evaluation user information. Reading, UK: Digital Equipment Co
Ltd, 43:1–7, 1986.

[3] Paul Ekman. An argument for basic emotions. Cognition & emotion,
6(3-4):169–200, 1992.

[4] Jan Kietzmann and Herbert H Tsang. Minding the gap: Bridging com-
puting science and business studies with an interdisciplinary innovation
challenge. In Proceedings of the 15th Western Canadian Conference on
Computing Education, pages 1–5, 2010.

[5] Randy J Larsen and Ed Diener. Affect intensity as an individual difference
characteristic: A review. Journal of Research in personality, 21(1):1–39,
1987.

[6] Andrew Ortony, Gerald L Clore, and Allan Collins. The cognitive structure
of emotions. Cambridge university press, 2022.

[7] Rainer Reisenzein. The schachter theory of emotion: two decades later.
Psychological bulletin, 94(2):239, 1983.

[8] Daniel L Schacter and Peter Graf. Effects of elaborative processing on
implicit and explicit memory for new associations. Journal of experimental
psychology: learning, memory, and cognition, 12(3):432, 1986.

[9] Klaus R Scherer. Appraisal theory. 1999.

[10] David Watson, Lee Anna Clark, and Auke Tellegen. Development and
validation of brief measures of positive and negative affect: the panas
scales. Journal of personality and social psychology, 54(6):1063, 1988.

62

Checkpoint Classifier for CNN Image
Classification∗

Jackson H. Paul1 and Andy D. Digh2

1Electrical and Computer Engineering Department
Mercer University
Macon, GA 31207

jackson.h.paul@live.mercer.edu
2Computer Science Department

Mercer University
Macon, GA 31207
digh_ad@mercer.edu

Abstract

Given a large convolutional neural network (CNN) with hundreds of
layers, when can the input data be correctly classified? How many layers
does each image require? We propose an architecture with a mid-network
classifier to classify certain images at earlier points in the model. When
the network is very confident about an image, having high activations,
then that individual image will be classified early. The number of compu-
tations and the average number of convolutions will be reduced if certain
images can be classified earlier. In addition, the mid-network classifica-
tion task is more difficult because fewer features have been extracted at
earlier points in the network. Thus, the output and mid-network classi-
fier will work together to correctly classify each image as fast as possible
while preserving the accuracy. This proposed method has been imple-
mented into well known computer vision architectures, like ResNet and
GoogLeNet Inception. We have achieved large runtime improvements
while limiting the accuracy degradation.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

63

1 Introduction

Convolutional neural networks (CNN) have vast amounts of parameters in
order to learn hundreds of feature maps for each layer [19, 23]. Although
the number of parameters can be large, convolutional models can perform ex-
tremely well and have progressed from accurate handwritten digit classification
to real-time, efficient object detection [14, 7]. This paper [7] shows the general
trend of how the size of the model increases as the accuracy increases. The
winning submissions of the famous ImageNet Large Scale Visual Recognition
Challenge have increased in size as well, producing much larger networks each
year to achieve better performance [18, 3].

Figure 1: Number of layers (dotted line) and test error (bars) for each winning model
of ImageNet Large Scale Visual Recognition Challenge from 2010 to 2015 [3].

The motivation for this paper comes from numerical analysis; we have it-
erative techniques to solve all types of complex mathematical operations, in-
cluding integration and differential equations [2]. Iterative techniques are great
for modern computers because they can iterate forever. When using these nu-
merical algorithms, thresholds are used to determine when the answer is ’good
enough’. Once the answer is below a certain threshold of precision, the algo-
rithm is finished and the answer is returned. Using these concepts, the same
question was asked in the context of CNNs; “When is the input data processed
enough to be classified correctly?"

We propose a CNN architecture with a checkpoint to attempt to classify
the input data earlier in the model. If the input data can be classified, then
the model will stop, and output the results. If not, the model will continue
and use the remaining layers as intended. The network will naturally be more
and less confident about certain images, so only the most confident images will
be classified early. In addition, fewer features have been extracted at earlier
points in the network, so the checkpoint classifier should perform worse than

64

the overall output classifier. Thus, the output classifier and the checkpoint
classifier will work together to classify images faster while retaining accuracy.
Theoretically, if certain inputs could be classified earlier in the network, then
the total average number of convolutional layers would be reduced, and the
runtime would be improved while minimizing accuracy degradation.

2 Related Works With CNNs

Starting with LeNet, with some exceptions, CNNs usually have a basic, pre-
dictable structure [4]. First, a set of convolutional layers to extract features,
then fully connected layers to classify the input based on the features, in that
specific order [23]. This proposed architecture would differ by having a variable
number of layers and a second fully connected classifier network that interrupts
the series of convolutional layers.

In [5], they describe using two independent classifiers to have redundancy
in case one classifier is incorrect. They both perform the classification after the
convolutional layers using the same data but utilize two different approaches to
protect against an incorrect classification method. In addition, one of the most
famous papers, “Going Deeper with Convolutions,” describes the GoogLeNet
Inception network [22]. This network uses two mid-network auxiliary clas-
sifiers to protect against vanishing or exploding gradients and provide some
regularization during training [12]. The network has a traditional set of fully
connected layers for classification but aggregates all output losses to perform
backpropagation. This proposed architecture has an additional set of fully con-
nected layers but they perform a separate classification that does not combine
or contribute to the original output classifier.

3 Methods

Overview — First, the general context and overview will be discussed and
then each step will be described. Python and PyTorch were used with the
built-in CIFAR10 and CIFAR100 datasets. These image classification datasets
have ten and 100 output classes, respectively, and have 50,000 training im-
ages and 10,000 test images [10]. For the following sections, the base model
refers to the unchanged, published architecture, whereas the custom model is
the published base model with the extra mid-network classification layer added.

Published Architectures — The first step is training the base model on
the given dataset and saving that model to be used for testing. PyTorch has
several trained architectures built-in, but saves models as a dictionary. So, the

65

models need to be trained from scratch to add new layers after training and
for layers to be added to specific places in the sequential order.

Table 1: Base model testset accuracies with both datasets, CIFAR10/100.

Model CIFAR10 CIFAR100

AlexNet 82.47% 48.24%
VGG-16 92.28% 69.34%
ResNet34 82.25% 52.47%
ResNet50 84.46% 56.78%

InceptionV1 86.00% 61.62%

Looking at Table 1, the accuracy of the published networks were not par-
ticularly optimized using learning rate, batch size, or other training hyper-
parameters. Firstly, the graphics card used had memory limitations, so the
larger models needed a small batch size to fit on the card. This prevented
the models from generalizing the classification and resulted in overfitting and
high losses on the testset. In addition, the parameters learned during the base
model training are used for both models because the base model layers are un-
changed; only a new layer with the mid-network classification is added to the
custom model. Therefore, any accuracy and runtime changes are relative to the
base model and that difference is the important metric. The base models could
have been trained better, but all base model parameters are shared with the
custom model so the results will still show the validity of this proposed method.

Mid-network Classification Model — This model was used as a separate
classifier and trained using mid-network activations extracted from the imple-
mentation layer. After the base model training finished, a custom layer was
added to the base model to write the mid-network activations and correct labels
to a binary file. Multiple layers were tested for each base model and dataset so
activations from each specific layer were collected and stored for training. The
layers were chosen to be roughly 40% to 60% of the overall network such that
some features have been extracted for a successful classification, but enough
layers remain to improve the runtime.

This model was trained on all 50,000 trainset inputs and used a 90%−5%−
5% train, development, and testset split, respectively. The network used two
fully connected layers, sizes 2,048 and 1,024, and each layer used a dropout of
70% and batch normalization [21, 20, 8, 12]. The second layer outputs ten or
100 classes depending on which dataset was being used [11]. For the input, this
architecture was used for all base models, so the feature map sizes will change

66

Figure 2: Checkpoint classifier implementation of Mid-network classification model
into the VGG-16 base architecture [13]. For the functions, the activation function
was Rectified linear unit (ReLU); Adam optimizer with a weight decay of 4 ∗ 10−5;
the loss function was Cross Entropy Loss [15, 1, 9]. Using the Adam optimizer helped
the model converge faster than traditional stochastic gradient descent [17]. The final
output layer did not use a softmax function because the unrestricted activation values
were used to find the threshold value [16].

accordingly. Thus, average pooling was used to downsize the feature maps and
choose a pooling size to produce about 3,000 to 4,000 values after flattening the
feature maps. Using about 3,000 to 4,000 input values was enough information
to classify the inputs but still retain a fairly small overall network. Although,
there were one or two cases that used 4,608 as the input size because due to the
number of feature maps, ∼4,600 was the closest to the desired range. Although
marginally better classification could be achieved with individual optimization
for each base model and dataset combination, this architecture performed well
and we decided to keep it constant for more consistent results.

Parameter Search— A maximum value threshold is used to determine if the
mid-network classification will be kept or not. The mid-network classification
model will attempt to classify every image, but only activations above the max
threshold will be classified early. In addition to the max threshold, the number
of inputs let in and processed early was also optimized as a threshold, this
percentage is the let-in threshold. The best max value threshold is found for
each let-in threshold for the given layer and base model. At a given let-in

67

threshold, the “best" max value was found by iterating through values, at a
specified step, and finding the percentage of images above the max threshold
and the percentage correct and above the max threshold. Those values were
divided to find the relative accuracy of inputs above the let-in threshold.

Although, for a max threshold to be optimized for each let-in threshold,
the percentage of images above the max threshold is constrained between the
let-in threshold and the let-in threshold plus 10%. Thus, as less images are let
in, the mid-network classification model can be more selective so relative accu-
racy increases. The network chooses the highest activations, and only classifies
images it is the most confident about. Conversely, as more images are let in,
the network becomes less confident and the relative accuracy decreases. This is
a helpful property because the let-in threshold will converge to letting in fewer
images, thus optimizing down to the let-in threshold for each constrained range.

Timed Testing — For the final results, the base and custom models were
tested against each other to observe the accuracy and runtime changes. The
custom layer added includes the mid-network classification network and max
value threshold to determine if the given image will be classified early. The
models were tested using the CIFAR10/100 testset and ran alternating sets of
epochs to ensure the computer switches tasks. A batch size of one was used for
all testing to simulate real-world scenarios. Also, two warm up epochs of each
model are run before testing to warm-up the GPU and system. The data was
collected using two sets of five epochs, alternating between each set. Some of
the smaller models were tested with three sets of five epochs because the faster
runtimes were less consistent.

Implementation — At the specified layer, the image tensor is first average
pooled down to the desired image size, passed through the classification model,
and the max activation is checked against the max value threshold. The custom
layer will return the input image tensor, the output of the classification model,
and a boolean value. If the max activation is higher than the threshold, the
boolean value will toggle to true. In the forward function of the model, the
boolean is checked and if true, the model will return the output. If not, the
input image tensor is unchanged and is passed into the next layer like usual.

4 Results and Discussion

In this section, the runtime and accuracy changes will be shown from all models
to display the validity of the proposed method. Multiple layers were tested for
each model on both datasets, ranging from various points in the networks to
find the best position for a classification checkpoint. Sections of this data will

68

be presented and an online appendix of all layers and models is available by
request. The accuracy changes were measured by subtracting from the base
model accuracy to observe difference and runtime changes were measured by
dividing the base model and custom model time to observe percent change.

CIFAR10/100 results, shown in Table 2 below, for a single layer in AlexNet,
VGG-16, and ResNet50 [11, 19, 6]. The progression of runtime and accuracy
changes can be observed for a series of let-in thresholds. Looking at AlexNet,
the accuracy drops off as more images are let in on CIFAR10, but the accuracy
is very stable on CIFAR100 with slight accuracy improvements. The runtime
did not improve very much because it is a very small model, it takes more than
80% of images to be classified early to provide a benefit. Although, with only
five convolutional layers, the mid-network classification performed well with
limited accuracy degradation on both datasets.

Table 2: Runtime and accuracy changes with AlexNet, VGG-16, and ResNet50 on
both datasets on select layers. For accuracy changes, a positive value is an increase
in overall accuracy, whereas a negative value is a decrease.

AlexNet Layer 3 VGG-1 Layer 6 ResNet50 Layer 18
Dataset Let-In

Thres.
Accuracy
Change

Runtime
Change

Let-In
Thres.

Accuracy
Change

Runtime
Change

Let-In
Thres.

Accuracy
Change

Runtime
Change

CIFAR10 0.600 0.480 -4.19% 0.200 -0.180 -0.60% 0.102 -0.020 -0.36%

0.700 0.310 -0.91% 0.300 -0.580 3.46% 0.201 -0.190 5.54%
0.800 0.190 1.70% 0.400 -1.010 6.90% 0.300 -0.590 10.66%
0.900 -0.060 4.63% 0.502 -1.710 11.16% 0.400 -1.010 15.80%
1.000 -1.080 7.84% 0.601 -2.800 15.36% 0.501 -1.760 20.68%

CIFAR100 0.600 0.880 -6.75% 0.200 -1.610 -1.04% 0.102 -1.070 -0.71%

0.700 1.040 -3.56% 0.300 -2.890 2.76% 0.200 -2.830 4.72%
0.800 1.220 -0.32% 0.400 -4.520 6.60% 0.300 -5.110 10.22%
0.901 0.920 3.50% 0.500 -6.640 10.88% 0.401 -7.680 15.23%
1.000 0.240 7.60% 0.600 -9.110 15.54% 0.501 -10.81 20.74%

Comparatively, VGG-16 and ResNet50 are larger networks, with thirteen
and 49 convolutional layers respectively. Thus, there is a greater potential
for runtime improvements, with both models needing only 20–30% of images
to observe runtime gains. A general trend can be seen, as more images are
classified early, the overall accuracy decreases. This is expected because the
output classifier is larger and more features have been extracted after more
convolutional layers.

With VGG-16, the runtime has much larger improvements but the accuracy
degrades much faster compared to AlexNet. The accuracy degradation is very
steep in CIFAR100, with almost 10% accuracy loss with only 60% classified
early. Although, larger runtime improvements can also be observed; VGG-16
achieves 15% faster results compared to the base model. Overall, VGG-16 did
not perform well due to the large accuracy degradation, but there are large

69

potential runtime improvements.
Similar to VGG-16, ResNet50 displayed very promising runtime improve-

ments with over 20% faster on both datasets with only 50% classified early.
Although, the classification was not very accurate and produced significant
amounts of accuracy degradation. On the CIFAR10 dataset the degradation
was substantially less, but became very high on CIFAR100. For VGG-16 and
ResNet50, due to graphics card limitations, small batch sizes were used: 64
& 100, respectively. Thus, base models did not train very accurately and
negatively impacted the mid-network classification performance as a result.
Nevertheless, both still demonstrate potentially large runtime improvements
of a mid-network classifier.

Table 3: Runtime and accuracy changes with AlexNet, VGG-16, and ResNet50 on
both datasets on select layers. For accuracy changes, a positive value is an increase
in overall accuracy, whereas a negative value is a decrease.

ResNet34 CIFAR100 Results Per Layer
Layer 14 Layer 20 Layer 26

Let-In
Thres.

Accuracy
Change

Runtime
Change

Let-In
Thres.

Accuracy
Change

Runtime
Change

Let-In
Thres.

Accuracy
Change

Runtime
Change

0.000 0.000 -7.76% 0.000 0.000 -7.12% 0.000 0.000 -8.99%
0.136 0.070 -3.87% 0.135 -0.040 -4.02% 0.102 -0.010 -6.27%
0.218 0.180 -1.02% 0.203 -0.100 -2.42% 0.255 0.030 -6.00%
0.301 0.160 2.38% 0.303 -0.060 -1.22% 0.348 0.050 -4.49%
0.416 0.170 5.783% 0.408 0.000 0.059% 0.415 0.020 -3.94%
0.501 0.300 7.21% 0.505 -0.060 2.43% 0.514 0.020 -2.00%
0.604 0.430 11.46% 0.601 -0.070 3.57% 0.612 0.060 -2.18%
0.701 0.480 14.75% 0.701 -0.130 3.79% 0.701 0.010 -0.09%
0.801 0.740 18.83% 0.800 -0.080 7.44% 0.801 0.160 0.02%
0.901 0.640 24.33% 0.900 -0.070 9.54% 0.901 0.180 1.93%
1.000 -0.680 36.52% 1.000 -0.380 21.60% 1.000 -0.290 10.43%

With 33 convolutional layers, ResNet34 provides a deep enough network to
accurately train and provide sufficient depth to improve runtime [6]. The mid-
network classification was implemented after the fourteenth, twentieth, and
26th convolutional layers. Table 3 above shows the full results of each layer
tested at each ∼10% let-in threshold interval. The sequence of the runtimes can
be seen, with each layer requiring more images to overcome the classification
cost. Moreover, each layer has progressively faster runtimes as the secondary
clarifier is implemented earlier in the network.

Starting from the right, layer 26 exhibited adequate classification with no
accuracy loss. Although, it was too far into the network to produce major
runtime improvements, needing about 80% of early classification to offset the
cost of the secondary classifier. Layer 20 addressed these issues with negligible

70

accuracy loss while providing much larger runtime improvements. With a let-
in threshold of 90%, layer 20 had a 0.07% loss of accuracy and a 9.5% faster
runtime. Lastly, layer 14 was still able to perform an excellent classification
while greatly increasing the runtime. In addition, the accuracy did not degrade
until the let-in threshold was 100%; with all images being classified early, the
network is 36% faster and 0.68% lower accuracy.

Let In Percentage

Ru
nt

im
e

C
ha

ng
e

(P
er

ce
nt

ag
e)

A
cc

ur
ac

y
C

ha
ng

e

-10.000

0.000

10.000

20.000

30.000

40.000

50.000

60.000

-10.000

0.000

10.000

20.000

30.000

40.000

50.000

60.000

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

Block 4a Runtime

Block 4c Runtime

Block 4e Runtime

Block 4a Accuracy

Block 4c Accuracy

Block 4e Accuracy

InceptionV1 CIFAR100 Results

Figure 3: InceptionV1 results on CIFAR100 dataset after the 4a, 4c, and 4e inception
blocks. The InceptionV1 network utilized blocks with multiple convolutions known
as an inception block. The base architecture has a total of nine inception blocks;
reference paper for architecture diagram [22].

Similar to ResNet34, the InceptionV1 network performed exceptionally well
providing large runtime improvements and very small accuracy degradation
[22]. Three separate points were tested, after the 4a inception block, 4c incep-
tion block, and 4e inception block. Figure 3 above presents the results for each
layer. For the runtime, the results show a progressively greater improvement as
the images are classified at earlier points in the network. Each block produces a
faster runtime than the later blocks because there are more convolutions to be
skipped. In addition, the runtime decreases as more images are let in because
the average number of convolutions is reduced; all lines trend upwards as the
let-in threshold increases. As seen on the other models, the cost of adding a
mid-network classification to a model is about 5% of the runtime and about
ten to 40% of images need to be classified early to overcome this cost.

For the accuracy, the trends are also as expected in which each block’s accu-

71

racy degrades as more images are let in and the later blocks degrade less than
the earlier blocks. InceptionV1 performed very well overall with a maximum
of 15% to 55% faster runtimes and less than 4% accuracy degradation at the
highest let-in threshold. Like AlexNet and ResNet34, the mid-network classi-
fication was very accurate and the accuracy loss remained negligible, or even
slightly positive, until very high let-in thresholds. At around 0.5% of accuracy
loss, block 4a’s runtime improved by 25%, block 4c’s by 15%, and block 4e’s
by 6%, at 70%, 80%, and 90% let-in threshold respectively.

5 Conclusion

We have investigated the use of an independent, secondary classifier imple-
mented into published architectures for faster classification on CIFAR10/100
datasets. These findings indicate that mid-network classification can give a
marginal increase in accuracy, while at the same time, significantly reducing
the overall runtime of the model. The specific implementation in the network
does need to be surveyed to produce the best results, providing enough infor-
mation for the classification and enough layers to reduce convolutions. Further
investigation should be conducted to assess which types of images or classes
benefit from the secondary classifier and if there is any pattern or predictability
to the classification improvement. Although these concepts were not verified
using the expansive ImageNet dataset, there is sufficient evidence to suggest
similar results will be yielded. Therefore, additional experiments should be
carried out to investigate the utilization of multiple independent classifiers.

References

[1] Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU).
2019.

[2] Richard L Burden, J Douglas Faires, and Annette M Burden. Numerical
analysis, 10th. Cengage learning, 2016.

[3] Siddharth Das. CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet,
ResNet and more. . . , 11 2017. https://medium.com/analytics-
vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-
resnet-and-more-666091488df5.

[4] Jeffrey Dean, Greg S Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Quoc V Le, Mark Z Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul
Tucker, et al. Large scale distributed deep networks. In Proceedings of the

72

25th International Conference on Neural Information Processing Systems-
Volume 1, pages 1223–1231, 2012.

[5] Shiv Gehlot, Anubha Gupta, and Ritu Gupta. SDCT-AuxNetθ: DCT
augmented stain deconvolutional CNN with auxiliary classifier for cancer
diagnosis. Medical image analysis, 61:101661, 2020.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[7] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Wei-
jun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mo-
bileNets: Efficient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[8] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International
conference on machine learning, pages 448–456. pmlr, 2015.

[9] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Op-
timization. 2017.

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of fea-
tures from tiny images. 2009.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Advances in neural
information processing systems, 25, 2012.

[12] Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for
deep learning: A taxonomy. arXiv preprint arXiv:1710.10686, 2017.

[13] Khuyen Le. An overview of VGG16 and NiN models, 3
2021. https://medium.com/mlearning-ai/an-overview-of-vgg16-
and-nin-models-96e4bf398484.

[14] Y LeCun, K Kavukcuoglu, and C Farabet. Nano-bio circuit fabrics and
systems. IEEE International Symposium on Circuits and Systems, pages
253–256, 2010.

[15] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

73

[16] Tim Pearce, Alexandra Brintrup, and Jun Zhu. Understanding softmax
confidence and uncertainty. arXiv preprint arXiv:2106.04972, 2021.

[17] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. 2017.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, et al. ImageNet large scale visual recognition challenge. Interna-
tional journal of computer vision, 115:211–252, 2015.

[19] K Simonyan and A Zisserman. Very deep convolutional networks for large-
scale image recognition. In 3rd International Conference on Learning Rep-
resentations (ICLR 2015). Computational and Biological Learning Soci-
ety, 2015.

[20] Nitish Srivastava. Improving neural networks with dropout. University of
Toronto, 182(566):7, 2013.

[21] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–
1958, 2014.

[22] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.

[23] Matthew D Zeiler and Rob Fergus. Visualizing and understanding con-
volutional networks. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
I 13, pages 818–833. Springer, 2014.

74

UAV Path Planning using Aerially
Obtained Point Clouds∗

Alec Pugh1

1Department of Computer Science
University of North Carolina at Chapel Hill

Chapel Hill, NC 27599
alecjp@unc.edu

Luke Bower2
2Department of Computer Science

The University of Alabama in Huntsville
Huntsville, AL 35899

lcb0035@uah.edu

Saad Biaz3, Richard Chapman3

3Department of Computer Science
Auburn University
Auburn, AL 36849

{biazsaa,chapmro}@auburn.edu

Abstract

With the growing use of unmanned aerial vehicles (UAVs) for com-
mercial and military operations, path efficiency remains an utmost con-
cern for battery and time preservation. This paper presents a method
for three-dimensional (3D) path planning using point clouds obtained
from the USGS 3DEP (United States Geological Survey 3D El-
evation Program) dataset via OpenTopography. The path itself is
obtained using the A* algorithm, with modifications implemented to ac-
count for path smoothing, UAV size, and energy consumption. We also
introduce a collision avoidance method using the precomputed data to
account for unforeseen obstacles not rendered within the point cloud.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

75

The method presented is designed specifically for an autonomous flight
from point clouds obtained via LiDAR (Light Detection and Rang-
ing) scans from aircraft, where cavities may be present underneath the
surface layer. We use simulations to show the validity of this method.

1 Introduction

The importance of research towards efficient and reliable path finding algo-
rithms has steadily increased with the growing popularity and use of au-
tonomous UAVs. There are many benefits around the development and use
of UAV path finding, and each process developed mainly strives to satisfy each
of the following requirements: time preservation, path optimality, and danger
avoidance. Technological developments have allowed humans to power cars
with batteries for hundreds of miles at a time. While such batteries are vi-
able for larger vehicles, versatile UAVs are compact and cannot carry large
batteries or payloads due to their size and thrust output. As such, a typical
commercially viable UAV has an average flight time of approximately 15-25
minutes [6]. With flight times this short, being able to accomplish more during
a mission without recharging is critical to success.

The USGS 3D Elevation Program aims to provide topographical data for
the entire United States. Beginning production in 2016, 84% of the nation has
topographical data that has been obtained from aircraft LiDAR scans. USGS
plans to have the entire US mapped by the end of 2023. These LiDAR scans are
displayed in the form of a point cloud, which is a set of 3D points (containing
X, Y, and Z coordinates, among other types of data) in space relating to their
physical GPS location. The data available through USGS 3DEP can provide
accurate path-finding for UAV operations, especially for locations that may be
inaccessible to humans or ordinary UAV flight operation due to dangerous con-
ditions, Federal Aviation Administration (FAA) regulations, or various other
impractical reasons. Furthermore, if this information is confined to a specific
operating environment and is obtained prior to a mission launch, optimal paths
can be found with less computation.

To this end, the main objective of this paper is to provide a method of path
finding using the LiDAR point cloud data from USGS 3DEP. In addition, a
secondary objective is to present a method of collision avoidance from the pre-
computed data, and to automate the dataset retrieval, creating an all-inclusive
program.

76

2 Problem Statement and Motivation

There are many advantages that UAVs hold over manned aerial vehicles, how-
ever, there are also many limitations with current technology. One main dis-
advantage comes from the limited battery life that UAVs possess, so research
into battery improvements for UAVs has been vast. While various methods for
increasing battery life have been tested, such as unlimited endurance (laser-
beam in-flight recharging, tethering, and swapping), along with alternative
fuel sources (such as hydrogen, methanol, and hydrocarbons) [1], few of these
methods or alternatives have become common in commercial and consumer
UAVs due to the limited weight tolerance. Therefore, off-board optimization
techniques can be viewed as a solution to help optimize the use of the limited
battery life.

Figure 1: Example of point cloud with cavities present. [4]

The primary objective of our research is to create a reliable and efficient
3D path that works seamlessly with 3DEP scans. Due to these scans being ob-
tained from aircraft, only the surface points of an environment may be scanned
accurately. Thus, features that exist directly perpendicular to a surface (such
as building faces underneath a roof, or steep cliffs) may be represented as empty
space in a 3DEP scan, as shown in Figure 1. The process presented accounts
for this problem. Our research simulates a multi-rotor UAV for its quick move-
ment and directional freedom. Due to the path being generated off board from
the UAV, on-board equipment can be limited to a 2D LiDAR sensor, GPS, and
transmitter as shown in our simulations.

77

3 Approach

3.1 Matrix Generation

To generate the 3D matrix M that is used for path planning, we first must
import the .las file that contains the desired point cloud into laspy, a Python
library. Additionally, we use laspy commands to extract the maximum and
minimum point cloud points from the data.

Figure 2: Two cross-sectional 2D grids displaying different heights generated
using Algorithm 1. [2]

The difference between the maximum and minimum Z point (Zmax and
Zmin) defines the depth of the matrix. Similarly, the difference between the
maximum and minimum Y (Ymax and Ymin) and X points (Xmax and Xmin)
define the rows and columns, respectively. In this 2D grid, the X and Y coor-
dinates represent the relative point cloud location, and the value within that
cell represents the height of that section in meters (1 cubic meter per cell by
default). This is done using code modified from [7], and contains an interpola-
tion gradient to account for data loss from the point cloud data. To convert the
2D grid into a 3D occupancy grid, we loop using height values that start from
the minimum Z point to the maximum Z point in the point cloud, creating a
temporary 2D grid and assigning a value of 1 or 0 depending on whether or
not the cell is an obstacle or not, respectively. This is determined by subtract-
ing the current height value from the height found in the elevation grid at the
specified pixel. A threshold value is used to create a vertical buffer for object
classification within the matrix. The algorithm is displayed as Algorithm 1.

A horizontal buffer is created using an implementation of the Breadth First
Search (BFS) algorithm. Obstacle groupings are identified and expanded out-
wards by a predefined amount of meters in an effort to prevent potential colli-
sions and account for the UAV size.

3.2 Path Planning and Conversions

To develop the path planning portion of this project, we needed something
easily modifiable that would work smoothly with the matrix generation tech-
nique discussed in the previous section. For these reasons, the A* path-finding
algorithm was selected and used as a base for further modification. To account

78

Figure 3: Comparison of non-smoothed and smoothed path. [4]

for all directions in a cubic grid, our A* will evaluate 26 neighbors at every
current node. This accounts for the four cardinal directions and diagonals on
the same Z plane, as well as the same for one unit above and below, and
straight up/straight down. The path obtained from A* consists of 3D points
in space in relation to the matrix, with the origin at (0, 0, 0). This path cannot
be directly related to the point cloud, as the coordinates of the point cloud
are encoded using some reference system (such as WGS84 Web Mercator), so
it must first be transformed. This is done by using the maximum/minimum
point values from the .las file. With the best path now encoded in WGS84
to coincide the point cloud data, we then apply path smoothing using Bézier
curves, which will produce smooth paths through n control points. By using
an n-order Bézier curve, we create a smoothed line using each point from the
best path as a control point. This provides the most accurate representation
of the non-smoothed path, which is shown in Figure 3. We also use this curve
to produce a more realistic flight path of a UAV within the simulation, and
this in turn shortens the overall distance of the path. However, with the Bézier
path smoothing applied, the number of points within the path increases dra-

79

matically, the higher amount of points results in a more accurate path to be
generated due to greater amount of interpolation between each point. Because
the focus of this project is for real-life operation, additional conversions must
be made to the best path coordinates. Namely, the previously transformed
path must be converted to latitude and longitude so that a UAV may receive
the path using an onboard GPS. To do this, the Python library utm is used.
The conversion function must be supplied with the UTM zone of the physical
location containing the point cloud scan and whether it exists in the southern
or northern hemisphere both gathered from the evaluation of the starting node.

The final path is a 2D list that contains the latitude and longitude coor-
dinates, and the unconverted height (Z value) for each point in the smoothed
path. This path is now able to be sent to a UAV, and the accuracy of the
conversions from point cloud to real-world GPS waypoints.

Figure 4: Comparison of path before and after energy model. [3]

Controlling the energy consumption of UAVs is also an important part
of battery and resource management, and a primitive model for this is in-
cluded within our path planning algorithm based off the research done in [5].
The weight of each node is now calculated with an energy consumption factor
e(n), which weights neighboring nodes biased on their direction as seen in the
formula: F(n) = g(n) + e(n) + h(n). Table 6 shows the values used for this
model. When including this model, the generated path does not make un-
needed upwards movement and will only move upwards if absolutely necessary
to reach the goal node, as shown in Figure 4.

80

3.3 Collision Avoidance

The collision avoidance procedure is currently simulated by measuring the dis-
tance between the UAV and an obstacle using euclidean distance. We assume
a working sensor is onboard the UAV. After the best path has been found using
the methodology discussed in Section 3.2, an avoidance trajectory is calculated
for each way point in the best path. This is done by evaluating the 3D obstacle
matrix in a set of predefined directions by continuously extending a line until
an obstacle is met, or a distance threshold is reached. These directions are all
oriented the same regardless of UAV heading except for horizontal movement,
which is based on the heading H of the UAV (obtained from the best path it
is following) and calculated as follows: H = arctan yi+1−yi

xi+1−xi
. This calculation

is done for each waypoint, and the lines that meet the distance threshold are
inserted into a priority queue which sorts based on the euclidean distance be-
tween the avoidance trajectory and the ending (goal) node. The line with the
shortest distance to the end is selected as it will be at the front of the priority
queue. The idea behind pre-computing the avoidance trajectory is to reduce
the computation time spent on maneuvering during the event of collision avoid-
ance and allow more time to recalculate the path. If an obstacle is met, the
general flow of operation is: move UAV to precomputed avoidance trajectory,
then recalculate A* from that avoidance trajectory. Algorithm 2 shows how
the trajectory calculation is done.

After the avoidance trajectories have been generated, they are run through
the same transformations and conversions discussed in Section 3.2. Therefore,
the avoidance trajectory and the new path can be sent to the drone with no

81

issues. To combat being stuck with limited movements, we use a hash table that
stores an avoidance direction for each obstacle encountered. If a direction has
already been selected and used, and the obstacle still needs to be avoided, the
same direction will be used again. If there hasn’t been a successful avoidance
after x tries, the key is deleted and a new direction is picked and tried.

3.4 Automation using API

A final goal of this research project is to create a seamless process from the
input of GPS coordinates to the UAV flying the generated path.

Figure 5: Example of collision avoidance for two obstacle types. [3]

Thus, we needed to utilize OpenTopography’s API to allow for remote file
downloading. This API allows users to input a search polygon (in the form of
minimum and maximum longitude/latitude coordinates) and returns a list of
datasets and other information in .json format that contain points in the search
area. This .json file also holds critical information regarding each dataset that
is extracted from the used dataset. However, we found that not every dataset
returned by the API contained points within the search area, thus additional
code was used to prune returned datasets from the parsed .json until only
the working ones remained. Using Selenium, we then automated the process
of logging into and downloading a .las file obtained from the API and using
that file for the rest of the program remotely. The testing area used was
New York, (202,476.83 square feet, coordinates: 40.70502297, -74.01328363 to
40.70357673, -74.01165960) with a maximum height of 156 m. The starting
point and ending point used were the top left corner and the bottom right
corner and started from the lowest non-obstructed height and ended 10 m above

82

the starting point. The path was generated by our adapted A* algorithm with
a buffer size of 3. Each path was generated using the following settings: 26
nodes (3D movement including diagonals in the Z directions) or 10 nodes of
freedom (3D movement without diagonals in the Z directions). In addition, we
tested the effects of path smoothing and using euclidean distance for the g(n)
cost as well as the h(n) cost (called sqrt in the tables).

4 Testing

4.1 Simulation

Figure 6: Energy weights used in A* algorithm.

We run these tests with and without the energy function to compare the
difference. Path length was measured in units using euclidean distance between
each waypoint. All paths generated were possible to fly without collisions.

4.1.1 Energy Function Added

For our energy consumption model testing, we compared the distance of each
path, the computational time for the path generation, and the change of ele-
vation in that path for 26-node or 10-node paths with various levels of path
smoothing added. The energy model derived from [5] was also included in the
path planning algorithm for these tests. Our modifications to the weight of the
nodes based on their respective direction is as shown in Table 6. The energy
function was implemented using a hash table where the direction is the key,
and the weight is the value. Each neighboring node is associated with a direc-
tion and the corresponding energy weight value is added when calculating the
F (n) cost of the node. This addition was created to try and limit the amount
of strenuous maneuvers the UAV preforms in the flight and optimise battery
life.

83

4.1.2 Collision Avoidance

To test collision avoidance, we performed 20 tests each on various point clouds
obtained from USGS 3DEP scans in urban environments (cities, downtown
areas, etc.). Each simulation contained three different types of obstacles (static
sphere, dynamic sphere, and vertical); the purpose of including all at once
is to account for potential worst-case scenarios. The obstacle positions were
randomly placed along the generated path for each test.

5 Results

After our testing, a few observations can be made about or generated paths.
With and without the energy model the 26 node paths outperformed the 10
nodes in all testing in distance at the expense of computation time. The path
smoothing did work to shorten the path and avoid obstacles. The energy func-
tion eliminated the need for added square root function and generated slightly
longer paths than the path without it due to the lack of height change making
them less strenuous on the UAV. Our proposed collision detection algorithm
successfully avoided all obstacles on 50% to 75% of the tests performed, thus
the average of success from all tests is 59%. The higher success rates were at-
tributed to larger point clouds with more flat terrain and less building density.
Avoidance failures were most commonly the result of an avoidance needing
to go out of bounds, no valid avoidance trajectory generated at a necessary
waypoint, and sub-optimal direction selection between two open choices.

6 Conclusion

With the growing topographical data available through programs like USGS
3DEP, path planning for UAVs is more accessible than ever before. We have
developed and shown the validity of our process for 3D path planning us-
ing aerially obtained point clouds from USGS 3DEP databases with various
simulations. In addition, we have added necessary modifications to account
for UAV size, added path smoothing, and reduced energy consumption. We
have also shown a primitive collision detection algorithm that uses the point
cloud data to pre-compute avoidance trajectories along the flight path to be
used if needed. The process for obtaining point clouds for a particular area
has been fully automated with the use of Selenium and the OpenTopography
API. Through testing different settings of our path generation process, we have
found the settings (path smoothing, sqrt function, # of nodes checked) that
will most likely lead to the shortest path being generated with and without
the use of our energy function. Finally, we have shown the precision of our

84

method in converting the path into latitude and longitude to be used with a
GPS-equipped UAV via ARDU Pilot.

While our process works well in simulation, real-life testing and the con-
tinuation of testing different factors to improve optimality should be tested.
Further work to improve the collision detection algorithm must be done to
increase avoidance success rates. The addition of changing some values like
grid resolution should also be implemented in the future. For data tables and
a more comprehensive literary analysis, refer to our full technical paper at:
https://www.eng.auburn.edu/files/acad_depts/csse/csse_technical_reports/
csse22-02.pdf

References

[1] A critical review on unmanned aerial vehicles power supply and energy man-
agement: Solutions, strategies, and prospects. Applied Energy, 255:113823,
2019.

[2] USGS 3DEP (2021). Ga central 2 2018. u.s. geological survey 3d elevation
program, distributed by opentopography.

[3] USGS 3DEP (2021). Wa kingco 1 2021. u.s. geological survey 3d elevation
program, distributed by opentopography.

[4] USGS 3DEP. Ny newyorkcity. u.s. geological survey 3d elevation program,
distributed by opentopography.

[5] Hasini Viranga Abeywickrama, Beeshanga Abewardana Jayawickrama,
Ying He, and Eryk Dutkiewicz. Comprehensive energy consumption model
for unmanned aerial vehicles, based on empirical studies of battery perfor-
mance. IEEE Access, 6:58383–58394, 2018.

[6] Boris Galkin, Jacek Kibilda, and Luiz A. DaSilva. Uavs as mobile infras-
tructure: Addressing battery lifetime. IEEE Communications Magazine,
57(6):132–137, 2019.

[7] Joel Lawhead. Learning Geospatial Analysis with Python. Packt Publishing,
Birmingham, United Kingdom, 2019.

85

Improving Student Motivation Through
an Alternative Grading System∗

Ryan Stephen Mattfeld
Computer Science Department

Elon University
Elon, NC 27244
rmattfeld@elon.edu

Abstract
The traditional grading system has significant shortcomings in ef-

fectiveness and reliability. In addition, the traditional grading system
encourages extrinsic motivation in students rather than intrinsic moti-
vation. This reliance on external goals and factors for motivation tends
to increase students’ anxiety and inclination to cheat. This problem
is a growing concern as students gain access to new tools which make
cheating quicker and easier. Several ideas for alternatives to the tradi-
tional grading system include contract grading, mastery grading, spec-
ifications grading, and ungrading. In this study, an alternative grading
system combining many of these concepts was applied to three sections
of an upper level computer science elective course. To evaluate the ef-
fectiveness of this system, questions from the Motivated Strategies for
Learning Questionnaire (MSLQ) were asked in a pre- and post- term
survey. Statistically significant improvements were found in Self-Efficacy
and Learning Performance, Task Value, and Control of Learning Beliefs.
These findings support the idea that alternative grading systems may
be an effective course adjustment to improve student motivation and
learning in an upper level computer science course.

1 Introduction and Related Work

Since its inception, the traditional numeric grading system has received crit-
icisms regarding its effectiveness and reliability [2]. Grading has been a hall-

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

86

mark of the education system and is widely seen as a standard to indicate how
well a student has learned the material covered in the course. However, the
traditional grading system’s ability to accurately provide this information has
been debated [11]. The reliability of determining grades, both among different
instructors as well as repeated grading by one instructor, have been evaluated
[13]. These studies have shown inconsistent results among the reliability of
grades, the techniques to measure reliability, or the ways to improve grading
reliability.

In addition to concerns with the effectiveness, reliability, accuracy, and ne-
cessity of grading, intrinsic motivation, or the desire to learn for its own sake,
has been shown to be adversely affected by our grading systems [3]. Con-
versely, an increase in extrinsic motivation, or focus on external rewards and
punishments, has been seen in students as a result of grading, which, in turn,
increases student anxiety and motivation to cheat [6]. It is possible that this
emphasis on extrinsic motivation and its resulting increase in cheating inclina-
tion may become even more problematic with the development of new tools like
ChatGPT. Thus, encouraging use of grading systems which increase intrinsic
motivation and decrease extrinsic motivation may be essential in creating an
environment that fosters learning.

Traditional grading systems appear to produce a negative effect on equity,
causing particular harm on traditionally underrepresented groups. Instead,
current assessments reflect factors such as language proficiency, cultural back-
ground, or skills in test taking [11]. Changes in traditional grading practices,
like using blind grading and using grading rubrics may minimize some of the in-
equitable effects of grading. In addition, there are a number of other alternative
grading strategies which may reduce inequity and provide equal opportunity
for all students [4].

Some alternative grading systems have already been developed. Contract
grading is a system that allows students to make choices about what, how, and
when to learn [5]. Specifications grading is a system which de-emphasizes nu-
meric grades by giving credit to a student only for work when it fully satisfies
a given set of requirements [7]. This results in grades of satisfactory or unsat-
isfactory, and it is typically paired with the ability to resubmit assignments.
There are a number of other ideas for de-emphasizing grades or changing grad-
ing practices to de-emphasize grades [1, 4]. Experiences, details, and feedback
on the results of implementing these systems in a variety of courses is valuable
in developing systems which can be widely adopted.

Several recent studies have examined the impact of alternative grading sys-
tems on grades [10] and student motivation [12]. This work evaluates how a
modified version of ideas from specifications grading and Grading for Equity
impacts student motivation in three sections of an upper level computer science

87

elective. The contributions of this research are:

1. To describe a concrete implementation of an alternative grading system
in three sections of an upper level undergraduate computer science course

2. To report results from changes in student attitude and motivation as
measured by surveys given at the start and end of the term

3. To provide student and instructor feedback with respect to the alternative
grading system implemented

2 Alternative Grading System

2.1 Grading System Description

The grading system used combines concepts from specifications grading [7]
and grading for equity [4] to achieve goals of allowing for re-submission of
assignments, retaking of examinations, and reducing numeric grades. Ideally,
all numeric grades would be eliminated, instead replaced with two categories:
complete/incomplete. However, some of the activities in the course include
automated assessment from the online textbook and from quizzes in the course
management software which report results as numeric values. So, numerical
thresholds for complete/incomplete tags were determined and included in the
evaluation system provided to the students as seen in Table 1.

Table 1: Mapping of assignment goals to letter grade targets

Assignment (qty) Goal A B C
Readings (15) Complete (≥ 85%) All but 2 All but 3 All but 4
Labs (23) Complete (≥ 85%) All but 2 All but 4 All but 6
Regrades Use no more than 5 6 7
Exams (4) Complete (≥ 85%) All All but 1 All but 2
Exam Retakes Use no more than 2 3 4
Final Exam Score at least ≥ 90% ≥ 80% ≥ 70%

For numeric grades provided by automated grading tools, a threshold of
85% was selected as an indicator that a student had a reasonable understand-
ing of the assessed material and were classified as Complete. Manually graded
assignments did not include a numeric grade and instead were identified as com-
plete or incomplete and included detailed feedback for student improvement.
Readings were small out of class assignments given in an on-line textbook.
Labs were larger assignments which were started in class, and if necessary,
completed by students outside of class. A typical class session included 45

88

minutes (out of 100 total minutes) for work on labs. Exams were given in class
at the end of each major unit of content (Database basics, Complex queries,
Database design and configuration, and Database programming in Python).
The final exam was comprehensive and included content from each of the four
units completed throughout the course.

2.1.1 Regrade requests

Philosophically, it would be ideal to allow unlimited regrades; however, there
were concerns about the number and quality of re-submissions that may result
from this practice. With a goal of reducing this burden, categories were created
to link the number of regrades used to a grade letter category. Students were
encouraged to redo any work that did not meet the threshold for complete,
making use of the feedback provided. The guidelines for the number of regrade
requests were included in Table 1. For example, students could submit a re-
grade request for up to 5 labs and/or reading activities while still meeting the
A level goal for the regrade category. In addition to reading and lab regrade
requests, exams could be retaken with versions covering the same content but
with different questions and/or datasets. Exam retakes could be requested and
could be taken within a set window of time which doubled as office hours each
week.

2.2 Survey Development

Selections from the Motivated Strategies for Learning Questionnaire (MSLQ)
were included in a survey provided at the beginning and end of the term [8].
The MSLQ has been extensively used in higher education as a tool to measure
the components of reflective learning. In addition, usage of this questionnaire
has shown strong internal consistency and reliability [9]. The MSLQ uses a
7-point Likert scale to measure a variety of categories of student motivation
and learning. It is designed to be modular so that specific topics of interest
can be evaluated individually. In this study, six scales which focus on student
motivation (with 31 total questions) were selected for the survey:

• Control of Learning Beliefs (4 questions): how much does a student feel
that their own efforts will enable them to learn the course material?

• Extrinsic Goal Orientation (4 questions): to what extent is a student
motivated by external factors such as grades or competition?

• Intrinsic Goal Orientation (4 questions): to what extent is a student
motivated by course tsks themselves as opposed to external factors?

• Self-efficacy for Learning and Performance (8 questions): how confident is
a student in their ability to learn the course material and to be successful
and perform well in the course?

89

• Task Value (6 questions): how valuable does a student find the subject
matter?

• Test Anxiety (5 questions): how much do negative thoughts and emotions
affect a student while taking a test?

In addition to the MSLQ questions, students were asked several questions
specifically about the new grading system including an open ended response
question soliciting their opinions.

3 Results

This study examined three different sections of Database Systems, an upper-
level Computer Science elective course during the 2022-2023 academic year
at a liberal arts institution in the southeastern United States. These three
sections included a total of 67 students. Students included primarily those in
their 3rd and 4th years with a mix of Computer Science majors, Computer
Science minors, and Data Science minors. Classes met for 100 minutes twice
per week, and class sessions employed an active learning approach including
short lectures, interactive demonstrations, and daily hands-on time for working
on labs and other course activities. Pre- and post- term surveys including the
questions described in Subsection 2.2 were provided in the first and last weeks
of the term. The data from the 57 students who completed both surveys were
retained for this analysis.

3.1 Changes in Student Motivation

Changes in student motivation were assessed by examining results in each
of the 6 categories of student motivation described in Section 2.2. Figure 1
shows the average change among all students in each category. Three of these
differences showed statistically significant changes using a dependent t-test for
paired samples: Self-efficacy for Learning and Performance (p<0.001), Task
Value (p=0.005), and Control of Learning Beliefs (p=0.027).

The largest change in student responses is in the category of MSLQ ques-
tions assessing self-efficacy for learning and performance. This category as-
sesses student expectancy for success and self-efficacy. The expectancy for suc-
cess indicates higher performance expectations within the course. Self-efficacy
is a self-appraisal of one’s ability to accomplish a task and one’s confidence in
the skills to perform that task. It is possible that the improvement was driven
by providing opportunities for students to redo assignments and learn from
their initial mistakes. This may have allowed students to gain more confidence
in learning the material in the course and have a greater sense of self-confidence
through analysis and correction of mistakes.

90

MSLQ category

C
h

an
ge

 in
 m

ea
n

 s
co

re

-0.25

0.00

0.25

0.50

Test Anxiety Intrinsic Goal
Orientation

Extrinsic Goal
Orientation

Control of
Learning

Bliefs

Task Value Self-efficacy
for Learning

and
Performance

Change in mean scores for pre- and post- semester MSLQ surveys

Figure 1: Change in student motivation. A positive number indicates a higher
average score on the post-term survey as compared to the pre-term survey

The task value category identifies how interesting, how useful, or how im-
portant the course is to the student. This specific finding may be more directly
related to course material and less related to the grading system than the other
categories. However, it is possible that this was influenced by the grading sys-
tem and that positive results here are driven by the increased attention that
students gave to the material.

The Control of Learning Beliefs category seeks to assess how strongly the
student believes that their efforts to learn the material will result in positive
outcomes. It is worth noting that student comments about the course indicate
that the well-defined grade targets and the option to use regrades or retakes
of exams may have contributed to this increase. The question with the largest
increase in average response within this category was “It is my own fault if I
don’t learn the material in this course”. This, combined with student feedback
may indicate that within this alternative grading system, students felt that
they had many opportunities to demonstrate their knowledge.

The changes in the other three categories were not statistically significant.
The desired result in Extrinsic Goal Orientation would be a decrease; however,
the increase seen was small enough to not be statistically significant. Another
desire result would be to see a statistically significant increase in Intrinsic
Goal Orientation. In both cases, it is possible that the retention of numerical

91

(≥ 85%) rather than purely categorical assessment (utilized as a concession
to available course management software) could have retained too much em-
phasis on traditional grading thoughts and ideologies. In addition, throughout
the course, much more time than is typical was spent discussing the grading
system itself (due to its novelty). Having these additional discussions may have
emphasized grades to a greater degree rather than de-emphasizing them. The
mean responses evaluating Test Anxiety decreased; however, the change fell
short of being statistically significant. However, multiple students also specifi-
cally highlighted the reduction in stress due to the grading system. Here is one
such student quote: “There are a lot of options to ensure students learn and
pass at the same time while avoiding unnecessary stress.”. It is clear through
student feedback that at least some of the students felt reduced stress and
anxiety due to the retake and regrade policies.

3.2 Regrades and Exam retakes

The number of regrades and retakes utilized by students is shown in Figure 2.
Although there was significant concern before beginning the course that there
would be an overwhelming number of regrades and retakes, 48% of students
never used a single regrade or retake opportunity. Additionally, 80% of stu-
dents used 2 or fewer. In 46.9% of cases, if an exam was returned as Incomplete
with feedback, it was retaken. However, if retaken, only in 26.7% of cases were
students able to improve enough to receive a result of Complete. Although
multiple retakes were allowed for any exam, there was only 1 case where a
student opted to retake the same exam twice, and a result of Incomplete was
received for each attempt. Overall, including regrades and exam retakes ap-
peared to be effective at providing opportunities for students to demonstrate
their knowledge despite challenges faced outside of the classroom that may
cause one or many assignments to be a poor reflection of the student’s actual
ability.

4 Discussion and Conclusions

An alternative grading system combining elements of specifications grading and
ungrading was implemented in three sections of an upper level computer science
course. The grading system provides categorical feedback (Complete/Incom-
plete) on assignments with grades identified based on the number of assign-
ments meeting the threshold for Complete. Students were provided oppor-
tunities to have assignments regraded and retake exams. In order to assess
changes in student motivation, students were surveyed at the start and end of
the term using questions from the MSLQ. The survey results indicated that

92

Number of repeated attempts on all assignments

N
u

m
be

r
of

 s
tu

d
en

ts

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Repeated attempts on assignments

Figure 2: Histogram of the number of combined regrades and exam retakes
utilized by students.

Self-Efficacy for Learning and Performance, Task Value, and Control of Learn-
ing Beliefs showed statistically significant increases.

There were some limitations which may have impacted results. The course
management software was unable to entirely hide grade percentages, and soft-
ware used to autonomously grade some assignments included traditional per-
centages. Because of this, a grade threshold was included to allow conversion
between a traditional percentage grade and a result of Complete or Incom-
plete. This link to traditional grading may have re-emphasized the importance
of grades. Alternative solutions which allow this link to be removed will be
examined for future implementations of this grading system.

The number of regrades and exam retakes was lower than feared before
the term began. In all cases, they provided an opportunity for students to
learn from feedback and demonstrate greater knowledge of the course content.
However, in the case of exam retakes, there were a large number of retakes
which did not display improvement. It was noticed that students who came to
office hours to discuss their results and review areas in which they struggled
generally seemed to be more successful, though this data was not recorded. In
future implementations of this system, it will likely be a requirement that a
student meet with the instructor prior to retaking an exam in order to ensure

93

that the student has the opportunity to fully understand their feedback and
improve.

The instructor and student experiences from using this grading system was
positive. There were noticeably more conversations during office hours about
course content and reviewing material to gain a better understanding. There
were also fewer conversations about grades. Students indicated reduced anx-
iety, both verbally and through written survey responses. This decrease in
anxiety generally seemed to be tied to the option to retake or redo exams and
assignments. It seemed as though this decrease in anxiety generally led stu-
dents to be less inclined to cheat and more inclined to discuss errors in their
work with the instructor, though this is exceptionally difficult to measure in a
quantitative way.

There were, however, significant extra burdens in developing alternative
versions of exams, proctoring exam retakes, and regrading readings and labs.
To mitigate these challenges in the future, time will be spent investigating and
possibly developing methods of automating generation of varied test questions.
In addition, methods for generating labs and readings that will provide cate-
gorical rather than numeric feedback and track re-submissions will be investi-
gated. Ideally, no reference to traditional numerical grades will be included in
this grading system. Finally, there was one instance in which having a grading
category tied to minimizing regrades caused a student to avoid resubmitting
some missed material in order to maximize their grade. This situation is di-
rectly opposed to the intent for providing regrades. Future iterations should be
designed such that a student does not have to choose between improving their
grade and completing the exercises which foster learning. Despite the limita-
tions, this grading system improved the student’s and instructor’s experiences.

References

[1] Susan Debra Blum. Ungrading: Why rating students undermines learning
(and what to do instead). West Virginia University Press, Morgantown,
West Virginia, 2020.

[2] Susan M. Brookhart, Thomas R. Guskey, Alex J. Bowers, James H.
McMillan, Jeffrey K. Smith, Lisa F. Smith, Michael T. Stevens, and
Megan E. Welsh. A century of grading research: Meaning and value in
the most common educational measure. Review of Educational Research,
86(4):803–848, 2016.

[3] Ruth Butler. Enhancing and undermining intrinsic motivation: The effects
of task-involving and ego-involving evaluation of interest and performance.
British Journal of Educational Psychology, 58(1):1–14, 1988.

94

[4] Joe Feldman. Grading for equity: What it is, why it matters, and how
it can transform schools and classrooms. Corwin Press, Thousand Oaks,
California, 2018.

[5] Tammy Bunn Hiller and Amy B Hietapelto. Contract grading: Encour-
aging commitment to the learning process through voice in the evaluation
process. Journal of Management Education, 25(6):660–684, 2001.

[6] Tamera B. Murdock and Eric M. Anderman. Motivational perspectives
on student cheating: Toward an integrated model of academic dishonesty.
Educational Psychologist, 41(3):129–145, 2006.

[7] Linda B Nilson. Specifications grading: Restoring rigor, motivating stu-
dents, and saving faculty time. Stylus Publishing, LLC, Sterling, Virginia,
2015.

[8] Paul R Pintrich et al. A manual for the use of the motivated strategies
for learning questionnaire (mslq). 1991.

[9] Paul R Pintrich, David AF Smith, Teresa Garcia, and Wilbert J McK-
eachie. Reliability and predictive validity of the motivated strategies for
learning questionnaire (mslq). Educational and psychological measure-
ment, 53(3):801–813, 1993.

[10] Kevin R. Sanft, Brian Drawert, and Adam Whitley. Modified specifica-
tions grading in computer science: Preliminary assessment and experience
across five undergraduate courses. J. Comput. Sci. Coll., 36(5):34–46,
2021.

[11] Jeffrey Schinske and Kimberly Tanner. Teaching more by grading less (or
differently). CBE—Life Sciences Education, 13(2):159–166, 2014.

[12] Scott Spurlock. Improving student motivation by ungrading. In Proceed-
ings of the 54th ACM Technical Symposium on Computer Science Edu-
cation V. 1, SIGCSE 2023, page 631–637, New York, NY, USA, 2023.
Association for Computing Machinery.

[13] Jo Tisi, Gillian Whitehouse, Sarah Maughan, and Newman Burdett. A
review of literature on marking reliability research. Ofqual/13/5285, 2013.

95

A Comparison of Machine Learning Code
Quality in Python Scripts and Jupyter

Notebooks∗

Kyle Adams1 and Aleksei Vilkomir2 and Mark Hills3
1Moravian University

Bethlehem, PA
adamsk04@moravian.edu

2Department of Computer Science
East Carolina University

Greenville, NC
vilkomira21@ecu.edu

3Department of Computer Science
Appalachian State University

Boone, NC
hillsma@appstate.edu

Abstract

Jupyter notebooks are currently one of the most popular environ-
ments for Python development, especially in domains such as data sci-
ence. Existing studies have shown that notebooks may promote bad
coding habits, leading to poor code quality and challenges with repli-
cating notebook results. In this paper, we compare the code quality of
Python machine learning code found in Jupyter notebooks to that found
in regular Python scripts. The goal of this work is to better understand
how the machine learning code created in Jupyter notebooks differs both
from machine learning code provided in scripts and from the larger body
of Python code, with the aim of creating tools to better support both
data science students and practitioners.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

96

1 Introduction

According to a study in 2018 [10], Python is the most used language for machine
learning on GitHub, as well as the third most used programming language on
GitHub overall. One of the most popular environments for Python program-
ming is Jupyter notebooks [5]. Jupyter notebooks provide a literate program-
ming environment, where Python code can be combined with descriptive text
and computational results. These results can be in text, but formats such as
images and even video are also supported. While Jupyter notebooks can be
used for a wide variety of different application domains, they were created with
a focus on supporting applications in data science and scientific computing.

With the growth of interest in data science, millions of Jupyter notebooks
have been created and shared on sites such as GitHub and Kaggle, a website
that hosts data science competitions. Recent work (see Section 2) has explored
issues with the quality of the code in these notebooks. For instance, the work of
Grotov et al. [11] compared the quality of the code found in Jupyter notebooks
to that of Python scripts. This comparison was done across all domains, while
noting that results may differ if focused on a specific domain. In this paper, we
narrow this prior comparison to focus specifically on machine learning code,
while also comparing our results to those found in this earlier work.

The rest of this paper is organized as follows. First, Section 2 discusses
related work. Section 3 then details the corpus of Python scripts and Jupyter
notebooks used to conduct this study. Section 4 describes the process used
to extract metrics and style errors from the code and to compute the results
reported in Section 5. Section 5 evaluates our initial results, including a com-
parison to results found in earlier work. Lastly, Section 6 concludes the paper
and describes possible future applications of our results. All code and data sets
used in this paper are available in a replication package on Zenodo [6].

2 Related Work

Some of the prior work on Jupyter notebooks focuses on how notebooks are
used in practice, including for collaboration and reproducibility. Kery et al. [15]
interviewed 21 professional data scientists to learn more about how they use
Jupyter notebooks, and also conducted a survey of 45 data scientists to learn
more about potential tool support for allowing data scientists to interact with a
history of notebook changes. Chattopadhyay et al. [9] used a combination of a
survey and interviews to identify “pain points” encountered by users of compu-
tational notebooks, including Jupyter notebooks. Pimentel at al. [17] studied
the use of both good and bad coding practices in Jupyter notebooks, with a fo-
cus on the impact of these practices on reproducibility. They used the results of

97

this study to recommend best practices for developing notebooks. Pimintel et
al. [16] then extended this work with additional analyses and the introduction
of a tool, Julynter, that suggests notebook modifications for improving repro-
ducibility. Quaranta et al. [18] also focused on best practices, specifically for
collaboration. Wang et al. [26] looked at notebook documentation, evaluating
a system named Themisto that automatically generates notebook documenta-
tion based on best practices gleaned from a collection of 80 top-rated notebooks
from Kaggle. Additional work on collaboration with notebooks includes that
of Zhang et al. [30], which explored collaborative roles and practices; and Rule
et al. [20], which evaluated the impact of a cell folding extension to Jupyter
notebooks on notebook understandability and reuse. Beyond this, papers by
Rule et al. [21] and Amershi et al. [7] focused on how notebooks are used for
different purposes and on how teams collaborate on machine learning tasks.

Other prior work focuses specifically on tools and analyses for understand-
ing and improving the use of notebooks. Kery and Meyers [14] described and
evaluated Verdant, a system for versioning notebook artifacts. Head at al. [12]
described an analysis that uses program slicing over execution logs to compute
notebook dependencies, along with code gathering tools that track notebook
history. Wenskovitch et al. [28] designed a visualization tool, Albireo, that
allows for multiple levels of visualization as well as exploration of cell depen-
dencies. Wang et al. [27] focused on the need for improved tools for analyz-
ing Jupyter notebooks, showing that notebooks include substantial amounts
of poor-quality code. Yang et al. [29] used code summarization techniques to
show the impact of data wrangling code by showing the effect of the code on the
data being analyzed by the notebook. Venkatesh and Bodden [24] presented
an analysis and tool that generates cell headers for notebook cells based on the
position of the cell in a broader machine learning workflow. Titov et al. [22]
described an analysis and tool, ReSplit, that refactors existing notebook cells.
Jiang et al. [13] presented an algorithm for generating a dependency graph
between cells in a Jupyter notebook and labeling these cells with the relevant
machine learning state, based on the API calls used in the cell. Quaranta
et al. [19] introduced Pynblint, a linter for Jupyter notebooks that checks for
violations of best practices and provides fix recommendations.

Grotov et al. [11] conducted a comparison of Python code in Python scripts
and in Jupyter notebooks. Scripts and notebooks were compared using a com-
bination of structural metrics (e.g., SLOC, cyclomatic complexity) and code
style violations. The corpus included all Jupyter notebooks publicly available
on GitHub, as well as all Python scripts from the 10,000 most starred Python
repositories on GitHub, narrowed to use only those notebooks and scripts re-
leased under a permissive software license. This resulted in 847,881 notebooks
and 465,776 scripts. To detect style errors, the authors used Hyperstyle [8], a

98

tool for detecting style violations in student programming assignments. A sec-
ond tool, named Matroskin, was created to work with notebooks, including to
compute structural metrics. One specific style issue, that of excessive imports,
was also noted by Vilkomir [25]. Our work builds upon, and is compared with,
the earlier work of Grotov et al. and Vilkomir, focusing on differences in code
quality between scripts and notebooks used specifically for machine learning.

3 Corpus

To carry out our comparison, a corpus of Python scripts and Jupyter note-
books, focused specifically on machine learning, was needed. Kaggle [2] is a
website dedicated to machine learning and data science. It holds data science
competitions, some with cash prizes, and makes some of the solutions (those
the authors allow to be released publicly) available for public inspection and
download. Some of the published solutions are created using Jupyter note-
books, while some are created using Python scripts. Some are also created
using other languages (e.g., R), but those are ignored here.

To get the initial corpus of data, we used Meta Kaggle [4]. Meta Kaggle is a
public dataset, published by Kaggle, that contains information about competi-
tions and the public solutions posted as part of these competitions. Using this
data set, a Python script was used to extract the information needed to down-
load each solution. The projects were sorted by the user rating (stars) they
received on Kaggle in descending order. We decided to limit our corpus to the
top 100,000 projects. Next, the Kaggle API was used to download the project
code corresponding to each project. This download process was executed as
part of a Bash script for repeatability. The result of executing this script was a
collection of Python script files, Jupyter notebooks, and potentially other files
that may have been included with the solution.

Using the Kaggle API, a total of 69,858 machine learning files were obtained.
Only files written in Python (either notebooks or scripts) were processed fur-
ther. These files were split into two datasets, one for Python scripts, and one
for notebooks. In total, there are 12,136 Python scripts (with a .py extension),
and 57,722 Jupyter notebooks (with a .ipynb extension) in these two datasets.
The number of files in the final corpus is different from the initial size we
planned to obtain because some files were unavailable for download.

4 Methodology

We have used a methodology that mirrors that found in the paper by Grotov
et al. [11] to allow for a comparison of our results, focused just on machine
learning code, with their results, which looked at notebooks and scripts in

99

general (including machine learning code). This includes using and reporting
the same structural metrics they used over their dataset.

Matroskin [3, 11] is a library designed for analyzing Juptyer notebooks. It
focuses on computing structural metrics for the Python code included in the
notebooks. Hyperstyle [8, 1] is a tool that is able to analyze code for style
errors. It works for code written in Python, Java, or Kotlin, and can follow
different style guides, such as PEP-8 [23]. To compute metrics over the code in
our corpus, several scripts were developed to automate the use of Hyperstyle
and Matroskin. These scripts extract the results of running these tools and aid
in the analysis of the metrics and style errors. Other scripts were developed
to convert between notebook and script formats, which allowed the scripts
(after conversion to notebook format) to be processed using Matroskin and the
notebooks (after conversion to script format) to by analyzed using Hyperstyle.

4.1 Matroskin Methodology

Matroskin was developed to handle a large number of notebooks at once, there-
fore we were able to run the tool on our entire corpus of notebooks by running
it on the directory containing our dataset of downloaded notebooks. The script
that runs the tool is a variant of a script provided with Matroskin, edited in
order to output the results in a format more amenable to further process-
ing. Results of running the script were stored in a single JSON file for each
processed notebook. To avoid problems with name collisions in cases where
multiple notebooks used the same file name, the results were stored in files
that were each given a unique number (e.g., 0.json, 1.json), with a separate
CSV file mapping from the original file name of the processed notebook to the
relevant JSON file containing the analysis results.

This process was then repeated on the dataset of Python scripts. The anal-
ysis first converted each script into a notebook with a single cell containing
the script code. The same process described previously was then used to pro-
cess these converted files: information on each notebook was extracted and
saved into a JSON file, with information to link these files back to the related
notebook (and thus, the original script).

A separate script was created to analyze the results stored in these JSON
files. This script reads the results saved in the JSON files, computing the results
shown in Section 5. During this process, we could not process 385 of the JSON
files generated for the notebooks and 154 of the JSON files generated for the
scripts due to an error in the result format. This error appears to be in the
information generated by Matroskin, but further work is needed to determine
the actual source of the error.

100

4.2 Hyperstyle Methodology

Hyperstyle was run individually on each Python script in the corpus, with
results output to individual files for later processing. A bug in Hyperstyle,
which we have not yet isolated, would cause it to get stuck at random points
during the analysis if run repeatedly on a sequence of input scripts. This
required us to process these files outside of the script we developed to automate
this process. In this way, it was possible to process all scripts in the dataset.
While Hyperstyle also includes an option to process an entire directory, the
information returned by Hyperstyle in that case differs from the per-file results,
generally reporting many fewer style issues. The process used for the scripts was
then repeated on the dataset of notebooks. A script was used to first convert
each notebook into a script file, which was then processed by Hyperstyle.

A separate analysis script then processes the Hyperstyle result files, gener-
ating the results seen in Section 5. During processing, for the results from the
collection of scripts, one result file was unable to be processed due to a Uni-
codeDecoder Error and thirteen results files were unable to be processed due
to syntax errors. These are based on characteristics of the original analyzed
files. For the results from the collection of notebooks, three results files were
unable to be processed due to syntax errors.

5 Evaluation

In this section, we present the results of both the structural and style analyses
described in Section 4. For the structural results, the mean (written as M) and
standard deviation (written as STD) are shown. Using the mean of the results
allows a better comparison of the two datasets due to their difference in size.

5.1 Evaluation of Structural Metrics

The results of comparing the structural metrics between scripts and notebooks
can be found in Table 1. We found that the notebooks (M = 174.48, STD =
216.45), on average, contained more source lines of code than the scripts (M
= 105.02, STD = 180.11). Notebooks (M = 27.93, STD = 48.51) and scripts
(M = 26.96, STD = 57.13) have a similar number of commented lines unless
markdown cells (“extended comments”, which may be actual comments on the
code or descriptive text to be shown as part of the notebook) are included, in
which case notebooks (M = 75.40, STD = 113.45) are shown to have almost
three times as many comment lines as scripts.

While they tend to have fewer lines of code, the scripts (M = 12.00, STD
= 23.71) are shown to have a higher cyclomatic complexity as compared to
notebooks (M = 6.18, STD = 9.28). Also, scripts (M = 1.00, STD = 0.24) have,

101

Table 1: Structural Metrics, Notebooks and Scripts

Metric Notebook Mean (STD) Script Mean (STD)

SLOC 174.48 (216.45) 105.02 (180.11)
Comments LOC 27.93 (48.51) 26.96 (57.13)

Extended Comments LOC 75.40 (113.45) N/A (N/A)
Blank Lines Count 30.42 (46.97) 32.53 (46.69)

Cyclomatic Complexity 6.18 (9.28) 12.00 (23.71)
NPAVG 0.71 (0.27) 1.00 (0.24)

API Functions Count 6.95 (6.69) 10.20 (10.06)
API Functions Uses 13.17 (20.24) 23.29 (81.93)

Defined Functions Count 3.45 (6.00) 3.39 (6.86)
Defined Functions Uses 5.83 (13.31) 4.72 (12.91)
Built in Functions Count 4.83 (3.30) 3.80 (3.20)
Built in Functions Uses 22.51 (35.88) 14.78 (25.26)
Other Functions Uses 86.02 (99.11) 28.73 (54.03)

Cell Coupling 48.44 (358.84) N/A (N/A)
Function Coupling 10.49 (101.02) 12.59 (105.80)

on average, a higher number of inputs per function (NPAVG) than notebooks
(M = 0.71, STD = 0.27). When it comes to function usage, scripts (M = 10.20,
STD = 10.06) include more unique API function imports than notebooks (M
= 6.95, STD = 6.69). Scripts (M = 23.29, STD = 81.93) also use those API
functions more than the notebooks (M = 13.17, STD = 20.24). For built-in
functions, notebooks (M= 4.83, STD= 3.30) take advantage of a larger number
of different functions than the scripts (M = 3.80, STD = 3.20). The notebooks
(M = 22.51, STD = 35.88) also call the built-in functions much more than
scripts (M = 14.78, STD = 25.26). When it comes to user-defined functions,
notebooks (M = 3.45, STD = 6.00) have about the same amount as scripts
(M = 3.39, STD = 6.86). For number of uses of the user-defined functions,
notebooks (M = 5.83, STD = 13.31) again have more uses than scripts (M =
4.72, STD = 12.91). For any other functions, the number of uses in notebooks
(M = 86.02, STD = 99.11) is significantly greater than in scripts (M = 28.73,
STD = 54.03). Lastly, coupling (use of shared/common elements) between
functions is greater in scripts (M = 12.59, STD = 105.80) than notebooks (M
= 10.49, STD = 101.02) unless we consider cells to be functions (cell coupling),
in which case coupling is much higher in notebooks (M = 48.44, STD = 358.84),
showing how connected code in notebooks is, even though it is less complex.

Comparing with Prior Results: While most of the metrics computed
by Grotov et al. [11] (referenced just as “prior results” below) have been nor-

102

Table 2: Top Style Errors, Notebooks and Scripts.

Error Code Error Description Category Notebooks % Scripts %

W0611 Import module or variable is not used Best Practices 41 64
W0621 Redefining name from outer scope Best Practices 22 27
W0404 Re-imported module Best Practices 16 13
W0612 Unused variable name Best Practices 8 14
W0613 Unused argument Best Practices 4 9
C0411 Import order not followed Code Style 38 57
C0412 Imports not grouped by package Code Style 21 19
C0305 Trailing newlines Code Style 20 15
W0301 Unnecessary semicolon Code Style 7 4
W0311 Bad indentation Code Style 5 11
E1101 Variable accessed for nonexistent member Error Proneness 47 59
E0001 Syntax error Error Proneness 47 3
W0104 Statement seems to have no effect Error Proneness 33 6
E0611 No name in module Error Proneness 29 54
W0106 Expression is assigned to nothing Error Proneness 9 1

malized to the source lines of code, we can still compare certain metrics as
well as general trends. We found that both notebooks and scripts in our data
contain more SLOC on average (64 for notebooks, 23 for scripts) than those
from the prior results. The results for functions are very similar except for
built-in function uses. In our corpus, notebooks have a higher mean number
of uses compared to scripts, while the prior results show both having a simi-
lar number. Interestingly, our results show both notebooks and scripts having
higher cyclomatic complexity than the prior results, although in both cases
scripts are more complex than notebooks.

5.2 Evaluation of Style Metrics

Next we compare the style metrics gathered using Hyperstyle. Although the
notebooks had a much higher number of source lines of code, they have a much
lower average of warnings per file—for notebooks, a mean of 14.21, versus a
mean of 23.77 for scripts. In order to evaluate the warnings, we have taken
the ones that appear most frequently from three different categories and found
the percentage of scripts and notebooks in which they appear in each dataset.
The results of this are found in Table 2. Note that the error codes are based
on the codes used in Pylint, a popular linting tool for Python.

Of the top five issues in Best Practices, two are related to imports and
two are related to variables. For these four, there is a higher frequency of
errors in scripts than in notebooks. For both issues with imports, W0611
(import module or variable is not used) and W0404 (re-imported module), it
is possible they are caused because of how the code is created, with developers
copying code from existing samples and pasting it (including imports) in to

103

their own code. Error code W0621 (redefining name from outer scope) is
the issue of duplicate variable names that refer to values in different scopes,
while errors W0612 (unused variable name) and W0613 (unused argument) are
related to unused variables and parameters. Again, these issues may be created
when code is copied in to a program and then edited, keeping declarations of
variables and/or parameters but removing lines of code including the uses.

Of the top five issues in Code Style, this time three are more frequent in
notebooks while two are more common in scripts. Also, two of them again have
to do with imports, while the other two deal with spacing. Both C0411 (import
order not followed) and C0412 (imports not grouped by package) are problems
with the ordering of imports. PEP8 has a specific import standard which ex-
pects imports to be ordered in a certain way and grouped together. This can
be an issue if imports are not added until they are needed, and therefore get
added to the bottom of the import list. For spacing, issue C0305 (trailing new-
lines) and issue W0311 (bad indentation) do not impact correctness, although
W0311 could lead to maintenance issues later since bad or irregular indenting
can lead to confusion about the expected behavior of the code. The last code
style issue is W0301 (unnecessary semicolon). Semicolons are rarely used in
Python code, but this could imply that the writer of the file has experience in
writing in other languages where semicolons are commonly used.

In the last category, Error Proneness, we once again see that three of the
issues are more frequent in notebooks while the other two are more frequent
in scripts. The most frequent issue for both sets of files is E1101 (variable
accessed for nonexistent member). This error can indicate a bug in the code,
but can also indicate that the dependencies that provide this member are not
available. This may also account for the high frequency of code E0611 (no
name in module). E0001 (syntax error) is the code given for syntax errors.
This issue is significantly more frequent in notebooks than scripts. This could
be due to how code is executed in specific parts of a notebook, meaning that
some cells could contain syntax errors. The following issue, W0104 (statement
seems to have no effect) could have a similar problem, where the statement
does have an effect but only for the user using the notebook (e.g., to display a
value). The last issue is W0106 (expression is assigned to nothing). This only
occurs in 1% of the scripts as opposed to 9% of the notebooks.

Comparing with Prior Results: Comparing with the prior results, we
share 1 style error in the top 5 errors for the Error-Proneness category, 0 style
errors in the Code Style category, and 2 style errors for the Best Practices
category. Of the 15 style errors from the prior results, 13 of them appear in a
higher percentage of notebooks than scripts, while this is only true for 7 out of
the 15 of our style errors. Of the 3 shared errors, the prior results show all 3
appearing in a higher percentage of notebooks, however, in our results, only 1

104

of them appears in a higher percentage of notebooks. Studying the reason for
these differences is part of our future work.

6 Conclusions and Future Work

In this paper, we presented an analysis of Python scripts and Jupyter note-
books, comparing structural and style metrics extracted from both. The results
show that Jupyter notebooks are generally larger, but less complex. They tend
to use built-in functions much more than scripts and have a higher coupling
rate. Scripts averaged more style issues per file than notebooks. For the fifteen
issues chosen, the scripts had the issues appear more frequently for eight, while
the notebooks had the issues appear more frequently for seven.

For future work, we would like to expand the machine learning corpus to
include code from other sources beyond Kaggle (e.g., through detecting use of
ML APIs in code on GitHub). We would also like to explore what aspects of the
code are leading to the differences between ML code (specifically) and Python
code (in general) that we reported in Section 5. Beyond this, we also believe it
is important to create new analysis tools, including linters/style checkers, that
are specifically aimed at notebooks created for machine learning tasks. These
tools could better support both students and practitioners, giving targeted
advice that would make sense given the medium (notebooks), the domain,
and the domain’s structural and style characteristics. Given the results, tools
that would help to integrate existing code examples (such as snippets of code
from other samples, from API documentation, or from Stack Overflow) seem
particularly important. These could help to keep a consistent set of properly-
ordered imports while avoiding the re-declaration of existing variables or the
inclusion of unused variables and/or code, and could ensure consistent spacing
based on current style conventions. Navigation and code inspection tools that
can help developers navigate the many API calls they use in notebooks could
also be important, especially for newer developers learning how to use machine
learning APIs. Finally, tools that can detect unused code in notebooks, and
that can illustrate dependencies between code blocks, could be valuable for
students trying to understand existing notebooks or developing their own.

Acknowledgments

This material is based upon work supported by the National Science Founda-
tion under Grant CNS-2050883.

105

References

[1] Hyperstyle. https://github.com/hyperskill/hyperstyle.

[2] Kaggle. https://www.kaggle.com/.

[3] Matroskin: A library for the large scale analysis of Jupyter notebooks.
https://github.com/JetBrains-Research/Matroskin.

[4] Meta Kaggle. https://www.kaggle.com/datasets/kaggle/meta-
kaggle.

[5] Project Jupyter. https://jupyter.org/.

[6] Zenodo Artifact for A Comparison of Machine Learning Code Quality in
Python Scripts and Jupyter Notebooks. https://dx.doi.org/10.5281/
zenodo.8122385.

[7] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald
Gall, Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas
Zimmermann. Software Engineering for Machine Learning: A Case Study.
In Proceedings of ICSE-SEIP 2019, pages 291–300, 2019.

[8] Anastasiia Birillo, Ilya Vlasov, Artyom Burylov, Vitalii Selishchev,
Artyom Goncharov, Elena Tikhomirova, Nikolay Vyahhi, and Timofey
Bryksin. Hyperstyle: A Tool for Assessing the Code Quality of Solu-
tions to Programming Assignments. In Proceedings of SIGCSE 2022, page
307–313. ACM, 2022.

[9] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and
Titus Barik. What’s Wrong with Computational Notebooks? Pain Points,
Needs, and Design Opportunities. In Proceedings of CHI 2020, page 1–12.
ACM, 2020.

[10] Thomas Elliott. The State of the Octoverse: Machine Learn-
ing, 1 2019. https://github.blog/2019-01-24-the-state-of-the-
octoverse-machine-learning/.

[11] Konstantin Grotov, Sergey Titov, Vladimir Sotnikov, Yaroslav Golubev,
and Timofey Bryksin. A Large-Scale Comparison of Python Code in
Jupyter Notebooks and Scripts. In Proceedings of MSR 2022, page
353–364. ACM, 2022.

[12] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert
DeLine. Managing Messes in Computational Notebooks. In Proceedings
of CHI 2019, page 1–12. ACM, 2019.

106

[13] Yuan Jiang, Christian Kästner, and Shurui Zhou. Elevating Jupyter Note-
book Maintenance Tooling by Identifying and Extracting Notebook Struc-
tures. In Proceedings of ICSME 2022. IEEE, 2022.

[14] Mary Beth Kery and Brad A. Myers. Interactions for Untangling Messy
History in a Computational Notebook. In Proceedings of VL/HCC 2018,
pages 147–155, 2018.

[15] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and
Brad A. Myers. The Story in the Notebook: Exploratory Data Science
Using a Literate Programming Tool. In Proceedings of CHI 2018, page
1–11. ACM, 2018.

[16] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana
Freire. Understanding and improving the quality and reproducibility of
Jupyter notebooks. Empirical Software Engineering, 26(4):1–55, 2021.

[17] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana
Freire. A Large-Scale Study About Quality and Reproducibility of Jupyter
Notebooks. In Proceedings of MSR 2019, pages 507–517, 2019.

[18] Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. Eliciting Best Prac-
tices for Collaboration with Computational Notebooks. Proc. ACM Hum.-
Comput. Interact., 6(CSCW1), 4 2022.

[19] Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. Pynblint: a Static
Analyzer for Python Jupyter Notebooks. In Proceedings of CAIN 2022,
pages 48–49. ACM, 2022.

[20] Adam Rule, Ian Drosos, Aurélien Tabard, and James D. Hollan. Aiding
Collaborative Reuse of Computational Notebooks with Annotated Cell
Folding. Proc. ACM Hum.-Comput. Interact., 2(CSCW), 11 2018.

[21] Adam Rule, Aurélien Tabard, and James D. Hollan. Exploration and
Explanation in Computational Notebooks. In Proceedings of CHI 2018,
page 1–12. ACM, 2018.

[22] Sergey Titov, Yaroslav Golubev, and Timofey Bryksin. ReSplit: Improv-
ing the Structure of Jupyter Notebooks by Re-Splitting Their Cells. In
Proceedings of SANER 2022, pages 492–496, 2022.

[23] Guido Van Rossum, Barry Warsaw, and Nick Coghlan. PEP 8—Style
Guide for Python Code, 2001. https://peps.python.org/pep-0008/.

107

[24] Ashwin Prasad Shivarpatna Venkatesh and Eric Bodden. Automated Cell
Header Generator for Jupyter Notebooks. In Proceedings of AISTA 2021,
page 17–20. ACM, 2021.

[25] Aleksei Vilkomir. An Empirical Exploration of Python Machine Learning
API Usage. East Carolina University, 2020.

[26] April Yi Wang, Dakuo Wang, Jaimie Drozdal, Michael Muller, Soya Park,
Justin D. Weisz, Xuye Liu, Lingfei Wu, and Casey Dugan. Documentation
Matters: Human-Centered AI System to Assist Data Science Code Doc-
umentation in Computational Notebooks. ACM Trans. Comput.-Hum.
Interact., 29(2), 1 2022.

[27] Jiawei Wang, Li Li, and Andreas Zeller. Better Code, Better Sharing: On
the Need of Analyzing Jupyter Notebooks. In Proceedings of ICSE-NEIR
2020, page 53–56. ACM, 2020.

[28] John Wenskovitch, Jian Zhao, Scott Carter, Matthew Cooper, and Chris
North. Albireo: An Interactive Tool for Visually Summarizing Compu-
tational Notebook Structure. In Proceedings of VDS 2019, pages 1–10,
2019.

[29] Chenyang Yang, Shurui Zhou, Jin L.C. Guo, and Christian Kästner. Sub-
tle Bugs Everywhere: Generating Documentation for Data Wrangling
Code. In Proceedings of ASE 2021, pages 304–316, 2021.

[30] Amy X. Zhang, Michael Muller, and Dakuo Wang. How Do Data Science
Workers Collaborate? Roles, Workflows, and Tools. Proc. ACM Hum.-
Comput. Interact., 4(CSCW1), 5 2020.

108

The Shrinking Slice of Women and Black
Students in a Growing Computer Science

Pie: A Preliminary Spatiotemporal
Analysis of Longitudinal Completions

Data∗

Syed Fahad Sultan1, Chris Alvin1, Rebecca Drucker12

1Department of Computer Science
Furman University
Greenville, SC 29613

2Department of Computer Science
Stony Brook University
Stony Brook, NY 11794

{syedfahad.sultan†, chris.alvin, rebecca.drucker}@furman.edu

Abstract
In an era where Computer Science plays a transformative role in

society, the need to address Diversity, Equity, and Inclusion within the
field has become increasingly imperative. Using a data-driven approach,
this work shows how Women and Black students, as a percentage of
total completions of CS related programs, are decreasing in recent years.
This trend is particularly alarming in the Southeast region of the United
States.

1 Introduction

As the field of computer science continues to innovate and grow, we must
also ensure that this progress is inclusive, equitable, and reflects the diverse

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

†Corresponding author

109

perspectives and talents of all individuals. Diversity, Equity, and Inclusion
(DEI) in Computer Science (CS) is a topic of growing interest in the United
States [2, 7, 4]. The National Science Foundation (NSF) has been collecting
data on CS completions [3]; a completion is defined as an “award or degree
conferred.” These data are available through the NSF’s National Center for
Science and Engineering Statistics (NCSES) and is updated annually [8].

In our review of the literature, we found a dearth of DEI studies in CS
that take a data-driven approach. Most of the existing work is qualitative and
prescriptive in nature [5, 6], without delving into patterns and structures that
may be at the root of the problem. We strongly believe that a data-driven
approach is necessary to make progress towards a more equitable and inclu-
sive CS community. Without a quantitative understanding of the underlying
dynamics, policy makers and practitioners will be unable to make informed
decisions about how and where to allocate resources to address the problem.

To address this gap in Computing Education literature, in this work, we
use 18 years of Integrated Post-secondary Education Data System (IPEDS)
Completions [8] data to explore the question:

How has the number of CS degrees awarded to students from underrepresented
groups changed over time in different regions of United States?

Our results show that the number of CS degrees awarded to students from
underrepresented groups has generally increased over time. However, the share
of CS degrees awarded to students from underrepresented groups is decreas-
ing. Our results uncover various inter- and intra-group trends that are also
spatially dependent. The decrease in share of degrees awarded to Women and
Black students is particularly stark in the Southeast. In contrast to other
underrepresented groups, the number of degrees awarded to Hispanic/Latino
students shows a positive trend across different regions of the country.

Altogether, our results strongly suggest a call to action for more data-driven
research on the topic of DEI in CS. Only with a better understanding of the
underlying dynamics can we hope to make progress towards a more equitable
and inclusive CS community.

2 Methodology

2.1 Data

The NSF has been collecting data on completions for all fields of study since
1966 and updates it annually. IPEDS Completions data is available at the
institution level. For each institution, the data includes the number of degrees
awarded by field and demographic group.

110

Table 1: Regions reported in IPEDS data (variable=OBEREG) ordered by in-
stitutional count.

Region States Institutions
Count

1 Southeast AL AR FL GA KY LA
MS NC SC TN VA WV 1536

2 Mid East DE DC MD NJ NY PA 1056
3 Far West AK CA HI NV OR WA 923
4 Great Lakes IL IN MI OH WI 893
5 Southwest AZ NM OK TX 670
6 Plains IA KS MN MO NE ND SD 497
7 New England CT ME MA NH RI VT 332
8 Rocky Mountains CO ID MT UT WY 245

In this work we analyze 18 years (2002-2020) of Completions survey data
from 6307 post-secondary institutions. In IPEDS, this survey data table is
titled Awards/degrees conferred by program, award level, race/ethnicity, and
gender. The programs are classified using 6-digit Classification of Instructional
Programs (CIP) code. In our results, we refer to all degrees awarded under
CIP code 11 titled Computer and Information Sciences and Support Services
as simply “Computer Science” for brevity and clarity of presentation. Using
the IPEDS Institutional Characteristics survey of 2020, we identify the region
of each institution; categorization details are provided in Table 1 along with a
count of the number of constituent regions.

Figure 1: Spatial distribution of institutions in the data, color-coded by region
(Alaska and Hawaii are not depicted).

111

(a) Absolute count of completions; verti-
cal axes use different scales.

(b) Percentage of total completions; ver-
tical axes use the same scale.

Figure 2: Nationwide temporal trends in CS and Non-CS program completions
from 2002 to 2020 for Women, Black and Hispanic/Latino students.

2.2 Analysis

Our analysis focuses specifically on the following three underrepresented groups:
Women (variable=CTOTALW), Black (variable=CBKAAT) and Hispanic or Latino
(variable=CHISPT). All three of these variables are in the data Completions
survey table C<YEAR>, at the level of institutions, and are publicly available to
download from the IPEDS website [8]. Counts were computed using a simple
sum of the relevant variable over all institutions for a given year and region.
Percentages were computed by dividing relevant sums by CTOTALT: Grand to-
tal of students awarded degrees with CIPCODE in range [11, 12). Data from the
IPEDS Institutional Characteristics survey table 2020 is used (variable=OBEREG)
to identify each institution’s region. Analysis is done using pandas Data Anal-
ysis library and plots are made using matplotlib. The code is available at
https://github.com/fahadsultan/Education/tree/ccsc.

3 Results

3.1 Nationwide trends

3.1.1 Absolute count of completions

Post dot-com bubble (2002-2007): In terms of absolute counts (Figure
2b), we see a consistent decline in number of completions in CS between years
2003 and 2008. We believe this is the aftermath of the dot-com bubble burst of
2000 [1]. Note that rising completions from 2002 to 2003 can be explained by
the fact that these students enrolled before the event. During the same period,

112

an increase in absolute counts is observed for completions in Non-CS programs
across underrepresented groups.
Financial Crisis (2007-2008): We see a sharp decline in completions in
2008 compared to 2007. We believe that this can be explained by dropout
rates during the corresponding financial crisis [9]. Notably, this decline is not
observed for women in Non-CS programs and in contrast are most acute for
Hispanic/Latino and Black students.
Sharp Recovery (2008-2011): During the three years between 2008 and
2011, we observe a sharp recovery across all student groups that underwent a
sharp decline between 2007-2008.
Slow Recovery (2011-2020): In terms of absolute counts of completion,
in CS as well as in other areas of study, we observe a slow but consistent
recovery back to pre-2008 levels. Warranting further investigation, completions
for Hispanic/Latino students in Non-CS programs continue to increase while
the number for Black students remains the same.

3.1.2 Percentage of total completions

As we observe in Figure 2b, nationwide trends stand in bleak contrast when
measured as a percentage of total completions in both CS and Non-CS pro-
gram completions for underrepresented groups. When we consider percentage
of total completions for underrepresented groups, we observe a negative or neu-
tral trend for most underrepresented groups. The only group that exhibits a
positive trend is that of Hispanic/Latino students in Non-CS programs.
Post dot-com bubble (2002-2007): With the exception of Women in CS,
for our three groups, the trend lines are relatively flat during this period.
Financial Crisis (2007-2008): Hispanic/Latino and Black students exhibit
a sharp dip in completions in both CS and Non-CS programs. Women in Non-
CS programs do not show any change during this period, whereas Women in
CS show a less of a dip compared to the counterparts groups in CS.
Sharp Recovery (2008-2011): Similar to absolute counts, we observe a
sharp V-shaped recovery during 2008-2011 across all student groups that un-
derwent sharp decline in the preceding period.
Lack of Progress (2011-2020): With the exception of Hispanic/Latino stu-
dents in Non-CS programs, no other groups exhibit a positive trend from 2011-
2020.
In summary, while there is a clear increase year to year in absolute counts of
CS completions, when we consider the percentage of total completions, Women
and Black students show no improvement in recent years.

113

(a) Absolute count of completions; vertical axes are log-scaled.

(b) Women completions as the percentage of total completions.

Figure 3: Trends in completion of CS and Non-CS programs by Women from
2002 to 2020 for 8 major regions of the United States.

3.2 Regional trends

We add a spatial component to our temporal analysis by studying trends for the
eight major regions in the United States listed in Table 1.We observe divergent
patterns for different student groups across different regions in Figure 3 through
Figure 5.

3.2.1 Women students

A deeply noteworthy observation we can make about Figure 3 is the significant
differences in trend lines when we compare absolute counts of completions by
Women students (Figure 3a) to completions as a percentage of total comple-
tions (Figure 3b). Figure 3a shows absolute counts increasing across different

114

(a) Absolute count of completions; vertical axes are log-scaled.

(b) Completions by Black students as the percentage of total completions.

Figure 4: Trends in completion of CS and Non-CS programs by Black students
from 2002 to 2020 for 8 major regions of the United States.

regions of the US, at least in recent years. We might conclude that Women in
CS evidence an upward trajectory even though they may have a long way to
go (note that the vertical axis is log-scale) compared to Non-CS areas of study.
However, when we consider percentage of the total completions in CS (Figure
3b), Women’s share is decreasing across all regions of the US. For Non-CS, the
completion trend lines are either mostly flat or modestly increasing.

This evidence is an example of the phenomenon colloquially described as
a rising tide lifts all boats. That is, the total CS completions is increasing,
including an increase in the number of completions by Women students. How-
ever, with each year, the proportion is decreasing for Women in CS. We can
thus conclude that while the Computer Science pie is increasing in size, the
Women’s slice of that pie is decreasing. In Non-CS programs, the trends are
modestly positive or flat.

115

(a) Absolute count of completions; vertical axes are log-scaled.

(b) Completions by Hispanic/Latino students as the percentage of total completions.

Figure 5: Trends in completion of CS and Non-CS programs by Hispan-
ic/Latino students from 2002 to 2020 for 8 major regions of the United States.

Even though the decrease in Women’s completions as percentage of total
completions is consistent across different regions in the US, the biggest drop is
in Southeast. This is of particular concern since the Southeast maintains the
most institutions according to IPEDS (Table 1).

3.2.2 Black students

We observe similar trends for Black students that we observed with Women:
trend lines for absolute counts are positive (Figure 4a) but trend lines for
percentage of total completions are mostly flat or negative (Figure 4b). An
alarming result is the sharp decline from 2012 to 2020 (the most recent 8 years
in the data) for Black completions in the Southeast while other regions show
mixed trends during the same period. This is of tremendous concern since

116

the Southeast is the region with the greatest number of institutions and where
most of the black population is concentrated in the United States, as per 2020
census Data, Summary File 1.

3.2.3 Hispanic/Latino students

Trend lines observed for Hispanic/Latino students stand in positive contrast to
those observed for Women and Black students. Unlike other underrepresented
groups in our analysis, Hispanic/Latino students show a positive trend in both
absolute counts as well as percentage of total completions. These positive
trends are consistent across different regions in the US. However, the rate of
improvement in CS is not keeping up with the rate of improvement in Non-CS
programs (Figure 5b). This trend is most visible in Far West and Southwest
regions. These regions are also where most of the Hispanic/Latino populations
are concentrated in the United States, as per 2020 census data, Summary File
1.

Not only are more Hispanic/Latino students graduating in all areas of study
in the entire country but they are also making up a greater percentage of total
graduates in their respective areas. This trend can also be viewed in aggregate
in Figure 2. The trends for Hispanic/Latino students are to be celebrated
and need to be investigated further for potential causes, so effective policy
interventions can be designed to replicate this trend for Women and Black
students.

4 Conclusions

From our preliminary spatiotemporal analysis of longitudinal completion data,
we can conclude the following:

1. While absolute counts of Women, Black and Hispanic/Latino students
are increasing in Computer Science, for Women and Black students, it is
due to a general increase in Computer Science students completing the
program; i.e., a general increase in size of the Computer Science pie.

2. As percentages of total completions of CS programs, Women and Black
students have consistently been decreasing in the recent 5-8 years, across
all regions of the United States, but particularly in the Southeast.

3. The only underrepresented group that exhibits robust improvements in
completion of Computer Science across different regions of the country is
that of Hispanic/Latino students.

117

Taken together, the results presented in this paper serve as a call to action
for the CS Education community to intentionally include more data-driven
analyses and approaches to the problem of DEI in CS. The IPEDS data is a
rich source of information that can be used to better understand the underlying
dynamics plaguing the CS community.

References

[1] Milam Aiken, Bart Garner, Kaushik Ghosh, and Mahesh Vanjani. Dot. com boom
and bust effects on mis college enrollments: 1995–2006. Communications of the
IIMA, 8(1):4, 2008.

[2] Jill Denner and Shannon Campe. Equity and inclusion in computer science edu-
cation: Research on challenges and opportunities. Computer Science Education:
Perspectives on Teaching and Learning in School, page 85, 2023.

[3] Sarah Krichels Goan and Alisa F Cunningham. Degree completions in areas of na-
tional need, 1996-97 and 2001-tab. nces 2006-154. National Center for Education
Statistics, 2006.

[4] Nwannediya Ada Ibe, Rebecca Howsmon, Lauren Penney, Nathaniel Granor,
Leigh Ann DeLyser, and Kevin Wang. Reflections of a diversity, equity, and
inclusion working group based on data from a national cs education program. In
Proceedings of the 49th ACM Technical Symposium on Computer Science Educa-
tion, pages 711–716, 2018.

[5] Anagha Kulkarni, Ilmi Yoon, Pleuni S Pennings, Kazunori Okada, and Carmen
Domingo. Promoting diversity in computing. In Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science Education,
pages 236–241, 2018.

[6] Elizabeth A Larsen and Margaret L Stubbs. Increasing diversity in computer
science: Acknowledging, yet moving beyond, gender. Journal of women and
minorities in science and engineering, 11(2), 2005.

[7] Linda J Sax, Kathleen J Lehman, Jerry A Jacobs, M Allison Kanny, Gloria Lim,
Laura Monje-Paulson, and Hilary B Zimmerman. Anatomy of an enduring gender
gap: The evolution of women’s participation in computer science. The Journal of
Higher Education, 88(2):258–293, 2017.

[8] NC Statistics. Integrated postsecondary education data system. 2012. https:
//nces.ed.gov/ipeds/.

[9] Ralph Stinebrickner and Todd Stinebrickner. The effect of credit constraints
on the college drop-out decision: A direct approach using a new panel study.
American Economic Review, 98(5):2163–2184, 2008.

118

Do We Need to Write?
Researching Perceptions of Disciplinary
Writing Importance and Skills in an
Advanced Computer Science Course∗

Elizabeth von Briesen
Department of Computer Science

Elon University
Elon, NC 27244

evonbriesen@elon.edu

Abstract

Our research explores perceptions related to writing in the computer
science discipline. It is a common misconception that this skill is not
important in the field, and we are motivated to dispel that notion and
assist students in gaining experience and confidence in their disciplinary
writing skills. To that end, we surveyed undergraduate students at the
start and end of term in our Artificial Intelligence course, an advanced
computer science elective. Students wrote two blogs-like items, one each
for audiences with and without technical knowledge of the field, and
also produced technical documentation related to two programming as-
signments. We found that on average, students agreed that writing in
the discipline is important, and that they have some confidence in their
writing abilities across audiences. While we did not find a statistically
significant difference between perceptions at the start and end of the
term, our overall results and open-ended feedback indicate that students
find writing in the field to be important, and that there is strong interest
in further curricular enhancements in this area.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

119

1 Introduction

“Who wrote this, you wonder. With a sinking feeling, you realize you’re look-
ing at your own code from fourteen months ago, and you’ve forgotten almost
everything about it” [3, p. xxiii]. Bhatti et al., authors of “Docs for Develop-
ers: An Engineer’s Field Guide to Technical Writing,” address a major issue
in software development: the failure to consistently write appropriate docu-
mentation. It is sometimes assumed by people, both within and outside the
field, that computer scientists neither like nor need to write. The above quote
is only one example of the potential consequences of failing to prioritize the
writing process in this discipline. Beaubouef and McDowell highlight that in
addition to traditional code documentation and manuals, computer scientists
must communicate with other professionals in the field, and most importantly,
with customers and clients [2].

This study is motivated by two areas of interest in undergraduate com-
puter science education: perceptions of the importance of, and preparation
for, writing in the discipline. The primary question we are seeking to answer
through this research is: Can disciplinary writing assignments in an advanced
computer science course impact students’ attitudes toward the value of being a
strong writer in the field and improve their perceptions of the effectiveness of
their writing?

Undergraduate students are building a foundation that will support their
future work, and for computer science students, technical skills are essential to
the strength of that base. However, as Bhatti et al. suggest, those technical
skills alone are often insufficient when viewed in the larger context of the pro-
fession [3]. The ACM’s Computing Curricula 2020 includes a variety of writing
and communication competencies, which we detail in Section 2 [1]. While their
total number is far fewer than those of technical competencies, their inclusion
signifies an importance in the development of future computer scientists.

We conducted this research at an undergraduate, liberal arts, teaching uni-
versity. In addition to their rich experience in writing in the liberal arts,
students have also benefited from extensive enhancements to writing instruc-
tion across all departments achieved through the a recent QEP project. As
such, the university is very supportive of writing in any discipline, and many
students have broad writing experience.

To answer our research question, we administered surveys at the start and
end of the term (referred to as pre- and post- from here), and integrated writ-
ing assignments designed to be similar to writing students may encounter in
their future work. These assignments ranged from a blog-like post for an au-
dience without technical knowledge of the CS field, to a project README file
evaluated by their peers. While we did not see a significant change in stu-
dent perceptions of the importance of writing in the profession, or in student

120

confidence in their own writing skills, we found that average perceptions for
each was weighted toward agreement. We also received informative open-ended
feedback. The above, along with three individual case studies, are detailed in
Section 4. We are encouraged by our findings that our students see value in de-
veloping their disciplinary writing skills, and are looking forward to continued
analysis and development of future research in this area.

2 Related Work

The ACM’s Computing Curricula 2020 includes competencies that reflect the
importance of communication skills in the discipline. Included in the 84 Com-
puter Science Draft Competencies are those that recognize the need for docu-
mentation (HCI-E, SDF-E), reports (PL-B), and other types of communication
that address industry trends (SP-C) and the impact of technology on society
(SP-E). The report’s 88 Information Systems Draft Competencies include 7
specific to communication, with 2 focused on written communication (58, 59)
[1, pp. 111–117]. It is clear from the inclusion of these competencies in the
ACM report that they are important to computer science education.

Faculty have varied perceptions of the importance of integrating writing
into their undergraduate STEM courses. Some see it as a skill unrelated to the
scientific content of their courses, while others find it an essential component of
their own work as scientists and educators [9]. In computer science, researchers
have made efforts to introduce writing of different forms into standard computer
science courses [4, 5, 6, 7, 12, 13]. They have also examined commonly seen
issues in student writing [10], how writing centers can address industry needs
through supporting student development in this area [11], and how to better
manage grading and assessment of writing assignments [8]. This research is
motivated by the above work, and our methodology is partly informed by
Grubb’s work with blogs in the CS classroom [6], and Digh’s communication
research in an Artificial Intelligence course [5].

3 Methods

We conducted this research in the computer science department’s Artificial In-
telligence course, which is an advanced elective for CS majors and minors. This
class had 25 students, with one professor and no teaching assistant. To answer
our research question, we collected quantitative and qualitative data through
pre- and post-survey instruments, and assigned a variety of writing tasks com-
mon in the discipline. All enrolled students consented to the collection of the
survey data as well as samples of their writing from relevant assignments, with
one student withdrawing consent.

121

3.1 Pre- and Post-Survey Instruments

Participants completed surveys with more than 30 questions. The pre- and
post-surveys were identical except for one additional question on the post-
survey about interest in follow-up interviews. We collected details about stu-
dent majors, minors, internships and research experience, and demographics.
The survey was a combination of Likert-scale, multiple answer, and open-
response questions. These surveys collected data about student writing in-
terests, writing experience within and outside the classroom, perceptions of
the importance of writing in the discipline, perceptions of the types of writ-
ing common in CS, and interest in further development of disciplinary writing
skills.

3.2 Disciplinary Writing Assignments

Students completed four assignments with writing components aligned with
types of writing common in the field. Two were low-stakes blog-like posts, and
two were reports and documentation produced in conjunction with program-
ming assignments. For each writing task, we provided students with guidance
and examples of that genre from a variety of resources. For example, we de-
veloped a resource including articles about, and open-source repositories of,
design documentation for the associated assignment. In addition to instructor
evaluation, every assignment with a writing component included time for giving
and receiving peer feedback. This approach was intended to give students the
opportunity to practice and improve their disciplinary writing, expose them
to different genres and audiences common in the field, and communicate with
their peers about the writing process. The assignment design was as follows:

Blog Posts–Low-Stakes1

1. Audience Without Technical Knowledge of CS2: Write about an
AI technology of your choice and its impact on society.

2. Audience With Technical Knowledge of CS:Write about an ethical
issue or issues in a specific use of AI, include connections with at least
one other field of study.

Documentation–High-Stakes

1These assignments were very open-ended with respect to style, including a zine format
if desired.

2In this paper, this audience is sometimes referred to as “non-technical” and includes
lay audiences, and non-CS experts and professionals. The other blog post audience type is
sometimes referred to as “technical.”

122

1. Design Document and Code Readability: For a coding assignment
implementing and comparing algorithmic solutions to the 8-Queens prob-
lem, write design documentation for an audience of fellow students that
includes an overview of the problem, a design plan, and discussion of al-
ternative approaches. Additionally, review and implement best-practices
for code commenting, variable names, overall organization, and readabil-
ity.

2. README File and Project Report: For a self-selected implemen-
tation of an AI task, write a README file for a peer briefly describing
the project, providing instructions for running the code, and reviewing
sample use cases and results. Also produce a report detailing the project
topic, the selected algorithm or algorithms implemented, and an analysis
of the quality of the solution.

4 Results and Discussion

We are particularly interested in determining if there were changes in student
perceptions of the importance of writing in the discipline, and in their own level
of confidence when writing for different audiences. To this end, we include here
results from 3 survey questions and detail 3 representative case studies.

All 25 enrolled students completed the pre-survey, and 18 completed the
post-survey as well. All results presented here, including case studies and
examples of open-ended feedback, are from the 18 students who completed
both surveys.

4.1 Select Survey Questions

Figure 1 visualizes the pre- and post-average Likert scores for three survey
questions asking how strongly students agreed or disagreed (Strongly Agree
(5) to Strongly Disagree(1)) with the following statements:

Q1: Good writing skills are important in the computer science profession.
Q2: I can write effectively about computer science for a technical audience∗

in the field.
Q3: I can write effectively about computer science for an audience without

technical knowledge∗ of the field (e.g. lay audiences, non-CS experts
and professionals).

For all questions, and in both the pre- and post-surveys, the average score
was above 3 (Neither Agree nor Disagree). This indicates that preferences were
weighted toward agreement with the statements. While we did find an increase

∗Bolding included in original survey question for clarity

123

Figure 1: Change in Average Student Perceptions in Pre- and Post-Survey
Questions

in all averages in the post-survey results, it was not statistically significant.

Q1 Discussion: As noted in Section 1, the importance of writing in the CS
profession is sometimes underestimated [2, 3]. We were encouraged to find
that, on average, students agreed that good writing skills are important in the
field, with the post-survey result exceeding the “Somewhat Agree” level (4).
When asked for general comments about writing in the computer science pro-
fession in the post-survey, one of the students noted that “I think it is a vital
skill if you want to have a profession in computer science,” and another stated
“I think it is useful because you will encounter many people that do not have a
computer science background and you need to explain complex topics to them.”
These results indicate that our computer science students appreciate the value
of writing in the field, which is important as a motivator for skill development.

Q2 & Q3 Discussion: These questions explored students’ perceptions of their
writing ability for audiences with and without technical knowledge of the field.
Again, we found that the average response was weighted toward agreement with
the statements, indicating that students felt some degree of confidence when
writing for these audiences. When asked in the post-survey about the types of

124

writing in computer science they were interested in developing, 11 comments
communicated interest in writing for a technical audience, such as: “I am inter-
ested in developing writing that can be used in project proposals that convey the
details and need for a computer science project.” 4 comments indicated interest
in writing for a non-technical audience including: “Writing for non-technical
audiences, especially presentations, memos, and other professional forms of
communication”, and “I want to write more blog posts describing complex top-
ics to a non-technical audience.”. These results show an overall positive view of
disciplinary writing for different audiences and interest in further development
of these skills.

4.2 Case Studies

Here we present three participant cases. Table 1 shows the change in their
Likert scores for the selected questions, and for context we include samples of
open-ended feedback each participant provided in the surveys.

Table 1: Individual Responses to Select Survey Questions: Strongly Agree(5)
to Strongly Disagree(1)

Participant # Q1 Pre/Post Q2 Pre/Post Q3 Pre/Post
4 4/5 2/4 4/5
7 3/5 2/4 4/4
13 5/5 4/4 2/4

Case 1 - Participant 4: This participant was a junior, double majoring in
accounting and computer science. They had a CS internship prior to taking
this course and noted that writing was not a significant part of that expe-
rience. They commented in the pre-survey that “An important part of my
planned career is communicating to non-technical people why they should care
about technical risks,” and they seemed to have confidence in their skills in this
area (Q3 responses). They also commented that “Doing blog posts challenged
me to think about how to make CS topics relevant to non-CS people. This was
a really interesting challenge.” Of additional note here is the 2-point increase
in agreement for Q2, showing that this student gained confidence in their abil-
ity to write for a technical audience. When asked about examples of writing
for this audience type during their studies, they stated that “The second blog
post and the documentation I’ve done in Dr. von Briesen’s class are the main
example I can think of CS writing I’ve done for a technical audience at Elon.”

125

Case 2 - Participant 7: This participant was a graduating senior and com-
puter science major. He had a CS internship prior to taking this course, but
did not comment on any writing he did in that setting. This student repre-
sents a participant who increased 2 points in his perception of the importance
of writing in CS (Q1), and also in his confidence when writing for a technical
audience (Q2). In the post-survey, when asked how much he enjoys writing
in a professional setting, he stated that “I would much rather work on other
types of projects than writing. Simply not an engaging task to me.” However,
he also commented that he would be interested in developing his “Documenta-
tion. Technical to non technical” skills.

Case 3 - Participant 13: This participant was a graduating senior and com-
puter science major. He also had a CS internship prior to the course, and this
appears to have influenced his view of the importance of writing in the profes-
sion. He stated in the pre-survey that “From my experience of Internship in a
professional setting I was always told to write documentation as simple to un-
derstand as possible so anyone could look at it and have some understanding as
to what is going on.” Additionally, this student’s perceptions for Q3 increased
by 2 points, indicating increased confidence when writing for a non-technical
audience. Overall, his open-ended responses conveyed a strong interest in im-
proving his writing for a technical audience, and we find it interesting that it
was instead his confidence in his ability to write effectively for a non-technical
audience that increased on the Likert scale.

Discussion:
These three cases represent a variety of perceptions and perspectives from

our class. Both participants 4 and 7 felt more confident in their writing for
a technical audience at the end of the term, and all three expressed interest
in improving their writing for a technical audience in the field. Interestingly,
only participant 13 reported an emphasis on writing in his internship, although
several other students commented positively on writing in internships during
class discussions (10 of 25 students had completed a CS internship). The above
gives us confidence that additional research and work to integrate writing that
is common in the field into our courses will be well received by most students.
We did not receive any open-ended feedback from students stating that the
writing tasks were not appropriate or useful, and in fact, 7 of 18 participants
expressed a desire for more opportunities to write in these modalities in our
computer science courses.

To close this section, we would like to note that it is likely there is some
bias in these results due to the nature of the study. Classroom research about
disciplinary writing clearly shows the interest of the professor in the topic,

126

which may then influence students’ perceptions, even at the beginning of the
semester. Additionally, it is possible that the level of confidence our students
had in their writing ability is a result of their broader academic training at our
liberal arts institution, as noted in Section 1. This may yield stronger support
and appreciation for these types of activities in the CS classroom than at other
types of institutions with fewer general writing requirements for CS majors.

5 Conclusions and Future Work

In this paper, we presented the methodology and preliminary results from our
research study exploring changes in student perceptions toward the value of
writing in the discipline of computer science, and in their confidence in the
effectiveness of their writing in the field. Our methodology included pre- and
post-surveys, along with multiple disciplinary writing assignments. We found
that on average, students scores were weighted toward agreement that good
writing skills are important in computer science, and that they have confi-
dence in their abilities to write effectively for technical and non-technical au-
diences. We did not find a significant change in their perceptions between the
pre- and post-survey. Nevertheless, we are optimistic that a continuation of
this work will be well received by our students, and their feedback and writing
artifacts will be instrumental in improving our efforts to integrate writing into
our courses. Our future work in this area will include continued analysis of
our quantitative and qualitative results, development of subsequent research
studies in both introductory and advanced courses, and appropriate modifica-
tions to our approach to explore the use of generative AI models to assist in
the writing process.

Acknowledgements

We thank the Center for Writing Excellence at Elon University for providing
the Research into Writing Grant to support this research. Thanks also to Alana
Evora for her assistance in refining survey questions.

References

[1] Association for Computing Machinery (ACM) and IEEE Computer Society
(IEEE-CS). Computing Curricula 2020: Paradigms for Global Computing Edu-
cation. Technical report, 2020.

[2] Theresa Beaubouef and Patrick McDowell. Computer science: student myths
and misconceptions. Journal of Computing Sciences in Colleges, 23(6):43–48,
2008.

127

[3] Jared Bhatti, Zachary Sarah Corleissen, Jen Lambourne, David Nunez, and
Heidi Waterhouse. Docs for Developers: An Engineer’s Field Guide to Technical
Writing. Apress, 1 edition, 10 2021.

[4] Charmain B. Cilliers. Student perception of academic writing skills activities in
a traditional programming course. Computers & Education, 58(4):1028–1041, 5
2012.

[5] Andy D. Digh. Writing and speech instruction in an introductory artificial
intelligence course. Journal of Computing Sciences in Colleges, 36(5):119–128,
2021.

[6] Alicia M. Grubb. Reflections on Course Blogs in First-Year CS. In 2020 IEEE
32nd Conference on Software Engineering Education and Training (CSEE&T),
pages 1–10, 2020.

[7] Nicole Herbert, Kristy de Salas, Tina Acuña, and Erik Wapstra. A methodol-
ogy to integrate professional skill development throughout an ICT curriculum.
In Proceedings of the 2020 ACM Conference on Innovation and Technology in
Computer Science Education, pages 280–286, 2020.

[8] Grace M. Mirsky. Effectiveness of specifications grading in teaching technical
writing to computer science students. Journal of Computing Sciences in Colleges,
34(1):104–110, 2018.

[9] Alena Moon, Anne Ruggles Gere, and Ginger V Shultz. Writing in the STEM
classroom: Faculty conceptions of writing and its role in the undergraduate
classroom. Science Education, 102(5):1007–1028, 2018.

[10] Rehmat Munir, Francesco Strafforello, Niveditha Kani, Michael Kaler, Bogdan
Simion, and Lisa Zhang. Exploring Common Writing Issues in Upper-Year Com-
puter Science. In Proceedings of the 53rd ACM Technical Symposium on Com-
puter Science Education V. 1, pages 161–167, 2022.

[11] Krista Speicher Sarraf and Ben Rafoth. Don’t Forget the End User. The Writing
Center Journal, 38(1/2):131–164, 2020.

[12] Alistair Willis, Patricia Charlton, and Tony Hirst. Developing students’ written
communication skills with Jupyter notebooks. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education, pages 1089–1095, 2020.

[13] Lisa Zhang, Bogdan Simion, Michael Kaler, Amna Liaqat, Daniel Dick, Andi
Bergen, Michael Miljanovic, and Andrew Petersen. Embedding and Scaling
Writing Instruction Across First-and Second-Year Computer Science Courses.
In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1, pages 610–616, 2023.

128

Explicitly Characterizing Team
Structures in Teaching Team-based

Project Courses∗

Mingxian Jin
Department of Mathematics and Computer Science

Fayetteville State University
Fayetteville, NC 28301

mjin@uncfsu.edu

Abstract

Teamwork has become increasingly vital in computer science pro-
grams. While student teams in project courses offer numerous benefits,
they also face many challenges. Our focus is to ensure effective team func-
tioning and foster positive team experiences among our diverse student
population. In this paper, we present a strategy that explicitly charac-
terizes team structures by appointing student team leaders to make team
hierarchy while other teams without hierarchy may still work democrati-
cally. By clearly defining the roles and responsibilities of each team mem-
ber, students gain a better understanding of their individual tasks within
the project. This approach provides strong students with opportunities
to develop leadership skills while facilitating weaker students in receiv-
ing peer assistance, thereby improving their engagement and chances
of project success. Preliminary assessment data is included, along with
positive student feedback, highlighting the effectiveness of this approach.

1 Introduction

Teamwork has become increasingly vital in computer science programs. In a
team-based project course, students obtain valuable team experiences in col-
laboration, conflict resolution, and group dynamics management. These skills

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

129

are highly transferable and prepare students for successful careers in industry
or academia.

While student teams in computer science project-based courses offer nu-
merous benefits, they also face common challenges during the team formation
process [3, 4, 5, 6, 11]. These challenges include:

• Skill imbalance: Team members with unequal skill levels can make frus-
tration and hinder project progress. Strong students may hesitate to
work with weaker members, leading to exclusion.

• Communication issues: Ambiguity, misunderstanding, and unresolved is-
sues can impede collaboration. Communication styles, language barriers,
and scheduling conflicts may further hinder effective teamwork.

• Varying commitment levels: Team members may have different levels of
motivation and engagement, causing imbalances in effort and potential
conflicts within the team.

• Unequal workload: Unequal distribution of workload among team mem-
bers can create tension and resentment. Without clear expectations for
individual contributions, students can be confused about their task as-
signments.

• Time management: Managing project timelines and deadlines can be
challenging when team members have conflicting schedules or varying
availability. Poor time management can lead to rushed work, compro-
mised quality, or missed deadlines.

With the rapid growth of computer science enrollments, student diversity
in backgrounds, expertise, and perspectives has also increased. While this di-
versity can enhance problem-solving and innovation, it further exacerbates the
above problems in teaching team project-based courses. In teaching-oriented
institutions like ours, where there is no graduate program or teaching assis-
tants, the instructor bears the sole responsibility of delivering course materials
(excluding the capstone project course which will be explained later) and man-
aging all teams in a way of micromanagement.

Our primary focus is to ensure effective team functioning and positive team
experiences for our diverse student population. Additionally, we face the chal-
lenges of managing teams, monitoring project progress, and accurately evaluat-
ing individual performance, especially as class sizes continue to grow. Student
teams typically last for a semester long. Voluntary team formation often results
in strong students naturally forming teams together, leaving weaker students
to be assigned or hastily grouped, leading to potential team dysfunction. When
teams consist of students with significant skill gaps, the above problems are
unavoidable. Consequently, these issues result in undesirable learning out-
comes, especially for weaker students who would lose interest in project work,
ultimately leading to project failure at the end.

130

To address these challenges, we have implemented changes in team for-
mation and management. We encourage strong students to form teams with
weaker students and explicitly define team structures, similar to industry prac-
tices, including the roles and responsibilities of each team member. With the
agreement of all team members, a team leader is appointed, who takes re-
sponsibility for managing the team and may receive a higher grade for project
assignments than other team members. These changes provide strong students
with opportunities to develop leadership skills and enable weaker students to
learn from their peers. Teams become easier to manage, and individual student
performance can be more accurately evaluated.

In this paper, we present this new strategy of explicitly characterizing team
structures in team-based project courses. Such a course can be a junior/senior
level software engineering course or a senior capstone project course. Section
2 reviews related work by other researchers. Section 3 provides a description
of the proposed strategy in detail. Section 4 discusses its implementation in
course design. Section 5 presents the preliminary data of learning outcomes
and includes student feedback. Finally, Section 6 summarizes our work, and
suggests future improvements.

2 Related Work

In [1], ABET recognizes the significance of developing students’ teaming skills
in computer science curricula. One of the six major program learning outcomes
identified by ABET is “Function effectively as a member or leader of a team
engaged in activities appropriate to the program’s discipline.” ABET empha-
sizes the need for students to not only work as team members but also as team
leaders in their course activities.

Numerous researchers have explored effective team formation, team per-
formance evaluation, and related factors in software engineering and other
project-based courses. A snapshot of their work is provided in this section.

Presler-Marshall et al. in [7] conducted interviews with students to sum-
marize factors that contribute to team success or failure. They found the
common problems include communicating, setting and adhering to deadlines,
and effectively identifying tasks. Team requests cannot predict a team success
or dysfunction. Dulanga in [2] describes the skillset to be a good team player
from the industry perspective, which includes technical skills, experience, and
soft skills. The author points out that, with effective communication tools in
place, clear roles and responsibilities of each team member are critical.

To form more effectively functioning teams, various approaches have been
experimented. Walker et al. in [11] adopted a special approach in making stu-
dent teams consisting of both traditional and non-traditional students, allow-

131

ing them to learn from each other’s diverse background across multiple courses.
Perez et al in [5] formed small heterogeneous teams where students performed
different tasks and faced different challenges through role rotations and docu-
mentation transfers. Iacob et al. in [3] presented a mentorship scheme as part
of a software engineering course, in which selected undergraduate students
with certain experience as professional software engineers served as mentors
of student teams. They found that this mentorship approach helped students
perform better in teams led by mentors.

Studies on assessment and surveys have further helped our understanding of
important factors that make student teams successful. Sims-Knight et al. in [9]
developed a self-report assessment tool to evaluate students’ teaming practices
and provide guidance for improvement. Presler-Marshall et al. in [6] proposed
a set of weekly surveys to identify struggling teams, enabling early proactive
intervention by teaching staff. Moreover, Oakley et al in [4] describes a guide to
the effective design and management of team assignments in a college classroom
which includes using various forms and peer ratings to interact frequently with
team members. Tafliovich et al. in [10] investigated student preferences in
evaluations and provided useful insights to tailor questions for student self and
peer evaluations.

In most cases, as in our previous practice, student teams are not formally
structured nor explicit guidelines for team structures are given. We decided to
make changes by explicitly characterizing team structures and clarifying the
roles and responsibilities of each team member, as discussed in the next section.

3 Strategy of Characterizing Team Structures

According to Scratch [8], there are three basic team structures in software
engineering:

1. Chief programmer team structure – The chief programmer serves the key
person who oversees all team activities, from technical tasks to manage-
rial issues. This individual possesses sufficient knowledge to develop a
project plan, assign tasks, and not only writes their own code but also
assists others in completing their tasks. This team structure places ex-
ceptional expectations on the chief programmer, and the project success
heavily relies on the individual.

2. Democratic team structure – In this structure, all team members play
equal roles in the development process. There is no hierarchical rela-
tionship, and each member takes responsibility for their own code. The
team views the entire project as a collective effort, and bugs are shared
responsibilities. Team members collaborate in planning the project and

132

contribute equally to its success. Typically, it requires team members to
have similar levels of technical skills and collaborative skills.

3. Hybrid team structure – This team structure combines the advantages
and disadvantages of the previous two approaches. It separates technical
and managerial responsibilities, with project leader handling technical
issues and a project manager managing managerial aspects.

In our practice, since students are working as a relatively small group,
typically three members but occasionally two or four, we slightly modify the
above team structures to simplify them into two types:

1. With a Team Leader: An individual student is appointed as the team
leader, who takes the responsibility for managing project timelines, as-
signing tasks to other team members, scheduling/presiding team meet-
ings, monitoring each member’s work progress to report to the instructor,
and providing assistance when needed.

2. Without a Team Leader: The team of this type operates in a democratic
manner without a designated leader. All members are expected to make
equal contributions to the project and share the same responsibility for its
progress. Grades for project assignments are distributed equally among
all team members.

The purpose of this change is to mitigate the aforementioned problems and
to create more efficient student teams working on a semester-long project. We
believe that:

• Strong students not only learn from working on the project but also
develop their leadership abilities in a team environment. By assuming the
role of a team leader or chief programmer, these students are responsible
for project management tasks such as task scheduling and assignment.
They can also learn better from helping others.

• Weaker students receive more direct help from their peers. With clearly
defined roles and task assignments, their responsibilities are clearer. This
has shown noticeable improvements in their engagement and the likeli-
hood of their project failure is decreased significantly.

• For other students who work in a democratic team or without a desig-
nated leader have reported greater enjoyment during their work, since
they have asserted the initial characterization process and feel more con-
fident about their development process.

133

4 Implementation in Course Design

Our curriculum includes two required team project-based courses: software
engineering and senior (capstone) project. Unlike some other institutions, the
capstone project course is not a follow-up to the software engineering course
due to resource restrictions. Instead, students choose different project topics
from a wide range of research areas representing other faculty’s specialities
within the department. While a team can select a faculty member as their
project advisor, all teams are managed (and/or advised) by the instructor.

In both courses, students are required to introduce themselves at the begin-
ning of the semester, providing individual background, project interests, collab-
orative personality, availability during the semester, and expectations for their
team partners. When forming teams, students’ preferences are considered, but
strong students are encouraged or sometimes assigned to partner with weaker
students, who may be appointed as a team leader. After a brief training on
industry team structures, each team is required to reach an agreement on their
team structure type and document it for the instructor’s reference.

In the software engineering course, the entire class works on the same soft-
ware development project but in different teams. Students begin working on
the project typically from the third or fourth week after forming teams during
the initial weeks, concurrently covering fundamental concepts throughout the
semester. The instructor provides the project description. The project consists
of three submissions representing different stages of software development: re-
quirements/analysis, design, and implementation. At the end of the course,
each team presents their work in class.

For teams with a team leader, the team leader takes on responsibilities
such as scheduling team meetings, assigning tasks to members, providing over-
all project architecture design, and managing integration testing during the
implementation stage. In teams without a team leader, all members share
the workload based on their assigned tasks, which may shift over time and in
different cases.

In the senior capstone project course, teams work on different projects se-
lected from an established project pool representing other faculty’s specialities,
with priority given to grant-supported projects. Students usually complete the
team formation process within the first two weeks to allow sufficient time to
work on their projects, which often involve learning brand new areas. Project
deliverables include a project proposal, midterm and final reports, and a group
weekly blog documenting all team activities. At the end of the course, a project
presentation is given, with all department faculty invited to participate in the
evaluation.

For teams with a team leader in the capstone project course, the team
leader assumes a key role in the project. This individual creates the project

134

plan, assigns tasks to members, sets up team meetings, and manages other
team activities. Other members take on tasks assigned by the leader and report
their progress. While documentation is not as formalized as in the software
engineering course, students are reminded of the importance of documentation
through team blogs or group journals. Sometimes a team leader is advised
to designate a member specifically responsible for documentation. In some
cases, a team leader may focus solely on the technical aspects while assigning
managerial roles (such as blogging or meeting recordings) to another team
member. This approach resembles the hybrid team structure described in
Section 3. Grading each team member’s project should reflect their individual
contributions with this context.

For a team without a team leader, all members are expected to share the
work, similar to the software engineering course. In this type of team, each
team member must contribute to the group journal to reflect their individual
contributions.

If a team structure is not working out after a few weeks, a democratic team
may request to be converted into a leader team. In such cases, the team can
meet with the instructor to review their activities, evaluate their progress, and
make changes to the team structure if necessary.

5 Preliminary Data and Student Feedback

By utilizing this new strategy to work on a semester long project, we have
noticed a positive impact on student performance. Students have shown im-
proved efficiency in team working environments. Strong students have devel-
oped leadership skills in addition to achieving better learning outcomes from
helping others. Weaker students have become more engaged in all team activ-
ities as they may receive quicker help from peers when needed, leading to a
decreased likelihood of project failure.

To assess the effectiveness of this approach, we have collected assessment
data from three software engineering classes in Table 1. The assessment form
is similar to our report for ABET accreditation in PLO 6: Students can work
efficiently as a team member or a team leader in a team environment. We
have data from the semester before implementing this approach (shown in
regular font) and data from the semester afterwards (shown in bold). The
data indicates improved passing rates and a decrease in the failing rate.

We did not collect data from the senior capstone course, due to the fact
that the course is offered twice a year so the class size is small, making the data
less meaningful. However, we can provide some quotes from students’ feedback
before and after implementing this approach.

Before, more like these –

135

Table 1: Team Assessment Data for Software Engineering

of Good= Proficient= Pass= Fail=
Semester Teams exceeds+ meets+ e+ doesn’t meet+

meets marginal m+m not attempt
F20 9 77.78% 40.74% 91.36% 8.64%
F21 7 70% 35% 90% 10%
F22 8 86.67% 58.6% 94.67% 5.33%

• “Difficult to work with partners who are not on the same technical level as
you and it is difficult managing between teaching them basics and putting
together a complex project. Why should I teach them?”

• “My teammates brought little contributions to the project. I wish they
would have put the same amount of effort into the project as I did.
...They really didn’t attempt to do anything until the last couple weeks of
the semester and in doing so forced me to finish the project in a rushed
manner, that made our project look worse than it could have been.”

After, more like these (clearly, some from a leader team and some from a
democratic team)–

• “She was excellent and knowledgeable on the project. She’s a pro. She
was our leader! I am glad I got a lot of help from her so I can pass the
course.”

• “XXX was the technical backbone of this project. I mostly had to catch
up to him. He is a true project leader.”

• “I stayed open to suggestions and led the assignment when I needed to.
I tried to learn as much as I could so I could pass down my research to
other students of the group.”

• “YYY can hold his own weight when it comes to splitting our large as-
signments into smaller parts. I would say he did a great job of explaining
what kind of content we need to produce using examples from the class
textbook. ...Respectively, YYY has good leadership skills when my team
and I were working on this project.”

• “Incredible teammate. We went into this project with no experience to-
wards our project and in the end we gained a lot more hands on experience
from working with our team by learning from each other.”

136

6 Summary and Future Work

In today’s computing-related job markets, teamwork skills have become in-
creasingly important. It is crucial to train students to be effective team mem-
bers or leaders as part of any computer science curriculum. ABET has recog-
nized the significance of team assessment as one of six major program learning
outcomes. Therefore, it is essential to emphasize the development of students’
collaborative skills in project-based courses, preparing them for the workforce
and bridging the gap between classroom experiences and real-world professional
settings.

Based on our teaching experience, we propose a strategy to explicitly de-
fine team structures that mirror industry practices, enabling student teams to
work effectively and efficiently. By clearly defining the roles and responsibil-
ities of team members, students gain a clear understanding of their specific
contributions as team players. This approach accommodates students with
diverse backgrounds and expectations by tailoring learning objectives accord-
ingly. Strong students are given opportunities to develop their leadership skills
through project planning, task management, and mentoring others. Weaker
students receive more accessible support from peers or team leaders, resulting in
increased engagement in project activities and improved project grades. By ex-
plicitly specifying the roles of team members, task assignments become clearer,
enabling the instructor to better manage teams, monitor project progress, and
evaluate individual performance more accurately. In teams without a desig-
nated leader, students practice software development as egoless roles. As they
assert their equal roles within the team, they typically enjoy working together
and report positive team experiences.

Future work includes continuing implementation of this strategy and col-
lecting additional data for analysis and comparison. As we have observed that
team performance may sometimes deviate from the initially defined structure,
it is important to explore how to effectively adapt team structures in the mid-
dle of the semester. Addressing this aspect warrants further attention and
investigation.

References

[1] ABET. ABET criteria for accrediting computing programs, 2023-2024.
https://www.abet.org/accreditation/accreditation-criteria/
criteria-for-accrediting-computing-programs-2023-2024/.

[2] Chameera Dulanga. How to build a great software engineering team.
August 08, 2021, Accessed on June 6, 2023.

137

[3] Claudia Iacob and Shamal Faily. The impact of undergraduate mentorship
on student satisfaction and engagement, teamwork performance, and team
dysfunction in a software engineering group project. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education, page
128–134, 2020.

[4] Barbara Oakley, Richard M Felder, Rebecca Brent, and Imad Elhajj.
Turning student groups into effective teams. Journal of student centered
learning, 2(1):9–34, 2004.

[5] Beatriz Pérez and Ángel L Rubio. A project-based learning approach
for enhancing learning skills and motivation in software engineering. In
Proceedings of the 51st ACM technical symposium on computer science
education, pages 309–315, 2020.

[6] Kai Presler-Marshall, Sarah Heckman, and Kathryn T Stolee. Identifying
struggling teams in software engineering courses through weekly surveys.
In Proceedings of the 53rd ACM Technical Symposium on Computer Sci-
ence Education V. 1, pages 126–132, 2022.

[7] Kai Presler-Marshall, Sarah Heckman, and Kathryn T Stolee. What makes
team[s] work? a study of team characteristics in software engineering
projects. In Proceedings of the 2022 ACM Conference on International
Computing Education Research-Volume 1, pages 177–188, 2022.

[8] Stephen R Schach. Object-oriented and classical software engineering,
volume 8. McGraw-Hill New York, 2010.

[9] Judith E Sims-Knight, Richard L Upchurch, TA Powers, Sara Haden, and
Raluca Topciu. Teams in software engineering education. In 32nd Annual
Frontiers in Education, volume 3, pages S3G–S3G. IEEE, 2002.

[10] Anya Tafliovich, Andrew Petersen, and Jennifer Campbell. Evaluating
student teams: Do educators know what students think? In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education,
pages 181–186, 2016.

[11] Ellen L Walker and Oberta A Slotterbeck. Incorporating realistic team-
work into a small college software engineering curriculum. Journal of
computing sciences in colleges, 17(6):115–123, 2002.

138

The CTEEAM Process in Practice: An
Evaluation of Its Role in Digital

Forensics Education ∗

Barry Bruster, Joseph Elarde, Mir Hansen
Austin Peay State University

Clarksville, TN 37044
{brusterbg, elardej, hasanm}@apsu.edu

Abstract

Digital forensics investigations often involve processing vast amounts
of evidence and navigating the potential impact of cognitive biases. The
CTEEAM (Critical Thinking, Ethical, Evidence, Analysis, Management)
process presents an approach for structuring and organizing digital foren-
sics investigations, enabling better evidence management, and reducing
biases. This paper explores the implementation of the CTEEAM process
in two different case studies involving undergraduate and graduate stu-
dents. It also presents the results of a student feedback survey assessing
how the CTEEAM process aided students in organizing evidence, dis-
covering essential evidence items, and mitigating cognitive biases. The
findings suggest that the CTEEAM process holds promise for improv-
ing digital forensics pedagogy and enhancing the discernment of valid
information in the context of cybersecurity.

1 Introduction

Digital forensics has emerged as a key component in law enforcement and cor-
porate incident response teams due to an increasing prevalence of cybercrime
and policy violations. The abundance of digital devices and internet use has
led to a crime surge, leaving a digital footprint [7], making digital forensics
specialists more critical than ever. They are now more than ever tasked with

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

139

acquiring, extracting, validating, analyzing, and reporting digital evidence to
solve cases and protect organizations from cyber threats. However, this rapid
growth of digital evidence poses significant challenges for investigators and
students who must process vast, sometimes conflicting, evidence reliably and
without bias. Unfortunately, traditional educational resources often lack guid-
ance on effectively organizing and analyzing evidence, potentially leading to
confirmation bias and compromised case integrity.

Given these challenges, there is a pressing need for a comprehensive, sys-
tematic, and science-driven process that considers ethical aspects and counters
cognitive biases [6, 2]. Within an educational context, this paper focuses on
enhancing students' ability to organize and analyze evidence through criti-
cal thinking effectively. The proposed solution is incorporating the CTEEAM
process (Critical Thinking Ethical Evidence Analysis Management) into un-
dergraduate and graduate Digital Forensics course pedagogy. This process will
be presented through two classroom case studies in this paper.

The structure of our paper is as follows: Section 2 overviews a proposed
process solution called CTEEAM (Critical Thinking Ethical Evidence Analysis
Management) that we have incorporated into our undergraduate and graduate
Digital Forensics courses' pedagogy. This section also details the implemen-
tation of the process and presents a case study example. Section 3 outlines
our evaluation methods, while Section 4 presents the results of our evaluation.
Section 5 discusses the findings, and finally, Section 5 provides a summary,
conclusions, and recommendations for future research.

2 The CTEEAM Process

The CTEEAM (Critical Thinking Ethical Evidence Analysis Management)
process is designed to enhance digital forensics case investigations, addressing
limitations in traditional course materials. Existing resources often fail to pro-
vide adequate guidance on evidence organization and bias reduction, hence the
need for a method like CTEEAM. This process involves critical thinking, ethics,
analysis, and management. It encourages scientific thinking while acknowledg-
ing potential biases strives for a balanced investigation of incriminating and
exculpatory evidence, employs a systematic method with assigned metrics, and
uses a spreadsheet to collect and organize case information.

CTEEAM enables students to navigate investigations effectively by assign-
ing strength, relevance, and source quality metrics to evidence. This ap-
proach mirrors the creation of a qualitative risk assessment matrix, but in
CTEEAM, a three-dimensional "magic cube" structure is created from evi-
dence strength, relevance, and source quality metrics. The process includes
various evidence organization techniques like timelines [4], social connections

140

[5, 1], means-motive-opportunity (MMO), and evidence categorization, aiding
students in case comprehension. The procedure commences with case adminis-
trative information collection, followed by hypothesis development and active
evidence-seeking. Key evidence is often highlighted after documenting it in
the CTEEAM spreadsheet, revealing critical insights or indicating a need for
further evidence collection.

2.1 Process Overview

The CTEEAM process is summarized as follows:

• Identify the main problem, question, and case administrative informa-
tion.

• Develop a list of hypotheses, probabilities, and associated narratives to
explain the main problem or question.

• Identify and list potential cognitive biases.

• Design the overall investigation plan.

• Segment problem/question into subordinate problems/questions if needed.

• Execute the investigation plan by examining and collecting evidence to
support and refute hypotheses or subordinate questions.

• Reassess hypothesis probabilities.

• Reassess ethical assessment expectations, reviewing ethical considera-
tions to ensure that incriminating and exculpatory evidence is docu-
mented.

• Conduct a root cause assessment.

• Review the investigation plan and ensure essential evidence items are
captured, explained, and included in the case report.

In essence, the CTEEAM process offers a systematic method for students to
examine digital forensics cases, involving hypothesis development, probability
assignment, narrative writing, evidence collection and analysis, and ethical
review. This enhances students' case understanding and leads to robust, well-
backed conclusions.

141

2.2 Case Study Class Exercises

In Sections 2.2.1 and 2.2.2, we'll explore how the CTEEAM process was imple-
mented in our Digital Forensics course through two case studies. Case study 1
highlights CTEEAM's use in a lecture and lab activity, demonstrating its prac-
ticality. Case study 2 depicts the process's incorporation into a gamified group
activity, promoting collaboration and critical thinking. The CTEEAM process
was also applied in individual homework assignments, allowing for independent
case analyses. These varied applications underscore CTEEAM's versatility and
effectiveness across different educational scenarios.

2.2.1 Case Study-1: Jane & Doug Case

In the first case study, students engaged in a multi-week murder mystery, the
Jane and Doug Case. It involved physical and digital evidence and was struc-
tured with plot twists to keep student engagement high. Students assessed
various types of evidence, developed hypotheses, and crafted narratives, learn-
ing the importance of critical analysis and avoiding premature conclusions.
The aim was to illustrate how the CTEEAM process facilitates comprehen-
sive, bias-free case building. Prior to beginning the case, students received
instruction on the types of evidence and standards of proof.

The case unfolded in three parts – The Initial Investigation, Jane's Interro-
gation, and The Stamp Dealer, each presenting fresh evidence for assessment
and discussion. These interactive sessions culminated in students document-
ing evidence types, crafting event timelines, and evaluating the case's strength.
Following these debates, the instructor illustrated the CTEEAM process, show-
ing its effectiveness in revealing pivotal evidence items for a case report. The
case study showcased how CTEEAM can be instrumental in organizing, as-
sessing, and evaluating evidence in complex digital forensics cases. Evidence
was provided to students clearly and organized, step-by-step, to increase en-
gagement and add drama to the activity. The evidence is as follows:

Part 1: Initial Investigation

• E1: Jane and Doug were heard fighting by Doug's neighbor on the morn-
ing of 9/25/2021. Jane was observed driving off.

• E2: Doug's neighbor, Jack, testified that he saw someone who looked
like Jane at Doug's home on the night of 10/1/2021. It was dark and
foggy.

• E3: Jack couldn't reach Doug after seeing his door open, he called the
police.

• E4: Doug was found dead on his kitchen floor, poisoned.

142

• E5: Investigators found Jane's fingerprints inside Doug's house.

• E6: Investigators discovered an email sent by Jane on 9/26/2021, angrily
attacking Doug for cheating on her.

• E7: Investigators found an email sent by Jane on 9/27/2021 threatening
suicide.

• E8: Jane's web search history on 9/27/2021 included a search for poisons.

• E9: Investigators discovered a reply from Doug on 9/28/2021, apologiz-
ing and expressing his love for Jane and admitting he was ill with the
flu.

Part 2: Jane's Interrogation

• E10: Under interrogation, Jane stated she visited Doug around 7:00 pm
on 10/1, and they reconciled. He was fine when she left at 8:00 pm.

• E11: Jane forgot her cell phone at home on 10/1.

• E12: Jill, another neighbor, saw someone leave Doug's home at 10:00
pm.

• E13: Jane purchased gas at 9:30 pm near her home (35 minutes from
Doug's).

• E14: Jill contacted investigators a day after being canvassed. She re-
called the car was a dark blue Mercedes or Audi, but it was dark and
foggy.

• E15: Jane drives a black Lexus 440 sedan.

• E16: Doug texted Debbie at 8:05 pm, ending their relationship.

• E17: Debbie drives a black Audi.

• E18: Debbie was found dead from poison, with a hand-printed suicide
note.

• E19: Debbie's neighbor, Fred, thought he saw a visitor parked in her
driveway at 11:00 pm.

• E20: Doug's time of death was approximately 9:00 pm.

• E21: Debbie's time of death was 11:30 pm.

• E22: Both died from the same poison.

143

• E23: Tom, Doug's brother, was stricken with grief upon learning of
Doug's death.

• E24: Investigators noticed an object missing from Doug's wall - a prized
stamp in Doug's collection.

Part 3: The Stamp Dealer

• E25: A call came in on Doug's landline from a stamp dealer who managed
the sale of a rare Canada Two Cent Large Queen stamp.

• E26: The dealer confirmed the bank transfer information for the sale
and mentioned a Swiss bank account number (931-340-7301).

• E27: The poison was injected into a bottle of 2016 Château Pape Clé-
ment Pessac-Léognan (Cabernet Sauvignon).

• E28: The wine bottle at Doug's home was wiped clean.

• E29: The same type of wine was found at Debbie's home with one print,
not Debbie's.

• E30: Jack's cell phone records were obtained through a search warrant.

• E31: Records showed that Jack was at Debbie's home on the night of
her death.

• E32: Fred, Debbie's neighbor, reviewed his security camera footage and
reported the license plate number, which matched a Hertz rental car
rented on the night of Debbie's murder.

• E33: A detective confirmed with the Hertz agent that Jack had rented
the vehicle.

• E34: Searching Jack's home found the same wine and poison used in
both deaths.

• E35: The fingerprint on the wine bottle found at Debbie's home matched
the one found at Jack's home.

• E36: A web search on Jack's computer showed he was looking for hotels
in Mexico.

Students were provided time to discuss the evidence in small groups and
answer case questions for each part. They assessed the type of evidence ac-
quired, the timeline of events, and whether a strong case could be made for
the prime suspect (first Jane, then Jack) beyond a reasonable doubt. The
CTEEAM process was used to examine the evidence throughout the exercise.

144

2.2.2 Case Study-2 M57-Jean Case Role Play Exercise

In this case study, students were given the M57-Jean Exfiltration case [3] sce-
nario and divided into three teams. Each team had specific roles and responsi-
bilities, and the exercise was conducted in several timed rounds to simulate the
process of a real-world investigation. This exercise aimed to develop student
skills in digital forensics investigations, enhance their understanding of team
collaboration, and emphasize the importance of proper evidence management.

The M57-Jean Exfiltration case scenario was introduced to the class, with
two image files available to investigate. Students were divided into teams, with
each team member assigned a specific role:

• Lead investigator (manager, decision-maker)

• Digital Forensics Investigators (responsible for extracting evidence)

• Document Specialist (responsible for publishing the standard report)

• CTEEAM Specialist (responsible for updating the CTEEAM spread-
sheet)

The Investigation part of the exercise was conducted in several timed rounds,
each with a specific purpose.

• Organization and Planning Round (Round 1): In this 15-minute
round, teams developed an initial list of hypotheses, created an inves-
tigation plan, and documented ethical biases. The deliverables for this
round included a professional report with research questions, hypotheses,
an investigation plan, and ethical considerations. Points were awarded
for the speed and quality of the report (3 points for first place, 2 points
for second place, 1 point for third place).

• Evidence Extraction Rounds (Rounds 2-3): In these 15-minute
rounds, Digital Forensics Investigators extracted evidence using tools
such as Autopsy, OSForensics, and FTK Imager. When notable evidence
was discovered, it was tagged, commented on, and captured. Digital
Forensics Investigators then emailed the evidence to their team mem-
bers, with the email timestamp determining the placement of the evi-
dence. Points were awarded for the evidence extracted (3 points for first
place, 2 points for second place, 1 point for third place). The lead inves-
tigator documented the evidence on the whiteboard while the Document
Specialist and CTEEAM Specialist updated their respective documents.

• Report Generation Round (Round 4): In this 15-minute round,
teams documented their conclusions and opinions in a standard report.

145

The goal was to provide a clear and concise summary of the evidence
collected and present a well-supported hypothesis. Reports with well-
structured timelines [4] and connection diagrams received two additional
points each. Points were awarded for the correct solution, with a bonus
for finding additional evidence indicating another crime. The report and
CTEEAM spreadsheet were emailed to the instructor. The correct solu-
tion received 10 points, and the bonus points were 5 points.

The exercise aimed to develop and improve students' skills in digital foren-
sics investigations and enhance their understanding of proper evidence man-
agement and teamwork. The engaging and competitive nature of the exercise
provided students with an informative and enjoyable learning experience.

3 Methods

To evaluate the effectiveness of the CTEEAM process in digital forensics ed-
ucation, we conducted a two-pronged approach involving both in-class un-
dergraduate students and graduate cybersecurity seminar participants. This
evaluation process assessed the applicability and usefulness of the CTEEAM
process in different educational settings and student groups by using a Likert
survey containing the following questions:

• Q1: To what extent do you agree that the CTEEAM process helped you
organize your evidence effectively during the case studies?"

• Q2: How strongly do you agree that the CTEEAM process assisted you
in discovering key evidence items for your case reports?"

• Q3: How strongly do you agree that the timeline, social network, and
magic quadrant diagrams included in the CTEEAM process helped you
visualize important evidence and connections?"

• Q4: To what extent do you agree that the CTEEAM process helped you
consider and avoid cognitive biases such as confirmation bias during the
investigations?

• Q5: To what extent do you agree that the CTEEAM process effectively
contributed to your overall understanding of digital forensics investigation
and evidence management?

The survey aimed to assess various aspects of the CTEEAM process, such as
its ability to help organize evidence, discover essential evidence items, consider
and avoid cognitive biases, and visualize important evidence through various
diagrams.

146

4 Results

In this section, we present the results of the survey conducted among two
distinct groups: in-class undergraduate students and graduate seminar stu-
dents. For the in-class undergraduate students, the survey results for questions
1-5 (Q1-Q5) are shown in Figure 1.

Figure 1: Undergraduate Student CTEEAM Evaluation Survey

The results for question (Q1) indicate that 100% of the students found
the CTEEAM process helpful in organizing evidence. At the same time, 78%
agreed or strongly agreed that the process assisted in discovering new evidence
items (Q2). Regarding the recommended process visualization charts, 89%
indicated they helped visualize important evidence items (Q3). When asked
if the process helped consider and avoid cognitive biases, 100% of the under-
graduates agreed or strongly agreed. Moreover, for the overall effectiveness
question (Q5), 78% of the students strongly agreed the process was effective.

Similarly, For the in-class graduate seminar students, the survey results for
questions 1-5 (Q1-Q5) are shown in Figure 2. The results for question (Q1)
indicate that 100% of the students found the CTEEAM process helped organize
evidence. Moreover, all graduate students agreed or strongly agreed the process
assisted in discovering new evidence items (Q2), although only 17% strongly
agreed. Regarding the recommended process visualization charts, 100% agreed
or strongly agreed that the visualizations helped identify important evidence
items (Q3). When asked if the process helped consider and avoid cognitive
biases, 100% of the graduates agreed or strongly agreed. And finally, for the
overall effectiveness question (Q5), 67% of the students strongly agreed that

147

Figure 2: Graduate Students CTEEAM Evaluation Survey

the process was effective.

5 Discussion

This section interprets the CTEEAM process evaluation survey results from
14 undergraduate and 30 graduate seminar students. The findings indicate
a positive reception of the CTEEAM process in digital forensics education,
though given the small sample size, they are suggestive rather than definitive.

Undergraduate students unanimously agreed that the CTEEAM process
helps organize evidence (Q1) and mitigate cognitive biases (Q4), suggesting its
effectiveness in structuring evidence and maintaining objectivity. Moreover,
78% found it useful in discovering new evidence items (Q2), and 89% agreed
that the process visualization charts helped visualize crucial evidence and con-
nections (Q3), indicating the potential of CTEEAM in unearthing additional
key evidence items and understanding complex data structures.

Similarly, graduate students agreed on the utility of the CTEEAM process
in organizing evidence (Q1), discovering new evidence items (Q2), and identi-
fying crucial evidence through visual tools (Q3). However, only 17% strongly
agreed on the process's role in discovering new evidence items (Q2), and 67%
strongly agreed about its overall effectiveness (Q5), suggesting potential areas
for improvement for advanced students.

148

References

[1] Social network analysis. Technical report, Home Office of the United King-
dom of Great Britian, 1 2016.

[2] Digital forensics experts prone to bias, study shows, 5 2021.

[3] Simon Garfinkel. Digital corpora: 2009 m57-jean.

[4] Christa Miller. Timelines in digital forensic investigation: From investiag-
tion to court, 9 2020.

[5] Martin Mulazzani, Markus Huber, and Edgar Weippl. Social network foren-
sics: Tapping the data pool of social networks. In Eighth Annual IFIP WG,
volume 11, page 1Ű20. Citeseer, 2012.

[6] Nina Sunde and Itiel E. Dror. A hierarchy of expert performance (hep)
applied to digital forensics: Reliability and biasability in digital foren-
sics decision making. Forensic Science International: Digital Investigation,
37:301175, 2021.

[7] David Williams. Discover how technology helps manage the growth in
digitial evidence, 9 2022.

149

Effectiveness of Using Game
Development in CS1: Faculty-Led or

Peer Created Video-Based?∗

Xin Xu, Wei Jin, Hyesung Park, Evelyn Brannock
Department of Information Technology

Georgia Gwinnett College
Lawrenceville, GA 30043

{xxu, wjin, hpark7, ebrannoc}@ggc.edu

Abstract

Many studies have shown that introductory programming courses
are challenging and tend to have a low passing rate. In this project, the
authors investigated the effectiveness of using peer-recorded game de-
velopment videos in helping students learn Programming Fundamentals
(CS1). The project idea is inspired by the positive result from spring 2021
where four IT faculty members adopted the game development modules
in their programming courses. In spring 2023, the video-based work-
shops were piloted. In this paper, the authors will report the result of
this pilot study and compare the result of the video-based workshop to
the faculty-led PowerPoint (PPT)-based workshop in spring 2021.

1 Introduction

The current job market remains excellent for IT/CS majors as these careers are
among the fastest-growing job categories. According to the US Bureau of Labor
Statistics Occupational Outlook Handbook, overall employment in computer
and information technology occupations is projected to grow 15% from 2021
to 2031. About 418,500 openings each year, on average, are projected to come
from growth and replacement needs [16].

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

150

Despite the ever-increasing demands for a workforce with strong program-
ming skills, many students are notably deficient in these skills[3]. The CS1
fundamental programming language course provides foundational knowledge
and serves as a gateway course for high-level IT/CS courses at most schools.
Unfortunately, this course has a high DFW rate. At the authors’ institution,
the CS1 course had a DFW rate ranging from 36% to 51% in different semesters.
In contrast, the DFW rate was only 22% for other IT/CS courses. It is crucial
to provide students with the right motivation in addition to technical skills
and to increase the retention rate. This project was developed with the goal
of utilizing engaging, active learning teaching methods to improve the student
learning experience and lower the student failure rate in the CS1 class. The
initial work started in AY 19-20 with the recruiting of peer students to develop
games, and conduct workshops to guide other students to build the same game.
In summer and fall 2020, faculty revised the workshop materials and adopted
the workshop modules in spring 2021. In AY 22-23, video tutorials for these
workshops were developed and adopted in spring 2023.

In the rest of the paper, the authors will present related work in Section
2, and share the history and the different implementation approaches of the
project in Section 3. Section 4 compares the results of the two workshop
approaches: faculty-led PPT-based and video-based. Finally, in Section 5, the
advantages and disadvantages of the two approaches were discussed.

2 Related Work

Numerous universities and colleges, including research institutions and open
access colleges, are facing declining retention rates, commonly referred to as
the “storm” effect on higher education [13, 14]. Thus, improving student re-
tention and motivation has become crucial for academic success and student
achievement. Over the past decade, several studies have examined different
approaches that focus on engagement, empowerment and adaptive learning
environments. Engagement-based strategies, like collaborative learning and
real-world applications, have been shown to enhance motivation and Retention
[12, 5, 11, 4]. Empowering students is another effective strategy for motivation
and retention [8]. This approach involves students in decision-making, pro-
moting autonomy, and providing personalized feedback. Autonomy-supportive
classrooms enhance intrinsic motivation and academic achievement [15]. Xu
and Recker [17] conducted research on using AI and machine learning to per-
sonalize the learning experience and improve retention rates that can adapt to
each student’s needs.

Game development as a teaching tool for programming has gained traction,
providing benefits such as increased engagement, improved problem-solving

151

skills, and a broader understanding of programming concepts [1, 2, 6, 7, 9,
10]. It motivates students through interactive and entertaining experiences,
enhances problem-solving abilities, and prepares students for future careers.

3 Project Description

This project is a continuation of two previous projects. In the first project,
students were hired as peer mentors to develop computer games (i.e., Flappy
Birds) using Processing, a graphical programming environment based on Java.
They also created workshops using step-by-step PowerPoint-based instructions,
and conducted them in introductory programming classes taught using Java.
However, the project was interrupted by the pandemic after the first in-person
workshop. But the preliminary results showed the workshops were effective in
motivating students to learn programming.

In the next project, faculty improved the student-created workshop modules
utilizing their combined teaching and coding expertise. In spring 2021, each
faculty adopted one set of workshops in their section(s) of the programming
course. Despite the fact the school was still in the pandemic and some sections
were online, the results were very encouraging. Students showed better atti-
tudes toward the programming class, an improved curiosity and motivation for
learning. However, it is challenging to promote the workshop modules among
faculty since it requires training in Processing and modification of the teaching
schedule to include the workshops.

This challenge motivated the authors to expand the project to include peers
at one more subsequent level. In fall 2022, four IT peers were recruited to con-
vert the PPT based workshop instructions into video-based workshop tutorials
that could be assigned to students outside of the classroom. To ensure their
suitability for the task, faculty members recommended students who completed
gateway courses, and interviews were conducted to assess their capability to
follow directions and successfully complete the project. The peers did all the
video recordings and editing, and sometimes modification based on faculty
feedback. In spring 2023, students in several sections of CS1 were assigned to
develop the Circle Dodge game following a series of video-guided workshops,
covering all major CS1 concepts. In each workshop, students were provided
starter code. and a video in which the peer mentor explained the related pro-
gramming concepts, in addition to demonstrating the code to add. This paper
presents the pilot study comparing peer-created video tutorials to faculty-led
PPT presentation-based workshop.

152

4 Project Evaluation

In spring 2021, the authors received 159 survey responses, composed of 77.35%
male and 17.61% female. For the pilot study in spring 2023, 29 responses
were received with 58.62% male and 37.93% female. For the discussion below,
the authors will mark our previous project, the faculty-led PowerPoint-based
workshops conducted in spring 2021 as Group 1 or G1, and this new project, the
video-based peer-led workshop assignment for the second half of the semester,
as Group 2 or G2. The race/ethnicity distribution of G1 and G2 is shown in
Figure 1. This section shares the survey results of the students’ feedback on
their workshop experience, and the motivational factors for increased curiosity
about programming and IT.

Figure 1: Race Distribution of G1 and G2

4.1 Analysis of Workshop Experience

In both G1 and G2, feedback on the following questions was gathered from
students’ workshop experience. A 5-point scale was used, with 5 representing
strongly agree and 1 representing fully disagree. The parenthesized words are
matching with the legend used in the charts:

• Did you find yourself engaged during the game development process?
(engaged)

• Do you think the fact that the game was developed by previous students
motivates you to develop similar projects? (motivated)

• Did you learn anything new from this workshop? (learned something
new)

• Would you like to have more of this type of workshop as part of a standard
programming class? (would like to have more)

• Did you enjoy the overall experience of developing a game using Process-
ing? (enjoyed)

As shown in Figure 2, overall, students enjoyed the game development
process and learned something new regardless of the workshop format (with

153

Figure 2: Analysis of Workshop Experience (G1 vs. G2)

both ratings above 4.2). However, G1 has a higher rating in engagement and is
better motivated by the fact that peers developed the game and the workshop
tutorials. The largest dissimilarity was in the response to having more of this
type of workshop. 86% of the students in G1 answered yes (4) or definitely
yes (5) to have more workshops, but in G2, about 66% answered so. Overall,
students in G1 felt better engaged, more motivated by their peers, and therefore
would like to have more game development workshops.

Further analysis on gender revealed that females have almost the same
responses in both workshop formats on all the survey questions (see Figure
3-a). But the change of format from faculty-led PPT style workshop (G1)
to video-based homework style workshop (G2) has a bigger impact on male
students in engagement and motivation. As shown in Figure 3, even though
male students agreed that they learned something new (average 4.21 in G1 and
4.12 in G2), and they enjoyed the game development process (4.22 in G1 and
4.18 in G2), in both workshop formats, their engagement dropped from 4.16
in G1 to 3.76 in G2, and motivation dropped from 4.19 in G1 to 3.71 in G2.
The average rating for having more such workshops dropped from 4.37 in G1
to 3.35 in G2. Even though there is a decline in engagement and motivation,
more than half of the male students in G2 still responded with definitely yes
(5) or yes (4) on having more of such workshops. The result of the t-test
also showed that the difference between these two workshop formats is not
statistically significant(p>0.05).

Analysis of the workshop experience was also conducted on different race/eth-
nicity groups. As shown in Figure 3-b, for Asian students, the overall rating
for all survey questions is above 4.0 for both workshop formats. For Hispanics
(Figure 3-d), an almost identical result was reported on enjoyment, motiva-
tion by the peers, and learned something new in both G1 and G2, and a light
decrease of engagement (from 4.19 to 3.75). For African Americans, they re-

154

Figure 3: Workshop Experience by Gender and Race

ported a higher rating for engagement and motivation by the peers in G1 than
in G2 (see Figure 3-c). Overall, African American and Hispanics would like to
have more faculty-led workshops (average 4.46 and 4.3 in G1) than video-based
workshops (average 3.58 and 3.75 in G2) as shown in Figure 3-c and 3-d. The
comparison of White (non-Hispanic) group was not presented since only two
responses were received from G2.

4.2 Analysis of Motivational Factors

If a student remains curious about programming and IT, it is often true that
they will be motivated to continue learning in this field. So, feedback was
obtained for the question “Did the workshop help you become more curious
about programming and IT” as an indicator for motivation. In this section,
the impact of the workshop format on motivation will be investigated. Factors
were identified that make students become more curious about programming
and IT and hopefully, subsequently, motivated to learn more. Students were
asked to rate the effectiveness of the following statements on a scale from 1 to

155

5 (1 meaning not effective at all and 5 representing very effective).

• This game and workshop were developed by peer students.
• The workshop tutorial was engaging.
• I am able to apply programming concepts in a new environment.
• I am learning a new technology.
• I can be creative with programming.
• It seems not too hard to create a game.
• The workshop tutorial was engaging.

Figure 4: Motivational Analysis (G1 vs. G2)

Figure 4 showed that overall faculty-led workshops have a more positive
result in increasing curiosity than video-based workshops (4.28 vs. 3.87), and
the same for each factor that contributes to curiosity and motivation. However,
being creative and learning a new technology played more important roles
in increasing curiosity than other factors as the rating reached 4.0 or above
regardless of the delivery format.

Figure 5-a showed that the females responded well in both formats but
male students responded better to the faculty-led workshops than video-based
workshops. Further Welch-test results showed none of these differences are
statistically significant (p>0.05).

Analysis on race revealed that Hispanic students have almost the same
responses in both workshop formats (Figure 5-d) with an above 4.0 average
rating on all factors. In other words, they were motivated regardless of the
delivery format. Asian and Black students were better motivated with faculty-
led workshops than video tutorials, and the impact is bigger for Black students
than Asian students (see Figure 5-b and 5-c) but not statistically significant
(p>0.05). Again, the result for White students was not presented since there
were only two responses.

156

Figure 5: Motivational Analysis by Gender and Race

5 Discussion and Conclusion

Overall, students reported a more positive workshop experience for faculty-led
workshops than video-based workshops. The main reason for the difference
could be the immediate feedback supplied in faculty-led workshops. There
seems to be a benefit to direct interaction with faculty (and each other) inside
the classroom (or virtual classroom for online synchronous sections). This
format provides students with immediate responses and explanations to their
questions. Even though faculty-led workshops generate more positive feedback,
the authors also recognize the challenges of implementing the workshops since
they require training for faculty to adopt the workshop modules. Another
challenge is for faculty to modify their already time-pressured teaching schedule
to add this game development component during class time. These challenges
motivated them to develop the video-based workshop tutorials. The primary
advantages of video tutorials for students and/or the instructor are:

• Flexibility: The instructor has the option to use the video workshops
inside or outside of the classroom; therefore, minimizing the impact on the
teaching schedule. The videos can be disseminated repetitively, semester

157

after semester, inside or outside of the classroom, in-person or online.
• Sustainable and easy to implement: The video workshops require virtu-
ally no training for faculty to adopt as all the instructions are provided in
the assignment description, with built-in links for the videos and starter
code. The videos can be re-used and do not rely on the instructor’s spe-
cific expertise, teaching methods or experience level. The videos can help
disseminate the work, easily allowing sharing with other educators and
cross-institutionally to broaden the impact.

For faculty willing to take advantage of both, a hybrid approach is suggested,
for example, having one in-class faculty-led workshop using PPT-based instruc-
tion or the video, but completing the rest outside of the classroom following
the videos. Another factor that might affect the result is the game itself. The
authors only had videos for Circle Dodge completed in spring 2023. Two ad-
ditional sets of videos are now available. They are Flappy Birds and Snake,
which happens to be the games used in G1. In the future, different sets of
videos could be utilized to determine if the current results are dependent on
the particular game deployed and thus affects the outcome.

References

[1] Jessica D Bayliss. Using games in introductory courses: tips from the
trenches. In Proceedings of the 40th ACM technical symposium on Com-
puter science education, pages 337–341, 2009.

[2] Jessica D Bayliss and Sean Strout. Games as a" flavor" of cs1. In Pro-
ceedings of the 37th SIGCSE technical symposium on Computer science
education, pages 500–504, 2006.

[3] Theresa Beaubouef and John Mason. Why the high attrition rate for com-
puter science students: some thoughts and observations. ACM SIGCSE
Bulletin, 37(2):103–106, 2005.

[4] Jan Herrington and Ron Oliver. An instructional design framework for
authentic learning environments. Educational technology research and de-
velopment, pages 23–48, 2000.

[5] David W Johnson and Roger T Johnson. An educational psychology suc-
cess story: Social interdependence theory and cooperative learning. Edu-
cational researcher, 38(5):365–379, 2009.

[6] Yasmin B Kafai. Playing and making games for learning: Instructionist
and constructionist perspectives for game studies. Games and culture,
1(1):36–40, 2006.

158

[7] Fengfeng Ke. A qualitative meta-analysis of computer games as learning
tools. Handbook of research on effective electronic gaming in education,
pages 1–32, 2009.

[8] Martin Klein. Self-determination theory: Basic psychological needs in
motivation, development, and wellness. Sociologicky Casopis, 55(3):412–
413, 2019.

[9] Michael J Lee and Amy J Ko. Personifying programming tool feedback
improves novice programmers’ learning. In Proceedings of the seventh
international workshop on Computing education research, pages 109–116,
2011.

[10] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Eve-
lyn Eastmond. The scratch programming language and environment.
ACM Transactions on Computing Education (TOCE), 10(4):1–15, 2010.

[11] Chris Mayfield, Sukanya Kannan Moudgalya, Aman Yadav, Clif Kuss-
maul, and Helen H Hu. Pogil in cs1: Evidence for student learning and
belonging. In Proceedings of the 53rd ACM Technical Symposium on Com-
puter Science Education V. 1, pages 439–445, 2022.

[12] Laura Mebert, Roy Barnes, Jacqueline Dalley, Leszek Gawarecki, Farnaz
Ghazi-Nezami, Gregory Shafer, Jill Slater, and Erin Yezbick. Fostering
student engagement through a real-world, collaborative project across dis-
ciplines and institutions. Higher Education Pedagogies, 5(1):30–51, 2020.

[13] Michael Nietzel. New data reveal more pandemic fallout: A historic drop
in college persistence rates, 2021.

[14] Oleg V Pavlov and Evangelos Katsamakas. Will colleges survive the
storm of declining enrollments? a computational model. Plos one,
15(8):e0236872, 2020.

[15] Johnmarshall Reeve. Why teachers adopt a controlling motivating style
toward students and how they can become more autonomy supportive.
Educational psychologist, 44(3):159–175, 2009.

[16] Bureau of Labor Statistics U.S. Computer and information technology
occupations. https://www.bls.gov/ooh/computer-and-information-
technology/home.htm.

[17] Beijie Xu and Mimi Recker. Teaching analytics: A clustering and triangu-
lation study of digital library user data. Journal of Educational Technology
& Society, 15(3):103–115, 2012.

159

Designing a No SQL - Non Traditional
Databases Course∗

Conference Tutorial

Karen E. Works
Computer Science

Florida State University
Panama City, FL 32405

keworks@fsu.edu

Abstract

NoSQL is becoming an in-demand required skill for data engineers and devel-
opers. [2] notes that Internet of Things (IOT) applications require workers to
have NOSql skills. In “Why Amazon, Google, Netflix and Facebook Switched
to NoSQL?” [3] Dr. Brock answers the fore-mentioned question by highlighting
that relational databases are no/t designed to support the gargantuan amount
of unstructured data produced nor the exponential growth of such data whereas
NoSql databases are designed to support such environments. According to [1],
“One could say that non-relational DB’s are here to stay, and their popularity
means that employers will be looking for those who are skilled in DBMS like
it.” Hence, to support our students we must teach them NoSQL.

In this tutorial, I will share my experience in designing, developing, and
teaching an elective in NoSQL. I will share both the challenges and rewards
in the hopes that it encourages others to incorporate NoSQL into a course as
well. A variety of resources to develop and teach four different types of NoSQL
databases will be presented.

This tutorial session will provide instructors with an introduction to NoSQL
databases (non-relational databases). Participants will learn the basics of de-
veloping and implementing four types of NoSQL databases (namely, Document-
Oriented, Key-Value Pair, Column-Oriented and Graph) as well as instruc-
tional approaches on teaching each within a course. This will be an active
learning session with demonstrations and discussion activities.

∗Copyright is held by the author/owner.

160

References

[1] This is why you should learn mongodb. https://bootcamp.berkeley.
edu/blog/learn-mongodb-database/. Accessed: 2023-05-02.

[2] Top iot job skills to get jobs in tech. https:/mondo.com/insights/in-
demand-iot-skills/. Accessed: 2023-05-02.

[3] Shannon Block. Why amazon, google, netflix and facebook switched
to nosql? https://www.linkedin.com/pulse/why-amazon-google-
netflix-facebook-switched-nosql-shannon-block-cfe. Accessed:
2023-05-02.

161

Developing Identity-Focused
Program-Level Learning Outcomes for
Liberal Arts Computing Programs∗

Conference Tutorial

Jakob Barnard1, Grant Braught2, Janet Davis3,
Amanda Holland-Minkley4, David Reed5, Karl Schmitt6,

Andrea Tartaro7, James Teresco8

1University of Jamestown, Jamestown, ND 58405
Jakob.Barnard@uj.edu

2Dickinson College, Carlisle, PA 17013
braught@dickinson.edu

3Whitman College, Walla Walla, WA 99362
davisj@whitman.edu

4Washington & Jefferson College, Washington, PA 15317
ahollandminkley@washjeff.edu

5Creighton University, Omaha, NE 68178
DaveReed@creighton.edu

6Trinity Christian College, Palos Heights, IL 60463
Karl.Schmitt@trnty.edu

7Furman University, Greenville, SC 29690
andrea.tartaro@furman.edu

8Siena College, Loudonville, NY 12211
jteresco@siena.edu

Abstract

The SIGCSE Committee on Computing Education in Liberal Arts Colleges
(SIGCSE-LAC Committee) has found that liberal arts and small colleges ap-
proach design of their computing curricula in unique ways that are driven by

∗Copyright is held by the author/owner.

162

institutional mission or departmental identity. This impacts how faculty at
these colleges adopt curricular guidelines such as the current ACM/IEEE-CS
CS20131. The committee is developing guidance, informed by its sessions at
recent CCSC and SIGCSE conferences, to help with the design and/or revision
of CS curricula in liberal arts contexts [1]. This will ultimately be included in
the committee’s article in the Curricular Practices Volume that will be released
as a companion to the new ACM/IEEE-CS/AAAI Computer Science Curricula
guidelines (CS2023)2. Curricular guidelines like CS2013 or CS2023 inform cur-
riculum design but are balanced with the vision for a program, departmental
strengths, locale, student populations and unique academic experiences. The
desire to craft distinctive curricula, combined with the size of prior curricu-
lar recommendations, requires an assessment of tradeoffs between achieving
full coverage of curricular recommendations and a school’s other priorities.
SIGCSE-LAC’s guidance will encourage faculty to reflect on their programs
and the role of CS2023, beginning with their institutional and departmental
priorities, opportunities and constraints. The specific goal of this session is
to help participants develop programlevel learning outcomes that align with
the unique features of their programs. Following an overview and brief dis-
cussion of the newest CS2023 draft, participants will begin working through
a preliminary version of the committee’s reflective assessment process. This
process is framed by a series of scaffolding questions that begin from insti-
tutional and departmental missions, identities, contexts, priorities, initiatives,
opportunities, and constraints. From there, participants will be led to identify
design principles for guiding their curricular choices including the CS2023 rec-
ommendations. Examples gathered from the committee’s previous CCSC and
SIGCSE sessions will be available to help to articulate identity and program
design principles, which will then be used for the identification of identity-
focused program-level learning outcomes. Participants will leave the session
with a better understanding of how CS2023 can impact their programs and
a jumpstart on the entire reflective assessment process. Feedback on the pro-
cess and this session are welcome and will be used to refine the committee’s
guidance prior to its publication in the CS2023 Curricular Practices volume.

Presenter Biographies

Two of the eight co-authors of this session plans to serve as presenters.
Grant Braught is a Professor of Computer Science at Dickinson College.

He is a facilitating member of the SIGCSE-LAC Committee, has organized
committee events focused on curricula and has published widely on issues re-

1https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
2https://csed.acm.org

163

lated to CS education, particularly within the liberal arts. Jim Teresco is
a Professor of Computer Science at Siena College. He has been involved in
CCSC Northeastern for almost 20 years and currently serves as board chair,
and has been involved with the SIGCSE-LAC Committee for 4 years. His
research involves map-based algorithm visualization.

Other Author Biographies

Jakob Barnard is Chair and Assistant Professor of Computer Science &
Technology at the University of Jamestown. He is a member of the SIGCSE-
LAC Committee and his research involves how curricula has been integrated
into Liberal Arts Technology programs. Janet Davis is Microsoft Chair and
Professor of Computer Science at Whitman College, where she serves as the de-
partment’s founding chair. She co-organized SIGCSE pre-symposium events in
2020 and 2021 on behalf of the SIGCSE-LAC Committee. Amanda Holland-
Minkley is a Professor of Computing and Information Studies at Washington
& Jefferson College. Her research explores novel applications of problem-based
pedagogies to CS education at the course and curricular level. She is a facili-
tating member of the SIGCSE-LAC Committee. David Reed is a Professor of
Computer Science and Chair of the Department of Computer Science, Design
& Journalism at Creighton University. He has published widely in CS edu-
cation, including the text A Balanced Introduction to Computer Science, and
served on the CS2013 Computer Science Curricula Task Force. Karl Schmitt
is Chair and Associate Professor of Computing and Data Analytics at Trinity
Christian College. He has served on the ACM Data Science Task Force and
various Computing, Technology, Mathematics Education related committees
for the MAA, ASA and SIAM. His interests explore data science education,
and interdisciplinary education between computing, mathematics, data, and
other fields. Andrea Tartaro is an Associate Professor of Computer Science
at Furman University. Her computer science education research focuses on
the intersections and reciprocal contributions of computer science and the lib-
eral arts, with a focus on broadening participation. She is a member of the
SIGCSE-LAC Committee, and has published and presented in venues including
the CCSC and the SIGCSE Technical Symposium.

References

[1] Amanda Holland-Minkley, Jakob Barnard, Valerie Barr, Grant Braught, Janet Davis,
David Reed, Karl Schmitt, Andrea Tartaro, and James D. Teresco. Computer sci-
ence curriculum guidelines: A new liberal arts perspective. In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 1, SIGCSE 2023, page
617–623, New York, NY, USA, 2023. ACM.

164

Introduction to Non-Functional
Requirements∗

Conference Tutorial

Joe Temple
Department of Computer Sciences

Costal Carolina University
Conway, SC 29528
jtemple@coastal.edu

Abstract

There are three things that motivate this tutorial:

1. I spent the last 2 decades of my time at IBM providing services and
remedial training on the non-programming aspects of IT solutions

2. I became aware of Dr Peter Denning’s work, which lays out framework
for teaching the computing sciences.

3. I became aware of the current work on the next round of curricula guide-
lines being done by a joint IEEE/ACM/AAII committee.

In this tutorial we will start with Denning’s Framework of Practices for
Computing Sciences[1]. Then we will discuss the role of Non-Functional El-
ements (NFEs) in IT. We use the acronym PASSAIC for the NFEs: Perfor-
mance, Availability, Security, Scalability, Anti-fragility, Integrity, Costs. Then
we will show how Performance and Cost combine with functionality (Program-
ming) to create a value proposition. We will show that the “bookends”, Per-
formance and Cost, are driven by the rest of the NFEs. Finally we will dis-
cuss using NFEs as a vehicle for teaching Denning’s Modeling practice. There
is also an appendix that includes definitions of all the NFEs represented by
PASSAIC[2, 3].

∗Copyright is held by the author/owner.

165

References

[1] Peter J. Denning. Great principles of computing. Commun. ACM,
46(11):15–20, 11 2003.

[2] Joe Temple. Information Technology Performance. Amazon Publishing,
2023.

[3] Joe Temple. Nuts and Bolts: The World of Information Technology. Ama-
zon Publishing, 2023.

166

Curricular Practices for Computing for
Social Good in Education∗

Conference Tutorial

Heidi J. C. Ellis1 and Gregory W. Hislop2

1Computer Science and Information Technology
Western New England University

Springfield, MA 01119
ellis@wne.edu

2College of Computing and Informatics
Drexel University

Philadelphia, PA 19104
hislop@drexel.edu

Abstract

The development of the ACM/IEEE/AAAI CS Curriculum Guidelines, CS2023,
includes a parallel and collaborative effort to provide supplemental material
that supports the Guidelines. A series of peer-reviewed articles are being cre-
ated by experts in various aspects of the design and delivery of Computer
Science programs. The Computing for Social Good committee is developing
an article that provides an international perspective on Computing for Social
Good in Education (CSG-Ed).

This workshop will inform the CCSC:SE community about the CSG-Ed
effort while also obtaining comments and suggestions about the effort from
the computing education community. The workshop will provide an overview
of the global efforts in CSG-Ed, description of models for incorporating CSG
into curricula, including examples, and recommendations and best practices
for including CSG in curricula. The workshop outline will include:

• Introductions: 5 minutes

• Overview of the CSG-Ed efforts: 20 minutes
∗Copyright is held by the author/owner.

167

• Questions: 5 minutes

• Wrap up and Summary: 10 minutes

Breakout groups will be asked to provide comment about the CSG-Ed ef-
fort, identify any missing approaches, models, and best practices, and supply
any other observations about the effort. The groups will also use a short set
of prompting questions to consider Computing for Social Good in their own
curriculum. These prompts will support discussion among attendees about
opportunities and issues in addressing Computing for Social Good in under-
graduate CS curricula.

168

Teaching the Divide-and-Conquer Closest
Pair Algorithm Using a Map-Based

Visualization∗

Nifty Assignment

James D. Teresco
Department of Computer Science

Siena College
Loudonville, NY 12211

jteresco@siena.edu

This nifty assignment presentation is about an engaging, classroom-tested
activity that uses interactive, map-based algorithm visualizations (AVs) of the
brute-force and divide-and-conquer (D&C) approaches to the problem of find-
ing the closest pair among a set of points. The D&C algorithm, e.g., Effi-
cientClosestPair in Section 5.5 of Levitin [1], is reasonably straightforward to
describe, but it is the author’s experience that even upper-level undergradu-
ates in an Analysis of Algorithms course gain only a superficial understanding
and do not appreciate its efficiency compared to the straightforward quadratic
time algorithm. The activity presented here and the associated AVs offer a
supplement or alternative to traditional instruction about this algorithm.

The activity and the data and AV tools it uses are part of a larger project
called Map-based Educational Tools for Algorithm Learning (METAL) [2]1.

METAL’s web-based AVs use its set of graph data, which is based on high-
ways worldwide. Data is displayed in map form (optionally also in tabular
form) along with an AV status panel showing psuedocode of the algorithm and
values in key variables and data structures. As each line of psuedocode is exe-
cuted, it is highlighted and the learner can see color-coded changes highlighted
on the map and in the AV status panel. The activity briefly summarized here
is one of the first of METAL’s new easily-adoptable learning modules to be
tested in a classroom2. The author guided students through the activity to
help ensure it could be done within the 60-minute class time, and to be able to

∗Copyright is held by the author/owner.
1https://courses.teresco.org/metal/
2Spring 2023 Analysis of Algorithms class meeting at Siena College with 34 students

169

deal more quickly with any glitches in this first test run. Students each com-
pleted copies of the activity’s instructions document with answers to questions
and observations about the AVs and algorithms. The activity could also be
completed independently or in small groups in a lab or homework setting, but
would likely take longer with less instructor guidance.

In Part 1 of the activity, the AV of Brute-Force Closest Pair algorithm3

is used to remind students how that algorithm works (they had studied it
previously) and to help them appreciate the costs of a quadratic-time algorithm
as larger data sets are used. In Part 2, they answer a series of questions designed
to help them understand, at a high level, possible ways a set of points might be
divided in half to enable a D&C approach. For Part 3 of the activity, the D&C
Closest Pair AV4 is used extensively in a guided manner to demonstrate the
challenging ideas of the algorithm and gain an appreciation of how much more
efficient this algorithm is in terms of the number of distances computed and
compared. Part 4 builds on the last point by using the D&C Closest Pair AV
on larger data sets. This has two advantages: being able to see the algorithm
work in situations where more levels of recursion are needed, and by seeing
how many distance computations are needed, in practice, for the brute-force
and D&C algorithms. Finally, they examine the pattern to see that it matches
the expected time complexity of each.

Informal feedback on this first use of the newly-implemented D&C Closest
Pair AV and the associated activity was very positive. A more formal eval-
uation was infeasible in the constraints of the semester schedule. All of the
METAL data and AVs are freely available, but the learning modules are avail-
able only upon request at this time. This learning module is one of several that
have been developed and tested so far, and additional modules are in various
states of planning or development.

References

[1] Anany Levitin. Introduction to the Design and Analysis of Algorithms.
Pearson, 3 edition, 2012.

[2] James D. Teresco, Razieh Fathi, Lukasz Ziarek, MariaRose Bamundo, Arjol
Pengu, and Clarice F. Tarbay. Map-based algorithm visualization with
metal highway data. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, SIGCSE ’18, pages 550–555, 2018.

3https://tinyurl.com/wwmzbntx
4https://tinyurl.com/ymnn2rz9

170

Integrating GIS Into CS2∗

Nifty Assignment

Evelyn Brannock1 and Robert Lutz2
1Dept of Information Technology

Georgia Gwinnett College, Lawrenceville, GA
ebrannoc@ggc.edu

2Dept of Computer Science
Piedmont University, Demorest, GA

rjlutz@piedmont.edu

Abstract

Geographic Information Systems (GISs) provide information databases for use
in many application areas. OpenStreetMap (OSMap) is a map of the world,
created and maintained by nearly 5 million users, using free tools and soft-
ware [3]. By utilizing the Overpass Application Programming Interface (API)
[1], rich GIS data can be integrated into standard assignments making the as-
signments more localized and familiar. By solving problems and learning CS
skills that utilize familiar points of interest and places, student engagement is
increased.

Materials

No materials are required beyond the standard tools used in CS2: a program-
ming/runtime environment and an integrated development environment (IDE).
The details of the assignment and the starter code will be provided upon re-
quest.

Assignment

The student is supplied starter code that retrieves a list of all named streets
within a specific geography. In this example, we will process the results

∗Copyright is held by the author/owner.

171

Figure 1: Map of CCU from OpenStreetMap [2]

of retrieving street names from OpenStreetMap. The input list is named
streetnames.txt and is provided by the instructor. Modify the starter class,
StreetsWithNames.java, to start FOUR threads. Each thread should count
the number of entries that contain the string “peachtree” (case-insensitive) in
the list (e.g. Peachtree or peacHTRee are valid occurrences). Each thread
should update the provided AggregateSum class. Modify the AggregateSum
class to make it thread-safe. Files supplied: AggregateSum.java, streetnames.txt
StreetsWithNames.java.

172

Metadata

Summary

Students process a text file that contains occurrences of a popular
street name in the local area using a real-time open-source GIS data
query. Multi-threading is employed to accomplish a divide-and-
conquer solution
• A starter class and a data file are provided. A list of street names
is prepared in advance by querying OpenStreetMap’s Overpass API

• Students use a reference text file with the street names. Processing
is performed with parallel programming and the results are reported

• Students make the API calls for a different area and street name
Topics Text I/O, Multi-threaded programming, ReSTful Programming, JSON

Processing, GIS Processing
Audience Mid CS2, Web Development, Data Analytics / Data Visualization, Mo-

bile Application Development, Multi-threading Processing
Difficulty Medium: The capability to manipulate a new API, parse csv (or

JSON) sequential text IO, understand parallel execution, and some (but
nominal) knowledge of multi-threading from the student is required.

Strengths

• Introduces the value of integration to other applications
and tools: Encourages learning another API “on the fly”

• Deep algorithmic and coding knowledge is not required:
Students are not required to understand advanced GIS concepts or
algorithms; this knowledge is encapsulated in the OpenStreetMap
and Overpass API

• Adaptability to multiple audiences: Supports a variety of
languages and starter code can be provided to scaffold content areas
of other courses

• Gentle introduction: Easy to use restful APIs and csv (or JSON)
• Simplicity in authentication: No API key required
• Inspires experimentation: Overpass API offers strong frontend
w/queries

Weaknesses
• Domain Overload: GIS can offer very rich information data
(relational, geographic, geometric, geological, land use, etc.)

• Performance Issues: Open service throttling possible
Dependencies OpenStreetMap platform and Overpass API
Variants Any Overpass API query result can be utilized (walking paths, bike

paths, post boxes, water ways, buildings on campus, etc.), multiple pro-
gramming languages can be introduced, a user interface which includes
specific queries of interest can be built, many visualizations can be ex-
plored, development of JSON processing skills, application of Java’s
Streams library.

173

Rubric

10 Four threads are created. Each thread counts the number of occurrences
of peachtree (case-insensitive) in its own sub list, which is one quarter
of the entire list.

10 AggregateSum has been updated to make it thread-safe
5 The aggregate sum is printed after all thread have concluded their pro-

cessing.The aggregate sum is correct!
10 Make API call for city nearest out campus and count occurrences of

streets containing Martin Luther King

References

[1] Overpass API Documentation. https://osmlab.github.io/
learnoverpass/en/docs/ [Accessed 1 August 2023].

[2] OpenStreetMap. Map of coastal carolina university. https://
www.openstreetmap.org/#map=16/38.9239/-94.7323 [Accessed 29 July
2023].

[3] OpenStreetMap. What is OpenStreetMap? https://welcome.
openstreetmap.org/what-is-openstreetmap/ [Accessed 1 August 2023].

174

ChatGPT: To Use or Not To Use, That is
the Question∗

Panel Discussion

Paul S. Cerkez1, Joseph Edward Hummel2,
Marlon Mejias3, William Pruitt4

1 Department of Computer and Information Services
Office of Academic Integrity
Coastal Carolina University

Conway, SC 29528
pcerkez,aiofficier@coastal.edu

2 Department of Computer Science
Northwestern University

Evanston, IL 60208
joe.hummel@northwestern.edu

3 College of Computer and Informatics
University of North Carolina - Charlotte

Charlotte, NC 28223
mmejias@charlotte.edu
4 DCS Corporation

6909 Metro Prark Drive, Suite 500
Alexandria, VA 22310

wpruitt@DCSCorp.com

ChatGPT, from OpenAI (AI – artificial intelligence), and the many similar
Large Language Models (LLM) appear to have taken the world by storm with
some for it, some against it. In simple terms, these products are a great tool
for the experienced domain user, however, precisely because of their capability,
there is a lot of controversy surrounding student’s use.

There are basically two firmly entrenched camps in this debate. Some ed-
ucational institutions are taking a “why fight it” approach and are creating
classes to teach using it while others are discussing banning its use completely.

∗Copyright is held by the author/owner.

175

There are many variations along the continuum. One middle of the road ap-
proach some institutions are proffering is allowing its use as long as the sources
used in creating the output can be tied to it. Some “industry technologists” are
touting the greatness of it and how much time it saves them when doing some
things, especially code generation. On the other side of the fence are those
who want students to learn the domain before they can use the tool. As with
the views of the academic’s, there are many variations in ‘acceptability’ here
also. The primary objective of this panel is to allow for a frank discussion of
supporting, or not, ChatGPT use by students in an educational environment.

176

