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Abstract

Computer Science (CS) is a competitive field with high demand and
low admission rates. In the last three years, the CS program at the Uni-
versity of California, Irvine (UCI) received over 15,000 applications and
admitted only 14%. Despite being highly selective and admitting top
students, we observed over a 10-year span 57% experienced a period of
academic probation. The alarmingly high probation rate motivates us to
understand challenges that lead CS students to enter probation at UCI.
Some of our results aligned with past findings regarding academic per-
formance: high school GPA and math background level have a negative
trend with probation, underrepresented groups experience probation at
higher rates than the average, and female students have lower probation
but higher attrition rates than men. More importantly, over a third of
the students enter probation in freshman year, and students on proba-
tion leave the field at higher rates than the average. There is also a
positive trend linking probation duration to attrition rates. Our results
suggest that current probation practices may not be sufficient for stu-
dents to return to satisfactory academic standing, highlighting the need
for proactive and targeted probation interventions.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to 
copy without fee all or part of this material is granted provided that the copies are not made 
or distributed for direct commercial advantage, the CCSC copyright notice and the title of 
the publication and its date appear, and notice is given that copying is by permission of the 
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires 
a fee and/or specific permission.

8



1 Introduction

CS is one of the largest and most selective majors at UCI, as reflected by an
average admissions rate of under 20% in the last three years [7]. Students
must handle the transition into higher education while also performing well
academically. Despite the high selectivity of the field, a whopping 57% of
students experienced a period of probation, and probation students left the
field at higher rates than the average. The Computer Science (CS) program at
UCI places students on probation if quarterly or cumulative GPA falls under
2.0, writing requirements are not met, minimum unit progress is not made or
if the major’s program of study is not followed. Students on probation must
sign an academic contract to raise awareness and attempt to get them back on
track, and if terms are violated, students are subject to disqualification from
the major and/or the university.

In this study, we analyze undergraduate CS student characteristics and
performance to identify significant indicators of probation. We also analyze
relationships between current probation and CS attrition to assess probation
practices’ efficacy. We focus specifically on academic probation because it
depends on students meeting unit, progress, and GPA requirements, making it
a useful indicator of satisfactory academic standing.

2 Goals

In this work, we aim to answer the following questions to better understand
undergraduate students’ challenges regarding probation in the CS program:

(i) Are there common characteristics in admissions data which identify an
increased likelihood for probation? Detecting common characteristics
such as ethnicity, gender, socioeconomic status or GPA in students who
enter probation could assist in developing well-tailored support programs.

(ii) Are there key aspects of students’ academic journey and courses taken
that increased likelihood for probation? If common academic patterns or
taken courses constantly lead a large amount of students to enter proba-
tion, changes in curricula or specific course support could be implemented
to maximize student success.

(iii) Does being placed on academic probation impact students’ chances of suc-
ceeding in the CS major? Probation and attrition relationships could
point to crucial characteristics that make students more prone to strug-
gling academically. New interventions could be tailored to assist them.
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By answering these questions, we will gain insight to propose new academic
advising practices to proactively provide assistance to struggling students prior
to entering academic probation, as well as reform probation practices to com-
plement probation contracts with academic support.

3 Related Work

There is limited literature focusing on CS students’ likelihood of entering pro-
bation and how being on probation impacts their academic success. Instead,
related literature has focused on factors associated with students’ academic per-
formance. For instance, a commonly explored feature in the literature is math
background; strong relationships were discovered between having a stronger
math background [8, 2], and students’ performance. Also, [8, 5] discussed
that high school (HS) GPA was a significant predictor of performance in in-
troductory CS classes. Another study identified gender, prior experience and
classroom interactions as strong predictors of academic performance [1]. [3]
explored feasibility of machine learning for early detection of probation status
and differences in performance were uncovered across different demograph-
ics. However, further statistical analysis is needed to explain these disparities.
Overall, relationships between student characteristics and academic probation
status should be explored similar to past work on academic performance.

4 Student Dataset

We worked with a dataset of 1,762 CS students at UCI. It includes students
who enrolled from 2011 to 2015 and graduated from 2012 to 2020. Note, this
data was collected prior to the pandemic, with the exception of a few fifth
year students. The dataset contains admission application records, student
term status, quarterly course list, and graduation degree. Admission records
included student demographics and HS data. The next component provided
academic status information on a term-by-term basis. Data on courses taken
included course name, grade, and quarter taken. The last component contained
students’ degrees and graduation term. We performed two-sample t-tests and
Chi-square tests of independence to understand feature relationships with pro-
bation. We also evaluated distributions across student background, course
experience, and probation experiences.

5 Results and Discussion

In total, 1009 students (57%) found themselves on probation during their aca-
demic career. The attrition rate for those who were never on probation was
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Total Probation

Asian 984 55% (543)
Not Stated 305 51% (157)

Latino 254 77% (196)
White 192 47% (91)
Black 23 87% (20)

Am. Indian 4 50% (2)

Table 1: Distribution of probation
across students’ reported ethnicity.

GPA Total Probation

2.50 - 3.00 2 100% (2)
3.01 - 3.50 94 68% (64)
3.51 - 3.75 250 58% (145)
3.76 - 4.00 675 60% (409)
4.01 - 4.25 623 55% (346)
4.26 - 4.50 118 36% (43)

Table 2: Distribution of probation
across students’ UHSGPA.

19%, while students who entered probation had a significantly higher attrition
rate of 40% (χ2(1, 1762) = 90.99, p=.001). Higher attrition rates for pro-
bation students suggest that current probation practices are not sufficient to
support student success. This indicates that there is room for improvement
by reforming the current probation practices. In the following sections, we ex-
amine student data to find common characteristics that may aid in developing
tailored probation support.

5.1 Admissions Data

Table 1 shows probation student breakdown by ethnicity. There is a signifi-
cant difference in probation (χ2(5, 1762)=63.04, p=.001) between the groups,
and Latinos and Blacks enter probation at the highest rate (77% and 87%).
Additionally, 63% of low-income students and 64% of first-generation students
entered probation, both at significantly higher rates than the average (χ2(1,
1762)=11.00, p=.001, χ2(1, 1762)=26.14, p=.001). These demographics often
overlap, pointing to the "leaky pipeline" which fails to retain under-represented
groups (URGs) throughout their entire academic career [4]. These results sug-
gest that probation support programs tailored to URGs may yield higher stu-
dent success rates.

The data also indicates female students enter probation at lower rates
than males, yet they end up leaving CS at significantly higher rates (χ2(2,
1762)=4.81, p=.090). Our results align with previous findings, reiterating the
continued need for comprehensive or alternate support for female students.
While women in CS are considered underrepresented, our results suggest that
they do not face the same challenges generally present for URGs. For instance,
[6] shows that female students tend to have harsher self-perceptions, negative
interactions with faculty or classmates, lack of female role models, cultural val-
ues, and lack of peer and family support impacting their decisions. In this case,
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Figure 1: Probation-causing course heatmap and the quarter when the course
was taken. FR = Freshman, SP = Sophomore, JR = Junior, SR = Senior.

female students may benefit more from tailored support regardless of probation
status.

Lastly, Table 2 displays the probation distribution based on uncapped HS
GPA (UHSGPA). Advanced courses (AP or IB) follow a five-point grading
scale, allowing UHSGPA to be higher than 4.0. Students with UHSGPA under
3.5 are more likely to be on probation. On the contrary, students with UHS-
GPAs higher than 4.0 entered probation at rates significantly lower than the
average (t(1760) = -4.464, p = .001). This suggests that students who enrolled
in and excelled in advanced courses during HS, represented by a UHSGPA over
4.0, may be better prepared to maintain satisfactory performance in college.

Holistic admission practices allow for students from diverse backgrounds to
be admitted. However, URGs and students with lower HS academic achieve-
ment enter probation at significantly higher rates. Probation practices could
be modified to target challenges that URGs face and support students who
may not have had access to the highest levels of academic preparation.

5.2 Course Data

Next, we examined coursework features that may be relevant in early detection
of probation. Courses were marked as probation-causing if a student got a C-
or lower in the same quarter that they entered probation. We also considered
the quarter in which students took the probation-causing course to conclude if
students generally struggled more during a specific point in their career.

As Figure 1 shows, we found that for CS courses, most students struggle
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Figure 2: Probation rates of students based on their lowest level of math class
taken when entering the CS program (reflects students’ math background).

with Programming I. Later on in their studies, they struggle with Algorithms,
Data Structures, and Computer Organization. For math, students struggle
across all courses early on in their careers. The largest amount of students
entered probation after performing poorly in Calculus I and II during their
Freshman year.

As Figure 2 shows, 86% of the students who started with Pre-Calculus I,
reflecting a weaker math background, entered probation at some point in their
careers. This value drops to 46% for students who had a strong calculus foun-
dation and started with Multivariable Calculus. This significant performance
difference (χ2(4, 1567)=57.01, p=.001) suggests that math-focused probation
prevention practices may aid students in maintaining or returning to good aca-
demic standing. These results highlight the need for assistance mechanisms to
give students with less pre-college math knowledge an opportunity to build a
strong foundation and increase chances of success in the CS program.

5.3 Academic Probation Data

We analyzed relationships between probation and attrition to gain insight into
students’ success after being on probation. We found a significant difference in
attrition based on probation duration, with higher attrition rates as probation
length increased (t(1760) = -12.227, p = .001). We also evaluated the academic
year in which students first entered probation. As illustrated in Figure 3, in
total, 41% of probation students first entered probation during their first year,
and an additional 30% during their second year. In other words, over two-
thirds of probation students first entered probation during the first two years
in the program. These findings suggest that there is room for the development
of enhancements to aid in increasing CS student success early on in students’
careers.
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Figure 3: Breakdown of academic year in which students first entered academic
probation.

6 Future Work

Future steps include conducting an additional study to obtain surveyed data
from CS students to complement our current available data and analysis. Data
from student surveys will be examined to consider student experiences in the
development of potential future modifications and additions to probation prac-
tices. In the long term, students who find themselves struggling academically
should have access to resources to gain the necessary skills, habits and knowl-
edge to return to a good academic standing and succeed academically.

7 Conclusion

We analyzed student data to gain insight into academic probation in CS. Based
on the results, we are able to answer our initial research questions as follows:

(i) Are there common characteristics in admissions data which identify an
increased likelihood for probation? We found that URG students experi-
enced higher levels of probation than the average. Also, female students
obtained lower probation rates combined with higher attrition rates than
males. While alarming, these findings are similar to past findings re-
garding attrition. GPA has often been considered a strong predictor of
academic success, and our results also aligned with previous findings.

(ii) Are there key aspects of students’ academic journey and courses taken
that increased likelihood for probation? The largest amount of students
struggled with courses often taken early in their careers, notably Pro-
gramming I, Calculus I and Calculus II. Additionally, students with a
stronger math background were less likely to experience probation.

14



(iii) Does being placed on academic probation impact students’ chances of suc-
ceeding in the CS major? The majority of students entered probation for
the first time early on in their careers. While many students managed
to avoid dismissal, they struggled with leaving probation. We observed
higher attrition rates for students with more probation quarters. This
motivates the need for prompt and tailored support for students to re-
turn to satisfactory academic standing soon after entering probation.

These findings suggest that current probation practices may not provide
enough support for students to get back on track. Probation contracts could
be supplemented with academic support to help students return to satisfactory
academic standing. The growing number of student applications and the sig-
nificant high rate of probation highlight the urgency to better understand the
specific challenges that students are facing in CS. The insights and common
characteristics found across probation cases presented in this study may set
the basis to identify and mitigate the main factors causing students to leave
CS.
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Abstract
Programming is a difficult skill for students to master. Although

active learning has benefits in STEM, its benefits have been reported
mostly for conceptual multiple-choice questions, which do not transfer
to code writing. In addition, code-writing questions may increase learn-
ing due to the generation effect found in cognitive science research, in
which there is greater learning when learners generate an answer, rather
than recognizing it. To bring the benefits of active learning to teaching
programming, therefore, in-class code-writing activities were developed
for large university courses. After a short explanation of a concept, stu-
dents wrote code applying that concept on their own devices, using apps
that displayed their responses on the lecture hall screen, and then dis-
cussed correctness of their responses, with instructor-led feedback. Code
writing activities were effective in teaching students to write correct code,
and students found them beneficial. Compared to a traditional course,
an active learning data structures course using these activities had far
more A’s and fewer F’s. In-class code writing can bring the benefits of
active learning and the generation effect to the skill of code writing.

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to 
copy without fee all or part of this material is granted provided that the copies are not made or 
distributed for direct commercial advantage, the CCSC copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the 
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires 
a fee and/or specific permission.
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1 Introduction

Learning programming is difficult for CS students. The “McCracken Group”
report in 2001 showed that students’ programming skills were low [10], as did
a followup report in 2004 [8]. In recent years, teaching programming has be-
come even more challenging, with much larger class sizes, more under-prepared
students [6], and more distractions competing for students’ attention.

On the other hand, active learning methods have been shown to produce
better learning outcomes in many STEM fields, in hundreds of studies over
the past couple decades [4], with benefits disproportionately higher for under-
represented groups [6].

Active learning benefits have also been shown in CSE. For example, the ac-
tive learning methodology Peer Instruction (PI), which uses conceptual multiple-
choice questions (MCQs) as a key component of in-class learning, has improved
outcomes in CSE [12], [15]. In addition, CSE research has focused on other
types of MCQs, including code tracing questions [7] and Parson’s problems [3].

1.1 Rationale for Active Learning with Code Writing

However, although work in CSE has focused on teaching concepts through PI
and through these other types of MCQs, active learning for the skill of program-
ming has not been as well developed [13]. The conceptual knowledge needed
to answer MCQs (a lower level in Bloom’s taxonomy [1]) may not transfer
to programming skill (a higher level). In fact, in an exploration of students’
performance on many different types of exam questions—conceptual questions,
Parson’s puzzles, code tracing, code reading, code writing, and “explaining in
English”— students performed poorly in code writing (29%), even when they
performed well in Parson’s puzzles (83%) and conceptual questions (79%) [9].
Similarly, code tracing MCQs have weak correlations to code writing [7]. These
results concur with 100 years of research in the cognitive and learning sciences
showing that transfer of learning is minimal [11].

We therefore wanted to use active learning methods, but with questions
that require students to write code. In fact, based upon robust results in
the learning sciences, we expect that code writing may be even more effective
for learning than MCQs, because cognitive science research has consistently
shown a generation effect, or the recall vs recognition effect: greater learning,
longer-lasting learning, and increased transfer occur when learners attempt to
generate answers themselves, rather than simply recognize them from a list of
choices, as with MCQs [2].

18



2 Goals and Methods for In-Class Code Writing

Considering the benefits of active learning and the benefits of the generation
effect, in-class code-writing questions were designed to replace most lecturing
in large, programming intensive university courses. With this method, students
first generate answers on their own, then optionally (i.e., sometimes) engage
in discussion with a peer, and always end with whole-class discussion and
feedback, with the following goals:

• Bring the benefits of active learning to code writing.
• Scale well for large classes with hundreds of students.
• Be easy to prepare and integrate into existing lectures.
• Increase students’ ability to apply concepts to write code, during lecture.
• Increase students’ related ability to read and analyze others’ code.
• Better prepare students to later complete larger programming homework

problems on their own, with less help from friends or the Internet.
Many classroom response tools are available to support and present MCQs,

including hardware clickers and various software apps, but tools to collect
and present code writing are needed.1 A readily-available online discussion
app, Piazza, which we were already using for course communication and which
supports code formatting, was therefore used for code writing activities in
lecture. Subsequently, after positive results with Piazza, a custom web app
was developed to support the activities. In addition, because of the remote
classes required by the worldwide pandemic, the custom app was also used for
online classes meeting synchronously via Zoom.2

These in-class code writing activities were used in several different courses,
at several levels, all with medium to large size enrollments: a large CS1-Python
course with 450 students, a C++ course with 250 students, a data structures
course with 200 students, a programming languages course with 200 students,
and a Masters degree-level course in advanced programming and problem solv-
ing with 120 students.

For all these large-enrollment courses, traditional lectures were replaced
with mini-lectures interspersed with in-class coding activities, inspired by the
method of PI, with the following format:

• Mini-lecture The instructor presents a short explanation of a concept,
typically 10 minutes long.

• Students code individually Students write code applying that concept
on their own devices.

• Peer discussion In some cases, students discuss solutions with a peer.
1In [13], a custom app was developed to facilitate code writing during class, but it was

no longer available at the time of this work.
2Details of implementing the activities with Piazza and the custom app are given in

Appendix A.
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Figure 1: Students write code on their laptops and discuss as a class in a large
lecture hall.

• Class discusses code The instructor and students select interesting
responses to analyze for correctness. (Figure 1 shows a picture of this
process.) Often, the instructor copies and pastes an interesting solu-
tion into the code visualization tool Python Tutor (which also supports
JavaScript, C, C++, and Java) to help students see the execution state
evolve, illuminating what is wrong in the code [5]. Students are inter-
ested to see others’solutions, including different ways of coding correct
solutions. The whole class benefits from expert feedback, as found in [14]
(which compared instructor-led feedback to peer discussion alone).

• Repeat two or more times, depending on time available.

3 Results

Initial experiences proved the code writing activities in lecture to be highly ben-
eficial. The instructor observed positive benefits; students perceived learning
benefits; and data assessing learning was also positive.

3.1 Benefits observed by the instructor

The instructor has observed the following benefits:
• Attention Students pay close attention to the “just-in-time” concepts

presented in the mini-lecture that they need to apply immediately.
• Scalability Coding activities work in large classes of 120-450 students.
• Prompt feedback The instructor can see students’ first attempts to

write code and can immediately correct misconceptions, which are not
as discernible after students have spent days working on code for an
assignment, getting help from teaching assistants, friends, or the Internet.
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I participated by 
submitting as much code 

as I could.
I found it easier to pay 

attention during LiveQuiz 
than lecture.

After LiveQuiz, I felt more 
prepared to write code on 

my own for homework.
I feel like I learn more 

during class when I try to 
write the code right away.

It is helpful to get 
feedback on code so 

quickly.

It is helpful/interesting to 
see others' code solutions.

0% 25% 50% 75% 100%

1: Strongly disagree 2 3 4 5 6 7: Strongly agree

Students' Perceptions of Learning 

Figure 2: Students found in-class coding activities to be beneficial, as shown by
the teal and blue bars; results were similar for CS1 and upper-division students.

• Efficient feedback Students who make similar mistakes can all learn
from instructor-led expert feedback at the same time.

• Practice in other coding-related skills Students practice both writ-
ing code and reading and analyzing others’ code, also valued skills.

• Faster preparation Effective coding problems are faster to prepare than
effective MCQs, easing the transition to active learning.

3.2 Benefits perceived by students: Survey Results

Students completed surveys of their perceptions of learning for in-class coding
activities. As shown in Figure 2, students reported positive learning experi-
ences:

• They participate in the activities, even though they are not graded.
• They learn more in class when participating in coding activities.
• They learn more by trying to write code shortly after hearing a concept.
• They believe it is helpful to analyze others’ code.
• They can complete more of their homework on their own, with less help.
• They find it instructive to see that there are many correct solutions.

Open-ended comments were overwhelmingly positive (e.g., “Always do this!”)
In-class coding activities are frequently mentioned in the standard course eval-
uations administered by the university (therefore not specifically soliciting
feedback about these activities), in answer to the course evaluation question,
“Which course activities contributed most to your learning?”
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Figure 3: Compared to a traditional lecture course, an active learning course
with in-class coding activities had more A’s and 70% fewer F’s.

3.3 Results: Measures of Learning

In-class coding activities were effective in helping students to learn to write
correct code. For example, the percentage of correct sequential search functions
rose from 36% after lecture alone to 96% after the coding activity.

An active learning version of a Data Structures in C++ course, in which in-
class coding activities were always used and often included the peer discussion
step, had dramatically more A’s (75% vs 41%), and fewer B’s (18% vs 39%), C’s
(3% vs 12%), and F’s (2.1% vs 6.7%) compared to a traditional lecture course
taught by the same instructor, as shown in Figure 3. That is, the failure rate
was reduced by almost 70%.

4 Conclusion

In-class coding activities bring the benefits of active learning and the generation
effect to the teaching of programming, even in very large university courses.
This method of in-class coding requires active generation of an answer by the
students, while being quick and easy to implement for the instructor, with
benefits seen across different levels of experience and across many different
courses. Active learning has shown robust effects increasing students’ learning,
and this experience with in-class coding shows that it is a promising way to
bring the benefits of active learning to the important skill of writing correct
code.
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A In-Class Coding with Piazza and Codings

Piazza. To prepare in-class activities using Piazza so that all students’ re-
sponses are seen on the instructor’s projected screen, then discussed by the
whole class, before-class preparation is as follows:

• Post an announcement that students should bring a laptop.
• Create coding problems for class, posting each as a Note, organized by

date into Folders, ideally posting to Piazza just before class.
• Insert links to each coding problem into the lecture slides.
• Create and log in to a Student account for the instructor to use during

lecture, so as to maintain students’ anonymity to increase participation.3

3We normally choose Piazza’s setting that shows students’ identities in the instructor’s
account. If the anonymous option is chosen instead, this step is unnecessary.
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Using their own laptops, students navigate to the Note with the problem in
Piazza, then post their Followups with empty code blocks, in order to create
screen space for their responses so as to minimize screen redrawing later. They
then write their solutions in formatted code blocks and re-post their Followups.

For the problems, small functions are used, and the instructor has fluency
in the language, and therefore is quick to evaluate solutions while scrolling
through them. Even without fluency, however, an instructor could still model
the process of evaluating correctness, to help the students improve their own
ability to do so. However, an optimal app would cluster solutions so that it is
not necessary to scroll through many to find a different one, speeding the flow
of the activity.

The instructor continues to scroll through randomly until several different
correct and incorrect solutions have been evaluated. Then when the discus-
sion of each problem is complete, the instructor asks students to mark their
Followups Resolved, so that the instructor’s account can still easily find the
out-of-class discussions needing responses.

Codings. While Piazza can be used for in-class coding, it is not optimal
because of frequent screen redraws. We therefore developed a custom web
app called Codings to support real-time, in-class coding activities during large
lectures, as well as polling questions, pre- and post-quizzes, and data analytics.

Codings deploys client apps for instructors and students, which require
accounts to log in, and a server with a database of questions and student
submissions. Instructors and students can select a programming language,
with support for syntax highlighting and help. The instructor creates a session
for each class, which can display multiple problems. All questions and students’
anonymous submissions can be viewed during class, using real-time tools.

The instructor app supports creating and editing questions and analyzing
submissions both before and during a lecture. Offline, the instructor can view
students’ submission history and analytics. Codings can generate a report in
a CSV file of the data for each student for any specified subset of problems.

The student app allows students to view questions shared by the instructor,
and to create, edit, submit, and update their answers with unlimited numbers
of revisions. Students can also browse their history of previous submissions,
see changes made between revisions, and send submissions to the visualizer for
further illumination.

Codings has been used for a number of courses, some in-person and some
online during synchronous Zoom lectures during the pandemic. In-class coding
worked well during Zoom meetings, with perhaps even more students partici-
pating in whole-class discussion through the chat in Zoom.

Early experience with Codings has been extremely promising, and its main-
tenance and development are ongoing.
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Abstract
This paper describes a novel technique for capturing educational

videos that teach coding with improved support for multiple modes of
presenting information. I developed "CodeVid Studio" using a combina-
tion of lightboard, luma key, integrated development environment (IDE),
and digital video capture technologies to innovate how code can be taught
through on-demand and streaming video. The paper describes hardware
and software configurations to reproduce a style of video that enables
demonstration of development within an IDE along with drawing, high-
lighting, and gesturing to aide instruction. A usability test included
comparing a CodeVid Studio recording to one using conventional tech-
nologies and found unique advantages of CodeVid Studio.

1 Introduction

There is increasing demand for learning how to code via online and hybrid
modalities that use educational videos. Online tutorials (e.g. Khan Academy
[7]) and Massive Online Open Courses (MOOC) [3][4][13]) deliver asynchronous
tutorials for many computer science topics. Likewise, the Covid-19 pandemic
forced many universities to transition to teaching courses via web-conferencing
services (such as Zoom [14]) for instruction. Even with in-person courses,
some educators have adopted techniques such as "flipped classrooms" [5] that
involve students watching video instruction at home before engaging in hands-
on activities in the classroom.

However, video recordings of coding instruction can leave both instructors
and students wanting. Effective teaching involves sharing information in dif-
ferent ways, including text, images, animation, and audio [2] but current video
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formats rarely enable effective use of all these modes of presentation. Con-
ventional methods for coding videos involve trade-offs between these different
modes of communicating information. For example, if the instructor records
their screen they can show the text of their code, but it is not easy to si-
multaneously accompany the code with illustrations nor to gesture to explain
relationships between code and their illustrations.

Consequently, I designed a studio for recording and streaming video instruc-
tion that enables multiple modes of communication for teaching how to code. I
built CodeVid Studio to demonstrate live coding in an IDE while empowering
the instructor to draw and gesture to explain their code. This paper details the
implementation of CodeVid Studio and provides initial insights into students’
experiences with CodeVid Studio recordings in comparison to traditional video
recording methods.

2 Background

Cognitive load is the amount of information being processed by the brain’s
working memory; working memory has limited resources so excessive cognitive
load overwhelms those resources and detracts from learning. Fortunately, ev-
idence suggests that cognitive load decreases when information is distributed
across different modes of communication [11]. Accordingly, Clark and Mayer
summarized evidence-based practices for multimedia instruction in a collection
of learning principles [2].

In particular, the Multimedia Principle emphasizes that humans learn bet-
ter from words with graphics than words alone. In terms of coding, graph-
ics can illustrate concepts (e.g. memory, data structures, control flow, etc.)
to supplement the actual code (words). The Modality Principle encourages
supplementing auditory explanations with graphics because "the psychological
advantage of using audio presentation is a result of the incoming information
being split across two separate cognitive channels—words in the auditory chan-
nel and pictures in the visual channel—rather than concentrating both words
and pictures in the visual channel" [2].

Meanwhile, preliminary research of lightboards—transparent marker boards
that allow the instructor to face the camera while drawing and gesturing—has
found no burdensome cognitive load while demonstrating potential for effective
video presentations [9]. Moreover, recent research on instructional videos re-
vealed that when a student witnesses the instructor’s positive emotions through
hearing vocal cues and seeing their gestures, they are more likely to reflect the
same emotion when learning the subject [8].

However, conventional video instruction tends to violate these principles
by emphasizing either textual or graphical presentation alone, and having to
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choose between graphical presentations or a good view of the instructor. For
example, sharing one’s screen on Zoom while coding in an IDE presents infor-
mation only through text without complementary graphics or the instructor’s
gestures to things on screen. In contrast, presenting graphics via digital (e.g.
tablet) or marker boards (e.g. dry erase boards or transparent lightboards)
only present information graphically without a view of the corresponding code.
An instructor may opt to switch between screen-sharing and illustrating on a
marker board, but doing so violates the Contiguity Principle, which advises
that presenting related text and graphics simultaneously side-by-side supports
improved learning [10]. Consequently, I designed a solution that incorporates
IDE development (text) with marker board annotation (graphics) while the
instructor provides spoken explanation (audio) and gestures.

3 Design and Implementation

Lightboards are transparent marker boards that allow the presenter to draw
in front of themselves while facing the camera. When using a lightboard, the
instructor can write and draw as they normally would, but the image (captured
on the camera on the other side of the board) is flipped horizontally so that
the video captures the writing and drawings in the same orientation as the
instructor’s view. To capture video, I connected a digital video camera’s HDMI
output to the studio computer’s video capture card.

I flipped the video source horizontally and recorded/streamed with negliga-
ble latency using Open Broadcast Software (OBS) [12], a cross-platform Free
and Open Source Software (FOSS) program. I also installed Visual Studio
Code (VS Code) as the IDE for demonstrating coding skills but other IDEs—
or even just a command line interface—would also work as long as they support
"dark mode" interface themes with dark backgrounds and high contrast text.

OBS supports screen capture so I configured it to capture a full-screen VS
Code window. I arranged the screen capture to match the dimensions of the
camera’s flipped video and layered the screen capture over it. I superimposed
the images via OBS’ luma key filter. Luma key removes pixels that are not as
bright as a specified threshold, so anything dark in the foreground is replaced
by another video source.

I set the threshold to remove the IDE’s dark background so that only the
bright text and icons remained. Consequently, the instructor and any markings
on the lightboard appear behind the IDE text. Figure 1 shows an example
of an instructor drawing an illustration of recursion, alongside the code for the
recursive function. Finally, I placed a microphone above the lightboard, angled
toward where the instructor stands behind the lightboard. OBS records audio
by feeding the microphone’s XLR cable to the computer’s audio capture card.
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Figure 1: CodeVid recording featuring
IDE, marker drawings, and gestures.

The instructor has a wireless key-
board and trackpad on the light-
board table so they can interact
with the IDE while also gesturing
and drawing on the board. Two
televisions are mounted behind the
camera–one above the other. The top
monitor provides a full screen view of
the IDE while the lower monitor pre-
views OBS’ combined video sources.
The lower monitor displays the com-
pound image (as flipped by the soft-
ware) and is positioned at roughly
the instructor’s height so they can see a mirror image—this allows the in-
structor to see where they are drawing and gesturing while seeing both the
lightboard and the IDE.

Reducing the brightness of these TVs helps mitigate reflections on the light-
board and interference with the camera’s lighting. I also added a third monitor
that duplicates the screen of the lower TV (mirror recording monitor) in case
the instructor needs a closer view of small details and so they can see the
recording in its full brightness. Figure 2 shows the CodeVid Studio from
behind the lightboard.

Figure 2: CodeVid Studio components

Recording a lightboard requires a
relatively dark room so the fluores-
cent markers contrast with a dark
background. Likewise, the instruc-
tor stands in front of a black back-
drop but has two subject back-lights
to help them (i.e. the subject of
the image) stand out from the back-
drop; this is particularly helpful for
instructors with dark clothes, skin,
and/or hair since the subject lights
give detail to the subject while ob-
scuring the backdrop. The light-
board also features integrated sub-
ject lights that illuminate the instruc-
tor’s front. Figure 3 illustrates the layout.

Chroma key is typically used to remove objects from the background, but
can accidentally remove parts of the subject if they wear a similar color (i.e.
green clothes in front of a green screen). On the other hand, luma key only
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removes dark parts of the IDE and allows the instructor and lightboard to
appear within the IDE. Consequently, there is not a risk of the lightboard
illustrations nor the illustrator being replaced by the luma key filter.

I spent $18,205.71 USD to purchase CodeVid Studio’s major hardware (ex-
cluding cables, markers, cleaning supplies, furniture, etc.). Note that I pur-
chased the largest lightboard available and chose hardware that exceeded re-
quirements to allow flexibility and future-proofing in case we want to demon-
strate resource-intensive computation or record in higher video resolution/frame
rate.

Figure 3: Diagram of room layout
for Codevid Studio, with approximate
scale.

In particular, the PTZ camera
was much more expensive because
our CodeVid Studio shares a room
with another video recording setup
and the technicians preferred to share
a camera for both setups that can
be automated to Pan/Tilt/Zoom ac-
cording to the situation. On a lower
budget, a setup could use smaller
lightboard (at the sacrifice of drawing
space) or even build one from scratch,
which may be done (with limitations)
for as little as $100 [6]. On a small
budget, one may be able to repro-
duce the features of CodeVid Stu-
dio at an order of magnitude lower
cost by sacrificing audio/video qual-
ity with a less-performant computer.

4 Usability Test

I elicited feedback during a usability test of students’ experience learning from
CodeVid Studio videos. The usability test involved observing ten students
(n=10) using Codewit.us1[1], which features embedded tutorial videos with in-
teractive coding practice problems. I recorded two videos that used the same
example to teach recursion. One video used a CodeVid Studio recording (as
shown in figure 1) and the other used a typical web-conferencing layout: screen-
cast of an IDE with a picture-in-picture box in the corner with the instructor’s
face.

I recruited computer science majors who had passed the introductory pro-
gramming course and enrolled to take the subsequent data structures course

1https://Codewit.us/
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in the following semester. Participants were randomly assigned to either the
CodeVid Studio treatment or the picture-in-picture treatment. I observed the
students while using Codewit.us to learn about recursion and then practice
coding a recursive problem. At the end of the session, each participant was
asked about their experience, including: Rate on a scale from 1-5 (where 1 is
strongly disagree and 5 is strongly agree) the statement "The video feature was
helpful." as well as open-ended questions of what they liked most/least.

Student feedback was overwhelmingly positive. Unanimously, all five stu-
dents in the CodeVid Studio group rated the video helpfulness as 5 and did not
provide any negative feedback about the video. The students in the picture-
in-picture group also provided positive feedback, but averaged rating the video
a 4.8. Moreover, when asked about what they liked least about Codewit.us,
one (picture-in-picture) student suggested that the video would be better with
visuals/graphics to illustrate the topic. The results suggest at least a more
positive response to CodeVid Studio in comparison to traditional picture-in-
picture videos.

5 Conclusion

CodeVid Studio is a video recording/streaming setup that enables an instructor
to demonstrate coding within an IDE while also using spoken explanations,
gestures, and drawings to provide rich multimedia presentations. A usability
study of videos recorded using this studio found that students responded more
positively to them than a picture-in-picture screencast with a "talking head"
confined to a box in the corner of the video.

Evidence-based multimedia principles also suggest that CodeVid Studio
videos may even improve learning, so future experiments will measure stu-
dents’ cognitive load during the videos as well as their performance of the
skills demonstrated after watching the videos. The information provided in
this paper should also enable others to recreate the studio on different budgets
while using cross-platform Free and Open Source Software.
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7 Appendix 1: Hardware

Hardware Cost Notes
Revolution 95" light-
board

8570.11 Lightboard with adjustable-height ta-
ble + integrated subject lights

Alienware Alienware
Aurora R12

3455.16

CPU: Intel i7
(8-Core, 16MB Cache, 3.6GHz)
Video: NVIDIA GeForce RTX 3070 8GB
Memory: 64GB, DDR4, 3200MHz
Storage: 2TB M.2 PCIe NVMe SSD
+ 2TB 7200RPM SATA

Canon CR-N300 4K
NDI PTZ

2938.54 PTZ camera

Dual TV stand 944.14
Samsung TU7000 50"
TV (2x)

910.17 IDE Monitor and Mirror Recording
Monitor

Sennheiser MKE 600 359.23 Microphone: shotgun condenser includ-
ing mount and pop filter

ASUS VP28UQG 28" 269.00 16:9 4K UHD close mirror monitor
Audient iD4 MKII 216.66 Audio interface with Mic preamp,

phantom power, and USB C
Logitech G915 217.74 Wireless keyboard
AVerMedia Live Gamer
ULTRA

195.96 Video capture card: 4Kp60 HDR Pass-
Through, 4Kp30 Capture Card, Ultra-
Low Latency

Apple Magic Trackpad
2

129.00 Wireless trackpad

TOTAL 18205.71

Table 1: Primary Hardware Components and Specifications
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Abstract
This paper presents a virtual hackathon model for high school girls

that was designed to mitigate the barriers to the gender gap in com-
puter science. Through building Apps that solve real-world problems
relevant to their communities, participants worked collaboratively to
build competency, self-efficacy, and identity with computing. Six vir-
tual hackathons were offered since summer 2020, successfully supporting
167 students, among them, 33% Latinas and 7.2% African Americans.
Analyses of post-event survey responses, the Apps submitted by project
teams, and judging scores and feedback pointed to students’ growth in
technical and professional skills, computing identity, and self-efficacy.
Participants with little to no prior computing experience successfully
demonstrated improved coding skills such as using variables, conditional
and iterative statements, functions, and data tables. They also devel-
oped software engineering skills in teamwork, project management, and
effective communication.

1 Introduction

Despite concerted efforts to increase girls’ interest in programming, women
remain underrepresented in computing education and careers. In 2020, for

∗Copyright ©2023 by the Consortium for Computing Sciences in Colleges. Permission to 
copy without fee all or part of this material is granted provided that the copies are not made or 
distributed for direct commercial advantage, the CCSC copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the 
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires 
a fee and/or specific permission.

35



instance, while 57% of bachelor’s degree recipients were women, only 22%
of bachelor’s degrees in computer and information sciences were awarded to
women [5]. Similarly, while women account for 57% of professional occupa-
tions in the U.S. workforce, only 26% of computing professional occupations
are held by women [7]. The problem is especially severe among women from
underrepresented minority groups, such as Hispanic and African Americans.
In 2020, twelve states had no black females taking AP Computer Science A
(CSA) while twenty-nine states had less than 5. Eight states had no His-
panic/Latinx females take AP CSA and twenty-nine states had less than 10
[9]. Among the factors perpetuating gender gaps in computing include gen-
der stereotypes, male-dominated cultures, and fewer role models for girls. A
promising approach to improving women’s experiences is the implementation
of women-only education initiatives [6].

Literature on the underrepresentation of women and minorities in STEM
reveals that self-efficacy, identity, and awareness of the social value afforded,
are critical in sustaining their pathway to a STEM career [4]. Vicarious experi-
ences from women role models and social persuasion in terms of how STEM can
help girls achieve their social goals have been identified as the most influential
sources of STEM self-efficacy for girls and women [10]. Rankin and Thomas
[8] introduced the term "Intersectional Computing" to characterize the over-
lapping interplay among the approaches for promoting diversity, inclusion and
equity within the field of computing. It shed light on the plurality of inter-
sectional experiences that exist among the broader computing demographic.
It is within the framework of intersectional computing [3] that we designed a
virtual hackathon experience for high school girls.

Section 2 highlights the structure and main activities of the hackathons.
Analyses of data collected from these events are presented in Section 3. The
paper concludes in section 4 with a discussion on the broader impact of the
intervention on the participants.

2 The Virtual Hackathon

The first virtual hackathon was launched in summer 2020 in response to the
vacuum of after-school programs caused by the COVID-19 pandemic-related
school closure and social distancing. Five more hackathons were held since
then, taking on two formats, one during summer and the other during the
school year. Dates and themes for the six events are presented in Table 1.

These events provided a girls-only working environment where girls of di-
verse ethnic and academic backgrounds were teamed up from multiple high
schools. They were provided with challenges to address social issues directly
connected to their interests. We chose to use App Lab [1] as our development
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Table 1: Hackathon dates and themes
Dates Theme

Summer 2020 6/22 - 6/25 Emotional support for teens during the
pandemic

Fall 2020 10/17 & 10/24 Helping teens navigate education dur-
ing the pandemic

Spring 2021 4/17 & 4/24 Saving the Earth one game at a time
Summer 2021 6/28 – 7/1 Helping teens maximize their summer

experience
Fall 2021 10/16 & 10/23 Helping people in need during the holi-

days
Spring 2022 3/5 & 3/12 Promoting awareness of and solutions

for climate change issues

platform, as it afforded easy development by participants with no prior pro-
gramming experience. The invitation to participate specifically stated that no
computing skills were required. This was aimed to present computer science
as a field that is potentially open and inviting to all women. The girls were
supported and mentored by near-peer college computer science women who
had been in high school in recent years. The design of the hackathon also
enabled the girls to showcase their work and have their work evaluated by pro-
fessionals (mostly women) from local high-tech industries. This was meant to
serve as exposures to both women role models in the computing industry and
the breadth of careers in the computing fields. This work builds on previous
evidence that programs that have mentors and peers who are reflective of the
girls in the program have shown to increase participants’ confidence and overall
interest in tech-related courses [6].

The summer virtual hackathons ran for four consecutive days Monday to
Thursday. Each day, participants were supported with various activities via
Zoom from 10:00 AM to 3:00 PM, including team-building activities, skill de-
velopment workshops, and career awareness sessions. In addition, a 1-hour
kickoff was held Monday from 9:00 – 10:00 AM and a 2-hour showcase was
held on Thursday from 4:00 – 6:00 PM.

To provide a similar timeline and experience for students, the virtual hackathon
during the school year spanned two consecutive Saturdays. The one-hour kick-
off was held from 9:00 to 10:00 AM on the first Saturday. Participants were
then engaged in project activities until 3:00 PM. They returned the next Sat-
urday at 10:00 AM to continue working on their projects and the event was
wrapped with the 2-hour showcase in the late afternoon from 4:00 to 6:00 PM
of the second Saturday. In addition, after-school workshops were offered on
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Tuesday and Wednesday leading to the first Saturday while after-school office
hours were provided Monday through Thursday between the two Saturdays.

3 Data Analyses

A total of 167 girls from 29 schools in Southern California participated in six
hackathons. Our targeted effort in recruiting Hispanic and African Americans
was successful. Figure 1 compares the ethnicity distribution among partici-
pants against the demographics of the region, focusing on the groups under-
represented in computing. The 32.9% participation for Latinas is the highest
of all ethnic groups and higher than the 31.3% Hispanic population in the re-
gion. The 7.2% participation for African Americans is also higher than the
region’s 4.7%. Participation from Native American/American Indian and Na-
tive Hawaiian & Other Pacific Islander was also higher than their share of the
respective populations in the region [2].

Figure 1: Ethnicity comparison between the hackathons and the region

At the start of each event, a rubric was shared with students to help them
understand how their learning would be evaluated at the showcase. The rubric
includes seven categories and uses a 4-point scale for each category:

A1: Appropriateness to the theme A2: User experience
A3: Appearance and design A4: Originality and impact
A5: Code complexity A6: Team collaboration A7: Oral presentation
A total of 34 Apps were designed and presented across six hackathons. The

Apps were evaluated by tech-professionals from prominent local companies
using the above rubric. The average scores provided by the judges in each of
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the events were given in Table 2. It was evident that the judges were impressed
by the skills showcased by the girls during the event.

Table 2: Average rating given by judges for each hackathon
A1 A2 A3 A4 A5 A6 A7

Summer 2020 3.65 3.38 3.13 3.35 3.13 3.60 3.30
Fall 2020 3.77 3.28 3.23 3.41 3.13 3.77 3.61

Spring 2021 3.75 3.12 3.50 3.50 3.23 3.58 3.70
Summer 2021 3.54 3.38 3.46 3.54 3.21 3.58 3.63

Fall 2021 3.88 3.31 3.69 3.63 3.63 3.19 3.69
Spring 2022 3.66 3.36 3.32 3.02 3.09 3.53 3.53

Though most of the participants had no prior coding experience, by the end
of the event, they were able to incorporate key coding features such as variables,
conditional and iterative statements, functions, data tables. These features
are illustrated by a representative App created in the Fall 2021 hackathon to
address the theme “Helping people in need during the holidays”. It utilizes a
data table (Figure 2b) to organize items that have been donated to provide gifts
for vulnerable people. Figure 2a shows the design of a Gift Cart feature that
allows users to browse, add, and check out desired items based on information
from the data table. The sample code presented in Figure 2c demonstrates the
dynamic update to the data table.

Figure 2: (a) User Interface for a gift cart feature (b) Data table for donated
items (c) Event-driven dynamic update.
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An anonymous survey was sent to the participants after the events to gauge
their self-satisfaction with the program. A total of 86 participants responded
to the survey across the six hackathons. Using a Likert scale ranging from 1
(Strongly Disagree) to 5 (Strongly Agree), the participants were asked about
their growth in the following six categories. The average rating for all the
events was reported in Table 3.

B1: Friendships/Networks B2: Programming B3: Communication
B4: Teamwork B5: Problem Solving B6: Leadership Skills

Table 3: Responses for “How much have you benefited from the program”
B1 B2 B3 B4 B5 B6

Summer 2020 3.92 4.00 4.42 4.25 4.67 4.42
Fall 2020 3.73 3.73 3.92 4.08 4.15 4.00

Spring 2021 3.75 4.25 4.67 4.92 4.50 4.92
Summer 2021 4.38 4.74 4.63 5.00 4.75 4.63

Fall 2021 4.10 4.40 4.20 4.70 4.60 4.20
Spring 2022 4.61 4.17 4.72 4.83 4.67 4.28

The girls assessed their level of satisfaction in the following six categories
using a 5-point scale. The average rating reported for each of the events was
shown in Table 4.

C1: I felt supported during the program
C2: There was always someone to help me
C3: I felt comfortable asking questions
C4: I learned new things during the process
C5: How satisfied are you with the outcome of your team project?
C6: The hackathon challenge was relevant to me

Table 4: Responses for “How you felt during program?”
C1 C2 C3 C4 C5 C6

Summer 2020 4.50 4.67 4.33 4.08 4.25 -
Fall 2020 4.46 4.65 4.46 4.31 4.00 4.31

Spring 2021 4.92 4.83 4.75 4.58 4.33 4.67
Summer 2021 5.00 5.00 3.75 5.00 4.75 4.75

Fall 2021 4.80 4.80 4.40 4.60 4.50 4.40
Spring 2022 5.00 4.44 4.67 4.78 4.22 4.56

Girls also reflected on how this event helped them to get excited and pursue
their career in computer science. The following quote resonates shared opinions
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among participants. “Overall, I had a great experience doing this workshop.
Originally, I had little plan to pursue CS in my future, I have a newly gained
respect for CS as well as am excited to possibly learn more about coding.”

4 Concluding Discussions

In this paper, we have presented a virtual hackathon model for high school
girls that was designed to attract a diverse group of girls and engage them
in activities that inspire them toward a computing career. While there have
been many women’s hackathons held in the recent past with similar goals of
enhancing young women’s participation in computing, what sets this hackathon
apart is the consideration factors to enhance female self-efficacy and computer
identity development. Additionally, the design aimed to promote inclusion and
diversity, as well as to introduce and sustain practices that encourage women
to stay in the field.

Starting with a broad range of prior computing experiences, young women
were able to gain and articulate a wide range of skills in computing during this
dedicated time when working collaboratively with their peers. Even within a
virtual context, we were able to create an environment in which the girls felt
supported and had a sense of belonging. As a result, the students demonstrated
performance in quality technical skills. They reported increased interest in CS
and technical competency as a result of these events. Their desire to return
to and invite friends to future programming events is an indication of their
growing sense of belonging to and identifying with computer science. The girls
showed evidence of growth in self-efficacy through their developing abilities
in programming skills and their ability to create desired Apps that not only
showed their skill development but also the ability to address social issues that
were pertinent to the girls themselves. Our project contributes to the evidence
that it is possible to recruit and attract a diverse group of young women to
computer science.
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