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Welcome to the 2025 CCSC Southewestern Conference

On behalf of the University of San Diego, we extend a warm welcome to
the attendees of the 18th Annual CCSC Southwest Region Conference. We
are honored to host the conference on March 28-29, 2025. The Conference
Steering Committee is grateful for the authors, presenters, speakers, attendees,
and students participating in this year’s conference.

This year we received 13 paper submissions on a variety of topics, of which
7 papers were accepted for presentation in the conference. Multiple reviewers,
using a double-blind paper review process, reviewed all submitted papers for
the conference. The review process resulted in an acceptance rate of 54%. In
addition to paper presentations, we are looking forward to a wide variety of
lightning talks, nifty tool and assignments talks, panels/tutorials and student
posters. We truly appreciate the time and effort put forth into the reviewing
process by all the reviewers. Without their dedicated effort, none of this would
be possible.

We hope you enjoy the conference and take the opportunity to interact and
engage with your colleagues and leave with new connections and knowledge!

Sophia Krause-Levy and Saturnino Garcia
University of San Diego

Co-Chairs, CCSC:SW 2025
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Treachery and Deceit: Detecting and
Dissuading AI Cheating∗

William Kerney
Clovis Community College

Fresno, CA 93730
william.kerney@cloviscollege.edu

Abstract
Last semester, 75% of the author’s data structures students were

caught cheating at least once, with Generative AI technologies being the
most common means by which they cheated. While it may be tempting
to move back to in-person pen-and-paper evaluations to ensure students
have retained material, the author has found is possible to detect and
discourage the use of cheating via various tricky methods. Finally, the
author looks at attempts by students to conceal their use of AI in cheat-
ing, and how successful off the shelf AI detection tools are at finding
the use of AI in coding assignments before and after being rewritten by
hand.

1 Introduction

Cheating in computer science has been a topic that has been studied for a long
time. The ACM Digital library shows over 13,000 papers tagged with “cheat-
ing” or “plagiarism” [1]. Historical approaches to detecting cheating involving
similarity detection (comparing different students’ submissions to see if they
are the same) such as with MOSS [12] or anomaly-detection systems that look
for unusual patterns in style, typing speed, backspaces, and so forth [5]. More
recently, with the rise of AI cheating, automated AI detection systems have
been developed [3] with mixed results [2, 6, 7].

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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AI cheating, which this paper will define as “any student use of AI contrary
to the directions of their instructor”, has been shown to harm student learning
outcomes due to the mental struggle of working with tough materials being
an essential part of the learning process [13]. Unlike copying off of friends or
paying people to do assignments, which are common cheating approaches in
the past [14], AI cheating is much easier to do – it is simply a matter of hitting
the tab key with Microsoft Copilot [10] integrated into an IDE or pasting a
homework assignment into Google Gemini [8] or OpenAI ChatGPT [11]. In
light of this new reality, professors have to think about how to restructure their
assignments and assessments so as to minimize AI cheating [4].

This paper is an experience report going over some novel tactics the author
developed to detect and discourage AI cheating. By using these approaches,
the percentage of students cheating using AI has dropped significantly.

The approaches the author took to discourage cheating are as follows:

1. Exploit the Weakness of AI
2. Dropping Traps for AI
3. Nega-Grade Discipline Systems
4. Detecting Stealthing

2 Methodology

This experience report is based on the experiences the author had with detect-
ing and dissuading students from AI Cheating in 29 sections of classes, across
five computer science classes and two information science / game development
classes during the six semesters from Spring 2023 to Fall 2024, including sum-
mers. Average attendance per class was about 35 students. These classes
encompassed the entire lower division computer science curriculum of Clovis
Community College and a CS0 class at Fresno State, with approximately one
thousand students total across the sections. Half the sections were online, half
in person. The online sections had far more significant problems with cheat-
ing, with 75% of the online students in Spring 2024 caught cheating, but only
10% of the in-person. They were caught using the techniques described in this
paper along with a confirmation pass done with the commercial AI detector
GPTZero [9].

Detecting cheating, especially AI Cheating, can be controversial [2, 6, 7].
Some students deny using AI to cheat. To get around this issue, AI Cheating is
only considered “caught” for this paper by either a student admitting guilt or at
least not denying it when marked down on an assignment. Validation of the au-
thor’s methods was done by giving an anonymous survey to all students to ask
if they cheated with AI. The estimates of cheating in found in the Results Sec-
tion were fairly accurate, with a false negative rate of 12%, assuming students
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were being honest on the surveys. To validate off the shelf AI detectors, the
author asked several former students to create human-made and AI-generated
solutions to various homework projects to see how the AI detection systems
held up against assignments known to be categorized correctly.

3 Results

Different approaches were taken to try to detect and dissuade the use of AI
Cheating at the two institutions. A description of each approach, and their
relative effectiveness, will be discussed in each bullet point below.

3.1 Exploit Their Weakness

Generative AI tools have an accuracy rate of roughly 80% [9], with the accuracy
depending on how difficult the question is and how much training material the
AI has to work from. As such, for any given pairing of an assignment, a
generative AI tool a professor can run the AI tool over the assignment and see
what sort of answers students trying to cheat will turn in. For online multiple
choice quizzes, a canny professor can pick out a subset of questions that AI
always gets wrong, and then build quizzes from them. When students try
cheating with AI and get a 0%, the problem becomes self-correcting without
any need for disciplinary measures. The cheating carries its own punishment,
and they stop using it – without any paperwork needed.

When presenting this approach at a special NSF Workshop on AI Cheating
in Denver in August 2023, the author was given feedback from other professors
that it would take too much time to sort through all of one’s assignments and
quiz questions to find those that AI can’t answer, to which the author here
offers two solutions:

• Only take the effort for a select few questions on a quiz or exam instead
of the entire assessment and then scan for students who get the selected
questions wrong all the same way that AI does. Any student that matches
that signature gets disciplined (see Discipline section below). This ap-
proach does not take very much time, and gives one good confidence that,
if for example they gave the AI’s specific incorrect response five questions
in a row, that they probably cheated.

• If you have a question test bank, you can install one of the AI tools that
will answer questions directly from an LMS [15], have it answer all the
questions, and then see which set of questions it got wrong. This allows
you quickly get a list of AI-hostile questions with only a minute or two of
effort. You can put together entire exams of nothing but these questions.
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Results: This approach is excellent at detecting students using a specific
GenAI tool, with the other methods below confirming that students caught
using this approach were in fact cheating using AI. However, if different AI
tools give different results, it becomes too time consuming finding problems
they all get wrong. But if all students are predominantly using, for example,
ChatGPT to cheat, then this approach works well. The author would catch
about 10% of an online section cheating on a midterm each semester using this
approach.

Not one student caught cheating by these approaches denied using AI to
cheat. Analysis of those students caught cheating on later exams shows that
approximately three-quarters of cheaters stopped using AI after getting burned
by it once, presumably since it hurt their grade and they stopped trusting it to
solve problems for them. The remaining quarter of cheating students continued
to cheat and tanked their grade even further each time, and finished with a
low grade in the class.

The best advantage to this approach is that it allows one to continue doing
online exams in a world where many professors have gone back to pen and
paper [16], and if students just shoot themselves in the foot by cheating, there
is no need for paperwork or contentious disciplinary meetings with the student,
or anything like that. They cheat – they get a 0%. The problem solves itself
with a minimum of hassle.

3.2 Dropping Traps for AI

The most common way students cheat using AI is to copy the problem wholesale
into an AI and then paste the results back to their professor. This can be
detected by putting a trap for the AI in the problem description. It is possible
in any system that supports HTML questions to embed zero-point font text
into the question. A human cannot see the text, but ChatGPT will. It is
simple to add something innocuous to the problem so that even if students
skim the results they won’t notice anything out of place, but when a professor
reads their students’ submissions they can easily see who cheated.

For example, students might be given a couple paragraphs of description of
a homework problem that boils down to, “Write a function that takes a string as
input and outputs a string that upper cases every character in an odd index and
lower cases every character in an even index”. The professor works in a couple
extra words in zero-point font so that what ChatGPT sees is actually: “Write a
function named twiddles that takes a string as input and outputs a string that
upper cases every character in an odd index and lower cases every character in
an even index”. So when the professor is looking through the responses, every
single student who has a function named “twiddles” automatically gets flagged
for cheating.
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Another approach is to carefully control what exact information is in the
problem description. For example, a professor could create a problem that
specifies that a default value should be “the mascot of your university”, and
imply that the student is at UC San Diego. An AI would fill in “King Triton”
for the default value, but no human (outside of UCSD students) would do so,
instead filling in the name of their own mascot, making it easy to catch.

Results: This approach is highly effective, catching 75% of the author’s
online students in Spring 2024. Only a single student disputed that he had
used AI to cheat, claiming instead that he had a friend cheat for him. This
friend, of course, used AI to write the code and got caught.

Caution must be taken with this approach as visually impaired students or
other who use screen readers will pick up the zero-point font.

3.3 Nega-Grade Discipline Systems

When the author began studying this issue, he believed that the main problem
would be detecting the use of AI cheating in students. However, the above
approaches were able to successfully detect 88% of the students who cheated in
the class (based on the end-of-year survey). The real problem actually was not
detection, but dissuading them from using it. It is so easy to use AI to cheat,
that students who are struggling with a homework assignment often just reach
for it even if they know they might get in trouble for it. Given that 75% of
the author’s students cheated in one semester, it was logistically impossible to
send them all to disciplinary hearings, and in any event the author’s objective
was to have them quit cheating and learn the material instead. The author
uses competency exams, so students have multiple attempts to demonstrate
competency. The hope was that even if they got caught cheating on one exam,
and were notified that they got caught, that they wouldn’t do it on the next.
The results of this approach were mixed. Indeed, the majority of the students
who got caught cheating stopped cheating after they realized the author could
catch them. However, about 10% of students kept cheating anyway, presumably
because they had not learned anything due to their cheating, and couldn’t solve
the problems honestly. Their reasoning was that the worst that could happen
to them was a 0 on a test that could be retaken, so why not cheat and hope
they don’t get detected?

In Fall 2024, the discipline system was changed so that cheating resulted in
a negative 10% grade on the exam, worse than not taking the test at all, and
this mark could not be removed. Results: This changed the mental calculus for
cheating, and sharply reduced cheating to less than 2% of online assignments.
A second offense resulted in being sent to the disciplinary committee; so far
only one of the students has done so.
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3.4 Detecting Stealthing

Based on the survey, 1 out of 8 cheaters got away with it by “stealthing” their
code (hiding the AI origins of their code). The author recruited three former
students1 to explore how they would go about stealthing their code, and to see
if it could still be detected by GPTZero. The students submitted 21 homework
assignments they: A) did by hand, B) generated by AI, and C) stealthed the
AI origins. GPTZero was run on all the submissions. GPTZero gives a score
(between 0% and 100%) that can be thought of as the confidence that an AI
wrote the text passed into it, with 60

The changes students made to conceal the use of AI most commonly in-
volved changing the names of variables and functions, adding or removing
comments, and revising loops to different equivalent versions.

Results: Despite multiple reports of inaccuracy [5][6][7] in 2023, GPTZero
had 100% accuracy at classifying human and AI text before it was stealthed.
All human text scored at 40% and below, with most below 15%. Before being
stealthed, all AI generated files were detected with a score of 60% or higher.
After being stealthed, only 9% of the assignments were detected by GPTZero
as being AI generated. GPTZero is thus not effective at detecting stealthed
code and other methods should be used such as approaches as described in [4]
which work based on the AST of the submitted code. Caution must be taken
with interpreting GPTZero scores as definitive proof of cheating, and should
always be considered holistically with other factors

4 Discussion and Conclusion

AI cheating since Spring 2023 has become extremely prevalent. The good news
is that 7 out of 8 students did not conceal their use of AI-generated code, and
can be detected using software like GPTZero, or through clever tricks like em-
bedding zero point font text in problem descriptions or cherrypicking questions
that AI is known to get wrong. When students stealth their code to hide from
AI detection, GPTZero stops being an effective tool and students might get
lucky and detect and remove the traps from their code before submitting it.
However, it will not help the AI answer questions better, and so the author’s
recommendation is to use a combination of all approaches to detect cheating
or other AI detectors.

Once cheating is detected, the focus switches to deterrence. Experiments
with using nega-grades, where students are worse off if caught cheating than if
they did nothing, have been successful at changing the risk/reward balance of
cheating. Additionally, setting up quizzes with questions that AI reliably get

1Thanks to Hazelton, Prado, and Red
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wrong has been found to be effective at discouraging students from using AI
without the paperwork and time overhead of sending students to disciplinary
hearings, and reforms them into actually doing the work instead of cheating in
the majority of cases.
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Systematic Review on Gamified and
Ungraded Pedagogical Approaches∗

Dan Houston1 and Miranda C. Parker2

1 San Diego State University
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dhouston7516@sdsu.edu

2 University of North Carolina, Charlotte
Charlotte, NC 20000
miranda.parker@uncc.edu

Abstract
With growing interest in alternative approaches to computing edu-

cation aimed at improving student outcomes, we focused on two key
strategies: gamified learning and ungraded pedagogy. These methods
promote student engagement and intrinsic motivation by creating flexi-
ble, student-centered environments—gamification through game-like el-
ements and ungraded pedagogy through a focus on mastery rather than
performance. To explore how these approaches align and can be inte-
grated, we conducted a systematic literature review of interventions com-
bining both strategies. Our findings highlight key themes—Reimagined
Classroom Experience, Gamified Grades, and Platformized Class—and
provide insights into current practices, trends, and future research direc-
tions.

1 Introduction

In recent years, alternative approaches in education have gained traction for
their potential to improve student outcomes by fostering engagement and mo-
tivation. Among these approaches, ungraded pedagogy and gamified learning

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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stand out for their capacity to create dynamic, student-centered learning en-
vironments. Ungraded pedagogy seeks to shift the focus from performance
metrics to mastery, reducing student anxiety and promoting intrinsic motiva-
tion by eliminating traditional grading structures [3]. Gamified learning, which
incorporates game-like elements such as points, levels, and challenges, aims to
boost motivation and deepen engagement by transforming learning into an in-
teractive experience [12]. By integrating these two approaches, the goal is to
reduce external pressures associated with traditional grading, enabling a shift
towards intrinsic motivation where the enjoyment of the learning process itself
becomes the primary driver of deep engagement.

We chose to investigate the intersection of these two methods to better
understand when they are used together and how they may complement each
other in enhancing educational experiences. By systematically reviewing the
literature, we aim to provide insights into the implementation, outcomes, and
challenges associated with integrating gamified and ungraded pedagogy. Specif-
ically, we address the following research question: How are the concepts of
gamification and alternative grading aligned and used in combination with one
another?

The following sections detail our methodology and findings, which are orga-
nized around three primary themes: Reimagined Classroom Experience, Gam-
ified Grades, and Platformized Class. Each theme examines the potential for
gamified and ungraded practices to foster engagement, motivation, and a sup-
portive learning environment.

2 Methodology

Our methodology follows the guidelines for systematic reviews as proposed
by Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) [19]. We conducted searches across ACM Digital Library, IEEE
xPlore, Scopus, World Wide Science, Science Direct, Eric, Wiley, ProQuest,
and the university’s library database. Each database was searched up to June
4th, 2024. We systematically searched the literature, following methods and
suggestions from Booth et al. [4], identifying 380 articles that met our search
terms in Table 1. We assessed the relevance of the studies found to our re-
search question, following a two-stage screening process by one reviewer. In
the first stage, we screened titles and abstracts, and in the second stage, we
reviewed full-text articles using a standardized form and ultimately analyzed
18 publications.

Studies were included if they examined gamified or ungraded pedagogical
approaches within educational contexts; were published, peer-reviewed studies,
dissertations, or poster abstracts; involved any age group or education level;
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Table 1: Search Terms

OR OR
"game-based learning" "alternative grading"
"game elements" "competency grading"
gamif* AND "contract grading"

"mastery grading"
"specifications grading"
"standards grading"
"equitable grading"
ungrad*

implemented an intervention applied or put into practice within the study;
measured any type of outcome related to the intervention; were conducted
in any country; were written in English; and focused on academic contexts,
including in-school, after-school, and summer camp settings.

Exclusion criteria included studies without an intervention, such as theoret-
ical papers; studies outside the education sector, such as athletics programs or
other non-academic contexts; non-peer-reviewed presentations; full conference
proceedings; full books or volumes; and studies not written in English.

Data extraction focused on author, year, sample size, methodology, key
findings, and definitions of grading method and gamification. Studies were
analyzed using thematic analysis [4].

3 Results

A total of 18 studies met the inclusion criteria. The earliest publication was
from 2011 and the latest was from 2024, the year the search was performed. The
results are grouped into three key themes: Reimagined Classroom Experience,
Gamified Grades, and Platformized Class. Each theme is discussed in terms of
methodologies, findings, and implications.

3.1 Reimagined Classroom Experience

The theme of Reimagined Classroom Experience encompasses a range of in-
novative pedagogical approaches that blend alternative grading methods with
immersive, game-like learning environments [1, 5, 6, 7, 10, 13, 17, 18, 21].
These classrooms are designed to foster student engagement, motivation, and
agency by rethinking traditional classroom roles and systems. Instructors are
often positioned as game masters or game designers, each framing their roles
in unique ways to guide, structure, and orchestrate the educational experience.

20



A game master, for instance, adjusts the narrative and difficulty of activities to
keep students actively engaged, while a game designer establishes the under-
lying structures, challenges, and rewards that shape student interactions and
learning pathways. Each of these roles integrates a balance of structure and
flexibility, allowing students to take on meaningful challenges while developing
autonomy and self-regulation.

Within these classrooms, alternative grading approaches—such as contract
grading, mastery-based assessments, and competency-based grading—enable
a shift from traditional metrics to more formative, student-centered systems.
In this context, grading becomes part of the immersive learning environment,
supporting risk-taking and learning from failure without the constraints of rigid
grade penalties. For example, instructors using contract grading set clear cri-
teria tied to specific achievements, such as “quests” or “side missions,” enabling
students to explore content through various paths. This framework aligns with
self-determination theory [11], enhancing intrinsic motivation by fostering au-
tonomy and competence in the learning process.

The studies under this theme demonstrate a shared focus on fostering im-
mersion and flow—a psychological state of deep engagement and focus de-
scribed by Mihaly Csikszentmihalyi [9]. To achieve flow, educators carefully
balance task difficulty with student skill levels, creating a dynamic learning
environment where students experience continuous growth without the frus-
tration of overly challenging tasks or the boredom of under-stimulation. For
example, Bryant’s mathematics course frames assignments as quests and study
groups as guilds, providing students with agency in how they approach tasks
and interact with peers [6]. This gamified approach allows instructors to ad-
just challenges, ensuring that students remain within their Zone of Proximal
Development [23].

The Reimagined Classroom Experience combines elements such as core
game loops and side quests to enhance learning. Core game loops, as described
by Caravella, involve cycles of challenge, feedback, and reward, mirroring for-
mative assessment to reinforce mastery and build confidence [7]. Side quests, or
optional tasks, encourage deeper engagement without grade penalties, fostering
curiosity and reducing the pressures of traditional grading [7].

The studies reviewed in this theme provide evidence that gamified and
game-based classrooms, structured through flexible grading and guided by
immersive principles of game design, can enhance student engagement, mo-
tivation, and self-regulation. While alternative grading systems like contract
and mastery grading may not always correlate directly with academic perfor-
mance improvements, they consistently foster a sense of agency and resilience
among students. This theme, Reimagined Classroom Experience, highlights the
transformative potential of integrating game-based design principles into edu-
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cational settings, suggesting that a balance of immersive elements, alternative
grading, and structured challenges can create an enriching and ethical learning
environment.

3.2 Gamified Grades

The Gamified Grades theme explores the transformative potential of integrat-
ing game mechanics into grading practices to improve student motivation,
transparency, and engagement [8, 22, 24, 25]. The studies in this theme demon-
strate a range of gamified grading approaches, including point systems, badges,
and experience (XP), used to reframe student interactions with assessment.

Topîrceanu’s research, for example, highlights the benefits of using an XP-
based grading system in computer science courses, where students demon-
strated higher attendance and increased participation in assignments. This
system engaged students by incorporating role-playing elements, thereby creat-
ing an interactive and motivational grading experience that promoted academic
involvement [22]. Similarly, Zhao’s implementation of a points-based grading
approach in teacher training programs allowed students to track their academic
progress, which improved transparency and engagement; however, the study
found limited improvement in actual academic outcomes, suggesting gamifica-
tion may primarily enhance engagement rather than overall performance [25].

Cooper’s study in early literacy education shows the community-building
potential of digital badges, where badges served not only as motivators for
young students but also facilitated communication among families, teachers,
and administrators. This holistic integration of gamified elements fosters a col-
laborative and supportive learning environment, especially for younger learners
[8]. On the other hand, West-Puckett’s exploration of badging in higher ed-
ucation reveals a mixed response from students; while many appreciated the
transparency and focus on skill development, others remained more comfort-
able with traditional grading methods, suggesting that gamified grading may
not be universally preferred across educational levels [24].

In summary, gamified grading offers substantial potential to create engag-
ing and transparent learning experiences. Although its impact on performance
may vary, gamified grades can effectively support a more active learning envi-
ronment when implemented with attention to student needs and preferences.

3.3 Platformized Class

The Platformized Class theme examines the role of digital platforms, such as
Learning Management Systems (LMSs) and mobile technologies, in reshaping
educational delivery [2, 14, 15, 16, 20]. These platforms facilitate alternative
grading approaches and gamification through features like real-time feedback,
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customizable assessment options, and progress tracking, allowing for a more
individualized learning experience. The studies summarized in this theme offer
insights into how platforms support active learning and student autonomy.

Beaudoin and Avanthey’s longitudinal study in computer science courses
demonstrates how a platform-centered approach, which includes real-time
progress tracking and automated feedback, enhanced both engagement and
academic performance over time. This study underscores the advantages of
integrating digital tools with active learning to promote student skill develop-
ment while highlighting the importance of maintaining in-person interaction
to avoid platform fatigue [2]. Similarly, Holman’s analysis of the GradeCraft
LMS in an honors course shows how allowing students to choose their own as-
sessment types can foster ownership and engagement, especially among highly
motivated students, though the flexibility may not be equally effective for all
learner groups [15].

Kime’s use of dashboard tools in calculus classes allowed teachers to monitor
individual progress and proactively address learning gaps, supporting a data-
driven approach to individualized instruction that encouraged timely feedback
and reinforced skill mastery [16]. Heath’s study on iPad integration for students
with disabilities highlights the role of platforms in promoting engagement and
autonomy but emphasizes that teachers need targeted training to effectively
incorporate such technology into lesson plans [14]. Finally, Petrovic-Dzerdz’s
gamified Moodle implementation demonstrates the impact of repeated practice
and mastery-based progression, showing that students engaging frequently with
the platform’s gamified assessments performed better academically [20].

Overall, platform-based learning tools offer notable benefits in fostering
engagement and personalization. However, the successful integration of these
tools relies on educator support, balancing digital and human elements, and
adapting platforms to meet diverse student needs.

4 Discussion

The literature reveals a growing interest in gamified and ungraded pedagogy,
with evidence suggesting that both approaches can enhance engagement and
motivation. Nonetheless, challenges persist, especially in scalability and con-
sistency across diverse educational contexts.

For practitioners, adopting gamified and ungraded methods requires careful
planning. Combining these approaches may be particularly effective for culti-
vating a student-centered environment. Educators are encouraged to consider
both extrinsic and intrinsic motivators when designing gamified, ungraded ac-
tivities.

Gamified and ungraded pedagogy offer promising avenues for increasing
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student engagement and motivation. This review underscores the importance
of continued research into the nuanced effects of these pedagogies and provides
recommendations for implementing blended approaches to enhance student-
centered learning.

References

[1] Dmitriy Babichenko et al. “Implementation and Assessment of Three
Gamification Strategies Across Multiple Higher Education Disciplines”.
English. In: Last updated - 2024-08-27. Reading: Academic Conferences
International Limited, Oct. 2019, pp. 41–47, XIII.

[2] Laurent Beaudoin and Loïca Avanthey. “How to help digital-native stu-
dents to successfully take control of their learning: A return of 8 years
of experience on a computer science e-learning platform in higher educa-
tion”. In: Education and Information Technologies 28.5 (2023), pp. 5421–
5451. doi: 10.1007/s10639-022-11407-8.

[3] Susan Debra Blum, ed. Ungrading: Why Rating Students Undermines
Learning (and What to Do Instead). First edition. West Virginia Univer-
sity Press, 2020.

[4] Andrew Booth, Diana Papaioannou, and Anthea Sutton. Systematic Ap-
proaches to a Successful Literature Review. Sage Publications, Jan. 2012.

[5] Jessica E. Broussard. “Playing Class: A Case Study of Ludic Pedagogy”.
PhD thesis. United States – Louisiana, 2011, p. 167. isbn: 9798802787274.

[6] Albert Bryant. “Student Perceptions of Engagement With Secondary
Mathematics in a Gamified, Standards-Based Grading System: A Basic
Qualitative Study”. In ProQuest Dissertations and Theses (2937271364).
Ed.D. Dissertation. American College of Education, 2024.

[7] Elizabeth Caravella. “Teaching Gamefully: Proceduralizing the Class-
room through Possibility Space Pedagogy”. In ProQuest Dissertations
and Theses (2243789108). Ph.D. Dissertation. George Mason University,
2019.

[8] Amy M. Cooper. “Teacher Perceptions of the Digital Badge in Kinder-
garten Reading Attainment”. In ProQuest Dissertations and Theses
(2211480168). Ed.D. Dissertation. Concordia University (Oregon), 2019.

[9] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experience.
First edition. New York, NY, USA: Harper & Row, 1990.

24



[10] Mariam Dabbous et al. “Instructional educational games in pharmacy
experiential education: a quasi-experimental assessment of learning out-
comes, students’ engagement and motivation”. In: BMC Medical Educa-
tion 23.1 (Oct. 2023), p. 753. issn: 1472-6920. doi: 10.1186/s12909-
023-04742-y.

[11] Edward L. Deci and Richard M. Ryan. Intrinsic motivation and self-
determination in human behavior. Perspectives in social psychology. In-
cludes bibliographical references (pages 335-358). New York: Plenum,
1985. isbn: 0306420228.

[12] Sebastian Deterding et al. “From game design elements to gamefulness:
defining "gamification"”. In: Proceedings of the 15th International Aca-
demic MindTrek Conference: Envisioning Future Media Environments.
MindTrek ’11. Tampere, Finland: Association for Computing Machinery,
2011, pp. 9–15. isbn: 9781450308168. doi: 10.1145/2181037.2181040.

[13] Daniel J. Harrold. “Game on: A qualitative case study on the effects
of gamified curriculum design on student motivational learning habits”.
In ProQuest Dissertations and Theses (1673159776). Ph.D. Dissertation.
Robert Morris University, 2015.

[14] Katie Louise Heath. “Use and Integration of iPads with Students with
Low Incidence Disabilities in Elementary Schools”. Ph.D. Dissertation.
Syracuse University, 2018. url: https://surface.syr.edu/etd/900.

[15] Caitlin Holman. “Building a Better Game: A Theory of Gameful Learn-
ing & the Construction of Student Personas with Agency”. In ProQuest
Dissertations and Theses (2080292528). Ph.D. Dissertation. University
of Michigan, 2018.

[16] Kristian Kime. “Insightful Learning Systems: Supporting STEM Edu-
cation with Accessible Cyberlearning”. In ProQuest Dissertations and
Theses (2577749089). Ph.D. Dissertation. Brandeis University, 2021.

[17] Mary Kruger. “A Comparative Study of Student Performance When Us-
ing Minecraft as a Learning Tool”. In ProQuest Dissertations and Theses
(1881841972). Ed.D. Dissertation. Northcentral University, 2016.

[18] Lindsay Kistler Mattock. “Using Gamification to Overcome Anxiety and
Encourage Play in the Graduate Classroom”. In: ELearn 2023.7 (July
2023). doi: 10.1145/3609266.3603505.

[19] Matthew J. Page et al. “The PRISMA 2020 statement: An updated
guideline for reporting systematic reviews”. In: International Journal of
Surgery 88 (2021), p. 105906. issn: 1743-9191. doi: https://doi.org/
10.1016/j.ijsu.2021.105906.

25



[20] Maristela Petrovic-Dzerdz. “Gamifying Online Tests to Promote
Retrieval-Based Learning”. In: International Review of Research in Open
and Distributed Learning 20.2 (2019). url: https : / / doi . org / 10 .
19173/irrodl.v20i2.3812.

[21] Shannon J. Saluga et al. “Inter-Twine-d: Combining Organic Chemistry
Laboratory and Choose-Your-Own-Adventure Games”. In: Journal of
Chemical Education 99.12 (2022), pp. 3964–3974. doi: 10.1021/acs.
jchemed.2c00481.

[22] Alexandru Topîrceanu. “Gamified learning: A role-playing approach to in-
crease student in-class motivation”. In: vol. 112. Knowledge-Based and In-
telligent Information & Engineering Systems: Proceedings of the 21st In-
ternational Conference, KES-20176-8 September 2017, Marseille, France.
2017, pp. 41–50. doi: 10.1016/j.procs.2017.08.017. url: https://
www.sciencedirect.com/science/article/pii/S187705091731356X.

[23] Lev S. Vygotsky. Mind in Society: The Development of Higher Psycho-
logical Processes. Massachusetts: Harvard University Press, 1978.

[24] Stephanie West-Puckett. “Making Classroom Writing Assessment More
Visible, Equitable, and Portable through Digital Badging”. In: College
English 79.2 (2016), pp. 127–151. issn: 00100994, 21618178. url: http:
//www.jstor.org/stable/44805914.

[25] George Zhao. “Using a Gamified Points-Based Grading System in Tech-
nology Courses for Pre-Service Teachers”. In ProQuest Dissertations and
Theses (2478622680). Ph.D. Dissertation. University of Houston, 2019.

26



Implementation of Alternatively-Graded,
Gamified Pedagogy in a Data Structures

Course∗

Dan Houston1 and Miranda C. Parker2

1 San Diego State University
San Diego, CA 92182
dhouston7516@sdsu.edu

2 University of North Carolina, Charlotte
Charlotte, NC 20000
miranda.parker@uncc.edu

Abstract

This paper presents a single-masked controlled study on the effective-
ness of an alternatively-graded, gamified pedagogy in a Data Structures
course at San Diego State University. The study compares an experimen-
tal group experiencing an alternatively graded and gamified assignment
against a traditional control group to assess impacts on student engage-
ment and perceptions of the classroom. The study found statistically
significant results, with the experimental group responding with more
positive feedback.

1 Introduction

In recent years, educators have increasingly explored innovative pedagogical
approaches to enhance student engagement and learning outcomes in techni-
cal courses. Gamification and alternative grading systems are among these
approaches, which aim to increase motivation and reduce the anxiety often
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associated with traditional grading. This study investigates the impact of such
an approach on students in a Data Structures course, a core component of
computer science (CS) education that poses unique challenges due to its com-
plexity and abstract content. The course is an introductory component of the
CS curriculum, typically taken by students who are new to the major and have
limited prior experience with CS concepts.

To assess the effectiveness of an alternatively graded, gamified (AGG) as-
signment, this paper presents a controlled study comparing an experimental
group that participated in an AGG assignment to a control group that followed
traditional teaching methods. Our primary research question is: What is the
impact of an alternatively graded, gamified pedagogy on student engagement
and perceptions in a Data Structures course?

2 Study Design

This study employed a single-masked, experimental design to evaluate the im-
pact of AGG pedagogy against traditional grading methods in a Data Struc-
tures course at San Diego State University. Ethics board approval was obtained
to ensure adherence to ethical standards, and transparency and voluntary par-
ticipation were prioritized throughout the recruitment process. All students
enrolled in the course were invited to participate, and those who consented
were informed that their participation was optional and would not impact
their grades. Non-consenting students completed standard course surveys for
self-assessment but were excluded from data analysis.

Four course sections were randomly assigned to either the experimental
group (AGG) or control group (traditional). The experimental group (two
sections, 123 students, with 92 consenting) engaged with AGG assignments
featuring narrative-driven tasks, mastery-based grading, and adaptive feed-
back. The control group (two sections, 129 students, with 102 consenting)
followed traditional assignment formats and grading language. To minimize
bias, students were not informed of their group assignment.

In this course, students were introduced to fundamental data structures,
including arrays, linked lists, stacks, and trees. Assignments, exams, and online
discussions comprised the primary course content. For the study, the linked
lists unit was selected as the focus due to its relative difficulty for students
and its central role in the curriculum. Post-surveys with open-ended questions
were administered to collect feedback on students’ perceptions on engagement,
performance, expectations, and applicability of the course content.
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3 Intervention Design and Implementation

This study contrasted AGG pedagogy in the experimental group with tradi-
tional approaches in the control group. Both groups followed identical course
content, differing primarily in the linked list assignment framing, grading lan-
guage, and feedback methods.

Previous approaches struggled to engage students, especially those not
already familiar with CS (e.g., potentially underrepresented groups such as
women in the field [4]). Prior assignments for this unit included the creation
of a simulated Central Processing Unit (CPU) scheduler, which was more ac-
cessible to students already familiar with computers.

Following Morschheuser et al.’s guidelines for effective gamification design,
we collaborated with the course instructor to brainstorm and refine a narrative-
driven assignment approach [5]. For instance, we replaced the CPU scheduler
assignment with a Monopoly-themed task, using Monopoly spaces as nodes in
a linked list. This change aimed to provide a boundary object [8] that made
abstract programming concepts more relatable, particularly for students less
familiar with CS, thus making the content more equitable.

AGG Approach: In the experimental group, assignments were presented
as quests within a cohesive storyline, designed to enhance engagement and
learning through narrative. These quests emphasized mastery-based grading,
an approach informed by the concept of Learning Edge Momentum (LEM),
which posits that successful or unsuccessful learning experiences tend to rein-
force themselves over time [6].

Our approach was designed during a brainstorming session that reviewed
prior studies that paired gamified and alternative grading methods as interven-
tions. For example, each assignment became part of an immersive storyline to
enhance student engagement and learning [1, 7, 9]. These studies highlighted
positive impacts on student motivation, engagement, and mastery, while also
identifying potential challenges. This background guided our pedagogy choices,
helping to integrate effective strategies and keep in mind known limitations.
The experimental curriculum adopted gamification principles, including “Lev-
eling Up,” “Badge Collection,” and “Dynamic Difficulty Adjustment,” to create
an engaging environment intended to facilitate Csikszentmihalyi’s concept of
“flow” [2].

Following Morschheuser et al.’s recommendations for iterative, user-centered
design [5], the curriculum incorporated adaptive elements that responded to
varying skill levels, providing mastery-oriented, motivational feedback. This
approach transformed traditional assessment into a series of achievements,
de-emphasizing grades and encouraging persistence and experimentation in a
game-like, low-stakes environment [3].

Traditional Approach: In the control group, assignments maintained
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fixed requirements, traditional grading language and in-person feedback. This
structure provided a consistent, traditional approach aligning with typical pro-
gramming course standards.

Table 1 outlines differences in assignment features, focusing on how wording
varied between the experimental and control groups. Each feature row specifies
both the experimental and control phrasing, with the “Method of Delivery” col-
umn clarifying whether the difference was a direct wording change within the
assignment (“Assignment”) or a broader (not explicitly documented by the re-
searchers) verbal adjustment made during in-person discussions (“In-person”).
Otherwise, both the AGG and control assignments were identical.

Table 1: Comparison of Experimental and Control Group Assignments

Feature Experimental
Group

Control Group Method of
Delivery

Assignment
Structure

Core Tasks and Op-
tional Tasks

Mandatory Func-
tions and Optional
Functions

Assignment

Extra
Credit

Expert Program-
ming Levels

Extra Credit Op-
tions

Assignment

Student
Autonomy

Select optional tasks
to reach 80 points

Mix-match ba-
sic and advanced
functions

Assignment

Focus Focus on mastery
through expert lev-
els

Completion via
fixed mandato-
ry/optional points

In-person

Feedback Narrative-driven
(levels, badges,
adaptive hints)

Standard comments
and grade-based
scores

In-person

4 Data Analysis

Student feedback was thematically analyzed as positive, mixed/neutral, or neg-
ative. Table 3 shows the frequency of feedback types across groups. The
qualitative survey conducted post-intervention addressed topics such as (Q1)
student motivation, (Q2) engagement, (Q3) assessment impact, (Q4) academic
challenge, (Q5) course expectations, (Q6) learning support, (Q7) practical pre-
paredness, and (Q8) confidence in technical problem-solving, with eight op-
tional questions. Responses were grouped into positive and non-positive feed-
back for comparison purposes.
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Table 2: Demographic Summary of Experimental (AGG) and Control Groups

Category Subcategory AGG (n=92) Control (n=102)

Race

White 40 40
Asian 29 35
Other 7 10
Black 3 4

Ethnicity
Not Hispanic 68 73
Hispanic 21 24
NA 3 4

Socioeconomic

Middle Income 65 67
Low Income 12 26
High Income 7 5
NA 7 4

Employment

Unemployed 52 41
Part-Time 37 54
Full-Time 3 5
NA 0 2

Survey Questions

Q1 In what ways did you find yourself more or less motivated to participate
in course activities?

Q2 Describe how the course design impacted your involvement in class dis-
cussions and assignments.

Q3 In what ways did the course’s assessment methods (e.g., assignments,
quizzes) impact your learning and performance?

Q4 Can you provide examples of how the course content challenged you aca-
demically?

Q5 How did the course design align with or differ from your expectations of
a computer science course?

Q6 How did the course environment support or hinder your learning process?

Q7 How prepared do you feel to use the knowledge gained from this course
in practical applications?

Q8 Can you describe how this course contributed to your confidence in tack-
ling technical problems?
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Table 3: Responses for Experimental and Control Groups

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Experimental Group (AGG)

Positive Feedback 39 41 44 41 37 44 39 39
Neutral or Mixed Feedback 12 3 2 1 0 1 1 3
Negative Feedback 4 3 2 7 9 2 6 4

Control Group

Positive Feedback 43 48 46 47 42 40 43 44
Neutral or Mixed Feedback 9 9 9 7 4 9 6 7
Negative Feedback 11 4 6 7 14 11 12 7

A Chi-squared test on positive and non-positive feedback distributions re-
vealed a significant difference (X = 17.472, df = 2, p < 0.001), indicating that
the AGG group provided a statistically higher proportion of positive feedback
when observing all open-ended questions, which showed that the AGG group
consistently displayed more favorable attitudes compared to the control group.

5 Conclusion

This study evaluated the impact of an AGG approach compared to traditional
grading on student perceptions of engagement, performance, expectations, and
applicability in a programming course. Students in the AGG group reported
enhanced motivation and engagement, attributing this to the flexible, mastery-
based structure that allowed creative exploration and incremental learning.
Some students did, however, mention occasional ambiguity in instructions, sug-
gesting a need for clearer guidance within the AGG format.

While traditional grading practices in the control group provided famil-
iarity, some students reported frustration with rigid assessment, which they
felt sometimes constrained their motivation. In contrast, the AGG group ap-
preciated the focus on mastery and progression, which felt more aligned with
professional goals and strengthened their confidence in problem-solving.

Both groups found assignments relevant to real-world applications, though
the AGG structure better supported students in connecting course concepts to
practical applications. Overall, the AGG approach shows promise for fostering
an engaging, skill-oriented environment, though future studies should assess
long-term impacts and demographic variations. Further research is needed
to explore how AGG pedagogy may influence diverse student populations, as
well as its potential to integrate with various course formats and disciplines.
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Understanding these factors will be key to optimizing this approach for broader
educational contexts.
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Abstract

Metrics have long been used to assess and guide successful software
projects. Traditionally these metrics have measured software’s profes-
sional rather than its educational suitability. This work proposes six
adaptable, reproducible pedagogical metrics. With these metrics, we
track an Introductory CS course’s capstone projects, 2018-2024. The
results suggest both year-over-year evolution and a more sudden, LLM-
correlated impact on students’ relationship with their early computing
work. We have begun adapting our curriculum to these signals, and
we foresee future refinements and broader applications to metrics-based
reproducible curricular assessment.

1 Introduction: Comp1’s “Springboard” Projects

Creative final projects are, rightfully, an often-used capstone for introductory
computing courses. Usually, they are the largest and most open-ended soft-
ware artifacts built by introductory computing students. As such, they invite
personal investment smaller assignments can’t always match. At its best, that
personal investment can be a strong foundation for confidence and comfort
with future computing, whether in a CS program or elsewhere.

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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Our Computing 1 (Comp1) course has a long tradition of these open-ended
capstone projects. Students choose from five options. Nominally from scratch,
each is partly scaffolded by its prompt:

1. a 3d physical simulation leveraging an external library

2. a terminal-based, turn-taking game with student-written AI

3. a text-analysis engine using both student-chosen and provided features

4. cellular automata of various rulesets (given and invented)

5. a genetic algorithm that itself evolves programs

Although these projects’ popularity varies, the projects’ “game balance”
across effort, creativity, and complexity is equitable. As a result, all of them
have been launching students into their computational future for many years.

2 Motivation: Metrics across Time and “AI Space”

This work asks the question, “What can introductory computing projects say
about the student-computing relationship – especially given how rapidly it’s
evolving?” In the past three years - especially this past year - LLMs have
changed the trajectory of computing skill-building. LLMs aside, all CS in-
structors track over time their choice of content, pedagogy, and philosophy.
Updating and adapting decades of thought vis-a-vis traditional software met-
rics, this work proposes – and demonstrates – the insights available using ped-
agogical metrics, as instantiated via six years of Comp1 capstone projects.

3 Background: Adapting traditional software metrics

Although CS1 as a course takes on very different forms [8], it’s not uncommon
for CS1 courses to be capped by student-shaped final projects. Ideally, a fi-
nal project affords students the chance to integrate skill-and-knowledge across
most-or-all the topics they have practiced through their introductory course.
It can also provide open-ended opportunity for creativity, individuality, and
pride-of-creation in a software artifact.

Here, we seek reproducible syntheses, i.e., metrics that allow year-over-
year comparisons of students’ final introductory projects. These data help us,
as instructors, to help our students, as computational authors, more deeply
appreciate their work’s clarity, its capabilities, and the expressive individuality
imbued in it.
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This paper thus layers a pedagogical purpose atop the longstanding history
of software metrics. Software-quality concerns motivated Halsted [6] and Mc-
Cabe [12], to design influential early metrics. They did not hold up equally
well: Halsted’s metrics have attracted widespread criticism [9, 1, 16], while Mc-
Cabe’s Cyclomatic Complexity is still widely used, a pattern this work happily
continues! Both appear in software’s first maintainability indices, which com-
bined individual source-code features by fitting their coefficients to the results
of a small number of projects [14, 4].

Our work draws inspiration from next-generation maintainability metrics,
specifically [7]. Rather than averaging or projecting onto a 1D space, their met-
rics preserve the component software-maintainability features. They demon-
strate convincingly that the resulting maintainability space is far more useful
than a single summative value. Contemporary taxonomies summarize these
within decades of past practice [3]. Yet they aspire only to inform professional-
grade software quality and maintainability. They do not address the needs of
CS education or, more specifically, Introductory CS.

Within CS Education, metrics have often been used for comparing submis-
sions’ authorship as “plagiarism prevention tool” [10]. This is not our goal.
Instead, this work is closer to work by Santos et al., who applied similar tech-
niques to identify programming learning-styles [5]. Yet, for us, pedagogical
responsiveness is more important than learning style. Thus, we are closest
to the work of Price et al. [15] and Nguyen et al. [13], who also incorporated
metrics from capstone projects in a single introductory data science course.

Our work expands the scale and scope of these prior foundations. On one
hand, we use a different set of metrics, as detailed in the next section. We also
offer a deeper longitudinal look, spanning across six years and over a thousand
students. That timespan allows us to begin to contrast how students and their
artifacts have changed in the era of LLMs.

4 Mixing old with new: Pedagogical metrics and trends

Here we describe the six metrics we use to track students’ CS1 project trends.
We emphasize that these metrics are not used for grading projects. Grades are
determined via the projects’ rubrics, which include the behavioral capabilities
of the software and its creativity within the framework of the project, all of
which depend on the judgment of a human reader. We have a number of course
alums who help the instructors with grading.

Rather, these six metrics allow us a reproducible look into the evolution
over time of the relationship of our introductory CS cohorts and their final
projects. Figure 2 summarizes with histograms the distributions of each of
the six metrics over the past seven years. Figure 1 shows the p-values of the
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Kolmogorov-Smirnov test, with highlighting relative to a (nominal) threshold
of p = 0.01.

Figure 1: The p-values computed by the K-S test for each of the six metrics
comparing three timespans: ’23 vs ’18 (evolutionary change), ’23 vs ’24 (LLM
advent), and ’24 vs ’18 (both forces).

4.1 Complexity

As we focus on students and the work they create, the traditional complex-
ity metric is beneficial: we use McCabe’s Cyclomatic Complexity [12], which
counts the number of distinct code paths in a program. As it does for larger-
scale software systems, this complexity metric conveys the structural intricacy
of students’ code and the logic behind their solutions. Higher complexity is
not an indication of more sophistication. Rather, it is often a signal of ad-
hoc thinking, i.e., code that has evolved in real-time. This is inevitable in
introductory CS projects, but simpler is, by and large, better. In contrast,
we represent structural complexity by measuring the highest level of function
nesting present. This metric indicates comfort with function calls and func-
tion composition, a key goal of our introductory experience, as well as many
others! Our data shows that, with statistical significance, complexity has de-
creased over time. However, the introduction of Large Language Models has
not affected complexity. This is encouraging because this indicates modularity
in project code, suggesting increasing separation of ideas and positive problem
decomposition.

4.2 Volume

One of the key metrics in determining students’ conceptual grasp is the vol-
ume of their final project. Though volume can be measured in many ways,
we are using the straightforward Lines of Code (LOC) along with Number of
Functions (Num Funcs). In our measurements, we include comments in this
metric, because our goal is to get a sense of the sum-total of student-managed
material in a submitted file. This ensures that our work overlaps with metrics’
traditions across all software [2, 7, 11] as well as pedagogical software-creation
tasks in CSEd[10]. Comparing both evolutionary change and LLM advent for
LOC and Num Funcs, we see a significant decrease in both measurements.
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Both volume metrics from 2018 and 2023 showed a significant decrease overall.
Isolating changes due to LLMs (2023-24), only Number of Functions experi-
enced significant change. We speculate the time-varying cultural factors and
LLM-influence contribute to reduced Volume and reduced code duplication.

4.3 Documentation Quantity

In Introductory CS, comments often reflect the students’ ability to document
and explain their thought process, making their work accessible to others[7]. In
our metrics, we include lines of comment alongside Lines of Code to calculate
Percentage of Comments to assess students’ understanding of desired concepts.
This way, we can capture the breadth, implementation, and documentation of
students’ work. We do see a significant decrease in comment quantity over time,
but not a significant change after LLMs were introduced. This has prompted
updates to our own pedagogy in subsequent offerings.

4.4 Ambition

Capturing the ambition behind students’ code is essential for understanding
their learning journey and growth. We assess the integration of course topics
in projects as a measure of students’ deep understanding and mastery of core
concepts. To represent this idea, we use (1) the number of learned concepts
encapsulated and (2) the depth of function dependency in students’ projects.
Together, these metrics attempt to provide a holistic view of the students’
ambition, showcasing both their problem-solving depth and sustained effort.
Over the years, we see a significant change in Weeks Used of concepts, which
can be attributed to both evolutionary change and LLM usage. However, there
is no significant change in Max Depth. This suggests that over time and across
LLM use, student work continues to illustrate problem-decomposition skills.

5 Preliminary Verdict

Assessments like these best serve students – and instructors – when they reflect
and support the relationships at the heart of our work: their interpersonal
foundations, as well as the layer of computing confidence and capability that
grows from those foundations.

For tracking the “student-computing relationship” in our introductory com-
puting course, this paper’s metrics have succeeded in a number of ways:

• they reproducibly ground our informal observations through the raw ma-
terial of student-submitted projects, which are the most individualized
work in our course
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Figure 2: Trends over seven years of Introductory CS final projects measured by
six metrics: Weeks Used (far left), an estimate of the completeness of course-
integration; Cyclomatic Complexity (mid left), code paths counted per file;
Max Depth (center left), the longest nested function call chain; No. Functions
(center right), a count of defined functions; Comments (mid right), as a per-
centage of code lines; and Volume (far right), tracking total lines of code, LoC.
Section 4 describes trends observed and addressed, i.e., decreasing complex-
ity, functions, and comments; varying coverage; and constant call-depth and
volume, i.e., lines of code.

• they track changes in the student-computing relationship, across
timescales short (pre-and-post LLMs) and medium-term (since before
Covid at least)

• the weeks used metric has spurred new pedagogical approaches in our
introductory CS curriculum: in 2024, we began piloting student-defined
deliverables to better align students’ semester-wide integration of topics.
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(That effort warrants its own, separate treatment.) Here, all of these
metrics have helped with our careful, deliberate inclusion of LLM-use in
our introductory courses.

Even so, these measures are neither institution- nor curriculum-specific. As
a result, this work can inform introductory curricula across a wide variety of in-
stitutions and philosophies. For example, quantifying the importance of clear,
well-structured, and appropriately complex, i.e., appropriately expressive, code
helps instructors and students alike. Measures of student-computing engage-
ment open the door to a positive feedback loop as new technologies quickly
become everyday expectations.

6 Perspective

With its single snapshot of a single institution’s past six years of introductory
computing, this work invites further exploration along two paths. The first is
a comparison with other introductory computing courses. Each course empha-
sizes its own set of priorities – as it should – and this paper’s metrics are an
opportunity to reproducibly cross-compare student artifacts, whether within
courses or across them, to support new contexts, collaborations, and experi-
ments. The second opportunity is to further expand the pedagogical measures
of computing work – for example, by creating LLM-based metrics that may
(or may not) augment our insights about the effectiveness and enjoyment of
computing curriculum – or others that correlate with creativity, sophistication,
and ambition.

It is an exciting time to invest in the evolving relationships between college
students and computing. We look forward to sharing the journey!
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Abstract

As research universities and liberal arts colleges hire more under-
graduate teaching assistants (TAs) to support growing computer science
enrollments, effective training for those TAs becomes increasingly impor-
tant. In this paper we describe the design and evaluation of a peer-led,
discussion-based TA training seminar course. Our results suggest stu-
dents in the course gained familiarity with terms and techniques relevant
to effective and inclusive teaching, and additionally acquired an expanded
sense of community. We discuss aspects of the class that worked well and
those that could use improvement. We conclude with recommendations
for others considering offering a similar course.

1 Introduction

As demand for computer science (CS) classes increases [21], both large research
universities and small liberal arts colleges (SLACs) are hiring rising numbers
of undergraduate Teaching Assistants (TAs). While many strategies for TA
training exist, effects are often reported anecdotally rather than via formal

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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studies [19]. Additionally the impact of training on TA interactions with un-
derrepresented student groups is not well understood [19].

At Pomona College, a small liberal arts institution, we offered a student-led
seminar course in Spring 2024 [25]. The class was centered around small-group
discussions of readings in peer mentoring and diversity, equity, and inclusion
(DEI) in CS. We then asked whether this kind of lightweight offering could
improve TA effectiveness and engagement. We used pre-/post-surveys and
semi-structured interviews to investigate the following research questions:

RQ1: Are students more aware of effective teaching practices after taking this
course?

RQ2: Are students more aware of DEI issues after taking this course?

RQ3: Do students feel more engaged with the CS department community after
taking this course?

2 Related Works

Mirza et al. [19] conducted a systematic literature review of research on un-
dergraduate TA training and observed that TA training programs vary in fre-
quency (weekly [1, 8] vs. annual/semi-annual [2, 3, 4]), content (including
learning styles [5, 35], teaching techniques [1, 2, 3, 9, 24, 31, 32, 35], com-
munication skills [1, 2, 3, 7, 8, 23, 24, 32, 35], professionalism [1, 2, 24, 4,
35], grading [2, 29, 28, 31, 32], and other topics [1, 2, 5, 29, 28]), and peda-
gogical structure (including workshops [29, 31, 32], self-reflection [8, 28], role-
playing [1, 2, 29, 32, 4], and practice lectures [8, 29]).

Given the range of contexts in which TAs work, there may be no universal
best practice for TA training [30]. However, experience reports observe benefits
across a range of institutions and degree programs: from large institutions to
SLACs, and from psychology to engineering [26, 2, 13, 20]. That said, despite
the importance of addressing gaps in CS support structures for underrepre-
sented students, there is relatively little work on how TA training affects DEI
awareness [34]. DEI research more broadly has explored decolonizing univer-
sity curricula [6], inclusive general education TAs [33], and DEI for graduate
TAs [36]. Recent works explore inclusivity card games in a TA workshop [15]
and a lecture-based course centering positive classroom climates [14].

3 Course Design

We designed a peer-led, discussion-based seminar course for TA training [25].
Two undergraduates with significant TA experience served as primary course
facilitators; two supervising faculty alternated attendance.
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The course met once a week for 75 minutes and revolved around peer discus-
sion of topics related to assigned readings. These readings were predominantly
research articles but also included a few articles from the popular press. The
syllabus was divided into three modules: peer mentoring practices, DEI in
STEM, and applications. Each 75-minute meeting had 3 parts: community-
building icebreaker (10 minutes), small group discussions (50 minutes), and
class debrief (15 minutes). The facilitators and supervisors participated in
discussion as equal peers.

Students were expected to complete weekly readings and to submit short
written responses relating the reading to their lived experiences. Students
also participated in a live mentoring workshop where they discussed mock
TA-mentee scenarios. And, finally, students were expected to execute and
present a final project that applied course topics towards improving systems
and resources in our department. The course was graded on a pass/fail basis.

4 Methodology

Students completed a pre-survey in the semester’s first weeks and a matching
post-survey after the last week; they were also offered the opportunity to be
interviewed at the end of the semester. All protocols received IRB approval.

To assess awareness of teaching practices (RQ1) and DEI (RQ2) terms, we
asked students to define and to give a confidence rating of their definitions
for 6 terms: self-explanation, goal orientation, growth mindset (RQ1) [16, 12,
17]; microaggression, fallacious archetype, defensive climate (RQ2) [11, 27, 10].
We compared their definitions to that from course readings (Appendix A) and
coded each response as No Answer, Uncertain, Incorrect, Partially Correct,
or Correct. Improvement was defined as having a response that changed ei-
ther from one of the first 3 categories in the pre-survey to one of the latter 2
categories in the post-survey, or from Partially Correct to Correct.

Next, we asked for both Likert confidence and short answers assessing TA’s
existing approaches: Describe what you already do to try and be an effective
mentor, describe what you already do to try and create inclusive environments
while mentoring, describe how you have incorporated some of these concepts
(as you defined) into your own mentoring. We used thematic analysis via in-
ductive coding [22] to analyze 44 qualitative responses to these prompts across
both surveys. Two authors independently open coded all student responses,
then grouped them on a virtual affinity diagram for thematic analysis through
axial coding [18]. Emergent themes were identified through collaborative re-
view: the two authors then independently re-tagged the initial 44 responses
deductively against these themes (Cohen’s Kappa 0.26 to 1.0). Disagreements
were discussed until consensus was acheived.
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Figure 1: Student pre- and post-survey confidence defining RQ1 terms

Optional 45-minute semi-structured interviews were conducted in person by
the course facilitators at the end of the semester. The flexible script examined
three topics: Motivation, a student’s background and reasons for enrolling;
Growth, a student’s self-identified changes over the semester; and Feedback,
a student’s suggestions and opinions regarding the class. Interviewers took
notes and transcribed audio via Otter.ai. Each facilitator open coded their
interview transcripts by topic. Codes were placed on a virtual affinity diagram
for thematic analysis through axial coding, resulting in a final set of emergent
themes for each topic, shown in Table 2.

5 Results

Of the 9 students enrolled, 8 consented to data inclusion. They self-identified
as follows: 6 male and 2 female; 3 Black or African American, 3 Asian, 1
Hispanic, and 1 White; 1 international student. One student chose not to be
interviewed and one did not complete the post-survey.

RQ1: Awareness of Teaching Practices 7 students completed both sur-
veys, and teaching definitions improved as follows: 2 on self-explanation, 4 on
growth mindset, and 2 on goal orientation. Additionally their confidence in
their definitions increased, as shown in Figure 1. Figure 2 shows student con-
fidence in their own teaching effectiveness also increased. In Table 1, survey
short answer mentions of specific teaching techniques increased from 35 to 41.
Table 2 shows that in their exit interviews, 5 students said the class improved
their ability to evaluate mentoring strategies, and 3 said the class improved
their use of self-explanation specifically.

RQ2: Awareness of DEI Of the 7 students, 4 gave an improved defini-
tion of microaggression, 3 of fallacious archetype, and 5 of defensive climate.
Figure 3 shows increased confidence in their definitions. And Table 2 shows
that 5 students mentioned improved awareness of inclusive strategies for TAs,
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Figure 2: Student pre- and post-survey confidence in own teaching effectiveness
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Figure 3: Student pre- and post-survey confidence defining RQ2 terms

with one saying: “I’ve also been more mindful of general practices that will
not alienate certain students . . . of trying to be more mindful of different back-
grounds that different students have come from. If there’s anything I’m doing
unintentionally that might not make [students] feel comfortable . . . I feel like
I’m just more cognitive of things like that.”

RQ3: Community Building As shown Table 2, many students discussed in
their exit interviews the community building aspect of the course: 6 mentioned
growth via peer discussion, 5 talked about classroom diversity, and 3 appre-
ciated the safe space for exchanging ideas. One participant reflected: “Nine
consistent students plus two professors. We got to know each other, where
everyone was coming from, really well. In different discussion groups . . . it was
an honest and vulnerable space where I could be real about the struggles I’ve
had TAing, and then also learn from struggles other people have had.”

6 Discussion

TA Awareness Overall, students gained awareness of teaching techniques
(RQ1). While they began with lower confidence and knowledge of DEI terms,
the number of improved definitions suggests the course had beneficial impacts
here as well (RQ2). Peer-to-peer discussions in which students could hear
directly from classmates were extremely valuable in part because the ideas
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Survey Theme Pre Post

Self-explanation 3 5
Individual Attention 4 6
Active Listening 4 4
Growth Mindset 4 4
Fairness 3 3
Teaches Concepts 4 4
Embraces Mistakes 4 5
Microaggressions 3 4
Takes Initiative 3 5
Mentor Preparation 3 1

Table 1: Survey Short Answer Codes

Growth Themes # students

DEI awareness 5
Eval. mentor strategies 5
Use of self-explanation 3

Feedback Themes

Valued discussions 6
Valued diverse class 5
Valued safe space 3
Lacked hands-on training 3
Valued readings 2
Valued engaging professors 2
Valued engaging non-TAs 2
Wished for more students 2
Often skimmed readings 2

Table 2: Exit Interview Codes

exchanged, mistakes identified, and struggles shared were all directly relevant
to student TA experiences in our department.

Community Impact Students deeply valued having a weekly space for au-
thentic discussion with other students and with faculty. We additionally no-
ticed students from the course socializing with each other outside of class,
encouraging others to incorporate effective teaching strategies, and speaking
proudly of their course participation. The final projects showcased a strong
desire to expand community and give back to our department: ideas included
implementing structural collection of alumni course notes, proposing a partial-
credit student incubator for industry software engineering preparation, starting
a weekly email highlighting photos and biographies of CS majors, and more.

Recommendations Due to both the class’s small size and tendency to draw
interest from students already engaged with the department, reported experi-
ences may be biased. We recommend expanding enrollment and particularly of
first-time and prospective TAs. The larger class size and increased background
diversity could enrich discussions and broaden course impact, although facili-
tators must carefully maintain spaces conducive to vulnerable exchanges. We
also recommend reducing weekly reading load by assigning selected excerpts, as
students reported limited engagement and retention with full-length academic
papers. Strict enforcement of attendance policy is key, given the focus on live
discussion. Lastly we recommend adding additional experiential learning op-
portunities, such as role-playing workshops or simulated mentoring sessions, in
order to help students explore how to apply course material in practice.
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A Correct Definitions of Terms from Course Readings

Term Definition

Self-Explanation learners benefit from explaining out loud (to themselves
or others) what they are doing during the completion
of a learning task [16].

Growth Mindset students who believe that intelligence is a changeable
trait that they can improve with effort and guidance
are described as holding a “growth mindset” [17].

Goal Orientation the goals and aims students tend to hold when ap-
proaching a new task. These goals fall into two main
orientations: 1) mastery or 2) performance [12].

Microaggression brief, sometimes subtle, everyday exchanges that either
consciously or unconsciously disparage others based on
their personal characteristics or perceived group mem-
bership [11].

Fallacious Archetype students who match the hegemonic profiles of ‘success-
ful’ CS students tend to possess certain values for each
component. Those are: male gender, white race, middle
or higher socioeconomic [27].

Defensive Climate describing classroom communication climates, such as
whether students feel comfortable asking questions, and
what sorts of comments, discussions, and knowledge are
valued... exhibits traits like: evaluative, controlling,
strategic, neutral, superior, certain [10].
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Abstract

Similarity checking has long been the main approach for detecting
cheating in programming classes. While still a key approach, similarity
checking has increasing limitations, due to more ways for students to
copy code from online solutions, low-cost contractors, and artificial intel-
ligence code writing tools - - in such cases, a student may copy a program
that is not similar to a program from any classmate. However, the rise in
use of program auto-graders, version control, and other tools that capture
a student’s program history provides new cheating detection approach
opportunities. One approach detects when a student’s program history
includes a code replacement - - an instance where a student’s code at one
time is followed by new code that is clearly an entirely different program.
We manually examined program histories for 5 labs in our CS1 class, for
50 random students per lab, and found code replacement prevalence of
12%, with half not turning up in the similarity checker. Detecting code
replacement, and from-the-start solution copying, may become impor-
tant complements to similarity checking, to catch and preferably prevent
cheating in programming classes.
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or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Cheating in computer science (CS) programming courses is a long-standing
problem. The problem has been exacerbated in recent years by growth of
online websites and apps, via easy availability of solutions at code-sharing sites
like GitHub [7, 12], low-cost “help” websites like Chegg [3] with “tutors” who
write solutions for students [1], real-time anonymous student communication
apps like Discord [5], AI-driven code writing tools like ChatGPT [4] or GitHub’s
Copilot [14], and more.

The most common way to detect cheating on programming assignments is
via similarity checking [18, 10, 16, 23]. Similarity checking works by detecting
that a student has submitted a program similar to another student in the
class and/or to a set of known solutions such as those from a previous term.
Similarity checkers ignore certain differences, such as variable names, minor
reordering of statements or expressions, whitespace, comments, etc.

Today, a new technique is enabled in cases where instructors have access
not just to a student’s one final submission, but also to a history of versions of
a student’s program as the student developed their program. Such a version
history may be available if, for instance, a class is using an auto-grader, wherein
a student might submit code to the auto-grader to receive a score, and then
resubmit multiple times to try to gain a higher score. Thousands of CS1 courses
today use program auto-graders [8]. Another instance is when students must
develop code within a particular cloud environment, and that environment
records the history of code [20, 6, 9]. Another instance is when an instructor
requires students to regularly commit their code to a private code repository
like GitHub as in [19].

With such program history, one possible technique for detecting potential
cheating is to detect that a student replaced their solution with an entirely
different solution [20]. For example, a student might first try to write a program
but, upon repeatedly getting a bad score from an auto-grader, give up and
resort to copying, often late at night near a deadline in an act of desperation
[13]. Looking at the history of program versions, an instructor can detect
that a program has been replaced by another, typically by noticing a different
algorithm, different variable names, a change in coding style, etc.

Other researchers in recent years have also begun to mine student behavior
on cloud-based development tools to detect cheating [11]. In our own prior
work, we proposed a comprehensive means of detecting program cheating, and
detecting large code replacements is one facet of our cheating concern metrics
[21].

In this work, we sought to determine the prevalence of code replacement
instances on programming assignments in our CS1 class at a large state uni-
versity. Also, we looked at how often the resulting solutions would have not
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been noticed by a similarity checker. Thus, we performed a manual and auto-
detected analysis on 5 programming assignments. Our goal ultimately is not
to catch students cheating, but rather to prevent such cheating. By developing
strong multi-faceted automated detection tools and making students aware of
such tools, the goal is to prevent cheating by reducing perceived opportunity,
one key factor according to Albuwi [2]. Additionally, this is a continuation
of our prior work in an effort to prevent students from cheating by making
detection/punishment efforts clear[15, 22].

2 Our CS1 course

Our CS1 course serves ∼1500 students per year, about half computing majors,
and the other half science and engineering majors. The class is offered ev-
ery quarter for 10 weeks via 3-5 ∼100 student sections, plus summer sections.
The class is taught by experienced instructors, has strong course evaluations,
good grades, and yields solid student performance in CS2 and CS3. The class
uses pedagogical approaches known to aid student success: flipped lectures,
active learning, scaffolding, many-small-programs, auto-grading, peer instruc-
tion, allowed collaboration, growth mindset, help normalization and resources
(learning assistants, office hours, real-time discussion forum).

Our class uses the zyBooks learning system [24]. Each week, students read
and answer ∼100 learning questions (Participation Activities or PAs), com-
plete ∼20 homework code reading and writing problems (Challenge Activities
or CAs), and code 5-10 programming assignments (Lab Activities or LAs), all
in the zyBook. We expect about 7-9 hours per week of work outside lecture
period, for students with no prior experience. Students are required to do all
programming in the zyBook (no external tools), to reduce cheating, reward
effort, and enable analysis. All zyBook activities are auto-graded, with im-
mediate feedback, partial credit, and resubmissions. Instructors can download
reports of activity completion, and logs of all LA program runs.

Our CS1 course grade consists of ∼10% PAs, ∼10-15% CAs, ∼15-20% LAs,
∼5-10% class participation, and ∼50-60% in-person proctored exams. The high
exam weight enables gentler policies on allowing some collaboration.

3 Prevalence of code replacement in program histories

3.1 Setup

We selected 5 LAs from our 100-student section of a CS1 course offering in
Winter 2019. We chose that quarter due to it being the most recent "normal"
quarter taught by one of this paper’s authors, prior to the disruptions caused
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by the Covid pandemic starting in 2020, with effects of those disruptions still
being felt in our most recent quarters.

We chose the 5 labs seeking a spread across chapters in the middle of the
course of weeks 3-8, and choosing labs with enough variability in student solu-
tions that a similarity of 90% or above in the zyBooks similarity checker was
suggestive of potential copying from a classmate (in contrast to some programs
where highly-similar solutions are common due to there not being many dif-
ferent solutions). We chose to do 5 labs based on available time, as each lab
took several hours to manually analyze. The 5 selected labs are listed in 1. All
the labs chosen are known as “zyBooks Maintained Labs” or ZMLs, provided
by zyBooks to instructors for use as programming assignments (80 total are
provided, of which we use about 40, and we add more of our own). Being
used at hundreds of universities, zyBooks Maintained Labs have a higher like-
lihood of having solutions available online, and thus we modify some of them
slightly each term so online solutions won’t work, but those 5 were unmodified.
Instructor solution sizes ranged from 20-40 lines and averaged 35 lines.

We trained two senior CS-major undergraduate researchers to manually de-
tect code replacement, involving a judgment that a program in a student’s pro-
gram history was not derived from the immediately-previous program instance
in that history. Key indicators included substantial differences in the algorithm,
identifier names, statement ordering, expression term ordering, whitespace us-
age, brace style, comments, and more. But frankly, for people comfortable
with programming, code replacement in these CS1 programming assignments
is usually glaringly obvious, and easily distinguishable from normal program
development even considering large additions to the code between program
instances. The researchers were given access to a zyBooks tool that gives
instructors/TAs/graders easy access to the program histories, and examined
every recorded program instance in those histories, which typically ranged from
5 to 50 instances for a student in one lab. For each lab, they examined the full
histories of 50 randomly selected students and recorded every instance of code
replacement. Their work was checked by a CS instructor with 10+ years expe-
rience of investigating CS1 cheating cases and following through on sanctions
and student conduct referrals for dozens of students, and who also happened
to chair the university’s Academic Integrity committee.

3.2 Results

Table 1 provides results on the prevalence of code replacement. On average per
lab, 6 of the 50 students or 12% were detected performing code replacement.
On a particularly challenging lab (4.10), 26% were detected performing code
replacement.

We ran the zyBooks similarity checker for the 5 labs, to see if the code-
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Table 1: Prevalence of code replacement, of 50 students.

LA # code replacers % code replacers # w/out high-sim
3.17: Leap year 5 10% 1

4.10: Name format 13 26% 6
5.10: Count input len 4 8% 2

6.21: Acronyms 2 4% 1
8.15: Word frequency 7 14% 6

Average 6 12% 3

replacing students would have been flagged as having highly-similar code to
any other student in our 100-student section. Based on experience, students
scoring above a 90% similarity tend to be the suspicious cases, forming a “high
similarity” list that might trigger investigation for cheating. Interestingly, 3
of the 6 code replacers (on average) did NOT appear in the high-similarity
list, meaning their code was not at least 90% similar to any other student. In
our experience, code replacement is strongly suggestive of cheating, and thus
3/50 or 6% of the class was likely cheating on assignments that would not have
triggered a cheating investigation using similarity checking. For the other half
of code replacers who did appear on the high similarity list (having >= 90%
similarity to at least one other student), the existence of a code replacement
in their program history strengthens confidence that cheating occurred, vs just
happening to have developed similar code to another student.

4 Results

4.1 Initial solution copiers

In the manual analysis of program histories to detect code replacement in-
stances, we noticed some students were clearly copying a complete solution
from the very beginning. Some might have a code replacement later if that ini-
tial solution didn’t work, but others were successful in gaining full points from
that first copied solution. Curious about the prevalence of initial solution-
copiers, we re-analyzed program histories looking for cases where the student’s
first program instance was a complete solution – unusual because we require
all development to be done in zyBooks and we strongly encourage and teach
incremental design. A complete solution from the start is not always due to
copying, because some students (against advice) write the entire program at
once without any development runs or submissions to the auto-grader along the
way. Thus, we looked for more indications that the initial complete solution
was copied, including looking for unusual code style not taught by the book or
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instructor. Style refers to brace usage, indenting, whitespace, variable naming,
chosen constructs, etc. For example, our CS1 does not teach and in fact forbids
use of C++ arrays, such as v[i], instead requiring vectors, such as v.at(i). Other
examples include 100% similarity with other students or left-aligned code due
to pasting copied code.

Thus, solutions using arrays are almost certain to have been copied from on-
line, where array-based solutions are common (partly because tutors on Chegg
seem to mostly have a C background and C only has arrays, vs. a C++
background). Another indication included 100% similarity from the similarity
checker with other students. Another was left-aligned code, which seems to
happen sometimes when students paste copied code.

Table 2 provides results. Initial code copying appears to be an even more
substantial problem, with 12 of 50 students or 24% initially copying. These
initial copiers turned in code that was not their own from the very first sub-
mission.

Table 2: Prevalence of initial copying, of 50 students.

LA # code replacers % code replacers # without high-sim
3.17: Leap year 9 18% 1

4.10: Name format 13 26% 1
5.10: Count input len 17 34% 4

6.21: Acronyms 13 26% 4
8.15: Word frequency 7 14% 4

Average 12 24% 3

Nine of those 12 had high similarity with at least one other student, but 3
of the 12 did not. Furthermore, on average, 3 of the 12 initial copiers had a
subsequent code replacement, because their initially-copied solution did not get
full credit. We refer to trying multiple copied solutions as “solution hopping”.
On average, 6% of students in the class solution-hopped, either by trying first
on their own and then code-replacing two or more times, or by initial copying
and then code-replacing at least once.

In the classes examined, 6% of students were likely cheating via code re-
placement yet were not suspicious in the similarity checker. This number is
quite high when considering that detected cheating rates (primarily via simi-
larity checking) at at CS1 range from 5% to 20% depending on the instructor
and term. In other words, code replacement detection alone could potentially
increase the detected cases by 30% (6/20) to 120% (6/5), which is quite sub-
stantial. Initial copy detection could increase that even further.
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5 Automatic detection of code replacements

Manual analysis was time consuming, requiring 2-3 hours per lab for 50 stu-
dents. Thus, we wanted to know if code replacement could be detected auto-
matically. Following the philosophy of trying simple approaches first, we wrote
a script to run a text difference function on every sequential pair of programs
in a student’s program history. We used the difflib library [17] available in
Python, namely the difflib. Differ() function ("diff" for short). From diff’s re-
turn data, we counted the lines that differed. We experimented and determined
70% was a reasonable threshold to distinguish code replacement from normal
development based on evaluation of hundreds of examples, but a more general
adaptable approach may be a topic for future work. We compared diff to our
manual analysis, which had marked every examined run as code replacement
or not.

Our data showed that the simple diff approach has high sensitivity, catching
about 98% of all actual code replacements (or about 19 in 20 cases). Its
specificity is good at 93.3% but a higher percent would be preferred to reduce
false alarms. Thus, simple diff is likely usable for detecting code replacement,
but future work would be beneficial to reduce the false alarm rate.

6 Conclusions

Given the growing number of solutions available online, the easy availability of
low-cost online programming contractors, and the rise of AI-driven code writing
systems, we were concerned that similarity checking might not be catching as
high a percentage of cheating as desired. Thus, we investigated the prevalence
in our CS1 class of “code replacement” in student program histories, because
code replacement is usually highly-suggestive of cheating. We found the rate
to be 12%. Importantly, 6% of all students were likely cheating via code re-
placement but did not show up as suspicious in the similarity checker, which
in some terms could double the number of detected cheating cases. In our
analyses, from-the-start copying also seemed to be a substantial problem as
well, occurring in 24% of the labs, being more commonly detected by similar-
ity checking but with some cases sneaking undetected past similarity checking.
We repeated our experiments in a different CS1 at a different university using
a different language, and obtained nearly identical results. Additionally, we
showed that a simple text difference approach could detect code replacements
with reasonable accuracy, but future work is needed to reduce false alarms.
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Abstract

Developing social, management, and academic skills is essential in
any undergraduate program. Opportunities to explore future career pos-
sibilities, especially in a STEM context, can profoundly impact students’
career choices. The Data Science Academy (DSA) is designed to give un-
dergraduates experience in teaching and academia and equip them with
valuable personal and professional skills. The DSA hosts coding camps
in data science for middle and high school students, led and managed by
trained undergraduate leaders. This article shares our experiences with
the academy and examines its impact on both the participants and the
undergraduate leaders who guide them.

1 Introduction

Research indicates that students enroll in undergraduate programs with diverse
motivations, such as a genuine interest in the subject, the aim to prepare for
a career or a commitment to others [14]. However, many undergraduate pro-
grams prioritize technical proficiency within specific majors but frequently fall
short of equipping students with vital social, personal, and professional skills.
This gap is particularly noticeable in areas like communication, teamwork, and

∗Copyright ©2025 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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problem-solving, all of which are essential for career success. Employers have
raised concerns about graduates lacking these key competencies, underscor-
ing a disconnect between academic training and the demands of the modern
workplace [1, 15, 20, 17]. In this paper, we propose a data science coding
camp designed to provide undergraduates with valuable professional experi-
ence alongside technical skills in their studies. Additionally, the camp serves
as an outreach initiative for K-12 students, introducing them to the possibilities
within the field of data science.

Computer Science continues to be one of the most in-demand skills across
various industries [19]. Despite the availability of a wealth of publicly ac-
cessible resources, many individuals are only introduced to or gain significant
experience with computing after completing their formal education. This delay
is often due to economic, geographic, and educational barriers. In response,
numerous coding camps [13] have been developed to introduce students to com-
puting earlier in their education, with a focus on topics like robotics and game
development.

While the concept of coding camps is not new, offering a structured pro-
gram that targets and measures the experiences and benefits for those involved
in planning and executing these camps could provide fresh insights. Our vision
extends beyond teaching data science; we propose a framework where under-
graduate students not only lead such camps but also gain meaningful opportu-
nities for professional development, networking, teamwork, and management
as part of their academic programs. This approach fosters a collaborative com-
munity of students who share an interest in data science, thus enriching their
engagement and growth in their chosen fields. Engaging undergraduate stu-
dents in teaching-related activities is crucial, especially in fields like Computer
Science, where the demand for educators is projected to grow significantly. Ac-
cording to the U.S. Bureau of Labor Statistics, employment of postsecondary
teachers is expected to increase by 8% from 2023 to 2033, outpacing the av-
erage for all occupations [18]. By fostering teaching opportunities early on,
institutions can better prepare students for future roles in education, industry,
or academia, where mentoring and team leadership are critical competencies.

To our knowledge, the Data Science Academy (DSA) is the first data
science-focused program for students in grades 7-12, primarily led by under-
graduates. Launched in 2018, DSA has since provided opportunities to over
15 cohorts. The program serves as an introduction to computer science, data
science, and their real-world applications. Exposing students in grades 7-12 to
data science has the potential to offer long-term career advantages, as comput-
ing and data are integral to a wide range of industries.

It is important to note that DSA is structured to introduce participants
to the fundamentals of data science and computing before delving into more
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technical content. The primary objective is to allow students to explore their
interests in these fields and decide whether they wish to pursue them further.
As such, the program is designed to be interactive, engaging, and inclusive,
appealing to a diverse group of students with varied interests.

2 Related Work

Outreach programs have been widely implemented across various fields and
institutions. Gonzalez et al. [5] share their experience with a data science and
deep learning-focused code camp for high school students, while Chen et al.
[3] explore the introduction of algorithms and computational thinking in code
camps designed for middle school students, emphasizing broader humanistic
inquiry.

Many of these initiatives align with the CSforALL movement [4], which
has been gaining significant momentum over the past decade. CSforALL is
a national initiative aimed at integrating high-quality computer science edu-
cation into K-12 curricula across the United States. Its mission is to ensure
equitable access to comprehensive computer science learning opportunities for
all students and teachers, paving pathways to college and career success. The
organization collaborates with a diverse network of schools, districts, providers,
funders, and researchers to advance its goal of providing quality computer sci-
ence education nationwide. Numerous projects inspired by CSforALL have
reported notable improvements in student interest, engagement, and coding
proficiency [4, 3, 5, 12, 10, 16].

While the Data Science Academy (DSA) shares similarities with these ini-
tiatives, particularly in its outreach to K-12 students—especially those from
minoritized backgrounds—DSA takes a distinctive approach. Most notably,
DSA prioritizes undergraduate students as the primary participants. By lever-
aging the successful frameworks of code camps, DSA achieves dual objectives:
first, to provide undergraduates with an opportunity to develop and enhance
leadership, management, communication, and technical skills; and second, to
expose K-12 participants to computer science, data science, and ethical com-
puting.

Efforts to train undergraduates in personal and professional skills have tra-
ditionally included internships and formal programs [9, 8, 11, 6]. Kapoor et
al. [9] highlight the importance of internships in fostering professional growth,
while Hug et al. [8] discuss the benefits of Peer-Led Team Learning (PLTL)
in improving confidence, self-efficacy, and technical abilities. However, while
internships are invaluable for student development, they are not universally ac-
cessible to all undergraduates. Programs like DSA address this gap by offering
a more inclusive, structured platform for undergraduate professional develop-
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ment.
To our knowledge, DSA is the first initiative to integrate undergraduate

training in soft skills, such as leadership and communication, with a K-12
outreach program. This unique model not only prepares undergraduates for
future careers but also empowers the next generation of learners with exposure
to critical STEM fields.

3 Structure

The program is supervised by a faculty advisor from our department, who
oversees the hiring process, engages other faculty members, liaises with schools,
and may also participate in teaching sessions. We welcome other interested
faculty to join the advisory board to further enrich the program. However, the
primary responsibility for organizing, planning, and executing the program lies
with undergraduate students, referred to as the DSA Leaders. They take on
the main workload to ensure the program’s success.

3.1 DSA Leaders

The majority of the activities and lessons are conducted by undergraduate
students, called DSA leaders.

• Application: The team advertises the program, holds rallies, and encour-
ages students to apply and explore the opportunities within it. Interested
students can apply to interview and volunteer at an event to become ac-
quainted with the process and responsibilities of their positions.

• Interview/Shadowing: Upon expressing interest, each candidate is inter-
viewed by faculty to ensure they are in good academic standing and genuinely
committed to the program. Following the interview, candidates are invited
to volunteer at a camp, which provides them with hands-on experience and
allows senior DSA Leaders to evaluate their fit for the role. A key criteria is
continuity and succession planning for the program over time.

• Hiring/Training Process: After successfully completing the interview and
camp experience, candidates are officially hired at an hourly rate to support
future camps. New hires participate in multiple in-person and online ses-
sions to learn program logistics and practice their responsibilities. These
sessions cover a range of topics, including but not limited to teaching meth-
ods, fostering a growth mindset, teamwork and responsibility management,
effective communication, inspiring younger students, and strategies for class-
room management and effective teaching. DSA roles may vary from respon-
sibilities such as coordinating with schools, organizing food and activities,
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to delivering lectures, and providing on-site learning support. The selected
group meets regularly with the faculty advisor to ensure thorough and timely
preparation. Additionally, leaders collaborate independently to plan lessons,
brainstorm activity ideas, and conduct practice runs for any scheduled ses-
sions.

4 Program Design

The DSA program offers flexible formats to accommodate various needs, in-
cluding a two-day weekend event during the school year, a five-day summer
camp, and a quarter-long training spread across multiple weekends. Based
on our experience, shorter, consecutive camps work best for younger middle
school students, as they align well with the primary goal of providing exposure.
Conversely, a longer, more detailed, and technical program benefits high school
students seeking deeper engagement. Table 1 shows a sample 5-day schedule
of a previous DSA offering.

Table 1: 5-day DSA Schedule

Monday Tuesday Wednesday Thursday Friday

Entry
Survey

Drop-off Drop-off Drop-off Drop-off

Breakfast Breakfast Breakfast Breakfast Breakfast
Intro 1 Encryption DS 1 WordClouds

1
Ethics

Icebreaker Game Game Tour Game
Intro 2 Chat Bots DS 2 WordCloud

2
Showcase
Prep

Lunch Lunch Lunch Lunch Lunch
Showcase
Prep &
Pickup

DS-PATH
talk &
Pickup

Showcase
Prep &
Pickup

Showcase
Prep &
Pickup

Award
Ceremony
& Exit
Survey

Since its inception in 2018, DSA has adapted to different schedules and
formats. Initially an in-person program, DSA transitioned online during the
COVID-19 pandemic in 2020 to ensure continuity. Currently, the academy
operates in person on our campus, with an online option still available as
needed.

The program is actively advertised to parents across the school district.
In alignment with our goal of reaching students from diverse backgrounds,
no prerequisites are imposed, acknowledging the varying levels of computer
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and programming familiarity among participants. To address this, lessons are
designed with essential coding tools, clear step-by-step instructions, and live
feedback to minimize confusion. On-site assistance from DSA Leaders is a
crucial component of this supportive structure.

4.1 Language and Platform

Python is selected as the programming language for the camp due to its high-
level syntax, extensive library support for data science and machine learning,
and widespread applicability across various domains [7]. For an accessible and
user-friendly environment, we utilize Google Colaboratory [2], a free, cloud-
based platform that students can access through their school accounts. This
choice ensures that students can easily retrieve their work and access resources
even after the camp concludes, allowing them to revisit lectures and reinforce
their learning independently.

4.2 Project Showcase

At the beginning of each camp, students are informed that they will be required
to complete and present a project of their choice by the end of the program.
They have the flexibility to use any dataset, text, coding technique, or package
for their projects. Each day includes dedicated project time, allowing students
to apply newly learned concepts and advance their work progressively. This
activity has proven to enhance student engagement, leading to a variety of inno-
vative projects, such as analyses with diverse datasets, word clouds, chatbots,
and encryption techniques.

This hands-on, project-based approach reinforces learning while encourag-
ing creative problem-solving, preparing students for real-world applications in
data science and coding.

While this segment gives students the freedom to explore their interests,
DSA leaders play a crucial role in maintaining engagement. They provide
follow-up support, assist in generating project ideas, offer technical guidance,
and help keep students motivated throughout the process.

4.3 Lessons and Other Activities:

Our primary goal is to design a program that is appealing, engaging, and
informative. For many participants, DSA may be their first experience with
data science—or even computing in general. Therefore, it is crucial to create
an inviting and inclusive environment that encourages students to envision
themselves continuing in these fields.
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For each lesson, a Google Drive repository is prepared, containing Python
code files (Colab Notebooks), data files, and links to helpful resources. (Links
to specific lessons have been omitted to maintain the anonymity of this article.)
The main DSA Lessons are “Introduction and Setup”, “Python Programming
Basics”, “Encryption”, “Data Analysis and Visualization”, “Ethical Computing”,
“Chat Bots”, “Word Clouds”, and “Social Activities and Icebreakers”.

At the end of the program, students present their completed projects and
are recognized with awards for their efforts. This final showcase celebrates
individual achievements while also reinforcing the collaborative and supportive
environment fostered throughout the program.

5 Evaluation Methodology

Since starting with 28 students in 2018 as an in-person program, our Data
Science Academy has grown to host up to 150 participants at once, with over
500 students participating in total since its inception. In this section, we discuss
the evaluation methodology introduced in Fall 2022 to measure the program’s
impact.

The goals of the Data Science Academy focus on two main groups impacted
by the program: the “DSA Leaders”, who are undergraduates responsible for
conducting the academy, and the “attendees”, the K-12 students who partici-
pate in the DSA as an extracurricular activity.

5.1 Attendees:

To evaluate the effectiveness of DSA, we implemented Entry and Exit surveys
for recent sessions to capture self-reported impacts on attendees. They are
asked to complete a survey designed to gather demographic information as well
as insights into their personal, professional, and technical interests relevant to
the camp.

Some of the key questions included in the survey are as follows (The stu-
dents are asked to answer these questions based on a 1-5 Likert Scale):

– “How would you rate your proficiency with coding?”

– “How would you rate your proficiency with data analysis?”

– “How confident are you with programming?”

– “Agree/Disagree: I feel like I belong with other students who like CS and DS.”

– “Agree/Disagree: I am interested in doing activities related to CS and DS in
the future.”
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– “Agree/Disagree: I am interested in learning about computers and data sci-
ence.”

5.2 DSA Leaders:

We chose to conduct focus groups to understand the DSA Leader experience
because the number of DSA leaders hired in the lifetime of the program (19
undergraduate students) is relatively small, making this approach more advan-
tageous for collecting qualitative data in depth.

In a smaller group setting, we can facilitate conversations that delve into
their thoughts, experiences, and perceptions, while encouraging dynamic ex-
changes that add richness to the data. We believe this approach will allow us
to capture a more comprehensive understanding of the experience and its im-
pact on undergraduate student life without introducing biases about expected
outcomes.

Some of the main conversation threads and question highlights are as fol-
lows:

– “How has being a DSA leader impacted your undergraduate experience?”

– “How has being a DSA leader impacted your academic performance in computer
science courses overall?”

– “Has being a DSA leader influenced your interest in pursuing graduate studies
in computer science? If so, how?”

– “In what ways has being a DSA leader expanded your network within the
computer science department or the broader academic community?”

These questions and topics are introduced in casual conversation, allowing
DSA leaders to express themselves more openly and naturally. This informal
approach encourages authentic responses and a deeper exploration of their
perspectives.

6 Results

In this section, we share our experiences with the Data Science Academy. While
the program has been offered since 2018, this study specifically examines the
five sessions conducted since Spring 2023.

All of the offerings in this study were structured as two-day, in-person
weekend camps, hosting a total of 114 students. During this period, a total
of 19 DSA Leaders were actively involved, either hired previously or joining
after Spring 2023. On average, 9 DSA Leaders attended and conducted each
camp session (not all DSA Leaders are assigned to every camp due to common
scheduling conflicts).
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6.1 Attendee Experience

We categorized the questions on the entry and exit surveys into key impact
categories – “Sense of Belonging,” “Proficiency in Data Science,” “Proficiency
in Programming,” “Confidence in Programming,” and “Interest in DS and CS”
– and measured the improvement between the two surveys.

Figure 1: Entry vs. Exit Survey Results Comparison

Our results show a statistically significant ( independent paired t-test p
< 0.05) average increase of 28.55% in “Confidence in Programming,” “Sense
of Belonging,” “Proficiency in Programming,” and “Proficiency in DS” among
participants in the most recent year of DSA as demonstrated in Figure1. At-
tendees reported an 82% satisfaction rate with the overall experience, along
with an impressive 97% satisfaction score when asked about their experience
with the DSA Leaders.

While studying the objective long-term career effects of DSA on attendees
may not be feasible, we have observed an encouraging trend: several former
participants have reached out post-graduation to express sustained interest in
data science, report involvement in educational projects, or reconnect with
the program. We plan to establish a framework for maintaining contact with
former attendees to assess the program’s long-term impact over time.

6.2 DSA Experience

The following notes have emerged from DSA focus meetings:

• Invaluable Community of Peers Interested in Similar Topics: Being
a DSA Leader allowed students to connect with others who share an interest
in data science and teaching. This role provided opportunities to exchange
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information about programs, seminars, and career connections, and fostered
valuable friendships, enhancing their sense of belonging and community.

• Increased Interest in Involvement in Other Events and Communi-
ties: Observing how the DSA leadership role opened new doors, students
became more interested in participating in other programs and opportuni-
ties. For instance, many went on to work as undergraduate tutors in other
peer-teaching initiatives at our institution.

• Enhanced Communication Skills and Interest in Teaching: Leaders
reported that teaching in a classroom setting helped them develop commu-
nication skills, enabling them to explain problems in simpler terms, discuss
technical issues effectively, and seek solutions collaboratively. This experi-
ence also inspired some leaders to consider teaching as a potential career
path.

• Improved Communication with Faculty: Due to their hands-on re-
sponsibilities, leaders developed friendly and approachable relationships with
supervising and participating faculty members. This connection helped de-
mystify faculty roles and opened doors for mentorship, advice, and additional
opportunities.

• Significant Interest in MS/BSc Program Applications: Many senior
DSA Leaders went on to apply for our extended MS/BSc program. While
this may not be solely attributed to the DSA experience, leaders noted that
working alongside high-achieving peers and discussing graduate opportuni-
ties with faculty positively influenced their decisions.

7 Conclusion

In this paper, we report our experience with Data Science Academy, an ini-
tiative to provide undergraduate students with the opportunity to develop
professional skills and experience teaching while offering an outreach DS and
CS program to middle school and high school students.
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