
Student Research Contest
Extended Abstracts

1. Development of a Lunar Regolith Database
Arielle Baine , Spelman College.

2. Identifying Worms in a Binary Picture
Nicole Dawson , Spelman College.

3. A Case Study for Developing Applications for a Mobile Device: the iPhone/iTouch
Platform

Derek Hardison , Roanoke College.

4. The Evolution of Swarm Intelligence
Mark Lucas, Roanoke College.

5. Exploring Biological Networks by Integrating Annotation: A Case Study of
Congenital Heart Defects

Tahirali Motiwala , Wofford College.

Name: Arielle Baine
Title: Development of a Lunar Regolith Database
Advisors: James Thomas Hale, Sr and Dr. Alfred Watkins, Spelman College

Abstract
Lunar regolith simulants (and lunar dust simulants) are synthetic analogs that
approximate, to a known extent, one or more regolith properties or characteristics
at a particular lunar location or region. The primary characteristics of the
simulants are inherited properties of the material. In particular, primary
characteristics include particle composition, particle size distribution, particle
shape distribution, and bulk density. These simulants are used by engineers and
scientists in order to produce effective products, such as reliable hardware that
will function long term, on future lunar missions. For engineers and scientists to
utilize the lunar regolith simulants they must have understanding of the simulants,
as well as the lunar regolith reference material. Some lack this
understanding and rely on low­fidelity or inappropriate substitutes, such as baby
powder, toner or printer cartridges, and dirt or sand because they match one (1)
primary characteristic of a lunar sample. It has come to the attention of MSFC
and geologists that this problem arises simply because these engineers and
scientists are unaware of the risk that inappropriate simulants cause. A realistic
solution would be to create a repository combining Figure of Merit (FoM) ratings
(a quantitative comparison, between 0 and 1, produced by a complex
algorithm of two particular materials composed of geologic components), “fit­for­
purpose” matrices, attainment surveys, data from completed tests using
simulants, and other beneficial documents and references. This repository would
be fashioned into a database, entitled “Lunar Simulant Database for Users”, that
would be used as a comprehensive and effective tool for researching simulants,
including but not limited to, their properties and behaviors. Then, the information
gained can be applied to the engineers and scientists’ respective applications.
Moreover, from this database it can be understood that certain materials cannot
be substituted for lunar regolith simulants and lunar samples without added risks,
even if these materials are cost effective and easy to obtain. Engineers and
scientists should focus on understanding lunar regolith simulants and how the
appropriate simulant selection can lead to successful lunar missions.

!"#$%&'(&$)*+,-./*&$*0*1&$0-(*2&3%4-#

5&3,6#*78*90:/,$;<=#6.0$*>,66#)#

7"?&/,-/@*A0.#/*BC,.0/*D06#;<-;<=#6.0$*>,66#)#;9-8*76'-#"*+0%E&$/;<=#6.0$*>,66#)#;*

9-8*10"-&*F,(/0.;*F#$//#60#-*2,6(%#3C$&3*!$/%&%4%#

G#$%,-@*B#$&3E0*B4-$H4#/%;*F#$//#60#-*2,6(%#3C$&3*!$/%&%4%#

9#=0-%.#$%*,'*>,.=4%#-*0$"*!$',-.0%&,$*<3&#$3#/

<=#6.0$*>,66#)#

!"#$%&'()*"+$,'-.#/+$)($&$0'-.#/+$1#1)/&+#1$+-$+"#$1#2#3-04#5+$&51$1)((#4)5&+)-5$-6$&$

5#7+8*#5#'&+)-5$+--39)+$-6$)4&*#$&5&3:()($4#+"-1($+-$#5&;3#$<=&5+)+&+)2#$(+=1)#($-6$/-403#7$>$

1:5&4)/$+)((=#$4)/'-#52)'-54#5+($+"&+$&'#$)4&*#1$;:$4-1#'5$-0+)/&3$4)/'-(/-0#(?$@-4#$

#7&403#(-6+"#(#$4)/'-#52)'-54#5+($&'#$;'&)5$+)((=#$(+#4$/#33$5)/"#(A$&51$+"#$1#2#3-04#5+-6

#4;':-5)/$+)((=#$&51$+=4-'($B"++0CDDEEE?6&'()*"+8+--39)+?-'*DE)9)D!"#FG-'4F,'-.#/+H?$G)+")5$+"#$

%&'()*"+$0'-.#/+$3&:($+"#$G-'4$,'-.#/+?$I+$)($&3(-$&$+--39)+$1#()*5#1$+-$+'&/9$&51$-;(#'2#$J?$

K3#*&5($E-'4($)40&/+#1$;:$-=+()1#$)563=#5/#($(=/"$&($0"#'-4-5#(?$!"#$E-'4($E#'#$03&/#1$)5$&$

0#+')$1)("$E"#'#+"#:$E#'#$*)2#5$0"#'-4-5#($&51$0"-+-*'&0"#1$#2#':$6#E$4)5=+#($+-$-;(#'2#$+"#$

4-2#4#5+($&51$'#&/+)-5-6+"#$E-'4(?$!"#'#$)($/=''#5+3:$&$%&'()*"+$!--39)+$+"&+$*#5#'&+#1$+"#$

'#(=3+(-6+"#$J?$K3#*&5($E-'4(L$'#&/+)-5$&51$;#"&2)-'?$!")($E-'4$0'-.#/+$0'-2)1#($&$M5#E$'&5*#$

-6$<=&5+)6)/&+)-5$4#+')/($6-'$5#4&+-1#$(-/)&3$;#"&2)-'(N$$B$"++0CDDEEE?6&'()*"+8

+--39)+?-'*DE)9)D!"#FG-'4F,'-.#/+$H$$+"&+$E)33$"-0#6=33:$-5#$1&:$"#30$-+"#'($(+=1:$"=4&5(A$5&4#3:$

+"#$"=4&5$;'&)5?$!"#$&3*-')+"4$+"&+$+"#$E-'4$0'-.#/+$)($;&(#1-5E&($/'#&+#1$;:$O)/-3&($

P-=((#3?P-=((#3$/'#&+#1$&5$&3*-')+"4$+"&+$()4=3+&5#-=(3:$+'&/9($)4&*)5*$6)#31($+"&+$/-5+&)5$

4=3+)03#$E-'4($B$"++0CDDEEE?6&'()*"+8+--39)+?-'*DE)9)D!"#FG-'4F,'-.#/+H?

I5$-'1#'$+-$=51#'(+&51$+"#$%&'()*"+$,'-.#/+$&$(#')#(-6+=+-')&3(-5+"#$Q)(=&3$!--39)+$BQ!RHA$

I5()*"+$!--39)+$BI!RHA$S&+T&;A$,:+"-5A$&51$S)/'-(-6+$Q)(=&3$(+=1)-$E#'#$1-5#$&(E#33$&($&$+"-'-=*"$

(+=1:-6+"#$%&'()*"+$G)9)$,&*#$&51$+"#$G-'4$,'-.#/+$E)9)$0&*#?G#$(+=1)#1$=51#'$U'?$V&1')$

P-:(&4$&+$P#5((#3&#'$,-3:+#/"5)/$I5(+)+=+#$&51$-5#-6")($*'&1=&+#$(+=1#5+($!#5)9&$!='5<=#(+?$

!='5<=#(+$E-'9#1$-5$+"#$E-'4$0'-.#/+$&($&$E"-3#$&51$*&2#$4#$&$0-'+)-5$-6$"#'$'#(#&'/"$

0'-;3#4(?

I$#*=-,J6#.*:0/*>C0$)&$)*%C#*3,6,-/*,'*%C#*:,-./*/,*%C0%*:#*:,46"*J#*0J6#*%,*&"#$%&'(*

%C#.*&$*%C#*)-0(/306#*=&3%4-#/*!*:0/*)&?#$*?!='5<=#(+$&3(-$/-52#'+#1$+"#$*'&:(/&3#$0)/+='#($+-$

;)5&':$)4&*#($+"#'#6-'#$4&9)5*$)+$#&()#'$+-$)1#5+)6:$+"#$E-'4($&51$4&5)0=3&+#$JWW$&51$0:+"-5$

/-1#$)5$-'1#'$+-$1)(03&:$+"#$E-'4($3-/&+)-5?$!"#$0)/+='#($E#'#$&3'#&1:$4&*5)6)#1$&$*'#&+$1#&3$(-$

+"&+$E#$/-=31$(##$+"#4$;=+$+':)5*$+-$1)(+)5*=)("$;#+E##5$&$0-'+)-5$-6$+"#$,#+')$1)("A$&$(4&33$

6'&*4#5+$-6$1)'+$-'$&5:+")5*$+"&+$*-+$)5$+"#$E&:$-6$+"#$3#5($&51$+"#$&/+=&3$E-'4$)+(#36$E&($1)66)/=3+?

BC#*/#3,$"*=-,J6#.*:0/*%,*'&$"*%C#*#K03%*6,30%&,$*,'*%C#*:,-.8$I$"&1$+-$)1#5+)6:$+"#$0)7#3

2&3=#$&51$7$&51$:$/--'1)5&+#($-6$+"#$E-'4($)5$-'1#'$+-$)1#5+)6:$+"#4?

L4%-#*F#/#0-3C

BC#*%C&-"*=-,J6#.*:0/*.0E&$)*/4-#*%C0%*:#*&"#$%&'&#"*0$"*%-03E#"*%C#*3,--#3%*:,-.8*

X-E#2#'$1=#$+-$+)4#$'#(+'&)5+(IE&($5-+$&;3#$+-$=(#$O)/-3&($P-=((#3L($&3*-')+"4$6-'

+'&/9)5*$&51$)1#5+)6:)5*$+"#$E-'4(?

A Case Study for Developing Applications for a Mobile Device: the iPhone/iTouch Platform

Derek Hardison

Roanoke College

Tenable Security

dhardison@tenablesecurity.com

Developing an application on the Apple iPhone is a process that is tightly integrated with

Apple’s Xcode and UI Builder IDE. The specifications for the application I developed for my

institution included tools to view school events, search for faculty/alumni/students, and view

profiles of students enrolled in a professor’s class. Apple’s adjudication to implement Objective

C as the API programming language is a tenable choice; it offers features that allow Apple to

ensure quality of iPhone core services regardless of applications installed by a user.

A majority of work done to develop the user interface is performed through Apple’s UI Builder.

There was an option to design only by code; however, for this project it was unnecessary.

Writing the user interface strictly by hand would have made the program much more abstruse to

developers looking to extend it, and would have added avoidable overhead. The UI Builder

allows a developer to drag and drop commonly used objects onto a canvas which consequently

reduces the amount of code one has to sift through. The user interface is attached to event

handlers written by a developer; these event handlers are called to perform whatever routine is

desired. In general, different user interface objects allow for different actions (e.g. button tap).

All three of the tools developed implement the default iPhone table view. Granted that there are

alternatives, for our purposes it offered all the features required in addition to simplicity (the

ability to list news events/names and scrolling). In order for a routine to be performed, each user

interface object must be connected to a variable. These variables, which are allocated in Xcode,

effectively become proxies between the frontend (UI) and backend (main code).

Apple’s iPhone API offers methods which may be overloaded to customize various features of

user interface objects. For example, to set the height of a certain row in your table there is a

method which is called by the system that passes the row index and expects some number to be

returned. This method was frequently overloaded in all three of the projects created for my

institution. For instance, the page that displays student details in the class roster implements a

table view with one large row. To enumerate the process, the row height is calculated based on

the height of the text and images in the window. Interestingly enough, the API does not perform

this automatically for the developer.

The fulcrum in the learning process was memory management. There was a pretension about

Apple’s memory management implementation which made it appear that variables were

randomly released. After further investigation it was discovered that Objective C ran a counter

on objects which kept track of the number of places referencing it. In other words, memory was

released when the garbage collector checked a memory pool and a counter was zero. More

specifically, my largest issue stemmed from returning variables from methods; after a method

call finished the retain counter was decremented to zero (generally). The variable would hang

around until the garbage collector sneaked in and tacitly released the memory (which led the

application to seemingly crash at random intervals).

In my opinion, the neatest feature about Apple’s iPhone is the ability for applications to

exchange information. Each application that extends the iPhone API is encapsulated in its own

address space; that is, applications do not have direct access to other applications’ memory

addresses. This allows Apple to prevent developers from altering the core functions of the device

and other applications. To enumerate, the operating system manages the communication of data

by passing messages between programs (copies of the data). Later on, the data is reviewed by the

receiving application which may decide the action to be performed. As a result, the application

that received the message interprets the data how it pleases, and does not perform any action as a

consequence of another program executing one of its routines directly.

References

1. "Memory Management Programming Guide for Cocoa." Developer Connection. 2009-08-18.

Apple, Web. 14 Sep 2009.

<http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/MemoryMgmt/Mem

oryMgmt.html>.

2. "iPhone Reference Library." Developer Connection. Apple, Web. 14 Sep 2009.

<http://developer.apple.com/iphone/library/navigation/index.html>.

The Evolution of Swarm Intelligence

Mark C. Lucas

September 2009

Roanoke College

NP Complete problems were of interest even before Eniac was first
activated in the 1940’s. As the computation power of machinery has gone
from hundreds of operations per second to thousands to millions to billions,
the tractability of problems such as K-Sat has not increased. Problems whose
solutions run in exponential or factorial time are just not practically solvable
for any but the simplest of cases (Yates). The fact that many of these
problems are easily stated and intuitively understood makes them
exceptionally useful in studying alternative problems solving techniques.

Problems which are NP Complete or NP Hard are not interesting solely
from an academic standpoint, but also from an applied or practical point of
view as well. In fact, examples of Graph Coloring Problems and Traveling
Salesman Problems can be found in several different kinds of industry. For
instance, the route which a robotic arm navigates around a steel plate while
drilling holes is a TSP. Trying to make maps of the ever changing globe is a
new graph coloring problem seemingly every year. The robot arm wastes
time if it travels a lot of extra distance, and time is money. A map maker has
to pay more to print for every color that he uses, so using the fewest number
of colors while still making sure no two adjacent countries are the same
saves him money.

Generally speaking, there are three approaches to take when attacking
a problem which is NP Complete. The first is to do an exhaustive search of
the solution space. This provides a provably best answer, but is also, as
previously mentioned, prohibitively expensive from a time standpoint. The
second is to try to find some equivalent problem which would run in
polynomial time, and which still gives a provably correct answer to the NP
Complete problem; that is, to show that P = NP for some case of an NP
Complete problem and a problem which runs in Polynomial time (Cook).
Unfortunately, many people have been looking for this “Holy Grail” of
computing for decades with no luck. In fact, some computer scientists
believe that the answer has not been found because it does not exist and are
working to prove as much. The third approach is to develop some heuristic
which gives an answer which one can be reasonably sure is reasonably close
without being able to prove either (Eiben, et al).

The goal of this research was to become acquainted with the third
method, looking at how heuristics work and what methods might be useful
when approaching an instance of an NP Complete problem. The problem
chosen was the aforementioned Traveling Salesman Problem, and the
heuristics used were Genetic Algorithms and Particle Swarm Optimization.

The research consisted of four parts. The first consisted of problem and
method research, including a basis in graph theory as well as the history of
GA’s and PSO. The second phase was practical, focusing on an original
solution using a modified GA. The third stage was practical as well, in which
an original solution using PSO was also developed. The fourth phase was
comparison, in which the two heuristics were used to develop circuits in a
head to head competition. The results of stages one and two were presented
at MathFest 2008 in Madison, Wisconsin. This talk will present a brief
overview of these first two stages, but will focus on stages three and four as
well as conclusions made and lessons learned. This research was completed
in April, 2009.

Works Cited
Cook, Stephen. “The P Versus NP Problem”. Problem Statement, Millennium
Problems, Clay Insitute. http://www.claymath.org/millennium/ . May, 1998.

Eiben, A. E., Smith, J.E. Intrduction to Evolutionary Computing. Springer, New
York, 2003.

Yates, Mike. What Computers Can't Do. Plus Magazine (online Edition).
 http://plus.maths.org/issue5/turing/ . May 1998.

Georgia Tech. “The Traveling Salesman Problem”. March 2008.
 http://www.tsp.gatech.edu/problem/index.html .

http://www.claymath.org/millennium/
http://www.tsp.gatech.edu/problem/index.html
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://plus.maths.org/issue5/turing/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/

Tahirali	
 H.	
 Motiwala	
 &	
 Dr.	
 Anil	
 Jegga	

Biomedical	
 Informatics	
 Department	

Cincinnati	
 Children’s	
 Hospital	

Wofford	
 College	
 of	
 Spartanburg,	
 SC	

motiwalath@email.wofford.edu	

Dr.	
 Angela	
 &	
 George	
 Shiflet	

	

Exploring	
 Biological	
 Networks	
 by	
 Integrating	
 Annotation:	

A	
 Case	
 Study	
 of	
 Congenital	
 Heart	
 Defects	

	

Understanding	
 the	
 molecular	
 basis	
 of	
 biological	
 systems	
 in	
 development	
 and	
 disease	
 is	
 critical	

for	
 development	
 of	
 innovative	
 intervention	
 methods	
 and	
 to	
 improve	
 health	
 care.	
 	
 Research	
 in	
 genomic	

sciences	
 and	
 technologies	
 is	
 undergoing	
 a	
 significant	
 transformation	
 driven,	
 in	
 part,	
 by	
 recent	
 advances	

in:	
 (i)	
 rapid	
 and	
 inexpensive	
 sequencing	
 of	
 various	
 genomes,	
 (ii)	
 gene-­‐chip	
 technology,	
 and	
 (iii)	
 easy	

availability	
 of	
 cheap	
 and	
 enormous	
 computational	
 power.	
 	
 While	
 the	
 first	
 two	
 advances	
 resulted	
 in	
 the	

generation	
 of	
 vast	
 amounts	
 of	
 published	
 information	
 and	
 experimental	
 data,	
 the	
 enormous	

computational	
 power	
 has	
 provided	
 hope	
 that	
 nuggets	
 of	
 biological	
 knowledge	
 can	
 be	
 extracted	
 from	

this	
 data	
 deluge.	
 	
 Using	
 congenital	
 heart	
 defects	
 (CHD)	
 as	
 a	
 test	
 case,	
 in	
 the	
 current	
 study,	
 we	
 integrate	

several	
 types	
 of	
 “omics”	
 data	
 and	
 then	
 apply	
 functional	
 annotations	
 and	
 network-­‐based	
 bioinformatic	

approaches	
 to	
 (a)	
 identify	
 and	
 rank	
 potential	
 novel	
 CHD	
 candidate	
 genes	
 and	
 (b)	
 identify	
 transcriptional	

and	
 post-­‐transcriptional	
 regulatory	
 mechanisms	
 underlying	
 CHD.	
 	
 Specifically,	
 using	
 an	
 intersection	
 of	

known	
 genes	
 associated	
 with	
 heart	
 development,	
 CHDs,	
 and	
 heart	
 abnormality	
 in	
 mouse	
 models	
 as	
 a	

training	
 set,	
 we	
 rank	
 a	
 subset	
 of	
 the	
 human	
 genome	
 (test	
 sets)	
 potentially	
 associated	
 with	
 CHD.	
 	

Integration	
 of	
 the	
 various	
 data	
 revealed	
 likely	
 downstream	
 targets	
 of	
 miRs-­‐1,	
 133,	
 143,	
 145,	
 and	
 196a-­‐2;	

specifically	
 of	
 interest	
 were	
 HAND1	
 and	
 GATA6	
 as	
 targets	
 of	
 miR-­‐196a-­‐2.	
 	
 Also,	
 potential	
 regulatory	

interactions	
 between	
 miRs-­‐1,	
 133,	
 143,	
 145,	
 DUSP6,	
 and	
 MKL2	
 were	
 hypothesized.	
 	
 These	
 results	

demonstrate	
 the	
 strength	
 of	
 integrating	
 “omics”	
 and	
 network	
 analysis	
 data	
 in	
 the	
 prioritization	
 and	

study	
 of	
 regulation	
 of	
 potential	
 disease	
 genes.	
 	

