
The Journal of Computing
Sciences in Colleges

Papers of the 13th Annual CCSC
Southwestern Conference

March 20-21, 2020
California State University San Marcos

San Marcos, CA

Baochuan Lu, Editor Mariam Salloum, Regional Editor
Southwest Baptist University UC Riverside

Volume 35, Number 10 April 2020



The Journal of Computing Sciences in Colleges (ISSN 1937-4771 print, 1937-
4763 digital) is published at least six times per year and constitutes the refereed
papers of regional conferences sponsored by the Consortium for Computing
Sciences in Colleges.

Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Per-
mission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the
CCSC copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Consortium for Computing
Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

2



Table of Contents

The Consortium for Computing Sciences in Colleges Board of
Directors 5

CCSC National Partners 7

Regional Committees — 2020 CCSC Southwestern Region 8

Experience Report: Preemptive Final Exams for Computer
Science Theory Classes 9

Michael Shindler, University of California Irvine, Matt Ferland, Aaron
Cote, Olivera Grujic, University of Southern California

Simplifying Teaching Continuous Integration and Continuous
Deployment with Hands-on Application in a Web Development
Course 15

Bryan Dixon, California State University - Chico

Incorporating Arduino Labs into a CS0 Course 21
Ingrid Russell, Carolyn Pe Rosiene, Aaron Gold, University of Hartford

Using Animations to Teach String Matching Effectively 27
Y. Daniel Liang, Lixin Li, Georgia Southern University, Weitian Tong,
Eastern Michigan University

Creating a More Equitable CS Course through Peer-Tutoring 33
Adamou Fode Made, Abeer Hasan, Humboldt State University

Curated Pathways to Innovation: Personalized CS Education to
Promote Diversity 39

Natalie Linnell, Tim Urdan, Santa Clara University, Alankrita Dayal,
Phil Gonsalves, Ariel Starr, YWCA Silicon Valley, Mayank Kakodkar,
Bruno Ribiero, Purdue University, Janice Zdankus, Hewlett Packard
Enterprise

Google Tech Exchange: An Industry-Academic Partnership that
Prepares Black and Latinx Undergraduates for High-Tech
Careers 46

April Alvarez, Shameeka Emanuel, Sally Goldman, Jean Griffin, Bianca
Okafor, Mary Jo Madda, Google, Legand Burge, Harry Keeling, Alycia

3



Onowho, Gloria Washington, Howard University, Ann Gates, Univer-
sity of Texas at El Paso

Plagiarism Prevention through Project Based Learning with
GitLab 53

Giovanni Gonzalez Araujo, Angelo Kyrilov, University of California
Merced

4



The Consortium for Computing Sciences in Colleges
Board of Directors

Following is a listing of the contact
information for the members of the
Board of Directors and the Officers of
the Consortium for Computing
Sciences in Colleges (along with the
years of expiration of their terms), as
well as members serving CCSC:
Jeff Lehman, President (2020),
(260)359-4209,
jlehman@huntington.edu,
Mathematics and Computer Science
Department, Huntington University,
2303 College Avenue, Huntington, IN
46750.
Karina Assiter, Vice President
(2020), (802)387-7112,
karinaassiter@landmark.edu.
Baochuan Lu, Publications Chair
(2021), (417)328-1676,
blu@sbuniv.edu, Southwest Baptist
University - Department of Computer
and Information Sciences, 1600
University Ave., Bolivar, MO 65613.
Brian Hare, Treasurer (2020),
(816)235-2362, hareb@umkc.edu,
University of Missouri-Kansas City,
School of Computing & Engineering,
450E Flarsheim Hall, 5110 Rockhill
Rd., Kansas City MO 64110.
Judy Mullins, Central Plains
Representative (2020), Associate
Treasurer, (816)390-4386,
mullinsj@umkc.edu, School of
Computing and Engineering, 5110
Rockhill Road, 546 Flarsheim Hall,
University of Missouri - Kansas City,
Kansas City, MO 64110.

John Wright, Eastern
Representative (2020), (814)641-3592,
wrightj@juniata.edu, Juniata College,
1700 Moore Street, Brumbaugh
Academic Center, Huntingdon, PA
16652.
David R. Naugler, Midsouth
Representative(2022), (317) 456-2125,
dnaugler@semo.edu, 5293 Green Hills
Drive, Brownsburg IN 46112.
Lawrence D’Antonio,
Northeastern Representative (2022),
(201)684-7714, ldant@ramapo.edu,
Computer Science Department,
Ramapo College of New Jersey,
Mahwah, NJ 07430.
Cathy Bareiss, Midwest
Representative (2020),
cbareiss@olivet.edu, Olivet Nazarene
University, Bourbonnais, IL 60914.
Brent Wilson, Northwestern
Representative (2021), (503)554-2722,
bwilson@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Mohamed Lotfy, Rocky Mountain
Representative (2022), Information
Technology Department, College of
Computer & Information Sciences,
Regis University, Denver, CO 80221.
Tina Johnson, South Central
Representative (2021), (940)397-6201,
tina.johnson@mwsu.edu, Dept. of
Computer Science, Midwestern State
University, 3410 Taft Boulevard,
Wichita Falls, TX 76308-2099.

5



Kevin Treu, Southeastern
Representative (2021), (864)294-3220,
kevin.treu@furman.edu, Furman
University, Dept of Computer
Science, Greenville, SC 29613.
Bryan Dixon, Southwestern
Representative (2020), (530)898-4864,
bcdixon@csuchico.edu, Computer
Science Department, California State
University, Chico, Chico, CA
95929-0410.

Serving the CCSC: These
members are serving in positions as
indicated:
Brian Snider, Membership
Secretary, (503)554-2778,
bsnider@georgefox.edu, George Fox
University, 414 N. Meridian St,
Newberg, OR 97132.
Will Mitchell, Associate Treasurer,
(317)392-3038, willmitchell@acm.org,
1455 S. Greenview Ct, Shelbyville, IN
46176-9248.
John Meinke, Associate Editor,

meinkej@acm.org, UMUC Europe
Ret, German Post: Werderstr 8,
D-68723 Oftersheim, Germany, ph
011-49-6202-5777916.
Shereen Khoja, Comptroller,
(503)352-2008, shereen@pacificu.edu,
MSC 2615, Pacific University, Forest
Grove, OR 97116.
Elizabeth Adams, National
Partners Chair, adamses@jmu.edu,
James Madison University, 11520
Lockhart Place, Silver Spring, MD
20902.
Megan Thomas, Membership
System Administrator,
(209)667-3584,
mthomas@cs.csustan.edu, Dept. of
Computer Science, CSU Stanislaus,
One University Circle, Turlock, CA
95382.
Deborah Hwang, Webmaster,
(812)488-2193, hwang@evansville.edu,
Electrical Engr. & Computer Science,
University of Evansville, 1800 Lincoln
Ave., Evansville, IN 47722.

6



CCSC National Partners

The Consortium is very happy to have the following as National Partners.
If you have the opportunity please thank them for their support of computing
in teaching institutions. As National Partners they are invited to participate
in our regional conferences. Visit with their representatives there.

Platinum Partner
Turingscraft

Google for Education
GitHub

NSF – National Science Foundation

Silver Partners
zyBooks

Bronze Partners
National Center for Women and Information Technology

Teradata
Mercury Learning and Information

Mercy College

7



2020 CCSC Southwestern Conference Committee

Youwen Ouyang, Conference Chair . . California State University San Marcos
Megan Thomas, Papers Chair . . . . . . . . California State University, Stanislaus
Mariam Salloum, Authors Chair . . . . . . . . . . University of California, Riverside
Adam Blank, Posters Chair . . . . . . . . . . . . . . . California Institute of Technology
Michael Shindler, Panels/Tutorials Chair .University of California, San Diego
Paul Cao, Lightning Talk Chair . . . . . . . . . .University of California, San Diego
Michael Shindler, Partner’s Chair . . . . . . . . University of California, San Diego

Regional Board — 2020 CCSC Southwestern Region

Michael Doherty, Region Chair . . . . . . . . . . . . . . . . . . . . . University of the Pacific
Niema Moshiri, Treasurer/Registrar . . . . . .University of California, San Diego
Bryan Dixon, Regional Representative . . . . California State University, Chico
Angelo Kyrilov, Webmaster . . . . . . . . . . . . . . . . .University of California, Merced
Colleen Lewis, Past Region Chair . . . . . . . . . . . . . . . . . . . . . Harvey Mudd College
Cynthia Lee, Past Conference Chair . . . . . . . . . . . . . . . . . . . . . Stanford University

8



Experience Report: Preemptive Final
Exams for Computer Science Theory

Classes∗

Michael Shindler
University of California Irvine

mikes@uci.edu

Matt Ferland, Aaron Cote, Olivera Grujic
University of Southern California
{mferland, aaroncot, grujic}@usc.edu

Abstract

We taught classes enacting a “preemptive final exam” grading mech-
anism. Students have multiple chances to display knowledge of topics,
each being worth a portion of the final grade. The grade earned in each
topic is some number of their best attempts out of a higher number of
chances.

1 Introduction and Previous Work

As class sizes grow, it is becoming imperative to find more scalable evaluation
methods. Recent concerns have included rubrics for large numbers of assign-
ments [3], automated ways to detect students who are at risk of failing [1, 5, 6],
support structures [7], and course management for instructors [4].

We introduce a grading mechanism we refer to as a “preemptive final exam,”
where students can display knowledge before the final exam date, allowing stu-
dents to skip certain topics on the final, and saving course staff from grading
those questions. This policy has precedence, such as some math teachers al-
lowing students with an ‘A’ on the quizzes to skip the final exam, or allowing
a comprehensive final exam to count for a larger percent of the grade if it

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

9



is a better score [8]. The latter method has improved the perception of fair-
ness without having a large impact on class averages [8]. A related popular
grading mechanism was in use at MIT’s 6.034 (Artificial Intelligence) course,
allowing students to use quiz scores in place of corresponding sections of their
final exam. This method [10] is the basis for our preemptive final exam model.
Mastery based classes offer something similar, but typically allow the students
more than two chances at each topic [2]. Because of this, they tend not to scale
as well to large classes that require proofs and algorithm creation rather than
numerical or multiple-choice answers.

Our system is as follows. Every core topic is assigned a portion of the total
class weight and can be fulfilled during one or more pre-final exams during the
term. The final exam then offers another chance to demonstrate this mastery.
Students who demonstrate their understanding early will have “preempted” the
topic from their final while students who did not can raise their grade, but only
by demonstrated improved understanding of the topic. We believe this achieves
a focus on feedback wherein students receive timely remarks about what they
did or did not understand about the material, with both a direction to go with
their study and a chance to improve that part of their grade.

Students in all of our implementations typically increased their final grade
after taking the final exam, often by a significant amount. In both implemen-
tations, over two thirds of the students improved their grade by at least 5%,
and over a tenth of the students improved their grade by at least 15%.

In this report, we discuss courses that enacted this grading mechanism. We
cover a year’s worth of teaching at the University of Southern California, using
one semester of an algorithms course and one semester of a Discrete Math
course.

2 Course Setup
2.1 Introduction to Algorithms
After reviewing fundamental prerequisite concepts, this course typically covers
some algorithm design paradigms: dynamic programming, greedy, and divide-
and-conquer, followed by a midterm covering those three topics. The midterm
has students solve one problem for each paradigm by designing an algorithm
using it. We then cover network flow and some computational complexity, and
conclude with a final exam.

For our offering, however, the course structure changed slightly. The lecture
structure remained intact, as did the placement and purpose of the fundamen-
tals quiz and midterm. We added a quiz in the last week of class, giving a
chance to try the post-midterm topics in an exam environment and for credit
towards “best of two.” There was a final exam with five questions, one on each
of the five topics.

10



40% of the grade was from homework, a fundamentals quiz, and overall
midterm performance. The remaining 60% of the grade was separated into
5 sections, with one for each topic. Every topic had exactly two questions
used for grading: one question on the final, and one question on the midterm
or week 15 exam. The total grade for each topic would be the highest score
of the two attempts. Exams contained only one question from each of the
5 topics, and each section was clearly labeled. For more details, please see
the online appendix, available at https://www.ics.uci.edu/~mikes/papers/
CCSC_2020_Online_Appendix.pdf

3 Discrete Mathematics
This class typically has two mid-semester exams, some take-home problem sets,
and a final exam. We renamed the two mid-semester exams to be quizzes, and
added a third one. Like the algorithms course, this quiz came in the last week
of classes and covered material that would be on the final but had been lectured
on after the cut-off point of the previous quiz. Each quiz was worth little on its
own: the first and third were 5% each, and the second was 10%. The remaining
grade that came neither from a quiz sum nor a take-home assignment came
from breaking down the core topics to be learned in the course. There was a
final exam that provided one last opportunity to demonstrate mastery of each
topic.

Unlike algorithms, the topics weren’t “best of two.” Rather, we gave a
number of opportunities for each topic. For example, each quiz had a (non-
inductive) proof for the student to write, and the final exam had two. The
best three of the five counted for 15% of the students’ grade. This is partly
because we don’t believe that a single question in all of these topics covers
the full mastery of the material. By contrast, once one has demonstrated the
ability to design an algorithm using, say, dynamic programming, we believe
students will retain that mastery, at least at the undergraduate level, and for
at least the amount of time between the midterm and final exam.

The topics and breakdowns are presented in the online appendix.

4 Observed Outcomes
4.1 Positive Outcomes
In the algorithms course, 28 students out of 203 had an A without taking the
final. Subjectively, the instructor for the course believes each of these students
would have also earned an ‘A’ had the class grading been more traditional.
We believe that the reported grade accurately reflects these students’ knowl-
edge and experience with the material. While it is conceivable that they, or
any student preempting a final exam question, could have done poorly un-
der a traditional model, we believe that the learning curve is such that the

11



students would be able to earn at least the same score with very high probabil-
ity. Furthermore, it meant that these students would not be occupying office
hours during finals period, freeing course staff for students who still have yet
to demonstrate the mastery that they were (hopefully) working on.

Of course, the benefits to students go beyond the fact that some may skip
the final exam, as the structure of the class creates a focus on feedback and
improvement. Students can see what understanding they lack in an exam and
have a chance to demonstrate it again, having learned from their mistakes. This
focus on improvement is the point: showing that they learned something they
had not previously demonstrated mastery of, and this is reflected explicitly
in their grade. Students cannot hide a lack of knowledge on one topic by
repeatedly demonstrating mastery of another.

We found the topics most influenced by this policy to be those given earlier
in the term, as well as those where the class as a whole performed poorly in
initial attempts. This was observed in both classes.

4.2 Particulars of Improvement at the Final
For the algorithms course, 157 students took the final. Not every student
needed to attempt every question. For example, the vast majority of the class
was happy with their score on the divide and conquer paradigm on the midterm.
The breakdown by topic is reflected in the online appendix. The final itself
could have been offered in a traditional algorithms course at our university. As
such, students who had fewer questions to answer generally would leave earlier
and did not appear to have a time advantage over students who had more
to answer. This was true even of students with extra time accommodation,
where over 90% finished early in both courses. We view the improvement,
particularly in dynamic programming, as very encouraging. This is a key
concept in algorithm design, and seeing that students are able to incorporate
their feedback and learn from it is reassuring.

Just like with dynamic programming, we were encouraged by the improve-
ments we saw on abstract topics from early in the term. Proofs, in particular,
feel to many students to be some mysterious art form, yet with sufficient re-
sources and incentive, they are able to develop skills in this area. For the first
three topics, this should provide a cause for optimism for their future as com-
puter scientists. Proofs are structured not unlike a computer program [9] and
the connection between inductive proofs and recursive thinking should be ob-
vious. There is a similar positive view for students to grasp some fundamental
graph algorithms in what is for many of them their first year of university.

In both classes, most students who took the final saw some improvement
in their grade. Over two thirds of students that took the final received at least
a 5% improvement in their overall grade, and 10% received at least a 15%
improvement. A breakdown is available in the online appendix.

12



4.3 Cautions for the Approach
Each semester we made the usual promise that 90% or above of the points
would be sufficient for an ‘A’ in the class. For the algorithms class, nearly a
third of the students finished in excess of 90%. The instructor recognized most
of the names and, similar to the opinion of those who preempted the full final,
believes that if we were assigning letter grades based on impression of their
understanding, each would likely have had an ‘A’ as well. We believe this is the
correct evaluation of each such student. Other instructors may have different
views about what should constitute an A and should exercise caution in such
promises. At the other extreme, we did not notice any students “optimizing
for merely passing,” although it could happen. Our view is that a student so
optimizing is unlikely to have it secured by the final exam, and cannot rely
on the curve for this model in the same way as for a traditionally evaluated
course.

We believe our approach works under the assumption that a small number
of samples is sufficient to demonstrate mastery. We believe this holds for
undergraduate CS Theory, but it may not hold for other subject matters.

Instructors wishing to use this grading mechanism should be cautioned that
we observed more regrade requests during the year. It appears some students
now perceived the stakes to be higher on exams. Instructors should also be
cautioned that there will be a grading crunch at the end, as all pre-finals need
to be returned before exam week.

The lower rate of improvement for topics introduced late in the class in
both offerings is a cause for concern. It is not clear if students need more
time to integrate the difference or if they viewed late quizzes as a nearly free
shot at taking part of their final exam twice. It also isn’t clear which subset
of the students viewed their feedback for such artifacts and if other means of
returning the exams to students might be more effective.

Lastly, we caution instructors considering this method to carefully consider
the discrete nature of the topics they are teaching. For the algorithm design
course, this is less of an issue; in a discrete math class, however, we may want
to cross categories more often, such as asking how many Hamiltonian Paths a
graph has. Counting and discrete probability also have significant overlap.

5 Summary and Conclusions
We have introduced and piloted the use of a preemptive final exam model for
two different Computer Science Theory courses. We believe we have shown
that this has allowed students to better and more clearly demonstrate their
competency in core topics of the course. The feedback loop created aids in
this goal, as does the incentive structure. The mechanism also allowed better
use of end-of-term class resources while providing a new incentive for students

13



to demonstrate mastery early in the term. This technique should be widely
applicable across the field of Computer Science.

References

[1] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. Ex-
ploring machine learning methods to automatically identify students in need of
assistance. In Proceedings of the eleventh annual International Conference on
International Computing Education Research, pages 121–130, 2015.

[2] J B. Collins, Amanda Harsy, Jarod Hart, Katie Anne Haymaker, Alyssa Marie
Hoofnagle, Mike Kuyper Janssen, Jessica Stewart Kelly, Austin Tyler Mohr, and
Jessica OShaughnessy. Mastery-based testing in undergraduate mathematics
courses. PRIMUS, 29(5):441–460, 2019.

[3] John Cigas, Adrienne Decker, Crystal Furman, and Timothy Gallagher. How
am i going to grade all these assignments? thinking about rubrics in the large.
In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, pages 543–544, 2018.

[4] David G Kay. Large introductory computer science classes: strategies for effec-
tive course management. ACM SIGCSE Bulletin, 30(1):131–134, 1998.

[5] Soohyun Nam Liao, Daniel Zingaro, Christine Alvarado, William G Griswold,
and Leo Porter. Exploring the value of different data sources for predicting
student performance in multiple cs courses. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, pages 112–118, 2019.

[6] Soohyun Nam Liao, Daniel Zingaro, Kevin Thai, Christine Alvarado, William G
Griswold, and Leo Porter. A robust machine learning technique to predict low-
performing students. ACM Transactions on Computing Education (TOCE),
19(3):1–19, 2019.

[7] Mia Minnes, Christine Alvarado, and Leo Porter. Lightweight techniques to
support students in large classes. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pages 122–127, 2018.

[8] Ben Stephenson. The impacts of providing novice computer science students
with a second chance on their midterm exams. Journal of Computing Sciences
in Colleges, 27(4):122–130, 2012.

[9] Daniel J Velleman. How to prove it: A structured approach. Cambridge Univer-
sity Press, 2019.

[10] Patrick Henry Winston. Skills, big ideas, and getting grades out of the way.
http://web.mit.edu/fnl/volume/204/winston.html.

14



Simplifying Teaching Continuous
Integration and Continuous Deployment
with Hands-on Application in a Web

Development Course
Bryan Dixon

Computer Science Department
California State University - Chico

Chico CA, 95929
bcdixon@csuchico.edu

Abstract

Teaching web programming can lend itself as a course where stu-
dents can learn to develop with version control, containers, continuous
integration (CI), and continuous deployment or delivery (CD). In my
web programming course, I built a starter repo that simplifies the initial
setup and helps students become familiar with CI/CD and containers.
Using the GitLab/GitHub APIs allows me to automate the creation of
private mirrored repos across these sites for each student, with each pri-
vate repo including the starter repo I developed. Students gain access
to their repo by submitting a form through my website. This paper will
discuss the motivation and benefit of this approach, as well as describe
how I have been able to successfully implement it. The conclusions of
the impact of this approach in part come from student feedback since I
started doing this approach over the past 3 semesters.

1 Introduction

Over this past year, there have been numerous articles regarding the demand
for people with skills related to Development Operations (DevOps) engineering
[11][9]. DevOps practices are becoming much more widely utilized by devel-
opers throughout the tech industry [10]. This is not new and has been an in-
creasingly important component of modern software development. Companies
have a difficult time finding and hiring employees with the skills and training
required by this work, and on-the-job training is sometimes the only option. It
is important for students to be exposed to these technologies and tools via our

15



computer science curriculum, such that they are not caught off guard if they
are asked to use a DevOps pipeline when they enter the workplace after grad-
uation. Giving students an example of developing with DevOps is why I built
a simple CI/CD pipeline and continue to provide this to my web students each
semester, along with teaching them Docker and Kubernetes [2][6]. Kubernetes
is a tool to manage container deployments at scale.

2 Web Course

As I teach the web programming course that is required by both of the majors
in my department, it has proven to be a great opportunity for giving students
further practice with version control using git, in addition to being a simple
way to introduce containers and working with a DevOps pipeline. The idea
to potentially start including CI/CD came from our regular Industry Advisory
Board (IAB) meetings. One goal of any college or university department should
be to graduate students who can get jobs, and industry leaders want to see
students coming out of school with exposure, experience, and skills in these
areas.

2.1 Git Organization Management

GitHub and GitLab provide ways to have a group of repositories and control
access to the repositories in that group [3][4]. These are called organizations
on GitHub and Groups on GitLab. GitHub and GitLab also both provide a
REST API to programmatically interact with your groups and repositories. I
leveraged these APIs to build a form on my website for using GitHub in my
courses, and I created a private repo for each student, where they were the only
one who could see their repository. As I am the owner of the organization, I can
view and access all of the repos. In many of my courses, I have used these repos
as an alternative submission option for turning in assignments and projects.
It is practical to provide students with a repo that can be used specifically for
the course and that I already have access to, in case students request help with
their code, an incorrect file was accidentally submitted, or assistance is needed
for any other reasons.

2.2 Starter Code

When I started teaching, I already had previous experience working with
GitHub APIs and had built a form for students to create course-specific reposi-
tories through my personal website. I gave my students the initial starter code
that I had developed, so that their repositories would all begin with the same
foundation. Part of my primary motivation for moving in this direction was

16



that I was already introducing students to Docker in my courses, but it was usu-
ally near the end of the semester and students found it difficult to get started.
I realized that teaching students how to use Docker should be considered an
important goal of any modern web programming course, yet figuring out how
to build a Docker container or get it up and running had never actually been a
component of my stated learning outcomes. Thus, I began teaching the course
with these goals in mind from day one. When students came to class the first
day, they would already be set up with the starter repo that I had created and
copied into each student’s repository, so that everyone could begin from the
same point. Deciding to also integrate CI/CD into the course required some
additional considerations. I needed to figure out what CI/CD tool I wanted
to use, and many of these platforms rely on code in the repo to tell the tool
how to perform the CI/CD pipeline steps. There are many possible options
available, and they all have different pros and cons. Instead of discussing all of
the options and how they vary, I will focus on the tool that I included in my
starter repo. The starter repo is a public GitHub repo that anyone is welcome
to use for teaching a similar course or as a starting point for any other courses
that may benefit from this setup [8].

2.2.1 GitLab

For my course, I decided to use GitLab, as it provides the same remote reposi-
tory functionality that GitHub offers for students, but it also has CI/CD built
into its platform. GitHub has recently started adding in similar features; how-
ever, GitLab is the more well-established option in this regard. Similar to
GitHub, GitLab also offers any educational institution access to their top tier
accounts for free [5]. The key benefit of the top tier accounts is the amount of
cloud runner minutes available to your organization on GitLab. Another tool I
have taken advantage of is GitLab Runner, a GitLab tool that will connect to
your repositories or groups, for use by the repositories it contains, to actually
run the steps in your GitLab pipeline. The cloud version of this tool can be
used without any setup, and while free accounts only receive a small amount
of time, education accounts receive significantly more. Alternatively, you can
set up your own servers to run a GitLab Runner for no extra cost.

My website has a form for students that requires a GitHub and GitLab user-
name. I automatically create a GitHub repository in my course organization
that mirrors the starter repository code for each student. I then link/mirror
this newly created GitHub repository to a GitLab repository in the correspond-
ing group on that platform. In this way, students have the ability to access the
same code on both platforms.

17



2.2.2 Pipeline

In the starter repo, I built and provided my students a simple GitLab pipeline,
written in YAML, to offer them some experience working with a CI/CD pipeline
in web development. The simple pipeline has 4 stages on the master branch
and 3 stages on any other branch of the repository. I decided to treat the
master branch as the production or published code branch for the repositories.
The first 3 stages are the same regardless. The pipeline is also built for the
framework I use when teaching the course, which is the Python-based Django
web framework [1].

1. Stage One: build and publish a Docker container with the code in the
repository tagged testing.

2. Stage Two: Run the code against the Django specific pylint linter using
the published testing Docker container[7].

3. Stage Three: Run the unit tests and generate the coverage using the
published testing Docker container.

4. Stage Four (only on master): build and publish a docker container with
the code in the repository tagged latest.

Due to the nature of CI/CD pipelines, if there is a failure at any stage, the
tool will not progress to the subsequent stages. This is extremely useful behav-
ior. If a student is pulling the latest container to a Kubernetes deployment,
the code will automatically update when new code is pushed into the master
branch, after that code has passed the simple tests that have been set up in the
pipeline. Starting with simple tests helps demonstrate how automated CI/CD
can work. As more rigorous testing is utilized and extra steps are added to
the pipelines that can look for potential issues with the code automatically,
the code can continuously and automatically keep rolling out to users once it
has passed these checks. Testing and other software engineering fundamentals
are taught in our software engineering course, but it is beneficial to reinforce
understanding of these ideas and provide students with opportunities to apply
best practices in their work.

2.3 Use in Class

During the first week of class, after giving a brief overview of basic HTML,
CSS, and JavaScript, I start introducing students to the Python language.
For many students, this is their first experience with Python, as C++ is the
primary language taught in our curriculum. Given that web programming is
an upper division course, I mostly focus on some simple syntax differences

18



between Python and C++ that they should know. However, before I get them
started with programming in Python, I discuss virtual environments for Python
and why these are beneficial. I start with actual Python virtual environments
that symlink the Python code and environment to a local folder, but I take
it even further by introducing them to Docker and how they can virtualize
a Python environment in Docker. By using the provided docker-compose.yml
in the starter repo, I show them how they can run the container and get a
bash shell with that environment. The docker-compose is configured to map
ports and run the Django development server for them, so while there is a lot
of setup involved upfront, this eventually makes the workload on the students
much easier. This process also mounts all of the repo folder code into the
Docker container when it is running in docker-compose. This allows the person
developing the code to see real time updates in the development server, as files
are edited on the host machine while it is running. Alternatively, the command
line bash shell can be used to run Python code from that folder directly.

3 Student Outcomes

I have now taught my web course for a few semesters with this new approach,
demonstrating and providing the GitLab CI/CD features and repos to my
web students. I have independently gathered feedback from students every
semester, in addition to receiving my official campus evaluations on the course,
where students have been given the opportunity to comment on various aspects
of the course. Comparing all of this feedback with responses from before I tried
this strategy, I have found that students generally feel they are better prepared
to do web development now than students earlier web courses I taught.

From this feedback, the most significant change I will potentially make
for future courses is to create another getting started assignment that requires
students to actually use the CI/CD pipeline. Students will need to write Django
tests for their code, and when they submit their code, they will have to make
sure it passes their tests, meets a certain code coverage percentage, and passes
the full CI/CD pipeline I provided them. Additionally, while I have encouraged
students to learn Docker from the outset for many semesters, I may soon begin
requiring them to submit their assignments so that they run from Docker,
instead of allowing containerization to be optional.

4 Conclusion

Through my experience with students over a number of semesters, adding con-
tainers and CI/CD to my web programming course has not only increased my
inclusion and use of git in lecture, but also in the assignments and projects

19



I require my students to do with version control in the course. As I have
been teaching the web programming course in this fashion over the past two
semesters and this current semester, numerous students have expressed to me
that they feel notably better prepared for potential jobs in web programming
now, which was my primary goal. While their comments have not all been writ-
ten down in an evaluation form, many of them have verbally commented to me
that they appreciate being exposed to potential careers in DevOps engineering
and have now seen how tools and packages such as containers could be useful
for other forms of development as well. Feedback from our IAB members has
been this type of experience is what they are looking for from students coming
out of school. Including this kind of material in our curriculum is adding the
type of functional content that will benefit our students.

References

[1] Django. https://www.djangoproject.com.

[2] Docker. https://www.docker.com/.

[3] Github. https://www.github.com/.

[4] Gitlab. https://gitlab.com/.

[5] Gitlab for education. https://about.gitlab.com/solutions/
education/.

[6] Kubernetes. https://kubernetes.io/.

[7] Pylint. https://pypi.org/project/pylint/.

[8] Starter repo. https://github.com/CSUChico-CINS465/starter_repo.

[9] Devops engineer is the most recruited job on linkedin. https:
//www.businessinsider.com/devops-engineer-most-recruited-
job-on-linkedin-2018-11, November 2018.

[10] Measuring ci/cd adoption rates is a problem. https://thenewstack.io/
measuring-ci-cd-adoption-rates-is-a-problem/, August 2019.

[11] Python developer, data scientist or devops: Which tech jobs pay
best? https://www.zdnet.com/article/python-developer-data-
scientist-or-devops-which-tech-jobs-pay-best/, June 2019.

20



Incorporating Arduino Labs into a CS0
Course∗

Ingrid Russell, Carolyn Pe Rosiene, and Aaron Gold
Department of Computing Sciences

University of Hartford
W. Hartford, CT 06117

{irussell, rosiene, aagold}@hartford.edu

Abstract

As part of our University’s efforts to integrate high impact prac-
tices into the undergraduate curriculum, the Computing Sciences De-
partment developed a model for revitalizing an introductory computer
science course for non-majors. The overarching goal of our efforts is to
enhance the learning experiences in the course by applying and relating
fundamental computational thinking concepts of algorithmic reasoning,
data representation, and computational efficiency to real-world problems
in the context of an embedded system, the Arduino. The Arduino plat-
form provides a rich opportunity to engage students by showing broad
applications of computing in domains that are part of their daily lives,
thus introducing computing in a way that may improve student retention
rates and encourage broader participation in computer science and engi-
neering. Using this Arduino module in the course, we address two of the
five main course objectives set forth for the course. Assessment results
show that the approach has been effective. We present our experiences
using the curricular material, as well as assessment results.

1 Introduction

Physical computing has been used to teach computational thinking, program-
ming, and design skills. Researchers have examined the potential of physical

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

21



computing activities for computer science and engineering majors [2]. Rapid
advances in technology and the associated reduced costs are making off-the-
shelf, plug and use open source hardware and software platform with several
supporting online resources [1]. In this study, we focus on the CS0 course for
non-majors, where preliminary results in one course offering showed the poten-
tial of the Arduino platform in enhancing student learning [4, 3]. We extend
this prior work and present experiences developing easily adaptable hands-on
laboratory projects and associated curricular modules based on the Arduino
platform, as well as experiences using this material in seven offerings of the CS0
course, over two years, 2017 and 2018. We engage students in a contextualized
project-based learning experience and introduce them to fundamental comput-
ing concepts in the context of an interactive and easy to use environment. The
curricular material is hands-on based and fosters close faculty-student inter-
action. In such an environment, students work in teams and are engaged in
active learning. They are required to make their designs in a real-world set-
ting. If their designs do not work, students receive instant feedback. In this
process, they interact with the instructor and each other to troubleshoot their
hardware and software. In addition to improving student learning, we believed
this project has potential to improve student retention rates and encourage
broader participation in computer science and engineering.

2 Integrating the Arduino Platform into CS0

The CS0 course provides a broad introduction to the use of computers as tools
for creativity, problem solving, communications, and information organization.
The CS0 course objectives are to: (1) Understand the parts of a computer and
how they function and operate; (2) Form a basis for problem solving skills that
evolve and adapt as technology advances; (3) Examine digital representation
of information including data, sound, graphics, and video; (4) Create a fluency
with foundations of communication and network infrastructure; and (5) Master
advanced skills in productivity software.

The integration of these hands-on labs addresses the first two of these course
objectives. Our goals for integrating the Arduino platform into CS0 are to: (1)
Apply and relate fundamental computational thinking concepts of algorithmic
thinking, data representation, and computational efficiency to relevant appli-
cations; (2) Become engaged with and understand the development of modern
computing systems which have become part of students’ daily lives; (3) Fos-
ter creativity by designing creative, tangible, and interactive computing-based
systems that are personally and socially relevant; (4) Use of an interactive
environment to better illustrate concepts covered in class, both hardware and
software; (5) Integrate high-impact practices into the course; (6) Introduce

22



computing in a way that may broaden participation in computing; and (7)
Align the current curriculum with the CS Principles framework to design a
course that engages a broader audience.

3 Arduino Labs
All six labs are designed to incrementally introduce the student to the envi-
ronment, hardware, and software. Each lab includes a set of objectives, items
needed to complete the lab, and guided step-by-step instructions for students
to follow. It concludes with open-ended questions and a reflection component.
The series of labs leads to a cumulative project. The sections below present
a summary of the six labs used. The complete set of labs are available at:
http://rosiene.cs.hartford.edu/ArduinoLabs/2017/.

3.1 Getting Started

In this first lab, students run a basic program on the Arduino and learn how to
use the IDE environment. They learn about the setup code and how to print.
They first validate that the Arduino software is installed, connect the Arduino
board to the computer through a USB cable, enter a basic program into the
editor, compile, upload to the Arduino, and execute the program.

3.2 Introducing Variables and Output to the Serial Monitor

In the second lab, students are introduced to the concept of variables, to the
basic software cycle of the Arduino, and become more familiar with the IDE
environment. They use the serial monitor as a tool to interact with the Arduino
processor while the programs are running on it; they use it for output or to write
text to the computer screen. Several pre-defined functions are also introduced.
Students modify lab 1 code to experiment with using these functions.

3.3 The Protoboard and Basic Electronic Circuits

In lab 3, students create a basic circuit to demonstrate the use of resistors and
LEDs. Specifically, students produce a basic circuit to run one LED, and then
expand the circuit by adding a second LED. Pushbuttons are then added to
control the LEDs.

3.4 Arduino and Output to Components

In this lab, students are guided through writing and executing code that would
(1) blink one LED, (2) blink two LEDs, and (3) sequentially blink LEDs for
one second each with a half-second between each. Lab 4 demonstrates the use

23



of the Arduino to control LEDs. We can use the output pins on the Arduino
board to control electrical components.

3.5 Arduino and Input from Components

Just as we could send signals to the electrical components of the Arduino,
the Arduino can receive input from certain components as well. In this lab,
students use the Arduino to read input from pushbuttons and then use “latch-
ing” to make programs remember which button was pressed. This stresses the
purpose of a variable to remember whether a button was pushed or not.

3.6 Putting It All Together: Using the Arduino to Build a Random
Light Game

This lab uses what have been learned and developed in previous labs to (1)
randomly light up LEDs, (2) build the random light game, and (3) add a buzzer
when the game ends.

4 The Arduino Platform as a Means to Course Objectives

The first two of the five course objectives listed earlier are addressed by the
introduction of the Arduinos into our CS0 course. We have selected this plat-
form to incorporate into the course for the following reasons: (1) Understand
the parts of a computer and how they function and operate, and (2) Form a
basis for problem solving skills that evolve and adapt as technology advances.

Clearly, the hands-on, interactive nature of these labs allows the student to
make a connection between input and output, and demonstrate the purpose
of memory. Students are able to make a direct correlation between how the
program affects the result, thus, have a tangible, small computer to work with
and understand how all of its parts interrelate and cooperate to function as a
whole.

5 Assessment Results
To evaluate students’ reception to the Arduino component of the course, we
designed a short survey given at the end of each semester. The survey includes
three Likert-scale questions along with two qualitative responses.

The three Likert-scale questions included in the end of semester question-
naire are:

• Q1: Using the Arduino platform and labs enhanced my understanding of
the hardware and software concepts covered in class.

• Q2: Using the Arduino microcontroller enhanced my learning experience
in this course.

24



• Q3: The Arduino contributed to a positive learning experience in the
course.

A total of 157 students enrolled in the seven sections of the course. With 106
student responses to the survey, a 68% survey participation rate, about 86% of
the students agree that the Arduino labs contributed to their understanding of
hardware and software concepts, over 82% indicate that the labs enhanced their
learning, and about 85% say that the Arduino labs contributed to a positive
learning experience. The results have been overwhelmingly positive, as can be
seen in Figure 1.

Figure 1: Quantitative Survey Results

Included in the short survey are two open-ended questions giving students
an opportunity to provide feedback:

• Q4: Describe what you liked most about the use of the Arduino platform
and labs.

• Q5: Describe what you liked least about the Arduino microcontroller.

As would be expected, student interest and experience vary. Some thought
the Arduino labs were a challenge, while others wanted to do more. Some
thought the instructions were clear, some thought they were confusing. Over-
all, students enjoyed the interactive nature of the course and the visual en-
vironment. They enjoyed the hands-on experience, being able to apply the
concepts learned in class, and being able to physically hold the objects and
see the code working. While the student experience was overall positive, there
were some challenges expressed in the responses to Q5. Students did not like
sharing the units, 2-3 students per unit, and having the units stored in the

25



classroom/lab. This prevented students from taking units with them to work
on after class. Based on student feedback and given the low cost of the units,
at $35 per starter kit, the department decided to require students to purchase
their own kits effective fall 2019. Given the fragility of some of the parts such
as the resistors and wires, we plan to make sure we have enough extras on
hand. While some students thought the step-by-step instructions were clear,
others commented that they were, at times, not clear. Videos illustrating the
step-by-step instructions appear to be a good addition to the written steps,
which we plan to include in the future.

Based on the survey responses and informal interactions in class, the feed-
back has been very encouraging. Students enjoyed making something work
and having a tangible product to prove it. They made the connection between
hardware and software and saw the complexity of having to build a real-world
system.

6 Conclusion and Future Work
We are using student and faculty feedback from these first offerings to help
guide further development of this project and the associated curriculum mod-
ules and labs. As we develop additional material, we plan to continue to explore
the use of the Arduino platform in the CS0 course, collect assessment data, and
do further studies of the impact of this approach on teaching and on student
learning. In addition to improving student learning, this project has poten-
tial to improve student retention rates and encourage broader participation in
computer science and engineering. Beyond these courses, the proposed Arduino
modules and labs have a number of different uses. An immediate consequence
is that a number of systems will be set up in a lab to use as recruitment tools
for computer science and engineering. These types of physical systems pro-
vide an application of engineering and computing principles that prospective
students can appreciate.

References

[1] Arduino AG. Arduino homepage. https://www.arduino.cc.

[2] Evan Barba and Stevie Chancellor. Tangible media approaches to introductory
computer science. In Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education.

[3] Carolyn Pe Rosiene Ingrid Russell and Aaron Gold. A cs course for non-majors
based on the arduino platform. In Proceedings of the 51st ACM Technical Sym-
posium on Computer Science Education, 2020.

[4] Ingrid Russell, Karen H. Jin, and Mihaela Sabin. Make and learn: A cs principles
course based on the arduino platform. In Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer Science Education, 2016.

26



Using Animations to Teach String
Matching Effectively∗

Y. Daniel Liang1, Lixin Li1, Weitian Tong2

1Department of Computer Science
Georgia Southern University

{yliang, lli}@gerogiasouthern.edu
2Department of Computer Science

Eastern Michigan University
wtong1@emich.edu

Abstract

String matching is to find a substring in a string. The algorithms
commonly used for finding a matching are the brute-force algorithm,
Boyer-Moore algorithm, and Knuth-Morris-Pratt algorithm. The brute-
force algorithm is intuitive. The Boyer-Moore and Knuth-Morris-Pratt
algorithms are more efficient than the brute-force string matching algo-
rithm, but they are more difficult to understand than the brute-force
algorithm. We have created the animations for helping instructors to
teach and students to learn these algorithms. This paper presents these
animations.

Keywords: Algorithms, animation, brute-force algorithm, Boyer-Moore
algorithm, data structures, KMP algorithm, string matching

1 Introduction

String matching is to find a match for a substring in a string. The string is
commonly known as the text and the substring is called a pattern. String
matching is a common task in computer programming. The Java String class
has the text.contains(pattern) method to test if a pattern is in a text, the
text.indexOf(pattern) method to return the index of the first match of the

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

27



pattern in the text, and the text.lastIndexOf(pattern) to return the index
of the last match of the pattern in the text. The C++ string class has the
text.find(pattern) function to return the index of the first match of the
pattern in the text. In Python, you can use the in operator to test if a pattern
is in a text (pattern in text) and use the text.find(pattern) function to return
the index of the first match of the pattern in the text.

String matching is a common task in programming. A lot of research has
been done to find efficient algorithms for string matching. The popular al-
gorithms presented in many data structures and algorithm textbooks are the
brute-force algorithm, the Boyer-Moore algorithm [3], and the Knuth-Morris-
Pratt algorithm [6]. We have developed animations for teaching and learning
these algorithms effectively. The animations show how the algorithms work
step by step visually and interactively and help students to grasp the algo-
rithms quickly. This paper presents these animations.

2 Comparing String Matching Algorithm Animations

Several string matching algorithm animations are available on the Web.
The most popular ones are accessible from https://people.ok.ubc.ca/
ylucet/DS/KnuthMorrisPratt.html [7] and https://www.utdallas.edu/
~besp/demo/John2010/boyer-moore.htm [2].

The first tool [7] is an animation for the KMP algorithm. It lets the user
to enter a text and a pattern and see how the KMP algorithm works in ani-
mation. It does not give an explanation for each step in the animation. Also
the animation is not visually clear in the canvas. The second tool [2] is an
animation for the Boyer-Moore algorithm. It lets the user to enter a text and
a pattern and see how the Boyer-Moore algorithm works in animation. The
user presses x to step forward and presses z to step back. It does not display
how the pattern is shifted right.

Our string matching algorithm animation tools enable instructors and stu-
dents to enter a text and a pattern. The user can click the Next button to
see the next step in the algorithm. The animation displays an explanation for
each step and reads the explanation in a computer-generated voice to guide
the user through the steps in the algorithm. The tools in [2, 7] do not fit in a
mobile device with a small screen. Our animation tools can fit well in a small
mobile device and work with touch screens.

3 Brute-Force Algorithm Animation

The animation for the brute-force algorithm is accessible from liveexample.
pearsoncmg.com/dsanimation/StringMatch.html, as shown in Figure 1.

28



The complete code implementation for all algorithms in this paper can be found
at liveexample.pearsoncmg.com/dsanimation/StringMatch.html. The an-
imation first prompts the user to enter a text and a pattern separated by a
space. For simplicity, their sizes are limited to 20 and 7, respectively. For
convenience, if no input is entered, a default text and a default pattern are
provided. The default gives a worst-case example.

As shown in Figure 1, the user entered a text AAAADDAAAACDCC-
CDDABA and a pattern AADDAAA. Now the pattern is compared with the
text starting from index 0 in the text as shown in Figure 2. You can click the
Next button to see how the brute-force algorithm is used to find a match for
the pattern in the text. For each step in the animation, an explanation for the
step is displayed below the Next button. You can turn on or off the audio by
clicking the Audio button on the upper left corner. When the audio is on, the
explanation will be read by a computer-generated voice. In Figure 1, the audio
icon indicates that the audio is muted. In Figure 2, the audio icon indicates
that the audio is on. You can click the Reset button to restart the animation.

4 Boyer-Moore Algorithm Animation

The brute-force algorithm is simple and intuitive, but not efficient. The algo-
rithm searches for a match of the pattern in the text by examining all align-
ments. This is not necessary. The Boyer-Moore algorithm finds a match by
comparing the pattern with a substring in the text from right to left. If a
character in the text does not match the one in the pattern and this char-
acter is not in the remaining part of the pattern, you can slide the pat-
tern all the way by passing this character. This algorithm can be best ex-
plored using an animation at liveexample.pearsoncmg.com/dsanimation/
StringMatchBoyerMoore.html.

29



5 KMP Algorithm Animation

In the brute-force or the Boyer-Moore algorithm, once a mismatch occurs, the
algorithm searches for the next possible match by shifting the pattern one po-
sition to the right for the brute-force algorithm and possibly multiple positions
to the right for the Boyer-Moore algorithm. In doing so, the successful match
of characters prior to the mismatch is ignored. The KMP algorithm takes con-
sideration of the successful matches to find the maximum number of positions
to shift in the pattern before continuing next search. To find the maximum
number of positions to shift in the pattern, the KMP algorithm defines a failure
function fail(k) as the length of the longest prefix of pattern that is a suffix in
pattern[1 .. k]. The KMP algorithm is one of the most difficult subjects in the
data structures and algorithms courses. An animation with various scenarios
can help students to see how the algorithm works. We developed the animation
accessible at liveexample.pearsoncmg.com/dsanimation/StringMatchKMP.
html. The failure functions can be computed by comparing the pattern
with itself. The animation for computing the failure functions is available
at liveexample.pearsoncmg.com/dsanimation/StringMatchKMPFail.html.

6 Benefits

Here are the major benefits for instructors and students to use our string
matching algorithm animations.
Benefit 1: In a typical lecture for introducing string matching algorithms, the
instructor draws various types of texts and patterns on the board and shows
the result of applying the algorithms by hand. This is a tedious and time-
consuming process. The animation enables the instructor to create a text and
a pattern dynamically and show the results of applying the algorithm step-by-
step.
Benefit 2: Without the animations, we spent two lectures on string matching
and drew various diagrams to cover all cases in the class. Now with the help
of the animations, we can cover the three string matching algorithms in one
lecture. The animations easily and effectively cover all cases visually in the
algorithms. With the help of the animations, students can learn the subject
quickly and better.
Benefit 3: A picture is worth a thousand words. An interactive animation
is worth more than pictures. The interactive animation not only catches stu-
dent attention in the class, it also engages the student with visual interaction.
Students can use the tool to study before and after the lectures to see how an
algorithm works on different texts and patterns.
Benefit 4: Our animation also serves as an example for students to write their

30



own programs to visualize the algorithms. This gives students the opportunity
to get deeper into the algorithms and see how the algorithms work in their own
animation. In our data structures and algorithms courses, we assign projects
for students to write their own code for algorithm animation. Students like the
algorithm animation projects. As supported in [8], students learn better when
they actually implement the algorithms using animation.

7 Evaluations

Many algorithm animation tools are available. It is safe to say that algorithm
animation assists instruction, but whether it helps students to learn is a mixed
bag. Some experiments show positive student outcome [1, 8], while others say
there are no significant difference to students whether animations are used or
not [5]. An experiment conducted at George Washington University [4] showed
that the students who used an interactive version of courseware spent more time
and performed worse overall than those who used the non-interactive version
of the courseware. The reason behind this is that the tools are ineffective and
difficult to use. Our goal is to develop a simple tool that is effective and easy
to use. First, our tool is free and directly accessible on the Web and can run
on any device from a Web browser. There is no need to install any software.
Second, our tool is intuitive and user friendly. It has only a short paragraph
of instructions on how to use it. Third, our animation has an explanation for
each step in the algorithm. Additionally, the explanation can be read in a
computer-generated voice.

We use the animation in our data structures and algorithm course in Java
and C++. The course covers recursion, Java generics, use of Java collections
framework for array lists, linked lists, stacks, queues, priority queues, sets,
maps, developing efficient algorithms, sorting, implementation of array lists,
linked lists, stacks, queues, and priority queues, binary search trees, AVL trees,
hashing, and graphs applications for unweighted graphs and weighted graphs.
The string matching algorithms are covered in the context of developing effi-
cient algorithms.

In the fall of 2015, we conducted a survey for a class of 22 students. We
used a scale of 1 to 10 for answers, where 1 is poor and 10 is excellent. The
result is as follows:

1. Does the brute-force string matching algorithm animation help you learn
the algorithm? 9.5

2. Does the Boyer-Moore algorithm animation help you learn the algorithm?
9.1.

3. Does the KMP algorithm animation help you learn the algorithm? 8.5.

31



4. Does the KMP failure algorithm animation help you learn the algorithm?
8.3.

The survey strongly suggests that the tool is easy to use and helps students
learn the string matching algorithms.

Over the years, we have improved and enhanced the animation based on
the feedback from instructors and students. The explanation and the audio to
read the explanation were the result of recent enhancement.

In the fall of 2018, we conducted a new survey with 21 students using two
simple questions. With a scale of 1 (poor) to 10 (excellent). The result of the
survey is as follows:

1. Are the animations intuitive to use? 9.8
2. Are the animations helpful to study the string matching algorithms? 9.2

References

[1] John Bazik. Software visualization in teaching at brown university. Software
visualization, pages 383–398, 1998.

[2] Sergey Bereg. Boyer-moore exact pattern match. https://www.utdallas.edu/
~besp/demo/John2010/boyer-moore.htm.

[3] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Com-
mun. ACM, 20(10):762–772, October 1977.

[4] Duane J Jarc, Michael B Feldman, and Rachelle S Heller. Assessing the benefits
of interactive prediction using web-based algorithm animation courseware. ACM
SIGCSE Bulletin, 32(1):377–381, 2000.

[5] Michael D Byrne1 Richard Catrambone John and T Stasko. Do algorithm ani-
mations aid learning? 1996.

[6] Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt. Fast pattern match-
ing in strings. SIAM journal on computing, 6(2):323–350, 1977.

[7] Yves Lucet. Computer science department, university of british columbia (okana-
gan campus). https://people.ok.ubc.ca/ylucet/DS/KnuthMorrisPratt.html.

[8] John T Stasko. Using student-built algorithm animations as learning aids. In Pro-
ceedings of the twenty-eighth SIGCSE technical symposium on Computer science
education, pages 25–29, 1997.

32



Creating a More Equitable CS Course
through Peer-Tutoring ∗

Adamou Fode Made1, Abeer Hasan2

1Department of Computer Science
2Department of Mathematics
Humboldt State University

{adamou.fode, abeer.hasan}@humboldt.edu

Abstract

This paper describes the effects of a newly implemented peer-tutoring
program at Humboldt State University. While the overall benefit of tu-
toring in students’ learning is documented in research, we aim to look
into the impact peer tutoring has in closing achievement gaps and cre-
ating a more inclusive learning environment. We collected and analyzed
three semesters worth of students’ data. Statistical methods were used
to test whether tutoring improves students’ success rate in one of our
gateway and bottleneck courses – Computer Science Foundations 2. Our
analyse suggest that the peer tutoring program has narrowed the achieve-
ment gap for Underrepresented Groups (URGs), Pell-Grant recipients,
Females, and First-Generation students. Overall, tutored students had
a success rate that is 17% higher than untutored ones.

Key words: CS1, CS2, Improving Student Success Rate, CS Education,
URGs, Peer Tutoring.

1 Introduction

Like many institutions, our computer science program has gateway courses
that impede progress for all students and in particular, URGs. Our Computer
Science Foundations 2 (CS2) course has traditionally been such a gateway
course. To address this, we decided to start a peer-tutoring program in spring

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

33



2018 for all our bottleneck and gateway courses. All the students in our CS2
have at least a minor in Computer Science.

Tutoring is a process in which expert and trained people help and support
people who are less skilled, in an interactive, meaningful and organized way.
Peer tutoring is a teaching strategy where a student tutee interacts with one
or more student tutees. The most common approach to peer tutoring is when
an experienced student assists one or more learners outside of class time. This
is the approach which has been described in this article.

Research has shown that peer tutoring can facilitate improved competence
when the peer tutor is a more advanced student than those who are tutored
[4]. Peer tutoring is known to help increase students retention rate [5] as well
as the overall success rate [2]. However, merely making tutoring available
does not necessarily guarantee success. Success also requires mentorship for
the tutors, dedication from the students requesting assistance, and possible
adjustments to the tutoring format [3]. An earlier study [1] of a similar peer
tutoring program showed that the program had closed the achievement gap
between Underrepresented Groups, Females, First Generation, and Financial
Aid recipients versus the overall students’ population in a Discrete Mathematics
course. In this paper, we replicate that study for our CS2 course.

Our University is classified as a Hispanic-Serving Institution, and first-
generation college students are well represented in our classrooms. In 2014,
URGs, undeclared and non-URGs represented respectively 30%, 11% and 59%
of our students by Fall 2018, those numbers were 41%, 10% and 49%. We
have seen a growing proportion of UGR students over time. As our student
population is becoming more diverse, there is a greater need for programs such
as peer tutoring to help close the achievement gaps.

In this paper, we report on a comparison of student performance across
three sections of Computer Science Foundations 2 taught by one faculty with
a combined enrollment of 86 students. We aim to answer the following ques-
tions: “Does peer tutoring improve students’ success rates and help close the
achievement gap for students from underrepresented groups (URG)?”

2 Methodology

We started a peer-tutoring program for our CS2 course in Spring 2018. The
program ran for three consecutive semesters (Spring 2018, Fall 2018, and Spring
2019) and will continue for the foreseeable future pending on available funding.
Students had the option of attending free peer tutoring services when they
needed help. Tutoring was offered on a first-come-first-served basis, and was
available Monday through Thursday, mostly in the evening, for a total of 20
hours per week. Two tutors were available to help students in each shift. We

34



kept track of tutoring attendance data. Only 31 out of 86 students did not
participate in the tutoring program. Our CS program had an enrollment of
about 180 students per year for the last five years.

The tutor helps only one student at a time and restricts the contact to no
more than five minutes when the center is busy. A student is considered tutored
if they attended two or more sessions in the semester for a total of two con-
tact hours. The tutors were instructed to guide students to solutions through
questions and similar examples without solving the homework for them. Tu-
tors do not just review homework, but help students develop confidence in
reaching their answer and becoming independent learners. Each tutor was re-
quired to participate in a 16-hour training workshop. Experts at the University
Learning Center conducted the training. Tutor training covered the following
topics: professionalism, ethics, learning theory, tutor cycle, creating a welcom-
ing environment, challenging scenarios, students of concern, and supplemental
instruction showcase.

Currently, the tutors are expected to help with more than three courses,
including all of the 100-200 level CS department courses. All of the tutors have
complete our gateway courses (CS2 and Discrete Mathematics) with a grade
of A- or higher. We started with four tutors the first semesters (All males, one
URG), and we now have eight (five males and three females) with a combined
four Latinx students (URG) and one female (not URG). We tried to hire a
diverse group of tutors, for example, 38% of the tutors were female and 50%
were Latinx students.

The same instructor taught the three offerings of the CS2 course and using
the same textbook, Problem Solving with C++, 9th edition by Walter Savitch.
The instructor used similar teaching materials, including syllabi, equivalent
homework assignments, and study guides. Further, the instructor crafted the
exams with an effort to keep problems at similar difficulty levels without reusing
previous exam problems. However, since students had no access to final exams
from previous semesters, the final exam content was relatively the same in the
three consecutive course offerings.

3 Results and Statistical Data Analysis

Table 1 shows a comparison of success rates between tutored and untutored
students. We can see that students who used tutoring services had a higher
success rate (81.8%) compared to those who did not (64.5%). The sample
difference in the success rate between tutored and untutored students in our
study is 17.3%. Wald’s 90% confidence interval on the difference in success
rates for tutored minus untutored students is (0.008, 0.338). Fisher’s exact
test on the counts in Table 1 resulted in a p-value of 0.064, which is significant

35



at the level 0.10 [6]. While we cannot claim that tutoring is the sole cause of
this increase in the success rate, it certainly helped those who utilized it and
the 17% increase in success rate is practically important.

Table 1: Student Success Rates by Tutoring Participation.
Failed Count Passed Count success Rates %

Tutored 10 45 81.8
Not Tutored 11 20 64.5

Table 2: Student Success Rates Grouped by Different Factors with the p-value
from Fisher’s Exact Test on each Factor. Total sample size = 86

Risk Factors Student Group Fail Pass Success Rate% P-value

First Generation
College Students

First Gen. 15 36 70.6
0.537Not First Gen. 5 23 82.1

Undeclared 1 6 85.7

Legal Sex Female 7 18 72.0 0.781Male 14 47 77.0

Financial Aid Received 16 37 69.8 0.131None 5 28 84.8

Underrepresented
Groups

URG 8 26 76.5
0.892Not URG 4 10 71.4

Undeclared 9 29 76.3

We are passionate about reducing achievement gaps for students from un-
derrepresented minorities and creating an equitable learning environment. We
examined the success rates in the last three offerings of the course and compared
success rates across different groups of students. Table 2 shows a summary of
student success rates versus some risk factors that are known to impede stu-
dent success. Due to our small sample counts, we chose to conduct Fisher’s
exact test on each factor. All p-values are reasonably large. Thus there is no
indication of an achievement gap for Female, Underrepresented Groups or Pell
Grant recipients. We see this as a good sign to indicate that tutoring might
have helped close the achievement gap for disadvantaged students.

Finally, we compared the demographics of tutored and untutored students.
Our research question was to investigate if there is a significant difference in
tutoring participation between different student demographics. Table 3 sum-
marizes tutoring participation across different student demographics. Sample
proportions indicate that students from URGs and first-generation college stu-
dents had the lowest participation rates in the tutoring program. The combi-

36



nation of small sample counts in some cells in Table 3 and students with un-
declared URG and first-generation status makes it harder to compare tutoring
participation rates across different student groups. However, reasonably large
p-values suggest that the observed sample differences may be insignificant.

Table 3: Tutoring Participation by Student Demographics
Risk Factors Groups Not Tutored Tutored Rate % P-value

First Gen.
First Gen. 21 30 58.8

0.374Not First G. 9 19 67.9
Undeclared 1 6 85.7

Legal Sex Female 7 18 72.0 0.459Male 24 37 60.7

Financial Aid Received 20 33 62.3 0.818None 11 22 66.7

URGs
URG 17 21 55.3

0.273Not URG 9 25 73.5
Undeclared 5 9 64.3

4 Conclusions and Limitations

The quantitative analyses of our student data have demonstrated that peer
tutoring is likely to have a positive impact in increasing success rates among
all students and reducing achievement gaps for students from underrepresented
groups. We believe that tutoring has helped create a sense of community,
confidence, and success in our courses. Further studies are warranted to see
the long-term effect of peer tutoring as student progress towards upper-division
courses where tutoring is not offered.

We note that our peer tutoring study suffers from limitations common to
research in small computer science programs. In particular, the data did not
come from a completely randomized experiment. The self-selection process of
attending tutoring makes it difficult to account for lurking factors like student
motivation and perseverance. Typically, we expect struggling students to seek
tutoring help. Thus, it is not fair to compare exam scores for tutored and
untutored students.

We established that tutoring services had helped increase success rates
across all student demographics, helped reduce the achievement gaps for fe-
males, URGs, low income (Pell grant recipients), and first-generation college
students. Our data indicate that all student demographics utilized and ben-
efited from tutoring. Student motivation may be a confounding factor that
caused students to participate in tutoring and study for the course. However,

37



the availability of tutoring could also increase student motivation by boost-
ing student confidence. We suspect that struggling students find it easier to
ask a colleague for help than to raise questions in class or during office hours.
Some students may be reluctant to seek help from their instructor. Tutoring
provided such students with a helper who will not evaluate their performance.

References

[1] A. Fode Made, A. Hasan, S. Burguess, D. Tuttle, and N. Soetaert. The
Effect of Peer Tutoring in Reducing Achievement Gaps: A success Story.
Journal of Computing Sciences in Colleges, 35(1.), 2019.

[2] R. Garcia, J. C. Morales, and R. Gloribel. The Use of Peer Tutoring to Im-
prove the Passing Rates in Mathematics Placement Exams of Engineering
Students: A Success Story. American Journal of Engineering Education,
5(2.), 2014.

[3] G. Huang, N. Taddese, E. Walter, and S. Peng. Entry and persistence of
women and minorities in college science and engineering education. Na-
tional Center for Education Statistics., (601), 2000.

[4] P. Kalkowski. Peer and cross-age tutoring. School Improvement Research
Series, 1995.

[5] S. Menzel and J. Cottam, A. J.and Greenblatt. Tutoring for Retention.
SIGCSE Proceedings of the 42nd ACM technical symposium on Computer
science education, (213-218.), 2011.

[6] J.G Tshikuka, M. G. Magafu, M. Molefi, T. Masupe, R. B. Matchaba-
Hove, B. Mbongwe, and R. Tapera. Addressing the Challenge of P-value
and Sample Size when the Significance is Borderline: The Test of Random
Duplication of Participants as a New Approach., volume 5. 2016.

38



Curated Pathways to Innovation:
Personalized CS Education to Promote

Diversity∗

Natalie Linnel1, Alankrita Dayal2, Phil Gonsalves2,
Mayank Kakodkar3, Bruno Ribiero3, Ariel Starr2,

Tim Urdan1, Janice Zdankus4,
1Santa Clara University, Santa Clara, CA 95053

{nlinnell, turdan}@scu.edu
2YWCA Silicon Valley, San Jose, CA 95112

{adayal,pgonsalves,astarr}@ywca-sv.org
3Purdue University, West Lafayette, IN 47907

{mkakodka, ribiero}@purdue.edu
4Hewlett Packard Enterprise, San Jose, CA 95002

{janice_zdankus}@hpe.com

Abstract

Curated Pathways to Innovation (CPITM ) is a web tool that gath-
ers existing online resources for computer science (CS) engagement and
learning, exposing students to CS careers and content, especially tar-
geting K-12 girls and under-represented minorities. CPI uses a machine
learning recommender to customize content, and is a collaboration of
academics in CS and social science, K − 12 educators, non-profit, and
industry. We have deployed this tool in a low-income, primarily Latino/a
middle school with nearly 500 students for over two years, in addition
to lower-touch deployments at three high schools. We have also created
in-person experiences for the students, such as reverse science fairs and
hackathons, also tracked in CPI. This paper focuses on our experiences
deploying the system, as well as the tool itself.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

39



1 Introduction

Motivated by the lack of engagement of underrepresented minorities (URMs)
and women in STEM [8], we have launched Curated Pathways to Innovation
(CPITM ), a web app to help students, particularly girls and URMs, navigate
their journeys to STEM (especially computing) careers.

Our system addresses limitations of many such interventions. Most engage
the student only for a short time; a single experience is unlikely to lead to a
career. Interventions often focus on interest in computing, without preparing
kids for the technical content they’ll need to master. Finally, few interventions
do longitudinal tracking. The goal is for CPI to follow students from the time
they start using it, preferably in elementary school, through college and be-
yond. As they begin discovering CS through CPI, they are awarded badges
as they complete activities which largely draw content from existing resources
like code.org, Khan Academy, etc, but which also include content we have gen-
erated around helping diverse students see themselves as computer scientists,
and even in-person experiences like hackathons. CPI provides context and
continuity to these disparate experiences. As students get older, we will add
more advanced content, and will also begin to track their academic progress in
CPI, as well as connecting them with mentors and networking opportunities.
Toward this ambitious goal, we have assembled a diverse team. Our leader
comes from industry, and academic teams develop the recommender and the
website. Deployments and curriculum are overseen by YWCA-Silicon Valley
(YWCA−SV ). Finally, a social scientist designs and analyzes data collection.
We discuss curriculum and the system in Sec. 3. Our main focus in this paper
is discussion of deployments and lessons learned in Sec. 4.

2 Related Work

We explore our curriculum’s relationship to the literature in Sec. 3.2. Here
we discuss software designed to get kids, especially girls and URMs, interested
in computing, such as Alice [4], code.org and Scratch, or teach programming,
like Codecademy.com or W3Schools.com. What sets CPI apart from these is
how we bring resources together in one place, with motivating activities, to
allow students to plan and track their progress, coupled with machine learning
to measure efficacy and provide recommendations to students. iRemix [7] lets
educators to create a social network where students create and share media
and comment on them. iRemix is not focused on CS and does not include
specific activities. Other systems that aggregate materials are The National
Girls’ Collaborative [2], which facilitates organizations working to bring girls
into STEM careers to share resources and best practices, and Engage CSEdu [3]

40



which allows CS educators to share materials. Both are resources for educators,
not for students to interact with. LRNG [1] has ‘playlists’ of online and real-life
educational experiences targeted at different cities, allowing students to earn
badges; it does not include CS activities. None of these systems use machine
learning for tracking or recommendation.

3 The System

3.1 The CPI Workflow

Figure 1: (a) Students choose a badge. b) Students are shown their progress
through the badge’s activities. b-inset) Clicking on an activity, the student is
given instructions, then they are usually taken out of CPI to do the activity.
After completing the activity, they return to CPI to rate the activity and take
a quiz to certify completion. c) If successful, they’re shown a gif related to an
area they’ve expressed interest in (like Beyonce), and sent back to the Pathway
page (Fig 1b) to continue the badge. After completing all activities, the student
gets credit for the badge. Some badges have prerequisites, so completing one
may unlock more.

Recently, we added avatars (Fig. 1a) and options for customizing avatars
as rewards for completing badges. We also added a portal allowing teachers
to track student progress (Sec. 4). The recommender customizes students’
experience by placing an ordering on available badges. It uses demographic
data, answers to survey questions, and usage data from CPI. The recommender
team generates weekly reports to monitor any potential negative bias.

3.2 Curriculum

When choosing activities for CPI, we follow best practices for encouraging fe-
males in STEM, many of which also apply to URMs.[8] One recommendation
is to expose students to diverse role models; for example, we include a cod-
ing activity centered on Wonder Woman, an activity reflecting on a trailer for

41



the movie Hidden Figures, and interviews with diverse programmers. Also
recommended is emphasizing effort over talent, and breaking down stereo-
types. We include motivational popups that directly address the attitudes
of female/URM students, as well as students outside these groups. Activities
using programming in hip hop, dance, and fashion, or that let them build
bridges or move gears to make a machine, focus on how STEM applies to
real-world applications, another recommendation. CPI pedagogy is based on a
philosophy of “learn by doing”, as research shows that active learning is moti-
vating to CS learners. [6] CPI takes students through three levels: Awareness,
Cultivating Interest, and Preparation. Awareness activities are focused on en-
gagement and exposing students to STEM careers. Activities include videos
of famous people, such as the founder of Facebook, talking about the impor-
tance of STEM, and infographics about opportunities and salaries for women
and URMs in STEM. Cultivating Interest activities help students see them-
selves in STEM through games where they gain confidence and begin learning
simple programming. Activities include coding Angry Birds through mazes
and coding Pixar characters. Preparation activities are more challenging, and
require students to engage in a series of tasks preparing them for STEM ca-
reers. They help students develop mindsets that are conducive to pursuing
STEM, but also teach concrete skills like Python. CPI’s activity-badge struc-
ture and Awareness-Interest-Preparation progression echoes research showing
that structured learning environments help students succeed in STEM. [6] Re-
cently, we have expanded our offerings to include content in biology, chemistry,
and physics, as well as basic computer skills like keyboarding, as a lack of basic
skills can form an emotional block to learning coding. [5]

4 Deployments

We are deployed in a low-income public middle school with over 470 6th-8th
graders, and over 70% Latino/a students. We chose middle school as it is
where career aspirations start to form and interest in STEM begins to diverge
by gender.[8, 4, 5] For two and a half years, every student has spent one class
period per week using CPI. Before partnering with us, the school had difficulty
sourcing quality STEM curriculum. Unless noted, we discuss this deployment.
We also have lower-touch deployments with three high schools, including the
high school where most of our middle schoolers continue.

4.1 Teacher Engagement

Starting the deployment with the whole school had benefits and drawbacks. It
was helpful for getting feedback and iterating on the system and deployment,
but we were concerned about teacher buy-in, as the decision was made by the

42



school. We used several strategies to engage individual teachers and students.
We created in-person activities (Sec. 4.2), providing tangible value to teachers,
and provided incentives to students (Sec. 4.3). Prior to launch, all teachers
received CPI training. A YWCA-SV staff member served as the CPI facilitator
and was on-site whenever students were using CPI. We provided volunteers in
almost every class session where CPI was used, helping students and teachers
learn the system, and providing technical support.

While many teachers became engaged with CPI, some didn’t. CPI’s design
for independent learning, coupled with the use of volunteers at the beginning
of the deployment, led some teachers to treat CPI as an activity they weren’t
involved in; some even used this as prep time. In addition, due to CPI’s
personalized learning focus, students tend to be working on different activities
at any moment, making it difficult for teachers to connect CPI to the other
content they are teaching - when many of the teachers do not feel confident
teaching CS in the first place. To increase teacher ownership, we decreased
volunteer time, though the facilitator was still on site for trouble-shooting.
We developed a teacher portal for the web app, allowing teachers to monitor
student progress, and trained teachers with it; then the facilitator met with
each teacher individually, in addition to classroom visits. Early in the last two
school years, we gave teachers a review of the prior year’s results and student
progress, emphasizing the need for longitudinal study and discussing the above
issues. We are also working with teachers to develop badges related to content
from outside CPI, to better integrate CPI into the classroom.

4.2 In-Person Interventions

Beyond online activities, we’ve hosted several events; a reverse science fair
where volunteers from industry set up displays at the school about their work
projects, a summer math camp, and for two years we’ve organized hackathons
at the middle school and one of the high schools. With an eye to scale and
with YWCA-SV’s leadership, we’ve begun working with partners to get our
students access to existing programs, including a library’s mobile maker lab,
a community college’s summer camps, a tech company’s mentorship program,
and other YWCA-SV programs.

4.3 Student Incentives

To motivate students, we’ve provided incentives including gift cards and sports
memorabilia. While incentive decisions were made collaboratively with teach-
ers, we have found incentives problematic. The largest problem is that they
unintentionally motivated students to cheat. Students can skip the activity,
going straight to the comprehension quiz. Quizzes are not long, so students

43



can answer the questions repeatedly to find the right answers. To combat this,
we have made some changes. First, a teacher can now use their portal to see
how many times a student has attempted a quiz, and are notified by email
the second time a student fails a quiz. We don’t allow a quiz to be started
until at least half the average completion time for that activity has passed.
Finally, we require students to get all questions right to receive credit. We also
became concerned that incentives might reduce students’ intrinsic motivation
to learn CS. However, the students expect incentives, so to abruptly remove
them would lead to resentment. We have decided to phase them out. Now,
classes compete with each other on CPI progress, and winning classes receive
a party. We also believe adding avatars,(Sec. 3) with avatar customization as
an incentive for progress, is a better incentive as it ties students’ motivation
more closely to their progress.

4.4 Data Collection on STEM Interest/Confidence

Our social scientist designed a method where we initially surveyed students
with a long baseline, followed by periodic shorter surveys. However, stopping
classes to survey hundreds of students, and tracking absences to ensure make-
ups, has made implementation difficult. The number of students who have
taken all of our surveys is too small to reach statistically significant conclusions.
Our social scientist has re-designed data collection to balance dimensionality
with completeness. We’ve kept the baseline, but replaced the shorter surveys
with questions asked alongside comprehension quizzes. With data collection
integrated with the system, we expect more complete data.

5 Conclusions

Curated Pathways to Innovation is a web app that uses machine learning to
customize students’ experience of discovering and learning CS. We report on
our experiences working with a large, diverse team spanning the academy, non-
profit, and industry to deploy CPI in a low-income, primarily Latino/a middle
school with almost 500 students. We discussed lessons learned around teacher
engagement, student incentives, and data collection. We have re-worked our
deployment and data collection models and look forward to realizing our goal
of a system that allows us to use longitudinal data to evaluate and improve the
recommender, the individual activities, and the system itself.

44



References

[1] Lrng. https://www.lrng.org/.

[2] National girls collaborative project. https://ngcproject.org/.

[3] Ncwit’s engage csedu. https://www.engage-csedu.org/.

[4] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. Storytelling alice moti-
vates middle school girls to learn computer programming. pages 1455–1464,
01 2007.

[5] J. Shah P. Morreale. M. Andujar, L. Jimenez. Evaluating visual program-
ming environments to teach computing to minority high school students.
CCSC: Southeastern Conference, JCSC 29,2, 2013.

[6] Pooja Sankar, Jessica Gilmartin, and Melissa Sobel. An examination of be-
longingness and confidence among female computer science students. ACM
SIGCAS Computers and Society, 45:7–10, 07 2015.

[7] Anni Sapountzi and Kostas Psannis. Social networking data analysis tools
challenges. Future Generation Computer Systems, 10 2016.

[8] Ming-Te Wang and Jessica Degol. Gender gap in science, technology, en-
gineering, and mathematics (stem): Current knowledge, implications for
practice, policy, and future directions. Educational Psychology Review, 29,
01 2016.

45



Google Tech Exchange: An
Industry-Academic Partnership that

Prepares Black and Latinx
Undergraduates for High-Tech Careers∗

April Alvarez1, Legand Burge2, Shameeka Emanuel1, Ann Gates3
Sally Goldman1, Jean Griffin1, Harry Keeling2, Mary Jo Madda1

Bianca Okafor1, Alycia Onowho2, Gloria Washington2

1Google LLC
Mountain View CA 94043

jeangriffin@google.com
2Howard University Computer Science Program

Washington D.C. 20059
blegand@scs.howard.edu

3University of Texas at El Paso Computer Science Department
El Paso, TX 79968

agates@utep.edu

Abstract
This paper describes Google Tech Exchange, an industry-academic

partnership that involves several Historically Black Colleges and His-
panic Serving Institutions. Tech Exchange’s mission is to unlock oppor-
tunities in the tech industry for Black and Latinx undergraduates. It
is an immersive computer science experience for students and faculty.
Participants spend a semester or two at Google in Silicon Valley taking
or co-teaching computer science courses, including cutting-edge ones not
offered at many universities. The 2018-2019 graduates especially val-
ued the community-building, and a high percentage secured technical
internships or jobs.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

46



1 Introduction

Graduates of Computer Science (CS) and Software Engineering programs of-
ten have gaps in knowledge, experience, and enculturation when interviewing
for, or starting, jobs in the software engineering industry [3, 6, 7, 14]. Ap-
proaches to closing these gaps include apprenticeships, co-ops, and internships.
Tech Exchange takes an alternative approach, where undergraduates spend a
semester or two in Silicon Valley taking cutting-edge CS courses co-taught by
Google employees. It also addresses another gap, the underrepresentation of
Black and Latinx professionals in the U.S. tech industry [10, 1, 18].

This experience report is organized as follows. The Background section
discusses gaps in undergraduate preparation for jobs in the software engineer-
ing industry, and the underrepresentation of Black and Latinx technologists.
The next section describes the Tech Exchange 2018-2019 Model. The Lessons
Learned and Future Plans section is followed by a Discussion section.

2 Background

This section discusses gaps in undergraduate preparation for software engineer-
ing jobs, approaches to bridge the gaps, and Black/Latinx underrepresentation.

CS students fall short of industry expectations in technical interview prepa-
ration, written and oral communication skills, and project management skills
[3, 4, 13, 14]. Although many qualities of a great software engineer involve soft
skills, CS and Software Engineering education programs typically focus pri-
marily on technical knowledge [8]. Several approaches to experiential learning
attempt to bridge the gap between academia and the software engineering in-
dustry. These include internships, project-based courses (Fox Patterson 2012)
[5], service learning courses [7, 11], and industry-academic partnerships such
as co-ops and apprenticeships. Co-op participants typically spend one or more
semesters (or quarters) working for an employer in partial fulfillment of degree
requirements. Apprenticeships often involve a relationship that spans multiple
years, such as the UK Degree Apprenticeships [2, 9].

These approaches have limitations. Co-ops and apprenticeships are im-
mersive but are only offered by a small number of institutions. Project-based
courses and service-learning courses are valuable but not immersive. Intern-
ships are immersive but there are significant hurdles to obtain them, and they
do not provide a consistent set of educational experiences that prepare under-
graduates for the software engineering industry. More innovative programs are
needed.

Gaps in preparation are especially problematic in the U.S. for those who
are Black or Latinx due to underrepresentation in the tech industry [10, 1, 18]

47



compounded by stereotype threat [15]. Immersive, rigorous, and welcoming
educational experiences are needed to provide technical and social preparation.

3 The 2018-2019 Tech Exchange Model

Tech Exchange is an industry-academic partnership that involves Google and
several Historically Black Colleges (HBCUs) and Hispanic Serving Institutions
(HSIs). It is one way that Google makes a long-term investment in CS educa-
tion to increase pathways to high-tech careers for underrepresented groups.
Tech Exchange is an immersive program where junior CS majors spend a
semester on Google’s campus in Silicon Valley, take state-of-the-art CS courses
co-developed and/or co-taught by Googlers and HBCU/HSI faculty, and en-
gage in social opportunities that foster professional development. It builds on
the success of prior partnerships, Howard West and Googler-In-Residence [16].
In 2018-2019, 5 HBCU/HSI faculty participated, and 65 students (41% female)
from 10 HBCU/HSIs (38 both semesters; 18 Fall-only; 9 Spring-only).

Contractually, Tech Exchange is a partnership between Google and Howard
University. Howard sets academic policies, hires faculty, registers students,
awards credit, and has domestic exchange agreements with the other univer-
sities. Google’s 2018-2019 team had a Program Lead, a Community & Op-
erations Manager, and a part-time Creative Strategy Manager (from Google
Education Equity), and 2 part-time Academic ProgramManagers (from Google
Research).

Tech Exchange hosted weekly community meetings and 30+ social and
career development events including field trips, team-building activities, and
guest speakers. Over 100 Googlers volunteered as instructors, TAs, mock in-
terviewers, mentors, and event hosts. Social media campaigns that showcased
student included a CS Ed Week campaign (on LinkedIn, Instagram, and Twit-
ter), a YouTube video Inside Google’s Tech Exchange Program, and a Google
blog post Tech Exchange students reflect on their future careers.

Tech Exchange’s academic goals are to: 1) provide innovative and engaging
courses that prepare students for careers in the software engineering industry;
2) establish collaborative working relationships between Google volunteers and
the HBCU/HSI faculty to create/revise course content and pedagogies to align
with current industry practices; 3) encourage HBCU/HSI faculty to bring back
courses and pedagogies to their institutions. The 2018-2019 program spanned
the Fall 2018 and Spring 2019 semesters. Twelve technical courses were offered:

• Algorithms, Cybersecurity, Databases, Data Science, Entrepreneurship
• Interview Prep, Machine Learning, Mobile Apps, Product Management
• Programming Languages, Software Engineering, Theory of Computation

48



Most courses met 2x/week and earned 3-credits. Each had a teaching team with
one or more TAs. Most had both an HBCU/HSI faculty member and a Google
instructor. There were 5 HBCU/HSI faculty members and 10 Google instruc-
tors. The teams met before the start of the semester and weekly throughout.
Active learning was highly encouraged, using techniques such as whiteboarding,
group projects, discussion slides, pair programming, and peer instruction.

Tech Exchange 2018-2019 was evaluated internally by administrators from
Google and Howard. Each semester students completed mid-semester anony-
mous course feedback surveys, developed by Google. In the spring, all students
completed a draft version of the Basic Data Structures Inventory [12], and 33
students completed a post attitudes survey about career readiness and Tech
Exchange (developed by Google and Howard). The course teams completed
Carl Wieman’s Teaching Practices Inventory at the end of each semester as
a reflection exercise [17]. At the end of the spring semester, Google held a
focus group for the HBCU/HSI faculty and another one for the Google in-
structors and TAs. All Google volunteers had the opportunity to complete a
mid-semester survey in the fall to gauge their attitudes about Tech Exchange.

4 Lessons Learned and Future Plans

This section discusses lessons learned from 2018-2019 and future plans regard-
ing the administration, community, social media, and academics.

The administrative structure outlined above will remain the same, but bet-
ter planning and communication are needed. The community-building aspects
were generally successful. In the attitudes survey completed by 33 students at
the end of the Spring semester, 48% reported that the sense of community was
the best part of Tech Exchange. In a separate survey of Google volunteers 75%
of the respondents reported that volunteering for Tech Exchange had a positive
impact on their view of their employer. Students enthusiastically participated
in the social media campaigns and continue to stay connected on social media.

Tech Exchange will transition to a one-semester, spring-only program. In
the fall, teachers and administrators can plan, and students can take core
courses at their home institutions. Regarding student selection, the intention
was to recruit juniors with a high GPA in a CS-related major. In the future
the prerequisites will be better clarified and the selection process will include
a technical interview. The Academic Program Managers used a draft version
of the Basic Data Structures Inventory (BDSI) [12] as a guideline to determine
the new prerequisites. They also administered this concept inventory in the
spring and analyzed performance trends. This helped to shape the student
selection process for 2020.

In the future fewer courses will be offered, primarily electives where Google

49



can add the most value. A key finding was that students need more practice
with technical interviews. Instead of the 2018-2019 1-credit, 1x/week Interview
Prep course, a 3-credit, 2x/week Applied Data Structures course will be offered
that includes interview prep. To alleviate burnout, exam/project deadlines are
now staggered, and students will agree to take no more than 15 credits.

The HBCU/HSI faculty made recommendations during their focus group:
R1) more planning time; R2) clarified expectations; R3) faculty office; R4)
better coordination of guest speakers; R5) more professional development; R6)
greater access to Google tech talks and events. R1&2 have been addressed by
reserving fall for planning. R3 has been accomplished. R4 is the responsibility
of each course team. R5 will be addressed with a more in-depth orientation.
R6 is not possible because the faculty are not Google employees.

The Google instructors and TAs expressed widespread agreement, in their
focus group of 2̃0 participants, that Tech Exchange was a rewarding expe-
rience. They suggested better communication across courses, more time for
course planning, an improved selection process for students and teachers, and
clearer guidelines regarding roles and responsibilities. Many expressed frustra-
tion with the learning management system (Blackboard); some students and
Googlers were never able to access it. In the future, Google Classroom will
be used. Several thought that some students seemed underprepared and that
some students had unusually heavy course loads.

Thirty-three students completed a survey after the Spring semester. Their
responses were strong (median=4 on a Likert scale of 1-5) regarding their opin-
ion of Tech Exchange overall, their likelihood to succeed in a tech career and
accept a job in Silicon Valley, and feeling welcome with a sense of belonging in
Silicon Valley. At least 44 of 65 obtained technical internships or jobs by sum-
mer; 32 in the tech industry (15 at Google); 12 tech-related in other industries.
Some benefits were unanticipated. For example, some graduates on their own
initiative started clubs at their schools to help students practice for technical
interviews.

5 Discussion

This paper describes the motivation for Tech Exchange and compares it to
other industry-academic partnerships. It describes the 2018-2019 program,
lessons learned, and future plans. Several measures indicate that the 2018-
2019 program was successful. Students reported a high degree of satisfaction
and a high degree of confidence about succeeding in a tech career. Over two
thirds of them obtained technical internships or full-time jobs by the summer.
Despite the many challenges encountered during the 2018-2019 year, Google,
Howard, and the other participating universities will continue to invest in Tech
Exchange.

50



References

[1] Women, Minorities, and Persons with Disabilities in Science and Engineer-
ing: 2011. NSF 11-309. Technical report, National Science Foundation,
Division of Science Resources Statistics, 2011.

[2] Matthew Barr and Jack Parkinson. Developing a Work-based Software
Engineering Degree in Collaboration with Industry. pages 1–7, 2019.

[3] Andrew Begel and Beth Simon. Struggles of new college graduates in
their first software development job. In SIGCSE’08 - Proceedings of the
39th ACM Technical Symposium on Computer Science Education, pages
226–230. ACM, 2008.

[4] Denae Ford, Titus Barik, Leslie Rand-Pickett, and Chris Parnin. The
tech-talk balance: what technical interviewers expect from technical can-
didates. Proceedings - 2017 IEEE/ACM 10th International Workshop on
Cooperative and Human Aspects of Software Engineering, CHASE 2017,
(9408):43–48, 2017.

[5] Armando Fox and David Patterson. Viewpoint: Crossing the software
education chasm. Communications of the ACM, 55(5):44–49, 2012.

[6] Vahid Garousi, Gorkem Giray, Eray Tuzun, Cagatay Catal, and Michael
Felderer. Closing the Gap Between Software Engineering Education and
Industrial Needs. IEEE Software, 2019.

[7] Wendy A. Lawrence-Fowler, Laura M. Grabowski, and Christine F. Reilly.
Bridging the divide: Strategies for college to career readiness in computer
science. Proceedings - Frontiers in Education Conference, FIE, 2014:1–8,
2015.

[8] Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. What makes a great software
engineer? Proceedings - International Conference on Software Engineer-
ing, 1:700–710, 2015.

[9] Joseph Maguire, Steve Draper, and Quintin Cutts. What Do We Do When
We Teach Software Engineering? In First UK and Ireland Computer
Science Education Research Conference (UKICER ’19)., pages 1–7. ACM,
2019.

[10] J. Margolis, R. Estrella, J. Goode, and K. Nao. Stuck in the shallow end:
Education, race, and computing. The MIT Press, Cambridge, MA, 2008.

51



[11] Christian Murphy, Swapneel Sheth, and Sydney Morton. A two-course se-
quence of real projects for real customers. Proceedings of the Conference on
Integrating Technology into Computer Science Education, ITiCSE, pages
417–422, 2017.

[12] Leo Porter, Daniel Zingaro, Soohyun Nam Liao, Cynthia Taylor, Kevin C.
Webb, Cynthia Lee, and Michael Clancy. BDSI: A Validated Concept In-
ventory for Basic Data Structures. Proceedings of the 2019 ACM Confer-
ence on International Computing Education Research - ICER ’19, pages
111–119, 2019.

[13] Alex Radermacher and Gursimran Walia. Gaps between industry expec-
tations and the abilities of graduates. SIGCSE 2013 - Proceedings of the
44th ACM Technical Symposium on Computer Science Education, pages
525–530, 2013.

[14] Chris B. Simmons and Lakisha L. Simmons. Gaps in the Computer Science
Curriculum: An Exploratory Study of Industry Professionals. The Journal
of Computing Sciences in Colleges, 25(5):60–65, 2010.

[15] Claude M. Steele and Joshua Aronson. Stereotype threat and the intellec-
tual test performance of African Americans. Journal of Personality and
Social Psychology, 69(5):797–811, 1995.

[16] A. Nicki Washington, Legand Burge, Marlon Mejias, Ketly Jean-Pierre,
and Qi’anne Knox. Improving Undergraduate Student Performance in
Computer Science at Historically Black Colleges and Universities (HB-
CUs) through Industry Partnerships. In SIGCSE 2015 - Proceedings of the
46th ACM Technical Symposium on Computer Science Education, pages
203–206. ACM, 2015.

[17] Carl Wieman and Sarah Gilbert. The Teaching Practices Inventory: A
New Tool for Characterizing College and University Teaching in Mathe-
matics and Science. CBE Life Sciences Education, 13(3):552–569, 2014.

[18] Stuart Zweben and Betsy Bizot. 2018 Taulbee Survey. 2018.

52



Plagiarism Prevention through Project
Based Learning with GitLab∗

Giovanni Gonzalez Araujo, Angelo Kyrilov
Department of Computer Science and Engineering

University of California, Merced
Merced, CA 95343

{ggonzalezaraujo, akyrilov}@ucmerced.edu

Abstract

In this paper we investigate the extent to which Project Based Learn-
ing (PBL) contributes to plagiarism prevention. PBL refers to the pro-
cess of delivering course material to students by asking them to work
on projects that make use of the concepts that need to be covered. We
accomplished this in a flipped classroom environment, with the GitLab
system as a platform. In addition to restructuring the class activities, we
also redesigned all our programming assignments, and went from simple,
automatically graded exercises, to open-ended problems on real software
projects that students can relate to. To evaluate the effectiveness of our
proposed approach, we looked at plagiarism rates form prior course of-
ferings, and found that more than 70-80% of students had committed
plagiarism. In our current course, there have not been any plagiarism
cases. We believe this can be attributed to the interventions we designed.

1 Introduction

Plagiarism is a widespread issue in undergraduate Computer Science Edu-
cation. In the typical classroom, most assessment components are practical
programming exercises, which makes it easy for students to plagiarize [4]. In
addition to sharing code with one another, students can also obtain complete
assignment solutions from many online platforms, such as Chegg, Geeks for

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

53



Geeks, and Stack Overflow. While such platforms are useful for providing sup-
port, some students misuse and abuse these systems by essentially outsourcing
their assignments to other developers, learning very little, in the process.

The rates of plagiarism in our undergraduate Computer Science courses
have been steadily increasing in recent years, especially in courses that have
a large programming component. Despite our efforts to combat the situation
by using plagiarism detection tools and introducing harsher punishments for
offenders, plagiarism rates remain high, similar to the findings in [7]. A study
by [12] suggests that coursework design is highly correlated with plagiarism
rates. We therefore sought to redesign several aspects of one of our courses in
an attempt to prevent plagiarism.

In this paper, we investigate whether the changes introduced in the course,
namely the GitLab platform, the flipped classroom, and the Project Based
Learning (PBL) approach, have contributed to plagiarism prevention, and
thereby improved learning.

The rest of the paper is organized as follows. Section 2 contains background
and related work. Section 3 outlines the experiment, and section 4 presents
the results and discussions. Section 5 is a brief summary of the main findings.

2 Background and Related Work

Contrary to traditional classroom teaching methods, the flipped classroom ap-
proach consists of the use of technology to access learning materials outside of
class, while engaging in active learning activities during class time. According
to [3], this approach shows very promising results in higher education. [5] stud-
ied two offerings of a CS1 class held in two different semesters, with a total of
1307 students across both, where first offering had a traditional format, while
the second one followed an inverted classroom approach. The authors found
that in the second offering, students performed significantly better in the final.

Live coding demonstration, defined as “the process of designing and imple-
menting a coding project in front of class during lecture period”, is another form
of active learning. [8] examines the effectiveness of live-coding demonstrations
in introductory CS courses. The authors show that live coding demonstrations
led to significant increases in student performance on projects. Furthermore,
90% of students in the study agreed that code examples were more educational
than traditional lecture slides.

Computer Science is subject to significant plagiarism rates because of the
nature of the assignments given [2]. In most cases, programming assignments
have very specific instructions, leaving little room for creative input from stu-
dents. Students see these assignments as having low educational value, leading
to a lack of motivation to work on them.[10]. In [6] the authors found auto-

54



mated assessment systems that generate low-quality feedback, in the form of a
binary (correct/incorrect) signal, can lead to cheating. This is because binary
feedback offers no guidance on how to correct a problem, and with no other
viable alternatives, students oftentimes resort to dishonest practices.

Instructors have been relying on plagiarism detection software, with MOSS,
described in [1], being one of the most widely used. [9] gave MOSS the ability
to detect plagiarism across multiple semesters. To detect cases of assignment
outsourcing, [11] proposed a method for automatic plagiarism detection, by
means of computing the differences between consecutive submissions made by
a student, assuming they should not differ greatly from one to the next. The
authors found their method to be 82% accurate.

Despite the popularity and high accuracy of plagiarism detection tools, they
do little to prevent plagiarism. We have found that even harsher punishments
for plagiarism are not effective in reducing plagiarism. This is a motivating fac-
tor for our efforts in redesigning the curriculum in order to prevent plagiarism,
rather than detect it and punish the offenders.

3 Research Methodology

The first step was to determine plagiarism rates from past course offerings,
taught in a traditional manner. We selected Spring 2018 (59 students), and
Fall 2018 (120 students). We classified each student into one of the following
categories: “Start Honest - Stay Honest”, “Start Honest - Cheat”, or “Cheat
on First Attempt”. Classification was done by comparing all submissions to
each other for similarity. Cases of high similarity were examined manually.
Submissions were also compared to solutions posted on Chegg, flagging all
students who used them. The results are seen in Figure 1.

33%

47%

20%

Start Honest - Stay Honest
Start Honest - Cheat
Cheat on First Attempt

43%

30%

27%

Start Honest - Stay Honest
Start Honest - Cheat
Cheat on First Attempt

Spring 2018 Fall 2018

Figure 1: Spring 2018 and Fall 2018 student plagiarism classification

Overall plagiarism rates for Spring 2018 and Fall 2018 are 80% and 73%
respectively, and about 25% of students who cheated downloaded complete

55



solutions from Chegg and turned them in unmodified. In an attempt to prevent
this, we introduced the following changes to the course in the Fall 2019 offering.

We moved away from the traditional lecturing with slides to a flipped class-
room environment with live coding demonstrations, and Project Based Learn-
ing (PBL). Each week, students were assigned a project of appropriate size and
scope. In the first week of the course, students were introduced to RESTful API
design, so all their projects were web applications. Lectures were organized as a
series of 15-minute presentations by the instructor, followed by 20 minute cod-
ing sessions. As students developed their code, they pushed it to their GitLab
repositories. Using the Continuous Integration and Continuous Deployment
(CI/CD) features of GitLab, students’ applications were automatically built,
unit tested, and deployed to a live environment, accessible worldwide. When
students were done with a particular project, they complete a Merge Request,
which initiates a code review session between the student and the teaching
assistant. As a result of this code review, some students found problems with
their code, which they then went on to fix. Figure 2 shows the interface of a
typical project students were assigned. In this case it is a game that generates
a random set of letters and the user has to make valid English words. The
game shown, still contains a bug that accepts any sequence of characters as a
valid English word.

Figure 2: Game interface, with “bugs” still unresolved

Within a given week, students had two lecture periods like the one described
above, and an optional laboratory session. It was optional because not all
students needed it. Some students were able to finish their weekly project
within the two lecture periods, while others needed more time and assistance.
In addition to the laboratory time, students also had the opportunity to get
help in office hours hosted by the instructor and the teaching assistant. This
pattern repeated every week, with a new project being assigned, using it as a
vehicle to deliver the course concepts that needed to be covered, as prescribed
by a PBL philosophy.

56



4 Results and Discussion

In the Fall 2019 semester, when the interventions were implemented, there
were no cases of plagiarism found. This does not mean that plagiarism was
completely eradicated, but it is promising to see that no students were detected.
In addition to this, none of the current lab assignments have been posted on
Chegg, or any other similar forum, meaning that there was no outsourcing
of assignments. This leads us to conclude that the changes we introduced in
our course have been effective in reducing plagiarism, and therefore improved
student learning.

Possible factors that caused this improvement include the fact that students
are not working on command-line scripts, which they struggle to relate to. They
are working on web applications that look and feel similar to the software they
interact with every day, which could motivate students to put in more effort.
It is possible that the structure of class activities played a part too. With a
PBL approach, students were could move at their own pace, allowing more
advanced students to complete the material quickly and spend their time on
productive things, while students who needed help, had multiple opportunities
to get it, especially in the lab, because they walk in with something that they
have been working on during lectures, making the task easier to complete.

5 Conclusion

Plagiarism is a widespread problem in Computer Science Education, amplified
further when lab assignments are poorly designed, reused between multiple
course offerings, or automatically graded.

We redesigned one of our courses to follow the flipped classroom philosophy
with a PBL framework. The results are very promising, as there have been
no cases of plagiarism this semester, since the interventions were introduced.
Reasons for this include the fact that students are more motivated to work
on their solutions, because the problems they solve, and the platforms that
they implement them on, are similar to software products they interact with
on a daily basis. Another reason is that it is harder to outsource open-ended
questions to websites like Chegg and Stack Overflow. If students attempt to get
help on these types of questions online, they are more likely to receive guidance,
rather than complete solutions, which is the way these online tools should
be used. Further research is currently underway in order to more accurately
determine the effects of each aspect of the interventions we introduced.

57



6 Acknowledgments

Many thanks to the anonymous reviewers for helping to improve the paper.

References

[1] A Aiken. MOSS: A System for Detecting Software Plagiarism. 2002.

[2] R. Fraser and D. Cheriton. Collaboration, Collusion and Plagiarism in
Computer Science Coursework. Informatics in Education, 13, 09 2014.

[3] M. N. Giannakos, J. Krogstie, and N. Chrisochoides. Reviewing the
Flipped Classroom Research: Reflections for Computer Science Educa-
tion. In Proceedings of CSERC, 2014.

[4] J. K. Harris. Plagiarism in Computer Science Courses. In Proceedings of
ECA, 1994.

[5] D. Horton and M. Craig. Drop, Fail, Pass, Continue: Persistence in
CS1 and Beyond in Traditional and Inverted Delivery. In Proceedings of
SIGCSE, 2015.

[6] A. Kyrilov and D. C. Noelle. Binary Instant Feedback on Programming
Exercises Can Reduce Student Engagement and Promote Cheating. In
Proceedings of Koli Calling, 2015.

[7] L. Nichols, K. Dewey, M. Emre, S. Chen, and B. Hardekopf. Syntax-
based Improvements to Plagiarism Detectors and Their Evaluations. In
Proceedings of ITiCSE, 2019.

[8] M. J. Rubin. The Effectiveness of Live-coding to Teach Introductory
Programming. In Proceeding of SIGCSE, 2013.

[9] D. Sheahen and D. Joyner. TAPS: A MOSS Extension for Detecting
Software Plagiarism at Scale. In Proceedings of L@S, 2016.

[10] J. Sheard, A. Carbone, and M. Dick. Determination of Factors Which
Impact on IT Students’ Propensity to Cheat. In Proceedings of ACE,
2003.

[11] N. Tahaei and D. C. Noelle. Automated Plagiarism Detection for Com-
puter Programming Exercises Based on Patterns of Resubmission. In
Proceedings ICER, 2018.

[12] P. Vamplew and J. Dermoudy. An Anti-plagiarism Editor for Software
Development Courses. In Proceedings of ACE, 2005.

58


